Typing and Subtyping for the Termination of Mobile Processes

Toana Cristescu

Training period at LIP, ENS Lyon, march-june 2011

Abstract. We propose a method for ensuring termination in concurrent programming languages. In
our work we rely on m-calculus, a theoretical model useful for proving the method’s correctness. Our
solution is based on the description of a type system which combines previously used techniques for
termination and an ordering on types, often employed in 7-calculus, i/o subtyping. Our approach seems
well-suited for the analysis of Erlang, a programming language emulating behaviour of mobile processes.
We enrich the expressiveness of our type system by adapting it so that it contains an encoding of the
A-calculus. A brief description of the implementation of our work in Erlang is also available.

1 Introduction

During this internship, I worked in the Plume research team part of the LIP computer science laboratories,
under the supervision of Daniel Hirschkoff. We worked on the termination property guaranteed by some type
systems describing the behaviour of concurrent processes and our work was a continuation of the PhD thesis
of Romain Demangeon [Dem10]. A more technical description of our results is available in [CH11].

Distributed programming and termination properties

The emergence of distributed systems as cost effective and generally applicable solutions for an increasing
number of computational problems led to the need of finding concurrent algorithms and programming lan-
guages to run on such systems. Concurrent computing and a corresponding formalism that would assert
its correctness are gaining in interest. Within an interactive system there are many forms of interprocess
communication. The most used is probably message passing, which emulates the behaviour of independent
systems connected through a network. Such a model of communication is exemplified by the Erlang pro-
gramming language, [Lab11] which offers powerful primitives for managing processes and their asynchronous
communication. As an example consider the Erlang program consisting of two processes sending the messages
ping and pong to each other. We use the function spawn to create processes, the expression Pid ! message
to send a message to a process with identifier Pid and the structure receive message — handle message
to receive a message. In our work, this is the kind of programs we focused on while reasoning over processes
communication.

% the main function creating the two processes
start() -> PongPid = spawn(ex, pong, []), spawn(ex, ping, [PongPid]).

% process 1 : first sends (ping) and then receives (pong) a message from process 2
ping(PongPid) -> PongPid ! {ping, self()},

receive pong -> print("Ping received pong")

end.

% process 2 : after receiving a message, it sends one to process 1
pong() -> receive {ping, PingPid} -> print("Pong received ping"), PingPid ! pong
end.

An important property in concurrent systems is termination. As shown in [KS10] termination guarantees
lock-freedom, that is it guarantees the absence of concurrent races. At first sight, terminating processes
are processes that eventually end their interactions with the environment. However, servers and other such

concurrent systems that are expected to offer interaction continuously also need to be modelled. In this case
termination refers to when those systems are engaging in an interaction with a process, in which case their
exchange will eventually end. For instance, when a server offers access to a resource, we have to guarantee
that after usage, the resource is again available. In other words, we want to avoid infinite internal activity
within a process.

w-calculus as a model of concurrent and mobile computation

With the growth of the interactive systems’ usage also appeared the necessity of building mathematical tools
that would lead to precise and correct properties about these systems. This is the purpose of w-calculus
[SWO01], to be a model for mobile computing, the way A-calculus is for sequential computational systems. In
m-calculus the interaction between processes is viewed as processes communicating with each other through
channels. The basic entity used is the name of a channel. Two processes can interact if they share a name
and their interaction consists in exchanging names. They can either exchange a single name, in which case we
have a monadic m-calculus, or tuples of names making the m-calculus polyadic. Among the actions a process
can perform we will only consider two: either a process can send or it can receive a name through a channel.
We then say that a process has the input or the output capability on a name. Consider again the above
Erlang program. The two processes P, and P, can be expressed in m-calculus as P; = a(ping).b(message)
and P, = a(message).b{pong). A concurrent computation can change the process, in which case we say that
the process performed a reduction. It can occur after an interprocess communication or after internal actions
within a process. For instance, P; changes its configuration after sending ping to P, = b(message).

Termination in m-calculus

In 7-calculus we can define resources running for indefinite time, like servers, using replication on a name.
The process la(z).P means that we can run P as many times as we want, by sending a message on channel
a each time. For example, la(z).P | a(v) reduced to la(z).P | Pv/xz], where we replaced in P[v/z] all the
occurrences of x with v. Finding type systems which ensure termination is a challenging task. One method
is level based termination [DS06], in which we assign an integer value to each name, called the name’s level,
and a weight to each process, representing the maximum level of an output channel inside that process.
The weight can then be used as a well-founded decreasing measure on a process, therefore ensuring its
termination.

For instance in la(z).P we require that the weight of P to be smaller than the level of a. The process
la(x).@(u) is liable to perform an infinite reduction, since la(x).a(u)|a(u) —la(z).a(u)|a{u), and we cannot
type it either as it would require lvi(a) > lvl(a). Another example of an infinite reduction is the process
la(z).b(z) | 'b(y).a(y). The goal is to decrease the weight of the overall process even for a reduction which
releases the process P under the replicated input. We can imagine these levels to be the cost of using a
channel. Once we paid for a, the weight of P is not enough for another usage of a, and therefore it cannot
trigger another reduction. In this manner we can avoid infinite loops as the one above. When computing the
weight of a process, we are only interested in the output channels as only those can participate in an infinite
reduction with the replicated input.

Subtyping

In a typed m-calculus we assign types to names, which represent constraints imposed on the name and its
capabilities. Along with types the calculus also introduces typing rules. An important property, subject reduc-
tion, asserts that a reduction keeps processes well-typed. Most common such type system is the simply typed
one [DS06], a correspondence of simply typed A-calculus in 7-calculus. For the process a(z).xz(v).v(t) | a(u)
we assign the following types:I"(v) = T I'(x) = $(47T); I'(uw) = §(§7); I'(a) = 4(§(§T)). For example, the type
of a certifies the fact that a can carry names of type #(§7), while §(#7") represents a channel for the names
of type 7.

But once one introduces types, one might want to assign an order on these types. An example of such a
type system is i/o subtyping presented in [PS96]. The idea behind the i/o type system is that names carry in
their type their capability (input or output), with one special type representing both capabilities. Considering
the same example as above, now the types become: I'(v) = oT; I'(z) = i(oT); I'(u) = i(oT); I'(a) = £(i(oT)).

Again, we can take a closer look at the type of a, which testifies that a is used as a channel with both
capabilities for the name x. Likewise, x is an input channel for v, which has only the output capability.

Type inference

Both typing and termination play a major role in using a w-calculus type system for describing a concurrent
system. The advantages typing brings to both a concurrent or a sequential programming language are
considerable: detecting programming errors, inferring information about the behaviour of a program and so
on. In a concurrent environment it can help detect deadlocks and infer correctness of a program. Therefore
we need a type system which guarantees termination and in which, if possible, the types of the processes
can be reconstructed efficiently. The reconstruction procedure is called type inference. We will refer to an
inference procedure as polynomial if type inference is executed in polynomial time with respect to the size
of the process.

The contributions of this training period
One can assign types to processes in m-calculus in order to guarantee termination. A common approach is to
represent, relying on the type of a process, a measure, that is a numerical value which decreases along with
the reductions that a process performs.

Our work consists of:

— introducing a type system which combines this kind of level based termination with an order on types
and weights. Ordering the levels is straightforward, while for the types we used the i/o subtyping;

— proving termination for it;

— evaluating the expressiveness of the type system using various examples;

— showing a possible extension of our type system using a variation of i/o subtyping on which we can also
type functional names;

— providing a polynomial time type inference for a version of our type system, more suitable for typing
concurrent programming languages, such as Erlang;

— implementing a possible translation of the processes belonging to the type system in Erlang.

Structure of this document

Section 2 introduces the basic notions and notations of m-calculus necessary to understand the notations and
conventions used all along this document. Section 3 takes a deeper look at termination and subtyping, and
presents the type systems studied before introducing our type system. In Section 4.1 we present our type
system for which we first prove termination. Then we show its limits in terms of expressiveness, by using
an encoding of A-calculus into w-calculus. We also present a polynomial time inference procedure for a more
restrictive form of our type system, and hint at a possible inference procedure for the whole type system.
Points about the implementation of this type system in Caml and Erlang are presented in Section 5. We
conclude the document with a discussion in section 6.

2 Preliminary Notions on Processes

This section introduces the basic notations in m-calculus necessary for the further description of our type
systems.
Suppose we have an infinite set of names. We use a, b, ¢, x, y to designate them.

Definition 1 Processes, denoted by P,Q, R, ..., and values, v, are defined by the grammar:
P = 0| PP |a().P | (va)P | a(z).P | la(z).P v o= Ula.

Here, 0 stands for inactivity and we will omit it when writing a process. Moreover, we often employ the
notations a and @ instead of a(z) and a(*), respectively. In this case we assume that a carries names of type
U.

Name binding in m-calculus has a similar meaning to the one it has in A-calculus. In (vz) P and a(z).P
the name z is bound within P. Names that are not bound, are called free names. We denote fn(P) the set
of free names of P. The general convention is that all bound names are pairwise distinct and are different
from the free names. Similar, P[b/x] is the substitution of x by b in P, where z is a free name. We require
the substitution to be capture avoiding, which implies that if there is a name collision within the process
during the substitution, we use renaming.

Within a process we can rewrite the terms while keeping the resulting process equivalent to the original
one. This is formalised using a relation called structural congruence.

Definition 2 Structural congruence, denoted by =, is the smallest equivalence relation that is a congruence,
contains a-conversion, and which satisfies the following axioms:

P|(Q|R) = (PIQ)|R Plo=P PlQ = Q|P (va)(vb) P = (vb)(va) P
(va) (P|Q) = P|(va)Q if a ¢ in(P)
We denote by P — P’ a reduction on processes, where P can evolve to P’ after an internal action.

Definition 3 A reduction relation is defined by the following inference rules:

a(z).P | a(b) — P[b/x] la(z).P | a(b) — la(z).P | P[b/x]
P— P P— P Q=P P— P P=qQ
PlQ — P'|Q (va) P — (va) P’ Q— Q'

Example 4
va.(vb.a(b)) | a(x).z(v) | by) — vb.b(v) | b(y) — 0
ab) | ale) | la(z).z(v) — bv) | ale) | la(z).z(v) — bv) | e(w) | la(z).Z(v)

One can define several sub-calculi to the m-calculus. So far, we made the assumption that the calculus
is synchronous, that is that a communication between processes require their joint participation. A common
subcalulus is the asynchronous one, which is more appropriate for most of the concurrent systems. This is
implemented in 7-calculus by having the process 0 after an output. For example a{u) is asynchronous but
a(u).b(v) is not. Another, localised m-calculus, denoted by L, imposes that the names received on a channel
have only the output capability. The process a(x).b(y) and a(z).b(y).T satisfy the constraints but a(x).z does
not. Both sub-calculi are described in details in [SWO01]. The type systems we will describe in the following
sections are defined to either one or both of these sub-calculi.

3 Subtyping and Type Systems for Termination

In this section we present type systems in which types are associated to names.

When typing a process we can either use typing “a la Church” or “a la Curry”. When using “Church”
typing, we assume that the typing context is aware of all the associations between a name and an unique
type. It is therefore like an oracle which returns the type of a name. In contrast, when typing “a la Curry”,
the associations (name, type) are added to the context using the inference rules. As the goal of this section
is to present notions necessary further on, we adopt the presentation of [Dem10]. The notations introduced
are easier to understand in a typing “a la Church”, especially the ones used for the termination proof.

3.1 Simple Types
We define types as:
T == {T | U,

where U stands for the unit type able to carry only the x value.
The typing rules are:

Fa:tl Fbo:T FP Fa:tT Fa:T FP
Fo Fa(b).P Fa(z).P
Fa:tT Fax:T P
Fa:T P Fpl FPQ
Hla(z).P S 02
F(VG)P |_P1|P2

Example 5 1. Let P =la(x).T(u) | av. The process is typable with the following type assignments to the
names:

Fa:tfT Fo:dT Fax: T Fu:T
2. If P = a(x).a(y).y(x), then P is not typable as - x : T, -y : #T and a has to transmit both names.

Definition 6 (Termination) A process P diverges if there exists an infinite sequence of processes (P;)i>o
such that P = Py and for any i, P, — P;41.
P terminates (or P is terminating) if P does not diverge.

The problem of termination is a consequence of the usage of replicated input. A reduction consumes
from the prefixes of a process, therefore a grammar without replication would force all process to have
terminating reductions. However, introducing replicated inputs can lead to loops, as we have seen in the
example la(x).a(u).

3.2 The level based approach of [DS06]

The following type system is able to type a considerable number of processes for which it guarantees termi-
nation, however it cannot type all terminating processes. The type system and its proof for termination are
presented in details in [Dem10], we will only summarise the key points here.

The main idea is to annotate types with an integer, representing a level. Accordingly the grammar of
types is given by:

T == ﬁkT}U.
The typing rules are:
Foa: kT Fb:T FP:w Foa: kT Fa:T FP:w
FO0:0 Fa(b).P : max(k,w) Fa(z).P:w
Foa: kT Fao:T FP:w k>w
Fa:T FP:w FPw FP:ws
Fla(z).P: 0
F(va)P:w F Py | Py : max(wy, ws)

We remark the following;:

— the type of a process is its weight while the one of a name contains its level;

— only the names used as output channels can participate in the type of a process, as in the rules for input
and replicated input the level of the names used as input channel do not interfere with the weight of the
process;

— the main difference with the type system of simple types is given by the rule on the replicated input,
where we enforce that the cost of the input to be strictly greater than the weight of the freed process.

For example in la(x).b(u) we have the condition [vi(a) > lvl(b). It is the one ensuring termination, as it
is the only one that uses the relation > between levels.

Example 7 Let P =la.(b | b|¢) | b.(¢ | €) | @ | €. The process is typable with the following type assignments
to the names:

Fa: 3T, Fb: 42T, Foe: T,

The weight of a process is unfortunately not enough to prove termination. Consider the example above,
where a possible reduction sequence is:

la.(b | b|¢) | b.(c|e)|a|ec—la.(b|b|C)|W.(c|e)|c|b|b|c—
la.b |b|e) | .(c|le)|c|b|c|c|e—la.(b|b|T)|W.(c|e)|c|ec|c|c|c]|e

The weight of P is originally 3, after the first reduction is 2, but decreases at 1 only after two more reductions.
Therefore the weight is not necessarily decreasing at each reduction.

Nevertheless there is something that does decrease with each reduction, which is the multiset of available
outputs.

Definition 8 An available output is a name used as an output channel and that contributes to the weight
of a process. Consequently, the output channels situated under a replication are not considered.
The multiset of available outputs of P, noted Os(P), is defined by:

Os(0) =0 Os(P1|Py) = Os(Py) W Os(Ps) Os(a(b).P) = {k} W Os(P),ifI'(a) = *T
Os((va) P) = Os(P) Os(a(z).P) = Os(P) Os(la(z).P) =10

In the example above, we can rewrite the reduction sequence, by replacing the processes with their
corresponding multiset:

{3,1} — {2,2,1,1} — {2,1,1,1,1} — {1,1,1,1,1,1}.
Therefore we can use multiset ordering as a decreasing measure in order to prove termination.

Definition 9 The multiset ordering denoted as > is defined as My > Mo if N being the mazimal
multiset such that M1 = NW Ny, My = N W Ny for all e € Ny there is e; € N1, ex > es. The relation >,y
is well founded.

Example 10 We have {3,1} > {2,2,1,1} as {3,1} = {1} W {3}, {2,2,1,1} = {1} W {2,2,1} and 3 > 2,
3> 1.

The following theorem permits one to use Os(P) to prove termination, as it shows that the set of available
outputs decreases with each reduction.

Theorem 11 ([Dem10]) IfI" - P:w and P — P’ then Os(P) > Os(P').

4 Owur Type Systems for Termination of Concurrent Processes

In the following we present the main result of our work which consists of a type system more expressive
than the one of section 3.2. This section is divided into 5 smaller sections. First, in subsection 4.1, we define
the type system, present alternatives and motivate our choices. In the second subsection 4.2, we focus on
its properties, especially on the termination one. Subsection 4.3 presents examples of processes that are
interesting tests for the expressiveness of our type system. As expected, not all terminating processes are
typable in our system, and in subsection 4.4 we look at a way of increasing its expressiveness. Finally, in
subsection 4.5, we discuss the question of type inference.

Our work started as a quest to find a type system for programming languages such as Erlang, in which the
interprocess communication is asynchronous. Therefore we will continue our discussion using asynchronous
m-calculus.

The previous type system introduces levels in order to find a decreasing measure over a process’ reduction.
The key point of our work is that we allow subtyping on levels. Consider the following example P =
la(x).Z(t).P | aly) | Q. The constraints imposed are [vl(a) > lvl(z), I'(a) = 1T and IM'(z) = g1 =T,
The process is therefore typable only if x and y have the same type. We can send on the channel a a name
with a smaller level than x but, necessarily, of the same type. In our type system we allow y to have a
different type as long as it smaller than the type of . For ordering the types we use i/o subtyping such that
the types of a and now become: I'(a) = §*/@ ') T and I'(x) = o'*'®)T. We can infer for y any type
smaller than o'"*®) T and allow therefore more terminating processes to be typable.

We change the presentation from typing “a la Church” to typing “a la Curry”. We motivate the change
in Remark 28.

4.1 Definition of the type system

In i/o subtyping, one uses three types for names: input, output and the connection type f. The capability
of using a channel as both input and output is a subtype of using it either as an input or as an output,
as stated by the rules SUBT-#I and SUBT-#O below. If T” is a subtype of T, written as 7/ < T, then a
name of type T” can always replace a name of type T. In order to better understand, consider the following
analogy, where Int is a subtype of Real, written Int < Real. Any operation defined on Real is also defined
on Int, while the reverse is not true. For example the successor of a Real is not defined while for an Int it
is trivial.
Types are defined by the grammar:

T w= ¢T|i*T| T | U .

Example 12 1. In a(z).T(u), the type of a is i"0o™T, and accordingly, a can only receive a name x which
has at most the output capability.

2. In a(z).z(u) | a(v), with I'(a) = §"0™T, a can both send and receive a name with the output capability.

3. For a(x).a(y).x(2).5{u) the type of a is i"§™T. Consequently a can only receive names that have both
capabilities.

The subtyping relation is a preorder relation similar to the one of i/o subtyping of [PS96] and defined by
the following inference rules:

REFL TRANS SUBT-#1 SUBT-#0 SuBT-11 SuBT-00
Ty <15 15 <13 r<s ko < ky <S8 k1 < ko
T<T T < Ty thT <iFT gET < oFT T < ik 8 018 < of2T

We say that the input is covariant, as its argument preserves the direction of subtyping. Accordingly, the
output is contravariant, and f is invariant, as it forces type equality. We can, for example, send an I'nt when
a Real is expected, and receive a Real instead of an Int. However the variance changes for the levels. In
order to ensure termination, we can have a smaller level on an output name and a bigger one on an input.

Example 13 1. In la(x).!z(y).b(z) we have the condition lvl(x) > lvl(b). We can send on the channel a
names that have the input capability and the level greater or equal to lvl(x).

2. Forla(x).Z(t), with lvl(a) > lwl(z), we can send on the channel a names with the output capability and
a level smaller or equal to lvl(x).

Remark 14 We can rewrite the rules SUBT-II and SUBT-OO in another form, in order to stress their
variance:

T<S TS ko < Ky k1 < ko
T < iks oS < ofT T < k2T o1 T < o2
The rules for typing the names are:

I'a)=T SUBSUM
7 - I'ta:T T<U
I'ta:T

I'ta:U

The second rule of name typing is the only one that uses the subtyping relation. To understand what it
states consider the process a(x).Z{u) | @(b). Since a is used as both an input and an output channel, its type
is #*T. When applying the typing rules on a(x).Z(u) we will need only the input capability of a, therefore
we use the subtyping relation to infer I' F a : i*T.

The inference rules for typing processes are:

NiIL-S Out-S INP-S
I'tFa:oT I'wov:T It oa:i*T Ix:TFP:w
I'FO0:0 I'tkaw):k I'ta(z).P:w
REP-S REs-S PAR-L
I'Fa:i*T x:TkFP:w k>w La:TkHP:w '+ Pp:un I'F Py:wy
I Fla(z).P: 0 'k (va)P:w I' b Py|Py : max(wy, ws)

The rules of Section 3.2 in an asynchronous calculus can be derived from the new ones, by replacing 4
and o with . As it can be noted the main difference between the two type systems is that in ours we check
that names have the right capabilities. We make the following observations on the rules above:

— When typing @(v), we are allowed to change the type of both the channel, a, and of the name carried,
v, using rule SUBSUM. In contrast, in a(z) we cannot change the type of z. Therefore a valid type
assignment for a, when a is used as both input and output channel, will keep the type of the names
carried on an input channel and try to adapt the type of the ones carried on an output channel.

— Rule OUT-S is the one responsible for the asynchronous communication.

— When processes are in a parallel composition they will share the same typing context instead of splitting
it between them. The choice of either sharing the context or not is a consequence of typing “a la Curry”
and it is not a particularity of these typing rules.

Example 15 Consider the process la(x).lx(y).P | a{v). We can type it as follows:
I'ba:ghe@hT), I - a:g%T T F v gfT 'k P:ww>0.

According to the typing rules we have that w < k; but not w < k,, which is necessary in order to make the
process la(z).\x(y).P | Wv(y).Plv/z] typable. In our type system we have that *=T = 45T and w < k.

The equality is a result of the fact that we typed x as t*=T. We can also write I' = x : i*=T and
I by T, with k, < ky. Using the rules SUBSUM and SUBT-I1I we get I' = y : i*+T. The process
lw(y).Plv/x] is still typable as ky > ky > w.

In the following examples, we discuss how the variance of # on levels, can lead to inconsistency in our
type system, and thus show our motivation for keeping it invariant. Note that its invariance on types is a
property of the i/o subtyping of [PS96]. A covariant or contravariant # on types can lead to run-time errors.

Example 16 We will exemplify on processes which, after a reduction, are mo longer typable for obvious
T€asons.

1. Covariance. In the process P =la(x).!z(y).t | @(u) the types can be I'(x) = i'T, I'(u) = i°T and
I(a) = #%'T. After a reduction the process becomes P’ =u(y).t, where lvl(u) = lvl(t), making the
resulting process not typable. We cannot type P either since in the rule OUT-S for a{u), we cannot
have I' = a : 0%°T nor I' F w : i'T. We can however write the type of a in a more general form as
I'(a) = 4T, keeping the process typable.

Consider now that t is covariant. Then we have that 81T < o%8'T < %80T < 0%°T and we can
therefore type P', which leads to inconsistencies in our type system.

2. Contravariance. We have that P = a(z).\b.7 | @(u) | 'u.b reduces to P’ =\b.u | lu.b. With the types
inferred for the names in P, I'(x) = o°T, I'(u) = #?T and I'(a) = §°°T, we cannot type the process.
We can change the type of a to 18T .

Let t be contravariant. We then can deduce the following inequalities: 14T < o®40T < o°#2T, making P
typable.

We remark that our type system is more expressive than the one of Section 3.2, as shown by the following
example.

Example 17 Consider the terminating process la(x).Z(t) |a{p) |a{q) | 'p(z).q{z). Since the types of p and q
are different (lvl(p) > lvl(q)) the process is not typable in the type system of Section 3.2. In our type system
we have:

I'(a) = t*o'T I'(x) =0'T I'(p) =4'T I'(q) =T
For a(p) we have *0'T < 0ko'T and using subtyping on p, I' = p: o*T. Typing alq) is straightforward as
1901 T < 0*0'T < 0*0°T.
4.2 Properties of the Type System

In order to ease the presentation, the properties of the type system are only stated and rarely proved. The
complete proofs are available in [CH11].
The following Lemma is similar to the rule SUBSUM for processes.

Lemma 18 IfI' - P:w and w # 0 then, for any w' > w, I' b P :w'.

Proof. We reason by induction on the typing derivation. We only consider the case P = a(b). We have that
I'ta:0oFT and I' F b: T. Using rule SUBSUM we can build the following derivation:

T<T k<K

'tk oa:oT 5
okTgokT)
F}—arok/T rrbt
r'+al): K

Proposition 19 (Narrowing) If Iz : T F P:w and T' < T, then Iz : T' + P:w', v’ <w.

The subsequent three properties show that congruence, name substitution and reduction preserve process
typability.

Lemma 20 If P=Q, then ' - P:w iff ' F Q : w.

Lemma 21 If I :TF P:wand I' b b: T then I' b P[b/x] : w', for some w' < w.
Theorem 22 (Subject reduction) If ' - P:w and P — P’, then I' b P’ : w' for some w' < w.

Theorem 22 states that the weight of a process is not enough for proving termination, as it does not
decrease with each reduction. Therefore we borrow the definitions of the set of available outputs and the
multiset ordering from [Dem10], presented in Section 3.2. We however encounter a difficulty as we are working
in a typing “a la Curry”. That entails that we do not have a typing context in which names and their types
are known, and which can return the level of a name, upon request. Instead we have to build the multiset
along with the typing derivation. Two processes P and P’ might share the same context I", and have common
types for all their free names, but infer different types for the bound names. Therefore we have to consider
all possible derivations. In order to find a decreasing measure, and thus prove type soundness, we search for
the minimum type assignment among all the derivations that can be inferred using a given typing context.

We define the multiset by induction over the derivation of a typing judgement. We will use D to range
over typing derivations, and write D : I" - P : w to mean that D is a derivation of I' - P : w.

Definition 23 Suppose D: I' - P :w. We define a multiset of natural numbers, noted M(D), by induction
over D as follows:

IfD:I' + 0 then M(D) =10 IfD:I' b a(b) : k then M(D) = lvl(a)
I[fD: I Fla(z).P:0 then M(D) =0
IfD: T F a(x).P:w, then M(D) = M(D;), where Dy : [z :T + P:w
IfD:I'+ (va) P:w, then M(D) = M(D:), where Dy : Ia:T F P:w
If D: I + P|P, : max(wy,ws), then M(D) = M(D1) ¥ M(Dz), where D; : I' + P;,i=1,2
Given I' and P, we define M (P), the measure of P with respect to I, as follows:
Mp(P) =min(M(D),D: T+ P:w) .

The following three Lemmas show how M (P) behaves within process congruence, name substitution
and reduction. Only the reduction strictly decreases the measure, as it is the only property out of the three,
that is required in the termination proof.

Lemma 24 Let ' - P:w, I'x) =T and I'(v) =T . If T’ < T then Mp(P) >mnu Mr(Plv/z]).
Lemma 25 If ' - P:w, I' b Q: w' for some w, w', and P = Q then Mp(P) = Mr(Q).
Lemma 26 If ' - P:w and P — P’, then Mp(P) > Mp(P').

Theorem 27 (Soundness) If I' b P : w, then P terminates.

Proof. Suppose that P diverges. Therefore there is an infinite sequence(P;);c N, where P, — P, 1, P = P,.
According to Theorem 22 every P; is typable. Using Lemma 26 we can write that M (P;) > Mpr(Pit1)
for all ¢, which yields to a contradiction.

Remark 28 Type systems for termination, on which we based our work use typing “a la Church”, as we
have seen in Section 3.2, while i/o type systems use typing “a la Curry”. Having an oracle as a typing
context, requires additional conditions on the names that are rather subtle, but that are easier to understand
when using typing “a la Curry”. Consider the rule INP-S of a(z).P on which typing “a la Curry” forces one
to derive the type of x from the type of a. Such a constraint is not necessarily implied when typing “a la
Church”, and one can be tempted to use subtyping on x, which is not permitted.

10

4.3 Encodings of the A-calculus

In the following we will exhibit a possible interpretation of simply typed A-calculus terms in m-calculus.
Translating functions of A-calculus into processes is of great interest in the study of process calculi, as it
creates a bridge between a sequential model for computation and a parallel one. It allows us to reason about
functions in a concurrent environment, we can apply techniques from one calculus to another, or it can
help us in modelling programming languages that offer constructs for both functions and concurrency. In
particular, we are interested in representing simply typed A-terms as processes typable by the types system
presented so far, as this is a testimony of their expressiveness. Ideally, a type system should be able to infer
types for all simply typed A-terms, but as we will show, this is not always the case. However, before looking
at such examples, we have to present a brief introduction to the interpretation of A-terms as m-calculus
processes. A more detailed description can be found in [SWO01].
We will work in the simply typed A-calculus, defined by:

M == z|XXxM|MN.

In 7-calculus, we can model abstractions as two communicating processes, out of which one is the function
and the second is its argument. Consequently, a S-reduction is the interaction between them. A term becomes
available through the name of a channel. An important difference between an abstraction in A-calculus and
its corresponding processes, is that the latter ones are placed in an concurrent environment, where they
can engage in communications with other processes. We prevent this by creating new, private channels used
solely for their communication. In this manner we ensure that the only exchange possible is through that
channel only, and that we keep the term unaltered by the environment.

There are several possible strategies to interpret a A-term corresponding to the A-calculus reduction
strategies: call-by-value, call-by-name and call-by-need. We chose the first one, but we think any of them
would have given similar results.

In the call-by-value strategy we use the following rules for reduction:

M — M’ N — N’
(e M)V — M{V/z} MN— M N VN—VN

V = XMz

We use [M], for the encoding of a A-term M parametric on the name p. As we mentioned above, the
process corresponding to M becomes available through interaction with the channel p. For the encoding we
have the following rules:

DM, Y (wy) (y(, q).IM], | Ply)) [, ' p(x)

def

[MN], = (vg,r) ([M]g | [N] | a(f)r(2)-F{z.p))

We encode a value, [z],, by simply transmitting it on the channel p. The term Az.M returns a function.
In its encoding, instead of transmitting a function, which is not allowed in w-calculus, we transmit the
function’s location, acting as a pointer. To perform a computation one has to pass on the argument of the
function and retrieve the result on the channel given as pointer. Thus a function is interpreted as a resource
which can be accessed as many times as we want by passing to it its argument.

For the term M N we chose the encoding of parallel call-by-value, in which the terms M and N are
reduced in parallel, without making M wait for N to finish. In this manner we simplify the obtained process.
In our approach, the differences between the two encodings are insignificant.

However, the parallel and sequential strategies yield equivalent results. Once both terms finished execution
the result returned by N is fed as an argument to M.

The type system of [DS06], on which we based our approach is not able to type all the terms of simply
typed A-calculus. Consider the following example, belonging to [DHS09]:

11

Example 29 (From [DHS09]) Consider the A-term M; LS f Az (f u (u v)) which can be typed in

simply typed A-calculus as f: (0 — 7)) — T — T, 0:0,u:0 — T.
Computing the encoding of this term according to the above definition yields the process:

| y(z,q').(var,71,q2,72,q3,73)
(@) [T2(u) | ga(fa).ra(z2).
| 3{u) | T3(v) | QS(f3) 7”3(23)
| a1(fr)- 7“1(21) f1 z21,4))
).r(2).F (z,p)

We make the following observations :

?2<Z2,Q1> [[f u]]ql
Falza,) [u v], [Az. (f u (uv))],

— @) | 7 | a(f)r(2).f (z,plzmplies that f and f' have the same type Ty = f : o*(T,, T}).
— Jrom @olf) | Talu) | @a(f2)ra(22)-Falea,ga) we have that Ty = f : (T, Ty,).
— ky > max(ky, ky)

In the type systems of [DS06,Dem10], this necessarily entails T,, = T,,, which is in conflict with ky > k.
The problematic subterm can be typed in the type system of Sectwn 4.1 as follows:

ky < ky T, <T,
o < oT
'+ wu: okyTy
I'F flu,):k

where we can take Ty =T, for the sake of simplicity.

'k wu:o®™T

'k f: ok(ﬁkyT,,)

The example above is typable in our type system. We can however provide an example of process not
typable in neither type systems.

Example 30 Consider the term

def

My = (Au ((M.(uv) Qy.(ut)) Az (za)) .

We want to prove that its translation in w-calculus is not typable. We can use Theorem 22 to state that for
two processes P and P', where P — P', if P’ is not typable then P is not typable either. Therefore, in
order to ease presentation, instead of considering the encoding of My, we look at a smaller process, obtained
after some ’administrative reductions’ have been performed:

yr (ws qr)- (s (v, qa) (v, qa) | lys(y, gs) 0t as) | Usys, @)) | lya (@, g2).X(a, g2) | §1(y2.p) -

On this process we can perform reductions corresponding to -reductions, which reduce not only the m-calculus
processes, but also their image in A-calculus. We refer to the other reductions, as the administrative ones.
We obtain a process which contains

ﬁ<V,p> | !V(yaQ5)'ﬁ<t7Q5> ‘ !U(X, QQ)'i(a7q2)

as a subterm. By further performing B-reductions, we have the cleaner process:

(vu) ((vv) @) | o) | tu).z) |

which is the one we will try to type.

12

This process is not typable in type system of Section 3.2 because we need to send tow of I' = w : fFuoF=T
the name v of type #*T.

In our type system, using subtyping we can rewrite I' = v : o*T. But the rule SUBT-OO keeps the
inequality between levels and therefore we cannot send a heavier process than expected. We conclude that this
example is not typable in our type system, either.

However, by looking at the sequence of reductions, we can remark that the process above is terminating:
(vu) ((vo) @) | walt)) | u(z).z — v | walt) | w(z).z — ult) | wat) | lu(z).z — | walt) | lu(z).z.

4.4 Subtyping and functional names

As we have seen in the previous examples, our type system is not expressive enough to accommodate all the
processes of simply typed A-calculus. In the following we present a possible adjustment to the typing rules
that would permit typability for all such A-terms. Our approach is based on [DHS10]. Once more a brief
introduction on functional 7w-calculus is necessary.

Functional 7-calculus

We consider the names as belonging to two disjoint subsets, imperative and functional. The subset of func-

tional names is the result of the encoding of strong normalising simply typed A-calculus into m-calculus.

These are names that offer a service that is always available and is the same every time, but impose some

constraints on the typing rules. When using both sets of names we say that we work in an impure language.
In the work of [DHS10] the imperative names are used in typing rules similar to the ones of Section 3.2.

The functional names, however are employed only in the following two rules:

Our-F DEr
ta:4*T TFo:T Iae:THP:l TFP:l! TFf8fT k>0 f¢(P)

I'Falb):k def f = (z).Pin Py : I/

The construction def f = (x).P; in Py is the equivalent of va.(la(x).P; | P;) for imperative names. Using
such a construction helps us in imposing the necessary constraints of functional names in a more natural
way. Its meaning is similar to the keyword let in Caml. Rule DEF states that:

— We do not allow recursion on a functional name. This is ensured by the condition f ¢ fn(P;).

— Functional names do not appear in an input that is not replicated.

— The nested functional names are ordered. In the process ! f1(xz1).P1|!fa(z2).Po|! f3(x3).Ps , where f1, fa,
f3 are functional names, we have that in P3 can appear f1, fs, in P, only f1 and in P; none of them.

Those are constraints required for a functional name. Besides ensuring them, rule DEF also requires that
the functional names are in Lw-1. This means that when receiving a functional name we cannot use it in
input. Moreover, there is exactly one replicated input on that name. This is a consequence of creating a fresh
name for each f in def f =

Integrating functional m-calculus in our type system
In an impure language, one has to distinguish between the functional and imperative names in order to treat
them accordingly. In [DHS10], this is done by assigning tags and thanks to the def construct. I/o subtyping
allows us to treat names differently, based on their capabilities. Therefore we can impose the constraints of
functional names using the input and output capabilities instead of differentiating names based on the set
they belong to.

We present below some of the more interesting typing rules and we follow with their explanation:

FIlc:i"T Na:T,f:0"U e —F P:w n>uw
I'e f:0"U F ¢(x).P:0

Iz:Te—FP:w k>w
I'e f:0"T FIf(x).P:0

Ig:0"T e f:0"UF P:w
IFeg:0"T+ (vf)P:w

13

The simplest condition we have to ensure on functional names, is not to allow recursion. In ! f(x).P, we
remove f from the environment when typing P. The second condition, that a functional name cannot appear
in a normal input, is a natural one to impose in a i/o type system. After using f as a replication, we keep
it in the environment with only its output capability. However, since the typing rules, as presented above,
do not differentiate between a replicated and a normal input, this alone does not guarantee that f behaves
like a functional name. Therefore we ensure I'(f) = o*T', throughout its usage. An additional typing rule is
added allowing functional names, which only have the output capability, to perform replications.

This method of ensuring the second condition, makes our type system more expressive than the one of
[DHS10], as functional names are no longer in L-1. We can perform a replicated input on f as long as it is
in the typing context, without creating a fresh name each time. For example we can type processes such as
wf)(f(z).P | f(y).Q | R). This is not possible using the def construct.

The procedure to type a process in an impure language requires first to decide which names are functional
and which are not. The imperative names are created with both the input and output capabilities, while the
functional ones only with the output capability. In this manner, we avoid using tags to differentiate between
the names, but we still need to decide beforehand whether a name is functional or not. In either cases, there
are several possible typings for the same process in which names are treated differently.

The last condition is the least natural one for our approach. We can write the construct of a functional
name in the form v f.!f(z), which guarantees that each time a functional name is used, it is the most recent
one created. We ensure that by working on a typing environment of the form I" e f : o*T, in which the name
f is isolated from the context I'. In the typing rules, we always keep a single functional name separated,
representing the most recent one added to the context. However, this form of environment can break the
condition on recursion. A process !f(z).P, where P = E[!f(y)] is not allowed, and therefore when typing
P, the typing context becomes I" @ —. Another situation in which we employ I" e — is when an imperative
name is used in input. Consider the process c(z).!f(y).Z(y) | &(f) | f(v), which reduces to !f(y).f(y) | f(v)
and breaks the conditions on functional names. Therefore we do not allow any usage of functional names
under an input.

Theorem 31 (Soundness) IfI" e f:0*T = P :w, then P terminates.

Proof (sketch). The proof has the same structure as the corresponding proof in [DHS10]. An important
aspect of that proof is that we exploit the termination property for the calculus where all names are functional
without looking into it. To handle the imperative part, we must adapt the proof along the lines of the
termination argument for Theorem 27.

The complete resulting type system is available in [CH11].

4.5 Type inference

Along with the expressiveness of our type system, we are also interested in finding an efficient procedure
for type reconstruction. In our type system such a procedure is nondeterministic. However, by using a more
restrictive version of the same type system, we have a polynomial time inference procedure.

Type inference for L
We work on a subsystem of the one presented in Section 4.1, which belongs to L. This restriction makes sense
when considering the communication in Erlang, for instance. An input channel corresponds to an Erlang
process, which can receive the identifier of another process, but cannot create it dynamically. Therefore, it
cannot emulate the behaviour of a received name with the input capability. A more detailed description is
available in section 5. The encoding of A-calculus of section 4.3 also belongs to L.

The types become:

S u= oFS | U
We modify the typing rules such that any name a has either the type #*S or o*S. We can still use the rules
with i*S, by applying subtyping.

14

Lz limits the usage of subtyping. We can only apply it for output channels, like @(u), with I'(a) = o*S
where a can carry names of type S or smaller. Consequently in the typing rules for the input, a(x).P or
la(z).P, we read the type of a from the context and disallow the usage of the rule SUBSUM on it.

We still have a greater expressivity than the type system of section 3.2, as it is shown in the example
17. Therefore working in L7 is a manner of simplifying i/o subtyping, while keeping some aspects of the
flexibility brought by our system.

The inference procedure for simple types of [Dem10] is polynomial w.r.t. the size of the process, measured
in number of prefixes. In our type inference we take the results of the aforementioned procedure and add a
minimal level assignment.

We only present the inference procedure and some examples. Further discussion and the proofs for its
correction are available in [CH11].

In order to infer the types of a process P we build a graph depicting the relations between the names
appearing in P. We first create the nodes, as follows:

— for every name n, such that n € fn(P) or P = E[vn.Q)] we create one node, labelled with n, and a second
one, labelled with son(n). If n has type £*S, son(n) has type S.
— for every name z, such that P = Fla(z).Q)], let a = father(z), add x as a label to son(a).

Example 32 We associate to the process P = a(x).(vb)Z(b) | la(y).(¢{y) | d(z).7(z)) the following set of
8 nodes with their labels: {a}, {son(a),x,y}, {b}, {son(b)}, {c}, {son(c),y}, {d}, {son(d), z}.

We then add the edges, as follows:

— For every output of the form m(m), we insert an edge labelled with “>" from son(n) to m (which we
write son(n) 2, m).
— For every subterm of P of the form la(x).Q, and for every output of the form 7(m) that occurs in Q

. . T . >
without occurring under a replication in (), we insert an edge a = n.

Example 33 The graph associated to process !c(z).b(z) | @(c) | a(b) has nodes

{a}, {son(a)}, {0}, {son(b)},{c}, {son(c), 2} ,

and can be depicted as follows:

a / b <<7 C
son(a) son(b) N {son(c), z}

A process is not typable if the graph contains a cycle involving at least one T edge. Otherwise, we can

assign a level to each node, by starting with the leaves and go up. Each time we encounter a T edge we
increment the level.

Example 34 On the graph of Example 33, the procedure assigns level 0 to nodes a,b,son(b) and {son(c), z}
and level 1 to ¢ and son(a) This yields the typing b : 0%0°T, c : 26°T, a : 0°0' 0T for the process of Example 33.

15

Type inference for our type system

A consequence of working with i/o subtyping is that one can infer several possible type assignments. Assuming
that we are in the type system of [PS96] (i/o without the levels), the type of a in a(x).Z can have several
forms among which i07" is the most restrictive:

ioT > itT > 1T ioT > foT.

We also note that from 0T, all the other types can be deduce using subtyping. We say that these types are
less precise, in the sense that they use more ”f”. We would like therefore to exhibit type assignments, that
are the most restrictive and that can generate all the other valid assignments.

Definition 35 A principal typing for P is a typing environment I' such that I' = P : w and, whenever
I+ P:w, I" < T, where the latter relation stands for Va € dom(I"), I'(a) < I''(a).

The i/o type system of [PS96], does not have a principal typing.

Example 36 For process Q2 = t(a) | #b) | la.b we have the following valid typing contexts I'y iy,

ooU,a : $U,b : oU and I5 def t:0iU,a :iU,b : U, along with others, less precise. We cannot deduce one
from the other, and both are using the same number of ‘4”.

As we based our type system on the i/o one, we are not able to find a type inference procedure which
yields a principal typing.

Late in our work we discovered a variation on the i/o type system, which has a principal typing [IK00].
Consider the process t(a).a | t(b).b. The type I'(t) = ifU is the most restrictive one. It is a consequence of the
fact that ¢T can be rewritten into ¢7” with 7" < T'. In order for ¢(a) and t(b) to be correct, the type under
the input prefix in ¢, is the glb between the types of a and b. In our type system the g¢lb is represented by #.
However, when we try to apply the same reasoning for the type under an output, one realizes that it needs
the lub between input and output, which is not defined. In [IK00], such a type is introduced. We denote it

with 1 . Using it, one can infer the following type assignment for example 36: I “io 1 U,a::U,b: oU.
It is unclear to us if combining this type system with level based termination leads to a principal typing.

The 71 capability, seems to be a notation introduced due to its convenient behaviour. Therefore we were not

able to decide on its invariance and on whether it increases or not the expressiveness of a type system.

5 Implementation in Erlang and Caml

This section presents some details regarding an implementation in Erlang of the processes typed in the type
system of section 4.1 and of a inference procedure for the same type system, this time in Caml.

Erlang offers the tools necessary for working with m-calculus processes. It has primitives for creating and
handling processes, communication between them is easy to simulate and the Erlang processes emulate the
expected behaviour of concurrent systems.

We created a tool, written in Caml, in which processes belonging to the type system of section 4.1 are
translated into Erlang processes. In the following we only present the main ideas in our approach.

First, notice that Erlang is mostly using asynchronous communication between processes, and therefore
our type system was constrained to asynchronous 7-calculus. As in most programming languages a ‘master’
process is responsible for running the code. It simulates the environment behaviour using the following rules:

[P | P2] =[P1] | [P2] [va.P] = register(a, spawn(program, channel, [0, 0])
[a(x).P] =a ! {input, x, [P] } [la(xz).P] =a ! {input, x, [la(z).P | P] }

[a(u)] =a ! {output, u}

16

Whenever a new name is encountered a process is created using the function spawn. It requires the name
of the program running, a pointer to the function the new process has to execute and its arguments. The
function channel is common to all processes and is explained below. In Erlang, processes are completely
independent one from another. In order for them to communicate they need to know each other identifiers.
This is ensured by register.

We use the construct Pid ! Message to send a Message to process Pid. In a(x).P, the process a waits
for a message x to arrive before executing P. Therefore we send a message in which we specify the type of
the message (either input or output) and a pointer to a function representing P’s encoding. Similarly for
la(x).P, where the replication is treated as a new process, containing the replicated input. When sending a
message with the output tag, we only attach to it the object w.

Example 37 In the process va.(a(z).P | @(v)), a channel a is created, on which we send an input and an
output message:

register(a, spawn(program, channel, [0, 0])),
(a ! {input, a, £f00}), (a ! {output, pi})...

The function channel is the one responsible for receiving the input, output messages and for matching
them accordingly. For storing these messages, we used a data structure called ’dictionary’, which is a storage
facility private to each process and to which one has access throughout its execution.

channel(N, M) ->
receive
{output, Msg} ->
put (N, Msg), channel(N+1, M+1);

When a message tagged with output is received, it is added to the queue, put (N, Msg) and the function is
called recursively in order to wait for a new message.

Receiving an input tagged message requires more work. We distinguish between two situations according
to whether or not an input message is the first to arrive. We keep track of the number of input (resp. output)
messages received using a counter N (resp. M).

{input, Me, Msg} ->
if M == 0 -> outputs are late
receive {output, L} -> put(N, L),
end,
apply (b, Msg, [L]1),
channel(N+1, 0);

If there is no output message to match with the newly input message received, then the process has to wait
for it to arrive. Afterwards it executes the function corresponding to the process under the input prefix, Msg.
In Erlang, this is possible thanks to the function apply. Matching an input message with an output one,
involves also identifying the names carried through those channels. Our approach is to assign an identifier to
each message, and group the outputs and inputs that have the same identifier. Since we are using a queue to
store them, the identifier of an input message (resp. output) is N (resp. M). Therefore we transmit to the
function Msg the parameter L. After executing Msg, we increment the counter for the inputs, and wait for a
new message.

Example 38 We have that a(x).P | a{v) — Plv/x]. Msg is the function corresponding to the process P
parametric on x, and L = v.

17

if M > 0 -> Yinputs are late
L = get(N-1),
apply(b, Msg, [L1),
channel (N, M-1).

If there are output messages waiting in the queue, the behaviour is very similar to the one described above,
except that we no longer need to wait for another output message as we can take one from the queue.

Note that the processes representing the channels run continuously. In this manner implementing the
replicated inputs requires simply to send a new input message whenever one is processed.

The A-calculus to m-calculus translation was implemented in Caml. Also, the inference procedure for localised
polyadic pi-calculus without levels was implemented in Caml.

6 Conclusions and Future Work

During this internship, we explored the possibility of proving termination for a type system combining
subtyping and level assignment. We started from the work of [PS96] and later on discovered the type system
of [IK00]. We have not studied throughly the constraints and benefits of using the latter type system with
level based termination and that is something we would like to do in the future. Using the type system of
[IK00] is mostly interesting for the type inference procedure.

We only have some ideas about the inference procedure for the type system of Section 4.1. We presented
them in Section 4.5. As future work, we would like to find a complete inference procedure and prove its
correctness. For the type system of Section 4.4 the inference procedure is also part of future work.

Moreover, the type system of Section 4.1 is a step towards a more complex one, suitable for proving
termination of Erlang programs. This is an interesting continuation of the work presented in this document.

Acknowledgements. Romain Demangeon has provided insightful comments and suggestions on this work.

References

[CH11] I. Cristescu and D. Hirschkoff. — Termination in a w-calculus with subtyping. http://perso.ens-
lyon.fr /ioana.domnina.cristescu, 2011.

[Dem10] R. Demangeon. Terminaison des systémes concurrents. PhD thesis, ENS Lyon, 2010.

[DHS09] R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Mobile Processes and Termination. In Semantics and
Algebraic Specification, volume 5700 of LNCS, pages 250-273. Springer, 2009.

[DHS10] R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Termination in Impure Concurrent Languages. In Proc.
of CONCUR’10, volume 6269 of LNCS, pages 328-342. Springer, 2010.

[DS06] Y. Deng and D. Sangiorgi. Ensuring termination by typability. Inf. Comput., 204(7):1045-1082, 2006

[IKOO] A. Igarashi and N. Kobayashi. Type reconstruction for linear -calculus with i/o subtyping. Inf. Comput.,
161(1):1-44, 2000

[KS10] N. Kobayashi and D. Sangiorgi. A hybrid type system for lock-freedom of mobile processes. ACM Trans.
Program. Lang. Syst., 32(5), 2010.

[Labll] Ericsson Computer Science Laboratory. Erlang programming language website. http://www.erlang.org,
2011.

[PS96] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math. Structures in Comput.
Sci., 6(5):409-453, 1996.

[SWO01] D. Sangiorgi and D. Walker. The w-calculus: a Theory of Mobile Processes. Cambridge University Press,
2001.

18

