
Multiple Crossdocks with Inventory and Time

Windows

Ping Chen1, Yunsong Guo2, Andrew Lim3 and Brian Rodrigues4

1Department of Computer Science

University of Maryland, College Park, MD 20742

2Department of Computer Science, National University of Singapore,

3 Science Drive 2, Singapore 117543

3Department of IEEM, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong

4School of Business, Singapore Management University,

469 Bukit Timah Road, Singapore 259756

May 8, 2004

Abstract

Crossdocking studies have mostly been concerned with the physical layout of a

crossdock or on a single crossdock. In this work, we study a network of crossdocks

taking into consideration delivery and pickup time windows, warehouse capacities

and inventory handling costs. Because of the complexity of the problem, local

search techniques are developed and used with simulated annealing and tabu search

heuristics. Extensive experiments were conducted and results show the heuristics

outperform CPLEX, providing solutions in realistic timescales.

Keywords: crossdocking, JIT, heuristics

1

1 INTRODUCTION

The "just-in-time" (JIT) inventory management (or kanban) principle requires that there

is just enough inventory that arrives to replace what has been used. As a result, warehous-

ing large inventories has become less common, and can be, in some situations, detrimental

to business. The implementation of crossdock operations repositions the focus from ware-

housing inventory to one of managing inventory through-flow in transit from suppliers to

customers. In this process, the warehouses, as a crossdocks, is transformed from inventory

repositories to points of delivery, consolidation and pickup. Advantages of crossdocking

can accrue from the reduction of warehousing costs, inventory holding costs, service cycle

times and transportation costs.

The use of "crossdocking" has become synonymous with rapid consolidation and

processing. Napolitano [13] proposed a scheme which describes the various types of cross-

docking operations. These include, manufacturing, distributor, transportation, retail and

opportunistic crossdocking. In these, a common feature is consolidation and short cycle

times, of usually less than a day [3].

Napolitano [13] also describes crossdocking as the "JIT in the distribution arena".

In the manufacturing area, crossdocking constitutes the receiving and consolidating of

inbound supplies where a manufacturer can use a warehouse to receive supplies of parts for

demands ascertained from an MRP. In retail crossdocking, retailers receive products from

multiple vendors who use distributors with multiple warehouses. In general, crossdocks

are complex, requiring a high degree of coordination between suppliers, customers and

distributors to create shipments based on anticipated supplies and demands [15]. In all

crossdocking situations, the timing of delivery and pickup is crucial to effective operations.

A significant amount of work on crossdocking has focused on the crossdock itself. In [1],

Bartholdi and Gue determined the best shape for a crossdock analyzing the assignment of

receiving and shipping doors. The staging of products in a crossdock to avoid floor conges-

tion and increase throughput has also been studied together with the effects of different

combinations of number of workers in receiving and shipping on throughput [2, 3, 11].

In [4], a simulated annealing procedure was used to construct effective layout to reduce

2

labor costs. Other studies have treated crossdocks as a network of distribution and/or

transshipment points. Donaldson et al. [6] studies a schedule-driven mail transportation

in U.S. and Ratliff et al. [14] studied a load-driven network, in which deliveries take place

when there are sufficient products waiting for transportation. Donaldson et al. [6] studied

a network of crossdocks for the US Postal Service where 148 Area Distribution Centers

serve as crossdocks, each receiving, sorting, packing and dispatching mail according to op-

erating schedules. Mail not processed on time must be shipped by air, incurring additional

costs and "critical-entry" times, when mail must arrive at the destination center, must

be coordinated with transportation schedules avoid overshooting specified cutoff times.

Each distribution center serves as a origin as well as destination node where schedules

were driven by mail delivery standards. Ratliff et al. [14] studied the North American

automobile delivery systems to determine the ideal number and location of crossdocks in

a network and how shipments flowed between them. In their study, a minimum inven-

tory strategy was key in attempting to minimize the number of vehicles at mixing center

(crossdocks).

Crossdocking can be complex and difficult to manage, involving a large number of

transshipment points and vehicles. The well-known success of Wal Mart [16] in cross-

docking requires coordinating 2000 dedicated trucks over a large network of warehouses,

crossdocks and retail points. Maytag, a large distributor of household appliances main-

tains 41 crossdock facilities where "no inventory is held" [7].

One benefit arising from crossdocking is reduced handling costs at a company’s facil-

ity because it minimizes "the number of touches" [8]. In addition, when timing is well

coordinated, a product can be made available in shorter time windows, thus reducing

cycle times. Although central to crossdocking, studies found in the literature have not

taken handling costs and delivery and time considerations into account. Further, work

has mostly focused a single crossdock. In this work, we extend the work of Donaldson et

al. [6] and Ratcliff et al. [14], in studying crossdocking networks. In particular, we study

crossdocking scheduling where time windows for deliveries and pickups are considered.

Also, we consider crossdock handling costs which are use to penalize delays. Although

we study multiple transshipment points occurs, the model proposed can be used for the

3

single a transshipment point, where time window constraints inventory handing costs and

warehouse capacity are relevant, as, for example, for manufacturing crossdocking where

the JIT-driven manufacturer uses a single warehouse to receive and deliver subassemblies

and parts.

2 The MULTIPLE CROSSDOCK PROBLEM

2.1 Background

The crossdocking problem is closely related to the minimum-cost multicommodity flow

problem (MCMFP) and the transshipment problem. It is therefore worthwhile to distin-

guish between the problems here. Although both problems involve finding minimum cost

multicommodity flow, the crossdocking problem differs from the MCMFP as there is no

explicit source and sink pair for each commodity and the total supply and demand of

each commodity need not be equal. Another difference is that the quantity specified by a

single delivery or pickup is cannot be split during the distribution process. Further, the

relationship between deliveries and pickups is many-to-many and for a matched pair of

delivery and pickup, there is in many cases only one crossdock which works as a transship-

ment point between them. In the MCMFP, any node other than source and destination

nodes can be used as transshipment points.

The transshipment problem consists of a number of supply, transshipment and demand

nodes. Different capacity limits and costs are assigned to arcs between nodes. As in the

MCMFP, the objective is to find a minimum cost flow that meets all demands and the

capacity constraints. The problem deals with a single commodity but allows multiple

sources and sinks, which distinguishes it from the MCMFP. Further, properties such as

non-splitable deliveries and pickups, time window considerations and storage allowed on

crossdocks distinguish the crossdocking problem from the transshipment problem.

4

2.2 Problem Description

As described, the objective in crossdocking problem is to find a minimum cost distribu-

tion plan involving crossdocks based on anticipated supplies and demands. Supplies and

demands are taken as deliveries and pickups within time windows. For delivery, we use

(s, p, amount, [st, et]) to mean that supplier s can supply quantity amount of product p

in the time window [st,et]. For pickup, c replaces s, where c is the customer who picks up

the product. Each crossdock i has a capacity (CAPi), which is the maximum inventory

it can hold at any time and an inventory handling cost (COSTi), measured on a per unit

product and per unit time basis. As crosdocks can vary in their handling capabilities, the

latter cost is dependent on the particular crossdock. This cost is key to the model we

propose since it penalizes delays at crossdocks so that shipments can be, as far as possible,

transferred from incoming to outgoing trailers with little or no storage in between. In

most cases, this cost is small compared to transportation costs. We take C to be a set of

crossdocks, D to denote a set of deliveries and P to be a set of pickups, and assume that:

(1) all demands must be met, (2) the time window constraint of each fulfilled delivery and

each pickup must is not violated, (3) the inventory level of each crossdock cannot exceed

its capacity at all times, and (4) flow conservation holds for all products at all times.

The objective is to minimize total cost comprising transportation costs and inventory

handling costs. The following provides a simple example of the problem: delivery (D1,...,

D4), pickup (P1,...,P4) and information of the available crossdocks (1,2) is given below.

5

Time

Task Supplier Customer Product Amount Start End

D1 1 - 1 87 8 13

D2 2 - 3 91 4 11

D3 1 - 2 117 8 17

D4 2 - 3 100 8 10

P1 - 1 3 54 11 17

P2 - 2 1 21 11 19

P3 - 1 1 47 12 16

P4 - 3 3 28 4 8

Crossdock Capacity Inventory Handling Cost

1 95 12

2 144 15

The table below provides a feasible distribution plan:

Task Crossdock Time

D1 1 13

D2 1 8

D3 2 14

D4 nil -

P1 1 11

P2 1 13

P3 1 13

P4 1 8

P5 2 14

P6 2 14

Here, the only use of information on suppliers and customers is to provide distances

to crossdocks which are a proxy to transportation costs. As a result (Figure 1), deliveries

6

rather than supplies are considered as supply nodes in the network representing a solution

plan. Similarly, demand nodes are pickups with customer information discarded. The

triplet (p, a, t) on each directed arc indicates that at time t, a units of product p will

arrive. Figure 2 shows how the inventory level of the first crossdock changes along the

time axis.

1

2

D1

D2

D3

P6

P5

P4

P3

P2

P1

(p1,87,13)

(p3,91,8)

(p2,117,14)

(p3,54,11)

(p1,21,13)

(p1,47,13)
(p3,28,8)

(p2,84,14)

(p2,31,14)

(95,12)

(144,15)

Deliveries

Pickups

D4

Crossdocks

Left Unfulfilled

[8,13]

[4,11]

[8,17]

[8,10]
[11,20]

[10,14]

[4,8]

[12,16]

[11,19]

[11,17]

Figure 1: Solution Example

2.3 The Model

We now give a integer programming formulation of the model described, using the follow-

ing notations:

Input:

D - set of m deliveries, indexed by i

P - set of n pickups, indexed by j

7

63
units
of
p3

8 11 13 200

95

91 units of p3 delivered by D2,
28 units of p3 picked up by P4

54 units of p3 picked up by
P1

87 units p1 delivered by D1,
21 units p1 picked up by P2,
47 units p1 picked up by P3

9 units of p3

19 units of p1

Capacity Limit

Figure 2: Inventory Level Changes

C - set of c crossdocks, indexed by k

G - set of d products, indexed by r

T - set of times, indexed by t

Parameters:

DP - binary incidence matrix where DPi,r is 1 if product r is delivered by delivery i,

and 0 otherwise

DA - vector where DAi is the amount delivered by delivery i

DD - matrix where DDi,k is the distance from delivery i to crossdock k

DS - vector where DSi is starting time of delivery i

DE - vector where DEi is the ending time of delivery i

with pickup parameters PP, PA,PD, PS, PE defined similarly

8

CAP - vector where CAPk is the capacity of crossdock k

COST - vector where COSTk is the cost of handling a unit product for a unit time at

crossdock k

Tmin, Tmax - minimum and maximum times defining time horizon

Decision variables:

xi,k,t - binary, and is 1 if delivery i is bound for crossdock k at time t, and 0 otherwise

yj,k,t - binary, and is 1 if pickup j goes to crossdock k at time t, and 0 otherwise

zr,k,t - integer, and is the amount of product r at crossdock k at time t.

Model:

The objective is:

minimize (COSTtransportation + COSTinventory)

where,

COSTtransportation =
mX
i=1

cX
k=1

TmaxX
t=Tmin

xi,k,tDDi,k +
nX

j=1

cX
k=1

TmaxX
t=Tmin

yj,k,tPDj,k

COSTinventory =
cX

k=1

COSTk

dX
r=1

TmaxX
t=Tmin

zr,k,t

subject to:
cX

k=1

DEiX
t=DSi

xi,k,t ≤ 1, for all i (1)

cX
k=1

PEjX
t=PSj

yj,k,t = 1, for all j (2)

9

zr,k,t ≥ 0, for all r, k and Tmin ≤ t ≤ Tmax (3)

dX
r=1

zr,k,t ≤ CAPk, for all k and Tmin ≤ t ≤ Tmax (4)

zr,k,Tmin−1 = 0, for all r, k (5)

zr,k,t = zr,k,t−1 +
mX
i=1

xi,k,tDPi,rDAi −
nX

j=1

yj,k,tPPj,rPAj, for all r, k and Tmin ≤ t ≤ Tmax

(6)

(1) ensures that each delivery is fulfilled within its specified time window at most once

and (2) enforces time window constraints of each pickup. (3) guarantees that flow of

single product at each crossdock at each time is nonnegative. The capacity constraint of

every crossdock at all times is restricted by (4), and (5) sets a zero initial inventory for

each product at each crossdock. The changes of inventory level of crossdocks are recorded

in (6), which ensures product flow conservation.

In characterizing solutions to the problem, we use a function F : D∪P → [C∪φ]×T ,

where φ is the empty set and T the time horizon for the problem.

Sketch of Proof of NP-completeness The crossdocking problem is NP-complete

in the strong sense. To prove this, we show that 3-PARTITION problem can be reduced

to it in polynomial time where the 3-PARTITION problem is NP-complete in the strong

sense [9] and is defined as follows:

Instance: A finite set A of 3m elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for each

10

a ∈ A, such that each s(a) satisfies B/4 < s(a) < B/2 and such that
P

a∈A s(a) = mB.

Question: Can A be partitioned into m disjoint sets S1, S2, ..., Sm such that, for 1 ≤ i ≤

m,
P

a∈Si s(a) = B?

We first show that, given an instance of 3-PARTITION, we can construct an instance

of the crossdocking problem. We form the crossdocking problem with only one product p1

and one crossdock Dock1 and create exactly m deliveries and 3m pickups. Each delivery

carries B units of product p1. The time window of each delivery is [ti, ti], i.e., those

products must be delivered at a fixed time ti. For simplicity, we assume no two deliveries

share same delivery time. Hence, we order deliveries into a sequence D1,D2, ...,Dm with

t1 < t2 < ... < tm. The time window for each pickup is set to be [t1, tm]. A bijective

function f is can be constructed from the set of demand amounts of pickups to the set

of sizes of elements in A (under the assumption that proper renaming method is used to

distinguish identical values of sizes). Since
P

a∈A s(a) = mB, the total demand placed

by 3m pickups is mB, which is exactly the same amount that m deliveries can supply.

Therefore, all deliveries must be fulfilled in order to satisfy all the demands. Both capacity

limit and inventory holding cost of the only crossdock are set to be 0. A zero capacity

limit means there is no external space available to hold leftover products at any time.

Moreover, there is no transportation cost for the newly-constructed crossdocking problem

as shown in Figure 3. Clearly, this transformation can be executed in polynomial time.

We now need only to show that 3-PARTITION has a feasible solution iff the con-

structed crossdocking problem has a feasible solution. This can be done by standard

methods and is hence omitted.

3 Initial Solutions

Although using integer programming (IP) can lead to good results, IP methods can fail for

large-size problems. In view of the complexity of the crossdocking problem, our approach

was therefore to first use local search techniques.

For each delivery and pickup, we need only determine the values of two decision

variables: the choice of the crossdock and the time of delivery or pickup. Simple methods

11

such as randomly assigning values normally fail to produce feasible solutions in view of the

difficult constraints present. We therefore use a greedy method to obtain initial solutions.

3.1 A greedy method

A greedy approach would naturally begin with deliveries and such a method is described

as follows:

step 1: select a delivery that has not been considered and call it Dcurr

step 2: choose a set S of pickups which can be supplied by Dcurr greedily

step 3: pick a suitable crossdock and appropriate delivery or pickup times for Dcurr

and for Pi ∈ S greedily

step 4: if the partial solution obtained is feasible or all deliveries have been processed,

go to step 5;otherwise mark Dcurr as considered and return to step 1.

step 5: evaluate the solution obtained and compute its value.

As the solution generated may not be feasible, a large penalty can be introduced for

each unsatisfied pickup to provide a preference for feasibility over optimality during the

search process. Algorithm 1 represents this algorithm.

12

Algorithm 1: GENERATE INITIAL SOLUTIONS

Require m total deliveries

rearrange deliveries randomly

curr← 1

while curr ≤ m do

find set S "covered" by Dcurr greedily

assign Dcurr, S greedily

if solution feasible then

break

end if

curr← curr − 1

end while

compute cost of solution

for i = 1 to n do

if Pi has not been fulfilled

cost ←cost + penalty

end if

end for

return solution

Given a delivery Dcurr = (p, a, [s, e]), a set of pickups S = {Pi|Pi = (pi, ai, [si, ei])} is

said to be “covered" by Dcurr if it satisfies the following conditions.

1. for all Pi ∈ S, pi = p

2. for all Pi ∈ S,
P

ai ≤ a

3. for all Pi ∈ S, ei ≥ s

In the algorithm above, we need to find such an S. Conditions 1 and 2 are clear.

Condition 3 ensures that in order forDcurr to “cover" all pickups in S, it must be available

before the latest demand time of each pickup. To find such a “covered" set S, two greedy

13

methods can be used: First Fit and Best Fit. As the name suggests, the First Fit

greedy method attempts to find the first set that meets all criteria. On the other hand,

Best Fit aims to find the best set, where a set is "best" if |a−
P

ai| is minimized so that

inventories to be stocked are reduced to the lowest possible level. Finding the best set

can be achieved in pseudo-polynomial time using a dynamic programming method [5].

To assignDcurr and S in the algorithm, we note that determining crossdocks and times

for Dcurr and each Pi ∈ S is a tedious task as the validity of partial solutions needs to be

maintained at all times. A general strategy, used to determine time, is to deliver as late as

possible and to pick up as early as possible in order to reduce potential inventory holdings

levels. For crossdocks, decisions are made by choosing the first fit crossdock. Depending

on the crossdocks, we approach such assignments in a loose or tight way. The "loose"

approach looks for crossdocks with space larger than required ignoring that pickups can

occur at the same time. On the other hand, a "tight" approach takes the latter into

account, and considers available space at all times. The "tight" approach is employed

in the Best Fit greedy method while the "loose" approach is used in the First Fit

method.

4 HEURISTICS

In this section, we will introduce our heuristic methods by providing the design of neigh-

borhood moves and the construction of our simulated annealing, tabu search and a hybrid

heuristic methods.

4.1 Neighborhood Search

A basic component of any local search is neighborhood search. A solution s0 is said to

be a neighbor of another solution s if it can be obtained from s through a neigborhood

move. We developed a number of such moves suitable for this problem which we use in

the heuristics developed here to find neigborhood solutions. These moves are key to the

successful implementation of these heuristics.

Swap Two Pickups: First, randomly select two pickups which demand the same prod-

14

uct p: P1 = (p, a1, [s1, e1]) and P2 = (p, a2, [s2, e2]). Suppose in solution s, F (P1) = (d1, t1)

and F (P2) = (d2, t2) with d1 6= d2, which means that the product is bound for different

crossdocks. If a d1 or d2 is actually a dummy crossdock, then the corresponding pickup

has not been fulfilled. In this case, swapping is in fact a replacement of one fulfilled

pickup with an unfulfilled one. Swapping pickups can be as simple as exchanging cross-

docks and the times assigned to them. Therefore, in the new solution s0, F 0(P1) = (d2, t2)

and F 0(P2) = (d1, t1) with F 0(Pi) = F (Pi) if i /∈ {1, 2}. If the new crossdock assigned is

actually a dummy, the time mapped under F 0 must be set to 0 to be consistent. This

move is valid only if the resultant solution s0 is valid. Figure 4 shows how such a swap

can be achieved.

However, the following problems can arise due to constraints placed on time windows,

flow conservation, inventory level limits, etc.: (1) the new time does not fit its time win-

dow, (2) the inventory level exceeds the limit at d1 or d2 or both, (3) the flow conservation

rule of product p is violated at d1 or d2 or both.

The first case can be resolved by adjusting the invalid time to the nearest feasible

time within its range. The adjustment of time is indeed either postponing or predating

pickups, thus inventory levels of affected crossdocks should be kept updated consistently.

The later two cases of inventory related constraints violation may occur after adjustment.

Proper repair procedures dealing with inventories have to be defined in order to ensure

validity of the new solution.

How repair works is illustrated by taking case (2) as an example. Capacity excess

can be caused by products delivered too early. Symmetrically, another reason could be

that pickups are late. The idea of repair is to either postpone some deliveries or to

predate some pickups or both without violating constraints. The steps for this is given

in Algorithm 2. Here, a problematic crossdock c, its capacity CAP and the product p

involved in swapping are parameters, in addition to deliveries and pickups.

15

Algorithm 2: REPAIR

requires crossdock c, its capacity CAP , product p, set D

of m variables, set P of n pickups

Find time when c inventory exceeds CAP

{Consider deliveries of product p before or at time}

for i = 1 to m do

(ci, ti)← F (Di) {Di = {pi, ai, [si, ei]}}

if ci = c and pi = p and ti ≤ time and time ≤ ei then

t
0
i ← rnd[time+ 1, ei] {postpone Di; rnd is random from interval}

remove Di from ti and insert at t
0
i and update inventory level

if new solution valid then

F (Di)← (ci, t
0
i) and return

else

undo all changes

end if

end if

end for

{Consider pickups of product p later or at time}

for j = 1 to n do

(cj, tj)← F (Pj) {Pj = {pj, aj, [sj, ej]}}

if cj = c and pj = p and tj > time and time > sj then

t
0
i ← rnd[sj, time] {predate Pj; rnd is random from interval}

remove Pj from ti and insert at t
0
j and update inventory level

if new solution valid then

F (Pj)← (cj, t
0
j) and return rn

else

undo all changes

end if

end if

end for

16

Case (3) occurs when there is insufficient products for pick up. Repair can be imple-

mented as for case 2 by making deliveries earlier or by delaying pickups. A quick rejection

method is used if we know that total supplies are smaller than total demands. In Figure

4, the new solution is irreparable without shifting D2, P2, P5 to crossdock 2 or adjusting

their times accordingly. In this case, we choose another pair of pickups to swap. After a

number of tries, if no valid neighborhood solution is obtained, other neighborhood moves

are used.

Swap Deliveries: Similar to the method of swapping two pickups, two deliveries which

deliver same product to different crossdocks are selected to exchange destinations and

times. Again, the three undesirable situations can occur and similar adjustments can be

made to address the timing problem. For the two inventory-related situations, the impact

on solutions of swapping deliveries is far greater than by swapping pickups since usually

deliveries carry products in larger amounts than those demanded by pickups. As a result,

the success rate of repair is expected to be lower here. A new strategy is used by first

resetting all pickups to be unfulfilled. The greedy algorithm given has a modification

which preserves destination crossdocks of deliveries and is used to generate a totally new

solution. The new solution has a high chance of differing from the original one as the new

strategy destroys previous relationships between deliveries and pickups. This move helps

diversify the search space.

Add a Delivery: A randomly selected delivery from unfulfilled deliveries pool is inserted

into solution s in this method. The destination crossdock c and time t are randomly

determined as long as they are within constraints. This seems to be a bad move, as

it increases the total transportation cost and inventory level at crossdock c by bringing

in an extra delivery. The reverse action will be defined later which tends to remove

unnecessary deliveries. The purpose of having such two moves is to mimic the replace

process. Swapping two deliveries achieves the same effect only when one crossdock is a

dummy. In addition, swapping does not preserve connections in s as insertion does if the

modified greedy procedure is used to reconstruct a new neighborhood solution.

Remove Deliveries: Unnecessary deliveries are removed only when a solution s is

already feasible, i.e., all demands of pickups are met. Otherwise, the next method (Add

17

a Pickup) is used to insert one pickup into s. It evaluates all possibilities of eliminating

single delivery and chooses the one with minimum value. This move then calls itself

recursively with the new solution until no further improvement on cost is possible. This

move is implemented with greedy and recursive features as outlined in Algorithm 3.

Algorithm 3: REMOVE DELIVERIES

requires a set D of m deliveries, solution s, with a map F

sbest ← s {sbest keeps the best solution found so far}

for i = 1 to m do

F 0 ← F

F 0(Di) = (0, 0) {remove Di}

if new solution s0 with F 0 is feasible, then

compute value of s0

if s0 is better than sbest then

sbest ← s0

end if

end if

end for

if sbest is better than s0 then

call REMOVE with solution sbest

else

return

end if

Add a Pickup: In this move, an unassigned pickup is randomly selected and attempt

to insert it made. The cost value of the new solution will decrease significantly as the

large penalty previously associated with the pickup is replaced by a small value. With

the method of introducing more deliveries, more pickups have to be inserted to retrieve

the products. Even in a solution with no unnecessary deliveries, it is still possible to add

more pickups. For instance, although the leftover inventories of single delivery may not

18

be sufficient to supply one pickup, a few deliveries carrying same product and bound to

same crossdock can meet additional demand with accumulated inventories for a long time

time.

Change Allocated Time for a Delivery: This move is considerably small, which has

no effect on transportation cost. A randomly selected fulfilled delivery changes its time

value with the hope that the new solution will generate some room for improvement in

future neighborhood moves. In this respect, the greedy principle of delivering late so as

to reduce inventory level on hold is not deployed here.

Change Allocated Time for One Pickup: This is as the method used for deliveries.

The pickup to be changed is selected randomly and so is the time to be allocated to it.

In both methods, inventory level of affected crossdock is updated followed by checking for

constraint violations.

Swap Two Crossdocks: Instead of swapping deliveries and pickups, in this method, we

swap two crossdocks by exchanging deliveries and pickups assigned to them together. If

one of the selected crossdock is a dummy, swapping relocates deliveries and pickups from a

used crossdock to a unused one. This move may reduce transportation cost as destinations

of all involved tasks are changed. The only possible cause of an invalid solution is capacity

excess. If this happens, another pair of crossdocks is chosen for swap.

Reschedule a Crossdock: The initial solution is created by greedy methods. This works

by considering deliveries one by one. Over time, it will become more difficult to insert

unassigned deliveries and pickups when more deliveries occur. Choices of crossdocks to

cater for later deliveries and pickups will be limited as inventory brought by earlier occupy

the crossdocks. The case is made worse if the "loose" greedy method is used. This method

of rescheduling one crossdock seeks to reduce inventory level on hold of the crossdock by

changing times of deliveries and pickups bound for it. The same greedy principle of

postponing deliveries and predating pickups is applied here. Delivering late helps prevent

unnecessary inventory holdings while picking up early reduces inventory holding cost.

19

1

2

D 1

D 2

D 3

P 2

P 6

P 5

P 4

P 3

P 1

(p 1 , 8 7 , 1 3)

(p 3 , 9 1 , 8)

(p 3 , 1 1 7 , 1 4)

(p 3 , 5 4 , 1 1)

(p 1 , 2 1 , 1 3)

(p 1 , 4 7 , 1 3)
(p 3 , 2 8 , 8)

(p 3 , 8 4 , 1 4)

(p 3 , 3 1 , 1 4)

(9 5 , 1 2)

(1 4 4 , 1 5)

D e l i v e r i e s

P i c k u p s

C r o s s d o c k s
[8 , 1 3]

[4 , 1 1]

[8 , 1 7]

[1 1 , 2 0]

[1 0 , 1 4]

[4 , 8]

[1 2 , 1 6]

[1 1 , 1 9]

[1 1 , 1 7]

1

2

D 1

D 2

D 3

P 1

P 6

P 5

P 4

P 3

P 2

(p 1 , 8 7 , 1 3)

(p 3 , 9 1 , 8)

(p 3 , 1 1 7 , 1 4)

(p 3 , 3 1 , 1 4)

(p 1 , 2 1 , 1 3)

(p 1 , 4 7 , 1 3)
(p 3 , 2 8 , 8)

(p 3 , 8 4 , 1 4)

(p 3 , 5 4 , 1 1)

(9 5 , 1 2)

(1 4 4 , 1 5)

D e l i v e r i e s

P i c k u p s

C r o s s d o c k s
[8 , 1 3]

[4 , 1 1]

[8 , 1 7]

[1 1 , 1 7]

[1 0 , 1 4]

[4 , 8]

[1 2 , 1 6]

[1 1 , 1 9]

[1 1 , 2 0]

S w a p

A t C r o s s d o c k 2 , s u p p l y < d e m a n d g i v e s a n i n v a l i d s o l u t i o n

Figure 3:

20

4.2 Using Simulated Annealing

Simulated Annealing (SA) [12] can be used to avoid local optima by accepting local

moves which may worsen the current objective value with a certain probability, usually

decreasing with a temperature parameter. This probability, P , is a function of both the

temperature T of the system and of the change δ in the cost function, and is usually

assumed exponential: P = exp(−δ/T). A central factor in implementation is the cool-

ing schedule used. This consists of four components: initial temperature, temperature

decrement, final temperature and the number of iterations at each temperature. SA is

implemented with the initial solution generated by the greedy algorithm using First Fit

and Best Fit to find the set S in Algorithm 1, together with the nine possible neigh-

borhood moves developed here. The framework is described in Algorithm 4. Constants

itermax and Tmax are used to control the number of moves and the exponential cooling

schedule is used with constant Ct which is slightly smaller than 1 to decrease temperature

in each iteration by T ← Ct × T .

21

Algorithm 4: SIMULATED ANNEALING

S ←− generate initial solution using Best Fit or First Fit

best ←− solution value (S); temperature ←− Tmax; iter ←− 0

while iter < itermax and temperature > T_terminate do

randomly select one feasible local move loc_move

Stemp ←− SA_localsearch (S, loc_move)

if solution value (Stemp) < best then

best ←− solution value (Stemp)

endif

δ = solution value (S)− solution value (Stemp)

if δ > 0 then

(S)←− (Stemp)

else {S to Stemp is a worsening move}

P = e−δ/T

with probability P

(S)←− (Stemp)

endif

temperature←− Ct × temperature

iter ←− iter + 1

end while

4.3 Using Tabu Search

Tabu search (TS) uses iterative moves in a neighborhood space with the assistance of

adaptive memory [10]. A tabu list is used to record moves made in the recent past which

are tabu. This helps avoid cycling and diversifies search. Although, typically, local moves

are stored in the tabu list, the heuristic here stores recent solutions as tabu. This is

explained in the next section. In each iteration, the best solution, i.e. one with the

smallest cost, achieved by the nine different local moves which is not in the tabu list

is selected as the new solution. The list is updated to include this new solution and a

solution with the oldest time label is deleted. TS is implemented with an initial solution

22

generated by the greedy algorithm using First Fit and Best Fit to find the set S in

Algorithm 1, together with the nine possible neighborhood moves developed here.

4.3.1 The tabu list

In the problem, a solution is a set of assignments for each delivery and pickup request

in the specified time window. In TS, we maintain a recency-based memory. Selected

attributes that occur in solutions recently visited are labeled tabu-active, and solutions

that contain tabu-active elements, or particular combinations of these attributes, become

tabu [10]. While tabu classification refers to forbidden solutions, by virtue of containing

tabu-active attributes, we often refer to moves that lead to such solutions as tabu. Hence,

although a tabu list usually records moves, it is also natural to have solutions classified as

tabu. Because of the characteristics of the crossdocking problem, and the search design,

we adopted the latter scheme, i.e., of keeping solutions as tabus. Although other methods

can be used, we found that this method worked well for the problem giving solutions

within acceptable timescales. Further, while it was difficult and inefficient to store the

many moves used, storing solutions was easier due to their uniform and simple structure.

Only up to ten solutions were stored. Finally, the asymmetry of many of the moves used

made it less attractive to store moves.

4.4 Integrating SA with TS

We experimented further on a hybrid metaheuristic, integrating the tabu list concept with

the simulated annealing framework. In doing this, we maintained a tabu list while SA

performed neighborhood search. Once a local move in SA leads to a solution in the tabu

list, we dispose the local move in an attempt to avoid cycling.

5 EXPERIMENTS

We discuss test set generation, heuristics performance and compare the heuristics with

the ILOG CPLEX 8.0 solver.

23

5.1 Test data generation

Because crossdocking problems are relatively new, there are no benchmarks test sets

available. As a result we generated our own data to be as realistic as possible. It is

reasonable that customers only place orders for products supplied and suppliers provide

more than what is demanded in order to avoid out of stock situations. Hence, we first

determined the consumption rate of deliveries. After determining a range [l, h], for each

delivery (s, p, amount, [st, et]), a percentage π ∈ [l, h] is determined and pickups set to be

at least (π×amount) of product p. A set of pickups, {Pi|Pi = (ci, p, amounti, [sti, eti)},

is then generated which meets the following criteria: (1) π×amount ≤
P

amounti ≤

amount, and (2) st ≤ eti

Customer ci is selected randomly, which determines transportation costs of the pickup

to every crossdock randomly. Also, amounti is determined randomly. Condition 2 requires

the earliest available time of this delivery to be earlier than the ending time of any potential

pickup. It is desired that there exists a current delivery which can be used to supply the

set of pickups. However, it is possible that there exists better choices of deliveries which

“cover" the set of pickups depending on assignment of crossdocks and times.

The time horizon is fixed at 24 in test sets , as this is typically, the longest time

shipments transit a crossdock. Next, because pickups usually follow deliveries within short

times, we take inventory handling cost at crossdocks to be small relative to transportation

costs. This reflects the fact that handling costs as usually smaller than transportation

costs. This is represented in the tests sets: LHS, LHL where LHS denotes "Low Handling,

Small Amounts", LHL denotes "Low Handling, Large Amounts" (Table 2)

In order to cater for situations where handling costs are high compared to trans-

portation costs, tests sets are given by: HHS, HHL, which denote "High Handling, Small

Amounts" and "High Handling, Large Amounts", respectively. Both these possibilities

adequately cater for realistic situations, and provide

The amount ranges for deliveries are set to 200-500 and 500-1200. As the amount

ranges for pickups are determined by consumption rates, consumption rates are taken

to be between 50% and 95%. The capacity of crossdocks are set to be three times the

amount range of deliveries, i.e., 600-1500 or 1500-3600.

24

file products suppliers customers crossdocks delivery jobs

0** 5-15 2-10 6-25 4-10 13-35

1** 16-25 11-20 26-50 11-18 40-60

Table 1: Size of Test Data

In total, eighty files are generated with detailed description given in Table 1 which

gives two size categories and 2 which gives four type categories. Ten files are generated

for each size and type category.

type file amount handling cost transportation cost

LHS *0* 200-500 2-10 1000-2000

LHL *1* 500-1200 2-10 2000-5000

HHS *2* 200-500 30-50 10-50

HHL *3* 500-1200 30-50 30-100

Table 2: Types of Test Data

5.2 Implementation

CPLEX solver is used for comparisons since no other available approach for this problem

is available to the best of our knowledge. ILOG CPLEX 8.0 was run without time limit

on a Pentium 4 1.71GHz with 384Mb memory. Our programs were run on Pentium 3

1.4GHz with 1GB of memory.

The greedy methods, First Fit and Best Fit, are implemented separately for com-

parison. In order to determine the effect of parameters on the performance of SA, four

combinations of initial temperature, cool rate, neighborhood size are used: (1000, 0.997, 10),

(3000, 0.995, 30), (1000, 0.997, 30) and (3000, 0.995, 30). For TS, we used a tabu tenure of

4 for the relatively small neighborhood size 10, and 7 for large size of 30. Similarly, for

the hybrid algorithm SA with TS, a tabu tenure used corresponds to the neighborhood

size explored.

25

5.3 Results and Analysis

We compared the performance between CPLEX and the heuristics developed.

5.3.1 Comparisons between greedy methods for initial solutions

We first analyzed the performance of the greedy methods. As shown in Table 3, the tight

Best Fit method performed better than the loose First Fit method most times where

both best and average solution quality are considered. Here, each method was run on

twenty files in each of the for categories. In Table 3, after one run of the 20 test sets for

each category we report the No.of bests for each method, and after 20 runs of the 20

test sets for each category and average the results, we measure the No.of bests average

which is the number of bests averages.

Best Fit method works extremely well with high handling cost files. This is because

they require more careful assignments compared with low handling cost test cases, where

fewer feasible initial solutions are found. The loose version of assigning tasks embedded

in First Fit fails most of time as large free space at crossdocks is usually unavailable.

Furthermore, the Best Fit requires much less iterations in reaching a feasible solution if

both start with an infeasible solution. Best Fit can find a feasible solution within the

first 10 iterations, whereas First Fit usually takes tens or even hundreds of iterations

to arrive into a feasible region. An extreme case is 038, where First Fit failed to

find any feasible solution within thousands of iterations in 21 out of 100 runs. The

failure rate of First Fit increases when more deliveries and pickups are introduced which

make assignments more difficult. It is noteworthy that file 038 is the only file for which

First Fit fails suggesting that the problem solution is intricate and may not depend on

the numbers of deliveries, pickups, crossdocks and products alone, but on deliveries and

pickups specifications.

5.3.2 Comparison between CPLEX and heuristics

Since CPLEX uses an exact method, we let it run without constraining time. However,

CPLEX failed to find exact solutions before running out of memory in a number of cases.

Table 4 gives the best results obtained by CPLEX and by the heuristic algorithms on

26

No. of bests No. of bests average

Type First Fit Best Fit First Fit Best Fit

LHS 2 18 0 20

LHL 6 14 5 15

HHS 5 15 3 17

HHL 5 15 4 16

Table 3: Comparisons between greedy methods

low handling costs test sets. There, we find a best solution for the heuristic is obtained

by running all three heuristics over each of the twenty files ten times. Experimental

results using high handling cost sets are given in Table 5. From the table, we can see

that the heuristics outperform CPLEX significantly not only in solution quality but also

in computational times (given in seconds). The heuristic provides better solution in all

the test sets and can provide feasible solutions 7% to 50% better than those obtained

by CPLEX, within only less than 10% the time spent of CPLEX. Another observation is

that the heuristics produced much better solutions than those obtained by CPLEX for

high handling cost files (Table 5). For example, solutions generated by the heuristic for

files 027, 030, 037 cut costs obtained by CPLEX by almost 50%. CPLEX also failed to

find any integral feasible solution for file 029 after 13, 430s.

When comparing the initial solutions from the greedy algorithm and final solutions of

selected files obtained by SA with any given parameter set, we found that improvements

obtained from neighborhood moves which direct search from infeasible to feasible solution

areas improve solutions significantly. We also noted that feasibility of an initial solution

did not necessarily affect final solution quality. For example, the best solution for file

021 actually begins with an infeasible solution. We believe that relationships between

deliveries and pickups within the initial solution, together with neighborhood moves, are

crucial to the performance of the heuristic algorithms. Such improvements occur also

when TS is used to obtain final solutions.

27

CPLEX Heuristic CPLEX Heuristic

file solution time best time file solution time best time

000 168,872 8,644 154,306 209 010 399,816 9,080 392,141 32

001 195,533 9,087 171,528 83 011 463,713 10,749 391,240 73

002 223,820 7,844 205,084 42 012 440,484 11,266 392,408 99

003 180,544 12,226 147,101 75 013 603,006 9,019 584,737 133

004 177,831 10,434 148,316 74 014 521,580 10,115 513,821 114

005 203,598 10,994 189,791 109 015 656,852 8,164 527,730 211

006 175,223 8,093 154,505 165 016 744,057 8,709 683,893 71

007 160,234 13,280 134,884 175 017 457,652 9,610 383,647 125

008 172,405 10,725 146,682 84 018 495,629 12,115 369,433 256

009 155,685 14,171 145,627 30 019 555,362 9,951 438,134 179

Table 4: Performance for Low Handling Costs Sets

CPLEX Heuristic CPLEX Heuristic

file solution time best time file solution time best time

020 860,776 9,308 624,821 271 030 994,748 16,388 460,280 107

021 411,098 10,730 163,696 19 031 1,325,025 13,472 860,689 55

022 593,099 12,137 257,580 61 032 1,452,725 11,274 1,398,209 138

023 621,974 10,610 549,402 129 033 1,280,752 12,070 780,713 186

024 535,646 16,010 388,989 244 034 1,221,364 15,721 539,789 67

025 540,446 10,490 325,826 23 035 1,902,778 10,087 857,533 286

026 728,365 11,892 520,369 36 036 1,450,066 13,151 873,583 254

027 1,094,761 9,769 473,563 112 037 1,106,901 12,482 483,044 89

028 427,274 12,600 128,769 116 038 933,475 14,608 580,354 94

029 fail 13,430 553,100 248 039 1,046,802 15,288 573,745 96

Table 5: Performance for High Handling Costs Sets

28

No. of bests

Type (1000,0.997,10,4) (3000,0.995,10,4) (1000,0.997,30,7) (3000,0.995,30,7)

LHS 4 4 7 5

LHL 7 3 6 4

HHS 4 3 6 7

HHL 1 3 9 7

Table 6: Comparisons (Bests) Using Different Parameter Settings for SA+TS

No. of bests average

Type (1000,0.997,10,4) (3000,0.995,10,4) (1000,0.997,30,7) (3000,0.995,30,7)

LHS 4 4 7 5

LHL 3 4 8 5

HHS 4 2 6 8

HHL 1 0 7 12

Table 7: Comparisons (Averages) Using Different Parameter Settings for SA+TS

5.3.3 Comparisons with parameter settings

When using different parameter sets, we found that SA worked best with a low initial

temperature, a slow cooling schedule and a large neighborhood size. For TS, better results

were obtained when large neighborhood sizes were used.

For the hybrid algorithm, the set of parameters, (1000, 0.997, 30, 7) is best with small

margin when only best solutions are considered (Table 6). Using averages, the parameters,

(3000, 0.995, 30, 7) give better results (Table 7) for high handling cost files. We found that,

in general, low initial temperature and large neighborhood size was preferable.

5.3.4 Comparison among heuristics

As the heuristics perform better than CPLEX, we compare these heuristics. As can be

seen from Table 8, TS outperforms SA and SA+TS on both best and average solutions

obtained. This is expected since in the problem, neighborhood structure is not symmetric

29

No. of bests No. of bests average

Type SA TS SA+TS SA TS SA+TS

LHS 4 9 7 2 12 6

LHL 5 6 9 6 10 4

HHS 6 8 6 6 10 4

HHL 6 9 5 3 14 3

Table 8: Comparison of Different Heuristics

No. of bests No. of bests average

Type SA SA+TS SA SA+TS

LHS 7 13 9 11

LHL 7 13 8 12

HHS 10 10 10 10

HHL 11 9 14 6

Table 9: Comparison between SA and SA+TS

which makes SA less competitive to TS. It is also not surprising to see that the hybrid

SA with TS does not improve the performance of SA alone much from Table 9 since

both are SA-based. We can conclude that TS diversifies the solution space well, allowing

acceptance of non-tabued solutions in a way which contributes to its good performance.

6 CONCLUSIONS

For realistic crossdocking management over a network of warehouses which takes into

account JIT requirements, inventory levels and handling costs, we developed a model

with time-window constraints. This model, when reduced to the single crossdock situ-

ation remains useful, for example, in JIT-driven manufacturing crossdocking. Because

of the complexity of the problem, several local search techniques are developed specific

to the problem with the objective of finding good solutions within a reasonable amount

of computational time. The intricate problem structure and rigid constraints together

30

impose great difficulties of implementing heuristics without such neighborhood moves.

We developed also two different greedy methods to construct initial solutions. Extensive

experiments are conducted on a range of test sets and results show that the heuristics do

better than CPLEX within practical computational times.

In the problem, each pickup is restricted to collect a single product. In reality, cus-

tomers can place orders of different products at different amounts and wish to collect them

in one trip to a single crossdock. In view of future work, multiple types of products can be

allowed in single pickup. In the problem, the inventory handling cost at each crossdock

is uniform for all products. This also can be adapted to suit a varied costing scheme,

where handling costs are dependent on the type of shipment. Multiple time windows can

be considered for deliveries and pickups so that many alternative plans can be offered.

References

[1] John J. Bartholdi, III and Kevin R. Gue, (2000) The Best Shape for a Crossdock,

INFORMS National Conference, San Antonio, TX.

[2] John J. Bartholdi, III, Kevin R. Gue and Keebom Kang, (2001) Staging Freight in

a Crossdock, Proceedings of the International Conference on Industrial Engineering

and Production Management, Quebec City, Canada.

[3] John J. Bartholdi, III, Kevin R. Gue and Keebom Kang, “Throughput Models for

Unit-Load Crossdocking", http://web.nps.navy.mil/~krgue/Publications/tput.pdf

[4] John J. Bartholdi, III and Kevin R. Gue, (2002) Reducing Labor Costs in an LTL

Crossdocking Terminal, Operations Research, Vol. 48, No. 6, pp. 823-832

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, (2001)

Introduction to Algorithms", 2nd. ed. MIT Press

[6] Harvey Donaldson, Ellis L. Johnson, H. Donald Ratliff

and Mei Zhang, Schedule-Driven Cross-docking Networks,

http://www.isye.gatech.edu/research/files/misc9904.pdf

31

[7] LogisticsToday (2003), 10 Best Supply Chains, December 2003,

www.logisticstoday.com

[8] LogisticsToday (2004), Execution at the Dock, April 2004, www.logisticstoday.com

[9] Michael R. Garey and David S. Johnson, (1979) Computers and Intractability - A

Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York

[10] F. Glover and M. Laguna, (1997) Tabu Search, Kluwer Academic Publishers

[11] Kevin R. Gue and Keebom Kang, (2001) Staging Queues in Material Handling and

Transportation Systems, Proceedings of the 2001 Winter Simulation Conference

[12] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, (1983) Optimization by Simulated

Annealing, Science, Vol. 220, No. 4598, pp. 671-680, 1983

[13] M., Napolitano,(2002) Making the move to Crossdocking - A Practical Guide, Ware-

housing Education and Research Council

[14] H. Donald Ratliff, John Vande Vate andMei Zhang, “Network Design for Load-driven

Cross-docking Systems", http://www.isye.gatech.edu/research/files/misc9914.pdf

[15] B. Shaffer, (2000) Implementing the crossdocking operation, IIE Solutions, 30(5) pp.

20-23

[16] Simchi-Levi, D., Kaminsky, P, and Simchi-Levi, E., (2003) Designing and Managing

the Supply Chain, 2nd. ed., McGraw-Hill

32

