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Regulation of cardiovascular calcification
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Abstract

Vascular calcification is highly correlated with cardiovascular disease (CVD) and is a significant predictor of cardiovascular events,

especially in high risk patients such as the end stage renal disease (ESRD) population. Vascular calcification can lead to serious problems

including valve stenosis, decreased vascular compliance, calciphylaxis, and even sudden death. However, the contribution of vascular

calcification to progression of atherosclerosis is unknown and needs more study. Biochemical, histological, and genetic studies indicate that

vascular calcification is actively regulated and involves both positive and negative modulators. Several nonmutually exclusive theories to

account for vascular calcification based on current studies are discussed. D 2004 Elsevier Inc. All rights reserved.
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1. Clinical relevance of cardiovascular calcification measurements to be correlated to a growing list of clinical
Cardiovascular calcification refers to pathological calci-

um phosphate deposition in the blood vessels, myocardium,

and cardiac valves. Clinical consequences of cardiovascular

calcification depend on its extent and the organ affected. In

the heart, calcification and subsequent stiffening, thickening,

and tearing of the valve leaflets have long been known as a

major mode of failure of both native as well as bioprosthetic

cardiac valves [1,2]. In small arterioles, vascular medial

calcification is responsible for calcific uremic arteriolopathy

(also called calciphylaxis), an almost-always fatal skin

necrotic condition seen in a small but significant percentage

of dialysis patients [3]. Vascular medial calcification leading

to a stenosing, fibroproliferative arterial process is also the

major finding and cause of death in the rare genetic disorder,

idiopathic infantile arterial calcification [4].

In contrast to the above observations, calcification of

blood vessels commonly seen with aging, uremia, diabetes,

and atherosclerosis has been considered, for the past century,

a benign finding. This perception is quickly changing as

technological advances in noninvasive measurement of vas-

cular calcification, particularly electron beam computed

tomography (EBCT), have allowed rapid and sensitive
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events and cardiovascular risk. In coronary arteries, calcifi-

cation is positively correlated with atherosclerotic plaque

burden [5,6], increased risk of myocardial infarction [7–9],

and increased risk of dissection following angioplasty [10].

Whether calcification is related to plaque stability, however,

is less clear, although recent studies indicate that coronary

calcification may be associated with and/or predictive of

sudden cardiac death. Using autopsy specimens, intimal

calcification was found to be a reliable marker of plaque

instability, defined as plaques that have undergone rupture

[11]. In addition, in a study of 79 adults with sudden cardiac

death, both the Framingham risk index and coronary calci-

fication (as measured by EBCT) were demonstrated to be

predictive of future cardiovascular events [12]. Whether

these findings relate to increase in plaque instability is

controversial; indeed, a recent study using finite element

analysis suggested that intimal calcification did not appre-

ciably change the stress profiles of fibrous caps compared to

lipid pools [13], though solid shear stresses were not con-

sidered thus limiting interpretation of the study.

While some of these findings may relate to the correla-

tion of vascular calcification with extent of underlying

arterial disease, it is also possible that vascular calcification

itself may contribute to initiation or progression of cardio-

vascular disease (CVD). This possibility seems particularly

plausible in the case of vascular calcification associated with

chronic kidney disease (CKD). Over the last 2 years, a
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number of studies have highlighted the epidemic of vascular

calcification and CVD mortality in CKD. Nearly half the

deaths in dialysis patients are due to CVD. In fact, the risk

of CVD mortality in adult CKD patients is 20–30 times

higher than the risk in the general population [14]. High

ischemic heart disease mortality rates are partly attributable

to increased aortic medial calcification that leads to in-

creased arterial wall stiffness, increased pulse pressure,

and decreased perfusion of coronary arteries during diastole

[15–17]. Thus, stiffening of compliance arteries through

calcification probably underlies increased coronary ischemic

syndromes, including myocardial infarction and left ven-

tricular hypertrophy, in CKD patients. This constellation of

cardiovascular problems may also help explain morbidity

and mortality associated with diabetes and aging in general

where increased vascular calcification is prevalent [18,19].
2. Location and morphology of vascular calcification

Several studies have characterized the mineral compo-

nent of vascular calcification and found that the major

calcium phosphate phase is bioapatite, similar to that ob-

served in bone [20,21]. The location as well as morphology

of calcified deposits in blood vessels is diverse. In athero-

sclerotic lesions, calcification is mainly found in the intima

in a dispersed punctate form in the early stage of the disease

and, as the process proceeds, the aggregates of calcium

phosphate crystals deposit to produce larger patchy stippled

crystals associated with the necrotic regions of atheromas.

Furthermore, a significant number of calcified vascular and

valvular lesions also show outright ossification, complete

with bone marrow, cartilage, and mature lamellar bone

[22,23]. The second histological site of vascular calcifica-

tion is the media, known as Monckeberg’s medial sclerosis.

Such calcification occurs independently of intima calcifica-

tion and is associated with elastin/collagen-rich extracellular

matrix. Typical morphology of such calcification in the

early stage of the disease is linear deposits along the elastic

lamina throughout most of the medial width, and in ad-

vanced lesions, the media was filled with circumferential

rings of mineral. In some cases, osteocytes and bone

trabeculae with bone marrow were observed at the later

stages of the disease [24]. Medial calcification is promi-

nently found in the aged, diabetic, and uremic patient

[25,26] and believed at least partially to be the cause of

high CVD mortality in CKD patients as described above. In

uremic patients with atherosclerosis, no doubt a mixture of

these two types of calcification occurs.
3. Molecular mechanisms of vascular calcification

For the past century, vascular calcification was consid-

ered a degenerative process leading to uncontrolled precip-

itation of calcium phosphate associated with tissue necrosis
and/or metabolic calcium and phosphate imbalance. How-

ever, this paradigm has been largely revised based on

several key observations indicating that ectopic mineraliza-

tion is actually a highly regulated process and may share

mechanisms with bone formation. Morphological features

of calcified blood vessels share several similarities to bone,

including the presence of bioapatites, matrix vesicles, and

presence of cells that when cultured under appropriate

conditions, can form a mineralized matrix [27–29]. In fact,

outright bonelike tissues have been identified in human

lesions of Monckeberg’s sclerosis, atherosclerosis, and

aortic stenosis [22,30,31]; cartilaginous metaplasia is rou-

tinely seen in atherosclerotic and calcified vessels in murine

models [32,33] and has been reported in calcified heart

valves [22]. In an effort to explain these observations, four

different yet nonmutually exclusive theories regarding the

cause of vascular calcification have been put forward: (1)

loss of inhibition,(2) induction of bone formation (3)

circulating nucleational complexes, and (4) cell death. Each

of these theories is illustrated in Fig. 1 and discussed,

respectively, below.

3.1. Theory 1: loss of inhibition

It is becoming increasingly clear that most body fluids

and organs normally contain inhibitors of calcium phosphate

deposition, explaining why they do not spontaneously min-

eralize even though body fluids are supersaturated with

respect to calcium and phosphate. A growing number of

such molecules have been identified using mouse mutational

analyses. Table 1 lists a number of specific mouse mutants,

which present with enhanced cardiovascular calcification as

part of their phenotype, indicating that these proteins are also

normally important in suppressing vascular calcification.

One of the first of these genes to be discovered was

matrix Gla protein (MGP). MGP is a 10-kDa protein

containing 5 g-carboxyglutamic acid (GLA) residues and

is normally expressed at high levels in cartilage and

smooth muscle. Mice with a null mutation in MGP

(MGP�/�) were found to die within the first 2 months of

age due to arterial rupture and heart failure as a result of

extensive calcification of the large elastic and muscular

arteries. In addition, these mice showed inappropriate

cartilage calcification and osteopenia [33]. MGP is a

calcium-binding protein by virtue of its GLA residues.

Thus, a potential mechanism of MGP action in inhibiting

calcium phosphate deposition is calcium chelation [45].

Alternatively, circulating complexes of MGP and calcium

phosphate have been identified, suggesting that MGP is

involved in calcium phosphate clearance [46]. In addition,

MGP binds to elastin [47] and may normally mask mineral

nucleation sites. In contrast to its mineral-binding proper-

ties, MGP was also found to inhibit bone morphogenetic

protein-2 activity via matrix association and thus inhibit

osteogenic differentiation [48]. Regardless of the mecha-

nism, it is clear that MGP is a major inhibitor of both



Fig. 1. Schematic illustration summarizing four current theories regarding molecular mechanisms of vascular calcification. (1) Loss of inhibition—loss of

constitutively expressed inhibitors of calcium phosphate deposition leads to default mineralization. (2) Induction of bone formation—phenotypic transition of

SMCs or other vascular precursor cells to osteoblast/chondrocyte-like cells promotes bone formation recapitulating bone developmental mechanisms. (3)

Circulating nucleational complexes—ectopic mineralization due to deposition of calcium phosphate crystal-containing circulating complexes generated by

active bone resorption. (4) Cell death—apoptotic bodies and/or necrotic cell debris act as nucleation sites in damaged tissues.
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arterial and cartilage calcification and a major regulator of

bone and vascular homeostasis.

Fetuin, also known as a2-HS-glycoprotein, is a ubiqui-

tous protein found at high concentrations in blood. Fetuin is

also a potent inhibitor of calcium phosphate precipitation

and accounts for about 50% of the mineral inhibitory

activity of the blood. In the blood, fetuin circulates in a

complex with MGP and calcium phosphate precipitates and

has thus also been suggested as participating in a mineral

clearance mechanism [46]. Mice lacking fetuin develop soft

tissue and intravascular calcification, especially when chal-

lenged with Vitamin D [36]. Of particular interest, a recent

cross-sectional study in 312 stable hemodialysis patients

showed that fetuin concentrations were significantly lower

in patients on dialysis and correlated with increased risk of
Table 1

Vascular calcification phenotypes in mouse mutant strains

Gene

Mouse

mutant Phen

Carbonic anhydrase II (Car2) Car2� /� Osteo

arteri

Fetuin/a2-HS-glycoprotein Fetuin� /� Vascu

Fibrillin-1 MgD /mgD,

mgR/mgR

Aorti

h-Glucosidase Klotho� /� Vascu

MGP MGP� /� Vascu

OPN OPN� /� Enha

OPN� /�

MGP� /�
impla

MGP

OPG OPG� /� Osteo

PC-1, NPP1, Npps ttw/ttw Artic

Smad6/Madh6 Madh6-

mutant

Endo
cardiovascular death [49]. Thus, fetuin deficiency may

contribute to excess vascular calcification observed in end

stage renal disease (ESRD) patients.

Another interesting protein is osteopontin (OPN). We

[50–52] and others [53–57] have reported that OPN is

abundant at sites of calcification in human atherosclerotic

plaques and in calcified aortic valves but is not found in

normal arteries. OPN is an acidic phosphoprotein normally

found in mineralized tissues such as bones and teeth and

thought to be involved in regulation of mineralization by

acting as an inhibitor of apatite crystal growth, as well as

promoting osteoclast function through the avh3 integrin

(reviewed in Ref. [58]). While OPN knock-out (OPN�/�)

mice do not have an overt bone or vascular phenotype,

they are completely protected from ovariectomy-induced
otype References

petrosis, calcification of small arteries and

oles, especially in the kidney

[34]

lar and soft tissue calcification [35,36]

c aneurysm, medial arterial calcification [37]

lar calcification, aging [38]

lar, valve and cartilage calcification [33]

nced calcification of subcutaneously [39,40]

nted valve; increased medial calcification in
� /� background.

porosis, vascular calcification [41]

ular cartilage calcification, arterial calcification [42,43]

cardial cushion defects, aortic ossification [44]
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osteoporosis [59] and PTH-induced bone resorption [60],

confirming the important function of OPN in mediating

bone resorption. Interestingly, in a subcutaneous implanta-

tion model, a 5- to 10-fold greater calcification was

achieved in glutaraldehyde-fixed porcine aortic valve leaf-

lets explanted from OPN� /� mice versus OPN wild types

(OPN+ /+ ). Subsequent histological analysis of the calcified

leaflets from OPN+ / + animals showed colocalization of

OPN and calcium deposits, suggesting the inhibitory role of

OPN. In addition, heterozygous mice showed early calcifi-

cation of implants at 14 days, with subsequent regression at

30 days. The regression was further found to correlate with

the accumulation of OPN and carbonic anhydrase II (CAII)

expressing monocyte-derived cells, including macrophages

and foreign body giant cells, and subsequent acidification

of the implants [39]. Finally, the role of OPN in calcifica-

tion of native blood vessels has been determined in an

MGP� /� OPN� /� double knockout model. MGP�/�

OPN� /� mice showed an accelerated and enhanced vascu-

lar calcification compared to MGP� /� OPN+ / + mice;

arterial calcification of MGP�/� OPN�/� mice was twice

as much as MGP� /� OPN+ / + at 2 weeks and over 3 times

as much at 4 weeks [40]. These studies showed that OPN

acts as an inducible inhibitor in an adaptive response of

vascular injury, not only through inhibiting crystal growth

but also promoting active regression.

Lastly, mice carrying a Car2 null allele (Car2�/�) lack

CAII protein and show age-dependent medial calcification in

arterioles and small arteries including renal hilar and arcuate

arteries [34]. CAII appears in abundance in various epithelial

and nonepithelial cells including monocyte-derived macro-

phages, foreign body giant cells, and osteoclasts. The en-

zyme catalyzes the H2O+CO2 X H++HCO3
� reaction and

thus provides protons and bicarbonate ions to the local

microenvironment. In osteoclasts, active CAII allows mas-

sive acid secretion into a sealed microenvironment known as

the resorption lacunae and together with specialized protei-

nases that degrade the organic matrix, the bone mineral is

dissolved and resorbed by the cells [61]. Whether this

activity applies to vascular mineral is unclear, although a

syndrome of osteopetrosis and cerebral calcification was

observed in a rare inherited disease as a result of CAII

deficiency [62].

3.2. Theory 2: Induction of bone formation

As mentioned above, ectopic bone, in addition to diffuse

matrix mineralization, is often found in calcified arteries

[22]. In addition, several different groups have confirmed

that isolated arterial medial cells can be induced to mineral-

ize in vitro under the appropriate conditions [29,63,64].

Furthermore, SMC undergo a striking phenotypic transition

to cells resembling osteo/chondrogenic precursors both in

vivo and in vitro under mineralizing conditions [27,65].

Thus, it has been proposed that vascular calcification may

represent a recapitulation of embryonic bone formation.
Whether pluripotent stem cells, transdifferentiation of

SMC, or both mechanisms are involved is not yet known,

but data supporting these possibilities have emerged.

Bostrom et al. [27,63] identified and isolated a clonal

population of arterial medial cells, termed calcifying vascu-

lar cells (CVC), that spontaneously formed nodules that

mineralized in vitro under long-term culture. These cells

showed osteoblastic features, including expression of alka-

line phosphatase and osteocalcin. The CVC have more

recently been shown to undergo additional developmental

fates including adipogenesis depending on the culture con-

ditions [66]. Thus, these data support the presence of a

pluripotent stem cell-like population within the artery wall

capable of osteogenic differentiation that might be involved

in vascular calcification under pathological conditions.

In contrast to CVC, heterogenous uncloned populations

of SMC do not spontaneously mineralize in culture but can

be induced to mineralize by elevating phosphate levels in

the medium (either in the form of the organic phosphate

donor, beta glycerophosphate, or inorganic phosphorus

[64,67]). Of particular relevance to vascular calcification

in the CKD patients, phosphate levels in the hyperphos-

phatemic range ( > 2 mM) induced calcification of bovine

and human aortic smooth muscle cells via a mechanism

sensitive to inhibitors of sodium-dependent phosphate

cotransport (NPC) [67]. Furthermore, elevated phosphate

levels induced SMCs to undergo a phenotypic transition

characterized by loss of smooth muscle cell markers (SM

a-actin and SM22a) and gain of osteogenic markers (OPN,

Cbfa-1, alkaline phosphatase, and osteocalcin) [65]. The

phenotypic transition was also inhibited by NPC inhibitors,

suggesting that increased phosphate uptake may lead to

transdifferentiation of smooth muscle cells to a prominer-

alizing cell type similar to osteoblasts or chondrocytes

[67]. Almost identical changes in cell lineage marker

expression were observed in the calcified blood vessels

of MGP�/� mice [65] and SMCs isolated from the calci-

fied arteries of MGP�/� mice (Speer and Giachelli, un-

published data) and also in biopsy specimens from patients

with calciphylaxis [68]. More interestingly, analysis of

calcified arteries of the older MGP�/� mice showed the

existence of cells with chondrocytic features, including

hypertrophic chondrocyte-like cells surrounded by a typical

metachromatic cartilage matrix [33].

Evidence in support of the transdifferentiation of vascular

SMCs was also raised by Schulick et al. [69] in a different

animal model. Using an in vivo gene delivery model, an

adenoviral vector expressing active transforming growth

factor-h1 (TGF-h1), rat arterial SMCs were found to have

lost their lineage markers; about 10–25% of all intimal and

medial cells were chondrocyte-like, and cartilaginous meta-

plasia appeared as a result of local accumulation of active

TGF-h1. Cartilage gives rise to bone via a process known as
endochondral bone formation and is the major developmen-

tal mechanism for long bone formation. Indeed, TGF-h1 was
found to present in calcified aortic valve and to colocalize
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with calcification and bone formation in atherosclerotic

lesions [70,71].

Finally, both stimulators and inhibitors of CVC and SMC

mineralization in vitro have been identified and are listed in

Table 2. Further work in characterizing these molecules is

needed and may aid in the development of novel therapeutic

agents to prevent or regress vascular calcification, especially

in high-risk populations.

3.3. Theory 3: circulating nucleational complexes

A growing number of studies have linked bone remodel-

ing, specifically osteoclastic resorptive activity, with vascu-

lar calcification. First, mice deficient in osteoprotegerin

(OPG), a soluble member of the TNFa family, are osteo-

porotic and show vascular calcification, suggesting that

OPG and its regulators may be important in explaining the

link between CVD and osteoporosis [41]. Indeed, recent

studies have elucidated a key role for OPG as an osteoblast-

derived inhibitor of osteoclast differentiation and function

by virtue of its ability to bind receptor activator of NFnB
ligand (RANKL), and thereby block function of receptor

activator of NFnB (RANK) [89]. While much less is known

about effects of OPG on vascular cells, Price et al. [94] have

found that OPG and the bisphosphonates, alendronate and

ibandronate inhibit arterial calcification in warfarin- and/or

vitamin D-treated rats at doses comparable to those used to

inhibit bone resorption [90,91]. In a subsequent study, they

used a specific inhibitor of osteoclastic V-H+-ATPase, SB

242784, and were able to block both vascular calcification

and osteoclastic resorption in rats treated with toxic doses of

vitamin D [92]. These findings have led to the hypothesis

that vascular calcification is linked to osteoclastic resorp-

tion. Price et al. [92] suggest that soft tissue calcification is

promoted by crystal nuclei generated at sites of bone

resorption that travel in blood and lodge in soft tissue,

thereby inducing tissue mineralization. Indeed, these authors

have observed that under some circumstances, a complex

consisting of a calcium phosphate mineral and the proteins
Table 2

Modulators of vascular cell calcification in vitro

Stimulator References Stimulator

Acetylated LDLa [72] 25-OH cholesterola

Advanced glycation

endproductsb
[74] Oxidative stress

collagen Ia [76] Phosphateb

Dexamethasoneb [79] TGFha

17 h-estradiola [81] TNFaa

Fibronectina [76] TNFa+oncostatinb

IL-4 and IL-6a [83] Uremic serumb

Leptina [86] vitamin D3b

Minimally modified LDLa [88]

a Calcifying vascular cells.
b Smooth muscle cells.
c Pericytes.
fetuin and MGP are released from bone and can be detected

in blood, and the release of the complex can be inhibited by

osteoclastic inhibition [93]. This hypothesis is appealing

given the link between postmenopausal osteoporosis and

cardiovascular calcification [94] for which no mechanistic

data are yet available. However, how such a circulating

nucleating complex crosses the endothelial barrier is un-

known. Furthermore, if bisphosphonates and other osteo-

clastic inhibitors prove to be effective against CVD in

postmenopausal women, this would be useful as the latest

studies indicate that hormone replacement therapy is nega-

tively correlated to cardiovascular health [95].

3.4. Theory 4: cell death

Cell death has long been regarded as a major nuclea-

tional mechanism for vascular calcification, especially in

the case of dystrophic calcification as seen in atheroscle-

rotic lesions where large areas of necrosis are typically

observed. It is known that dying cells become highly

permeable to calcium and phosphate and may therefore

concentrate these ions beyond their solubility product and

facilitate homogeneous nucleation of crystals. In addition,

phospholipid membranes may provide sites for heteroge-

neous nucleation and/or epitactic growth of calcium phos-

phate crystals [96]. Indeed, matrix vesicles, the known

nucleation sites for calcium phosphate crystal formation

in cartilage and bone, were observed in calcifying vascular

lesions and appeared to be derived from dying SMCs [97].

The association of cell death with calcification of SMCs

was also studied in vitro in cultured SMC nodules. Apo-

ptosis was found to occur before the onset of nodular

calcification of SMCs; and stimulation or inhibition of

nodular apoptosis increased or decreased SMC calcifica-

tion, respectively. More interestingly, apoptotic bodies

isolated from SMC cultures were found to accumulate

calcium. Like matrix vesicles, the calcium concentrated

inside the apoptotic bodies was in crystallized forms [98].

These observations provide evidence that apoptotic bodies
References Inhibitor References

[63] Adrenomedullinb [73]

[75] Collagen IVa [76]

[64,67,77,78] C-type natriuretic peptideb [73]

[63] Gas6/Axlc [80]

[82] High-density lipoprotein (HDL)b [83]

[84] Osteopontinb [28,29]

[77] Parathyroid-related proteinb [73,85]

[87] Phosphonoformic acid (PFA)b [67]



M.Y. Speer, C.M. Giachelli / Cardiovascular Pathology 13 (2004) 63–7068
derived from cultured SMCs can act as initiating and

nucleating sites for calcium phosphate deposition. The link

between apoptotic bodies and matrix vesicles, however, has

not been established.
4. Conclusions

It has become clear that elaborate and highly regulated

mechanisms exist for controlling vascular calcification. In

normal vessels, inhibitory mechanisms appear to outweigh

inductive mechanisms thereby preventing mineralization.

Under pathological conditions, inductive mechanisms ap-

pear to override inhibitory mechanisms. Increasing our

understanding of inhibitory and stimulatory pathways will

aid in developing therapeutic strategies to prevent vascular

calcification, an urgent need in the CKD population.
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