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Abstract

We introduce a novel heuristic global optimization method, energy landscape

paving (ELP), which combines core ideas from energy surface deformation and

tabu search. In appropriate limits, ELP reduces to existing techniques. The

approach is very general and flexible and is illustrated here on two protein

folding problems. For these examples, the technique gives faster convergence

to the global minimum than previous approaches.
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Global optimization is one of the key issues in modern science, technology and economy.

Typical examples are the problem of optimal transportation routes [1], finding molecular

conformations [2–4] or fitting experimental spectra. [5] Consequently, much effort has been

spent on designing methods to finding global optima. For this purpose, the system has to

be described by an objective function, and optimality is achieved when this function reaches

its global minimum. If the objective function is viewed as an ‘energy’ the optimal solution

corresponds to the deepest minimum in the energy landscape. For most applications of

practical interest, competing interactions and frustration in the system lead to an energy

landscape with many local minima separated by high barriers. Since conventional minimiza-

tion techniques tend to get trapped in whichever local minimum they encounter first it turns

out to be extremely difficult to find the global minimum in such cases.

A general characteristic of successful optimization techniques is that they avoid entrap-

ment in local minima and continue to explore the energy landscape for further solutions.

For instance, in tabu search [6,7] the search is guided away from areas that have already

been explored in an effort to cover all important regions of the solution space. The danger

with such an approach is that it may result in slow convergence since it does not distinguish

between important and less important regions of the landscape.

Entrapment in local minima can also be avoided if the search is performed in a deformed

or smoothed energy landscape, for example by lowering diffusion barriers, [8] in stochastic

tunneling [9] or the various generalized ensemble approaches. [3] In the optimal case the

original energy landscape is transformed in a funnel-landscape and convergence toward the

global minimum is fast. Although they have been very successful, most of these methods

require a considerable amount of fine-tuning or a priori information. Moreover, problems

may exist when connecting back to the original landscape since minima on the deformed

surface may have been displaced or merged.

Here we introduce a novel approach to the global optimization problem that combines

ideas from tabu search and energy landscape deformation. The new method, energy land-

scape paving (ELP), avoids some of the pitfalls of the other two and has very general ap-
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plicability. The central idea is to perform low-temperature Monte Carlo (MC) simulations,

but with a modified energy expression designed to steer the search away from regions that

have already been explored. To be specific, we choose as the statistical weight for a state

w(Ẽ) = e−Ẽ/kBT , (1)

where T is a (low) temperature and Ẽ the following replacement of the energy E:

E −→ Ẽ = E + f(H(q, t)) . (2)

In this expression, f(H(q, t)) is a function of the histogram H(q, t) in a pre-chosen “order

parameter” q. The histogram is updated at each MC step, hence the “time” dependence

of H(q, t). As a result, the search process keeps track of the number of prior explorations

of a particular region in order parameter space and biases against revisiting the same types

of states. Rather than using the system states themselves in the histograms an appropriate

order parameter is employed. This may be a “natural” quantity for the system under study

(such as a spheroidal deformation for a cluster) or the energy itself may be taken as the

order parameter.

In a regular low-temperature simulation the probability to escape a local minimum de-

pends only on the height of the surrounding energy barriers. Within ELP the weight of a

local minimum state decreases with the time the system stays in that minimum, and conse-

quently the probability to escape the minimum increases. Hence, ELP utilizes the interplay

of two factors. Given equal frequencies H(q, t), the simulation will favor low energies, thus

insuring that no unphysical high-energy conformations are sampled. However, soon the sys-

tem will run into a local minimum. With time, ELP deforms the energy landscape locally

in such way that the local minimum is no longer favored and the system will explore higher

energies. It will then either fall in a new local minimum or walk through this high energy

region till the corresponding histogram entries all have similar frequencies. At that point

the original energy landscape is restored (that is, only shifted by a constant (and irrelevant)

factor), and the system again has a bias toward low energies.
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ELP bears some similarities to tabu search [6,7] in that recently visited regions are not

likely to be revisited immediately. Revisitation moves are not completely forbidden, but are

given an exponentially lower weight compared to moves that go to regions with a comparable

energy that have been explored less. With a short-term memory in the histogram and infinite

cost for ‘forbidden’ moves ELP becomes completely equivalent to tabu search. On the other

hand, ELP is also akin to an energy deformation approach [3,8] in that the additional

histogram parameter may be viewed as a (continuously changing) deformation of the energy

landscape depending on the frequency with which a particular area (as characterized by

its order parameter) has already been explored. Obviously for f(H(q, t)) = f(H(q)) the

method reduces to the various generalized-ensemble methods. [3]

We have tested ELP in the context of protein folding, which involves the prediction of

the biologically active conformation of a protein solely from the sequence of amino acids.

Assuming that this structure is thermodynamically stable, it is reasonable to identify the

global-minimum conformation in the free energy at T ≈ 300 K with the lowest potential

energy conformation and to choose the potential energy of the protein as an objective func-

tion. The complexity and importance of the problem make it an ideal target for a test of

our new optimization technique.

As with any optimization method, ELP requires the choice of an energy function by which

the multitude of protein configurations can be discriminated. Here, we choose the ECEPP/2

force field, [11] a commonly used energy function in protein simulations, as implemented in

the computer code SMMP. [12]

In order to test and illustrate ELP, we concentrated on the structure prediction of

two molecules. The first system is the pentapeptide Met-enkephalin, which has be-

come a frequently used benchmark model to examine new algorithms. We know from

previous work that the ground state of this peptide with the ECEPP/2 force field is

given by E0 = −10.7 kcal/mol, and that the next higher local minimum has an en-

ergy of E1 = −9.8 kcal/mol. [13] Hence, we identify any configuration with energy below

E = −9.8 kcal/mol as a representative of the ground state.
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In the ELP simulations of Met-enkephalin, we used the potential energy itself as an order

parameter and thus the deformed energy landscape is generated by Ẽ = E+H(E, t), where

H(E, t) is the histogram in energy at MC sweep t. We chose a bin size Ebin = 0.25 kcal/mol

in the histogram, but checked our results also for Ebin = 0.5 kcal/mol and Ebin = 1 kcal/mol

without finding noticeable differences in our results. Setting the temperature to T = 50 K,

and with β = 1/kBT we find as a weight for the MC simulation:

w(E, t) = e−β(E+H(E,T )) . (3)

The characteristic behavior of our ELP method is exemplified in Fig. 1 which shows for

Met-enkephalin the time series of a simulation with 50,000 sweeps. The starting configura-

tion has an energy of Estart = −5.1 kcal/mol and was obtained from a random configuration

through quenching in initial 100 sweeps. The simulation soon gets trapped in a local mini-

mum of E ≈ −7.8 kcal/mol (after only 250 MC sweeps). Through the following MC sweeps

entries in the corresponding histogram bin are accumulated and the energy landscape locally

deformed, until after about 750 MC sweeps the simulation escapes this local minimum to

find a lower local minimum after 2000 MC sweeps. This process is repeated till the simula-

tion finds the global minimum conformation for the first time after 7260 sweeps. Within the

50,000 sweeps of our simulation the ground state region (E < −9.8 kcal/mol) was visited 5

times, each visit separated by explorations in the high energy region.

Note that the range of energies covered increases with MC time: ELP starts with filling

up the small ‘potholes’ in the energy landscape, but later in the simulation large valleys are

also filled up. Hence, our algorithm is self-adjusting: with increasing length of the simulation

it becomes possible to overcome higher and higher energy barriers. In that regard, ELP is

more efficient than standard techniques such as simulated annealing [10] where the height of

energy barriers that can be overcome shrinks with MC time. In order to test that conjecture

we performed 20 independent runs of 50,000 MC sweeps with ELP and compared the results

with 20 simulated annealing runs of equal statistics. In the simulated annealing runs the

temperature was lowered exponentially in 50,000 sweeps from an initial temperature T =
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1000 K to a final temperature T = 50 K. In Ref. [14] this proved to be the optimal annealing

schedule for Met-enkephalin. Even with this optimized annealing schedule, the ground state

was found only in 8/20 = 40% of the runs (in an average time of 43,000 MC sweeps) and the

average value of the lowest energy conformation (< Emin >= −8.5 kcal/mol) was above our

threshold for ground state configurations (−9.8 kcal/mol) and subject to large fluctuations

(with standard deviation σ = 2.1 kcal/mol). Better results were obtained in 20 tabu search

runs with same statistics. Here the ground state region was found in 10/20 = 50% of the runs

and the average value of the lowest energy conformations was < Emin >= −9.5kcal/mol. On

the other hand, with ELP we found the ground state in each of the 20 runs (in, on average,

12,700 MC sweeps) and the average of lowest energy states < Emin >= −10.3 kcal/mol was

well below our threshold for ground state configuration, subject to only small fluctuations

(σ = 0.3 kcal/mol).

In order to further evaluate the ELP approach we also studied the much larger villin

headpiece subdomain, 36-residue peptide (HP-36) that is with 597 atoms about 8 times

larger than Met-enkephalin (75 atoms). HP-36 is one of the smallest peptides that can fold

autonomously and was chosen recently for a 1-microsecond molecular dynamics simulation of

protein folding. [15] The experimental structure was determined by NMR analyses. [16] Since

it is a solvated molecule we also had to take into account the interaction between protein

and solvent. We have approximated this contribution to the overall energy by adding a

solvent accessible surface term [19] to the energy function: E = EEcepp/2 +
∑

i σiAi . Here,

the sum goes over all atoms and the Ai are the solvent accessible surface areas of the atoms.

The parameters σi were chosen from Ref. [20].

HP-36 allows in a simple way the definition of an order parameter to characterize con-

figurations other than by their energy. This natural order parameter is the number nH of

residues in the peptide which are part of an α−helix. Following earlier work [17] we define

a residue as helical if the pair of backbone dihedral angles φ, ψ takes a value in the range

(−70±20,−37±20). Throughout the search process we tried now to deform the energy land-

scape by means of a histogram H(E, nH , t) in both helicity and energy: Ẽ = E+H(E, nH, t).
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Operating again at a temperature T = 50 K, we find as weights for the search algorithm

w(E, nH , t) = e−β(E+H(E,nH ,t)) . (4)

Using this weight we performed simulations with 50,000 MC sweeps (starting from random

configurations) keeping track of the lowest energy configuration during the search process.

The structure of HP-36 as obtained from the Protein Data Bank (PDB code 1vii) is

shown in Fig. 2. The structure consists of three helices between residues 4-8, 15-18, and 23-

32, respectively, which are connected by a loop and a turn. After regularizing this structure

with the program FANTOM [18] we obtained as its energy (ECEPP/2 + solvation term)

Enat = −276 kcal/mol. Our new ELP method led after 25,712 MC sweeps to a configuration

with lowest energy Emin = −277 kcal/mol which we show in Fig. 3. The above structure

has a radius of gyration Rγ = 10.1 Å indicating that the numerically obtained structure

is slightly less compact than the experimental structure (Rγ = 9.6Å). It consists of three

helices where the first helix stretches from residue 2 to residue 11 and is more elongated

than the corresponding one in the native structure (residues 4-8). The second helix consist

of residues 13-17 (compared to residue 15-18 in the native structure) and the third helix

stretches from residue 23-33 (residues 23-32 in the PDB structure). The structure has 95%

of the native helical content, that is 95% of all residues which are part of a helix in the

experimental structure are also part of a helix in our structure. We also note that 65%

of the native contacts were formed in our structure (two residues i and j (j > i + 2) are

taken to be in contact if their Cα atoms are closer than 8.5 Å). Both values are comparable

with the results in Ref. [15] (but required orders of magnitude less computer time) where

the optimal structure of a 1 µs molecular dynamic folding simulation showed 80% of native

helical content and 62 % of native contacts. Similarly comparable were the values of the root-

mean-square deviation (RMSD) of both numerically determined conformers to the native

structure: 5.8 Å versus 5.7 Å in Ref. [15] when all backbone atoms where counted.

We conclude that even for large peptides such as HP-36 our novel optimization method

is able to find structures that are close to the experimentally determined ones. In passing,
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we remark that an exploratory simulated annealing run of 100,000 sweeps did not lead to

such structures. However, our ELP prediction of the HP-36 structure is limited to an RMSD

of ≈ 6 Å. This points to a general problem in protein simulations: it is not clear whether

the utilized cost function has indeed the biologically active structure of a given protein as its

global minimum. In fact, our optimal structure has slightly lower energy than the native one.

The problem becomes obvious when solvation effects are neglected. An ELP run of 50,000

sweeps relying only on the ECEPP/2 force field led to a lowest-energy structure with an

ECEPP energy of EGP = −192 kcal/mol (found after 25,712 sweeps). That structure, build

out of two helices (between residues 2-16 and 23-33) connected by a loop, differs significantly

from the regularized PDB-structure with the higher potential energy Enat = −176 kcal/mol.

Hence, the native structure of the peptide HP-36 is not the global minimum configuration

in ECEPP/2. Only the inclusion of the solvation term led to an essentially correct structure

as global minimum configuration.

Summarizing, we have developed a new and general stochastic global optimization

method that is easy to implement and combines energy landscape deformation ideas with

elements of tabu search. The efficiency of ELP was compared with simulated annealing

[10] and tabu search. [6,7] To illustrate the power of our novel approach, we applied it to

the structure prediction of HP-36, a 36 residue peptide. For this large peptide an unbiased

all-atom simulation using ELP led to a 3D structure very close to the experimentally de-

termined one. In future work we want to extend application of our new approach to other

optimization problems. [21]
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Figures:

1. Time series of a minimization run of 50,000 sweeps for the pentapeptide Met-

enkephalin.

2. NMR derived structure of the 36 residue peptide HP-36 as obtained from the PDB

data base (1vii).

3. Lowest-energy structure of HP-36 as obtained with ELP.
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FIG. 1. Time series of a minimization run of 50,000 sweeps for the pentapeptide

Met-enkephalin.
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FIG. 2. NMR derived structure of the 36 residue peptide HP-36 as obtained from the PDB

data base (1vii).
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FIG. 3. Lowest-energy structure of HP-36 as obtained with ELP.
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