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Abstract: Diabetes mellitus is associated with an increased risk of cardiovascular disease, 

even in the presence of intensive glycemic control. Substantial clinical and experimental 

evidence suggest that both diabetes and insulin resistance cause a combination of endothelial 

dysfunctions, which may diminish the anti-atherogenic role of the vascular endothelium. Both 

insulin resistance and endothelial dysfunction appear to precede the development of overt 

hyperglycemia in patients with type 2 diabetes. Therefore, in patients with diabetes or insulin 

resistance, endothelial dysfunction may be a critical early target for preventing atherosclerosis 

and cardiovascular disease. Microalbuminuria is now considered to be an atherosclerotic risk 

factor and predicts future cardiovascular disease risk in diabetic patients, in elderly patients, 

as well as in the general population. It has been implicated as an independent risk factor for 

cardiovascular disease and premature cardiovascular mortality for patients with type 1 and type 2 

diabetes mellitus, as well as for patients with essential hypertension. A complete biochemical 

understanding of the mechanisms by which hyperglycemia causes vascular functional and struc-

tural changes associated with the diabetic milieu still eludes us. In recent years, the numerous 

biochemical and metabolic pathways postulated to have a causal role in the pathogenesis of 

diabetic vascular disease have been distilled into several unifying hypotheses. The role of chronic 

hyperglycemia in the development of diabetic microvascular complications and in neuropathy 

has been clearly established. However, the biochemical or cellular links between elevated 

blood glucose levels, and the vascular lesions remain incompletely understood. A number of 

trials have demonstrated that statins therapy as well as angiotensin converting enzyme inhibi-

tors is associated with improvements in endothelial function in diabetes. Although antioxidants 

provide short-term improvement of endothelial function in humans, all studies of the effec-

tiveness of preventive antioxidant therapy have been disappointing. Control of hyperglycemia 

thus remains the best way to improve endothelial function and to prevent atherosclerosis and 

other cardiovascular complications of diabetes. In the present review we provide the up to date 

details on this subject.
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Introduction
Isolated diabetes mellitus is a frequent and increasing public health problem. 

Importantly, diabetes has a prevalence of 2%–5% in most Western countries, and is 

rapidly increasing in Asiatic countries due to changes in dietary habits during the last 

years (Contreras et al 2000).

Over the last two decades it has become evident that the endothelium is not an 

inert, single-cell lining covering the internal surface of blood vessels, but in fact plays 

a crucial role in regulating vascular tone and structure. Importantly, a healthy endo-

thelium inhibits platelet and leukocyte adhesion to the vascular surface and maintains 

a balance of profi brinolytic and prothrombotic activity (Libby 2002).

Endothelial dysfunction has received increasing attention as a potential con-

tributor to the pathogenesis of vascular disease in diabetes mellitus. Under physi-

ological conditions, there is a balanced release of endothelial-derived relaxing and 
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contracting factors, but this delicate balance is altered in 

diabetes and atherosclerosis, thereby contributing to further 

progression of vascular and end-organ damage (Tan, Chow, 

Ai et al 2002).

Hyperglycemia is the major causal factor in the devel-

opment of endothelial dysfunction in diabetes mellitus. 

Although the mechanisms underlying this phenomenon 

are likely to be multifactorial. Insulin resistance has been 

described in several diseases that increase cardiovascular 

risk and mortality, such as diabetes, obesity, hypertension, 

metabolic syndrome, and heart failure.

Increasing evidence suggests that the progression of 

insulin resistance to type 2 diabetes parallels the progres-

sion of endothelial dysfunction to atherosclerosis. Insulin 

resistance is closely linked with visceral adiposity, and early 

data suggested that free fatty acids were responsible for this 

association (Boden and Shulman 2002). More recently, other 

plasma biomarkers produced by adipose tissue, including 

TNF and resistin, have been shown to have elevated levels 

during obesity and to mediate insulin resistance. Conversely, 

the expression and secretion of adiponectin, an adipocyte-

specifi c protein that enhances insulin-mediated glucose 

uptake, is inversely correlated with fat mass (Lyon et al 

2003). Several studies have demonstrated that nitric oxide 

(NO)-mediated vasodilation is abnormal in patients with type 

2 diabetes (Williams et al 1996). Brachial artery responses 

were found to be abnormal to both endogenous and exog-

enous NO donors, suggesting that there was increased inac-

tivation of NO, possibly caused by enhanced metabolism 

of NO or abnormal vascular smooth muscle cell (VSMC) 

responses to NO because of alterations in signal transduction 

in the guanylate cyclase pathway. Obese patients without 

frank type 2 diabetes have been shown also to have abnormal 

endothelial function (Steinberg et al 1996; Perticone et al 

2001). Herein, we review the literature about endothelial 

dysfunction in diabetes mellitus with regards to its pathogen-

esis at molecular and clinical level, and possible available 

mode of therapy.

Normal endothelial cell (EC) 
function
The EC is no longer considered a simple barrier. In fact it 

is a complex organ, with paracrin and autocrin function, 

which provides a “fi rst line” physiological defense against 

atherosclerosis. The EC lines the internal lumen of all the 

vasculature and serves as an interface between circulating 

blood and vascular smooth muscle cells (VSMC). In addition 

to serving as a physical barrier between the blood and tissues, 

the EC facilitates a complex array of functions in intimate 

interaction with the VSMC, as well as cells within the blood 

compartment (Vanhoutte 1995; De Meyer and Herman 1997; 

Haller 1997; Mombouli 1997).

The last two decades of research have established unam-

biguously that the EC has a critical role in overall homeostasis 

whose functions are integrated by a complicated system of 

chemical mediators. This system exerts effects on both the 

surrounding VSMC and the cells in the blood that lead to 

one or more of the following alterations: (1) vasodilatation 

or vasoconstriction to regulate organ blood, (2) maintenance 

of fl uidity of blood and avoidance of bleeding, (3) proin-

fl ammatory or anti-infl ammatory changes, and (4) growth 

and/or changes in the phenotypic characteristics of VSMC 

(Wautier et al 1983, 1990, 1996; Conger 1994; Chappey 

1996; De Meyer and Herman 1997).

During the last decade, a multitude of experimental argu-

ments have led to the concept that NO is not only involved in 

the control of vasomotor tone but also in vascular homeosta-

sis and neuronal and immunological functions. Endogenous 

NO is produced through the conversion of the amino acid, 

l-arginine to l-citrulline by the enzyme, NO-synthase (NOS) 

from which several isoforms have recently been isolated, 

purifi ed, and cloned. NOS-type I (isolated from brain) and 

type III (isolated from ECs) are termed “constitutive-NOS” 

and produce picomolar levels of NO from which only a 

small fraction elicits physiological responses. NO produced 

by NOS type III in the endothelium diffuses to the vascular 

smooth muscle (VSM) where it activates the enzyme guanyl-

ate cyclase. The concomitant increase in cyclic GMP then 

induces relaxation of the VSM.

The EC produces mediators that induce vasoconstriction, 

including endothelin (Haefl iger et al 1992; Cacoub 1993; 

Levin 1996), prostaglandins (Viberti 1989; Goldin et al 1996) 

and angiotensin II (ANG-II) (Studdy et al 1983; Hsueh and 

Anderson 1993; Rabelink and Bakris 1998; McFarlane 1999) 

and regulates vascular tone by maintaining a balance between 

vasodilation (NO production) and vasoconstriction (eg, A-II 

generation). ANG-II is produced in local tissues by the EC 

(Toop et al 1989; Mombouli 1997) and exerts regulatory 

effects upon several VSMC functional activities including 

contraction (ie, vasoconstriction), growth, proliferation, and 

differentiation. NOS also are regulated by local concentra-

tions of bradykinin (Busse et al 1993). This peptide acts with 

b2 receptors on the EC cell surface membrane, increasing the 

generation of NO via NOS activation. Interestingly, the local 

concentrations of bradykinin are regulated by the activity 

of angiotensin converting enzyme (ACE). ACE breaks 
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down bradykinin into inactive peptides (Luscher et al 1993; 

Mombouli 1997).

Furthermore the EC has a prominent role in maintaining 

blood fl uidity and restoration of vessel wall integrity to 

avoid bleeding and plays a key role in the balance between 

the coagulation and fi brinolytic systems. In addition to its 

key role in growth and differentiation of the VSMC through 

the release of either promoters of growth and/or inhibitors 

of growth and differentiation and, as such, has an impact on 

vascular remodeling (Cowan and Langille 1996). However, 

strong evidence suggests that promotion of VSM growth is 

mediated by local production of platelet growth factor (PGF) 

and ANG-II (Williams 1998).

The EC is also involved in the production of specifi c 

molecules that have a regulatory role in infl ammation such 

as leukocyte adhesion molecule (LAM), intracellular adhe-

sion molecule (ICAM) and vascular cell adhesion molecule 

(VCAM). These molecules are denominated “adhesion 

molecules” and function to attract and “anchor” those cells 

involved in the inflammatory reaction. Very recently it 

has been demonstrated that the atherosclerotic process is 

associated with an increased blood level of infl ammation 

(acute phase proteins) markers (Tracy 1997; Biegelsen and 

Loscalzo 1999).

Endothelial dysfunction
and microalbuminuria
Microalbuminuria is usually defi ned as a urinary albumin 

excretion rate of 30–300 mg in a 24 h urine collection, or 

as a urinary albumin excretion rate of 20–200 mg/min in a 

timed overnight urine collection, although microalbuminuria 

was demonstrated to be a predictor for cardiovascular events 

at levels below these conventional cut-off values. It is an 

independent risk factor for the development of cardiovascular 

disease and a predictor of cardiovascular mortality in the 

diabetic population. It is associated with insulin resistance, 

atherogenic dyslipidaemia, and central obesity, the absence 

of nocturnal drop in both systolic and diastolic pressures and 

is a part of the metabolic cardiovascular syndrome associated 

with hypertension. Because microalbuminuria is related to 

endothelial dysfunction and increased oxidative stress, it is 

not surprising that diabetic atherosclerosis parallels diabetic 

glomerulosclerosis and is a very powerful risk factor for coro-

nary heart disease and stroke in diabetic persons. The impair-

ment of endothelium and NO-dependent vasodilation in the 

human forearm microcirculation in type 1 diabetic patients is 

more severe in the presence of microalbuminuria (Dogra et al 

2001). This defect was attributed to the presence of advanced 

glycosylation end products and/or increased generation of the 

superoxide anion in type 1 diabetic patients, both of which 

are known to effectively antagonize the biological activity 

of NO. Furthermore, basal NO-dependent vasodilatory tone 

has been found to be reduced in type 1 diabetic patients. 

Impaired NO biosynthesis has been demonstrated in the 

forearm vasculature of type 1 diabetic patients with micro-

albuminuria (Elliot 1993).

A cross-sectional association possibly exists between 

increased urinary albumin excretion and the presence of 

sub-clinical atherosclerosis (Jensen 2000), whether urinary 

albumin excretion increases before, during or after the 

development of morphological changes in the atherosclerotic 

process (in stage I, II or III), ie, whether microalbuminuria is 

a predictor of atherosclerosis or of atherosclerotic progres-

sion is not clear. Multiple markers of endothelial dysfunction 

have also been documented in normoalbuminuric subjects 

with type 2 diabetes, suggesting that the vasculopathy in type 

2 diabetes occurs early and may even be operative before the 

development of microalbuminuria (Lim et al 1999).

Endothelial dysfunction
and the metabolic syndrome
The metabolic syndrome is a highly prevalent multifaceted 

clinical entity produced through the interaction of genetic, 

hormonal and lifestyle factors. A distinctive constellation 

of abnormalities precedes and predicts the accelerated 

development of infl ammation and coagulation represent 

emerging risk contributors associated with obesity and 

insulin resistance, central components of the metabolic syn-

drome, which act in concert with traditional abnormalities to 

increase cardiovascular risk. The initiation and progression of 

atherosclerosis may have its origins in impaired endothelial 

function that can be detected at the earliest stages of develop-

ment of the syndrome. The basic elements of the metabolic 

syndrome and accelerated phase of atherogenesis are often 

silent partners that present many years before the onset of 

type 2 diabetes mellitus. The ability to detect and monitor 

sub clinical vascular disease, as a refl ection of the multiple 

factors that contribute to impair arterial wall integrity, holds 

potential to further refi ne cardiovascular risk stratifi cation 

(McVeigh and Cohn 2003).

Over time, insulin resistance is associated with more 

components of the metabolic syndrome (Table 1) including, 

low high density lipoprotein (HDL) cholesterol level, 

hypertension, increased vascular production of reac-

tive oxygen species, increased plasma PAI-1–mediated 

thrombotic tendency, hyperuricemia, high triglyceride levels 
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and elevation of oxidation-prone small dense low-density 

lipoprotein (LDL) cholesterol levels. All are associated with 

endothelial dysfunction (McIntyre et al 1999; Toikka et al 

1999; Kita et al 2001; Matsuoka 2001). The incidence of 

the metabolic syndrome, as defi ned by the Adult Treatment 

Panel III report, increases with age. Carbohydrate intolerance 

occurs when the islet cells can no longer make enough insulin 

to overcome insulin resistance, and thus secreted insulin does 

not appropriately suppress hepatic glucose production. Free 

fatty acids may contribute to these changes, given that they 

can induce islet cell apoptosis and enhance liver gluconeo-

genesis (Arner 2003).

Free fatty acids and proinfl ammatory adipokines likely 

contribute to endothelial dysfunction early in the course of 

insulin resistance. Free fatty acids induce endothelial dysfunc-

tion, whereas several adipokines promote both infl ammatory 

responses and insulin resistance (Steinberg et al 1997). The 

role of tumor necrosis factor TNF- in vascular infl ammation 

is well known, and a role for leptin is emerging (Fantuzzi 

and Faggioni 2000; Plutzky 2001). Adiponectin attenuates 

vascular infl ammatory changes, but its effects are reduced by 

its diminished expression in patients who are obese or have 

insulin resistance (Ouchi et al 2000, 2001; Yokota et al 2000). 

In the later stages of the metabolic syndrome, hyperglycemia 

contributes to the pathology by affecting signal transduction 

pathways, including those mediated through protein kinase C, 

in the endothelial cells (Tesfamariam et al 1999).

Insulin resistance in the natural 
history of type 2 diabetes
Insulin resistance, defi ned as the decreased ability of insulin 

to promote glucose uptake in skeletal muscle and adipose 

tissue and to suppress hepatic glucose output, may be present 

for many years before the development of any abnormality in 

plasma glucose levels (Kahn and Flier 2000; Haffner 2003).

The insulin resistance syndrome encompasses more than 

a subnormal response to insulin-mediated glucose disposal. 

Patients with this syndrome also frequently display elevated 

blood pressure, hyperlipidemia and dysfibinolysis even 

without any clinically demonstrable alteration in plasma 

glucose concentrations. Of note, endothelial dysfunction 

also has been demonstrated in patients with hypertension 

(Landin et al 1990; Luscher 1990; Bonner 1994; Briner and 

Luscher 1994; Kamide et al 1996; Lemne and de Faire 1996; 

Hedner and Sun 1997; Khder et al 1998), which is one of 

the features of the insulin resistance syndrome. It is tempting 

to speculate that loss of endothelial-dependent vasodilation 

and increased vasoconstrictors might be etiological factors 

of hypertension. Moreover loss of activity and/or quantity 

of endothelium-bound protein lipase activity may contribute 

to hyperlipidemia, which is typical of the insulin resistance 

syndrome. A synergistic interaction and vicious cycle may 

exist in which endothelial dysfunction contributes to insulin 

resistance and vice versa (Figure 1).

Insulin resistance has a well-known but not completely 

defined genetic influence, frequently transmitted along 

generations in any given family. Endothelial dysfunction 

has been demonstrated in insulin-resistant states in animals 

and humans and may represent an important early event 

in the development of atherosclerosis. Insulin resistance 

may be linked to endothelial dysfunction by a number of 

mechanisms, including disturbances of sub cellular signaling 

pathways common to both insulin action and NO produc-

tion. Other potential unifying links include the roles of 

oxidant stress, endothelin, the renin angiotensin system and 

the secretion of hormones and cytokines by adipose tissue. 

Individuals who advance toward the development of type 2 

diabetes experience progressive deterioration of glucose 

tolerance over time. In addition, obesity, which also has an 

important genetic component, invariably exacerbates any 

degree of insulin resistance (Kahn and Flier 2000). Thus, 

obesity and insulin resistance are usually present for many 

years before the appearance of other abnormalities such 

as hypertension, dyslipidemia, type 2 diabetes and cardio-

vascular disease. In certain individuals, obesity and insulin 

resistance may be present during childhood and adolescence 

(Goran et al 2003).

Increasing evidence suggest that hyperinsulinaemia 

is linked with the development of atherosclerosis in 

patients with diabetes. Whether hyperinsulinaemia directly 

affects neutrophil transendothelial migration and surface 

expression of related endothelial adhesion molecules were 

studied on healthy volunteers and from patients with non-

insulin-dependent diabetes mellitus across human umbilical 

vein. Endothelial cells cultured in insulin-rich medium using 

Table 1 Clinical identifi cation of the metabolic syndrome

Risk factor Defi ning level

Abdominalobesity*(waistcircumference)† Men �102 cm
 Women �88 cm 
Triglycerides �150 mg/dL
High-density lipoprotein cholesterol Men �40 mg/dL
 Women �50 mg/dL
Blood pressure �130/85 mm Hg
Fasting glucose �110 mg/dL

Diagnosis is made when three or more of the risk determinants are present 
(Hsueh et al 2004).
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cell-culture inserts high insulin (over 50 microU/ml for 

24 h) enhanced neutrophil transendothelial migration in a 

dose-dependent manner. This was associated with increased 

expression of platelet endothelial cell adhesion molecule-1 

(PECAM-1) but not of intercellular adhesion molecule-1 

(ICAM-1), P-selectin or E-selectin (Okouchi et al 2002).

Mechanisms of endothelial 
dysfunction in insulin resistance
Multiple, interrelated mechanisms contribute to endothelial 

cell dysfunction in insulin resistance. The exact mechanism 

by which dyslipidemia contributes to endothelial dysfunction 

is unknown. It is known that endothelial NOS infi ltrates into 

caveolae, which are cholesterol-rich invaginations present 

in endothelial cells and VSMC that decrease vasoconstric-

tive responses to angiotensin II, endothelin and constitutive 

endothelial NOS activity in animals (Rizzo 1998). Addition 

of oxidized LDL to cultured endothelial cells disrupts the 

caveolae complex and is thought to be associated with 

decreased endothelial NOS activity and endothelial dysfunc-

tion (Blair et al 1999; Drab et al 2001). HDL cholesterol can 

prevent the oxidized LDL–mediated decrease in cholesterol 

in caveolae, prevent the translocation of endothelial NOS 

and caveol in from caveolae, and prevent the decrease in 

responsiveness to acetylcholine (Uittenbogaard et al 2000). 

These effects occur because HDL cholesterol donates cho-

lesterol to the caveolae complex. These cellular events are 

consistent with the proatherogenic effects of LDL cholesterol 

and oxidized LDL cholesterol and the protective effects of 

HDL cholesterol.

The presence of hypertension and other atheroscle-

rotic risk factors is associated with increased vascular 

angiotensin II generation and activity (Dzau 2001). Because 

angiotensin II and insulin activate a common signaling 

pathway, increased sensitivity to angiotensin II may occur 

in the hyperinsulinemic, insulin-resistant state (Gaboury 

et al 1994). In addition, angiotensin II stimulates intracel-

lular adhesion molecule–1 and monocyte chemo-attractant 

protein–1 through the MAPK pathway in endothelial cells 

and VSMC (Chen et al 1998; Tummala et al 1999; Xi 

et al 1999). It is likely that many of the components of the 

metabolic syndrome directly alter endothelial vasoreactivity. 

However, these factors may decrease NO activity through 

oxidation pathways; the role of oxygen free radical is 

discussed bellow in Oxidative stress and endothelial cell 

dysfunction.

Role of hyperglycemia in diabetic 
endothelial dysfunction
Hyperglycemia is the major causal factor in the development 

of endothelial dysfunction in patients with diabetes mellitus 

(Figure 2). Clinical trials have identifi ed hyperglycemia 

as the key determinant in the development of chronic 

diabetic complications. The formation of advanced glyca-

tion end products (AGEs) is an important biochemical 

abnormality accompanying diabetes mellitus and, likely 

infl ammation in general. Although the mechanisms under-

lying this phenomenon are likely to be multi-factorial, 

recent in-vivo and in- vitro studies have indicated a crucial 

role of the diacylglycerol (DAG)-protein kinase C (PKC) 

pathway in mediating this phenomenon. PKC may have 

multiple adverse effects on vascular function, including 

the activation of superoxide-producing enzymes such as 

the nicotinamide adenine dinicleotide phosphate (NADPH) 

Insulin Resistance 

Hyperinsulinemia        Metabolic         Impaired glucose       Type 2 
Syndrome  Tolerance        Diabetes 

Endothelial                Inflammation                     Atherosclerosis 
Dysfunction               Thrombosis 

     Oxidation 
Figure 1 Progression of endothelial dysfunction in relation the progression of insulin resistance (Hsueh et al 2004).
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oxidase as well as increased expression of a dysfunctional, 

superoxide-producing, uncoupled endothelial nitric oxide 

synthase (NOS III). PKC-mediated superoxide production 

may inactivate NO derived from endothelial NOS III, and 

may inhibit the activity and/or expression of the NO down-

stream target, the soluble guanylyl cyclase. The effects 

of AGEs on vessel wall homeostasis may account for the 

rapidly progressive atherosclerosis associated with diabetes. 

Driven by hyperglycemia and oxidant stress, AGEs form to 

a greatly accelerated degree in diabetes. Within the vessel 

wall, collagen-linked AGEs may “trap” plasma proteins, 

quench NO activity and interact with specifi c receptors to 

modulate a large number of cellular properties. On plasma 

low density lipoproteins (LDL), AGEs initiate oxidative 

reactions that promote the formation of oxidized LDL. The 

interaction of AGEs with endothelial, as well as with other 

cells accumulating within the atherosclerotic plaque, such as 

mononuclear phagocytes and smooth muscle cells, provides 

a mechanism to augment vascular dysfunction. Specifi cally, 

the interaction of AGEs with vessel wall component increases 

vascular permeability, the expression of procoagulant activity 

and the generation of reactive oxygen species, resulting in 

increased endothelial expression of endothelial leukocyte 

adhesion molecules (Wen et al 2002; Hink et al 2003; Basta 

et al 2004; Farhangkhoee et al 2006), while acute hypergly-

cemia and hyperinsulinemia induced vasodilatation is not 

accompanied by changes in microvascular permeability or 

endothelial markers (Oomen et al 2002).

The effects of acute glycemia on plasma nitric oxide (NO; 

nitrite plus nitrate) levels, Cu-Zn Superoxide dismutase (Cu-Zn 

SOD) activity and thiobarbituric acid-reactive substances 

(TBARS) levels were studied in age-matched female subjects 

Hyperglycemia 

Polyol pathway  
   activity 

AGE 
formation  

Glucose
oxidation

PKC activation 

Antioxidant 
activity  

Arachidonic 
acid 
metabolism  

Increase oxidative stress 

Endothelial dysfunction  

Figure 2 Pathophysiology of hyperglycemia induced endothelial dysfunction (DeVriese et al 2000).
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before and two hours after glucose loading. Plasma NO levels 

were signifi cantly higher in subjects with diabetic glucose tol-

erance (DGT) than in subjects with normal glucose tolerance 

(p � 0.001) and impaired glucose tolerance (IGT) (p � 0.05) 

at baseline. TBARS levels were signifi cantly elevated in sub-

jects with DGT and IGT (p � 0.001 and p � 0.001). Cu-Zn 

SOD activities were signifi cantly increased in subjects with 

NGT, and were signifi cantly decreased in subjects with IGT 

and DGT (p � 0.001 and p � 0.001) after glucose loading; 

suggest that NO availability was decreased when the blood 

glucose levels were only moderately elevated above normal 

levels. This might be related with the enhanced oxidative stress 

(Konukoglu et al 2003).

Other studies examined the effect of acute hyperglycemia 

on endothelium-dependent vasodilation in patients with DM 

or impaired glucose metabolism in- vivo by plethysmogra-

phy. The vasodilatory response to acetylcholine at infusion 

rates of 7.5, 15, and 30 microg/min was studied in the fast-

ing state and at two levels of hyperglycemia, which were 

achieved by the infusion of glucose, insulin and somatostatin. 

The vasodilatory response to acetylcholine was measured by 

calculating the forearm blood fl ow ratio (FBFR), defi ned as 

the measured forearm blood fl ow at a specifi c acetylcholine 

infusion rate divided by the baseline forearm blood fl ow 

without acetylcholine infusion. The induction of hypergly-

cemia resulted in a signifi cant reduction in FBFR for all rates 

of acetylcholine infusion and suggests the importance of 

hyperglycemia in the development of endothelial dysfunction 

observed in patients with DM or impaired glucose metabo-

lism (Bhargava et al 2003; Kim et al 2003).

Oxidative stress and endothelial
cell dysfunction
Diabetic endothelium produces an increase in both O2 and 

H2O2 leading to enhanced intracellular production of OH. 

Thus, OH is implicated in diabetes-induced endothelial 

dysfunction (Tesfamariam et al 1992; Pieper et al 1997). 

Reactive oxygen species (ROS) are generated at sites of 

infl ammation and injury. ROS at low concentrations can 

function as signaling molecules participating as signaling 

intermediates in the regulation of fundamental cell activities 

such as cell growth and cell adaptation responses, whereas 

at higher concentrations, ROS can cause cellular injury and 

death. The vascular endothelium, which regulates the passage 

of macromolecules and circulating cells from blood to tissues, 

is a major target of oxidative stress, playing a critical role 

in the pathophysiology of several vascular diseases and 

disorders. Specifi cally, oxidative stress increases vascular 

endothelial permeability and promotes leukocyte adhesion, 

which is coupled with alterations in endothelial signal 

transduction and redox-regulated transcription factors (Hazel 

et al 2001). Decreased endothelium-dependent vasodilation 

in diabetic subjects is associated with the impaired action 

of NO secondary to its inactivation resulting from increased 

oxidative stress, rather than decreased NO production from 

vascular endothelium, and that abnormal NO metabolism is 

related to advanced diabetic microvascular complications 

(Maejima et al 2001).

Since ROS generation is increased in various disease 

states including DM and a direct reaction between NO and 

superoxide anion has been demonstrated, so a hypothesis 

suggest that inhibition of ROS will restore coronary micro-

vascular responses to ACh in a dog model of DM and topical 

application of superoxide dismutase (SOD) (250 U/ml) and 

catalase (250 U/ml) restored to normal ACh induced coronary 

microvascular responses in DM while having no affect in 

normal animals (Ammar et al 2000).

How is endothelial function 
assessed?
Endothelium-dependent vasodilatation can be assessed in 

the coronary and peripheral circulations. The most relevant 

methodological issues in the research on endothelial function 

and dysfunction have recently been published (Deanfi eld 

et al 2005; Hadi et al 2005). We provide a summary of the 

available modalities of testing:

In coronary circulation, non-invasive tests for assessment 

of coronary endothelial function include Doppler echocar-

diography, positron emission tomography and phase-contrast 

magnetic resonance imaging were described. However, the 

gold-standard test for the evaluation of coronary endothelial 

function requires invasive coronary angiography; quantitative 

coronary angiography can be used to examine the changes in 

diameter in response to intracoronary infusions of endothelium-

dependent vasodilators such as acetylcholine. Endothelial 

function of the coronary microvasculature can be assessed with 

intracoronary doppler techniques to measure coronary blood 

fl ow in response to pharmacological or physiological stimuli 

(Anderson 1999; Al Suwaidi 2001; Farouque and Meredith 

2001). Diagnostic coronary angiography is fi rst performed with 

a standard femoral percutaneous approach. No nitroglycerin 

given before the diagnostic approach. Vasomotor responses to 

acetylcholine and adenosine then assessed (Al Suwaidi et al 

2001). After control coronary angiograms had been obtained, 

a 0.014- Inc Doppler guide wire is introduced through an 8F-

guiding catheter into the left anterior descending coronary 
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artery (LAD). Once baseline fl ow velocity data are obtained 

at the position (when a stable doppler signal was obtained), a 

bolus of intracoronary adenosine (24–36 μg, from a solution 

of 6 mg adenosine in 1 L of saline) is administered. Then 

selective intra coronary infusion of increasing concentration 

of acetylcholine (10–6, 10–5, and 10–4 mol/L) is performed for 

a total 3 minutes through a 2.2 F Ultrafuse coronary infusion 

catheter. Symptoms, hemodynamic data, electrocardiographic 

and doppler velocities are recorded at the end of each infusion 

or bolus injection, followed by selective coronary angiogram. 

Coronary blood fl ow is calculated using the formula D² × APV, 

where D represents the coronary diameter and APV equals the 

average peak velocity from Doppler tracing.

In Peripheral Circulation, Brachial artery ultrasound is a 

widely used non-invasive measure of endothelial function. 

Upper-arm occlusion for 5 minutes results in reactive 

hyperemia after the cuff is released; this increase in shear 

stress results in endothelium-dependent flow-mediated 

vasodilatation. Importantly, endothelial dysfunction assessed 

by this technique correlates with measures of coronary 

endothelial dysfunction (Anderson et al 1995). Peripheral 

vascular endothelial function can be assessed by strain-

gauge venous impedance plethysmography. This technique 

examines the change in forearm blood fl ow in response 

to direct intra-arterial (brachial artery) administration of 

agonists. Non-invasive measures of arterial compliance and 

waveform morphology provide a marker of vascular health 

(Deanfi eld et al 2005).

Molecular and cellular basis of 
endothelial dysfunction in diabetes
Hyperglycemia may lead to intracellular changes in the redox 

state resulting in depletion of the cellular NADPH pool. 

Accumulation of AGEs, whose formation is closely linked to 

oxidative stress, and resultant endothelial dysfunction may start 

early in the course of type 1 diabetes (Tsukahara et al 2003). 

Diminished capacity of nitric NOS to generate NO has been 

demonstrated experimentally when endothelial cells (ECs) 

were exposed either in-vitro or in-vivo to a diabetic environ-

ment (Arbogast et al 1982; Aanderud et al 1985; Koh et al 

1985; Lorenziet al 1986; Hattori et al 1991; Nordt et al 1993; 

Avogaro et al 1999; Cipolla 1999; Salvolini et al 1999).

Over expression of growth factors has also been impli-

cated as a link between diabetes and proliferation of both 

endothelial cells and vascular smooth muscle, possibly 

promoting neovascularization. Chronic hyperglycemia leads 

to non-enzymatic glycation of proteins and macromolecules 

(Jorge et al 2001). Insulin appears to regulate shedding or 

clearance of vascular adhesion protein-1 VAP-1, and an 

increase in sVAP-1. Therefore; absolute or relative insulin 

defi ciency may be directly involved in the pathogenesis of 

diabetic angiopathy (Salmi et al 2002).

The diabetic state is typifi ed by an increased tendency 

for oxidative stress and high levels of oxidized lipoproteins, 

especially the so-called small dense low density lipoprotein 

(LDL-C). High levels of fatty acids and hyperglycemia have 

both been shown to induce an increased level of oxidation 

of phospholipids as well as proteins. The diabetic state in 

humans is associated with a prothrombotic tendency as well 

as increased platelet aggregation; furthermore TNF has been 

implicated as a link between insulin resistance, diabetes and 

endothelial dysfunction. The hypothesis has been advanced 

in recent years that insulin and/or insulin precursors may be 

atherogenic (Jorge et al 2001). Recent study suggests that 

E-selectin may enhance CAD prediction beyond traditional 

risk factors or markers of oxidative stress in Type 1 diabe-

tes (Costacou et al 2005). Furthermore elevated circulating 

asymmetric dimethylarginine ADMA may contribute to the 

excess cardiovascular morbidity and mortality in early dia-

betic nephropathy (Tarnow et al 2004). In addition adverse 

metabolic stress factors in type 1 diabetes are associated 

with reduced angiogenicity, endothelial progenitor cells EPC 

numbers and function (by 44%) compared with age and sex 

matched control subjects (P � 0.001). This reduction was 

inversely related to levels of HbA (1c) (R = –0.68, P = 0.01) 

using an in-vitro angiogenesis assay (Loomans et al 2004).

Role of adhesion molecules has been clarifi ed in the last 

few years. Elevated level of slCAM-1 in young diabetic 

patients correlates with metabolic compensation and positive 

family history of cardiovascular diseases. sVCAM-1 level in 

diabetic children correlates signifi cantly positively with body 

mass index (BMI). Evaluation of adhesion molecules levels 

can be useful tool in the observation of the dynamic devel-

opment of early phases of atherosclerotic process in young 

patients with type 1 diabetes (Glowinska et al 2003).

We have reviewed all experimental and clinical studies 

from 1982–2006 that evaluated endothelial dysfunction in 

diabetic patients; most of which were prospective studies. 

Most of these studies in human indicate that endothelial 

dysfunction is closely associated to microangiopathy and 

atherosclerosis in diabetic patients.

Endothelial dysfunction in IDDM
The association between diabetes and endothelial dysfunction 

is particularly true in patients with type 1 diabetes who have 

either early (microalbuminuria) or late (macroalbuminuria) 
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nephropathy. A variety of markers indicate endothelial 

dysfunction including: poor EC-dependent vasodilation, 

increased blood levels of von Willebrand factor (vWF), 

thrombomodulin, selectin, PAI-1, type IV collagen and t-PA 

were demonstrated in this patients population (Yaqoob et al 

1993; Dosquet et al 1994; Myrup et al 1994; Makimattila 

et al 1996; Huszka et al 1997; Cosentino and Luscher 

1998; Elhadd et al 1998; Malamitsi et al 1998; Huvers et al 

1999). Endothelial dysfunction was an early manifesta-

tion of vascular disease in type 2 diabetes but late in the 

course of type 1 diabetes (Clarkson et al 1996), furthermore 

studies have shown that the levels of cVCAM-1 were 

more markedly elevated in type 1 diabetes patients with 

diabetic retinopathy than in those patients with micro- or 

macroalbuminuria, whereas no difference in cICAM-1 

and cELAM-1 levels was apparent regarding the clinical 

status of diabetic microangiopathy (Fasching et al 1996). 

In diabetic subjects, endothelium-dependent vasodilation 

correlated inversely with serum insulin concentration but 

not with glucose concentration, glycosylated hemoglobin, 

or duration of diabetes (Johnston et al 1993). In a 10 year 

prospective study of 209 insulin-dependent diabetic patients 

with normal urinary albumin excretion has demonstrated 

coincidence of microalbuminuria and decreasing high density 

lipoprotein cholesterol, but no coincidence between onset of 

microalbuminuria and endothelial dysfunction assessed by 

von Willebrand factor (Myrup et al 1994; Hadi et al 2005). 

Little is known about the formation and accumulation of 

AGEs in young patients with type 1 diabetes. Patients with 

microalbuminuria (� or = 15 mg/g Cr) showed signifi cantly 

higher levels of pentosidine and pyrraline, and markers of 

oxidative stress, 8-hydroxy-2'-deoxyguanosine (8-OHdG) 

and acrolein-lysine than did normoalbuminuric patients and 

control. Of these four markers, urinary concentrations of 

pentosidine, 8-OHdG, and acrolein-lysine were signifi cantly 

higher in the patients with diabetes than in the healthy control 

subjects (Tsukahara et al 2003).

In another study a signifi cantly raised mean concentration 

of a free N-terminal fi bronectin 30-kDa domain was found 

in plasma of diabetic patients with proliferative retinopathy 

as compared with healthy persons, and a positive correlation 

was observed between free N-terminal fi bronectin and vWF 

and the degree of albuminuria. No relationship was found 

between fi bronectin and the degree of control of diabetes 

(Skrha et al 1990). In Participants from the Epidemiology 

of Diabetes Complications (EDC) cohort, a 10-year prospec-

tive study of childhood-onset Type 1 diabetes. Mean age at 

baseline was 28 years, and diabetes duration was 19 years. 

It has been found cellular adhesion molecules E-selectin may 

enhance CAD prediction beyond traditional risk factors or 

markers of oxidative stress in Type 1 diabetes (Costacou 

et al 2005).

Impaired FMD response is a common manifestation in 

children with type 1 diabetes and is associated with increased 

carotid artery intimae media thickness (IMT). Which may 

predispose them to the development of early atherosclero-

sis (Jarvisalo et al 2005). Although small dense LDL and 

oxidized LDL are features of type 2 diabetes and predict 

the development of coronary artery disease, their role in 

type 1 diabetes is less clear. One study has suggested, but 

do not prove, that LDL particle size and LDL vitamin E 

may be determinants of conduit and resistance vessel endo-

thelial vasodilator function in type 1 diabetes. Further work 

will be required to prove cause and effect (Skyrme-Jones 

et al 2001).

It is well known that pregnant women with diabetes 

mellitus have a higher incidence of adverse pregnancy 

outcomes. This issue has been assessed in a study which 

has found that the arteries obtained from the diabetic preg-

nant women did not demonstrate any difference in either 

endothelial or smooth muscle function when compared 

with non-diabetic pregnant women. The contribution of NO 

to endothelium-dependent relaxation was approximately 

20% in the pregnant women regardless of whether they 

were diabetic, and approximately 11% in the non-pregnant 

women (Ang et al 2002). In contrary in another small study 

the result of which need further confi rmation has found that 

although pregnancy enhances microvascular function, but in 

women with diabetes, such improvements are insuffi cient to 

attain responses seen in healthy non pregnant women. And 

a persistent vascular defect in young women with type 1 

diabetes that may contribute to adverse pregnancy outcome 

(Ramsay et al 2003).

Endothelial dysfunction, as estimated by plasma vWF 

concentration, but not fi brinogen, precedes and may predict 

the development of microalbuminuria in IDDM (Stehouwer 

et al 1995; Verrotti et al 2003). The presence of endothelial 

dysfunction in normoalbuminuric diabetic patients suggests 

it could precede microalbuminuria as an early risk marker for 

cardiovascular disease (Dogra et al 2001). Recently a small 

study shows the vasomotor endothelial function in patients 

with diabetes mellitus (DM) type 1 at different stages of 

diabetic nephropathy (DN). ie, without renal affection, stage 

of microalbuminuria (MAU), proteinuria (PU), and chronic 

renal failure (CRF).in 26 patients with DM type 1 (11 males 

and 15 females, mean age 25.9 +/– 4.3 years, mean history of 
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DM 12.9 +/– 3.4 years) and 7 healthy volunteers as control 

group. Endothelium-dependent vasodilation (EDVD) was 

assessed using test with reactive hyperemia provoked by 

4–5 min occlusion of the brachial artery by pneumocollar 

and subsequent assessment of arterial diameter changes 

after decompression using high-resolution ultrasound 

dopplerography conclude that at the earliest stage of diabetic 

nephropathy (stage MAU), EDVD is not affected as maximal 

vasodilation of the brachial artery and endothelial sensitivity 

to shift tension do not differ from the control values. This 

means that the stage of MAU is reversible in early treatment, 

but proteinuria and chronic renal failure are not reversible 

stages associated with depletion of endothelial cells and 

loss of sensitivity to changing hemodynamic conditions 

(Shestakova et al 2003). The role of endothelial dysfunction 

in the development and progression of cardio-renal syndrome 

in 93 patients with type 1 diabetes mellitus were studied by 

same investigator and analyzed endothelial fl ow-mediated 

dilation of the brachial artery, levels of endothelin-1, von 

Willerbrand factor, C-reactive protein, renal:albumin and 

protein excretion rates, glomerular fi ltration rate (GFR), 

and cardiovascular functions (ECG, echocardiography, 

blood pressure monitoring). GFR correlated positively with 

the coeffi cient of sensitivity of endothelium to shear stress. 

Found a positive correlation between BP, permeability of 

glomerular fi lter and endothelial dysfunction markers and 

negative correlation with the coeffi cient of sensitivity of 

endothelium to shear stress and GFR. Left ventricle mass 

correlated with markers of endothelial dysfunction and stage 

of renal disease (Shestakova et al 2005b).

More severe diabetic nephropathy was associated with 

higher prevalence of cardiac pathology. Frequency of isch-

emic heart disease was 13%, 33% and 53%, frequency of left 

ventricular concentric hypertrophy and remodeling 33%, 40% 

and 60% among patients with microalbuminuria, proteinuria 

and chronic renal failure, respectively. Abnormalities of 

24-hour blood pressure rhythm as well as signs of endothelial 

dysfunction were more pronounced in patients with more 

severe nephropathy. Correlation analysis revealed signifi cant 

relationships between markers of endothelial dysfunction, 

parameters of renal function, blood pressure level and mass 

of left ventricular myocardium. (Shestakova et al 2005a). 

Low plasma levels of active TGF-beta are associated with an 

impaired endothelial response and this may provide a useful 

tool for identifying Type 1 diabetic patients at a greater risk 

of coronary artery disease (Meeking et al 1999).

It is the general consensus that the occurrence of 

endothelial cell dysfunction in type 1 diabetes signifi es a 

very high risk of micro- and macroangiopathy and although 

the diabetic state predisposes to endothelial cell dysfunction 

in this disease, is not suffi cient to cause it. More likely, 

other agents (genes, environment) are likely to play a role 

in determining those patients that will develop aggressive 

angiopathy and hence endothelial cell dysfunction. Irrespec-

tive of whether endothelial cell dysfunction is a cause or a 

consequence of vascular injury in type 1 diabetes, therapeutic 

efforts aimed at restoring endothelial cell to normal will more 

likely have an affect on the natural history of vasculopathy 

in type 1 diabetes (Jorge et al 2001).

Plasma homocysteine levels
in type 1 diabetes and endothelial 
dysfunction
Although the fi ndings are inconsistent, moderate hyper-

homocysteinaemia (15–30 μmol/l) has been observed in 

some studies of patients with type 1 diabetes. Adolescent 

patients with no microvascular complications have lower 

(Chiarelli et al 2000; Cotellessa 2001; Wiltshire et al 2001) 

or similar (Pavia et al 2000) homocysteine levels compared 

with non-diabetic controls. Studies in adult patients have 

demonstrated similar (Hultberg et al 1991; Chico et al 1998; 

Vaccaro et al 2000), lower (Robillon et al 1994; Cronin et al 

1998) and higher (Hofmann 1998; Targher et al 2000) plasma 

homocysteine levels compared with non-diabetic controls. 

The homocysteine levels are independent of vitamin status 

and refl ect the heterogeneous nature of the patients studied, 

including patients with poor glycaemic control, variable 

duration of diabetes and a variety of microvascular and 

macrovascular complications. It would appear that certain 

subgroups are more likely to be associated with hyperhomo-

cysteinaemia; several factors have suggested: General factors; 

include genetic, nutrition, increasing age, male gender and 

renal failure. Factors specifi c to type 1 diabetes such as a 

lower age of onset of diabetes, poor glycaemic control, renal 

hyperfi ltration and diabetic nephropathy. The interpretation 

of the result of these studies should be taken cautiously and 

further extensive work is needed to fi nalize this issue.

Endothelial dysfunction in NIDDM
The role of endothelial dysfunction in type 2 diabetes is 

more complicated than that for type 1. The effects of ageing, 

hyperlipidemia, hypertension and other factors add to the 

complexity of the problem. In contrast to patients with type 1 

diabetes, endothelial dysfunction can also occur in patients 

with type 2 diabetes even when the patients have normal 

urinary albumin excretion. In fact, markers of endothelial 
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dysfunction are often elevated years before any evidence 

of microangiopathy becomes evident (Janka 1985; Hsueh 

and Anderson 1992; Bloomgarden 1998; De Mattia et al 

1998; Neri et al 1998; Watts and Playford 1998; Gazis 

et al 1999). The insulin resistance syndrome encompasses 

a subnormal response to insulin-mediated glucose disposal 

and frequently elevated blood pressure, hyperlipidemia and 

dysfi binolysis, even without any clinically demonstrable 

alteration in plasma glucose concentrations (Steinberg et al 

1994). There is a growing body of evidence to suggest the 

coexistence of insulin resistance and endothelial dysfunction. 

Insulin-induced vasodilation, which is partially mediated 

by NO release, is impaired in obese individuals who do not 

have type 2 diabetes but whom display insulin resistance 

(Steinberg et al 1994; Ferri et al 1997; Cleland et al 2000). 

Moreover, the obese state, a model of human insulin resis-

tance, is associated with high levels of endothelin in plasma. 

Also blood concentrations of PAI-1 are high in patients 

with otherwise uncomplicated obesity (Calles et al 1996). 

Endothelial activation and acute-phase reaction correlate 

with insulin resistance and obesity in type 2 diabetic patients 

(Leinonen et al 2003).

Abnormalities in vascular reactivity and biochemical 

markers of endothelial cell activation are present early in 

individuals at risk of developing type 2 diabetes. The vasodi-

latory responses to acetylcholine were reduced in healthy nor-

moglycemic subjects who have fi rst degree diabetic relatives. 

The plasma levels of endothelin-1 were signifi cantly higher 

in subjects with impaired glucose tolerance and patients with 

type 2 diabetes without vascular complications compared 

with healthy normoglycemic subjects with no history of 

type 2 diabetes in a fi rst-degree relative (Caballero et al 

1999). In addition there is a signifi cant association between 

endothelial dysfunction and insulin resistance in young fi rst 

degree relatives of DM subjects independent of the classic 

cardiovascular risk factors (Balletshofer et al 2000).

In a case-cohort study, using the Monitoring of Trends 

and Determinants in Cardiovascular Disease (MONICA)/

Cooperative Research, men and women with elevated levels 

of sE-selectin had a signifi cantly increased risk of type 

2 diabetes after multivariable adjustment. Hazard ratios 

(95% CIs) comparing tertile extremes of sE-selectin were 

2.63 (1.79–3.88) and 1.71 (1.07–2.75) for men and women, 

respectively. Elevated levels of sICAM-1 were also associ-

ated with an increased risk of type 2 diabetes; however, the 

association was not independent of other diabetes risk factors 

including E-selectin, while vWF was not associated with 

risk of type 2 diabetes (Thorand et al 2006). A prospective, 

nested case-control study within the Nurses’ Health Study, 

has found elevated E-selectin and ICAM-1 levels can predict 

incident diabetes in logistic regression models conditioned on 

matching criteria and adjusted for body mass index (BMI), 

family history of diabetes, smoking, diet score, alcohol 

intake, activity index and postmenopausal hormone use. 

Adjustment for waist circumference instead of BMI or further 

adjustment for baseline levels of C-reactive protein, fasting 

insulin, and HbA1c or exclusion of cases diagnosed during 

the fi rst 4 years of follow-up did not alter these associations 

(Meigs et al 2004).

In diabetes, glycation, tissue oxidation and endothelial 

function are all abnormal and predisposing to microvas-

cular complications but interrelationships are complex 

with glycation appearing most direct (Wen et al 2002). 

The patients with microalbuminuria, unlike those without 

it, are characterized by longer course of diabetes, more 

pronounced lipid exchange disorder, more variable arterial 

pressure, higher pressure load index, elevated activity of 

lipid peroxidation (LP) processes and prominent disorder 

of NO-producing endothelial function. All improve with 

treatment (Ametov et al 2005). The Endothelium-dependent 

vasodilation was impaired in the microalbuminuric patients 

compared with the normoalbuminuria patients and the 

healthy controls. Plasma PAI-1 and vWF levels increased 

in the microalbuminuric patients compared with the levels 

in the normoalbuminuric patients and in the healthy controls 

(Yu et al 2004).

In type 2 diabetes mellitus as in type 1, increased calpain 

(calcium-dependent protease) activity in response to 

hyperglycemia may play a role in diabetic cardiovascular 

disease. Immunoprecipitation studies revealed that glucose 

induces loss of NO via a calpain-dependent decrease in the 

association of hsp90 with endothelial NOS. In addition, inhi-

bition of calpain activity decreased endothelial cell surface 

expression of the pro-infl ammatory adhesion molecules 

ICAM-1 and VCAM-1 during hyperglycemia (Stalker et al 

2003). Furthermore inhibition of PKC activity reduces 

leukocyte-endothelium interactions by suppressing surface 

expression of endothelial cell adhesion molecules in response 

to increased oxidative stress (Booth et al 2002).

In diabetes associated with diabetic microangiopathy, 

compared with non diabetics, asymmetric dimethylargi-

nine [ADMA]; an endogenous inhibitor of NOS, serum 

TNF-alpha and soluble TNF receptor I (sTNFR-I) has been 

assessed in a study which concludes that the serum sTNFR-I 

and VEGF levels were signifi cantly increased, but no differ-

ence in the serum TNF-alpha, sTNFR-II, and ADMA levels 
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between uncomplicated diabetic patients and in non diabetics 

(Makino et al 2005).

Increased levels of vWF antigen, t-PA antigen and PAI-1 

activity were seen in impaired glucose tolerance (IGT) and 

diabetics compared with the normal glucose tolerance (NGT). 

Tissue factor pathway inhibitor TFPI activity and thrombo-

modulin levels were increased in all elderly subjects, with 

positive association between HbA (1c), TFPI activity and 

vWF antigen. Fasting blood glucose levels correlated with 

vWF antigen, t-PA antigen and PAI-1 activity, whereas 

urine albumin excretion correlated with TFPI activity, vWF 

antigen and PAI-1 activity. Serum insulin levels correlated 

strongly not only with vWF antigen and t-PA antigen but 

also with PAI-1 activity. This correlation did not change 

after further adjustment for serum glucose and HbA(1c), 

which may suggest that in the elderly subjects, impaired 

fi brinolysis is probably associated with insulin resistance 

(Leurs et al 2002). The above refl ect a prothrombotic state 

associated with an insulin resistance state, an increased vWF 

release, raised sP-Sel and TNFalpha levels and, may be, 

low NO bioavailability, which could lead to a higher risk of 

development of thrombotic events in hypertensive diabetic 

patients (Ouvina et al 2001).

NADPH oxidase gene expression is increased in circulating 

lymphomonocytes from patients with DM, and this increased 

gene expression is dependent upon metabolic control. 

Hyperglycemia can mediate its adverse effects through the 

activation of protein kinase C. Recent study has shown an 

increase in membrane-associated PKC beta 2 activity in 

monocytes from patients with DM. This activity was reduced 

by 40% in the euglycemic condition (Avogaro et al 2006). 

Further more patients with Type 2 diabetes with good residual 

C-peptide secretion are better protected from endothelial 

dysfunction that those with poor C-peptide secretion (Man-

zella et al 2003).

Endothelial dysfunction may have deleterious effect 

cardiovascular pathology in diabetic patients. Recent 

study found a signifi cant association between an abnormal 

SPECT result, left ventricular diastolic dysfunction and 

impaired post-ischaemic dilatation of the brachial artery. No 

association was found between the SPECT result, systolic 

function and left ventricular hypertrophy, however, an 

abnormal SPECT result was signifi cantly associated with 

left ventricular diastolic dysfunction and the deterioration 

of post-ischaemic dilatation of the brachial artery in asymp-

tomatic patients with type 2 diabetes (Charvat et al 2005). 

Myocardial blood fl ow (MBF) measured with positron emis-

sion tomography and 13N-ammonia to characterize coronary 

circulatory function in states of insulin resistance without 

carbohydrate intolerance (IR), impaired glucose tolerance 

(IGT), normotensive and hypertensive type 2 diabetes mel-

litus (DM) compared with insulin-sensitive (IS) individuals 

shows that endothelium-dependent coronary vasomotion 

was signifi cantly diminished in IR (–56%), as well as in 

IGT and normotensive and hypertensive diabetic patients 

(–85%, –91%, and –120%, respectively). Total vasodilator 

capacity was similar in normoglycemic individuals (IS, IR, 

and IGT), whereas it was signifi cantly decreased in normo-

tensive (–17%) and diabetic, hypertensive (–34%) patients 

(Prior et al 2005).

The phospho-Akt (Thr308) level in arteries from 

diabetic patients was reduced to about one-half of the 

level in non diabetic patients, suggesting impaired insulin 

signaling in human diabetic vascular tissue. Augmented 

vasoconstriction was observed in diabetic arteries, due in 

part to defi ciency of basal and stimulated NO production. 

This correlated with decreased endothelial NOS expres-

sion and activity in diabetic vessels (Okon et al 2005). 

The evaluation of enzymes implicated in the evolution of 

endothelial dysfunction associated with type 2 diabetes 

[lipoprotein-associated phospholipase A2, meloperoxidase 

(MPO) and paraoxonase (PON) activities] , may improve 

early diagnosis of CVD in asymptomatic patients with type 2 

diabetes and can help to evaluate accelerated atherosclerosis 

and microvascular disease (Moldoveanu et al 2006). A study 

recently, using high-resolution ultrasound, measured brachial 

artery responses to fl ow-mediated vasodilatation; (endothe-

lium-dependent vasodilatation) and nitroglycerine-induced 

vasodilatation; (endothelium-independent vasodilatation), 

compares non-traditional risk factors, such as endothelial 

function, plasma levels of CRP and adiponectin were mea-

sured by ELISA in Type 2 diabetic and non-diabetic patients 

following acute myocardial infarction. Twenty Type 2 dia-

betic patients were compared with 25 non-diabetic patients at 

baseline (1–3 days from the onset of chest pain) and at 60 days 

follow-up after an AMI. At 60 days follow-up, there were 

signifi cant differences in FMD (1.5 compared with 4.1%; 

P � 0.02), CRP (4.23 compared with 1.46 mg/ml; P � 0.01) 

and adiponectin (3.3 compared with 5.3 ng/ml; P � 0.05) lev-

els between Type 2 diabetic and non-diabetic patients. These 

fi ndings may, in part explain, the poor outcome in coronary 

artery disease seen in Type 2 diabetes (Nystrom et al 2005). 

Type 2 diabetes is independently associated with impaired 

flow mediated dilatation (FMD). Hyperglycemia and 

hyperinsulinemia contribute minimally to this association. 

Impaired FMD may therefore, in part, explains the increased 
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cardiovascular disease risk in DM2, whereas the normal FMD 

in impaired glucose metabolism (IGM) suggests that other 

forms of endothelial dysfunction are important in explain-

ing the increased cardiovascular disease risk in IGM (Henry 

et al 2004). On the other side, acute hyperinsulinaemia, both 

with and without concomitant hyperglycaemia, does not 

increase skin microvascular permeability, haemodynamics 

or parameters of endothelial dysfunction in Type 2 diabetic 

patients (Oomen et al 2004).

Patients with diabetes or hypertension have elevated 

ET-1 levels, but do not exhibit positive correlations between 

ET-1 levels and blood pressure, which was observed in healthy 

controls. Increased ET-1 levels do not induce hypertension 

in diabetes, but were lower in diabetic patients taking ACE 

inhibitors compared to those without ACE inhibitors. There 

is no signifi cant association between ET-1 levels and vascular 

complications. These fi ndings suggest that the plasma ET-1 

level is not a marker of endothelial dysfunction but changes 

in plasma ET-1 levels may precede vascular complications 

associated with hypertension and diabetes (Schneider et al 

2002). The same author studied plasma endothelin-1 (ET-1) 

levels in patients with diabetes mellitus or hypertension 

with healthy controls, and investigates whether ET-1 levels 

are correlated with glycemic control, metabolic parameters 

and vascular complications on 103 patients with type 1 

diabetes, 124 patients with type 2 diabetes, 35 hypertensive 

patients without diabetes mellitus and 99 controls. Patients 

with diabetes or hypertension have elevated ET-1 levels, but 

do not exhibit positive correlations between ET-1 levels and 

BP, which was observed in healthy controls. Increased ET-1 

levels do not induce hypertension in diabetes, but were lower 

in diabetic patients taking ACE inhibitors compared to those 

without ACE inhibitors. There is no signifi cant association 

between ET-1 levels and vascular complications (Schneider 

et al 2005). Furthermore the activity of endogenous ET-1 

on ET (A) receptors is enhanced in the resistance vessels of 

patients with diabetes, whereas their sensitivity to exogenous 

ET-1 is blunted (Cardillo et al 2002).

Well-controlled type 2 diabetic patients free of clinical 

macrovascular complications have elevated plasma markers 

of cardiovascular risk without having increased intima-

media thickness (IMT). The elevation of plasma markers 

of endothelial cell activation (sE-selectin and s-ICAM-1) or 

infl ammation (CRP) and oxidative stress (8-isoprostane) in 

diabetics vs. controls is distinct from and cannot be explained 

simply by differences in the burden of atherosclerosis as 

assessed by carotid intima-media thickness (Moussavi et al 

2004). Activation of poly (ADP-ribose) polymerase (PARP) 

is an important factor in the pathogenesis of endothelial 

dysfunction in diabetes. Destruction of islet cells with 

streptozotocin in mice induced hyperglycemia, intravascular 

oxidant production, DNA strand breakage, PARP activation 

and a selective loss of endothelium-dependent vasodilation. 

Treatment with a novel potent PARP inhibitor, starting after 

the time of islet destruction, maintained normal vascular 

responsiveness, despite the persistence of severe hypergly-

cemia (Garcia Soriano et al 2001).

Possible available therapy
Several therapeutic interventions have been tested in clinical 

trials aimed at improving endothelial function in patients with 

diabetes (Table 2). Insulin sensitizers may have a benefi cial 

effect in the short term, but the virtual absence of trials with 

cardiovascular end-points precludes any defi nitive conclusion. 

Two trials offer optimism that treatment with angiotensin 

converting enzyme inhibitors may have a positive impact 

on the progression of atherosclerosis (O’Driscoll et al 1997, 

Mullen et al 1998; Prasad et al 2000; Hornig et al 2001), 

although widely used, the effect of hypolipidemic agents on 

endothelial function in diabetes is not clear (Evans et al 2000). 

The role of antioxidant therapy is controversial.

Chronic cigarette smoking has a deleterious effect on 

plasma cICAM-1 levels in young type 1 diabetic patients, 

which further supports the clinical importance of discourag-

ing the initiation of smoking and promoting its cessation in 

people with type 1 diabetes (Zoppini et al 1999).

Children with type 1 diabetes have early endothelial 

dysfunction. Better folate status is associated with better 

endothelial function, as measured by higher FMD, higher 

FMD:GTN ratio, and lower thrombomodulin. Folate may 

therefore protect against endothelial dysfunction in children 

with diabetes (Wiltshire et al 2002).

Elevation in blood glucose and total glycosylated hemo-

globin in diabetic animals was normalized after islet trans-

plantation. Furthermore, islet transplantation completely 

restored the defective endothelium-dependent relaxation 

to acetylcholine in diabetic (Pieper et al 1995, 1996). Post-

prandial state is accompanied by endothelial dysfunction in 

Type 2 diabetic patients and that insulin aspart improved 

endothelial function (Ceriello et al 2004). Few studies 

have shown the benefi cial effect of insulin on endothelial 

dysfunction (Table 1). Long-term treatment with hydroxy-

methyl starch conjugated-deferoxamine had no effect on 

relaxation to nitroglycerin but completely prevented the 

impaired relaxation to acetylcholine in diabetic rats (Pieper 

and Siebeneich 1997).
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Inhibition of rennin angiotensin 
pathway (Table 2A)
Angiotensin II has several pro-oxidative effects on the 

vasculature, decreasing NO bioavailability and resulting 

in vascular injury. ACE inhibitors are known to improve 

endothelial dysfunction, but the ability of angiotensin recep-

tor blockers to improve endothelial dysfunction is less clear 

(Mancini et al 1996; Taddei et al 2002). Both drug classes 

consistently prevent coronary artery (particularly in the 

case of ACE inhibitors), stroke, and diabetic microvascular 

complications of nephropathy and retinopathy (McFarlane 

et al 2003). Inhibition of the renin-angiotensin system is 

associated with reduced incidence of new-onset diabetes. In 

the Heart Outcomes Prevention Evaluation (HOPE) study 

(Yusuf et al 2001), the incidence of diabetes was 32% lower 

in the ramipril-treated group than in the placebo group. In the 

Losartan Intervention for Endpoint reduction in hypertension 

(LIFE) study (Dahlof et al 2002), losartan was associated with 

25% less new-onset diabetes compared with atenolol. The 

mechanisms responsible for the reduced incidence of diabetes 

observed during these trials are unknown, although possible 

mechanisms include increased plasma bradykinin levels, 

which improves insulin-mediated glucose uptake (Duka et al 

2001), improved endothelial function, increased vascular NO 

activity and reduced vascular infl ammation. More recent study 

in Chinese investigates the relationship between angiotensin 

converting enzyme (ACE) gene and endothelial dysfunction, 

concludes that, ACE DD genotype is related to endothelium-

dependent arterial dilation in the early stage of type 2 diabetes 

mellitus and in healthy individuals (Xiang et al 2004). Which 

may hope for gene therapy in the future?

Thiazolidinediones (Table 2A)
Thiazolidinediones enhances insulin-mediated glucose 

uptake into insulin target tissues, through activation of per-

oxisome proliferator-activated receptor (PPAR) (Mudaliar 

et al 2001). They have direct effects on adipose tissue by 

suppression TNF and, possibly, leptin expression; suppress 

lipolysis and thus decrease plasma free fatty acid concentra-

tions and increase plasma adiponectin levels (Hauner et al 

2001, 2002) and exert direct effects on insulin-mediated 

glucose transport in skeletal muscle and the heart (Bishop-

Bailey et al 2000; Loviscach et al 2000).

Thiazolidinedione administration reverses insulin resistance 

and many components of the metabolic syndrome. Treatment 

is generally associated with increased HDL cholesterol levels; 

decreased blood pressure, plasma triglyceride levels, small 

dense LDL cholesterol particles, PAI-1 levels and albumin 

excretion rates; in addition to decreased glucose levels and 

reduced hemoglobin A1C levels (Day 1999; Kruszynska et al 

2000; Lebovitz et al 2001; Freed et al 2002).

PPAR ligands also improve endothelial function (Dandona 

and Aljada 2004). Several studies have demonstrated 

improvements in brachial artery reactivity in patients with dia-

betes. (Avena et al 1998; Caballero et al 2003). Troglitazone 

(Watanabe et al 2000) and Rosiglitazone, improves coronary 

artery endothelial function in patients with insulin resistances 

who have no traditional risk factors for atherosclerosis as well 

as no impaired glucose tolerance or diabetes (Quin˜ones et al 

2002). With an increase in insulin sensitivity and a drop in 

fasting insulin and free fatty acid levels, thiazolidinediones 

in combination with hormone therapy (HT) in postmenopausal 

women is, however, have shown in study to attenuates endo-

thelial function (Honisett et al 2004).

The mechanisms by which thiazolidinediones improve 

endothelial-dependent blood fl ow are unknown, but likely 

involve several effects. First, as described above; it has an 

important anti-infl ammatory effects that involve decreasing 

circulating adipokines levels (eg, TNF, PAI-1, leptin), which 

are refl ected by reduced high-sensitivity C-reactive protein 

levels; increasing adiponectin levels; decreasing vascular 

expression of adhesion molecules (Wakino et al 2002). Second, 

insulin is a vasodilator stimulating expression of eNOS through 

the phosphatidylinositol 3-kinase (PI3K) pathway (Zeng et al 

2000).This effect of insulin is blunted in patients with insulin 

resistance (Kuboki et al 2000). PPAR- is expressed in endothe-

lial cells, and its ligands have been reported to enhance NO pro-

duction, possibly by stimulating the PI3K pathway and hence 

expression of eNOS (Kim et al 2002). Third, PPAR- ligands 

improve several components of the metabolic syndrome that 

could adversely affect endothelial function, including low HDL 

cholesterol levels, high triglyceride and free fatty acid levels, 

hypertension and carbohydrate intolerance. PPAR- ligands 

also decrease oxidative stress and thus are able to improve the 

vascular balance between NO and vasoconstrictors (Bagi et al 

2004). Rosiglitazone administration for 12 weeks was shown to 

improve insulin sensitivity and decrease asymmetric dimethyl-

arginine levels. An endogenous inhibitor of NOS, is associated 

with reduced NO–mediated vasodilation and enhanced adher-

ence of mononuclear cells to the endothelium (Chan et al 2000; 

Stuhlinger et al 2002). In recently performed a double-blind 

crossover trial of 12 patients with recently diagnosed type 

2 diabetes concludes that insulin resistance is a major con-

tributor toward endothelial dysfunction in type 2 diabetes; both 

endothelial dysfunction and insulin resistance are amenable 

to treatment by rosiglitazone (Pistrosch et al 2004). Recently 
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studies have shown that Rosiglitazone ameliorated glomerular 

hyperfi ltration in early type 2 diabetes, improved NO bioavail-

ability and lessened renal end-organ damage in type 2 diabetes 

with microalbuminuria (Pistrosch et al 2005) and Pioglitazone 

improves endothelial dysfunction independently from the 

observed benefi ts on insulin sensitivity and beta-cell function 

in patients with newly diagnosed type 2 diabetes and CAD.and 

may exerts additional effects on endothelial function beyond 

metabolic control (Forst et al 2005; Sourij et al 2006). Further-

more the GATE study may provide the rationale and impetus 

Table 2A Role of various modalities of therapy on endothelial dysfunction 

Reference Treatment Patient Result on endothelial function

 Role of ACEI and ARBs
Mancini et al 1996 ACEI (most studies) NIDDM, CAD +EDVD
O’Driscoll et al 1997,1999
Mullen et al 1998
Anderson et al 2000
Prasad et al 2000
Hornig et al 2001
Cheetham et al 2000 ARBs NIDDM, CAD Debated results
Hornig et al 2001
Hermann et al 2006 Quinapril 2 /12 Tx 24 pt. NIDDM,  ↑ insulin-stimulated endothelial function ,
   ↑ vascular adiponectin gene expression
Sato et al 2003 candesartan(4–12 mg-day) 30 pt. DM2, clinically improves oxidant stress
  12 wks treatment 
Chaturvedi et al 2001 lisinopril IDDM Circulating plasma VEGF concentration is
   not strongly correlated with risk factor
   status or microvascular disease
Cheetham et al 2001 50 mg of losartan NIDDM ↑ NO-mediated dilation in the conduit vessels
 daily for 4 wks
Pieper et al 2000 temocapril Diabetic rat +EDVD
Arcaro et al 1999 Captopril 25 mg tid IDDM +EDVD in the femoral artery of
   normotensive microalbuminuric Pt.
O’Driscoll et al 1999 enalapril (10 mg twice NIDDM ↑ stimulated and basal
 daily / 4 wks  NO-dependent endothelial function.
McFarlane et al 1999 perindopril 4 for 12 wk IDDM improve arterial endothelial function
Gasic et al 1999 Fosinopril (10 mg/ 11 microalbuminuric ↓ cVCAM-1 levels and ↓ microalbuminuria
 day) for 12 wks NIDDM pt.
Nielsen et al 1997 lisinopril 10–20 mg 43 hypertensive  reno- and vasculoprotective properties in
 dialy for12/12 NIDDM pts  hypertensive NIDDM nephropathy pts.
Bijlstra et al 1995 perindopril 4–8 mg 10 pt. NIDDM  +EDVD
 OD/ 6 /12
 Role of glitazones and other oral hypoglycemic agents
Sourij et al 2006 pioglitazone (30 mg/day NIDDM +EDVD
 for 12 wks
Caballero et al 2003 troglitazone treatment NIDDM +EDVD
 for 12 wks
Forst et al 2005 pioglitazone 179 pt. NIDDM +EDVD
(Pistrosch et al 2005) Rosiglitazone for 19 pt. NIDDM with. ↓ glomerular hyperfi ltration and NO
 12 wks microalbuminuria Bioavailability and ↓end-organ damage 
Hubacek et al 2004 Rotiglitazone NIDDM +EDVD
Pistrosch et al 2004
Tack et al 1998
Manzella et al 2005) repaglinide (1 mg BID) 16 pt. NIDDM  improves brachial reactivity and
 for 4/12   ↓ oxidative stress indexes.
Bengel et al 2005 nateglinide 120 mg  47 pt. NIDDM No effect myocardial blood fl ow
 t.i.d. 16 wks
De Mattia et al 2003 Gliclazide for 12 wk 15 pt NIDDM improves both antioxidant status and
    NO-mediated vasodilation
Katakam et al 2000 Metformin NIDDM +EDVD
Mather et al 2001
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for the aggressive treatment of insulin-resistant patients with 

glitazone therapy (Hubacek et al 2004).

Other antidiabetic
Repaglinide administration, through good control of 

postprandial glucose levels, improves brachial reactivity 

and declines oxidative stress indexes (Manzella et al 2005). 

While Nateglinide an oral antidiabetic insulinotropic agent 

neither improved nor impaired myocardial blood fl ow in 

Type 2 diabetic patients (Bengel et al 2005). Metformin; 

an antidiabetic agent that improves insulin sensitivity, 

treatment improved both insulin resistance and endothelial 

function, in animal and human (Katakam et al 2000; Mather 

et al 2001).

Statin and endothelial dysfunction 
(Table 2B)
Several clinical trials have demonstrated that statin treatment 

not only reduces serum cholesterol levels in hypercholes-

terolemic patients, but also substantially decreases the risk 

of cardiovascular disease (Shepherd et al 1995). In current 

clinical use, statins can reduce LDL cholesterol levels by 

an average of 20%–35%, with a corresponding 30%–35% 

reduction in major cardiovascular outcomes. Decreases in 

serum cholesterol levels could account for the observed 

risk reduction, since LDL cholesterol has a strong, well-

documented association with cardiovascular risk, and since 

plasma LDL apheresis has been shown to improve both 

endothelium-dependent vasodilation and cardiovascular 

risk in hypercholesterolemic patients (Thompson et al 1995; 

Tamai et al 1997). Several studies, however, have shown 

that improvements in endothelial function can occur before 

reductions in serum cholesterol levels. For example, ceriv-

astatin has been shown to improve endothelial function in 

elderly diabetic patients within 3 days, while, even more 

strikingly, healthy normocholesterolemic subjects have 

demonstrated markedly improved endothelial vasoreactivity 

after 3 hours (Tsunekawa et al 2001; Omori et al 2002). 

These acute effects are in agreement with other studies that 

have reported improvements in endothelial function after 

Table 2B Role of various modalities of therapy on endothelial dysfunction 

Reference Treatment Patient Result on endothelial function

 Role of statin and other lipid lowering agent
Fegan et al 2005 cerivastatin 11 pt. NIDDM improvement in microvascular
   endothelial function 
Beishuizen et al 2005 0.4 mg cerivastatin 250 pt. NIDDM no effect on FMD in type 2 diabetes
Joyce et al 2004 Pravastatin, 40 mg per 9 pt. IDDM Improve (FMD)
 day /1/12
Dalla Nora et al 2003 Atorvastatin for 1 year 25 pt. NIDDM Improve (FMD)
van Venrooij et al 2002 30 wks’ Tx of atorvastatin  133 pt. NIDDM Did not reverse endothelial dysfunction.
 10 mg & 80 mg
van Etten et al 2002 4 weeks of 80 mg  23 pt. NIDDM no effect on NO availability in forearm
 atorvastatin daily  resistance arteries
Tan, Chow, Tam atorvastatin (10 mg daily for 3/12, 80 pt. NIDDM +EDVD,(signifi cant)
et al 2002 followed by 20 mg daily for 312)
van de Ree et al 2001 6-week Tx with simvastatin 17 pt. NIDDM No effect
 40 mg/daily
Dumont et al 2001 Pravastatin (20 mg/kg/day) Experimental rats restores endothelial function
 for 2 wks
Tsunekawa et al 2001 cerivastatin (0.15 mg/d)  27 elderly NIDDM improved impaired endothelial function 
 for 3 days  without affecting lipid profi les
Avogaro et al 2001 Gemfi brozil 600 mg b.i.d,  10 pt. NIDDM improves both insulin action and FMD
 for 12 wks
Evans et al 2000 Ciprofi brate 3/12 NIDDM improves fasting and postprandial 
   endothelial function
 Role of insulin
Vehkavaara et al insulin glargine and metformin 49 in vivo endothelial function +EDVD and
2000, 2004  tests in 11 pt. NIDDM endothelium-independent vasodilatation
Gaenzer et al 2002 insulin and metformin 21 poorly controlled benefi cial effects on vascular function,
  NIDDM resulting in enhanced EDD
Evans et al 2003 6 weeks of insulin lispro (0.2 20 pt. NIDDM Improve endothelial dysfunction
 Iu kg-1) and vitamin C 1-g daily
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statin administration that do not correlate with reductions 

in serum LDL cholesterol levels (Kureishi et al 2000). 

Statins decrease high-sensitivity C-reactive protein levels 

by 30%–40%, independent of their cholesterol lowering 

capacities (Ansell et al 2003). Recent evidence also suggests 

that statins can improve insulin sensitivity. Cerivastatin has 

been shown to improve insulin sensitivity, as determined by 

hyperinsulinemic-euglycemic clamp, in patients with type 2 

diabetes after 3 months of treatment (Paniagua et al 2002). 

A similar study, in which patients with impaired fasting 

glucose levels were treated with atorvastatin for 16 weeks, 

noted a trend towards improved insulin sensitivity in the 

Table 2C Role of various modalities of therapy on endothelial dysfunction 

Reference Treatment Patient Result on endothelial function

 Role of L-arginine
Sahach et al 2005 L-arginine Porcine endothelialaortic Prevent endothelial dysfunction
Kabat et al 2006  cells  
  (experimental) 
De Cobelli et al 2004 L-arginine uremic IDDM pt. induced vasodilatation of renal vls
Regensteiner et al 2003 1-week Tx of oral L-arginine (9 g daily) 10 premenopausaI improved measures of endothelial
  or vitamins E (1800 mg) and C (1000 mg) women with NIDDM
  function
 Role of antioxidants
Qian et al 2006 Injection of IL-2 (5000 and diabetic rats signifi cantly ameliorated the endothelia
 50,000 U/ kg/ d s.c.) for 5 wks  l dysfunction induced by hyperglycemia
Shemyakin et al 2006 A 60 minute intraarterial infusion of the  12 individuals with enhances EDV in subjects with insulin
 ET(A) receptor antagonist BQ123   insulin resistance   resistance
 (10 nmol/min) combined with the ET(B)  with no any history 
 receptor antagonist BQ788 (5 nmol/min of diabetes 
Zoukourian et al 1996 iloprost Diabetic erythrocyte- Alter endothelial dysfunction
  endothelium 
Clemens et al 1999 200 microg octreotide/day for 6/12 27 patients (IDDM). Reduce endothelial dysfunction
Chowienczyk et al 2000 raxofelast (600 mg twice daily) for 1 wk. 10 pt. NIDDM ↓ oxidative stress improves 
   endothelial function
Bilsborough et al 2002 pentoxifylline 400 mg tid for 8 wks 13 pt. NIDDM No effect on endothelial dysfunction
 Role of vitamins
MacKenzie et al 2006 folate (5 mg daily) & vitamin B6  124 children, IDDM +EDVD in children with IDDM.
 (100 mg daily)  
McSorley et al 2005 vitamin E 14 pt. NIDDM no effect
   
Pena et al 2004 oral folic acid (5 mg/d) and  36 subjects IDDM improves endothelial function
Dhein et al 2003 8 wks vitamin E Diabetic rat prevent partially hyperglycemia-induce
   d endothelial dysfunction
Skyrme-Jones et al 2000 Vit E NIDDM +EDVD
Darko et al 2002 vitamin C 1.5 g daily in 3 doses for 3 wks 35 pt. NIDDM No effect
Skyrme-Jones et al 2001 1000 IU vitamin E for 3/12 IDDM No effect VCAM-1 and P-selectin
Heitzer et al 2000 tetrahydrobiopterin (500 microg/min) 23 pt, NIDDM improves endothelial function
Skyrme-Jones et al 2001 vitamin E supplement (1,000 IU for 3/12) IDDM Improves (EVF)
Pinkney et al 1999 vitamin E 500 U/day 3/12 46 pt. IDDM enhance FMD
 Others
Pieper et al 1997 50 mg/kg hydroxyethyl starch conjugated- Diabetic rat prevent diabetes-induced defects in
 deferoxamine for a total of 8 wks.  endothelium-dependent relaxation.
Fuchsjager-Mayrl et al 2002 aerobic exercise training  26 pt. IDDM improve endothelial function in
   different vascular bed
Pieper et al 1996 Pancreatic cell transplantation Diabetic rat +EDVD
Maiorana et al 2001 combined aerobic & resistance exercise  16 pt. NIDDM Improves endothelial vasodilator function
Shai et al 2004 Moderate alcohol intake 726 pt.NIDDM ↓ infl ammation markers and endothelial 
  ( Health Professionals dysfunction 
  Follow-up Study) 

Abbreviations: NIDDM, non insulin dependent diabetes mellitus; IDDM, insulin dependant diabetes mellitus; FMD, fl ow mediated dilatation; EDVD, endothelial depen-
dant vasodilatation;  ACEI, angiotensin converting enzyme inhibitors;  ARBs, angiotensin receptor blockers, FMD, fl ow mediated dilatation; ET(A), endothelin(A), endothelial 
vasodilator function (EVF).
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treatment group, as determined by oral glucose tolerance test, 

but this trend failed to reach signifi cance (Costa et al 2003). 

Statin treatment did not, however, reduce the incidence of 

diabetes in at least one large prospective trial that addressed 

this question (Keech et al 2003).

Insulin therapy is it of help?
(Table 2B)
Low and high physiological hyperinsulinemia abolished 

endothelium-dependent vasodilation, whereas endothelium-

independent vasodilation was unaffected. Vitamin C fully 

restored insulin-impaired endothelial function without affect-

ing endothelium-independent vasodilation (Arcaro 2002). 

Other investigators concluded that insulin therapy partly 

restores insulin-stimulated endothelial function in patients 

with type 2 diabetes and ischemic heart disease (Rask et al 

2001). Another studies investigate long-term effects of 

insulin glargine on vascular function in patients with type 2 

diabetes, the result supports the idea that long-term insulin 

therapy has benefi cial rather than harmful effects on vascular 

function in type 2 diabetes (Paolisso and Giugliano 1996; 

Vehkavaara et al 2001).

Other modalities of therapy
(Table 2C)
Few sporadic studies has raised the Role of vitamins, the 

benefi t of L-arginine , antioxidant , and hydroxyethyl starch 

conjugated-deferoxamine aerobic exercise training and Pan-

creatic cell transplantation, the benefi t which need to clarifi ed 

in more extensive studies .

Where we are from endothelial 
dysfunction in diabetes mellitus?
We think that we still far from the core pathological process 

in endothelial dysfunction, extensive research together with 

randomized trial are needed in this entity especially in molec-

ular biology and genetic engineering for more exploration of 

hidden aspect of iceberg. The future will witness increasing 

interest in fi nding reliable methods of testing endothelial 

function. As the measures of endothelial dysfunction become 

clinically applicable, this may translate into improved meth-

ods of risk assessment that help in predicting, preventing and 

treating cardiovascular disease. Infl ammatory markers, such 

as CRP, will probably fi nd their way into risk assessment; 

several therapeutic strategies aimed at improving endothelial 

function in diabetes mellitus states are under investigation. 

The future may holds great promise.
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