
E�cient On-Line Call Control AlgorithmsJuan A. Garay � Inder S. Gopal y Shay Kutten yYishay Mansour y Moti Yung yAbstractWe study the problem of on-line call control in a communications network, i.e.,the problem of accepting or rejecting an incoming call (a request for a connectionbetween two points in a network) without having the knowledge of future calls. Theproblem is a part of the more general problem of bandwidth allocation and man-agement. Intuition suggests that knowledge of future call arrivals can be crucial tothe performance of the system. In this paper, however, we present preemptive de-terministic on-line call control algorithms. We use competitive analysis to measuretheir performance|i.e., we compare our algorithms to their o�-line, clairvoyantcounterparts|and prove optimality for some of them.In this paper we consider two speci�c networks: a line of nodes and a singleedge, and investigate a variety of cases concerning the value of the calls. The valueis accrued only if the call terminates successfully; otherwise|if the call is rejected,or prematurely terminated|no value is gained. The performance of the algorithmis then measured by the cumulative value achieved, when given a sequence of calls.The variety of call value criteria that we study|constant; proportional to thelength of the call's route; proportional to its holding time|captures many of thenatural cost assignments to network services.
�IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598.yComputer Science Department, Tel-Aviv University, Israel.1

1 IntroductionHigh-speed networks (e.g., [14, 5, 9, 8]), as providers of multimedia services, will haveto support a wide variety of tra�c types. Each of these tra�c types will have verydi�erent requirements in terms of required duration and throughput, and tolerable delayand message loss. Many of these requirements will only be met if bandwidth can beguaranteed for the individual connections in accordance with their requirement.Thus, bandwidth reservation and management is a central issue in network controland operation. Roughly speaking, its objective is to maximize the usage of the networkfacilities, while minimizing the probability that a particular connection will be deniedaccess to the network, or \blocked". This issue is one of the most actively studied openproblems in the area of high-speed networks. The nature of the problem is such thatit is always possible to \second guess" decisions made in the past. In other words,a decision made previously to accept a connection1 may have been wrong because itcaused a subsequent more \valuable" call to be rejected. Thus, the on-line nature ofthe problem, namely the fact that decisions are to be made when calls arrive into thesystem without knowledge of future arrivals, might lead to signi�cantly lower e�ciencythan would have been possible with full o�-line knowledge of the entire pattern of callarrivals.This aspect of the problem leads naturally to the investigation of the issue of call pre-emption from an on-line perspective. In other words, if previous decisions were incorrect,it may pay to attempt to rectify them by preempting or removing a call in progress fromthe network. For example, if a high capacity call is blocked because the capacity used upby a low capacity call, it may be worthwhile to preempt the low capacity call and acceptthe high capacity call even at the risk of interrupting a call in progress.In this paper we investigate this issue, i.e., we study call preemption algorithms in anon-line fashion. Generally speaking, an on-line problem is one in which an algorithm thatsolves it must handle a sequence of requests, handling each request without knowledgeof the future requests. Examples of on-line problems include the scheduling of jobs on(parallel) machines, paging|i.e., the allocation of cache memory, the maintenance ofdynamic data structures, network routing, etc.We evaluate on-line algorithms in terms of their competitiveness (a measure introducedin [13], and thereafter intensively applied to various on-line settings). An algorithm is saidto be c-competitive, 0 < c � 1, if its performance on any sequence of requests is within afactor c of the performance of any other algorithm on the same sequence, including theo�-line, clairvoyant algorithms for the problem, which can \see" all future requests. Amain virtue of an e�cient competitive algorithm is its robustness, i.e., the fact that thealgorithm works well for any distribution of the requests, and no assumptions need tobe made about them. Another attractive aspect of on-line algorithms is their simplicity,since typically they do not involve heavy processing of past history. The bounds aresometimes best explained as a game between a player (the on-line algorithm) and an1We use the terms call or connection interchangeably.2

adversary, who generates part of the request sequence, observes the player's response toit, and then extends the sequence by producing more requests.An initial study of the call control problem in an on-line fashion was presented byGaray and Gopal in [11]. One of the cases studied there was the maximization of lineutilization on a single edge for a call value given by the call's holding time.2 They showedthat if the holding times of the arriving calls are unknown, then competitive algorithms(deterministic or randomized) do not exist. Roughly speaking, this is so because theadversary can always orchestrate situations in which the algorithm, unaware of the calls'duration, ends up preempting (or rejecting) long-duration calls in favor of short ones,thus yielding an unbounded competitive ratio. It was also shown in [11] that if thereis no penalty for preempting an existing call (e.g., the telephone company charges thecustomer according to the usage time, even if the call is disconnected), then an optimal1-competitive algorithm exists. The case when there is a penalty for preempting a call(or more precisely, no value is accrued when a call is preempted) was left open.This is one of the problems we address in this paper. Namely, we show that when thepenalty for preemption is the call's holding time, then an optimal competitive algorithmfor a single edge exists. (This case makes sense in practice, as losing utilization impliesthe loss of service revenues.) In other words, our online algorithm can only gain if acall is completed, and does not accrue anything for a partial call. We also investigatetwo other cases of value assignment to calls for a network consisting of a line of nodes(constant, and proportional to the length of the call's route), and provide competitivealgorithms for theses cases as well. We believe that the variety of call values we covercaptures the most natural cost assignments to network services.In order to highlight the issues involved in the call control problem, our modelssimply consist of a single edge (a direct communication link, or, more generally, a com-munication subsystem) interconnecting two nodes (representing processors, transmissionstations, gateways, etc.), and of a collection of nodes interconnected by a communicationline. The term \call" refers to any communication application requiring a connection(and bandwidth) in an interval between two nodes. Clearly, our abstraction does notcomprise a complete investigation of this on-line problem for general networks; we viewour contribution as a step towards a better analytical understanding of call managementin communication networks.Indeed, our work has, directly or indirectly, motivated a number of recent interestingworks. One immediate direction is investigating the problem in other network topologies.This has been addressed by Awerbuch, Bartal, Fiat and Ros�en in [3], where they give acompetitive (randomized) algorithm for non-preemptive call scheduling on tree networks.Awerbuch, Gawlick, Leighton and Rabani [4] have considered also non-tree networks, suchas meshes. Awerbuch, Azar and Plotkin [1] provide a competitive call control strategy forgeneral networks if the pro�t of a call is proportional to the bandwidth-duration product.2The holding time of a call is the time that elapses from its creation until it terminates. Although itis not always possible in reality for the algorithm to \know" this parameter at the time a call arrives,in many circumstances this information can be available, or estimated with overwhelming probability,from, for example, statistical history traces, the call type (e.g., voice, video), etc. In this paper weassume that the available estimates are correct. 3

Awerbuch, Azar, Plotkin and Waarts [2] study the case of unknown call duration, andshow how to achieve competitiveness by allowing rerouting of the calls. More recently,Bar-Noy et al. [6] have considered the problem where the bandwidth requirement isgeneral, but impose the restriction that the maximum bandwidth required by a singlecall is at most a constant fraction (say, half) of the link capacity. For this model theypresent constant-competitive algorithms. See [12] for a recent overview of competitivecall admission and routing algorithms.1.1 Our ResultsA communication network is a general graph, G = (V;E), jV j = n. In this paper weassume that the routing for each call is de�ned by a process that is outside of the scopeof the call control algorithm. We assume also that E is partitioned into a set of paths,or \lines." The �xed tour taken by any communication application can then be viewedas a collection of segments, each residing entirely on some line. We call a segment a\call" or a \connection," and assume that the management of each line is performedautonomously. Thus, in each line calls \arrive" with some prede�ned bandwidth anda prede�ned route|an interval within the line; this assumption gives a simple enoughenvironment to start investigating the involved issues of call control. We remark that thestatements we will be making about our algorithms' performance (competitive ratio) willonly apply to these lines as, since our algorithms will be scheduling calls autonomouslyon each line, it is possible that the performance of the overall network could be poor eventhough each line is doing well.We use the notation ci to indicate the ith call arrival. Each call ci is determined by thetuple< ai; di; ri; bi >, where ai and di are the call's arrival and holding times, respectively,bi is the bandwidth, and ri is the route (segment). The route ri is an interval, i.e., aset of consecutive edges fei1; ei2; : : :g from the line. We also assume bidirectional edgesand capacity assignments. In general, each edge, e 2 E, has a capacity C(e) associatedwith it. If a call is accepted into the system, it must have the property that for eachedge used by the call the sum of the bandwidth of all the calls that share the edge mustbe less than the capacity of the edge. (This includes the bandwidth of the newly addedcall.) Otherwise, the call must be rejected or some of the preexisting calls preempted.In this paper we abstract out the con
ict situation by assuming that the capacity of anedge cannot accommodate more than one call at a time, i.e., C(e) < bi+ bj, for all edgese and calls ci, cj. For this reason we may assume that C(e) = 1 for all edges and bi = 1for all calls.For each call ci, we use Pci to denote the set of calls that would have to be preemptedin order to accommodate ci. Given the assumption above, Pci consists of the calls whoseroutes intersect ci's. It can also be the case that the call control algorithm decides notto accept an incoming call. Speci�cally, we say a call ci is rejected due to call cj if whenci is issued, call cj is being served, and cj is the reason that c is not accepted. Witheach call ci we associate a function Val(ci), which yields a positive value if the call isallowed to terminate, otherwise 0 (for example, telephone companies typically reimburse4

their customers for disconnected calls; this is our penalty for preempting a call). Theperformance of the algorithm is then measured by the value cumulatively achieved, whengiven any (�nite) sequence of calls.In this paper we consider the following forms of Val, and obtain the following corre-sponding results:� Val(ci) = jrij. I.e., the value is given by the number of edges of the call (inour setting, this is equivalent to the total bandwidth requested by the call). Thenetwork under consideration is a line of nodes, and we assume that both the holdingtime and the arrival time for all the calls are the same.3 We give an algorithm thatis 12g+1 � 0:24-competitive, where g is the golden ratio (i.e., g = 1+p52 � 1:62). Thisbound is optimal, as recently shown by Furst and Tomkins [10].� Val(ci) = O(1). The value of a call is constant, and the network consists of a lineof processors. As in the previous case, we assume that both the holding time andthe arrival time for all the calls are the same. We give an algorithm that is O(1logn)-competitive, and show optimality by providing a matching lower bound that holdsfor any on-line algorithm.� Val(ci) = di. I.e., the value to be achieved by the completion of the call is (pro-portional to) the call's holding time. We assume in this case that an estimate ofthe holding times of each call is available at the call's arrival time. The abstractscenario we consider here is that of two nodes connected by a single communicationline. We give an algorithm that is 14-competitive. Optimality follows from reducingour problem to a special machine scheduling problem, and applying the results of[7].The general form of our algorithms for the three cases above is depicted in Figure 1, where� and � are constants and f and h are functions. The rest of the paper is dedicated tothe di�erent value criteria and to the corresponding choice of parameters �, �, f andh that would yield the competitive factors outlined above. Note that since we assumethat no two calls can share a link, the set Pcnew is unique, i.e. Pcnew includes all the callswhich share an edge with cnew and were previously accepted.We remark the simplicity of our control structure. This attractive property is crucialin high-speed network environments, where fast services are typically required.2 Call Value is Length of RouteThe model for this section is a network consisting of a line of nodes, and the value ofa call is given by the number of links that it occupies, i.e., Val(ck) = jrkj. This model3This models the case where the call arrivals happen to be close, or where all the calls overlap intime. In fact, this model is equivalent to what other authors have called the \in�nite-duration" model,in which arrival times may vary, but holding times are in�nite.5

f Let cnew be the incoming call. gif � � f(cnew) > � � h(Pcnew) thenTerminate(Pcnew);Accept(cnew)else Reject(cnew).Figure 1: The general form of the call control algorithms.captures situations in which the server provider charges proportionally to the distanceof a connection, or to the total bandwidth allocated. We also assume that calls occupyconsecutive links. In this model, we will sometimes refer to rk as ck's \interval" whenit facilitates the reasoning. We will also refer to the number of links separating the endpoints of the two calls as the \distance" between the calls.As mentioned before, we assume that no two calls can occupy the same communicationlink. Naturally, we also assume that the size of the network is bounded (it can be easilyshown that competitiveness is not possible otherwise); alternatively, we can assume forthe sake of analysis that there is an upper bound on Val(ck), for every ck. We assumethat all the calls have the same duration, one time unit, and that they all arrive at thesame time, but still need to be handled in an on-line fashion, that is, the call controlalgorithm has to make the decision for a given call before the parameters of the next callare known.We call this section's algorithm LR (for length of route); basically, the algorithmaccepts an incoming call only if the length of the call is greater than g times the lengthof any call that must be pre-empted to schedule the incoming call, where g is the goldenratio (i.e., g = 1+p52). That is, for the value criterion of this section, we set in the generalframework of Figure 1, we set � = 1, � = g, f = Val, and h = maxci2Pck Val(ci) =maxci=<0;1;ri;1>2Pck jrij. The following theorem states the competitiveness of LR .Theorem 2.1 Algorithm LR is 12g+1-competitive.Proof: For each n, n � 1, let ACTIVE(n) be the set of calls which LR has runningafter the nth call is introduced. We know that this set is never empty, since when thenth call is scheduled, it is either accepted or is rejected due to some other call which isrunning.For each call ck 2 ACTIVE(n), we denote as P�ck the transitive closure of Pck , thatis, the set of calls that ck preempted, the set of calls preempted by these calls, and so6

forth. (Note that P�ck is de�ned at the time that call ck is introduced and does not changewith the arrival of future calls.) In addition, for each call ck 2 ACTIVE(n) we denote byRck (n) the set of calls, up to the nth call, that where rejected due to calls in P�ck [fckg.(A call cn is rejected due to call ck if call ck 2 Pcn has the maximumvalue in this set, i.e.,Val(ck) = maxci2Pcn Val(ci).) Let Ick(n) denote the interval (in communication links)that is the union of the routes of all the calls in P�ck , Rck(n), and of ck itself. We willshow that for every ck 2 ACTIVE(n), the ratio between jIck (n)j and Val(ck) is at most1 + 2�. Since this ratio also holds after the last call, it implies that the competitivenessof LR is at least 12�+1.We prove this claim by induction on the number of calls. The induction hypothesis isthat for each call ck 2 ACTIVE(n) whose interval route is between \point" (i.e., node)y and point y+x, then Ick(n) is an interval and is contained in [y�x�; y+x+x�]. Thebase of the induction is clear.Consider the (n+1)st call cn+1. There are a few possibilities for the behavior of LR onthis call. The �rst is that the route of cn+1 does not intersect the route of any other call,i.e., Pcn+1 is empty. In such a case LR will accept cn+1 and no call would be preempted.This means that ACTIVE(n+1) = ACTIVE(n)[fcn+1g. By the induction hypothesis,for each call ck 2 ACTIVE(n) the claim holds. For cn+1 the inductive hypothesis holdstrivially.The second case is that the call cn+1 is rejected by LR due to call ck (i.e., ck is thecall with the maximum value in Pcn+1). We would like to show that in such a case theroute of cn+1 is contained within [y � x�; y + x + x�], where call ck is between y andy + x. Assume to the contrary that this is not true. Then either cn+1 includes a pointto the left of y � x�, or a point to the right of y + x + x�. In either case, this impliesthat the length of the call cn+1 is strictly larger than x�. But in such a case ck couldnot cause cn+1 to be rejected. This contradicts the assumption that ck causes cn+1 to berejected. Therefore Ick (n+1) will be contained in [y�x�; y+x+x�], and the inductionhypothesis holds.Finally, the third case is that call cn+1 is accepted by LR and the set of calls Pcn+1 ispreempted. Assume that the route of call cn+1 is between points y and y + x. In sucha case we �rst would like to prove that for any call ck 2 Pcn+1 , the interval Ick(n) iscontained in [y � x�; y + x+ x�]. Assume that call ck is between w and w + v. By theinduction hypothesis, Ick (n) is contained in [w�v�;w+v+v�]. Since ck intersects withcn+1, either y < w < y + x or y < w + v < x + y. Therefore, [w � v�;w + v + v�] iscontained within [y � v � v�; y+ x+ v + v�]. Since ck is being preempted by LR , thenv� � x. By the choice of � as the golden ratio, we have that v + v� � x=� + x = x�.This implies that Ick(n) is contained in [y � x�; y + x+ x�].By de�nition Icn+1(n + 1) denote the interval (in communication links) that is theunion of the routes of all the calls in P�cn+1 , Rcn+1(n + 1), and of cn+1 itself. Clearly,Rcn+1(n + 1) = ;, therefore, Icn+1(n + 1) is the union of the edges in the route of cn+1and the intervals Ick (n), for ck 2 Pcn+1 . By the induction hypothesis, every Ick(n), forck 2 Pcn+1 , is an interval. Since every such interval Ick(n) intersects the route of cn+1,then Icn+1(n+1) is an interval as well. We now need to show that Icn+1(n+1) is contained7

in [y � x�; y + x + x�]. Clearly, the route of cn+1 is contained in [y � x�; y + x + x�].For any ck 2 Pcn+1 we showed above that Ick (n) is contained in [y � x�; y + x + x�].Therefore, the interval Icn+1(n+ 1) is contained in [y � x�; y + x+ x�].This completes the three possible cases for a call cn+1. We showed that in each casethe inductive hypothesis holds, and therefore it holds in general, which completes theproof of the theorem. 2Regarding optimality for this algorithm, we �rst note that (the adversary's behaviorof) Theorem 4.2 can be easily adapted to hold for this model of call values given bythe length of the routes. This yields a 14 (> 12g+1) competitiveness lower bound for thismodel. More recently, Furst and Tomkins have been able to close the gap, by providinga matching 12g+1 lower bound [10].3 Constant Call ValueIn this section we consider the uniform value criterion, that is, a call value that is indepen-dent of the call's length and duration. The underlying network model and assumptionsare the same as in the previous section (a line of nodes of size n), but now every callcarries the same constant value, i.e., Val(ck) = a for all ck and some a > 0. Withoutloss of generality, we will assume that a = 1. We call the on-line algorithm we presentin this section CV , for constant value. Intuitively, since each call carries the same value,small calls (i.e., calls occupying only a few links) should be accepted, because they willleave room available for other calls, while big calls (calls spanning several links) shouldnot. This is basically what CV does. Speci�cally, CV compares the size of the intervalthat each incoming call ck requests, jrkj, with the interval size of each of the calls thatare required to be preempted in order to accommodate ck (i.e., jrij such that ci 2 Pck).If jrkj is less than half of jrij, for each ci 2 Pck , then ck is accepted, otherwise it isdiscarded. That is, in the framework of Figure 1, we set � = �1, � = �12 , f(ck) = jrkj,and h = minci2Pckfjrijg.The competitive factor of the algorithm we present is not a constant, but dependsinstead on the size of the network, although this dependence is only logarithmic. However,it turns out that this factor is optimal, i.e., no on-line algorithm for this model cancompete better than ours.We �rst give some de�nitions and prove some technical lemmas. As before, we resortto the transitive nature of preemption. We say that a call ck transitively preempts a callc0 if there exist calls c1; : : : ; ck�1 such that call ci preempts call ci�1, for 1 � i � k. Notethat for every call c that is preempted, there exists a call c0 that transitively preemptedc and was completed. We call c0 the root of c.Lemma 3.1 Let c be a call that was preempted according to algorithm CV , and c0 itsroot. Then the distance between the end points of c and c0 is bounded by jrcj.8

Proof: Denote by c0 = ck; : : : ; c0 = c the calls in the chain of preemption from c0 toc. Algorithm CV guarantees that the length of ci+1 is less than half the length of ci, i.e.,jrij=2 > jri+1j. Therefore, the sumk�1Xi=1 jrij < k�1Xi=1 2�ijr0j < jr0j :To complete the proof, note that since it is the case that ci+1 preempted ci, their intervalsmust have intersected (the distance between them is 0). Thus, the distance between theend points of c and c0 is bounded by the above sum. 2Lemma 3.2 Let c be a call that was rejected due to c0. Then the distance betweenthe end points of c and the root of c0 is bounded by 4jrcj.Proof: Since c was rejected because of c0, jrc0j � 2jrcj. By Lemma 3.1 the distancebetween c0 and its root is less than jrc0 j, therefore the distance between c and the root ofc0 is less than 2jrc0j, which in turn is bounded by 4jrcj. 2We are now ready to establish the competitiveness of CV .Theorem 3.3 Algorithm CV is alogn-competitive, for some constant a.Proof: We would like to show that for any call algorithm CV completes, the o�-lineadversary can complete at most O(log n) calls. This would establish our theorem.Consider a call ck that is completed by CV , and all the calls that it caused to bepreempted or rejected (either directly or transitively). By de�nition, the completed callis the root of all the calls in this set. Now consider the calls that the adversary couldhave scheduled from this set of calls. Naturally, these calls are non-overlapping. ByLemmas 3.1 and 3.2, the gap between the end points of each call ci (preempted orrejected) in the set and ck, the completed call, is less than four times the number ofedges in ci.In general, calls in the set can be to the right or to the left of ck. Consider �rst thecalls on just one direction, say to the right. The situation above can be formalized as thefollowing game, which bounds the adversary's strategy. Given the interval [0; n], Howmany subintervals can we �t in it such that the distance between each subinterval andits root is at most 4 times its length, and the size of each subinterval is at least one?Note that the adversary's assignment obeys these criteria. (Also note that nothing canbe gained by leaving gaps between the subintervals, since then one of the subintervalscould be enlarged, without adding any new con
icts.) Thus, we have points x0; : : : ; xlsatisfying 0 � x0 < � � � < xl, xi+1 � xi � 1, and xi � 4 � (xi+1 � xi).From the last inequality we get that (5=4) � xi � xi+1, which implies (5=4)l � x1 � xl.In addition, x1 � 1, since each subinterval is of size at least one, and xl � n, since9

it has to �t in the interval [0; n]. This implies (5=4)l � n, which in turn means thatl � log n= log 54 .We view x0 as the root, and can grow such a sequence in both directions. Thisimplies that for any call that CV has completed the adversary has completed at most2 log n= log 54 = O(log n).Any set of calls that the adversary would choose would have to obey the above ruleof the game. That is, for any sequence of X calls that the adversary would produce,algorithm CV will serve at least X alogn calls, for some constant a, which yields thetheorem. 2We now show that CV is optimal for this model, by providing a matching lower boundfor the competitive ratio. We �rst prove two technical lemmas. The �rst one states thatwe can assume for our purposes that an on-line algorithm always preempts an existingcall whenever a shorter, overlapping call arrives.Lemma 3.4 Let c be a call being served, and c0 an incoming call such that rc0 � rc.For any on-line algorithm that rejects c0 there is an online algorithm that preempts c andaccepts c0 and is at least as competitive.Proof: Consider any on-line algorithm that does not behave according to the state-ment of the lemma, that is, it does not always preempt an existing call whenever ashorter, overlapping call arrives. Consider the last time in a given sequence of calls inwhich the algorithm does it. We introduce a modi�cation, by preempting the call beingserved and scheduling the incoming call instead. Note that with the modi�cation therequest sequence remains valid (i.e., we did not introduce any new con
icts), and thatthe new cumulative value remains the same. The �rst claim is true, since only a subsetof the links used by the original algorithm are used now; the second claim holds sincewe deleted one call and added another call, and all calls are of the same value. Since wehave not introduced any new con
icts, the above will remain true until the �nal state.We �nish the proof by iteratively applying the above reasoning to the modi�ed sequence.In the �nal sequence a shorter, overlapping call, is always accepted, and the value of theshorted call is no worse than the original sequence's value, yielding the lemma. 2The next lemma shows that we can assume, without loss of generality, that an on-linealgorithm will accept an incoming call that does not overlap with any existing call.Lemma 3.5 An on-line algorithm that accepts an incoming call that does not overlapwith any existing call is at least as competitive as an algorithm that rejects it.The proof of the lemma follows immediately, since the algorithm can always preemptthe call under consideration in the future. We now prove that, for any on-line algorithmfor this model, there exists a call sequence for which the algorithm is able to completejust one call, while the o�-line algorithm completes
(log n) calls. This makes algorithmCV optimal. 10

Theorem 3.6 In the line model, when the value of the calls is constant, any on-linecall control algorithm has a competitive factor of at most 1logn .Proof: Consider an on-line algorithm that, without loss of generality, behaves ac-cording to Lemmas 3.4 and 3.5. Let the number of the nodes in the network be a powerof 2, i.e., n = 2k, for some k, and denote the nodes by 1; � � � ; n. The adversary generatesthe following sequence: It starts with two calls, one from 1 to n=2 + 1 and the otherfrom n=2 to n. The two calls intersect on the link (n=2; n=2 + 1), and therefore only oneof them can be accepted. (By Lemma 3.5 at least one of them is accepted.) Withoutloss of generality, assume that the online algorithm accepts the call from 1 to n=2 + 1.The adversary then accepts the call from n=2 to n, and continues recursively to generatecalls in the interval 1 to n=2. Note that this interval does not intersect with the call thatthe adversary has accepted. Lemma 3.4 guarantees that when new calls appear that aresubintervals of (1; n=2 +1), which is currently occupied by the call the on-line algorithmis running, then the algorithm will preempt this call, and continue with the new calls.The recursion ends with calls that require two links.Hence, we have shown that for any on-line algorithm, for a network of size 2k, thereis a sequence of calls in which the algorithm completes only one call, while the adversaryis able to complete k. This completes the proof of the theorem. 24 Call Value is Holding TimeIn this section the abstract scenario is that of two nodes connected by a communicationline such that no two calls can be accommodated at the same time. The calls' valueis given by their holding time, i.e., Val(ci) = di, for each call ci. Again, a call that isprematurely terminated yields no value. In this context, Pcnew = fcoldg, the existing call.We set � = 1, � = 2 and f = g = Val. section and Namely, the algorithm|whichwe call HT , for holding time|accepts an incoming call only if its (estimated) holdingtime is more than twice the holding time of the existing call. (The parameters used forthis case gives an algorithm very similar to the one designed independently for a certainscheduling problem in [7].) We remark that our analysis applies to time intervals of �niteduration, since no on-line algorithm can guarantee a competitive factor with respect totime intervals of in�nite duration.Theorem 4.1 Algorithm HT is 14-competitive.Proof: Given a �nite time interval, consider all the calls that were completed by HT. For each such call ck, with, say, dk = l, let again P�ck be the transitive closure of Pck ,that is, the set of calls that ck preempted, either directly or indirectly (i.e., by a callalready in P�ck), and let Ick be the time interval that is the \union" of the time intervalscorresponding to all the calls in P�ck . The following observations are used:1. jIck j < l �Pk�1i=1 12i < l; 11

2. HT will reject any additional call ck+1 of duration up to 2l.An o�-line algorithm could have accepted a sequence of \short," non-overlapping callsthat can be superimposed to the above-described sequence, thereby covering the wholeinterval Ick (whose duration is at most l), the call ck (whose duration is l), and the callsthat ck cause to reject (whose duration is at most 2l). This implies that while HT hasaccrued l, the o�ine may accrue at most 4l, which completes the proof of the theorem.2 The next theorem shows that the performance achieved by HT is optimal.Theorem 4.2 When the call value is given by the call's holding time, there does notexist an on-line call control algorithm with a competitive factor greater than 14 .The theorem follows from the lower bound derived by Baruah et al. (cf. Lemma 1, [7])for the related on-line task scheduling problem in a uniprocessor environment. In such asetting, tasks requests arrive with an associated execution time and no slack time (i.e., thetime between a task's arrival time and its deadline corresponds exactly to its computationtime). Failure to allocate the processor to the task|due to rejection, or preemption byanother, later-arriving task|results in a value of zero. The correspondence between thisproblem and call control with known holding time on a single link is immediate. Baruahet al. show that there does not exist an on-line scheduling algorithm with a competitivefactor greater than 0.25. We refer the reader to [7] for further details.5 Final RemarksIn this paper we have studied the problem of preemptive call control in an on-line fashionfor a variety of call value criteria. We have provided algorithms that are competitive;furthermore, these algorithms are shown to be optimal.In the models of Sections 2 and 3, it is assumed that both the holding time and thearrival time of all the calls are the same. It would be interesting to analyze the cases ofsame holding time, but arbitrary arrival times, as well as arbitrary holding times. Thealgorithms we present here are deterministic. What happens in the length-of-route andconstant-value models when randomization is allowed?AcknowledgementsThe work of Juan Garay was partly done while the author was visiting the Centrum voorWiskunde en Informatica (CWI) in Amsterdam. The author is thankful to the Center forits hospitality. The authors would also like to thank the two referees for their attentivereading of a preliminary version of the manuscript, and for pointing out|and suggesting�xes for{several inconsistencies. 12

References[1] B. Awerbuch, Y. Azar, and S. Plotkin, \Throughput Competitive On-Line Routing,"Proc 34th IEEE Annual Symp. on Foundations of Computer Science, pp. 32-40, PaloAlto, CA, November 1993.[2] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts, \Competitive Routing of VirtualCircuits with Unknown Duration," Proc. 5th Annual ACM-SIAM Symp. on DiscreteAlgorithms, pp. 321-327, Arlington, VA, January 1994.[3] B. Awerbuch, Y. Bartal, A. Fiat, and A. Ros�en, \Competitive Non-Preemptive CallControl," Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 312-320,Arlington, VA, January 1994.[4] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, \Online Admission Controland Circuit Routing for High Performance Computing and Communication," Proc35th IEEE Annual Symp. on Foundations of Computer Science, pp. 412-423, SantaFe, NM, November 1994.[5] \Special Issue on Asynchronous Transfer Mode," Int. Journal of Digital and AnalogCabled Systems, 1(4), 1988.[6] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour and B. Schieber, \Bandwidth Allo-cation with Preemption," to appear in Proc. STOC 1995.[7] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shashaand F. Wang, \On the Competitiveness of On-Line Real-Time Task Scheduling,"Proc. IEEE Real-Time Systems Symposium, pp. 106-115, 1991.[8] D. Clark, B. Davie, D. Farber, I. Gopal, B. Kadaba, W. Sincoskie, J. Smith and D.Tennenhouse, \An Overview of the AURORA Gigabit Testbed," Proc. INFOCOM'92, Florence, Italy, pp. 569-581, 1992.[9] I. Cidon and I. Gopal, \PARIS: An approach to integrated high-speed private net-works," Int. Journal of Digital and Analog Cabled Systems, 1(2), pp. 77-86, 1988.[10] M. Furst and A. Tomkins, \Some Lower Bounds for Call Control Algorithms," pri-vate communication.[11] J.A. Garay and I.S. Gopal, \Call Preemption in Communication Networks," Proc.INFOCOM '92, Florence, Italy, pp. 1043-1050, 1992.[12] S. Plotkin, \Competitive Routing of Virtual Circuits in ATM Networks," invitedpaper, IEEE J. Selected Areas in Communications. http://theory.stanford.edu/people/plotkin/routing.html.[13] D. Sleator and R. Tarjan, \Amortized e�ciency of list update and paging rules,"Communications of the ACM, 28(2), pp. 202-208, 1985,13

[14] J.S. Turner, \New Directions in Communications (or Which Way to the InformationAge?)," IEEE Commun. Mag., Vol. 24, pp. 8-15, Oct. 1986.

14

