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ABSTRACT
This paper presents an overview of Paxos for System Builders,
a complete specification of the Paxos replication protocol
such that system builders can understand it and implement
it. We evaluate the performance of a prototype implementa-
tion and detail the safety and liveness properties guaranteed
by our specification of Paxos.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault-tolerance;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed Systems

General Terms
Algorithms, Reliability

1. INTRODUCTION
State machine replication (SMR) [8,14] is a well-known tech-
nique for building distributed services requiring high per-
formance and high availability. The Paxos protocol [9, 10],
developed by Leslie Lamport, is perhaps the most widely-
known SMR protocol and has received a great deal of at-
tention in the literature. Although Paxos was known in
the 1980s to some and published in 1998, it is difficult to
understand how the protocol works from the original speci-
fication. Further, the original specification had a theoretical
flavor and omitted many important practical details, includ-
ing how failures are detected and what type of leader election
algorithm is used.

As system builders, we believe that filling in these missing
details is critical if one wishes to build a real system that
uses Paxos as a replication engine. This paper describes our
experience over the last several years in trying to answer
several fundamental questions about Paxos: How robust is it
to processor and network failures? What liveness properties
does it guarantee? What level of performance can one expect
from it? Our research has aimed to clearly and completely

specify Paxos such that system builders can understand it
and implement it.

We are not the first to attempt to clarify Paxos or spec-
ify it more precisely [2, 4, 11–13]. These previous works are
valuable because they give insight into the correctness (i.e.,
safety) of Paxos. However, the works (with the exception
of [4]) are mostly theoretical in nature, and none specifies
all of the details necessary to translate the algorithmic spec-
ification into an implementation (e.g., flow control, message
recovery, failure detection, etc.). One of the main contri-
butions of our work is a complete specification of protocol
pseudocode for our interpretation of Paxos (which we call
Paxos for System Builders). Due to space limitations, this
paper only briefly presents Paxos for System Builders (see
Section 2); we refer the interested reader to the complete
specification [7].

We comment that the systems-related details missing from
existing Paxos specifications are explicitly addressed by ex-
isting SMR protocols that operate above a group communi-
cation system (GCS) (e.g., [1,6]). We believe the only way to
understand the tradeoffs of using Paxos compared to these
GCS-based systems is to completely specify Paxos such that
(1) its safety and liveness properties can be stated and (2)
it can be implemented and evaluated.

Our experience has shown that there is much more to de-
veloping a Paxos-based replication engine than simply spec-
ifying a “correct” protocol. While our work takes a system
builder perspective, we also bring to light important theoret-
ical differences, related to liveness, that arise from how one
specifies the details of Paxos; specifically, our focus is on the
choice of leader election algorithm, as discussed in Section
3. Our analysis reveals that claims about the robustness of
Paxos only make sense in the context of a complete specifi-
cation of the Paxos algorithm and all its components. We
present experimental results of our own implementation of
Paxos for System Builders in Section 4. This paper is an
overview; a more complete description is available in a tech-
nical report [7].

2. PROTOCOL OVERVIEW
As a state machine replication protocol, Paxos assigns a
global, persistent, total order to client updates. A server ex-
ecutes an update after it has executed all previous updates in
the global order. During normal-case operation, one server
acts as the leader. The leader assigns each update a sequence
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Figure 1: Paxos normal-case operation. Client C
sends an update to the leader (Server 0). The leader
sends a proposal containing the update to the other
servers, which respond with an accept message. The
client receives a reply after the update has been ex-
ecuted.

number, and then sends a proposal message, proposing the
assignment, to the other servers. The non-leader servers re-
spond to the proposal by sending an accept message to
all servers, which acknowledges that they have accepted the
proposed ordering. A server globally orders an update when
it collects the proposal in which the update is contained
and ⌊N/2⌋ matching accept messages, where N is the total
number of servers in the system. Normal-case operation is
summarized in Figure 1.

In the protocol described above, the leader’s proposal mess-
sage is used as an implicit accept message for the purpose
of ordering. In this case, Paxos requires two sequential disk
writes: the leader must sync to disk before sending the pro-
posal, and each non-leader must sync before sending its
accept. One possible variation is that the leader can send
an accept message as well, in which case it could sync to
disk in parallel with the other servers. If disk writes are ex-
pensive with respect to the overall latency of the ordering,
then this results in a reduction of the ordering latency at the
cost of one additional incoming message per non-leader (and
N − 1 additional sends by the leader). In either case, the
initiator of an update syncs it to disk before sending it to
the leader to ensure that the update is consistently identified
across crashes.

Servers attempt to elect a new leader if insufficient progress
is being made – that is, if a timer expires without the server
having executed a new update. Paxos for System Builders
uses a leader election protocol similar to the one used by the
BFT protocol [3], adapted for use in benign environments.
When a server’s timer expires, it sends a view-change mes-
sage to the other servers. A server completes the leader elec-
tion protocol when it collects view-change messages from
a majority of servers for the view it is attempting to install.

3. LIVENESS: THEORY AND PRACTICE
The liveness of a protocol reflects its ability to make forward
progress. Given sufficient network stability, Paxos allows
any majority of servers to order new updates, regardless of
past failures. By network stability, we refer to the proper-
ties of the communication links between some subset of the
servers in the system (e.g., which servers are connected, how
many servers are connected, whether or not they can pass
messages between them and with what delay). What degree
of network stability is “sufficient”? Answering this question
is not straightforward because it is difficult to define what
exactly “the Paxos protocol” is. Many of the important de-

tails, some of which play a large role in determining the
liveness of the overall protocol, were not originally specified.
In this section we discuss the liveness of both the leader
election protocol and the normal-case operation of Paxos,
focusing on the degree of network stability required for each
component to guarantee progress.

3.1 Leader Election
Our work on Paxos for System Builders revealed that Paxos
is only as live as its leader election protocol. Although many
different leader election protocols can be used without im-
pacting the safety of the system, the choice of leader election
has a significant impact on overall system liveness. When
we compared the network stability requirements of several
different Paxos specifications, we observed that there is a
scale of network stability requirements for the overall sys-
tems, resulting directly from the choice of leader election
protocol. Each leader election protocol requires a different
level of stability to remain on a single leader (which is needed
to guarantee liveness).

The network stability requirement of the leader election pro-
tocol used in Paxos for System Builders can be stated for-
mally as:

Definition 3.1. Stable Majority Set: There exists a
set of processes, S, with |S| > ⌊N/2⌋, that are eventually
alive and connected to each other, and which can eventually
communicate with each other with some (unknown) bounded
message delay.

The leader election failure detector specified in [13] requires
a stronger degree of stability from the network to remain on
a single leader. In the protocol, each server maintains a list
of the servers it believes to be alive, and the leader is chosen
as the server with the highest identifier. A Paxos system us-
ing this failure detector requires a stable majority set whose
members do not receive messages from particular unstable
servers that repeatedly crash and recover or partition (i.e.,
those with higher identifiers).

The leader election failure detector specified in [2] requires
strictly less stability than that of [13], requiring the sta-
ble majority set to be isolated only from particular unsta-
ble servers that repeatedly partition (servers that repeatedly
crash and recover are eventually not considered as potential
leaders). The protocol used in Paxos for System Builders is
not vulnerable to disruption by any unstable servers. How-
ever, in certain cases, Paxos for System Builders requires a
slightly longer time to settle on a leader in the stable major-
ity set than [2], since our elections are not based on which
servers are believed to be alive.

We emphasize that our comparison of leader election pro-
tocols is not exhaustive, and the purpose of the preceding
discussion is not to endorse a particular protocol. Rather,
our goal is to highlight the importance of specifying Paxos
in its entirety so that its performance and availability can
be evaluated and compared to other solutions.

3.2 Normal-Case Operation



In principle, Paxos can continue to order new updates as
long as the leader can communicate with a majority of servers,
where the members of the majority can switch very rapidly
(although note that the leader election protocol might not
tolerate such rapid fluctuation). However, there is a differ-
ence between the theoretical network stability requirement
for ordering and the practical network stability requirement
for execution. In order to use Paxos as a replication engine,
servers must be able to execute new updates (i.e., to globally
order new updates with no holes). There seems to be little
value in having servers order updates very quickly if execu-
tion must be delayed due to gaps in the global sequencing.
To execute at full speed, a server must either be continu-
ously connected to a majority of servers (and the leader) so
that it can order each update in sequence, or reconciliation
must occur sufficiently quickly so that it is as if the server
were continuously connected.

To the best of our knowledge, previous Paxos specifications
did not make this important distinction. Our implementa-
tion uses a window mechanism to ensure that a majority of
servers can execute new updates. The leader will only send a
proposal with sequence number i if it has executed all up-
dates through sequence number i−W (where W is the size
of the window), and a non-leader server will only respond
to a proposal with sequence number i if it has executed
all updates through i − W . Thus, there exists a majority
of servers that have executed all updates within two win-
dows of the latest proposal. We note that GCS-based state
machine replication protocols such as COReL [6] and Con-
gruity [1] do not face this issue because they deliver updates
only when they are ready to be executed.

3.3 System Liveness
We now present the liveness properties provided by Paxos
for System Builders:

Paxos-L1 (Progress): If there exists a stable majority set
of servers, then if a server in the set initiates an update,
some member of the set eventually executes the update.

Paxos-L2 (Eventual Replication): If server s executes
an update and there exists a set of servers containing s and r,
and a time after which the set does not experience any com-
munication or process failures, then r eventually executes
the update.

To gain a deeper understanding of the implications of Paxos-
L1, we first compare it to the level of network stability re-
quired by many GCS-based replication systems (e.g., COReL
[6] and Congruity [1]). In order for the membership algo-
rithm of the GCS to terminate, the system requires a stable
component of servers, which, following [5], we define as fol-
lows:

Definition 3.2. stable component: There exists a
set of processes that are eventually alive and connected to
each other and for which all the channels to them from all
other processes (that are not in the stable component) are
down.

Notice that the stable majority set (required by Paxos for

System Builders) allows servers in the set to receive mes-
sages from servers outside of the set, whereas the stable
component requires an isolated set of servers. Thus, our
specification of Paxos requires less network stability than
GCS-based replication protocols. Paxos allows servers out-
side the majority to come and go without impacting overall
system liveness. We believe GCS-based protocols can most
likely be made to achieve Paxos-L1 by passing information
from the application level to the group comunication level,
indicating when new membership should be permitted (i.e.,
after some progress has been made).

The size of the stable component required for the GCS-based
replication protocol to make progress differs depending on
whether or not dynamic voting is employed in establishing
a quorum. If static quorums are used (as in COReL), then,
like Paxos, the stable component must contain a majority of
the total number of servers in the system. If dynamic linear
voting is employed (as in Congruity), then progress may be
able to continue with less than a majority of the system.

Note that leader election can be implemented on top of a
GCS membership algorithm; the resulting system will re-
quire the same level of network stability as the underlying
group membership algorithm to guarantee liveness. This
point – the difference in stability required for membership
compared to the stability required for leader election – is
the key liveness difference between Paxos and GCS-based
replication systems.

Finally, we compare Paxos-L1 to the following alternative
progress requirement:

Definition 3.3. strong l1 (majority set): If there
exists a time after which there is always a set of running
servers S, where |S| is at least (⌊N/2⌋+1), then if a server
in the set initiates an update, some member of the set even-
tually executes the update.

Strong L1 requires that progress be made even in the face
of a (rapidly) shifting majority. We believe that no Paxos-
like algorithm will be able to meet this requirement. If the
majority shifts too quickly, then it may never be stable long
enough to complete the leader election protocol.

4. EXPERIMENTAL RESULTS
We implemented Paxos for System Builders, and source code
is available by contacting the authors. In this section we
evaluate the performance of our implementation. As men-
tioned in Section 3, it is difficult to define exactly what
“Paxos” is. This problem is even more prominent when
one tries to evaluate its performance. Should an evaluation
of Paxos allow the use of multicast (e.g., IP multicast or
smart overlay multicast), or should links be point-to-point?
Should an implementation use aggregation that can increase
throughput? Should it include group-based flow control? Is
such an algorithm still “Paxos?” What type of reliability
mechanisms should be used? How are servers that were
crashed or partitioned away brought up to date?

Our implementation of Paxos for System Builders represents
what we believe “Paxos” should be. It includes systems-
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related details we believe are necessary for achieving practi-
cal state machine replication. Our implementation employs
group-based flow control; the leader maintains a loose mem-
bership of which servers it believes to be alive, and it slows
down to ensure that all of these servers can execute updates.
We present results both with and without aggregation so
that its (significant) impact can be evaluated. Due to space
limitations, we omit results that show the impact of other
systems-related issues, such as the use of IP multicast (used
in the following experiments). The interested reader is re-
ferred to [7] for a more complete performance evaluation.

Network Setup: We ran our tests on a cluster of twenty
3.2 GHz 64-bit, dual processor Intel Xeon computers, con-
nected via a Gigabit switch. We tested our implementation
on configurations ranging from 4 to 20 servers, varying the
number of clients initiating write updates. Each update is
200 bytes long, representative of an SQL statement. Clients
are spread as evenly across the servers as possible. Each
client has at most one outstanding update at a time.

Memory Tests (No Disk Writes): Although Paxos is not
resilient to crashes when disk writes are not used, evaluat-
ing the system when all operations are performed in memory
shows the type of performance that can be achieved strictly
when considering the messaging and processing overhead as-
sociated with normal-case operation.

Figure 2 shows the throughput achieved in configurations

ranging from 4 to 20 servers. In all configurations, we ob-
serve a steady increase in throughput until the system reaches
its saturation point (i.e., when the leader becomes CPU-
limited), at which point throughput levels off. We achieve
a maximum throughput of 22,716 updates per second when
using 4 servers, with a plateau around 7000 updates per
second when using 20 servers.

Synchronous Disk Writes: Paxos requires all servers to
write to disk on each update; in addition, the initiator of
an update must write to disk before sending its update to
the leader so that the update is uniquely identified across
crashes. Note that, in theory, Paxos does not require writ-
ing to stable storage as long as no more than f total failures
occur. However, we are interested in practical deployments
of Paxos, where it is not possible to bound the number of
failures that may occur. Indeed, all servers may crash and
subsequently recover, and we believe Paxos should guarantee
safety in such settings. Therefore, we believe it is important
to evaluate the performance of Paxos when synchronous disk
writes are used. Figure 3 shows the throughput when using
synchronous disk writes. The implementation achieves be-
tween 25 and 35 updates per second in all configurations
tested. The throughput is limited by the speed at which a
single server can sync to disk. Hence, running Paxos “na-
tively” is very expensive when crash resiliency is required.

Aggregation: Without disk writes, we aggregate in several
ways. First, the leader packs multiple updates into a single
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proposal message. Second, non-leader servers sends a sin-
gle accept message for several proposals, greatly reducing
the number of messages that must be processed (although
each accept is now larger, since it contains a list of the
sequence numbers that it covers).

As seen in Figure 4, aggregation significantly changes the
trend of the throughput graph. Instead of throughput de-
grading as the number of servers increases, it increases, reach-
ing a maximum of over 40,000 updates per second. Reducing
the number of accept messages being sent greatly reduces
the overhead associated with adding more servers. It also
allows more of the CPU to be devoted to processing new up-
date and proposal messages, rather than extra acknowl-
edgements.

When using synchronous disk writes, we sync several pro-
posal messages to disk at once, while sending back a single
accept message. We also sync several updates from local
clients at once, amortizing the cost of syncing upon initia-
tion over several updates. The results are shown in Figure
5. Comparing Figures 3 and 5, we can see that aggregation
dramatically increases the maximum throughput for all con-
figurations of servers (from roughly 35 updates per second
to about 1500 updates per second).

Figures 6 and 7 show the update latency when using syn-
chronous disk writes, with and without aggregation. When
no aggregation is used, Paxos pays a high cost to provide
crash resiliency, reaching a latency of one second at around
30 clients. However, aggregation dramatically reduces the
latency, amortizing the cost of syncs across many updates.

In summary: Our work shows that the small technical
details, which are usually looked at as engineering consid-
erations, actually have large liveness implications and can
dramatically impact performance. These details are crit-
ical components for building a high-performance, highly-
available Paxos-based replication engine.
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