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V�eri�cation \�a la vol�ee" de syst�emes detransition �nisR�esum�e : Une proc�edure bien connue pour l'analyse d'un programme est l'ins-pection exhaustive des �etats accessibles d'un graphe �ni mod�elisant son comporte-ment. Elle est e�ectivement impl�ement�ee dans plusieurs outils industriels mais unedes leurs principales limitations est la taille m�emoire n�ecessaire �a la constructionexhaustive des graphes d'�etats de programmes. Pourtant, pour de nombreuses pro-pri�et�es telles que l'acceptance par automates de B�uchi (dans le cas d�eterministe) etcertaines �equivalence comportementales, il n'est pas n�ecessaire de construire expli-citement ce graphe, et un parcours en profondeur exhaustif est souvent su�sant.A�n d'�eviter de traverser plusieurs fois certains �etats, il est important de m�emo-riser certains �etats d�ej�a visit�es et de les remplacer al�eatoirement (a�n de garderune m�emoire born�ee et �eviter une chute de performances). Dans la plupart des casce parcours en profondeur �a remplacement peut repousser les limites des outils dev�eri�cation.Mots-cl�e : V�eri�cation, syst�emes de transitions �nis, model-checking,bisimulation, parcours en profondeur.



On-the-y Veri�cation of Finite Transition Systems 1Contents1 Introduction 21.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21.2 Limits of the reachability analysis : : : : : : : : : : : : : : : : 31.3 State-of-the-art in on-the-y veri�cation : : : : : : : : : : : : 41.4 Paper organisation : : : : : : : : : : : : : : : : : : : : : : : : 52 The on-the-y kernel: basic traversal algorithms 52.1 The algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.2 Time complexity of a simple DFS with replacement : : : : : : 92.3 Experiments : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103 Product system analysis 123.1 Behavioral equivalences and preorders : : : : : : : : : : : : : 123.2 On{line model checking : : : : : : : : : : : : : : : : : : : : : 154 On-the-y veri�cation 164.1 B�uchi acceptance for deterministic case : : : : : : : : : : : : 164.2 Bisimulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 184.3 Testing for unboundedness of �fo channels : : : : : : : : : : : 215 Conclusion and prospects 22



2 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent MounierAbstract: The analysis of programs by the exhaustive inspection ofreachable states in a �nite state graph is a well-understood procedure. It isstraightforwardly applicable to many description languages and is actuallyimplemented in several industrial tools. But one of the main limitations oftoday's veri�cation tools is the size of the memory needed to exhaustivelybuild the state graphs of the programs. For numerous properties, it is notnecessary to explicitly build this graph and an exhaustive depth{�rst traver-sal is often su�cient. This leads to on{line algorithms for computing B�uchiacceptance (in the deterministic case) and behavioral equivalences: they arepresented in detail. In order to avoid retraversing states, it is however im-portant to store some of the already visited states in memory. To keep thememory size bounded (and avoid a performance falling down), visited statesare randomly replaced. In most cases this depth{�rst traversal with repla-cement can push back signi�cantly the limits of veri�cation tools. We call\on{the{y veri�cation", the use of algorithms based on a depth{�rst search(with replacement) of the �nite state graph associated with the program tobe veri�ed.1 Introduction1.1 MotivationProgram veri�cation is a branch of computer science whose purpose is \toprove programs correctness". Let us recall that correctness proofs are proofsof the relative consistency between two formal speci�cations: those of theprogram, and of the properties that the program is supposed to satisfy. Sucha formal proof tries to increase the con�dence that a computer system willmake it right when executing the program under consideration.Veri�cation has been studied in theoretical computer science depart-ments for a long time but it is rarely applied to real world problems. As amatter of fact, we must pay much more attention to practical problems suchas the amount of space and time needed to perform veri�cation.A considerable need for such methods appeared these last ten years in dif-ferent domains, such as design of asynchronous circuits, communication pro-tocols and distributed software in general. A lot of us accepted the challengeto design automated veri�cation tools, and many di�erent theories have beensuggested for the automated analysis of distributed systems. There exist nowelaborate methods that can verify quite subtle behaviors.



On-the-y Veri�cation of Finite Transition Systems 3A simple method for performing automated veri�cation is symbolic exe-cution which is the core of most existing and planned veri�cation systems.We refer to this technique as reachability analysis. The practical limits ofthis method are the size of the state space and the time it may take to inspectall reachable states in this state space. Those quantities can dramaticallyrise with the problem size.1.2 Limits of the reachability analysisReachability analysis is basically an exhaustive search yielding a rootedgraph of global states. This technique is often called perturbation [31]. Star-ting from some speci�ed initial state, successor states are generated andstored in the computer. The process stops when no new state (i.e. one notpreviously stored) can be generated. Termination is guaranteed if all theprogram variables (including communication channels) are bounded.The state graph is usually very large and for example, any protocolof practical relevance will have a state space in the order of at least onemillion states. There are two major problems when handling systems of thissize: state matching (to avoid double work and to ensure termination), andstate storing. A profound study of algorithms dedicated to the reachabilityanalysis has been conducted by G. Holzmann at the ATT Bell Labs since1985 [15, 16, 17]. Let us recall some complexity results.Let R be the number of reachable states. We can suppose that statesare of constant size S. As we want to store and compare states, we canreasonably suppose that the memory is arranged as a balanced tree. Thememory size M needed to store the state size is then at least R:S. Let C(S)be the time needed for the comparison of two states. When the ith stateis generated for the �rst time, the memory contains i � 1 states, thus itsinsertion in the tree is carried out in time at worst C(S): log(i). If d is theaverage degree of nodes, each node is re{generated d � 1 times in averageand searched in a memory which contains at least i states. The time neededfor those searches can be approximated by (d � 1):C(S): log(i). Coarselyapproximating log(R!) by R: log(R), we say that the time complexity of theperturbation technique isT ' d:C(S):�Ri=1 log(i) ' d:C(S): log(R!) ' d:C(S):R: log(R)As an example, if M = 107 bytes and S = 102 bytes, the size of the graphsthat can actually be analysed is less than R = 105 states. If d = 2, C(S) =



4 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounier10�4 seconds, and trees are binary trees, the time needed is in the orderT ' 6 minutes.In order to master the \state explosion", di�erent complementary workshave been conducted to reduce the size of the graph [5, 30, 3, 12, 13, 11].Obviously, reduction must be performed during the graph generation. Theother constraint is that the validity of properties to be veri�ed must notbe changed. For that reason, we do not consider simulation methods whichprovide only partial veri�cation [32, 27, 21, 17].1.3 State-of-the-art in on-the-y veri�cationThe idea is that, for a large class of properties, storing all the reachabilitygraph is not mandatory. It is enough to visit all the states and/or all thetransitions. A depth-�rst traversal of the reachability graph performs such anexhaustive search. Only the current path has to be stored but the time nee-ded to perform a veri�cation may be catastrophic, due to the re-generationof already visited states.An intermediate method o�ers a good compromise between time andspace requirements. It is based on a depth-�rst traversal but uses all theavailable space in order to store not only the current path, but also thegreatest possible number of already visited states. We will prove that boun-ding memory to a smaller size than the state space may not signi�cantlyincrease the time complexity. Such algorithms allow us to build e�cientveri�ers, able to handle large graphs. This approach is called \veri�cationon-the-y".It was �rst proposed in [15] in the context of partial veri�cation as apossible method to restrict the state space during a \scatter" search. Thisidea was rediscovered in [22] and presently applied to complete veri�cationby \on{line" model checking. Since then, similar ideas have been advoca-ted in [6] and [9]. [6] presents e�cient algorithms to verify properties givenby B�uchi automata and thus proposes a new solution to the veri�cation oftemporal properties on in�nite behaviors of �nite state programs. [9] ex-tends the technique to verify on-the-y behavioral equivalences and preor-ders on transitions graphs. The core of the method is to traverse (duringits generation) a kind of synchronous product of �nite transitions systems.In [10, 23] new on{the{y veri�cation algorithms have been designed, pro-totyped and measured. This paper presents these algorithms in a uniformmanner and will serve as a basis for integration in a veri�cation tool (namelythe Caesar/Ald�ebaran tool [11]).



On-the-y Veri�cation of Finite Transition Systems 51.4 Paper organisationThe remainder of the paper is organized as follows. We present in detaila class of bounded memory algorithms that traverse exhaustively the statespace of the program to be veri�ed. Upper bounds for space and time com-plexities are computed and di�erent experiments show the average behaviorof our algorithms. They form the on{the{y kernel of the veri�cation tool.The second part of the paper shows how di�erent veri�cation problems canbe solved as an exhaustive traversal of a \product" transition system. Theon{the{y veri�cation algorithms are given in detail using the kernel, seenas a simulator with \holes". We present four algorithms:� veri�cation of acceptance of a �nite transition system by a determi-nistic B�uchi automaton (safety properties),� veri�cation of bisimulation equivalence in the deterministic and non-deterministic cases,� testing of the unboundedness of Fifo channels.We conclude with some prospects.2 The on-the-y kernel: basic traversal algorithmsWe saw above that the main drawback of the perturbation technique is thememory size needed to perform the graph generation for real life systems.Now, there are some veri�cation problems for which a traversal of all statesand transitions is su�cient. It is then unnecessary to store the whole graph.An algorithm performing this exhaustive traversal is a depth-�rst traversal inwhich we theoretically only need to detect cycles, provided that the memoryis large enough to store the longest acyclic sequence. Unfortunately, visitedstates which no longer belong to the current sequence are \forgotten" andcan be visited again in many other sequences. In the best case the numberRgen of generated states is R. But in the worst case Rgen can reach R!:efor a complete graph with R states (e is the basis of natural logarithms). Ifthe number of states in the memory is bounded by the length of the longestacyclic sequence Dmax, the time needed to complete the traversal is in thescale of C(S):R: log(Dmax) � T � C(S):R!:e: log(Dmax)



6 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent MounierHowever, a depth{�rst traversal can be signi�cantly improved if thewhole available memory is used [19]. Actually, since Dmax:S < M (whereM is the size of the memory), one can use the remainder of the memory tostore already visited states and consequently to avoid re-generation of somestates. We present this technique and show by means of examples that itcan be e�ciently used to analyse real size graphs which are too large to �tin memory.



On-the-y Veri�cation of Finite Transition Systems 72.1 The algorithmprocedure DFSR (S0: state; var N , V , P : set of states;Act, Act Stack, Act Nec, Act Vis, Act Pop: procedure;Cond Null: function;var res: result);var St : stack; (* { { states of the current sequence { { *)St Trans : stack; (* { { stack of transitions of the current sequence { { *)St Ens Trans : stack; (* { { stack of sets of pending transitions { { *)S; S0 : state; t : transition;beginSt := nil; St Trans := nil; St Ens Trans := nil;push (S0, St); push (�rable(S0), St Trans);while St 6= nil do beginS := top (St); (* { { current state { { *)if top (St Ens Trans) 6= ; then begint := extract one of (top(St Ens Trans));(* { { choose and remove { { *)push ( t, St Trans);S0 := succ (S,t);Act (S0, St, St Trans, res);case search (S0) ofNull : beginif memory full then (* { { replacement { { *)if V = ; then res := memory overowelse V := V - f one of(V ) g;if Cond Null (S0) then N := N [ fS0gelse beginpush (S0, St);push (�rable(S0), St Ens Trans);end;endStack : Act Stack (S, S0, res);Nec, Perm, Vis: Act NPV (S, S0 , res); ;end;pop(St Trans);endelse begin (* { { top(St Ens Trans) = ; { { *)pop (St); pop(St Ens Trans)V := V [ fSg;Act Pop (S, res);end;end;end;The algorithm performing a depth{�rst traversal with replacement isdescribed above. The algorithm is described as an exhaustive simulation



8 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounierwith holes. The contents of the holes depend on the kind of veri�cationused; they describe the conditions (Cond Null) and actions (Act, Act Stack,Act NPV and Act Pop) that must be performed during the search.The parameters of the algorithm are the initial state S0 of the currentDFSR, i.e. Depth First Search with Replacement, a set V of already visitedstates that can be replaced, two sets N and P of states which cannot be re-placed, the four procedures Act, Act Stack, Act NPV, Act Pop, the booleanfunction Cond Null, and a result res.One DFSR uses three stacks St, St trans and St Ens Trans which respec-tively contain the states, transitions and pending transitions (those whichare not yet �red) of the current sequence. We also assume the existence ofan implicit memory of size M composed of the states belonging to St, N, V,P and we always insure that these sets are disjoint.The DFSR algorithm uses several primitive functions and proceduressuch as the classical push, pop and top which operate on stacks, �rable whichgives the set of �rable transitions from a state, one of which chooses anelement in a set, extract one of which chooses and removes an element froma set, succ which gives the successor of a state after �ring some transition,search which searches a state in the memory. Its result is Null if the stateis not in the memory and either Stack, Nec, Perm or Vis if it respectivelybelongs to St, N, P or V.procedure DFS Simple;var S0 : state;N , V , P : set of states;res : result;beginV := ;; N := ;; P := ;S0 := initial state;DFSR (S0, N , V , P , nop, nop, nop, nop, false, res);end;Let us explain the behavior of the algorithm in the case of a simple DFS,i.e. Depth First Search, in which the actions Act, Act Stack, Act NPV arethe null operation nop and Cond Null is the constant boolean function false(this implies that N is always empty).Initially, St contains S0 and St Ens Trans contains the set of �rable tran-sitions from S0. The algorithm is then a loop which stops as soon as the stack



On-the-y Veri�cation of Finite Transition Systems 9St is empty i.e. when all states which are accessible from S0 have been visi-ted. or when a memory overow is detected. It di�ers from a classical depth�rst search by the replacement which possibly happens when a newly gene-rated state S 0 does not belong to the memory. In this case, we must push S 0in St. But the memory (composed of St, N= ;, P= ; and V) may be full. Inthis case, either V is empty and the algorithm fails be memory overow orwe can remove one state from V and then push S' in St.The simple DFS algorithm with replacement can be used on any graphsuch that Dmax:S �M . But, contrarily to a classical traversal, this is not anecessary condition for the termination because states of the longest acyclicsequences may be reached by shorter sequences. A necessary condition isGmax:S � M where Gmax is the maximal length of a geodesic with initialstate S0 (a geodesic from S to S 0 is an acyclic sequence from S to S 0 withminimum length). We have Gmax � Dmax but if Gmax:S � M � Dmax:Sthe algorithm may or may not terminate, depending on the order of theevaluation of the transitions.2.2 Time complexity of a simple DFS with replacementNote that we always have (jStj + jV j):S � M and the boolean variablememory full means (jStj+ jV j):S = M and is a stable property. Let Rinsbe the number of insertions of states in the memory i.e. St[V . The behaviorof the algorithm in the case R:S �M is almost the same as a perturbation,except for the generation order. Each state is inserted exactly once, soRins =R. The time complexity is then approximatively the same.If R:S > M , Rins exceeds R because an already visited state may havebeen forgotten. Due to the stability of the property memory full, we canseparate the algorithm into two phases:� in the �rst phase, when :memory full, all visited states are in St[Vand the algorithm behaves like a perturbation,� in the second phase, when memory full, each time a state S 0 is gene-rated and not found in St [ V , we must remove some state Sdel fromV before pushing S 0 into St. The way this replacement is performedinuences the total number of generated states Rgen.We also suppose that the whole memory St[V (or St[V [N if N 6= ;)is arranged as a balanced tree, which supports access, insertion and deletionoperations in logarithmic worst case. The number of states in that memory



10 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounieris always less than M=S. Each generated state must be searched in thatmemory. Thus, the total time of the traversal is approximativelyT ' C(S):Rgen: log(MS )Recall that for the perturbation, time complexity is C(S):d:R: log(R).If M � R:S, we have Rgen ' d:R, thus complexities are almost identi-cal. If M > R:S, a perturbation technique is no longer possible. We havelog(M=S) < log(R) thus, if Rgen is in the same order of magnitude that d:R,time complexity of the depth{�rst traversal is close to the complexity thata perturbation would have with a memory of size R:S.In practice, we hope that Rins remains close to R.The choice of a replacement strategy is then essential in such an algo-rithm. Several strategies have been looked at. As already noticed in [16], thebest one seems to be random replacement, as in general nothing about thestructure of the graph can be known in advance. It is easily performed andhas no performance drop for particular graphs.2.3 ExperimentsThe depth{�rst traversal with replacement has been used for di�erent kindsof graphs: accessibility graphs of communication protocols modelled by com-municating �nite state machines, and random graphs. The parameters ofthese random graphs are Rmax a bound on the number of states and dmaxthe maximum degree of a node. They are generated in a breadth{�rst way.The degree of each node is chosen uniformly between 0 and dmax. If g is thenumber of already generated states, each successor of the current state hasprobability 1 � g=min(2:g;Rmax) to be a new state. Among those randomgraphs, we only considered those with R close to Rmax.The two curves of �gure 1 represent the behavior of the algorithm on arandom graph when decreasing the memory size. Starting fromMmax = R:S,the memory size is decreased down to the minimal possible value Mmin forwhich the algorithm terminates. The two bounds Mmax=S and Mmin=S are�gured by the two dashed vertical lines.The two �rst curves represent the evolution of the number of insertionsRins of states in St [ V and the execution time. If M = Mmax = R:Sthen Rins = R. As M decreases, Rins increases. But it increases very slowlyuntil M comes close to Mmin. Rins is then less than twice R. Finally, Rinsexplodes but the memory is signi�cantly reduced compared to pertubation



On-the-y Veri�cation of Finite Transition Systems 11before explosion. The execution time T has a similar form. For this example,with a memory size of 40% of R:S we have only 70% more states insertion,which results in a time increase of 50%.
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12 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounieris the worst case), results are not so good. The domain in which M=S canvary is very small and Rins and T increase very quickly.3 Product system analysis3.1 Behavioral equivalences and preordersOne of the successful approaches used for the veri�cation of communicatingprocesses consists in comparing di�erent speci�cations of a given system bymeans of behavioral equivalence and preorder relations. More precisely, ifSpec1 denote the more abstract speci�cation of the system and Spec2 themore detailed one, it is possible to check whether Spec2 agrees with Spec1:Let R be an appropriate equivalence relation or preorder relation. ThenSpec2 agrees with Spec1 if and only if Spec1 R Spec2. With Speci a labeledtransition system Si (LTS for short) is associated and R is an equivalencerelation or preorder relation on LTS.Bisimulation equivalences and simulations equivalences or preorders playa central role in the veri�cation of communicating systems. Many e�cientalgorithms for computing various bisimulation equivalences (strong, weak,branching) were proposed [24, 2, 28, 8, 25, 29, 14, 10, 3]. According to thede�nition of an equivalence relation which is either a set of state classes or abinary relation on the state space, the methods consists of re�ning a currentpartition until each class is stable or checking if a pair of states belonging tothe current relation are bisimilar. In [10], we have shown that it is su�cientto de�ne a particular synchronous product between two LTS, parametrizedby a simulation or a bisimulation.Recall that a LTS S is a rooted state graph with a labelling function< Q;A; T; q0 > where Q is a �nite set of states, A a �nite set of actions,T � Q�A�Q the transition relation, and q01 the initial state. We use alsothe notation p a�!T q for (p; a; q) 2 T .Let Si =< Qi; A; Ti; q0i > be two LTS. We recall the de�nition of simu-lation and bisimulation. Let � � A�, and let p; q 2 Q. We write p ��!T q i�:9u1 � � �un 2 � and 9q1; � � � ; qn�1 2 Q and p u1�!T q1 u2�!T q2 � � �qi ui+1�!Tqi+1 � � �qn�1 un�!T q. Let � be a family of disjoint languages on A.Act�(q; T ) = f� 2 � j 9q0 : q ��!T q0g.De�nition 3.1 (simulation) Let � be a family of disjoint languages on A.We de�ne inductively a family of simulations R�k by:R�0 = Q1 �Q2



On-the-y Veri�cation of Finite Transition Systems 13R�k+1 = f(p1; p2) j 8� 2 � :8q1 : (p1 ��!T1 q1 ) 9q2 : (p2 ��!T2 q2 ^ (q1; q2) 2 R�k ))gThe simulation preorder for � is v�= 1\k=0R�k , the simulation equivalence is��= 1\k=0(R�k \ R�k �1).De�nition 3.2 (bisimulation) Let � be a family of disjoint languages onA. We de�ne inductively a family of bisimulations R�k by:R�0 = Q1 �Q2R�k+1 = f(p1; p2) j 8� 2 � :8q1 : (p1 ��!T1 q1 ) 9q2 : (p2 ��!T2 q2 ^ (q1; q2) 2 R�k ))8q2 : (p2 ��!T2 q2 ) 9q1 : (p1 ��!T1 q1 ^ (q1; q2) 2 R�k ))gFrom these general de�nitions, several simulation and bisimulation relationscan be de�ned. The choice of a class � corresponds to the choice of anabstraction criterion on the actions. The strong simulation and the strongbisimulation are de�ned by � = ffag j a 2 Ag, the w-bisimulation is thebisimulation equivalence de�ned by � = f��a j a 2 A ^ a 6= �g, the safetypreorder is the simulation preorder de�ned by � = f��a j a 2 A ^ a 6= �gand the safety equivalence is the simulation equivalence where � = f��a ja 2 A ^ a 6= �g.We de�ne the product S1 �R� S2 between the two LTS S1 and S2, andthen we show how the fact that S1 and S2 are related by R� can be expressedas a simple criterion on the execution sequences of this product. We usepi; qi; p0i; q0i to range over Qi. We use R� and R�k to denote either simulationsor bisimulations (R� = 1\k=0R�k ).The LTS S1 �R� S2 is de�ned as a synchronous product of S1 and S2:a state (q1; q2) of S1 �R� S2 can perform a transition labeled by � if andonly if the state q1 (belonging to S1) and the state q2 (belonging to S2) canperform a transition labeled by �. Otherwise,� in the case of a simulation, if only the state q1 can perform a transitionlabeled by �, then the product has a transition from (q1; q2) to the sinkstate noted fail.



14 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounier� in the case of a bisimulation, if only one of the two states (q1 or q2) canperform a transition labeled by �, then the product has a transitionfrom (q1; q2) to the sink state fail.De�nition 3.3 We de�ne the LTS S = S1 �R� S2 by:S = (Q;A; T; (q01; q02)), with Q � (Q1�Q2)[ffailg, A = (A1\A2)[f�g,and T � Q�A �Q, where � 62 (A1 [A2) and fail 62 (Q1 [Q2).T and Q are de�ned as the smallest sets obtained by the applications of thefollowing rules: R0, R01 and R02 in the case of a simulation, R0, R1 andR2 in the case of a bisimulation.(q01; q02) 2 Q [R0](q1; q2) 2 Q; Act�(q1) = Act�(q2); � 2 �; q1 ��!T1 q01 q2 ��!T2 q02f(q01; q02)g 2 Q; f(q1; q2) ��!T (q01; q02)g 2 T [R1](q1; q2) 2 Q; Act�(q1) � Act�(q2); � 2 �; q1 ��!T1 q01 q2 ��!T2 q02f(q01; q02)g 2 Q; f(q1; q2) ��!T (q01; q02)g 2 T [R01](q1; q2) 2 Q; Act�(q1) 6= Act�(q2);ffailg 2 Q; f(q1; q2) ��!T failg 2 T [R2](q1; q2) 2 Q; Act�(q1) 6� Act�(q2);ffailg 2 Q; f(q1; q2) ��!T failg 2 T [R02]Note that (p1; p2) ��!T fail if and only if (p1; p2) 62 R�1 .The following proposition gives the promised cartesian product on theexecution sequences of S, allowing to decide that S1 and S2 are not relatedby R� in terms of the execution sequences of S1 �R� S2.Proposition 3.1 (q01; q02) 62 R� if and only if it exists an elementary exe-cution sequence � of S such that:� � = f(q01; q02) = (p0; q0); (p1; q1); ::: (pk; qk); failg.� 8i : 0 � i � k; (pi; qi) 62 R�k�i+1.If one of the two LTS is deterministic, proposition 3.1 can be improved. Fora state (q1; q2) of S1�R� S2, (q1; q2) 2 R�k if and only if fail is not a successorof (q1; q2) and all the successors (q01; q02) of (q1; q2) verify (q1; q2) 2 R�k�1.



On-the-y Veri�cation of Finite Transition Systems 15Proposition 3.2 Let us suppose that S2 is deterministic (or S1 if the (R�k )k�0are bisimulations). Then:S1 6 R�S2 , 9� 2 Ex(q01; q02) : 9k > 0 : �(k) = fail.According to this proposition, if at least one of the two LTS S1 or S2 (resp.S2) is deterministic then S1 and S2 are not bisimilar (resp. similar) if andonly if it exists an execution sequence of S1�R� S2 containing the state fail.3.2 On{line model checkingLet S1 =< Q1; A; T1; q01 > be the labeled transition system associated withthe speci�cation Spec.Suppose that a property P can be expressed by a deterministic B�uchiautomaton B =< Q2; A; T2; q02; F2 > where Q2 is its �nite set of states, Aits set of actions, T2 � Q2 � A � Q2 its transition relation, q02 the initialstate and F2 a set of designated states. An in�nite word a1 . . .an . . . 2 A!is recognized by B if and only if there exists an in�nite run of B: q02 a1!T2q1 . . .qn�1 an!T2 qn . . . such that qi 2 F2 for in�nitely many i's.We say that Spec satis�es P written Spec j= P if and only if everyin�nite word labelling an in�nite transition sequence of S1 is recognized byB. In the case that the B�uchi automatonmay be non deterministic, the usualway to verify that Spec j= P is to consider S1 as a B�uchi automaton (its setof designated states is Q1), make the product of S1 with the complementautomaton B of B and check if S1�B is empty (accepts no word). This canbe done by computing the strongly connected components.In the case of a deterministic B�uchi automaton, we show that there is avery simple algorithm which performs this veri�cation without complemen-tation and without computation of strongly connected components.We consider S1 as a B�uchi automaton with Q1 as its set of designatedstates. We suppose that B is complete. This can always be done by addinga new state.De�nition 3.4 The synchronous product S =< Q;A; T; q0; F > of S1 andB is de�ned by:� Q = Q1 � Q2,� q0 = (q01; q02),� F = Q1 � F2,



16 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounier� T � Q� A�Q is de�ned byq1; q01 2 Q1; q2; q02 2 Q2; q1 a�!T1 q01; q2 a�!T2 q02(q1; q2) a�!T (q01; q02)Since B is complete, the in�nite sequences of executable actions of S1are exactly the words labelling the in�nite runs of S. And according tothe de�nition of S, Spec j= P if and only if every in�nite run of S containsin�nitely many states of F . Considering S as a directed graph, it is equivalentto say that every reachable cycle of the graph contains a vertex in F . Butthis is equivalent to say that the sub-graph S 0 obtained from S by removingall vertices of F (and the corresponding edges) is acyclic. And S 0 is acyclicif and only if a depth-�rst traversal of S 0 doesn't detect any cycle.4 On-the-y veri�cation4.1 B�uchi acceptance for deterministic caseAs we saw above, the problem is to detect whether the subgraph S 0 is acyclic.But we don't want to �rst build S and then remove vertices of F . We wouldlike to check whether S 0 is acyclic during a traversal of S. The subgraph S 0is not necessarily weakly connected. But each weakly connected componentof S 0 is reachable in S from a state in F or from qinit. And states in F arereachable in S from qinit.The algorithm that we propose is a particular traversal of S consisting inseveral partial DFS. Each partial DFS is rooted by a state in F or qinit andexplores every state accessible in S 0 from the actual root. Thus we cannot gobeyond states of F but we discover all of them during the partial traversals.If the memory is large enough to store the whole state graph S, thealgorithm terminates and detects a loop in S 0 if and only if one exists. Aloop in S 0 is detected if search(S 0) gives the result Stack and S 0 62 F (seethe action Act Stack). Furthermore, the algorithm is linear in the size of Sas every edge of S is traversed once and only once. It is then more e�cientthan a classical Tarjan's algorithm which calculates the strongly connectedcomponents of S and detects if one of them contains a state in F .Now if the memory is too small, we can use the replacement strategy.The algorithm is ensured to terminate correctly if loops are detected in S 0and every state from F [fq0g initiates one and only one partial DFSR. Thuswe can remove every state from V which does not belong to F [ fq0g.



On-the-y Veri�cation of Finite Transition Systems 17In order to perform the algorithm on the basis of our partial DFS, weneed to �ll some of the holes. We �rst need a set N which contains the rootsof the depth-�rst traversals not yet performed i.e. the states of F which havealready been discovered but not used. And we need a set P containing theroots of preceding partial DFSR.If a new state q 2 F is reached, it is added to N and successors of q arenot explored in the present DFSR (they will be explored in the traversalinitiated in q). When the DFSR starting in the root qinit is �nished, qinitis added to the set P in Act Pop, in such a way that every visited terminalstate is either in N or in P. If a cycle is detected in q 62 F this simply signi�esthat a cycle of S 0 is detected.The algorithm stops when N is empty and Spec j= P if and only if nocycle of S 0 is detected. This algorithm, in which the actions in which theactions Act, Act NPV are the null operation nop, is described below:procedure DFS Buchi;var qinit : state;N , V , P : set of states;res : result;function Cond Null (q0 : state) : boolean;begin Cond Null := (q0 2 F) end;procedure Act Stack(q, q0 : state; var res : result);begin if (q0 62 F) then res:=error; end;procedure Act Pop(q : state; var res : result);beginif q = qinit then begin(* { { initial states of each DFSR must be preserved from replacement { { *)V := V - fqg;P := P [ fqg;end;endbeginV := ;; N := ;;qinit := initial state; (* { { initial state is q0 = (q01 ; q02 ) { { *)repeatDFSR (qinit, N , V , P , nop, Act Stack, nop, Act Pop, Cond Null, res);if N 6= ; thenqinit := extract one of(N);until (N = ; or res = error or res = memory overow);end;



18 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounier4.2 BisimulationIn the previous section, we have expressed the bisimulation and the simu-lation between two LTS S1 and S2 in terms of the existence of a particularexecution sequence of their product S1�R� S2. Now we show that this veri-�cation can be realized by performing depth-�rst searches (DFS for short)on the LTS S1�R�S2. Consequently, the algorithm does not require to cons-truct the two LTS previously : the states of S1�R� S2 are generated duringthe DFS (\on the y" veri�cation), but not necessarily all stored. And themost important is that the transitions do not have to be stored.We note n1 (resp. n2) the number of states of S1 (resp. S2), and n thenumber of states of S1 �R� S2 (n � n1 � n2). We describe the algorithmconsidering the two following cases:Deterministic case: if R� represents a simulation (resp. a bisimulation)and if S2 (resp. either S1 or S2) is deterministic, then, according toproposition 3.2, it is su�cient to check whether or not the state failbelongs to S1�R� S2, which can be easily done by performing a usualDFS of S1�R� S2. The veri�cation is then reduced to a simple reacha-bility problem in this graph. Consequently, if we store all the visitedstates during the DFS, the time and memory complexities of this de-cision procedure are O(n).General case: in the general case, according to the proposition 3.1, wehave to check the existence of an execution sequence � of S1 �R� S2which contains the state fail and which is such that for all states (q1; q2)of �, (q1; q2) =2 R�k for a certain k. According to the de�nition of R�k ,this veri�cation can be done during a DFS as well if:� the relation R�1 can be checked.� for each visited state (q1; q2), the result (q1; q2) 2 R�k is synthe-sized for its predecessors in the current sequence (the states arethen analyzed during the back tracking phase).More precisely, the principle of the general case algorithm is the following:if R� is a simulation (resp. a bisimulation) we associate with each state(q1; q2) a set Equiv List(q1; q2) of size jT1[q1]j (resp. jT1[q1]j+ jT2[q2]j). Du-ring the analysis of each successor (q01; q02) of (q1; q2), whenever it happens



On-the-y Veri�cation of Finite Transition Systems 19that (q01; q02) 2 R� then q01 is inserted into Equiv List(q1; q2) (resp. q01 and q02are inserted into Equiv List(q1; q2)). Thus, when all the successors of (q1; q2)have been analyzed, (q1; q2) 2 R� if and only if Equiv List(q1; q2) = T1[q1]if R� is a simulation (resp. Equiv List(q1; q2) = T1[q1] [ T2[q2] if R� is abisimulation.As in the deterministic case algorithm, to reduce the time complexityof the DFS the usual method would consist in storing all the visited states(including those which do not belong to the current sequence) together withthe result of their analysis (i.e, if they belong or not to R�). Unfortunately,this solution cannot be straightly applied:During the DFS, the states are analyzed in a post�xed order. Conse-quently, it is possible to reach a state which has already been visited, butnot yet analyzed (since the visits are performed in a pre�xed order). There-fore, the result of the analysis of such a state is unknown (it is not availableyet). We propose the following solution for this problem: The result retur-ned by the function DFSR may be TRUE, FALSE or UNRELIABLE. Thealgorithm then consists in a sequence of calls of DFSR (each call increasingthe set Non equiv States), until the result belongs to fTRUE; FALSEg.We call the status of a state the result of the analysis of this state bythe function DFSR. The status of (q1; q2) is \�" if (q1; q2) 2 R�, and is \6�"otherwise.If R� is a simulation thenEquiv List(p; q) = fp0 j 9q0 : (p0; q0) 2 firable(p; q) ^ status(p0; q0) =�gIf R� is a bisimulation thenEquiv List(p; q) = fp0 j 9q0 : (p0; q0) 2 firable(p; q) ^ status(p0; q0) =�g[ fq0 j 9p0 : (p0; q0) 2 firable(p; q) ^ status(p0; q0) =�gWhenever a state already visited but not yet analyzed (i.e, which belongsto the stack) is reached, then we assume its status to be \�". If, when theanalysis of this state completes (i.e, when it is popped), the obtained status is\6�", then a TRUE answer from the DFSR is not reliable, the result returnedis UNRELIABLE (a wrong assumption was used), and another DFS has tobe performed. On the other hand, a FALSE answer is always reliable.We need a set Scc Roots in order to store the roots of the stronglyconnected components encountered during the exploration.The algorithm, in which the action Act is the null operation nop, dealingwith the bisimulation relation is the following:



20 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounierprocedure DFS Bisimuvar S0 : state;Non equiv States, P , V isited, Scc Roots : set of states;Equiv List : set of set of states;res : result;function Cond Null (S0 : state);begin Cond Null:= (fail 2 successors(S0)); end;procedure Act Stack (S, S0 : state; var res : result)beginScc Roots := Scc Roots [ fS0g;Equiv List(S) := Equiv List(S) [ fq01g [ fq02g (* { { S0 = (q01; q02) { { *); (1)end;procedure Act NPV (S, S0 : state; var res : result)beginEquiv List(S) := Equiv List(S) [ fS0g; (1)end;procedure Act Pop ( S : state; var res : result)beginif Equiv List(S) = T1[q1][ T2[q2] (* { { S = (q1; q2) { { *) then (2)Equiv List(top (St)) := Equiv List(top (St)) [ fSg; (3)else beginV := V - fSg;N := N [ fSg;if S 2 Scc Roots then res := unreliable;end;end;beginNon equiv States := ;;S0 := (q01 , q02 );repeatScc Roots :=;;V isited :=;;DFSR (S0, Non equiv States, V isited, P , nop, Act Stack, Act NPV, Act Pop Cond Null, res);res := (Equiv List (S0) = T1[q01 ] [ T02 [q2];(4)until result 2 ftrue, false, memory overowgreturn resultend;The algorithm dealing with the simulation is straightly obtained by re-placing:(1) Equiv List((q1; q2)) := Equiv List((q1; q2)) [ fq01g(2) Equiv List((q1; q2)) = T1[q1](3) Equiv List(top(St)) := Equiv List(top(St)) [ fq1g



On-the-y Veri�cation of Finite Transition Systems 21(4) Equiv List((q01; q02)) = T1[q1]The algorithm terminates, and it returns TRUE if and only if the twoLTS are bisimilars.The time requirement for the function DFSR is O(n). In the worst case,the number of calls of this function may be n. Consequently, the theoreticaltime requirement for this algorithm is O(n2). In practice, it turns out thatonly 1 or 2 DFS are required to obtain a reliable result. Moreover, wheneverthe LTS are not bisimilar, the time requirement is always O(n).4.3 Testing for unboundedness of �fo channelsThe depth{�rst traversal with replacement has also been proposed in [20, 19]for the test of unboundedness of �fo channels in some speci�cation modelssuch as communicating �nite state machines [1], �fo{nets [26, 7] and evenEstelle programs [18]. Unboundedness is generally undecidable [4], but thereexists a su�cient condition for unboundedness, which can be computed onthe states of each transition sequence. Let S and S 0 be two states such thatS0 is reachable from S by the sequence of actions w. Let Cj(S) and Cj(S0)be the contents of channel fj in those states and outj(w) the projection ofw on outputs in fj . If variables (except channel contents) in S and S 0 areidentical and 8j; Cj(S):outj(w) � Cj(S 0):outj(w), then w can be in�nitely�red from S 0 and reaches an in�nite sequence of increasing states for thepre�x ordering.The reachability graphs we are working with are possibly in�nite, so,even with a depth �rst traversal, we can only analyse �nite sub{graphs.But the su�cient condition found on a �nite sub{graph remains true on theunderlying in�nite graph.Since the condition depends on transitions sequences, it can be compu-ted during a depth{�rst traversal and is improved by storing and replacingsome already visited states. The algorithm, in which the actions Act Stack,Act NPV, Act pop are the null operation nop and Cond Null is the constantboolean function false, is described below:



22 Claude Jard, Thierry J�eron , Jean-Claude Fernandez et Laurent Mounierprocedure DFS Unbound;var S0 : state;N , V , P : set of states;res : result;procedure Act ( S0 : state; St, St Trans : stack; var res : resultat);var S : state;unb : boolean;w : transitions sequence;beginunb := false;S := top (St);repeatw := seq from to (S, S0);unb := 8j;Cj(S):outj(w) � Cj(S0):outj(w);S := pred (S);until unb or (S = S0);if unb then res := unbounded;endbeginV := ;; N := ;; P := ;;S0 := initial state;DFSR (S0, N , V , P , Act, nop, nop, false, res);end;5 Conclusion and prospectsDealing with the state space explosion problem, we have presented an al-ternative to the exhaustive construction of state graphs. The depth{�rsttraversal insures an exhaustive traversal of all states and/or transitions of areachability graph. It requires less memory since it theoretically only needsa memory large enough to store the longest acyclic sequence. In order toimprove this technique, it is necessary to store some visited states. Whenthe memory is full, visited states are randomly replaced by new states of thecurrent sequence. We have shown that this method can signi�cantly increasethe size of the state graphs that can actually be analysed without excessivelyincreasing the computation time.As we saw, this method can be used for di�erent kinds of veri�cation. Afew application examples have pointed out that it can certainly improve theveri�cation tools in various domains such as bisimulation, B�uchi acceptance,on{the{y veri�cation of temporal properties and test for unboundedness.



On-the-y Veri�cation of Finite Transition Systems 23We have explicitly given those new algorithms. After their prototyping, weare implementing them in the veri�cation workstation called Open-Caesar.However, this technique does not solve all the problems. We still don'tknow the whole applicability domain of that method. For example, is itpossible to verify branching time temporal logic properties with a depth{�rst traversal with replacement, and, if the answer is positive, is it e�cient?We also know that this algorithm is not quite suited for all kinds of graphs.Perhaps an interesting problem would be to carefully study the structure ofgraphs for which it is well suited. We could then infer on the convenience ofthe method on some classes of transitions systems. Within a tool, the chooseof the depth{�rst traversal in a particular veri�cation could then be guidedby the expected structure of graphs.
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