Efficient On-Line Call Control Algorithms

Juan A. Garay * Inder S. Gopal | Shay Kutten
Yishay Mansour | Moti Yung |

Abstract

We study the problem of on-line call controlin a communications network, i.e.,
the problem of accepting or rejecting an incoming call (a request for a connection
between two points in a network) without having the knowledge of future calls. The
problem is a part of the more general problem of bandwidth allocation and man-
agement. Intuition suggests that knowledge of future call arrivals can be crucial to
the performance of the system. In this paper, however, we present preemptive de-
terministic on-line call control algorithms. We use competitive analysis to measure
their performance—i.e., we compare our algorithms to their off-line, clairvoyant
counterparts—and prove optimality for some of them.

In this paper we consider two specific networks: a line of nodes and a single
edge, and investigate a variety of cases concerning the value of the calls. The value
is accrued only if the call terminates successfully; otherwise—if the call is rejected,
or prematurely terminated—mno value is gained. The performance of the algorithm
is then measured by the cumulative value achieved, when given a sequence of calls.
The variety of call value criteria that we study—constant; proportional to the
length of the call’s route; proportional to its holding time—captures many of the
natural cost assignments to network services.

*IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598.
TComputer Science Department, Tel-Aviv University, Israel.

1 Introduction

High-speed networks (e.g., [14, 5, 9, 8]), as providers of multimedia services, will have
to support a wide variety of traffic types. Each of these traffic types will have very
different requirements in terms of required duration and throughput, and tolerable delay
and message loss. Many of these requirements will only be met if bandwidth can be
guaranteed for the individual connections in accordance with their requirement.

Thus, bandwidth reservation and management is a central issue in network control
and operation. Roughly speaking, its objective is to maximize the usage of the network
facilities, while minimizing the probability that a particular connection will be denied
access to the network, or “blocked”. This issue is one of the most actively studied open
problems in the area of high-speed networks. The nature of the problem is such that
it 1s always possible to “second guess” decisions made in the past. In other words,
a decision made previously to accept a connection! may have been wrong because it
caused a subsequent more “valuable” call to be rejected. Thus, the on-line nature of
the problem, namely the fact that decisions are to be made when calls arrive into the
system without knowledge of future arrivals, might lead to significantly lower efficiency
than would have been possible with full off-line knowledge of the entire pattern of call
arrivals.

This aspect of the problem leads naturally to the investigation of the issue of call pre-
emption from an on-line perspective. In other words, if previous decisions were incorrect,
it may pay to attempt to rectify them by preempting or removing a call in progress from
the network. For example, if a high capacity call is blocked because the capacity used up
by a low capacity call, it may be worthwhile to preempt the low capacity call and accept
the high capacity call even at the risk of interrupting a call in progress.

In this paper we investigate this issue, i.e., we study call preemption algorithms in an
on-line fashion. Generally speaking, an on-line problem is one in which an algorithm that
solves it must handle a sequence of requests, handling each request without knowledge
of the future requests. Examples of on-line problems include the scheduling of jobs on
(parallel) machines, paging—i.e., the allocation of cache memory, the maintenance of
dynamic data structures, network routing, etc.

We evaluate on-line algorithms in terms of their competitiveness (a measure introduced
in [13], and thereafter intensively applied to various on-line settings). An algorithm is said
to be c-competitive, 0 < ¢ < 1, if its performance on any sequence of requests is within a
factor ¢ of the performance of any other algorithm on the same sequence, including the
off-line, clairvoyant algorithms for the problem, which can “see” all future requests. A
main virtue of an efficient competitive algorithm is its robustness, i.e., the fact that the
algorithm works well for any distribution of the requests, and no assumptions need to
be made about them. Another attractive aspect of on-line algorithms is their simplicity,
since typically they do not involve heavy processing of past history. The bounds are
sometimes best explained as a game between a player (the on-line algorithm) and an

'We use the terms call or connection interchangeably.

adversary, who generates part of the request sequence, observes the player’s response to
it, and then extends the sequence by producing more requests.

An initial study of the call control problem in an on-line fashion was presented by
Garay and Gopal in [11]. One of the cases studied there was the maximization of line
utilization on a single edge for a call value given by the call’s holding time.? They showed
that if the holding times of the arriving calls are unknown, then competitive algorithms
(deterministic or randomized) do not exist. Roughly speaking, this is so because the
adversary can always orchestrate situations in which the algorithm, unaware of the calls’
duration, ends up preempting (or rejecting) long-duration calls in favor of short ones,
thus yielding an unbounded competitive ratio. It was also shown in [11] that if there
is no penalty for preempting an existing call (e.g., the telephone company charges the
customer according to the usage time, even if the call is disconnected), then an optimal
1-competitive algorithm exists. The case when there is a penalty for preempting a call
(or more precisely, no value is accrued when a call is preempted) was left open.

This is one of the problems we address in this paper. Namely, we show that when the
penalty for preemption is the call’s holding time, then an optimal competitive algorithm
for a single edge exists. (This case makes sense in practice, as losing utilization implies
the loss of service revenues.) In other words, our online algorithm can only gain if a
call is completed, and does not accrue anything for a partial call. We also investigate
two other cases of value assignment to calls for a network consisting of a line of nodes
(constant, and proportional to the length of the call’s route), and provide competitive
algorithms for theses cases as well. We believe that the variety of call values we cover
captures the most natural cost assignments to network services.

In order to highlight the issues involved in the call control problem, our models
simply consist of a single edge (a direct communication link, or, more generally, a com-
munication subsystem) interconnecting two nodes (representing processors, transmission
stations, gateways, etc.), and of a collection of nodes interconnected by a communication
line. The term “call” refers to any communication application requiring a connection
(and bandwidth) in an interval between two nodes. Clearly, our abstraction does not
comprise a complete investigation of this on-line problem for general networks; we view
our contribution as a step towards a better analytical understanding of call management
in communication networks.

Indeed, our work has, directly or indirectly, motivated a number of recent interesting
works. Oneimmediate direction is investigating the problem in other network topologies.
This has been addressed by Awerbuch, Bartal, Fiat and Rosén in [3], where they give a
competitive (randomized) algorithm for non-preemptive call scheduling on tree networks.
Awerbuch, Gawlick, Leighton and Rabani [4] have considered also non-tree networks, such
as meshes. Awerbuch, Azar and Plotkin [1] provide a competitive call control strategy for
general networks if the profit of a call is proportional to the bandwidth-duration product.

?The holding time of a call is the time that elapses from its creation until it terminates. Although it
is not always possible in reality for the algorithm to “know” this parameter at the time a call arrives,
in many circumstances this information can be available, or estimated with overwhelming probability,
from, for example, statistical history traces, the call type (e.g., voice, video), etc. In this paper we
assume that the available estimates are correct.

Awerbuch, Azar, Plotkin and Waarts [2] study the case of unknown call duration, and
show how to achieve competitiveness by allowing rerouting of the calls. More recently,
Bar-Noy et al. [6] have considered the problem where the bandwidth requirement is
general, but impose the restriction that the maximum bandwidth required by a single
call is at most a constant fraction (say, half) of the link capacity. For this model they
present constant-competitive algorithms. See [12] for a recent overview of competitive
call admission and routing algorithms.

1.1 Our Results

A communication network is a general graph, G = (V, F), |V| = n. In this paper we
assume that the routing for each call is defined by a process that is outside of the scope
of the call control algorithm. We assume also that F is partitioned into a set of paths,
or “lines.” The fixed tour taken by any communication application can then be viewed
as a collection of segments, each residing entirely on some line. We call a segment a
“call” or a “connection,” and assume that the management of each line is performed
autonomously. Thus, in each line calls “arrive” with some predefined bandwidth and
a predefined route—an interval within the line; this assumption gives a simple enough
environment to start investigating the involved issues of call control. We remark that the
statements we will be making about our algorithms’ performance (competitive ratio) will
only apply to these lines as, since our algorithms will be scheduling calls autonomously
on each line, it is possible that the performance of the overall network could be poor even
though each line is doing well.

We use the notation ¢; to indicate the ith call arrival. Each call ¢; is determined by the
tuple < a;, d;, r;, b; >, where a; and d; are the call’s arrival and holding times, respectively,
b; is the bandwidth, and r; is the route (segment). The route r; is an interval, i.e., a
set of consecutive edges {e;,,€,,,...} from the line. We also assume bidirectional edges
and capacity assignments. In general, each edge, e € F, has a capacity C(e) associated
with it. If a call is accepted into the system, it must have the property that for each
edge used by the call the sum of the bandwidth of all the calls that share the edge must
be less than the capacity of the edge. (This includes the bandwidth of the newly added
call.) Otherwise, the call must be rejected or some of the preexisting calls preempted.
In this paper we abstract out the conflict situation by assuming that the capacity of an
edge cannot accommodate more than one call at a time, i.e., C'(e) < b; + b;, for all edges
e and calls ¢;, ¢;. For this reason we may assume that C'(e) = 1 for all edges and b; = 1
for all calls.

For each call ¢;, we use P,, to denote the set of calls that would have to be preempted
in order to accommodate ¢;. Given the assumption above, P,, consists of the calls whose
routes intersect ¢;’s. It can also be the case that the call control algorithm decides not
to accept an incoming call. Specifically, we say a call ¢; is rejected due to call ¢; if when
¢; 1s issued, call ¢; is being served, and ¢; is the reason that ¢ is not accepted. With
each call ¢; we associate a function Val(c;), which yields a positive value if the call is
allowed to terminate, otherwise 0 (for example, telephone companies typically reimburse

their customers for disconnected calls; this is our penalty for preempting a call). The
performance of the algorithm is then measured by the value cumulatively achieved, when
given any (finite) sequence of calls.

In this paper we consider the following forms of Val, and obtain the following corre-
sponding results:

e Val(¢;) = |ry|. Le., the value is given by the number of edges of the call (in
our setting, this is equivalent to the total bandwidth requested by the call). The
network under consideration is a line of nodes, and we assume that both the holding
time and the arrival time for all the calls are the same.? We give an algorithm that

1

is 547 & 0.24-competitive, where ¢ is the golden ratio (ie.,g= % ~ 1.62). This

bound is optimal, as recently shown by Furst and Tomkins [10].

e Val(¢;) = O(1). The value of a call is constant, and the network consists of a line
of processors. As in the previous case, we assume that both the holding time and
the arrival time for all the calls are the same. We give an algorithm that is O(@)—
competitive, and show optimality by providing a matching lower bound that holds

for any on-line algorithm.

e Val(¢;) = d;. le., the value to be achieved by the completion of the call is (pro-
portional to) the call’s holding time. We assume in this case that an estimate of
the holding times of each call is available at the call’s arrival time. The abstract
scenario we consider here is that of two nodes connected by a single communication
line. We give an algorithm that is i-competitive. Optimality follows from reducing

4
our problem to a special machine scheduling problem, and applying the results of

[7].

The general form of our algorithms for the three cases above is depicted in Figure 1, where
«a and are constants and f and h are functions. The rest of the paper is dedicated to
the different value criteria and to the corresponding choice of parameters o, 3, f and
h that would yield the competitive factors outlined above. Note that since we assume
that no two calls can share a link, the set P, _ is unique,i.e. P,
which share an edge with ¢, and were previously accepted.

includes all the calls

Cnew

We remark the simplicity of our control structure. This attractive property is crucial
in high-speed network environments, where fast services are typically required.

2 Call Value is Length of Route

The model for this section is a network consisting of a line of nodes, and the value of
a call is given by the number of links that it occupies, i.e., Val(cg) = |rk|. This model

3This models the case where the call arrivals happen to be close, or where all the calls overlap in
time. In fact, this model is equivalent to what other authors have called the “infinite-duration” model,
in which arrival times may vary, but holding times are infinite.

{ Let ¢,ep be the incoming call. }
if o - f(cpew) > B+ W(P,,.,) then

Terminate(P.,..,);
Accept(cpew)

else
Reject(cpew).

Figure 1: The general form of the call control algorithms.

captures situations in which the server provider charges proportionally to the distance
of a connection, or to the total bandwidth allocated. We also assume that calls occupy
consecutive links. In this model, we will sometimes refer to r; as ¢;’s “interval” when
it facilitates the reasoning. We will also refer to the number of links separating the end
points of the two calls as the “distance” between the calls.

As mentioned before, we assume that no two calls can occupy the same communication
link. Naturally, we also assume that the size of the network is bounded (it can be easily
shown that competitiveness is not possible otherwise); alternatively, we can assume for
the sake of analysis that there is an upper bound on Val(cy), for every ¢;. We assume
that all the calls have the same duration, one time unit, and that they all arrive at the
same time, but still need to be handled in an on-line fashion, that is, the call control
algorithm has to make the decision for a given call before the parameters of the next call
are known.

We call this section’s algorithm LR (for length of route); basically, the algorithm
accepts an incoming call only if the length of the call is greater than ¢ times the length
of any call that must be pre-empted to schedule the incoming call, where ¢ is the golden
ratio (i.e., g = %) That is, for the value criterion of this section, we set in the general
framework of Figure 1, we set a =1, = g, f = Val, and h = max;ep, Val(c;) =
r;|. The following theorem states the competitiveness of LR .

MaXe;=<0,1,r;,1>€Pe,

. . 1 ey
Theorem 2.1 Algorithm LR is 3941 “competitive.

Proof: For each n, n > 1, let ACTIV E(n) be the set of calls which LR has running
after the nth call is introduced. We know that this set is never empty, since when the
nth call is scheduled, it is either accepted or is rejected due to some other call which is
running.

For each call ¢, € ACTIVE(n), we denote as P the transitive closure of P,,, that
is, the set of calls that ¢, preempted, the set of calls preempted by these calls, and so

forth. (Note that P? is defined at the time that call ¢, is introduced and does not change
with the arrival of future calls.) In addition, for each call ¢, € ACTIV E(n) we denote by
R, (n) the set of calls, up to the nth call, that where rejected due to calls in P} U {c}.
(A call ¢, is rejected due to call ¢ if call ¢, € P., has the maximum value in this set, i.e.,
Val(cy) = maxeep,, Val(c).) Let I, (n) denote the interval (in communication links)
that is the union of the routes of all the calls in P}, R.,(n), and of ¢ itself. We will
show that for every ¢, € ACTIV E(n), the ratio between |Z., (n)| and Val(cg) is at most
1 + 2/3. Since this ratio also holds after the last call, it implies that the competitiveness

. 1
of LR is at least TSR

We prove this claim by induction on the number of calls. The induction hypothesis is
that for each call ¢, € ACTIV E(n) whose interval route is between “point” (i.e., node)
y and point y 4 x, then 7, (n) is an interval and is contained in [y — 23,y + « + 2 3]. The
base of the induction is clear.

Consider the (n+1)st call ¢,,41. There are a few possibilities for the behavior of LR on
this call. The first is that the route of ¢,y does not intersect the route of any other call,
ie., P, is empty. In such a case LR will accept ¢,4; and no call would be preempted.
This means that ACTIVFE(n+1) = ACTIVE(n)U{¢,41}. By the induction hypothesis,
for each call ¢ € ACTIVE(n) the claim holds. For ¢,41 the inductive hypothesis holds
trivially.

The second case is that the call ¢,11 is rejected by LR due to call ¢; (i.e., ¢ is the
call with the maximum value in P, .,). We would like to show that in such a case the
route of ¢,4q is contained within [y — 23,y + « + 23], where call ¢, is between y and
y + x. Assume to the contrary that this is not true. Then either ¢, 1 includes a point
to the left of y — x3, or a point to the right of y + = + 2. In either case, this implies
that the length of the call ¢,y is strictly larger than z/3. But in such a case ¢ could
not cause ¢,11 to be rejected. This contradicts the assumption that ¢, causes ¢,411 to be
rejected. Therefore 7., (n+ 1) will be contained in [y — 23,y + x4+], and the induction
hypothesis holds.

Finally, the third case is that call ¢,41 is accepted by LR and the set of calls P, is
preempted. Assume that the route of call ¢,11 is between points y and y + z. In such
a case we first would like to prove that for any call ¢; € P, ., the interval ., (n) is
contained in [y — zf3,y + @ + x]. Assume that call ¢ is between w and w + v. By the
induction hypothesis, Z., (n) is contained in [w — v, w+ v +v3]. Since ¢ intersects with
Cpi1, €ither y < w <y 4z ory <w+v < a+y. Therefore, [w —vF,w+ v+ vf]is
contained within [y — v — v,y + + v+ vf]. Since ¢ is being preempted by LR | then
v < z. By the choice of 3 as the golden ratio, we have that v + v < 2/ + x = xf3.
This implies that Z, (n) is contained in [y — x5,y + « + x3].

By definition Z., ., (n 4+ 1) denote the interval (in communication links) that is the
union of the routes of all the calls in P Ry (n 4+ 1), and of cnyq itself. Clearly,
Renyi(n+1) = 0, therefore, Z. (n + 1) is the union of the edges in the route of ¢,4q
and the intervals 7, (n), for ¢, € P, ,,. By the induction hypothesis, every I, (n), for
¢t € P, 1s an interval. Since every such interval 7., (n) intersects the route of ¢,41,

then 7., ,(n+1) is an interval as well. We now need to show that Z. ., (n+1) is contained

Cn41 Cn41

in [y — a8,y + x + zf]. Clearly, the route of ¢, 41 is contained in [y — x5,y + = + xf].
For any ¢, € P.,,, we showed above that I, (n) is contained in [y — 3,y + = + 2.
Therefore, the interval 7., ., (n + 1) is contained in [y — 28,y + = + 2[].

This completes the three possible cases for a call ¢,11. We showed that in each case
the inductive hypothesis holds, and therefore it holds in general, which completes the
proof of the theorem. a

Regarding optimality for this algorithm, we first note that (the adversary’s behavior
of) Theorem 4.2 can be easily adapted to hold for this model of call values given by
the length of the routes. This yields a i (> 2;?) competitiveness lower bound for this
model. More recently, Furst and Tomkins have been able to close the gap, by providing

a matching ﬁ lower bound [10].

3 Constant Call Value

In this section we consider the uniform value criterion, that is, a call value that is indepen-
dent of the call’s length and duration. The underlying network model and assumptions
are the same as in the previous section (a line of nodes of size n), but now every call
carries the same constant value, i.e., Val(c;) = a for all ¢; and some a > 0. Without
loss of generality, we will assume that @ = 1. We call the on-line algorithm we present
in this section CV , for constant value. Intuitively, since each call carries the same value,
small calls (i.e., calls occupying only a few links) should be accepted, because they will
leave room available for other calls, while big calls (calls spanning several links) should
not. This is basically what CV does. Specifically, CV compares the size of the interval
that each incoming call ¢; requests, |rx|, with the interval size of each of the calls that
are required to be preempted in order to accommodate ¢, (i.e., |r;| such that ¢; € P,,).
If |ry| is less than half of |r;|, for each ¢; € P,
discarded. That is, in the framework of Figure 1, we set a = —1, 8 = —1, f(cx) = |ril,
and h = ming,ep, {[ril}.

then ¢, is accepted, otherwise it is

The competitive factor of the algorithm we present is not a constant, but depends
instead on the size of the network, although this dependence is only logarithmic. However,
it turns out that this factor is optimal, i.e., no on-line algorithm for this model can
compete better than ours.

We first give some definitions and prove some technical lemmas. As before, we resort
to the transitive nature of preemption. We say that a call ¢ transitively preempts a call
co 1f there exist calls ¢q,. .., cp_1 such that call ¢; preempts call ¢;_1, for 1 <7 < k. Note
that for every call ¢ that is preempted, there exists a call ¢’ that transitively preempted
¢ and was completed. We call ¢’ the root of c.

Lemma 3.1 Let ¢ be a call that was preempted according to algorithm CV , and ¢’ its
root. Then the distance between the end points of ¢ and ' is bounded by |r.|.

Proof: Denote by ¢ = ¢, ..., co = ¢ the calls in the chain of preemption from ¢’ to
c. Algorithm CV guarantees that the length of ¢;11 is less than half the length of ¢;, i.e.,
|ri|/2 > |rit1]. Therefore, the sum

k—1 k—1)
D il < Y227 rof < ol -
=1 =1

To complete the proof, note that since it is the case that ¢;41 preempted ¢;, their intervals
must have intersected (the distance between them is 0). Thus, the distance between the
end points of ¢ and ¢’ is bounded by the above sum. a

Lemma 3.2 Let ¢ be a call that was rejected due to ¢!. Then the distance between
the end points of ¢ and the root of ¢’ is bounded by 4|r.|.

Proof: Since ¢ was rejected because of ¢, |ro| < 2|r.|. By Lemma 3.1 the distance
between ¢ and its root is less than |r.|, therefore the distance between ¢ and the root of
¢ is less than 2|r.|, which in turn is bounded by 4|r.|.

a

We are now ready to establish the competitiveness of CV .
Theorem 3.3 Algorithm CV is @-competitive, for some constant a.

Proof: We would like to show that for any call algorithm CV completes, the off-line
adversary can complete at most O(logn) calls. This would establish our theorem.

Consider a call ¢; that is completed by CV , and all the calls that it caused to be
preempted or rejected (either directly or transitively). By definition, the completed call
is the root of all the calls in this set. Now consider the calls that the adversary could
have scheduled from this set of calls. Naturally, these calls are non-overlapping. By
Lemmas 3.1 and 3.2, the gap between the end points of each call ¢; (preempted or
rejected) in the set and ¢, the completed call, is less than four times the number of
edges in ¢;.

In general, calls in the set can be to the right or to the left of ¢;. Consider first the
calls on just one direction, say to the right. The situation above can be formalized as the
following game, which bounds the adversary’s strategy. Given the interval [0,n], How
many subintervals can we fit in it such that the distance between each subinterval and
its root is at most 4 times its length, and the size of each subinterval is at least one?
Note that the adversary’s assignment obeys these criteria. (Also note that nothing can
be gained by leaving gaps between the subintervals, since then one of the subintervals
could be enlarged, without adding any new conflicts.) Thus, we have points xq,...,2;
satisfying 0 <@g < --- <@y, @41 —a; > 1, and @; <4 (241 — 24).

From the last inequality we get that (5/4) - z; < 2,41, which implies (5/4)" - 2, < ;.
In addition, x; > 1, since each subinterval is of size at least one, and z; < n, since

it has to fit in the interval [0,n]. This implies (5/4)" < n, which in turn means that
I <logn/log %.

We view zy as the root, and can grow such a sequence in both directions. This
implies that for any call that CV has completed the adversary has completed at most
2logn/log 3 = O(log n).

Any set of calls that the adversary would choose would have to obey the above rule
of the game. That is, for any sequence of X calls that the adversary would produce,
algorithm CV will serve at least Xlogn calls, for some constant «, which yields the

theorem. O

We now show that CV is optimal for this model, by providing a matching lower bound
for the competitive ratio. We first prove two technical lemmas. The first one states that
we can assume for our purposes that an on-line algorithm always preempts an existing
call whenever a shorter, overlapping call arrives.

Lemma 3.4 Let ¢ be a call being served, and ¢ an incoming call such that ro C r..
For any on-line algorithm that rejects ¢’ there is an online algorithm that preempts ¢ and
accepts ¢ and is al least as competitive.

Proof: Consider any on-line algorithm that does not behave according to the state-
ment of the lemma, that is, it does not always preempt an existing call whenever a
shorter, overlapping call arrives. Consider the last time in a given sequence of calls in
which the algorithm does it. We introduce a modification, by preempting the call being
served and scheduling the incoming call instead. Note that with the modification the
request sequence remains valid (i.e., we did not introduce any new conflicts), and that
the new cumulative value remains the same. The first claim is true, since only a subset
of the links used by the original algorithm are used now; the second claim holds since
we deleted one call and added another call, and all calls are of the same value. Since we
have not introduced any new conflicts, the above will remain true until the final state.
We finish the proof by iteratively applying the above reasoning to the modified sequence.
In the final sequence a shorter, overlapping call, is always accepted, and the value of the
shorted call is no worse than the original sequence’s value, yielding the lemma. a

The next lemma shows that we can assume, without loss of generality, that an on-line
algorithm will accept an incoming call that does not overlap with any existing call.

Lemma 3.5 An on-line algorithm that accepts an incoming call that does not overlap
with any exvisting call is at least as competitive as an algorithm that rejects it.

The proof of the lemma follows immediately, since the algorithm can always preempt
the call under consideration in the future. We now prove that, for any on-line algorithm
for this model, there exists a call sequence for which the algorithm is able to complete
just one call, while the off-line algorithm completes Q(logn) calls. This makes algorithm
CV optimal.

10

Theorem 3.6 [n the line model, when the value of the calls is constant, any on-line

call control algorithm has a competitive factor of at most loén.

Proof: Consider an on-line algorithm that, without loss of generality, behaves ac-
cording to Lemmas 3.4 and 3.5. Let the number of the nodes in the network be a power
of 2, i.e.,n = 2F, for some k, and denote the nodes by 1,---, n. The adversary generates
the following sequence: It starts with two calls, one from 1 to n/2 + 1 and the other
from n/2 to n. The two calls intersect on the link (n/2,n/2 + 1), and therefore only one
of them can be accepted. (By Lemma 3.5 at least one of them is accepted.) Without
loss of generality, assume that the online algorithm accepts the call from 1 to n/2 4 1.
The adversary then accepts the call from n/2 to n, and continues recursively to generate
calls in the interval 1 to n/2. Note that this interval does not intersect with the call that
the adversary has accepted. Lemma 3.4 guarantees that when new calls appear that are
subintervals of (1,n/2 4 1), which is currently occupied by the call the on-line algorithm
is running, then the algorithm will preempt this call, and continue with the new calls.
The recursion ends with calls that require two links.

Hence, we have shown that for any on-line algorithm, for a network of size 2*, there
is a sequence of calls in which the algorithm completes only one call, while the adversary
is able to complete k. This completes the proof of the theorem. a

4 Call Value is Holding Time

In this section the abstract scenario is that of two nodes connected by a communication
line such that no two calls can be accommodated at the same time. The calls’ value
is given by their holding time, i.e., Val(¢;) = d;, for each call ¢;. Again, a call that is
prematurely terminated yields no value. In this context, P.. . = {c.q}, the existing call.
We set « = 1, f = 2 and f = g = Val. section and Namely, the algorithm—which
we call HT , for holding time—accepts an incoming call only if its (estimated) holding
time is more than twice the holding time of the existing call. (The parameters used for
this case gives an algorithm very similar to the one designed independently for a certain
scheduling problem in [7].) We remark that our analysis applies to time intervals of finite
duration, since no on-line algorithm can guarantee a competitive factor with respect to
time intervals of infinite duration.

Theorem 4.1 Algorithm HT is i-competitive.

Proof: Given a finite time interval, consider all the calls that were completed by HT
. For each such call ¢, with, say, dx = [, let again P} be the transitive closure of P,,,
that is, the set of calls that ¢; preempted, either directly or indirectly (i.e., by a call
already in P), and let Z., be the time interval that is the “union” of the time intervals
corresponding to all the calls in P . The following observations are used:

LT, | <-4 <

1=1 2t

11

2. HT will reject any additional call ¢z11 of duration up to 2[.

An off-line algorithm could have accepted a sequence of “short,” non-overlapping calls
that can be superimposed to the above-described sequence, thereby covering the whole
interval 7., (whose duration is at most [), the call ¢; (whose duration is [), and the calls
that ¢, cause to reject (whose duration is at most 2/). This implies that while HT has

accrued [, the offline may accrue at most 4/, which completes the proof of the theorem.
O

The next theorem shows that the performance achieved by HT is optimal.

Theorem 4.2 When the call value ts given by the call’s holding time, there does not
exist an on-line call control algorithm with a competitive factor greater than i.

The theorem follows from the lower bound derived by Baruah et al. (cf. Lemma 1, [7])
for the related on-line task scheduling problem in a uniprocessor environment. In such a
setting, tasks requests arrive with an associated execution time and no slack time (i.e., the
time between a task’s arrival time and its deadline corresponds exactly to its computation
time). Failure to allocate the processor to the task—due to rejection, or preemption by
another, later-arriving task—results in a value of zero. The correspondence between this
problem and call control with known holding time on a single link is immediate. Baruah
et al. show that there does not exist an on-line scheduling algorithm with a competitive
factor greater than 0.25. We refer the reader to [7] for further details.

5 Final Remarks

In this paper we have studied the problem of preemptive call control in an on-line fashion
for a variety of call value criteria. We have provided algorithms that are competitive;
furthermore, these algorithms are shown to be optimal.

In the models of Sections 2 and 3, it is assumed that both the holding time and the
arrival time of all the calls are the same. It would be interesting to analyze the cases of
same holding time, but arbitrary arrival times, as well as arbitrary holding times. The
algorithms we present here are deterministic. What happens in the length-of-route and
constant-value models when randomization is allowed?

Acknowledgements

The work of Juan Garay was partly done while the author was visiting the Centrum voor
Wiskunde en Informatica (CWI) in Amsterdam. The author is thankful to the Center for
its hospitality. The authors would also like to thank the two referees for their attentive
reading of a preliminary version of the manuscript, and for pointing out—and suggesting
fixes for—several inconsistencies.

12

References

1]

[9]

[10]

[11]

[12]

[13]

B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput Competitive On-Line Routing,”
Proc 34th IEEE Annual Symp. on Foundations of Computer Science, pp. 32-40, Palo
Alto, CA, November 1993.

B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts, “Competitive Routing of Virtual
Circuits with Unknown Duration,” Proc. 5th Annual ACM-SIAM Symp. on Discrete
Algorithms, pp. 321-327, Arlington, VA, January 1994.

B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, “Competitive Non-Preemptive Call
Control,” Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 312-320,
Arlington, VA, January 1994.

B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, “Online Admission Control
and Circuit Routing for High Performance Computing and Communication,” Proc
35th IEEE Annual Symp. on Foundations of Computer Science, pp. 412-423, Santa
Fe, NM, November 1994.

“Special Issue on Asynchronous Transfer Mode,” Int. Journal of Digital and Analog
Cabled Systems, 1(4), 1988.

A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour and B. Schieber, “Bandwidth Allo-
cation with Preemption,” to appear in Proc. STOC 1995.

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha
and F. Wang, “On the Competitiveness of On-Line Real-Time Task Scheduling,”
Proc. IEEFE Real-Time Systems Symposium, pp. 106-115, 1991.

D. Clark, B. Davie, D. Farber, I. Gopal, B. Kadaba, W. Sincoskie, J. Smith and D.
Tennenhouse, “An Overview of the AURORA Gigabit Testbed,” Proc. INFOCOM
92, Florence, Italy, pp. 569-581, 1992.

I. Cidon and 1. Gopal, “PARIS: An approach to integrated high-speed private net-
works,” Int. Journal of Digital and Analog Cabled Systems, 1(2), pp. 77-86, 1988.

M. Furst and A. Tomkins, “Some Lower Bounds for Call Control Algorithms,” pri-
vate communication.

J.A. Garay and L.S. Gopal, “Call Preemption in Communication Networks,” Proc.
INFOCOM °92, Florence, Italy, pp. 1043-1050, 1992.

S. Plotkin, “Competitive Routing of Virtual Circuits in ATM Networks,” invited
paper, IEEE J. Selected Areas in Communications. http://theory.stanford.edu/
people/plotkin/routing.html.

D. Sleator and R. Tarjan, “Amortized efficiency of list update and paging rules,”
Communications of the ACM, 28(2), pp. 202-208, 1985,

13

[14] J.S. Turner, “New Directions in Communications (or Which Way to the Information

Age?),” IEEE Commun. Mag., Vol. 24, pp. 8-15, Oct. 1986.

14

