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Abstract—Since large-scale and data-intensive applications
have been widely deployed, there is a growing demand for
high-performance storage systems to support data-intensive ap-
plications. Compared with traditional storage systems, next-
generation systems will embrace dedicated processor to reduce
computational load of host machines and will have hybrid
combinations of different storage devices. The advent of flash-
memory-based solid state disk has become a critical role in
revolutionizing the storage world. However, instead of simply
replacing the traditional magnetic hard disk with the solid state
disk, it is believed that finding a complementary approach to
corporate both of them is more challenging and attractive. This
paper explores an idea of active storage, an emerging new storage
configuration, in terms of the architecture and design, the parallel
processing capability, the cooperation of other machines in cluster
computing environment, and a disk configuration, the hybrid
combination of different types of disk drives. Experimental
results indicate that the proposed HcDD achieves better I/O
performance and longer storage system lifespan.
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I. INTRODUCTION

Recently, the use of NAND-flash-based Solid State Devices
(hereinafter referred to as SSDs) has evolved from specialized
applications in mobile devices [7] and laptops to primary
system storages in general-purpose computers and even data
centers [23]. Evidence shows that tapes are used as archiving
method, while disks 3serve as primary storage device for
mainstream systems and flash based storage devices are taking
place of disks in high-end systems [13]. Different from HDDs
(a.k.a. magnetic hard disk drives) which rely on mechanical
moving parts, SSDs are completely built on semiconductor
chips resulting in high random access performance and lower
power consumption. In addition, the cost of commodity NAND
flash – often cited as the primary barrier to SSD deployment
[24] – keeps decreasing, which increases the possibility for
dynastic changes in the storage arena. Although SSDs begin
to be deployed in advanced data service institutions, engineers

still hesitate somehow to perform a large-scale deployment
of SSDs in data centers due to their poor reliability and the
limited lifespan issues [3].

As the cost of NAND flash has declined with increased
density, the number of erase cycles that a flash cell can tolerate,
on which the number of write operations depends (because
of the erase-before-write characteristic), has suffered. Mean-
while, server applications, such as OLTP (Online Transaction
Processing) [14], normally demand a high-performance and
highly reliable storage system. Some researchers believe that
the stressful workload and limited available erase cycles may
further reduce lifetimes of SSDs, in some cases, even to less
than one year [31]. From another perspective, when building
terascale or petascale servers and data centers using only
SSDs rather than HDDs, the cost – even though with the
decreasing price of SSDs – is often beyond the acceptable
budgets in most cases. Thus, HDDs are still regarded as
indispensable components in the storage hierarchy because
of their merits of low cost, huge capacity, above-average
reliability, and fast sequential access speed. Instead of simply
replacing HDDs with SSDs, researchers [32][21][16][26][8]
are looking for complementary approaches that balance the
performance, reliability and cost of storage.

In this paper, we propose a hybrid combination of disk
arrays for active storage systems called HcDD. The hybrid-
disk design involves an enhanced duo-buffer structure, which
consists (1) a HDD-write buffer to serve and de-duplicate
write requests and (2) an on-SSD buffer to provide parallel
write processing. Read requests are all served by SSDs directly
while writes to an active storage are firstly transferred to its
HDD buffer and perform de-duplication before migrating to
an SSD. The de-duplication computation and I/O operations
from the buffer disk to the major storage disk are offloaded
to the dedicated processor in the active storage. This paper
also introduces an enhanced version of SSDs buffer, which
supports internal parallelism processing. Together, the goal of



this paper is to minimize the number of writes sent to SSDs
without significantly affecting the performance; by doing so,
it reduces the number of erase cycles and thus extends SSDs
lifetime.

The major contributions are as follows:
• We design and simulate a hybrid combination of storage

devices for active storage systems.
• An HDD in our design is first assigned as a write buffer

to SSDs, thereby supporting de-duplication service.
• We design and simulate the internal-parallelism support-

ing cache on SSDs.
• A system simulator is built to evaluate the hybrid drives

combination in active storage systems.
The discussion of HcDD is followed by experimental results

and the performance evaluation in Section III. Section IV
briefly introduces the background and related work. Last but
no the least, Section V is the conclusion.

II. THE DESIGN OF HCDD – A HYBRID COMBINATION OF
DISK DEVICES

A. System Architecture

In this section, we present the design of a hybrid disk system
model called the Hybrid combination of Disk Drives in active
storage systems (hereinafter referred as HcDD). The major
goals of the HcDD are to (1) extend the lifespan and improve
the reliability of SSDs, (2) make the use of the storage space
and (3) improve the write performance of SSDs by eliminating
duplications and redundant data.

Below are descriptions of modules that an active storage
system consists.

• Disk Drive The disk drive is a major component in any
storage system, where data are permanently stored.

• Controller The controller is a processing unit (i.e. data
management unit) for disks in a storage system. The con-
troller communicates between disks and host machines,
manages disk drives, and distributes data among disks.

• De-duplication Engine It is in charge of computing
fingerprints for incoming requests, looking the requests
up in a fingerprint table, and deciding whether requests
should be written to SSDs.

Figure 1 depicts the architecture of a HcDD in an active
storage system. The active storage system has its own compu-
tation facilities (i.e., a dedicated processor), the memory and
storage facilities, including a disk controller, a de-duplication
engine as well as some disk drives. And there is a hybrid
combination of two kinds of storage devices – SSDs serving
as main data disks, and HDDs serving as the write buffers –
in each HcDD. Further, we enhance on-SSD buffer to support
of internal parallelism processing.

B. Hybrid Combination of Storage Drives

Figure 2 is the configuration of the simulated hybrid com-
bination of storage drives. The HcDD system mainly contains
three types of modules: a controller, a de-duplication engine,
and storage devices. The controller module is in charge of
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Fig. 1: The System Configuration of HcDD: A Hybrid Active
Storage System

managing and distributing input I/O requests. The duplication
engine compares the fingerprint of each write request with
existing ones in a fingerprint table. To simulate the storage
system, we integrated DiskSim in our system. DiskSim, devel-
oped by Ganger et al [12][11], is a well-known disk simulator.
DiskSim has been validated against several disk drives using
the the published disk specifications and I/O workload traces.
Since DiskSim only support the storage-level simulation, the
developers also provide programming interfaces to integrate
DiskSim with any system-level simulator.

The proposed hybrid storage model integrates both cost-
effective HDDs and high-speed SSDs as a hybrid combi-
nation storage component in the active storage system. The
controller handles data distribution, which avoid undesirable
significant changes to existing file systems and applications.
The controller directs write requests to a buffer disk (i.e.,
HDD) and sends the read requests to the SSDs. Thus, in
terms of read operations, the overhead caused by the controller
can be ignored; there is no performance interference since the
controller simply redirects requests without any computation
overhead. Once a write request is issued by a host machine,
the data will be written on the buffer disk of the active
storage node. As soon as the data is buffed on the HDD,
the data will be processed by the dedicated de-duplication
engine, which calculates the hash value and looks the data
up in the hash table – before sending the data to the next
step. Then, the de-duplicated data will be written to SSDs.
The duplicates are mapped to existing ones and removed
from the buffer disk. We consider the de-duplication process
hybrid in nature because of the following reasons. From the
perspective of the host machine, all the request are handled in-
line; meaning that there is no calculation workload and thus
no waiting time required. Meanwhile, within the active node,
the de-duplication is handled more similar to the post-process
pattern, which stores new data on the storage media and then
the de-duplication engine will analyze the data looking for
redundancy as soon as possible.

The workflow of de-duplication engine is introduced in
Figure 3. When a write request of the input workload trace
is received at the buffer disk, the processing of de-duplication
can be described in four steps:
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Fig. 2: The System Configuration of HcDD: A Hybrid Active
Storage System

1) Before data are written to the buffer disk, the incoming
request triggers the de-duplication engine in the active
storage node.

2) Each updated page in the buffer is computed a hash
value (i.e. hash fingerprint) by the dedicated processor
of the active storage node.

3) Then each hash value is looked up against a hash table,
which maintains the fingerprints of data already stored
in the SSD.

4) a) If the hash value is fresh (i.e., it is not found in the
table) the write is performed as a regular operation
in the SSD.

b) Otherwise, if the fingerprint is found, the map-
ping tables are updated by mapping the duplicate
request to the physical location of the residing
data. Then the write operation to flash is canceled.
The goal of this step is to minimize the number
of writes sent to the SSD without significantly
impacting the performance; in doing so, HcDD
reduces the number of erase cycles, which is the
performance bottleneck to the NAND flash. In
addition to improved performance, extending SSDs
lifetime is a second benefit gained from the de-
duplication service.
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Fig. 3: The Workflow of Hybrid Active Storage System

C. Intra-parallelism buffer on SSD

An SSD is built by arrays of NAND flash memory, which is
a semiconductor storage module [2][5]. Agrawals [2] describes

that an SSD has one or multiple identical elements (i.e.,
packages) and all of them can work in parallel. The challenge
is which part of the multiple elements should be in charge of
handling data distribution and parallel processing.

Unlike traditional hard drives, the flash-based storage has
a Flash Translation Layer (FTL) which maps Logic Block
Number (LBN) to Physical Block Number (PBN). Also, a
remapping algorithm is designed in FTL for wear leveling.
Thus, the block number in file system level is not the block
number in flash memory level. Based on different remapping
algorithms, the same LBN may lead to different PBN at
different time periods. Hence, a buffer must be designed in
the lower level of FTL to keep data consistency. We chose
to use Synchronous Dynamic Random Access Memory (or
SDRAM) as an on-board buffer for its high performance. The
on-board buffer is the lower-level buffer in our duo-buffer
design. Since the performance of random writes, especially
re-writes, is the Achilles heel in flash memory, the buffer is
designed for buffering only write requests.

Figure 4 presents the software structure of an enhanced
SSD with SDRAM buffer. In the buffer, the number of lists
is the same as that of packages. Each list contains data for
its corresponding package. Since the buffer is built under
FTL, the granularity in the buffer is 8 KB page. The size
of pages can be tuned. Recall that all requests buffering in
SDRAM are writes. Once the buffer is full, our algorithm will
assign the same number of pages to each package in parallel
since all packages are able to work independently. Below we
presents an algorithm to enhance parallelisms by buffering
writes (Algorithm 1). Even though there are nested loops,
the number of parallelism pages and the number of packages
are both small and fixed values, the time complexity is still
approximately O(n), where n is the number of packages.
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Fig. 4: The Workflow of On-board Buffer

III. EXPERIMENTAL RESULTS AND EVALUATIONS

The HcDD storage system is implemented and evaluated
based on a comprehensive trace-driven simulator. The reasons
that we conduct the HcDD using the simulation are twofold:
firstly the modification of both the disk controller and the
FTL module of SSDs heavily rely on supports from hardware
vendors. However, unfortunately, such supports are hard to
obtain due to the commerce issues; and, secondly, it is



Algorithm 1 Enhancing Package-Level Parallelism Algorithm.
r represents one request. Li represents the List stores the
request in the buffer for the ith package. Pn represents the
nth package.

if rcurrent is a write request then
find its corresponding package Pi

for rj ← all requests in Li do
if rj = rcurrent then

remove rj
end ifadd rcurrent to Ltail

i

end for
if buffer is full then

for m← number of parallelism pages do
for n← number of packages do

issue Lhead
n to Pn

end for
end for

end if
end if

rational and economical to evaluate the performance of an
emerging architecture under a low-lost simulation environment
before pushing the architecture to implementation. This section
presents the experiment environment along with results from
the HcDD simulation studies under a variety of configurations.

A. The Experiment Configurations

The HcDD emulates the behaviors of a hybrid active storage
systems with two types of disk drive modules. The HDD
module, a 15,000 RPM Seagate Cheetah 15.5K SAS hard
disk drive, is provided by DiskSim 4.0 [11], which emulates a
hierarchy of storage components including buses, controllers,
and disks. The enhanced SSD module supporting internal-
parallelism processing is implemented in a sophisticated SSD
simulator, from Microsoft Research SSD extension [22] for
the DiskSim simulation environment [11]. Although the Mi-
crosoft extension implements the major components of FTL
(i.e., indirect mapping, garbage collection and wear-leveling
policies), it does not have a on-board buffer, which is an
essential facility in newly released commodities. Thus, we
designed and implemented an enhanced on-board buffer.

We evaluate the HcDD design by running simulations upon
three real-world application traces (see Table I): traceKernel,
tracePhoenix, and Finanical2 [1]. “traceKernel” was collected
while a target machine compiling the Linux kernel. “tra-
cePhoenix” was collected while the target machine running a
MapReduce application, WordCount, provided by the Phoenix
MapReduce System [28]. “Financial” is from OLTP (Online
Transaction Processing) applications running at a large fi-
nancial institution provided by the laboratory for Advanced
System Software of University of Massachusetts Amherst.
traceKernel and tracePhoenix are collected on a HP ProLiant
ML110 G6 workstation with an Intel Xeon X3430 processor,
a 2GB main memory, and a 500GB 7,200 RPM Seagate
Barracuda hard disk drive. The operating system is Ubuntu

10.10 with the Ext3 file system. The logical address of all
traces were evenly shrunk so that each requests address can
be mapped to a physical address within the scope of the SSD
configuration (32GB in this study). Table 5.2 presents the
features of the three traces.

TABLE I: Num of Read/Write Requests

Trace Read Requests Write Requests
traceKernel 84,847 70,243

tracePhoenix 822,909 155,413
Financial 2,252,549 480,127

B. Internal Parallelism Supported Buffer for SSD

An SSD has one or multiple identical elements (i.e. pack-
ages) and all of them can work in parallel. In this section,
we compare our internal-parallel SSD algorithm against the
classic LRU cache management algorithm. The performance
impact of parallelism levels and buffer size are presented and
discussed as follows.

In this test, two general purpose traces provided by the
Microsoft Research SSD extension [22], iozone and postmark,
are evaluated. The size of write buffer scales from 1 MB to
64 MB. From Fig. 5, we observe that when the buffer size is
small (1 MB or 2MB), internal-parallelism scheme surpasses
the LRU one. However, when as the buffer size increases,
the average response time of the internal-parallelism scheme
is either similar to the competitor or worse. Thus, in Section
5.4.4, we choose a 1 MB buffer in the HcDD simulator.
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Fig. 5: Performance Comparison of IOzone and Postmark

C. System Performance Evaluation

In this section, we evaluate the the response time and the
average response time of the HcDD by comparing then with
three traditional storage architectures, Trad.Hybrid (i.e., the
traditional hybrid mechanisms that no buffers are involved),
SSDs (i.e., the storage systems that exclusively make use
of SSD devices), and HDDs (i.e., the storage systems that
consist of hard disk drives only).

When compared with Trad.Hybrid (see Fig. 6 and Fig. 7),
the HcDD reduces both response time (averagely saved 12%
of response time) and average response time (averagely saved
13% of average response time). And as mentioned in the



previous section, there are 29.15%, 46.93% and 28.9% request
respectively removed from being issued to the SSD.
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Fig. 6: Processing Time Comparison between HcDD and
traditional hybrid storage
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Fig. 7: Average Response Time Comparison between HcDD and
traditional hybrid storage

In summary, based on the evaluation results, we can see that
HcDD fulfills the previous expectations. It not only responds
I/O requests with a very competitive speed (better than the
traditional hybrid disk), but it also removes duplicate writes,
which normally occupies 30% to 46% of the total requests, to
the SSD. It saves the storage space and extend the lifespan.
Thus, we can observe that HcDD is a promising hybrid storage
model, which balances the performance, saves the storage
space and extends the lifespan of the SSD, for data-intensive
server applications.

IV. RELATED WORK

A. SSD and Hybrid Storage

NAND-flash-memory based SSDs, which used to be storage
methods in mobile devices and lap-tops, play a rising role in
revolutionizing storage systems [9][17][18][19][20][27]. SSDs
are completely built on semiconductor chips without moving
units, giving rise to high random access performance and lower
power consumption. And the cost of commodity NAND flash
– often cited as the primary barrier to SSD deployment [24] –
has dropped significantly, increasing the possibility for dynas-
tic changes in the storage arena. In order to improve the storage
performance, the San Diego Supercomputer Center (SDSC)
has built a large flash-based cluster called Gordon, which
adopts 256TB of flash memory for the research purpose[6].

This research project is funded by a $20 million grant from
the U.S. National Science Foundation.

Different from the research scenario, however, business data
centers still are unable to adopt large-scale deployments of
SSDs due to its high Gigabyte per price (80/GB of an SSD
vs. 5/GB of an HDD [15][29]) and limited lifespan of SSDs.
When it comes to the limited lifespan, the challenge is that
every single block on a flash-based storage media has limited
erasure cycles and each block has to be erased before being
written. Thus erase-before-write operations not only degrade
an SSD write performance, but also shorten the SSD lifespan.

B. Internal Parallelism Processing on SSD

The inter-disk parallelism technique has been well explored
since decades ago. Data striping is the basic idea of inter-
disk parallelism. However, the result of applying the parallel
disks storage mechanism is that storage systems consume a
significant amount of energy– as mush as 27% of the energy in
a modern data center is consumed by storage devices [4][30].
Since (1) there is no mechanical movements in SSDs and
(2) an SSD has one or multiple identical elements which can
work in parallel [2], we have better chance to improve internal
parallelisms in SSDs than HDDs. Park pointed out that intra-
SSD parallelism is possible on die-level, package-level, and
plane-level. Furthermore, parallelism-aware request processing
is an effective solution to enhance intra-SSD parallelisms [25].
Chen and Zhang analyzed the essential roles of exploiting
internal parallelism SSDs in high-speed data processing [10].

Unlike HDDs, SSDs have a Flash Translation Layer (or
FTL) implemented to emulate a hard disk drive by exposing
an array of logical block addresses (LBAs) to the host. FTL
averagely spreads erase workloads on flash-based storage.
A ill-designed FTL algorithm not only reduces the SSDs
performance, but also wears out SSDs storage units rapidly.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a hybrid combination of disk
arrays designed for active storage system, using hard disk
drives as a write buffer to cache write requests and de-
duplicate the redundant write requests to the SSD. Read
requests are all served from SSDs directly.

In order to evaluate the proposed architecture, we design
and implement a trace-driven storage system simulator for
the hybrid active storage system. We compare our internal-
parallelism algorithm with the classic LRU scheme in terms
of single-SSD drive performance. The results shows that our
proposed algorithm outgoes LRU in most cases, when the
interleaving level is 8 and buffer size is 1 MB or 2 MB.
Then, we compare the overall performance of HcDD with
the other three storage configurations, including the traditional
hybrid storage scheme, the SSDs disk array and the HDDs disk
array. The evaluation results are generated using several traces
collected from daily usages and some applications in academic
and financial areas.
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