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1. Introduction

ABSTRACT

Tuned mass sampers (TMDs) are widely used strategies for vibration control in many
engineering applications, so that many TMD optimization criteria have been proposed
till now. However, they normally consider only TMD stiffness and damping as design
variables and assume that the tuned mass is a pre-selected value. In this work a more
complete approach is proposed and then also TMD mass ratio is optimized. A standard
single degree of freedom system is investigated to evaluate TMD protection efficiency in
case of excitation at the support. More precisely, this model is used to develop two
different optimizations criteria which minimize the main system displacement or the
inertial acceleration. Different environmental conditions described by various char-
acterizations of the input, here modelled by a stationary filtered stochastic process, are
considered. Results show that all solutions obtained considering also the mass of the
TMD as design variable are more efficient if compared with those obtained without it.
However, in many cases these solutions are inappropriate because the optimal TMD
mass is greater than real admissible values in practical technical applications for civil
and mechanical engineering. Anyway, one can deduce that there are some interesting
indications for applications in some actual contexts. In fact, the results show that there
are some ranges of environmental parameters ranges where results attained by the
displacement criterion are compatible with real applications requiring some percent of
main system mass. Finally, the present research gives promising indications for
complete TMD optimization application in emerging technical contexts, as micro-
mechanical devices and nano resonant beams.

New trends in materials and construction technologies have increased substantially systems performances in the last
few decades in many engineering applications, such as mechanical, aeronautical and civil ones. As immediate
consequences of these technologies, for example in civil engineering, structures tend to be lighter, more slender and
have smaller natural damping capacity than those of their older counterparts.

This trend has increased the importance of damping technology to mitigate induced vibrations, and significant
progresses have been made towards making structural control a practicable technology to enhance structural functionality
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and safety against natural and artificially generated vibrations (see for instance [1]). The concept of vibration control is
now widely accepted and has been frequently applied in many different fields, such as civil, mechanical, automotive and
aeronautical. Passive vibration control is nowadays a mature technology: among the numerous passive control methods
available, the tuned mass damper (TMD) is one of the simplest and the most reliable control device. It offers a relatively
simple and effective way of reducing excessive vibrations of high rise buildings, towers, chimneys, various mechanical
systems and so on. By attaching a secondary mass to the main system to be protected, with approximately the same
natural frequency, large relative displacements between the main system and the secondary mass will occur at resonance.
In this way the vibrating energy of the system can be dissipated by placing a properly tuned damper between the two.
Since this vibration control strategy was firstly proposed by Frahm [2], many different TMD configurations have been
projected. With reference to TMD optimal solutions, the first design criterion was proposed by Ormondroyd and Den
Hartog [3]. This criterion concerned the minimization of the system response with respect to stationary harmonic
excitation with the most critical frequency. Alternatively, a stochastic stationary excitation can be considered, e.g. white
noise.

Many optimum TMD methods have been developed aimed to opportunely design this vibration control technique under
various types of excitation sources. On the basis of Den Hartog's method, Warburton and Ayorinde [4] have obtained the
optimum parameters of the TMD for an undamped structure under harmonic support excitation, where the acceleration
amplitude was set to be constant for all input frequencies, and also for other kinds of harmonic excitations. Analytical
development of the TMD design has considered several types of optimization procedures, different mathematical models
for the primary system and the associated external loading [5]. Sun et al. [6] provide an excellent review on the history of
tuned vibration absorbers. Moreover, a number of solutions for various types of white noise excitation and various
minimization criteria have been reported by Grigoriu and Soong [7]. Takewaki [8] developed a method for optimal viscous
damper placement in building structures with a tuned mass damper, taking into account the response amplification due to
the ground. Other authors considered unconstrained optimization of single nonlinear [9] and multiple linear [10] tuned
mass dampers using as objective function the variance of the system displacement, modelling the input as a stationary
white noise process.

Many recent optimization proposals have been produced in last few years, such as in two recent papers, where
analytical and numerical approaches are used to obtain results that were afterwards represented in an approximate
analytical format, so that a synthesis highlighting influence of system parameters are reported [11,12].

Increasing in passive TMDs performances are nowadays possible by using active or semi-active approach, which
requires a prescribed active control algorithm and external power supply to generate the control force that drives the
auxiliary mass. These aspects were first studied by Morison and Karnopp [13], and then investigated by other authors (see
for instance [14]).

Anyway, just with reference to the passive strategies (the widely studied and applied approach) only few TMD
optimizations have dealt with a complete design. This is because the commonly used design considers only the TMD
frequency and damping ratio as design variables, whereas TMD mass or as usually the ratio yr between main system mass
and TMD mass is usually assumed as a constant parameter defined in a pre-design stage. In addition, it can be noticed that
optimum values required for the parameter y; by any optimization technique are very high and therefore they are
incompatible with real applications due to economic and practical consideration. This outcome is in agreement with other
literature results (see for example [15,16]).

For this reason TMD optimization was generally developed by a two elements design vector b=(wr,é7)T, which collects
the TMD frequency and the TMD damping ratio, whereas yris defined in a pre-design phase considering its practical range
of variation which depends on the specific problem. There are a number of practical and economic factors which could
influence its choice: yr usually does not exceed a few percentage of the global main system mass for both civil and
mechanical applications.

It is known that for small values of TMD mass, the protection efficiency of this control strategy against vibrations
monotonically grows with the mass ratio [16]. It must be noticed that there are some practical applications where the
amount of TMD should be greater than usually. For example in civil engineering Matta and De Stefano [17,18] proposed to
use an entire roof floor as TMD in a few floors building adopting a yr whose order of magnitude is included between 10%
and 20%.

These authors thought some new and specific applications in micro and nanomechanics, where it can be possible to
have greater values of mass ratio for practical applications. It is for instance the case of micro-electro-mechanical devices
(MEMS); they are miniature mechanical and/or electromechanical systems designed to perform tasks that previously were
done with much larger mechanical structures. MEMS benefits include smaller size, lower power consumption, accelerated
time to market and significantly reduced costs. Their study, production and use are rapidly growing up in many
applications, such as accelerometers and similar mechanical sensors. A major impetus behind MEMS technology stems
from the fact that mechanical mechanisms benefit from the same scaling-based advantages that have driven the integrated
circuit (IC) revolution in recent decades. Specifically, small size of mechanical beams leads to faster speed, lower power
consumption, higher complexity, and lower cost and it does not so only in the electrical domain, but in virtually all other
domains, including especially mechanical. Although many examples of this from all physical domains exist, vibrating RF
MEMS resonators perhaps provide the most direct example of how small size leads to faster speed in the mechanical
domain. For instance, a vibrating string tuned to a natural period by proper mechanical parameters will vibrate at those
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resonance frequencies cleaning all other frequencies. With reference to a guitar’s string tuned to “A” note, that is made of
nickel and steel and whose spanning is about 25” in length, will vibrate at a resonance frequency of 110 Hz. In vibrating
only at resonant frequency and no others, it is actually mechanically selecting exhibiting a so called quality factor or Q
factor on the order of 350, which is ~50 x more frequency selective than an on-chip electrical LC. The Q factor expresses
the measure of response spectrum width for a general resonant system: from the physical point of view it is the ratio of the
total energy stored divided by the energy lost in a single cycle.

In many electronic applications, this is an important result, that will be obtained for a different range of frequencies
than those characterising standard vibration elements at the RF and IF. In those applications they typically work with much
higher frequencies, from tens of MHz to well into the GHz range. Dimensional scaling is needed in order to achieve such
frequencies with even better mechanical selectivity. In particular, by using a metallic string whose length is only 10 pm,
constructing it in stiffer, IC-compatible materials (like polysilicon), supporting it at nodes rather than at its ends
(to minimize anchor losses), and exciting it electro-statically or piezo-electrically rather than plucking it, it can be achieved
a free-free beam (FF-beam) resonator which resonates at frequencies around 100 MHz with Q’s in excess of 10,000.

In keeping with the scaling-based arguments presented so far, further scaling down to nano-dimensions does indeed
yield frequencies in excess of 1 GHz. However, as with nanoelectronics in the electrical domain, there are issues in the
mechanical domain that might hinder the use of nanomechanical vibrating resonators for today’s communication
purposes. It is clear how it is important to introduce TMS device in those micro-vibrating systems to limiting or drastically
reduce undesired frequencies, as in micro-scale mechanical resonators, that have high sensitivity as well as fast response
and are widely used as sensors and modulators.

On the base of these considerations, in this paper TMD optimum design is developed adopting a complete approach,
which considers also TMD mass ratio as a design variable. Optimization is carried out by using standard genetic algorithm
and Matlab solvers.

The main aim of this work is not to propose new approximate or exact analytical formulas to evaluate optimal TMD
parameters under different design scenarios, but it is to evaluate if, when and how a complete optimization strategy is
reasonable and applicable in practical engineering problems. For this reason, the comparison between solutions obtained
considering two distinct TMD optimization criteria is performed. The criteria are based on the minimization of relative
displacement and of inertial acceleration of the main system, respectively. The main system is represented by a single
degree of freedom subjected to a coloured stationary white noise input acting at its support.

Optimal TMD performances and design parameters are evaluated for different environmental parameters, considering
various input frequency contents and main system damping ratios. Three different spectral contents are used,
correspondingly to a narrow, medium and broad band signal. Results immediately show that acceleration criterion
presents optimal mass ratio greater than any practical applications, while the displacement criterion presents some
interesting ranges of applications without a too great mass ratio. So that a more detailed analysis of optimal results are
shown for these criteria, in terms of objective function (OF) and design vector (DV) parameters. Results are given for
different main system/input frequencies, input frequency contents and main system damping ratios.

Finally, a comparison between the different possible solutions is showed and the possible ranges of the parameters
where the optimal TMD solution can be adopted are described.

2. Statement of the TMD optimization problem

In this section, a simple but representative model for TMD applications is analysed. It is a linear main system,
represented by its first mode [16], excited at its support by an acceleration process as illustrated in Fig. 1. The system is
protected against excessive vibration levels by a simple linear TMD. The dynamic response of this combined system is
governed by the dynamic equilibrium equation:

MY (£)+CY (t) +KY(t) =¥, (t) (1)

where Y=(Ys,Y7)T is the relative base displacement vector, and M, C and K are mass, damping and stiffness matrices,
respectively, whereas r is the drag vector.
Introducing the reduced state space vector

ZS = (YT,YS,YT,YS)T, (2)
the system motion Eq. (1) can be replaced by

Zy(t) = AsZs(t)+1,Y (D) (3)

0 1

where
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Fig. 1. Mechanical model of a linear TMD system.

is the structural system matrix, r,=(0,0,1,1)7, I and 0 the unit and the zero 2 x 2 matrices, respectively, and

—m? 2
wer +w°r ) (5)

1_wm-1i
H; =M K_<+"/1602T —(VTCO2T+U)20)

H—M-'C= ( —2érwr +2&rwr )

+yr2éror —(r2éror +2E00)

The mechanical parameters of the system are
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Y, () is the acceleration that excites the system at its support and is represented by a filtered stochastic process which
can be expressed as a second order linear filter by following equations:

{Yro+2&ap¥r+opYy =—w)
Yp(t) = i./f(t)—i-W(t) = —(Zéfu)fo+wf2Yf) (12)

where w(t) is a stationary Gaussian zero-mean white noise process whose intensity is given by So,! wyis the base frequency
and & the filter damping ratio.
The new state space vector is

Z=(Yr Ys Yy Yr Ys YpT (13)
The space state covariance matrix Rzz is obtained as the solution of a Lyapunov equation [6]:

ARz +RzAT +B=0 (14)

T E[w(EW(t—1)]=271Sed(t—T).
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where

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
A= -0}  +of +of 2501 207 +2&0 (15)
+y107 —(roi+wd) +wf +y2éror —(r2&ror+2&wo)  +2&wy
0 0 —wf 0 0 —2¢wp

The 6 x 6 matrix B has all null elements except one:
[B]G,G =27Sy. (]6)

In order to define an optimization criterion for the TMD mechanical parameters, it is useful to introduce a
dimensionless index that considers the covariance response parameters.

A frequent way to optimize systems subject to random vibration is finding a DV able to maximize the performance
efficiency. The problem is how to define the efficiency related to main system vibration control offered by TMD. In this
context a common approach considers a dimensionless reduction factor i that is the ratio between the protected and
unprotected main system variance, that is,

l// _ (Gr)protected (17)
(O-r)unprotected
where the suffix r indicates an opportunely defined response quantity index which is in general an element of state space

covariance matrix. In addition in order to obtain the response of the unprotected system we need to solve Eq. (14) also for
this one, then obtaining the 4 x 4 covariance matrix Rz,z,, which can be evaluated by solving the following equation:

AoRz,z, +Rz,z,Al +By =0 (18)
where the space state vector for the unprotected system and its system matrix are now given by
. T
Zo={Ys Yy Y5 Yy} (19)
0 0 1 0
0 0 0 1
Ao = 0§ of 2%y 2&wf (20)
0 -w} 0 —2&w

The 4 x 4 matrix By has all null elements except one, that is
[B]4,4 =27So. (2] )

Once the two quantities in Eq. (17) are known, it is possible to define the objective function (OF) that has to be
minimized by opportunely designed design variables (DV). The optimization approach is then finally posed following the
general formulation firstly proposed by Nigam [19]:

findb € Q, (22)
that minimizes OF (b) (23)
subjecttogib)y<0 (i=1,2,...,k) (24)

The OF can be defined in a standard deterministic way (for example by the total structural weight or by the total
volume) or in a stochastic one, as the ratio in Eq. (17). In this case the covariance or the spectral moments of the variables
could be used (for example, displacement, acceleration or stress in relevant elements). Also constraints expressed by
Eq. (24) could regard spectral or statistical moment or, in a more realistic way, they could express reliability limitations, as
for example in the following form:

Pr(b)—P™ <0, (25)

where Pfdm is the maximum admissible failure probability and P{(b) is the actual failure probability of system.

The optimal TMD mechanical parameters are collected in the design vector b. If, as commonly assumed, the mass ratio
yris preliminary assigned, a reduced DV is defined by b,=(wr,¢7)". In a wide amount of practical applications the maximum
acceptable mass ratio is small (for technical or economical reasons), and in this case TMD efficiency monotonically
increases with 1. On the contrary the complete TMD optimization problem, defined by a complete DV b.=(w¢r)yr)T may
provide an optimal solution corresponding to greater performances in vibration control. Unfortunately, the optimal mass
ratio is normally extremely larger than practical engineering values; therefore the complete approach is often disregarded.
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In order to compare different optimization criteria, the OF in Eq. (17) is here defined considering the main system
displacement Ys or the inertial acceleration X5 = Ys+Y,. This means that the main goal of optimization is to define the
TMD mechanical characteristics that reduce the system-vibrating relative base displacement, or alternatively reduces the
inertial forces acting on the main mass.

The choice of specific criteria is a function of required performances in the design process, and the dimensionless
reduction factor y is used to obtain two different OF, one for displacement (index r in Eq. (17) is the main system
displacement) and one for acceleration (index r in Eq. (17) is now the main system inertial acceleration):

OF; = 2% (26)
O’Yg
o

OF, = -Xs (27)
0,0
g

The evaluation of o;_requires the determination of the covariance matrix and is reported in Appendix. The two OFs in
Egs. (26) and (27) represent a stochastic index of efficiency for vibration protection whose effectiveness is good when its
value is smaller than one. At the same time, a value close to one of the OF indicates practically negligible effects in vibration
control. The optimization is performed assuming that all parameters involved in the problem, except the excitation are
deterministic. In addition, an unconstrained optimization is considered in the case of a complete approach which considers
also the mass ratio as design variable, and then Eqgs. (22) and (23) become

find the optimum design vector

b = (wr,ér,90)" (28)
that minimizes
GZ;S—(b) (displacement criterion) (29)
v
or that minimizes
oy (b
ﬂ(acceleration criterion) (30)
Gxg

3. Numerical sensitivity analysis

In this section, the results of a sensitivity analysis of optimal solutions obtained by reduced and complete formulations
are discussed. The optimization has been developed by means of Genetic Algorithm strategy; the standard Matlab GA is
used with a hybrid strategy which adopts a first sub-optimal solution, obtained by a simple GA approach with a limited
generation numbers, as the starting point of further optimization procedures. Optimal solutions are obtained for different
input frequency content and damping. The first sensitivity analysis, which considers input frequency, is of primary
importance because it is related to the input-main system resonance effects. In order to explore the sensitivity of optimal
solutions versus this parameter a filter frequency variation has been assumed in the range of 0.5-5 with reference to the
main system-input frequency ratio:

Wo
oy

Q= (31)
Also the parameter &f plays also a central role in optimal design because it defines the input frequency content. In the
analysis it is assumed &=0.3. Moreover, three main system damping ratios are fixed, due to its great influence on TMD
efficiency, which consider a moderate or small damping condition (£,=0.02), a second medium damping (£,=0.06) and a
strong damping (&p=0.1).
Optimum solutions are expressed in terms of optimal OF and DV elements, i.e. dimensionless frequency ratio, damping
and mass ratio:

opt
Pl = I (32)
o (33)
V'?R/}D

The optimal solutions obtained by performing the complete approach defined by Eq. (28), are shown in Figs. 2 and 3,
both considering the acceleration and the displacement criteria.
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Fig. 3. Optimal solutions for the displacement criterion.

On the x-axis is reported the frequency ratio 2, whereas on the y-axis of Figs. 2a, 2b, 2c, 2d, 3a, 3b, 3¢, 3d, the optimized
OF and the optimum values of design variables are given for the two different criteria adopted, respectively, acceleration
criterion and displacement criterion. A value £~=0.3 is considered for the filter damping ratio.

By analyzing plots of Fig. 2 one can observe that the complete optimization problem is able to produce optimal
solutions whose performances are interesting, being greater than those obtained by the reduced approach, how one can
see for example in [16]. In addition, also the sensitivity of the OF versus the ratio shows a similar trend observed in the
reduced approach [16] showing this plot a minimum which means the maximum performance and that corresponds to the
resonance condition of main system with input frequency. Moreover, it must be noticed that the tuning frequency ratio
assumes values lower than those attained by reduced approach and this is true also if the system is in resonance condition
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with the input frequency. In this last situation in the reduced criterion, the tuning frequency ratio approaches to unit. In
effect in [16] one can notice that when the mass ratio increases, the tuning frequency ratio decreases, and therefore the
complete optimization approach which optimizes also the TMD mass ratio furnishes a lower tuning frequency ratio
because optimization gives high values of mass ratio. However, the tuning frequency ratio shows a peak in resonance
condition and this is quite obvious because the tuning in resonance condition must be the largest. Analyzing the sensitivity
of optimum TMD damping ratio, one can observe first of all that the request of damping is greater in the complete
approach with respect to the reduced one and that it presents a minimum in resonance condition. This aspect has been also
examined in [16] for some values of mass ratio. This means that in resonance condition the TMD works principally by
transferring the energy to the added device and then by dissipating it.

Concerning the other aspects of optimum solutions, the general results discussed in [16] are confirmed, i.e. the
effectiveness of TMD strategy is greater for system with a low dissipative capacity, and that TMD strategy is more effective
if the main system is in resonance with the input. In addition, one can deduce that the optimum design variables do not
show important variability when the structural damping varies. In spite of this, it must be noticed, before every other
considerations, that the TMD mass required from this approach in the acceleration criterion is extremely larger than
admissible values for any practical engineering or technical application (i.e. one hundred times the mass of main system).
This consequence is a strong limitation, making at the moment that results shown in Fig. 2 must be considered as purely
academic study; but it cannot be excluded that these solutions could be adopted in a future for specific emerging
applications (for example micro or nano mechanics), because they are able to reduce in some cases of 90% the inertial
accelerations acting on main system.

The effectiveness of optimum design of a TMD with large mass ratio has been also examined by Hoang et al. [21]. It is
known that mass ratio is an important parameter in TMD design. In fact, conventional TMD with a few percentage of mass
ratio acts controlling the response via resonance, implying a fairly large movement relative to the primary structure. On
the contrary, the control mechanism for a sufficiently large TMD mass differs from that for a small mass ratio, and this
physical meaning can be illustrated by frequency analysis.

Fig. 3 shows the optimum solution developed by displacement criterion. First of all, one can notice that performances
attained are lower with respect to the acceleration criterion; in addition the variability of the optimized OF versus Q and
main system damping ratio is the same observed in the previous criterion, being more effective the TMD strategy for
system with a low damping. Concerning the tuning frequency ratio, optimum values achieved by this criterion are larger.
The required optimum damping is of the same magnitude observed in acceleration criterion. Moreover, optimum design
variables are more sensible to system damping ratio with respect to the acceleration criterion.

The displacement criterion shows optimal values of mass ratio significantly smaller than those obtained from the
acceleration criterion. The maximum required TMD mass is at least of the same magnitude of the main system one, in
resonance condition. Far from this situation %y decreases, up to values smaller than 20-30% for medium and high
structural damping ratio. Thus this approach should be compatible with some practical applications in different
engineering fields.

In Figs. 4-7 the results of a sensitivity analysis developed under different input characteristics are presented in case of
displacement criterion.

In detail, two main system damping ratios and three filter damping ratios are considered in the analysis.
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Fig. 4. Optimal displacement based OF (&7=0.1 for continuous lines, &=0.3 for dotted lines and &=0.5 for dash-dotted lines).


Rettangolo


07

e = 0,02

—— ;=01

06 —

-'--.

un
EITITIERRAEY

opt
Prmp

03

0.
02 iy

"y, -y
"""""""'m ' Qmimim, -0
ol
~'-":"“-‘H‘:‘:T. -
01 |- e

05 1 15 2 25 3

® o/e) ¢

Fig. 5. Optimal displacement based TMD frequency ratio; (£,=0.1 for continuous lines, &=0.3 for dotted lines and &=0.5 for dash-dotted lines).

Observing these figures, it is firstly clear that the optimal values of design variables are different, sometimes strongly,
from corresponding values obtained by standard two dimensional optimization (invariable mass ratio with limited value).
TMD frequency ratio is around 0.5 and less, anyway lower than those obtained from standard reduced optimization (see
for example [11]). TMD damping ratio is always greater than 0.1-0.2, and reaches values of 0.5-0.6 for many cases,
contrary to results obtained from bi-dimensional optimization. At the same time it must be noticed that both two optimal
parameters but also all the other solutions, as will be detailed in the following, are strongly sensible to . This result
disagrees with the observation in [21].

By observing the sensitivity of the optimized OF, in addition to previous considerations concerning the effectiveness of
TMD strategy versus input frequency and system damping ratio, one can deduce that the TMD works better in case of
narrow band input, obtaining in this situation a lower OF. This outcome has been also pointed out in [21]. In effect, this
result is true only in resonance condition whereas far from this situation the TMD strategy becomes more effective in case
of broad band excitation. From the bandwidth of the input it depends also the sensitivity of the effectiveness against the
frequency ratio €, being this more marked in case of narrow band. In fact, for £=0.5 the optimum OF shows a little
variability when  varies.

Also with regard to the optimum tuning frequency ratio one can observe the same variability of solution when the
bandwidth of the input varies. In general, in resonance condition the tuning frequency ratio has a peak, but this happens
only for narrow band input. When the bandwidth of the input increases, the optimum tuning frequency ratio do not show a
peak in resonance condition, anyway it decreases when 2 increases.

Also with reference to optimum TMD damping ratio a sensible variability can be observed with respect to input
bandwidth. In effect, for narrow band input the required TMD damping is 50% higher than values obtained for the other
conditions, and it presents a more marked variability versus Q. Far from resonance conditions the behaviour is opposite
and the required optimum TMD damping ratio is larger for broad band excitation. One can observe a similar tendency in
the variability of optimum mass ratio. In fact when the input is of a narrow band kind, the required optimum TMD mass
ratio becomes larger; it diminishes when the bandwidth of the input grows.

One should remember that the main aim of equipping a primary system with a TMD is to split and to reduce the higher-
frequency resonant peak into two smaller peaks. This physical meaning becomes visible if a frequency analysis of the
response of the combined primary-TMD system is carried out. These aspect have been well analysed by authors in a
previous study [20] where it appers clear that the optimum TMD parameters aim to optimize the shape of the combined
system transfer function H,(w), also in relation to the predominant peak of the excitation, whose spectral content is
described by the input power Spectral Density Function Sy (). The optimum parameters, therefore, make minimum the
area under the curve of the spectral density function of the response st(w)=\Hxs(w)\25Xg(w) (this relation is valid in
stationary conditions). In this way, all results attained can be physically better understood and justified, and this approach
as previous pointed out, has been analysed in a previous work.

Moreover, results regarding optimal mass ratio are the most interesting and present some and innovative meanings.
Immediately, it must be noticed that the required mass ratio y?thD is sensible to input main frequency. For 2 <1 a peak is
observed, about at 2=0.6, but generally values are too greater for actual practical applications ( > 50%).

In addition, it is interesting to observe that some values attained for 2 > 1.5 are in the range of 20-40%, so that it is
possible to be applied in some specific technical contests.
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As pointed out, TMD mass ratio values depend also on frequency spectrum and are greater for narrow band inputs (for
which also efficiency is greater). On the contrary, when input is characterised by a broad band process and the main system
presents a small damping, 3%, has small values (compatible with practical applications). Those cases are interesting

because anyway the OF is in the range 0.6-0.7, that means a reduction of vibration effects close to 30% or 40%.

4. Conclusions

In this work the optimal solutions for linear TMD mechanical parameters have been evaluated considering also device
mass as a design vector element. The case analysed deals with a single degree of freedom system subject to a random
acceleration at the support, modelled as a stationary filtered white noise process to properly represent dynamic frequency
content of real loading phenomena.

Two different optimization criteria have been investigated. They are based on limitation of main system displacement
or inertial acceleration. The two optimization criteria have been considered under different input frequency contents and
main system damping ratios. With reference to optimization obtained by complete approach, results show that they are
more performable than those obtained by a reduced approach. Nevertheless, complete solutions are commonly
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inapplicable using acceleration criteria because optimal TMD mass is larger than admissible values in common technical
applications. However, there are some limited but interesting situations where, adopting the displacement optimization
criterion, complete DV results are compatible with some civil or mechanical applications. For instance further development
can be expected in the field of nanomechanics.

Appendix

= . NT
By defining the tuned and main system inertial acceleration vector as X = (XS,XT) , where

XT = YT—i—Y/b (34)

X5=Y5+Yb, (35)
the system inertial acceleration covariance matrix is given by

T O'?-(T E [XTXS]
Ry = <XX > = o ) (36)
E[XSXT] o2

and can be obtained as

Ry = DRD" (37)
where

D = (H{,H) (38)
References

[1] G.W. Housner, LA. Bergman, T.K. Caughey, A.G. Chassiakos, S.F. Masri, S.A. Ashour, R.D., Hanson, Elastic seismic response of buildings with
supplemental damping, Report no. UMCE 87-1, University of Michigan, Ann Arbor, MI, 1987.
[2] H. Frahm, Device for damping vibration bodies, US Patent No. 989/959, 1911.
[3] J. Ormondroyd, J.P. Den Hartog, The theory of the vibration absorber, Transactions of the American Society of Mechanical Engineers 49 (1928) A9-A22.
[4] G.B. Warburton, E.O. Ayorinde, Optimum absorber parameters for simple systems, Earthquake Engineering and Structural Dynamics 8 (1980) 197-217.
[5] R. Rana, T.T. Soong, Parametric study and simplified design of tuned mass dampers, Engineering Structures 20 (1998) 193-204.
[6] J.Q. Sun, M.R. Jolly, M.A. Norris, Passive, adaptive and active tuned vibration absorbers—a survey, Transactions of the ASME 117 (4) (1995) 234-242.
[7] T.T. Soong, M. Grigoriu, in: Random Vibration in Mechanical and Structural System, Prentice-Hall, New York, 1993.
[8] I. Takewaki, Soil-structure random response reduction via TMD-VD simultaneous use, Comparative Methods in Applied Mechanical Engineering
90 (2000) 677-690.
[9] F. Rundinger, Otimal vibration absorber with nonlinear viscous power law damping and white noise excitation, ASCE, Journal of Engineering
Mechanics 132 (2006) 46-53.
[10] N. Hoang, P. Warnitchai, Design of multiple tuned mass dampers by using a numerical optimizer, Earthquake Engineering and Structural Dynamics
34 (2005) 125-144.
[11] H. Nam, F. Yozo, W. Pennug, Optimal tuned mass damper for seismic applications and practical design formulas, Engineering Structures 30 (2008)
707-715.
[12] S. Krenk, ]. Hegsberg, Tuned mass absorbers on damped structures under random load, Probabilsitic Engineering Mechanics 23 (2008) 408-415.
[13] J. Morison, D. Karnopp, Comparison of optimized active and passive vibration absorber, Proceedings of the 14th Annual Joint Automatic Control
Conference, Columbus, OH, 1973, pp. 932-938.
[14] U. Aldemir, Optimal control of structures with semiactive-tuned mass dampers, Journal of Sound and Vibration 266 (2003) 847-874.
[15] C.C. Lin, J.F. Wang, ].M. Ueng, Vibration Control identification of seismically excited m.d.o.f structure-PTMD systems, Journal of Sound and Vibration
240 (1) (2001) 87-115.
[16] G.C. Marano, R. Greco, F. Trentadue, B. Chiaia, Constrained reliability-based optimization of linear tuned mass dampers for seismic control,
International Journal of Solids and Structures 44 (22-23) (2007) 7370-7388.
[17] E. Matta, A.(a) De Stefano, Robust design of mass-uncertain rolling-pendulum TMDs for the seismic protection of buildings, Mechanical Systems and
Signal Processing (2009) 127-147.
[18] E. Matta, A.(b) De Stefano, Seismic performance of pendulum and translational roof-garden TMDs, Mechanical Systems and Signal Processing 23 (2009)
908-921.
[19] N.C. Nigam, in: Structural Optimization in random Vibration Environment, AIAA, 1972 pp. 551-553.
[20] G.C. Marano, R. Greco, G. Palombella, Stochastic optimum design of linear tuned mass dampers for seismic protection of high towers, Structural
Engineering and Mechanics 29 (6) (2008) 603-622.
[21] N. Hoang, Y. Fujino, P. Warnitchai, Optimal tuned mass damper for seismic applications and practical design formulas, Engineering Structures 30
(2008) 707-715.


Rettangolo


	A comparison between different optimization criteria for tuned mass dampers design
	Introduction
	Statement of the TMD optimization problem
	Numerical sensitivity analysis
	Conclusions
	Appendix
	References




