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ABSTRACT
The next generation of advanced mechatronic systems is expected
to behave more intelligently than today’s systems. These systems
are expected to enhance their functionality and improve their per-
formance by building communities of autonomous agents which
exploit local and global networking. Such mechatronic systems
will therefore include complex coordination protocols which re-
quire execution in real-time and reconfiguration of the locally em-
ployed control algorithms at runtime to adjust their behavior to the
changing system goals leading to self-adaptation. In this paper we
will present an extension of the MECHATRONIC UML approach
which will enable us to model collaborations between components
which include structural adaptation and multi-ports. Besides the
modeling of complex collaborations and the rules to join and leave
these collaborations via ports and multi-ports, we propose to em-
ploy hierarchical state machines with a dynamic number of subma-
chines to model the behavior of the multi-ports. For the collabora-
tions this involves the related protocols, while for the components
we have to refine this behavior to ensure a proper synchronization
with other parts of the component behavior.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
model checking; D.2.11 [Software Engineering]: Software Archi-
tectures—domain-specific architectures

General Terms
Design, Verification
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1. INTRODUCTION
It is expected that the next generation of advanced mechatronic
systems will behave more intelligent than today’s systems. These
systems will improve their behavior with respect to functionality
and performance by acting as communities of autonomous agents
which use their networking to optimize and adjust their behav-
ior. Complex coordination protocols which require execution in
real-time and reconfiguration of the locally employed control algo-
rithms at runtime to adjust their behavior to the changing system
goals characterize these mechatronic systems.

We addressed in former works many of the the resulting chal-
lenges [9, 8, 11, 15, 6, 12, 7] with the model-driven MECHA-
TRONIC UML development approach [9, 8] which combines do-
main specific modeling and refinement techniques with verifica-
tion based on compositional model checking. The approach sug-
gests modeling the software by using a refined UML 2.0 compo-
nent model including the detailed definition of ports, connectors,
and coordination patterns. The MECHATRONIC UML approach
further refines the component model to define a proper integration
between discrete and continuous control such that the reconfigura-
tion of hierarchical component systems can be described in a mod-
ular way. However, the provided support for coordination patterns
requires that the patterns have a fixed number of roles and cannot
themselves change their structure.

As oftentimes the collaboration between a flexible number of
participants is required, we extend in this paper our MECHA-
TRONIC UML approach such that we can model collaborations
between components which include structural adaptation in form
of new or removed ports as well as multi-ports. The modeling of
complex collaborations will be possible by means of rules which
describe how to join and leave these collaborations via ports or
multi-ports: hierarchical state machines with a dynamic number
of submachines are further introduced to model the behavior of
the multi-ports. For the collaborations they are employed to de-
scribe the multi-port protocols. For the components we use them
to refine the role behavior to model a proper synchronization with
other parts of the component behavior. To enable us to still use the
compositional reasoning framework of the MECHATRONIC UML
approach, we discuss also how these modeling techniques can be
covered by related verification tasks that are able to cope with their
more dynamic nature.
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Application Example. A concrete example for a complex mecha-
tronic product where the outlined need for collaborations with flex-
ible number of participants is the RailCab R & D project1. The
vision of the RailCab project is a mechatronic rail system where
autonomous shuttles apply the linear drive technology, used in the
Transrapid, but travel on the existing passive track system of the
standard railway.

The particular problem considered in this paper (previously pre-
sented in [15]) is to coordinate the autonomously operating shuttles
in such a way that they form convoys in order to reduce the energy
consumption caused by air resistance and achieve a higher system
throughput. Such convoys are established on-demand and require
small distances between the shuttles. Since the decision of building
and breaking a convoy during run-time, the main characteristics of
such a system is self-adaptivity.

The required small traveling distances causes the real-time co-
ordination between the speed control units of the shuttles to be a
safety-critical aspect and results in a number of constraints, which
have to be addressed when building the control software of the shut-
tles. Shuttles communicate with each other and their environment.
Since the communication is wireless and unreliable, message loss
and message delay is possible and in case of a network failure it
is necessary to enforce a controlled emergency break. Also other
specific emergency cases, e.g. if the linear drive module fails, have
to be addressed.

In Figure 1 a sketch of the convoy coordination via ports is de-
picted. In our example, each shuttle is parametrized with a specific
driving/break characteristic pi.

.........................

coordinator :Coordinator

<<Component>>

<<Component>>
Shuttle

shuttle
2

pi
shuttle

1

pi
shuttle

n

pi

Figure 1: Sketch of convoy coordination via ports - each shuttle
is parametrized with a specific driving/break characteristic pi

Tour. The structure of the paper is as follows: We first review
the original MECHATRONIC UML approach in Section 2. Then,
we present the concepts for modeling collaborations with a flexible
number of participants and multi-ports in Section 3. Afterwards
the treatment of multi-ports with in the components are covered in
Section 4. Finally, we will discuss relevant related work in Section
5 and present our conclusions and an outlook on future work.

2. FOUNDATIONS
The MECHATRONIC UML approach addresses self-optimizing
mechatronic systems which exploit the today available advanced
processing capabilities and local networking to optimize the be-
havior of its autonomous units, local groups, as well as the overall
systems. Giese and Henkler discussed the general requirements for
the model driven development of software-intensive (mechatronic)
systems in [13]. Besides a modeling approach supporting appro-
priate abstraction, the integration of other disciplines, in our case

1http://www-nbp.upb.de/en/index.html
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Figure 2: UML structure of the OCM architecture

the control engineering, is required. Further, an appropriate sup-
port for run-time adaption is required. In the next two sections,
we will discuss the existing support of MECHATRONIC UML for
software-intensive mechatronic systems. In the last section, we will
conclude with the limitations of this approach.

2.1 Hierarchal Structuring
The overwhelming number of functions realized by a single au-
tonomous unit makes appropriate structuring techniques imper-
ative when designing the corresponding information-processing
unit. Therefore, the MECHATRONIC UML approach employs the
Operator-Controller-Module (OCM) [6] architecture, which is pre-
sented in Figure 2.

It decomposes the hierarchical architecture of a self-optimizing
mechatronic unit as follows: (1) On the lowest level of the OCM,
there is the controller (C) featuring an arbitrary number of alter-
native control strategies. Within the OCM’s innermost loop, the
currently active control strategy processes measurements and pro-
duces control signals. As it directly affects the plant, it is called mo-
tor loop. The software processing is necessarily quasi-continuous,
including smooth switching between the alternative control strate-
gies. (2) The controller is complemented by the reflective operator
(RO), in which monitoring and controlling routines are executed.
The reflective operator operates in a predominantly event-oriented
manner. It does not access the actuators of the system directly, but
may modify the controller and initiate the switch between control
strategies. It furthermore serves as the connecting element to the
cognitive level of the OCM. (3) The topmost level of the OCM is
occupied by the cognitive operator (CO). On this level, the system
can gather information concerning itself and its environment and
employ it for the improvement of its own behavior.

To realize this architecture the controller can be modeled using
CAE tools and block diagrams. The reflective operator and cogni-
tive operator are addressed with MECHATRONIC UML offering a
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real-time variants of state machines to describe the reflective oper-
ator and all UML concepts for non real-time behavior of the cogni-
tive operator.

To support the modular reconfiguration of the internal structures
of the controllers, MECHATRONIC UML provides the concept of
hybrid UML components and a related hybrid Statechart extension
for the UML [6]. The hybrid components support the design of
self-optimizing mechatronic systems by allowing specification of
the necessary flexible reconfiguration of the system as well as of its
hybrid subsystems in a modular manner.

2.2 Coordination
To also address the coordination between the different autonomous
mechatronic units MECHATRONIC UML support coordination pat-
terns [15]. These patterns permit dividing the modeling into mod-
eling the interaction between components of the system by means
of the reusable coordination patterns and modeling the detailed be-
havior of the components by relating to the behavior of the applied
patterns and their roles to corresponding component ports.

shuttle coordinator

ConvoyCoordination

shuttle.convoy implies coordinator.convoy

Figure 3: Simple coordination pattern

A pattern, as depicted in Figure 3, describes communication and
therefore consists of multiple communication partners, called roles.
Roles are linked by a connector. The communication behavior of
a role is specified by a real-time statechart and is restricted by an
invariant. The behavior of the connector is described by another
real-time statechart that is used to model besides the transport of
the messages the possible delay and the reliability of the channel,
which are of crucial importance for real-time systems. The overall
behavior of a pattern has to guarantee a defined pattern property,
whereas the behavior of a role can be restricted by role invariants.

Within the example, coordination between two shuttles is mod-
eled as a pattern. This ConvoyCoordiantion pattern consists of two
roles, the shuttle role and the coordinator role and one connector
that models the link between the two shuttles. The pattern speci-
fies the behavior needed to coordinate two successive shuttles. The
main requirement the pattern is addressing is ensuring that no col-
lision can happen (shuttle.convoy implies coordinator.convoy).

<<Component>>

shuttle2 :Shuttle

shuttle <<Component>>

shuttle1 :Shuttle

coordinator

Figure 4: Application of the simple coordination pattern

Figure 4 shows the application of the simple coordination pat-
tern. In this example the rear shuttle shuttle2 realizes the shuttle
role and the front shuttle shuttle1 behaves as a coordinator.

2.3 Limitations
While the presented approach provide the fundamental ingredients
to model and also compositionally verify the correct and safe op-
eration of self-optimizing mechatronic systems. However, the cur-
rent capabilities include some severe restrictions. We can (1) only
have a fixed number of roles in a coordination pattern while in sev-
eral cases we have the requirement to organize the coordination

between a variable number of autonomous units with given upper
bound and (2) a component can only provide a fixed number of
ports while support for models with multi-ports would be desir-
able for cases where on component is responsible for the coordi-
nation of a variable number of other components, as discussed in
the introduction. In the following, we will discuss the extension
of our MECHATRONIC UML approach for supporting this kind of
requirements.

3. MODELING COLLABORATIONS
To overcome the limitations of the component and pattern based
approach sketched in the last section, we introduce in this section
Dynamic collaboration which support more complex communica-
tion structures described by multiple pattern instances and related
reconfiguration rules. By this extension we can model and verify
the envisioned convoy coordination.

Like the simple coordination patterns the complex patterns con-
sists of roles and connectors. In Figure 5 the complex pattern for
the ConvoyCoordination is depicted. One optional characteristic of
such complex patterns are multi-roles. Multi-roles are depicted by
overlapping ordinary ports associated with an cardinality and are a
short hand for a set of ordinary roles belonging to the same compo-
nent. In our ongoing example coordination is a complex port with
cardinality n. The counterpart, the shuttle role is associated with
cardinality 1. For this reason every "‘subrole"’ of the multi-role is
connected to one unique shuttle role similar to a one to many asso-
ciation in a class diagram. To cope with the new complex behavior
we have to extend the power of the pattern constraints/invariants
such that collaboration constraints/invariants can define properties
for a dynamically changing number of roles (cf. Figure 1).

ConvoyCoordination

n 1

{ ordered }

Figure 5: Collaboration with dynamic structural adaptation

As mentioned above the complex role is associated with the at-
tribute {ordered}. From this follows, that all subroles are managed
in a predefined order.

Figure 6 shows the Shuttle component. The component embeds
the two components Coordinator and Velocity. The behavior of the
component is defined as follows. The Shuttle component must con-
form to the ConvoyCoordination pattern and has to operate as both a
coordinator and a shuttle as it may be followed by another shuttle as
well as itself can follow another shuttle. Therefor, the component
has a multi-port which is connected by an assembly with the inner
component Coordinator and with the Velocity component.

In Figure 7 two shuttle instances which apply the ConvoyCoordi-
nation Collaboration with dynamic structural adaptation are shown.

Our idea is to describe all valid structural reconfiguration steps
(e. g. if a shuttle join or leave a convoy) for a Dynamic collab-
oration by structural rules. First we give a brief overview about
the underlying Story Pattern formalism. Thereafter, by means of
the introduced convoy building example we explain all valid re-
configuration rules for the ConvoyCoordination Collaboration with
dynamic structural adaptation.
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<< Component >>
Shuttle

<< Component >>
c: Coordinator

<< Component >>
vc1: VelocityControl

Figure 6: The type Shuttle

<<Component>>

shuttle2 :Shuttle

shuttle coordinator <<Component>>

shuttle1 :Shuttle

Figure 7: Instance view

Story Patterns are an extended type of UML object diagram
(cf. [21]) that allow expressing properties and transformations, es-
pecially structural changes. A Story Pattern consists of two ob-
ject diagrams representing a pre- and a postcondition, the left hand
side (LHS) and the right hand side (RHS). At runtime, the LHS is
matched against the instance graph, and the variables of the pat-
tern are bound to specific nodes and edges. If a match is found,
it is transformed in order to match the RHS by adding, modifying
and deleting the appropriate nodes and edges using the Single Push
Out strategy (SPO). When specifying Story Patterns, the RHS is in-
tegrated into the LHS in order to obtain a compact representation.
This is achieved by using the stereotypes ++ for marking exclusive
elements of the RHS that need to be created and −− for denoting
elements of the LHS which should be deleted as a side-effect of the
rule.

In the following we explain the rules which describe all redon-
figuration steps that are performed by the Dynamic collaboration.
The rules are splitted into inital rules, extension rules, and reduc-
tion rules.

3.1 Structure

Initial Rule.
First of all we have to decribe the initial rule, which creates our

shuttle instances. In Figure 8 this rules is depicted.

: Shuttle

: VelocityControl
:P

++

:P

++++

++

Figure 8: Initial rule

Extension Rules.
In case of the Dynamic collaboration, we have to distinguish be-

tween two extension rules. The first one (cf. Figure 9) describes the
building of a convoy with length 2. Our assumption is that the front
shuttle will always be the coordinator of the convoy. Therefore a
instance of the Coordinator component is created as a subcompo-
nent of the front shuttle. Also a connection between both shuttles
is created. The stereotype �last� indicates that the depicted in-
stance shuttle2 is the last shuttle connected to the convoy. The re-

sulting instance situation which results from the application of the
rule is depicted in Figure 10.

: Shuttle

: Coordinator

: VelocityControl

:P

:P

: Shuttle

: VelocityControl :P :P:P ++ :P

:P:P
<< last ++ >>  

++

++

++

++

Figure 9: Extension rule 1

<< Component >>
shuttle1: Shuttle

<< Component >>
c: Coordinator

<< Component >>
vc1: VelocityControl

<< Component >>
shuttle2: Shuttle

<< Component >>
vc2: VelocityControl

Figure 10: Instance view

In case of a shuttle aims to join an existing shuttle convoy we
have to introduce a second extension rule (cf. Figure 11). This rules
ensures that a new shuttle will join the convoy at the last position.
By the �last� construct, this position can be identified unique.
Besides creating a new connection between the last two shuttle the
�last� construct has also to be deleted and linked to the new con-
nection. The instance situation after applying the extension rule is
depicted in Figure 12.

: Shuttle

: VelocityControl:P: Shuttle

: VelocityControl :P

:P

:P

++ 

:P

: Shuttle

: VelocityControl :P :P

:P

<<
 la

st
 --

>>

<<
 la

st
 +

+ 
>>

Figure 11: Extension rule 2

<< Component >>
shuttle1: Shuttle

<< Component >>
vc1: VelcityControl 

<< Component >>
shuttle2: Shuttle

<< Component >>
vc2: VelocityControl

<< Component >>
shuttle3: Shuttle

<< Component >>
vc3: VelocityControl

Figure 12: Instance view

Reduction Rules.
In the last paragraph we have introduced the rules which allows

us to specify the buildup of a convoy. Now, for completeness we
introduce the reduction rules which describe the breakup of a con-
voy or at least the leaving of one shuttle of a convoy. In order to do
not change the convoy order when a reduction rule is applied, sim-
ilar to the creation rules we use the matching of the �last� con-
struct to figure out which shuttle can be removed from the convoy
(cf. Figure 13). If the convoy only exists of two shuttle anymore
we have to breakup the convoy totaly. This causes the deactivation
of the coordinator in the leader shuttle. Therefore besides deleting
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: Shuttle

: VelocityControl:P: Shuttle

: VelocityControl :P

:P

:P

--

:P

: Shuttle

: VelocityControl :P :P

:P

<< last -- >> 

<<
 la

st
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+ 
>>

 

Figure 13: Last shuttle leaves a convoy

: Shuttle

: Coordinator

: VelocityControl

:P

:P

: Shuttle

: VelocityControl :P :P:P -- :P

:P:P
<< last -- >>  

--

--
--

Figure 14: Reduction rule 2: Convoy of length 2 is splitted

the connection between both shuttle the subcomponent Coordina-
tor is deleted as well (cf. Figure 14). Last, we have to explain the
rule if the leader shuttle leaves the convoy. For that reason we have
to "‘pass"’ the Coordinator component to the second shuttle, delete
the connection and create a subcomponent Coordinator in the sec-
ond (now leader) shuttle (cf. Figure 15).

: Shuttle

: Coordinator

: VelocityControl

:P

:P

: Shuttle

:P-- :P

:P

: Coordinator

: VelocityControl

:P

:P

:P

:P

:P

++

++

++

++ --
--

--

--

<< last -- >>

Figure 15: Reduction rule 3: Front shuttle leaves a convoy

3.2 Behavior of Roles
In the last section we have introduced all graph-based rules

which describe the buildup and breakup of a shuttle convoy. These
rules only refer to the structural changes. Now, we address the be-
havior description of the involved roles of the Dynamic Adaptation.

The new parametrized role coordinator of the Dynamic Adapta-
tion is depicted in Figure 16. The extions w. r. t. to the former role
statechart are the synchronization channels nextk and nextFailedk.
By this channels each separate role synchronizes with the adaption
role statechart (cf. Figure 17). In more detail the real-time state-

Idle SentAcknowledge

WaitForTrigger NextFailed

shuttle.acknowledge(s_act,v_act)

/ shuttle.update(profile,s_ref,v_ref)

shuttle.publishStatorFailure

StatorFailure Stop

? nextFailedk

? nextFailedk

! nextk+1

? nextk

Figure 16: The behavior of a coordination role rolek

Idle! next1 ! nextn+1

n:=1 n==k?n=1:n++

! nextFailedn+1

Figure 17: The adaption role statechart for all coordinator roles

chart of the shuttle role consists of three states. Initially the role is
in state Normal. Every 150 time units the role has to received an
update message from the coordinator role. This message includes
the current profile, reference position and reference velocity. The
role confirms the message with an acknowledge message including
the actual position and actual velocity. In case of no update mes-
sage is received (e.g. network failure) the role switches after 150
time units to the network failure state. The state StatorFailure will
be reached if another shuttles propagates an StatorFailure.

{timer}

Normal

timer<=150

150<=timer<=150 NetworkFailure

assert: controlledBrake

StatorFailure

assert: mechanicalBrake

0<=timer<150

{timer}

/ coordinator.statorFailure

coordinator.publishStatorFailure

coordinator.update(profile[i],s_ref,v_ref)
/ coordinator.acknowledge(s_act,v_act), currentProfile=profile[i]

Figure 18: The behavior of a shuttle role shuttle

3.3 Verification
If we want to address the verification problem for the outlined

system, we have to face two challenges. At first, we have to in-
tegrate the continuous control behavior with the event-based hard
real-time coordination which is an inherent characteristics of the
considered domain and problem class. In addition, in the con-
sidered class of systems the coordination takes places between a
variable number of participants, i.e., a convoy consist of a variable
number of shuttles which can be modeled with complex patterns.
We can use similar techniques as discussed in [15] as long as the
upper bound of the number of involved roles is small enough. We
therefore have to first expand the potentially infinite state model of
the collaboration into one where the structural adaptation steps are
encoded in finite state timed automata using the given upper bounds
on the number of roles. We can then verify that the collaboration
constraints/invariants hold for the collaboration behavior.

4. COMPONENT SPECIFICATION
Components are designed by the collaboration patterns as pre-

sented in the previous section. Components apply this abstract col-
laboration patterns by refining the behavior of the applied role. The
refinement has to respect the role automaton by not adding possi-
ble behavior or blocking guaranteed behavior. Additionally, the
refinement has to respect the guaranteed behavior of the roles in
form of its invariants (cf. [15]). An additional internal statechart
for synchronization is used to describe the required coordination
(cf. Figure 19) between the applied roles. As we introduce an addi-
tional coordination layer for the role behavior to enable multi ports,
the synchronization is realized with the internal statechart and this
coordination layer or, if there is just only one port, with the role be-
havior directly. Hence, the coordination layer capsules the access
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to the ports to focus on the relevant parts required for the synchro-
nization. In the following, we do not consider explicitly the struc-
tural effects of creation and reduction rules. The velocity controller
component is omitted (implicitly realized by every shuttle) and the
coordinator component is realized by a coordinator sub-statechart
(cf. Figure 20).

synchronization

...

m

1
coordinator

shuttle

<<Component>>

Shuttle

co
or

di
na

to
r.a

da
pt

io
n coordinator.role1

coordinator.rolen

shuttle.role

Figure 19: Shuttle with adaptive behavior

In our example, the shuttle component must conform to the Con-
voyCoordination pattern and has to operate as a coordinator or as
a shuttle. The non-deterministic choice of proposing, accepting,
and coordinating a convoy is specified by the additional synchro-
nization statechart of the role refinements (Figure 20). The port
statecharts which refine the pattern roles are shown in Figure 21
and Figure 22.

4.1 Synchronization
The shuttle synchronization statechart initiates the building of a

coordinated convoy by sending start to the refined shuttle role and
a createPort to the refined coordination role when the guards in-
dicate that it is useful to run in convoy mode and the decision in
which role the shuttle should be is evaluated. The initial event of
building a convoy or the decision in which role a shuttle should be
is made by a cognitve operator, e.g by a track section control which
knows all shuttles and their order (cf. events convoyUseful, coordi-
nator, and shuttle). The coordinated convoy is broken or restored,
when a failure is manifested. The roles identify this situation, when
a message is not received in time. Then, the synchronization state-
chart triggers the acceleration control with the specific profile of the
shuttle. The recovery of the coordinated convoy is not considered
in more detail.

4.2 Refine Multi-Roles
The refinement of the coordination role is done only by the adap-

tion statechart. The coordination role is initialized by the createPort
send by the synchronization statechart. CreatePort(shuttle) instanti-
ates a new coordination role. When the adaption statechart is in idle
additionally a port could be added, initiated by the synchronization
statechart, too. As mentioned before, if the update routine of a co-
ordination role fails, the synchronization statechart is informed to
restore the convoy. The recovery process is considered any more.
In principle, the shuttles have to identify if a convoy is still possi-
ble with less shuttles, the synchronization statechart has to delete
the defect shuttles/ports to the shuttles, and the ordering have to be
restored.

The refinement of the shuttle role is similar to that of the co-
ordination role. The initialization of this role is triggered by the
synchronization statechart (by sending start). If a failure is man-
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Figure 20: Shuttle synchronization statechart

Wait

IdleFailure

!restoreConvoy

AddPort

/createPort(shuttle)

k+
+
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t

?createPort
/createPort(shuttle)

! nextFailedn+1 ! nextn+1

n==k?n=1:n++

! next1

k:=1

k:=1

Figure 21: Refined adaption statechart for coordination roles

Wait

{timer}

Normal

timer<=150

150<=timer<=150 NetworkFailure

assert: controlledBrake

StatorFailure

assert: mechanicalBrake

0<=timer<150

{timer}

/ coordinator.statorFailure

coordinator.publishStatorFailure

coordinator.update(profile[i],s_ref,v_ref)
/ coordinator.acknowledge(s_act,v_act), currentProfile=profile[i]

?start

! restoreConvoy

! restoreConvoy

?start

{timer}

Figure 22: Refined shuttle role
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ifested the synchronization is informed to restore the convoy. In
case of shuttle role the decision to take is whether the shuttle could
be in a (smaller) convoy or no convoy is possible.

In the shown example, the synchronization statechart considers
all coordination roles in the same manner. Hence, the adaption stat-
echart capsules all coordination roles. If we consider other exam-
ples, like an online real-time auction, the coordination role to each
shuttle would be the same, but each shuttle is considered different.
Hence, the interface to the coordination is getting more complex
and further, creating a port to a new shuttle will add additional be-
havior to the synchronization statechart. This could be realized by
similar techniques as discussed in the previous section by adding
additional components representing the required specific behavior
for each created port.

4.3 Verification
Also in case of the component specification and multi-ports we

can use the techniques presented in [15] for verification exploiting
that the upper bound of the number of involved multi-ports is small
enough. Like in the case of the collaborations we have to first ex-
pand the model into one where the structural adaptation steps are
encoded in finite state timed automata and can then verify that the
role invariants hold for the component behavior and that it also re-
spects each role automaton. To ensure that the port refines each of
the role protocols associated to its ports, we propose to use syntac-
tical refinement rules instead of an explicit verification step.

5. RELATED WORK
The de facto industry standard for modeling of mechatronic sys-

tems with hybrid behavior is MATLAB/Simulink and Stateflow2.
Formal verification of MATLAB/Simulink and Stateflow models of
moderate size can be accomplished by automatically transforming
them to hybrid automata (cf. [1]). However the verification does
not scale to real world examples. In the following we first review
some approaches covering the problem of verifying UML models.
In the remainder we discuss approaches for verification of hybrid
systems.

Beyond UML and its profiles, a number of proprietary ap-
proaches for the modeling and verification of technical systems
with UML exist.

Knapp et al. present in [20] a tool called HUGO/RT. Within this
tool, models are described by UML state machines. The properties
to be checked are given as scenarios written as sequence diagrams
extended by time annotations. There is no support for hybrid pat-
tern and pattern decomposition.

The aim of the IST OMEGA project [16] is to ensure the cor-
rectness of embedded systems. In the approach, the UML has been
extended by additional time constructs and a formally defined se-
mantics is intended. However, unlike our approach, there is no
support for hybrid behavior and compositional verification. Ver-
ification is only supported for the semi-automatic verification via
theorem proving.

Existing model checkers for hybrid behavior (cf. survey [14]) are
rather limited with respect to the supported hybrid system classes.
While the model checking problem is only decidable for the rather
restricted class of rectangular automata which at most support con-
stant first derivations, for more expressive continuous models up
to now only approximation algorithms exists. Even these most ex-
pressive models require that all parameters of the model are set at
design time while very often situation specific parameters for the
requested continuous behavior (e.g., the trajectory of the shuttles)

2http://www.mathworks.com

are used in practice when highly adaptive systems are considered
(parameter adaptation).

A hierarchic automata model for the specification of behavior is
provided by the modeling language CHARON [3][19]. Addition-
ally, it provides a hierarchical architectural model, based on ROOM
actor diagrams. [4] defines refinement for hybrid CHARON mod-
els. CHARON’s focus is the formal verification of hybrid systems
based using discrete abstraction based on predicate abstraction.

Within the Fresco project, the high-level modeling language
Masaccio [17] has been developed. It builds complex components
by the parallel and serial composition of atomic discrete and atomic
continuous components. The basis of Masaccio is the formal se-
mantics for the domain of hybrid dynamical systems. The focus of
Masaccio is to provide a formalized modeling language for verifi-
cation.

Automatic verification of the real-time behavior including the
reconfiguration is supported by CHARON, Masaccio and MECHA-
TRONIC UML. CHARON and Masaccio even supports model
checking of hybrid models. MECHATRONIC UML and Masac-
cio support compositional and modular model checking of real-
time properties employing refinement3 which is also possible for
CHARON and HyCharts in principle as they also support a notion
of refinement. CHARON additionally supports predicate abstrac-
tion as a means to improve the scalability of the verification. per!

There are some approaches for modeling the structural aspects
of adaptive systems [26, 24, 18, 25, 23] or the behavioral aspects
[27, 2, 22, 10] but non of them consider both aspects [5].

6. CONCLUSION AND FUTURE WORK
In this paper we presented an extension of the model-driven
MECHATRONIC UML approach for self-optimizing mechatronic
systems. A more general notion of collaborations with a dynam-
ically changing number of participants (roles), the extension of
components towards a dynamically changing number of ports by
means of multi-ports, and first idea for the proper verification of
safety properties for the resulting models have been presented. This
includes an extension of the employed modeling techniques for the
different modeling artifacts as well as an extension of the employed
architectural patterns. We have demonstrated that the proposed ex-
tensions enable the modeling of more complex self-organizing be-
havior in form of collaborations which extent the capabilities of the
former invented coordination patterns. Also the hierarchical com-
ponent concepts for the safe self-optimization at several levels of
the hierarchy has been extended and the top-level component can
now support changes in the number of ports in the case of multi-
ports.

In future work it is planned to consider the sketched verification
problem in a more appropriate manner such that also collaborations
with a higher number of roles can be tackled. Further, we plan
to generalize the approach and try to apply the concepts to other
domains, e. g. the service oriented architecture domain.
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