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Kondo physics in a dissipative environment
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Abstract

We report nonperturbative results for the interacting quantum-critical behavior in a Bose-Fermi Kondo model describing a spin- 1

2

coupled both to a fermionic band with a pseudogap density of states and to a dissipative bosonic bath. The model serves as a

paradigm for studying the interplay between Kondo physics and low-energy dissipative modes in strongly correlated systems.
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1. Introduction

Impurity quantum phase transitions (QPTs) and asso-
ciated local non-Fermi liquid behavior [1] presently receive
much attention in connection with tunable quantum crit-
icality in mesoscopic devices, the physics of nonmagnetic
impurities in cuprate superconductors, and (via dynami-
cal mean-field theory and its extensions [2]) heavy-fermion
quantum criticality. Impurity QPTs have been studied in
several models involving fermionic and/or bosonic baths.
In the pseudogap Kondo model [3], for example, a deple-
tion of the electronic density of states around the Fermi
level can destroy the Kondo effect that is ubiquitous for
metallic hosts. In the Bose-Fermi Kondo model (BFKM),
the Kondo effect is destroyed by a competing coupling of
the impurity spin to a dissipative bosonic bath represent-
ing collective excitations of the environment [4,5].

In this work, we study band depletion and dissipation
effects together in a pseudogap BFKM. The Ising-symmetry
BFKM Hamiltonian is

Ĥ =
∑

k,σ

ǫkc†kσckσ + 1
2
J0S ·

∑

k,k′,σ,σ′

c†kσσσσ′ck′σ′ (1)

+
∑

q

ωqφ†
qφq + g0Sz

∑

q

(φq + φ†
−q).

J0 is the local Kondo exchange coupling between a local
spin- 1

2
S and the fermionic band, while the dissipation
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strength g0 couples Sz to a bath of bosonic oscillators char-
acterized by a power-law density of states

η(ω) =
∑

q

δ(ω − ωq) =
K2

0

π

(

ω

ω0

)s

Θ(ω)Θ(ω0 − ω). (2)

In the pseudogap BFKM, the fermionic density of states
has a power-law pseudogap at the Fermi level (ǫ = 0):

ρ(ǫ) =
∑

k

δ(ǫ − ǫk) = ρ0

∣

∣

∣

ǫ

D

∣

∣

∣

r

Θ(D − |ǫ|). (3)

For convenience, we set D = ω0 = 1, in which case the
model is fully specified by the exponents r and s and by
the dimensionless couplings J ≡ ρ0J0 ≥ 0 and g ≡ |K0g0|.

The pseudogap BFKM with isotropic couplings to the
bosonic bath has been studied via perturbative RG meth-
ods [6]. Such methods break down for Ising bosonic cou-
plings, where (for r = 0 at least), the critical physics occurs
at large J and g. We therefore treat Eq. (1) nonperturba-
tively using a recent extension of the numerical RG [5].

2. Results

RG flows: Figure 1 shows the qualitative dependence
of the RG flows on the exponents r ≥ 0 and s > 0. With
g = 0, Eqs. (1) and (3) describe the pseudogap Kondo
model. For 0 < r < 1

2
, the stable Kondo fixed point (K)

is reached only for J > Jc(g = 0). For J < Jc(0), flow
is towards the free-impurity fixed point (FI, shown as a
square in Fig. 1) at which the impurity decouples from the
baths. The transition between the K and FI phases occurs
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Fig. 1. Schematic RG flows in four regions of the plane spanned by
the band exponent r and the bath exponent s. See text for discussion.

at the fermionic critical point (FC, solid circle in Fig. 1),
with properties that are well understood. For r → 0+, FC
merges with FI and the impurity spin is Kondo screened

for all J > 0. By contrast, FC merges with K as r → 1
2

−
,

and Kondo physics is inaccessible for r ≥ 1
2

[7].
For g > 0 and s < 1, the RG flow for small J is instead

towards the localized fixed point (L), at which the impurity
dynamics are controlled by the dissipative bath. For s < 1
and 0 ≤ r < 1

2
, a continuous QPT between the K and L

takes place at a second critical point (BFC, open circle in
Fig. 1) lying on the separatrix Jc(g) (dashed line in Fig. 1).

The effects of dissipation lessen with increasing s: as s →
1−, BFC merges with FC, and for s > 1 the essential physics
is that of the pseudogap Kondo model. Increasing r inhibits

Kondo screening: as r → 1
2

−
, BFC merges with K; for r >

1
2

and s < 1, the RG flow is towards L for any nonzero g.
Local magnetic response: The critical properties of

the pseudogap BFKM reveal themselves most clearly in
the response to a local magnetic field h that acts only on
the impurity spin through an additional Hamiltonian term
hSz. The critical behavior at FC has been reported in [8].

Near BFC, the imaginary part of the local dynamical
susceptibility obeys the scaling form characteristic of an
interacting critical fixed point:

χ′′
loc(ω, T ) = T η−1 Φ(ω/T, j/T 1/ν), (4)

where j = J/Jc − 1 measures the distance to criticality,
and the exponent ν governs the vanishing of a crossover
scale T∗ ∝ |j|ν above which quantum-critical behavior is
observed up to nonuniversal energy scales. We find that the
anomalous exponent characterizing critical local-moment
fluctuations is η = 1−s independent of r, whereas ν exhibits
both r and s dependence.

Knowledge of η and ν is sufficient to determine all criti-
cal exponents associated with the response to h. Such hy-
perscaling behavior is expected at an interacting quantum-
critical point having an impurity free energy of the form
Fimp = Tf(j/T 1/ν, |h|/T b). For instance, the local magne-
tization mloc = 〈Sz(T = 0, h → 0)〉 serves as the order pa-
rameter for the transition. It obeys mloc(j < 0) ∝ (−j)β ,
where 2β = νη via hyperscaling. Figure 2a shows mloc ver-
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Fig. 2. Order parameter mloc(j) (defined in text) versus j = J/Jc−1
for the (r, s) pairs identified in the legend.

sus j for fixed band exponent r = 0.2 and three values of
the bath exponent 0 < s < 1; in all cases mloc(j) vanishes
continuously as j → 0−, and mloc(j) = 0 for j ≥ 0. It is
clear from Fig. 2a, and from the logarithmic plots in Fig 2b,
that the critical exponent β exhibits r and s dependence.

Throughout the domain 0 < r < 1
2
, 0 < s < 1, the

BFC exponents satisfy hyperscaling relations to within our
estimated numerical uncertainty. For example, for r = 0.2
and s = 0.2, η = 0.8003(5), 1/ν = 0.200(1), and β =
2.001(2), with parentheses enclosing the uncertainty in the
last digit.

3. Summary

We have studied nonperturbatively the critical prop-
erties of the impurity quantum phase transition between
Kondo-screened and localized-moment phases in the pseu-
dogap Bose-Fermi Kondo model. Critical exponents de-
pend only on the exponents parameterizing the densities
of states of the fermionic band and the bosonic bath, and
are found to obey hyperscaling relations characteristic of
an interacting quantum-critical point. Further details will
be discussed in a forthcoming publication.
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