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BM?3E : Discriminative Density Propagation for Visual Tracking

Abstract

We introduceB M3 E, a ConditionalBayesianMixture of ExpertsMarkovModel, for consistent proba-
bilistic estimates in discriminative visual tracking. Tim@del applies to problems of temporal and uncertain
inference and represents the unexplored bottom-up copmteof pervasive generative models estimated
with Kalman filtering or particle filtering. Instead of invémg a non-linear generative observation model at
run-time, we learn to cooperatively predict complex stastrithutions directly from descriptors that encode
image observations — typically bag-of-feature global imagstograms or descriptors computed over regular
spatial grids. These are integrated ircanditional graphical modéh order to enforce temporal smoothness
constraints and allow a principled management of uncetiaimhe algorithms combine sparsity, mixture
modeling, and non-linear dimensionality reduction forafint computation in high-dimensional continuous
state spaces. The combined system automatically sedflizés and recovers from failure. The research has
three contributions: (1) We establish the density propagatules fordiscriminative inferencén continu-
ous, temporal chain models; (2) We propose flexible supsaivésid unsupervised algorithms flgarning
feedforward, multivalued contextual mappings (multimatate distributions) based on compact, condi-
tional Bayesian mixture of experts models; (3) We validateftamework empirically for theeconstruction
of 3d human motion in monocular video sequenc@sir tests on both real and motion capture-based se-
guences show significant performance gains with respecomapeting nearest-neighbor, regression, and
structured prediction methods.

Keywords: computer vision, statistical models, video analysis, amtiracking.



1 Introduction and Motivation

We consider the problem of probabilistic state inference@dforward, conditional chain models,
based on temporal observation sequences. For demonstraBaconcentrate on the tracking and
3d reconstruction of articulated human motion in monocuideo. This is a challenging research
topic with a broad set of applications for scene understapdiut we emphasize that our framework
applies generally, toontinuous and uncertain temporal state estimapooblems.

Two general classes of strategies exist for visual modelimdjinferencdi) Generative (feed-
back) methodsptimize 3d kinematic and appearance models for good akgnnvith image fea-
tures. The objective is encoded as an observation liketittwaost function with optima (ideally!)
centered at correct pose hypotheggsConditional (feedforward) methodsalso referred as dis-
criminative, diagnostic, or recognition-based — predighlan poses directly from images features.
Both approaches require a state representati@ay, here a 3d human model with kinematics or
shape (joint angles, surfaces or joint positions), and be&ha set of image feature observatians,
for state inference. A training sef, = {(r;,x;) | i = 1... N}, sampled from thgint distribution
is usually available. The computational goal is common:dheditional distribution, or a model
state point estimate, given observations. The state andlbervation descriptors are important
components of modeling. The state needs dimensionalitguede for the variability in the task,
and the observation descriptor needs to be specific enouggtptare not only strong image depen-
dencies but also discriminative detail. Typically, these @btained by combining a-priori design
and off-line unsupervised learning. Once selected, theesgmtation (model state & observation
descriptor) is known for later learning and inference ssagéis currently holds for both generative
and discriminative models.

Generative algorithms model the joint distribution using a constructive form oéttihe ob-
server: the observation likelihood or cost function. Coexpampling or non-linear optimization
methods are used to infer the likelihood peaks, and Bayés'iswsed to compute the state con-
ditional from the observation conditional and the stat@mprBoth supervised and unsupervised

procedures are used for model learning — either to obtate gt@ors [9, 19, 14, 38, 40, 54, 21]
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or to tune the parameters of the observation moelgl,texture, ridge or edge distributions, using
problem-dependent, natural image statistics [37, 34, A@cking is framed in a clear probabilistic
and computational framework based on mixture filters origarfilters [20, 14, 11, 47, 48, 50, 38].

It has been argued that generative models can flexibly récmi£omplex unknown motions
and can naturally handle problem constraints. It has beenteoargued that both flexibility and
modeling difficulties lead to expensive, uncertain infeefl4, 37, 48, 41], and a constructive form
of the observationife. image appearance) is both difficult to build and indirectweéspect to the
task — primarily conditional state estimatiomgt conditional observation modeling.

The generative counter-argument motivates the complanestudy ofdiscriminative algo-
rithms [33, 32, 36, 52, 3, 16], that predict state distributiondily from image features. This
approach is not without its own difficulties: backgroundttdy occlusion or depth ambiguities
make the observations-to-state mapping multi-valued admenable to simple functional pre-
diction. Although, in principle, single hypothesis metkate not expected to be sufficient in this
context, several authors demonstrated good practicabqmeaince [36, 32, 52, 3, 16]. The meth-
ods differ in the organization of the training set and in thetime hypothesis selection method:
some construct data structures for fast nearest-neigleroeval [36, 52, 32], others learn regres-
sion models [3, 16]. Inference involves either indexingtfeg nearest-neighbors of the observation
and using their state for locally weighted prediction, dingrediction using the learned regression
model [3, 16], or affine reconstruction from joint centerg][3

Among (dominantly) discriminative methods, Rosales & Biufff33] take a notably different
approach, by accurately modeling the joint distributiomgsa mixture of perceptrons. Their sys-
tem combines multiple image-based state prediction wiglohyesis selection based on a rendering
(feedback) model. A related method has been suggested lyfaret al[18], who model the joint
distribution of multi-view silhouettes-pose using a mpewf probabilistic PCA. The problem has
been independently studied by Agarwal & Triggs [2] who ugatjmodels based on random re-
gression in a Condensation-based generative trackingfkank. There is an important difference

between working with the joint distribution [13, 33] and Worg only with the conditional state



distribution — even when using mixture of feedforward statalels (as opposed to generative ob-
servation models). In a joint model based on multiple congmts, the reliability of each state
predictor has to be ranked at run-time — a non-trivial openabecause the state is missing. The
problem can be solved either by conditioning and margiatibn (the application of Bayes rule) in
the joint model or by verification, using an ad-hoc, exteoizervation model. Depending on the
assumed modeling details, the computations can be diffpierform or may not be probabilisti-
cally consistent. An alternative is to use a conditionallygmeterized model. Details on models
and computations for both directly parameterized conulitis, and for models based on random
regression and joint density appear in our earlier work.[42]

To summarize, discriminative models provide fast infeegnoterpolate flexibly in the trained
region, but can fail on non-typical inputs, especially ditred using small datasets. Large train-
ing set and complex motions increase the image-to-poseganypivhich manifests as multivalued
image-to-pose relations or, probabilistically, as muttdal conditional state distributions. Learn-
ing multivalued models is inherently difficult. Moreoverigting discriminative methods lack
a probabilistic temporal estimation framework that hasnbse fruitful with generative models
[20, 14, 48]. Existing tracking algorithms [52, 3, 16] invelper-frame state inference, often using
estimates at previous timesteps [52, 3, 16], but do rely oseamf independence assumptions or
propagation rulesWhat distributions should be modeled, how should they beeladdand how
should they be temporally combined for optimal solutions?

The research we present addresses these questions forivallipntroduceB M3 E, a Condi-
tional BayesianMixture of ExpertsMarkov Model for consistent probabilistic estimates in dis-
criminative visual tracking. This represents the unexgdoifeedforward counterpart of temporal
generative models estimated with Kalman filtering or p&atidtering. Instead of inverting a gen-
erative observation model at run-time, we learn to coopaigtpredict complex state distributions
directly from image descriptors. These are integrated ioraditional graphical model in order

to enforce temporal smoothness constraints, and allowrgipled management of uncertairty.

1This model should not be confused with a Maximum Entropy Markodel, MEMM [31], designed for discrete
state variables, and based on a different, maximum enteggsentation of conditional distributions.



The algorithm combines sparsity, mixture modeling, and-logar dimensionality reduction for
efficient computation in high-dimensional continuousestgiaces [45, 44, 42, 39]. The combined
system automatically initializes and recovers from falurit can be used either stand-alone, or
as a component to bootstrap generative inference algaithihhis research has three technical
contributions:

(1) We establish the density propagation rulesdiscriminative inferencen continuous, tem-
poral chain models. The ingredients of the approach @gthe structure of the graphical model
(see fig. 1 and2.1); (b) the representation of local, per-node conditional stagibutions (se¢2)
below and;2.2); (c) the belief propagation (chain inference) procedggel). We work parametri-
cally and analytically, to predict and propagate Gaussiasures [41], but non-parametric belief
propagation methods [50, 38] can also be used to gojve

(2) We propose flexible algorithms feearningto contextually predict feedforward multimodal
state distributions based on compact, conditional Bayesixture of experts. (An expert is any
functional approximatoe.g. a perceptron or regressor.) These are based on hierarofidares
of experts [24, 55, 53, 7], an elaborated version of clugsawr switching regression [13, 33],
where the expert mixture proportions, called gates, amasledves observation-sensitive predictors,
synchronized across experts to give properly normalizedlitonal state distributions for any
input observation. Our learning algorithm is differentrfrahe one of [55] in that we use sparse
greedy approximations, and differs from [7] in that we ugsetyi maximum likelihood Bayesian
approximations [30, 29, 51, 26], not structured variatlamees.

(3) We validate the framework empirically on the problemre€onstructing 3d human mo-
tion in monocular video sequence®ur tests on both real and motion capture-based sequences
show important robustness and performance gains compaumeehtest-neighbor, regression, and

structured prediction methods.

Paper Organization: We introduce the discriminative density propagation freumd, referred
as BM?3E , in §2 as follows: §2.1 reviews the structure of the graphical model and the equa

tions used for temporal density propagation (precise dgaus are given in the Appendix)2.2



describes the Conditional Bayesian Mixture of Experts M@GB&IE) and explains its parameter
learning algorithm§2.3 shows how to construct structured predictors and cestference to low-
dimensional kernel-induced state spaces (kBME}3mve describe experiments on both synthetic
and real image sequences, and evaluate both high-dimeahsiod low-dimensional models. We
conclude and discuss future research directiorig imrhe work is based on our previous results in
[42, 41, 45, 44].

Terminology: We refer to the full modeling framework i§2, consisting of a conditional &tkov
Model with local distributions represented as conditionay®&sian Mxture of Experts (BME) as

BM?E. Its low-dimensional version based on local KBME condiélsris referred as BM?3E.

2 Formulation of the BM?3E Model

We work with a conditional graphical model with chain sturet, shown in fig. 1a. This has con-
tinuous temporal states and observations;, t = 1...7. For notational compactness, we write
joint states a¥X; = (x3,xa, . ..,X;), and joint observations 8, = (r;,...,r;). For learning and

inference we model local conditionals(x;|r;), andp(x;|x;_1, 1;).

2.1 Discriminative Density Propagation

Figure 1: A conditional temporal chain model left)reverses the direction of the arrows that link
the state and the observation (shaded nodes indicate hearidiat are not modeled — only instan-
tiated) compared with a generative offee right). The state conditionals(x;|r;) or p(x;|x;_1,1;)

can be learned using supervised methods and predictedydnfarence. Instead, a generative ap-

proach(b) will model and learmp(r;|x;) and do more complex probabilistic inference to invert it to
p(x¢|r;) using Bayes’ rule.

For filtering, we compute the optimal state distributjgix;|R;), conditioned by observations
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R, up to timet. The filtered density can be derived using the conditiordgpendence assumptions

implied by the graphical model in fig. 1a, as follows:

xR = [ plxfxics, (e[ Recdxis ®
Similarly, the joint distribution:

T
p(Xr[Rey) = p(xa|re) [ [ p(xilxi—1,10) (2)
t=2

The detailed derivations of (1) and (2) are given in the ApibeA

In practice, we model(x,|x;_1,r;) as a conditional Bayesian mixture df experts €.f. §2.2).
The priorp(x;_1|R;_1) is also represented as a Gaussian mixture wittomponents. To com-
pute the filtered posterior, we integrat&® pairwise products of Gaussians analytically [39]. The
means of the\/2-size posterior and used to initialize a fixaéf-size component Kullback-Leibler
approximation, refined using variational optimization][41
Remark:A conditionalp(x;|x;_1,r;) can be in practice more sensitive to incorrect previoug stat
estimates than ‘memoryless’ models,|r;). We assume, as in any probabilistic approach, that
training and testing data are representative samples afrttierlying distributions in the domain.
To improve robustness, it is straightforward to includerapartance sampler based pfx;|r;) to
eg. (1), effectively sampling from a mixture of observatimased and dynamics-observation based
state conditionals — as we also use for initialization &€ It is also useful to correct out-of-
sample observations (causece.g. by inaccurate silhouettes due to shadows) by projecting ont

p(r). Out of sample inputs or high entropy filtered posteriors lsarindicative heuristics for the

2Egs. (1) and (2) can be derived more generally, based on &fivecconditional dependent on a longer window
of observations up to time[42]. The advantage of these models has to be contrastéi) tocreased amount of data
required for training due to higher dimensionalifi§) Increased difficulty to generalize due to sensitivity todsnale
and / or alignment with a long sequence of past observations.

3For the directed conditional model in fig. 1), the filteredteoior is equal to the joint posterior, hence the influence
of future observations on past state estimates is elimidn#itecertain directed, discrete conditional models usddxh
processinge.g. MEMMSs [31], this model can encounter effects caused ‘laiias’. In BM3E, these would only
occur in conjunction with incorrectly learned conditiosidbut such failures would be harmful anyway, in any model.
In MEMMs [31], ‘label-bias’ occurs in models with sparse (@3posed to dense) state space transitions matrices,
whenever critical inter-state paths are absent, argupbiyarily a local conditional design and training problem.



loss of track, or absence of the target from scene.

2.2 Conditional Bayesian Mixture of Experts Model (BME)

This section describes models to represent multimodalittiondl distributions and algorithms
for learning their parameters. We moggk,|r;) for initialization or recovery from failure, and

p(x¢|x;_1, r;) for density propagatiorc.f. (1).

Representation: To accurately model multivalued image-state relationsuge several ‘experts’
that are simple function approximators. The experts ptesr input$ and produce state predic-
tions based on their parameters. Predictions from diftezgperts are combined in a probabilistic
Gaussian mixture with centers at predicted values. The hisd®nsistent across experts and
inputs,i.e. the mixing proportions of the experts reflect the distribaotof the outputs in the train-
ing set and they sum to 1 for every input. Certain input domaire predicted competitively by
multiple experts and have multimodal state conditionalthe®‘unambiguous’ input regions are
predicted by a single expert, with the others effectivelytawed-off, having negligible probabil-
ity (see fig. 3). This is the rationale behind a conditionay®&aan mixture of experts, a powerful

model for representing complex multimodal state distidng contextually. Formally, the model

is:
M
p(X|I‘,W,Q,)\) = Zg(r|Ai)p(X|r7Wi79;1) (3)
with:
f(x|A)
r\) = ————— 4
) = ) @
p(x|r, Wi, ;) = N (x|W,;®(r), ;) (5)

4The ‘inputs’ can be either observationg when modelingp(x;|r;) or observation-state pairsc; 1, r;) for
p(x¢|x:—1,1¢). The ‘output’ is the state throughout. Temporal informati®used to learp(x;|x;—1, ).



wherer are input or predictor variables, are outputs or responseg,are input dependent
positive gates, computed using functiofiz|\;), parameterized by;. f has to produce gates

within [0, 1], the exponential and the softmax functions are typical:

ekjr

z:keA;r

Notice howg are normalized to sum to 1 for consistency, by constructamgny given input.

g(r[X;) = (6)

In the modelp are Gaussian distributions (5) with covarian€gs', centered at different ‘expert’
predictions, here kernedi) regressors with weigh®/;. We work in a Bayesian setting [29, 51, 7],
where the weight3V, (and the gate3,;), are controlled by hierarchical priors, typically Gaass
with 0 mean, and having inverse variance hyperparameigf@ndg3,) controlled by a second level
of Gamma distributions. This gives an automatic relevareterchination mechanism [29, 51]
which avoids overfitting and encourages compact modelsawstimall number of non-zero weights
for efficient prediction. The parameters of the model, idaolg experts and gates are collectively
stored inf@ = {(W,, a;, Q;, \;, 3,) | i = 1... M}. The graphical model at two different levels of

detail is shown in fig. 2.

@ O -0
() ORRO0 {vg

Figure 2: The graphical model of a conditional Bayesian arixtof experts.(a) Left shows the
model block;(b) Rightgives a detail with the parameters and the hidden variahldaded (see
text). Shadowed nodes indicate variables that are not reddelit conditioned upon (instantiated).

N

Inference (state or output prediction) directly uses (3). The resuli conditional mixture distri-
bution with input-dependent components and mixing prapost In fig. 3 we explain the model

using an illustrative toy example, and show its relatiorhveiusterwise and univalued regression.

Learning the conditional mixture of experts involves two levels otiopzation. We describe the

general procedure, and refer the reader to [42] for additidarivations and discussion on models
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Figure 3: An illustrative dataset [7] consists of about 2&lues ofr generated uniformly if0, 1)

and evaluated as= z + 0.3 sin(27z) + ¢, with e drawn from a zero mean Gaussian with standard
deviation 0.05. Notice that(z|r) is multimodal.(a) Leftshows the data colored by the posterior
membership probability (7) of three expert kernel regresso(b) Middle shows the gateg (6),

as a function of the input, but also the three uniform proligs (of the joint distribution) that are
computed by a clusterwise regressor [13, 38).Rightshows how a single kernel regressor cannot
represent a multimodal distribution — it may either avertdgedata or zig-zag through its multiple
branches, depending on the kernel parameters.

and learning algorithms. As in many prediction problems,opgmize the parametef to max-
imize the log-likelihood of a data sef, = {(r;,x;) | i = 1... N}, i.e. the accuracy of predicting

x givenr, averaged over the data distribution. For learning, a fay&sian treatment requires
the computation of posterior distributions over paranseterd hyperparameters. Because exact
computations are intractable, we design iterative, apgprate Bayesian EM algorithms, based on
type-Il maximum likelihood [29, 51]. These use Laplace apgmation for the hyperparameters

and analytical integrate the weights, which in this sethbegome Gaussian [29, 51]. The algorithm

proceed as follows. In the E-step we estimate the posterior:

g(r|Ai)p(x|r, W, Qi_l)
Ej]\/il g(r‘Aj)p<X‘r7 Wj> Qj_l)

This computes the probability that expétias generated the datapointand requires knowl-

h(X,I’|Wi,QZ‘,AZ‘) = (7)

edge of both inputs and outputs (there is dzﬁ@ variable for each expert-training pair). The data
generation process assuméslatapoints are produced by oneMfexperts, selected in a stochas-
tic manner. This is modeled by indicator (hidden) variabiésch are turned-on if the datapoint

x(™ has been produced by expérand turned-off otherwise. In the M-step we solve two opti-

mization problems, one for each expert and one for its gate.fifst learns the expert parameters
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(W, Q,), based on training daff, weighted according to the current membership estinfatdse
covariances$?; are estimated from expert prediction errors [55]). The sdaaptimization teaches
the gategy how to predicth.® The solutions are based on ML-II, with greedy (expert weighb-
set selection. This strategy aggressively sparsifies therexby eliminating featurésvith small
weights after each iteration [51, 57, 26]. This computatan be viewed as a limiting series of
variational approximations (Gaussians with decreasim@nees), based on dual forms in weight

space [57]. The double-loop algorithm is summarized bedy 55, 42]:

1. E-step: For each data pafi(r™, x(™)|n = 1... N} compute posteriors." for each expert

i =1...M, using the current value of parametéW;, \;, 2, a;, 3,).

2. M-step: For each expert, solve weighted regression problem witha flat™, x™) | n =
1...N}and weightshl(.") to update W;, a;, 2;). This uses Laplace approximation for the
hyperparameters and analytical integration for the weigahd optimization with greedy

weight subset selection [51, 26].

3. M-step: For each gating network solve regression problem with date™, hf.”)) to up-
date(\;, 3;). This maximizes the cross-entropy betweeandh, with sparse gate weight
priors, and greedy subset selection [51, 26]. We use Lamppeoximation for both the

hyperparameters and the weights.

4. lterate using the updated parameter vaies{(W,, a;, Q;, N, 3,) | i =1... M }.

SPrediction based on the inponly is essential for runtime state inference, when memberstupgbilities (7)
cannot be computed as during learning, because the outmigsing.

5The selected ‘features’ are either specific examples fartdvased predictors or components of the observation
descriptor for linear predictors. Sparse kernel predgsétiminate samples in the training set but leave the in@itife
vector unchanged, whereas linear predictors work with thieeetraining set, but eliminate entries in the input.
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2.3 Learning Bayesian Mixtures in Kernel Induced State Spaes (kBME)

In this section we introduce low-dimensional extentionshi® original 313 E model in order to
improve its computational efficiency in certain visual taskAs introduced BM?3 E operates in
the selected state and observation spaces. Because thdse tesk generic, therefore redundant,
and often high-dimensional, temporal inference can be ragpensive or less robust. For many
visual tracking taks, low-dimensional models are appaipriE.g. , the components of the joint
angle state and the image observation vector are correfatedny human activities with repetitive
structure like walking or running. The low intrinsic dimemsality makes a high-dimensional
model of 50+ human joint angles non-economical.

In order to model conditional mappings between high-dirnered spaces with strongly corre-
lated dimensions, we rely on kernel non-linear dimensioneéduction and conditional mixture
prediction, as introduced i§2.2. Earlier research by Westen al [56] introduced Kernel Depen-
dency Estimation (KDE), a powerful univalued structureddictor. This decorrelates the output
using kernel PCA and learns a ridge regressor between tiu¢ amgl each decorrelated output di-

mension. Our procedure is also based on nonlinear methagkdrnel PCA [35], but takes into

p(ylz

z € P(F,) oy e P(Fz)

ro| poa] T

®.(r) C F, ®,.(x) C Fa x ~ Prelmagéy)

| o] |

rc RCR’ XX CR® p(x|r) = p(x|y)

Figure 4: The learned low-dimensional predictor, kKBME, éomputingp(x|r) = p(x|r:), Vt.
(We similarly learnp(x;|x;—1, r¢), with input (x, r) instead ofr — here we illustrate only(x|r) for
clarity.) The inputr and the outpuk are decorrelated using Kernel PCA to obtaiandy respec-
tively. The kernels used for the input and output @eand®,, with induced feature spaces
andF,, respectively. Their principal subspaces obtained bydPCA areP(F,) andP(F,). A
conditional Bayesian mixture of expejt§y|z) is learned using the low-dimensional representation
(z,y). Using learned local conditionals of the fomy,|z;) or p(y:|y:-1, z:), temporal inference
can be efficiently performed in law-dimensional kernel induced state spadéis uses (1) with

y <« x andz < r. For visualization and error measurement, the filtered idepsy,|Z,) is
transferred te(x;|R;) using the pre-image.f. (9).
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account the structure of our monocular visual perceptiablem, where both the inputs and the
outputs may be low-dimensional and the mapping between theltivalued. The output variables
x; are projected onto the column vectors of the principal spaaeder to obtain their principal
coordinates;. A similar procedure is performed on the inpuf$o obtainz;. In order to relate the
reduced feature spacesoéndy (P(F,.) andP(F,)), we estimate a probability distribution over
mappings from training pair;, y;). Asin§2.2, we use a conditional Bayesian mixture of experts
(BME) in order to account for ambiguity when mapping simifawssibly identical reduced feature
inputs to distant feature outputs, as common in our probl&his gives aconditional Bayesian

mixture of low-dimensional kernel-induced experts (kBME)

M

p(ylz) = gzl XM)N (y Wi (z), ;) 8)

=1
whereg(z|\;) is a softmax function parameterized By and (W;, ;') are the parameters and
output covariance of expeithere a kernel regressor, as before (3).

The kernel-induced kBME model requires the computatiorrefimages in order to recover the
state distributiorx from its imagey € P(F,). This is a closed form computation for polynomial
kernels of odd degree. In general, for other kernels, ogttion or learning (regression based)
methods are necessary [5]. Following [5, 56], we use a sfgagesian kernel regressor to learn

the pre-image. This is based on training datay):
p(x[y) = N(x[A®,(y), =) (9)

with parameters and covariances, ¥71). Since temporal inference is performed in the low-
dimensional kernel induced state space, the pre-imageHheesdalculated only for visualization or
error reporting. The solution is transferred from the restlfeature spac®(F,) to the output¥

by covariance propagation. This gives a Gaussian mixtutie Wi elements, coefficientg(z|\;)
and componentd/ (x| A®, (W, ®(z)), AJs,Q2;'J5 AT+37"), wherelq, is the Jacobian of the

mapping®,,.
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3 Experiments

This section describes our experiments, as well as theirigagets and the image features we
use. We show results on real and atrtificially rendered matepture-based test sequences, and
compare with existing methods: nearest neighbor, regnes&DE, both high-dimensional and
low-dimensional. The prediction error is reported in degréfor mixture of experts, this is w.r.t.
the most probable one — but see also fig. 9 and fig. 15b) — andatiaed per joint angle, per frame.
We also report maximum average estimates which are statiengoral averages of the maximum
error among all joint angles at particular timestep. The el®dre learned using standard cross-

validation. Fork BM?3 E, pre-images are learned using kernel regressors with ge@raorl.7°.

Database and Model Representationlt is difficult to obtain ground truth for human motion and
difficult to train using many viewpoints or lighting condifis. To gather data, we use, as oth-
ers authors [33, 36, 16, 3, 52], packages like Maya (Alias &ffawnt), with realistically rendered
computer graphics human surface models, animated usingmumotion capture [1]. Our human
representationx) is based on an articulated skeleton with spherical joems, has 56 d.o.f. in-
cluding global translation (the same model is shown in figa® ased for all reconstructions). The
database consists of 8262 individual pose samples obtaim fnotion sequence clips of different
human activities including walking, running, turns, jumpggstures in conversations, quarreling
and pantomime. The training set contains pairs of eithdestand observations, when learn-
ing p(x,|r;), or states at two succesive timesteps and observationeaifdhem, when learning
p(x¢|x4—1,1;). Fig. 6 shows data analysis for the database. The data isevigt (this is the format
used to train models) and we cluster the input features emittor (x;_;,r;), and the joint angle
vectors -, independently, using k-means. For every sample in théodag its input (eithart; or
x;_1,T;) IS assigned to the closest input cluster, and its outpudsigyaed to the closest joint angle
cluster. Each input cluster stores tmaxium number of different joint angle clustesedected by
samples assigned to it, and we build histograms of the maxiwvalues across all input clusters.

The use of many clusters models input perturbati@eng, caused by shadows or different body
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proportions. The number of joint angle clusters is seleatetthe order of the expected number
of forward-backward ambiguous ‘sheets’ for monocular hompase 2779 ~ 1000 — 2000
[48] for a fully sampled pose space. Working with the pregistate and the current observation
(fig. 6b) and c) does not eliminate uncertainty but this sHiff 2-3 units and peaks higher in the
low-mode domain. The ambiguity is severe enough to causkitig failure or significant errors

during initialization. This is shown quantitatively in fall and fig. 9. Ambiguity always increases

Figure 5: Various ambiguities that make the observatiestade mapping multivalueda) Left:
Example of180° ambiguity in predicting 3D human poses from silhouette inBgatures (center).

It is essential that multiple plausible solutions (and F5) are correctly represented and tracked
over time. A single state predictor will either average thstaht solutions or zig-zag between
them, see also tables 1 and(B) Middle: first three images show leg assignment ambiguities; last
two images show a global rotation ambiguity around verigoas. (c) Right: shows two reflective
ambiguities obtained by flipping the left and the right kn@iets and the right arm shoulder joint.

with larger training sets, subject body and clothing valigband complex motions. A two-level
clustering strategy similar to the one used for the databaabysis (fig. 6), is used to initialize the
learning of BME models. We initially cluster based on theutgpand then separately cluster the
samples within each ‘input’ cluster, based on the outputss Tends to avoid cases when single
experts would inconsistently represent multiple branafdbe inverse pose mapping (see fig. 3),

leading to poor models and likelihood optima.

Image Feature Descriptors:Our choice of image features is based on previously develoysth-
ods for texture modeling and object recognition [12, 32,8, 2Ve mostly work with silhouettes
having internal edges, and we assume that in real settimge ttan be obtained using statistical
background subtraction —we use one based on separatdlfobbeground and background models,
using non-parametric density estimation [15] and motiagymsentation [8]. We use shape context

features extracted on the silhouette [6, 32, 3] (5 radiad i@ angular bins, with bin size range 1/8
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Figure 6: Data analysis for a 8262 sample human motion ds¢abEhe ‘number of clusters’ axis
is shown on a logscale, the input and output vectors havewbgened, as for model traininga)
Left: Thex|r dependency (1209 clustergp) Middle: Analysis ofx;|(x;_1,r;) (1203 clusters).
(c) Right: Same agb) for 2808 clusters. We cluster the input features — either (x,_;,r;), and

the joint angle vectors,, independently, in a large number of clusters using k-me&os every
database sample, its input — eithrgior (x;_1, ;) — is assigned to the closest input cluster, and its
output is assigned to the closest joint angle cluster. Foin @gput cluster, we store the maxium
number of different joint angle clusters accessed anddpiato these across all input clusters.

to 3 on log scale). We compute shape context histograms bplsanfieatures at a variety of scales
and sizes on the silhouette. To work in a common coordinatesy, we cluster the image features
in a representative subset of the images in the traininghseki= 60 clusters, using k-means. To
compute the representation of a new shape feature (a pothemilhouette), we ‘project’ onto the
common basis (vector quantize w.r.t. the codebook) by sevdistance weighted voting into the
cluster centers. To obtain the representatioof a new silhouette we regularly sample about 100-
200 points on it and accumulate the feature vectors in arfedlistogram. This representation is
semi-local, rich and has been effectively demonstratedanyrapplications, including texture and
object recognition [12] or pose prediction [32, 36, 3]. Weaaéxperiment with descriptors based
on pairwise edge angle and distance histograms [4] and WtkISIFT descriptors [28] extracted
on a regular image grid and concatenated in a descriptoovédiese are used to demonstrate our
method’s ability to produce reliable human pose estimatesiages with cluttered backgrounds,
when silhouettes are not available. All image descriptoist¢gram-based or block-based) are ex-
tracted over partially intersecting neighborhoods — hdheg are based ooverlapping features

of the observatiomand have strongly dependent components. In a conditiomaldwork (fig. 1a),

this representation is consistent and tractable — diftgrénom the generative case, the observation
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distribution is not modeled and no simplifying assumptiaresnecessary.

Figure 7: Affinity matrices based on Euclidean distanceddorporally ordered silhouettes with
internal edges (darker means more similar). From left tbtrigpint angles (JA), external contour
shape context (SC), internal contour pairwise edge (PHE)pbock sift features (fized sized silhou-
ette bounding box) for different motiong&) Top row:walking parallel to the image plane. Notice
the periodicity as well as the higher frequencies in the (8&frix caused by half-cycle ambiguities
for silhouettes(b) Middle row: complex walk of a subject walking towards the camera and ;back
(c) Bottom row:conversations. The joint angle and image features coerédas intuitively.

3.1 High-dimensional Models

Comparisons: We compare our conditional Bayesian Mixture of Experts MedBME) with

competing methods: nearest neighbor (NN) or the relevaector machine (RVM), a sparse
Bayesian regressor [51]. We test several human activibésmed using motion-capture and arti-
ficially rendered. This provides ground truth and allowsasdncentrate on the algorithms and
factor out the variability given by the imperfections of dwman model, or the noise in the silhou-

ette extraction in real images. BME uses 5 modes, non-li@aassian kernel experts, with most
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probable mode selected. The results are shown in table 1ufi\Mteso comparisons, one by training
separate models for each activity class and testing onpth&df of table 1), the other by training
one global model on the entire database and using it to tlaokation types (the bottom half of

1). Training and testing is run on motions from different jsaks.

Testing separate activity models:We use several training sets: walking diagonal w.r.t. to the
image plane (train 300, test 56), complex walk towards timeera and turning back (train 900, test
90), running parallel to the image plane (train 150, test),L60nversation involving some hand
movement and turning (train 800, test 160), pantomime (18480, 100 test). During testing, we
initialize from ground truth. This is necessary for singigbthesis methods (NN, RVM), which
may immediately fail following and incorrect initializatm, in the dynamic cage(x;|x;_1, r;).

BME gives better average estimates and significantly loweximum errors. The large max-
imum error for running is consistent across methods andespands to the right hand joint. For
comparison we only consider the most probable BME predictid/hile the correct solution is
not always predicted as the most probable, it is often ptem®ong the top modes predicted, see
fig. 13c. For probabilistic tracking, this ‘approximatelgreect’ behavior is desirable, because the

correct solution is often propagated with significant pimltgy.

Testing the global model: We have also built one global model using the entire 8262 anoti
database and tested on six motion types. We use 7238 sampteitthe static state predictor
and 7202 samples to train the dynamic predigtot;|x,_1,r;). Testing is based on 2-fold cross
validation with test set sizes: normal walk - 55 Frames, demalk - 100 frames, running -
150 frames, conversation — 100 frames, pantomime — 200 fadamcing 270 frames. For these
experimentonly we use conditional models based on 10 linear (as opposedussiaa kernel)
experts and a 200d shape context feature vector made of fibHiStograms computed separately
for the contour and internal edge features (this improvefiop@ance over a global histogram
computed on the entire silhouette). Results are shown ihdttem-half of table 1 and in fig. 9. As
expected, all methods have larger errors compared to ther ease of separately trained and tested

activity models. BME is robust and outperforms its compesiton this large and diverse database.
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p(x[re) p(Xe|Xs-1,1¢)
Sequence
NN RVM BME NN RVM BME
NORMAL WALK 4120 2.7/112 2/10 7125 3.7/11.2 2.8/8.1
COMPLEX WALK 11.3/88 9.5/60 45/20 75/78 5.67/20 27719
RUNNING 7191 6.5/86 5/94 5.5/91 5.1/108 45/76
CONVERSATION 7.3126 55/21 4.15/9.5 8.14/29 4.07/16 3/9
PANTOMIME 7136 7.5/53 6.5/25 75149 7.5/43 7141
Normal walk 15.8/179.5 954/72.9| 7.41/128.5| 5.79/164.8| 8.12/179.4) 3.1/94.5
Complexwalk | 17.7/178.6| 15/179.8 | 8.6/178.8| 17.8/178.6| 9.5/179.9| 7.7/134.9
Running 20.1/178.2| 10.6/76.8| 59/177.4| 9.3/64.9 | 8.64/76.8| 3.3/59.5
Conversation | 12.9/177.4) 12.4/179.9 9.9/179.7| 12.8/88.8| 10.6/179.9 6.13/94.3
Pantomime 20.6/177.4/ 17.5/176.4 13.5/178.5| 21.1/177.4/ 11.1/119.9 7.4/119.2
Dancing 18.4/179.9 20.3/179.9 14.3/179.9| 25.6/179.9| 14.9/149.8| 6.26 / 124.6

Table 1: Comparative results showing RMS errors per joigl@taverage error / maximum joint
average error) in degrees for two conditional modg(s;|r;) and p(x;|x;_1,r;). We compare
three different algorithms on motion-capture, synthdtijogenerated test data (we select the best
candidate for each test input, there is no probabilistickiray, butp(x;|x;_1,r;) has memory)The
top tableshows result obtained by training separate activity modat$ sequence and testing on
motions in their class (BME uses 5 Gaussian kernel expétgjom tablgmotion types in bold)
shows results obtained by training one single global modeihe entire 8262 sample database.
BME models are based on 10 sparse linear experts, RVM usespanse linear expert. In all tests,
accuracy is reported w.r.t. the most probable expert for BME see also fig. 9.

The dancing and pantomime sequences are the most diffi@itodbeir inherently higher semantic
variability (compared to walking say), and given our tragnand testing setting based on motions
captured from different subjects. While BME's ‘best expertrors are sometimes large, these
decrease substantially when measuring prediction erranynof the best-k most probable experts
— qualitatively illustrated in fig. 9. The average error cé thest (most probable) expertis14.3°,

but the error in the best 3 experts is undet, and the error in the best 7 experts is ungferThis
shows that a BME model can generalize well even for large anotariability at some decrease
in the confidence of its most probable predictions. An illagon of BM3E tracking (with 5-
mode filtered posteriors), applied to a dancing sequenagyés in fig. 8. Notice the large joint

angle trajectory separation in state space, and the ditféypes of multimodality, including well

separated paths (fig. 8a), bundles (b) or merge / splits (c).
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Figure 8: (Best viewed in color) lllustration of the)/®E tracker in a dancing sequence, with
5 mode posterior, computed using (1). Time is unfolded onhibrézontal axis, filtered density
at timestep on the vertical (showing one selected varialplebability is color coded. Notice
different types of multimodality, including well separdtpaths &, left), bundles , middlg and
merge / splits¢, right).
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Figure 9: Reconstruction error in the ‘béstexperts ¢ = 1...10) for a global model, trained
on the 8262 sample database — see also the bottom half ofitaBlediction accuracy is herot
only computed only w.r.t. the most probable expert (1st lvathe left), but w.r.t. the best-k — we
measure the expert prediction closest to the ground trutheumitoff at thek-th most probable (each
error level is obtained for a differer)). (a) Left and (b) Middletrain and test errors for dancing.
(c) Right: test errors for a person walking towards the camera, turb&d§ and going back. In
testing, the most probable expert may not always be relidoleprediction from top ones is.

Real Image Sequences. Walking, Picking and DancingiVe track usingBM?3E with 5 mode
posteriors and local BME conditionals based on 5 expertb, RBF kernels and degree of sparsity
varying between 5%-25%. Fig. 10 shows a succesful recartgiruof walking — the frames are
from a 3s sequence, 60fps. Occasionally, there are legramssitf ambiguities that can confuse a
single hypothesis tracker, as visible in fig. 5, or in the &ffimatrix of the image descriptor (fig. 7).
While the affinity matrices of 3d joint angles and image feasufor walking correlate well (fig. 7a)

(far better that for other motions like conversations or pter walking), the higher frequency in

the image affinity sub-diagonal bands illustrate the sidtmiambiguities at walking half-cycles.
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Figure 10: Reconstruction of walkinga) Left: original imagesjb) Middle: reconstruction ren-
dered from the same viewpoint used in traini(g.Right: Images showing the reconstruction from
a different viewpoint.

In fig. 12, we show reconstruction results from a 2s video filmaé 60 fps, where a subject
mimicks the act of picking an object from the floor. We expamnwith both Bayesian single
hypothesis tracking (single expert local conditionalshpagated using (1), as well d&M3E.
The single hypothesis tracker follows the beginning of tag@uence but fails shortly after, when

its input kernels stop firing due to an out-of-range stateimpedicted from the previous timestep

(fig. 11)7

AMAssatA

[EEEEEeee

Figure 11: A single hypothesis Bayesian tracker based ofa{l$)to reconstruct the sequence in
fig. 12 (bottom row)even when presented with only the silhoue(tep row). In the beginning, the
tracker follows the motion, but fails shortly after, by gesttéeng a prediction out of its input kernel
firing range. The track is lost with the expert locked to itagjoint angle values.

In fig. 12 we show results obtained with the 5 md@l&/3 £ tracker. This was also able to re-

"We initialize using a BME fop(x;|r;). For single hypothesis tracking, we select the most prebedamponent.
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construct the pose based on silhouettes alone (shown inphew of fig. 11), but here we show a
more difficult sequence where the person has been placed ymaadtally changing background
and the tracker had no silhouette information. In this cageajse block SIFT image features and 5
linear experts for local BME. The model is trained on 1500 gl from picking motions, synte-
htically rendered on natural backgrounds, using our 3d mumadel. A rectangular bounding box
containing both the person and the background is used asanpuSIFT descriptors are extracted
on a regular grid, typically over both foreground and baokad regions. Block features, linear
experts and training with different image backgrounds #eztve in order to build models that are
resistent to clutter. Block descriptors are more approptizan bag-of-feature, global histograms —
during training the model learns to downgrade image blda&sdontain only background. Regions
with oscillatory foreground / background labels are assigto different experts. The reconstruc-
tion is perceptually plausible, but there are imperfedjquossibly reflecting the bias introduced by
our training set — notice that the knee of the model is tiltethard whereas the knee of the human
is tilted inward. We observe persistent multimodality fongs actively movinge.g. the left and
right femur and the right shoulder.

In fig. 14, we show reconstruction experiments for a real olgnsequence, with quantitative
results given in fig. 13. We train on 300 synthetic motion s@®jpnd test on 100 images of a real
video. Our test subject (an author of this paper) has wattiiedchotion capture video and tried to
imitate it. Given the complexity of the motion, the trainiagd testing data is inherently different.
Our tracker generalizes well and succeeds in capturinged&d motion in a perceptually plausible
way. There are, however, noticeable imperfections in thenstructione.g.in the estimates of the

arms and legs.

3.2 Low-dimensional Models

We learn kBME conditionals§@.3) and reconstruct human pose in a low-dimensional kenrel
duced state space, using thB k3 E tracker. Gaussian kernels are used for kernel PCA. We learn

kBME with 6d kernel induced state spaces and 25d featureespda fig. 15a), we evaluate the

23



Figure 12:(a) Top row: Original image sequence showing the silhouette of the persdig. 11,
placed on different natural scene backgrounds. (The traskgven a cluttered rectangular bound-
ing box of the persomotits silhouette.Xb) Middle row: Reconstruction seen from the same view-
point used for training(c) Bottom row:Reconstruction seen from a synthetic viewpoint. Despite
the variablly changing backgroun®,/3E can reconstruct the motion with reasonable perceptual
accuracy. However, there are imperfectioasy. the right knee of the subject is tilted inward,
whereas the one of the model is tilted outward). A single hlypsis Bayesian tracker fails even
when presented with only silhouettes, see fig. 11.

accuracy of KBME for different state dimensions in a dangaguence (for this test only, we use
a 50d observation descriptor). On dancing, which involv@®@ex motions of the torso, arms
and the legs, the non-linear model significantly outperfoatiernative PCA methods and gives
good predictions for compact, low-dimensional statesabid 2 and fig. 15, we show quantitative
comparisons on artificially rendered silhouettes — 3d jamjle ground truth is available for sys-

tematic evaluation. The low-dimensional non-linear me#&&ME outperform PCA-based models,
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Figure 13: Quantitative 3d reconstruction results for acitem sequence.(a) Left: shows the
maximum and minimum distance between the modes of the rout(jertical axis) rotation angle.
The minimum distance is only informatively shown, it does$ mecessarily reflect modes that will
survive the mixture simplification. Most likely, modes tlwhtister together collaps€b) Middle:
same aga) for the left femur.(c) Right: shows the good accuracy of BME. Notice that occasionally,
its most probable prediction is not the most accurate.

Figure 14: Tracking and 3d reconstruction of a dancing secgi€a) Toprow shows original im-
ages and silhouettes (the algorithms use both the silleocetitour and the internal image edges);
(b) Bottomrow shows reconstructions from training (left) and new kegtit viewpoint (right).

and give results competitive to high-dimensional BME petalis. But low-dimensionality makes
training and tracking less expensiwef, (1). In fig. 16 and 17 we show human motion reconstruc-
tions based on two real image sequences. Fig. 16 shows angegorming an agile jump. Given
the missing observations in a side view, the 3d reconstmcii occluded body parts would not be
possible without prior knowledge. The sequence in fig. 1ivsrgimultaneous pose reconstruction
for two people mimicking domestic activities — washing a@ow and picking an object. We track
in a 12d state space, obtained by concatenating the 6d $tatelo person. We reconstruct suc-

cessfully using only 5 hypotheses, although the resultaar@erfect — notice errors in the elbow
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Figure 15: (a) Left: Evaluation of dimensionality reduction methods for anfarél dancing
sequence (models trained on 300 samples). kBME is discussgi3; KDE-RVM is a Kernel
Dependency Estimator (KDE) with a Relevance Vector MacliRvM) [51] feature space map;
PCA-BME and PCA-RVM are models where mappings between featpaces (obtained with
PCA) are learned with BME and RVM. Due to non-linearity, kadrbased methods outperform
PCA and give low prediction error for 5-6d modef{b) Middle: Histogram showing the accuracy
of various expert kBME predictors — how many times the exgerked a%-th most probable by the
model (horizontal axis) is closest to the ground truth. Thoelat is consistent (the most probable
expert indeed is the most accurate most frequently), buasionally less probable experts are
better.(c) Right: Histograms show the dynamics gfy,|y;_1, z:), i.e. how the probability mass is
redistributed among experts between two successive teps Sh a conversation sequence.

and the bending of the knee of the subject at the left, or imtfigt orientation of the subject at the

right.
KDE-RR | RVM | KDE-RVM | BME | KBME
Walk and turn 10.46 | 4.95 7.57 4.27 | 4.69
Conversation 7.95 4.96 6.31 415 | 4.79
Run and turn left 5.22 5.02 6.25 5,01 | 4.92
Walk and turn backl 7.59 6.9 7.15 3.6 3.72
Run and turn 17.7 16.8 16.08 8.2 8.01

Table 2: Comparison of average joint angle prediction doodifferent models. All KPCA models
have 6 output dimensions. Testing is done on 100 video frdonesach sequence, with artificially
generated silhouette inputs, not in the training set. EdsBd joint angle ground truth is used
for evaluation. KDE-RR is a KDE model with a ridge regress{BiR) feature space map, KDE-
RVM uses an RVM. BME are the high and low-dimensional modétsubsed irg2.2 and§2.3.
kernelPCA-based methods use kernel regressors for prgesna

Running times for different models: On a Pentium 4 PC (3 GHz, 2 GB RAM), a full dimensional

BME model with 5 experts takes 802s to traifx,|x, 1, r;), whereas a KBME (including the pre-
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Figure 16: Reconstruction of a jump (scaled selected fram@g Top row: original image se-
guence(b) Bottom row:3D reconstruction seen from a synthetic viewpoint.

Figure 17: Reconstruction of domestic activities — 2 peaplerating in an 12d state space (each
person has its own 6d stat€) Top row:original image sequencéb) Bottom row:3d reconstruc-
tion seen from a synthetic viewpoint.

image) takes 95s to trap(y,|y;_1,z;). The prediction time is 13.7s for BME and 8.7s (including
the pre-image cost 1.04s) for kBME. The integration in (Keta2.67s for BME and 0.31s for

kBME. The speed-up of kBME is significant and likely to incseaw.r.t. original models having

higher dimensionality.

4 Conclusions

We have introduced3 M3 E, a framework for discriminative density propagation in tionous

state spaces. We argued that existing discriminative ndstdo not offer a formal management
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of uncertainty, and explained why current representatbamnot model multivalued mappings in-
herent in 3d perception. We contribute by establishing #esdy propagation rules in continuous
conditional chain models, and by proposing models capahlepresent feedforward, multivalued
relations contextually. The combined system automayicalf-initializes and recovers from failure
— it can operate either stand-alone, or as a component ialirgt generative inference algorithms.
We show results on real and synthetically generated imaggesees, and demonstrate significant
performance gains with respect to nearest neighbor, reigresand structured prediction methods.
Our study suggests that flexible conditional modeling anzkttainty propagation are both impor-
tant in order to reconstruct complex 3d human motion in maferovideo reliably. We hope that
our research will provide a framework to analyze discrirtireeand generative tracking algorithms
and stimulate a debate on their relative advantages wittdmanon probabilistic setting. By virtue
of its generality, we hope that the proposed methodologhbsiliseful in other 3d visual inference
and tracking problems.

Future Work: We plan to investigate alternative model state and observatescriptors that
would make possible to reconstruct complex dynamic sceiigsoeclusion, partial body views,
background clutter, and camera motion. We intend to stuidyradtive learning and inference al-
gorithms based on bound optimization. Combining the sttengf generative and discriminative

methods remains a promising avenue for future research [46]

Appendix: Filtering and Joint Distribution for Conditiona | Chains

The filtering recursion (1). The following properties can be verified visually in fig. 1ajng a

Bayes ball algorithm [23] (L’ denotes independence, anjtconditioning onf:

8The model is conditional, hence no attempt is made to mo@ebkiservations, which can have arbitrary inner or
temporal dependency structure. An arrow-reversed gawerabdel as in fig. 1a, but without instantiated observatjon
will have a dependency structure with marginally independemporal observations; L R,_;. This has no effect
in a conditional model, where observations are always mtistied. Contrast this with the conditional independerice o
temporal observations given the states, assumed by tehysorarative models (fig. 1b).
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x; AL Xt—2|Xt—1 (10)

x; AL Rt—1|xt—1> r; (11)

Xt—l AL r; (12)

p(Xt|Rt) = /p(Xt,Xt—1|Rt—1,I't)dXt—1 = (13)
= /p(xt|xt—17Rt—17rt)p(xt—1|Rt—17rt)dXt—1 = (14)

= /p(xt|xt—17rt)p(xt—l‘Rt—1>dxt—1 (15)

where in the last line we used:

(11) = p(xe|xi—1, Rio1, 1) = p(Xe|Xp—1,1¢)

(12) =p(xi—1|Ri—1, 1) = p(xe—1|Ri—1)

Remark:lt is also possible to use a generative model, but expregrtipagation rules in terms of

discriminative-style conditionals in order to simplifyfémence [42]:

p(xtht) X M

p(xy) /p(Xt|Xt—1)p(Xt—1|Rt_1)dxt_1 (16)

wherep(x;) = [ p(x¢|x4—1)p(x4—1)dx;—;. Implementing (16) requires recursively propagating

bothp(x|R;) andp(x;) (an equilibrium approximation could be precompi)etivo mixture sim-

SAlternatively, the ratio could be estimated.
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plification levels, inside the integrand and outside it tigio the multiplication by(x;|r;) and a

division byp(x;) (see [42] for details).

The joint distribution (2). Using basic conditioning:

p(XT7 RT) = p(XT—b RT—1)p(1"T\XT—1, RT—l)p(XT|XT—17 RT) (17)

The independence of (12) can be used to simplify (17):

p(rr|Xr_1, Rr_1) = p(rr) (18)

p(XT|XT—17 Xr_2, Rr_1, I“T) = p(XT|XT—1, I“T) (19)

Using (18) and (19) in (17), we obtain:

p(X7, Rr) = p(Xp_1, Rp_1)p(rr)p(xXr|xr_1, r7) (20)

and (2) is verified given:
p(XT7 RT)

p(Xr|Ry) = —+7——
H;le ry

(21)

andp(x;|ry) = p(x1,1r1)/p(r1).
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