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BM 3E : Discriminative Density Propagation for Visual Tracking

Abstract

We introduceBM3E, a ConditionalBayesianMixture ofExpertsMarkovModel, for consistent proba-

bilistic estimates in discriminative visual tracking. Themodel applies to problems of temporal and uncertain

inference and represents the unexplored bottom-up counterpart of pervasive generative models estimated

with Kalman filtering or particle filtering. Instead of inverting a non-linear generative observation model at

run-time, we learn to cooperatively predict complex state distributions directly from descriptors that encode

image observations – typically bag-of-feature global image histograms or descriptors computed over regular

spatial grids. These are integrated in aconditional graphical modelin order to enforce temporal smoothness

constraints and allow a principled management of uncertainty. The algorithms combine sparsity, mixture

modeling, and non-linear dimensionality reduction for efficient computation in high-dimensional continuous

state spaces. The combined system automatically self-initializes and recovers from failure. The research has

three contributions: (1) We establish the density propagation rules fordiscriminative inferencein continu-

ous, temporal chain models; (2) We propose flexible supervised and unsupervised algorithms forlearning

feedforward, multivalued contextual mappings (multimodal state distributions) based on compact, condi-

tional Bayesian mixture of experts models; (3) We validate the framework empirically for thereconstruction

of 3d human motion in monocular video sequences. Our tests on both real and motion capture-based se-

quences show significant performance gains with respect to competing nearest-neighbor, regression, and

structured prediction methods.

Keywords: computer vision, statistical models, video analysis, motion, tracking.
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1 Introduction and Motivation

We consider the problem of probabilistic state inference infeedforward, conditional chain models,

based on temporal observation sequences. For demonstration, we concentrate on the tracking and

3d reconstruction of articulated human motion in monocularvideo. This is a challenging research

topic with a broad set of applications for scene understanding, but we emphasize that our framework

applies generally, tocontinuous and uncertain temporal state estimationproblems.

Two general classes of strategies exist for visual modelingand inference:(i) Generative (feed-

back) methodsoptimize 3d kinematic and appearance models for good alignment with image fea-

tures. The objective is encoded as an observation likelihood or cost function with optima (ideally!)

centered at correct pose hypotheses;(ii) Conditional (feedforward) methods– also referred as dis-

criminative, diagnostic, or recognition-based – predict human poses directly from images features.

Both approaches require a state representation,x say, here a 3d human model with kinematics or

shape (joint angles, surfaces or joint positions), and bothuse a set of image feature observations,r,

for state inference. A training set,T = {(ri,xi) | i = 1 . . . N}, sampled from thejoint distribution

is usually available. The computational goal is common: theconditional distribution, or a model

state point estimate, given observations. The state and theobservation descriptors are important

components of modeling. The state needs dimensionality adequate for the variability in the task,

and the observation descriptor needs to be specific enough tocapture not only strong image depen-

dencies but also discriminative detail. Typically, these are obtained by combining a-priori design

and off-line unsupervised learning. Once selected, the representation (model state & observation

descriptor) is known for later learning and inference stages. This currently holds for both generative

and discriminative models.

Generative algorithms model the joint distribution using a constructive form of the the ob-

server: the observation likelihood or cost function. Complex sampling or non-linear optimization

methods are used to infer the likelihood peaks, and Bayes’ rule is used to compute the state con-

ditional from the observation conditional and the state prior. Both supervised and unsupervised

procedures are used for model learning – either to obtain state priors [9, 19, 14, 38, 40, 54, 21]
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or to tune the parameters of the observation model,e.g. texture, ridge or edge distributions, using

problem-dependent, natural image statistics [37, 34, 49].Tracking is framed in a clear probabilistic

and computational framework based on mixture filters or particle filters [20, 14, 11, 47, 48, 50, 38].

It has been argued that generative models can flexibly reconstruct complex unknown motions

and can naturally handle problem constraints. It has been counter-argued that both flexibility and

modeling difficulties lead to expensive, uncertain inference [14, 37, 48, 41], and a constructive form

of the observation (i.e. image appearance) is both difficult to build and indirect with respect to the

task – primarily conditional state estimation,not conditional observation modeling.

The generative counter-argument motivates the complementary study ofdiscriminative algo-

rithms [33, 32, 36, 52, 3, 16], that predict state distributions directly from image features. This

approach is not without its own difficulties: background clutter, occlusion or depth ambiguities

make the observations-to-state mapping multi-valued and not amenable to simple functional pre-

diction. Although, in principle, single hypothesis methods are not expected to be sufficient in this

context, several authors demonstrated good practical performance [36, 32, 52, 3, 16]. The meth-

ods differ in the organization of the training set and in the runtime hypothesis selection method:

some construct data structures for fast nearest-neighbor retrieval [36, 52, 32], others learn regres-

sion models [3, 16]. Inference involves either indexing forthe nearest-neighbors of the observation

and using their state for locally weighted prediction, direct prediction using the learned regression

model [3, 16], or affine reconstruction from joint centers [32].

Among (dominantly) discriminative methods, Rosales & Sclaroff [33] take a notably different

approach, by accurately modeling the joint distribution using a mixture of perceptrons. Their sys-

tem combines multiple image-based state prediction with hypothesis selection based on a rendering

(feedback) model. A related method has been suggested by Graumanet al [18], who model the joint

distribution of multi-view silhouettes-pose using a mixture of probabilistic PCA. The problem has

been independently studied by Agarwal & Triggs [2] who use joint models based on random re-

gression in a Condensation-based generative tracking framework. There is an important difference

between working with the joint distribution [13, 33] and working only with the conditional state

4



distribution – even when using mixture of feedforward statemodels (as opposed to generative ob-

servation models). In a joint model based on multiple components, the reliability of each state

predictor has to be ranked at run-time – a non-trivial operation because the state is missing. The

problem can be solved either by conditioning and marginalization (the application of Bayes rule) in

the joint model or by verification, using an ad-hoc, externalobservation model. Depending on the

assumed modeling details, the computations can be difficultto perform or may not be probabilisti-

cally consistent. An alternative is to use a conditionally parameterized model. Details on models

and computations for both directly parameterized conditionals, and for models based on random

regression and joint density appear in our earlier work [42].

To summarize, discriminative models provide fast inference, interpolate flexibly in the trained

region, but can fail on non-typical inputs, especially if trained using small datasets. Large train-

ing set and complex motions increase the image-to-pose ambiguity which manifests as multivalued

image-to-pose relations or, probabilistically, as multimodal conditional state distributions. Learn-

ing multivalued models is inherently difficult. Moreover, existing discriminative methods lack

a probabilistic temporal estimation framework that has been so fruitful with generative models

[20, 14, 48]. Existing tracking algorithms [52, 3, 16] involve per-frame state inference, often using

estimates at previous timesteps [52, 3, 16], but do rely on anset of independence assumptions or

propagation rules.What distributions should be modeled, how should they be modeled, and how

should they be temporally combined for optimal solutions?

The research we present addresses these questions formally. We introduceBM3E, a Condi-

tional BayesianMixture of ExpertsMarkov Model for consistent probabilistic estimates in dis-

criminative visual tracking. This represents the unexplored, feedforward counterpart of temporal

generative models estimated with Kalman filtering or particle filtering. Instead of inverting a gen-

erative observation model at run-time, we learn to cooperatively predict complex state distributions

directly from image descriptors. These are integrated in a conditional graphical model in order

to enforce temporal smoothness constraints, and allow a principled management of uncertainty.1

1This model should not be confused with a Maximum Entropy Markov Model, MEMM [31], designed for discrete
state variables, and based on a different, maximum entropy representation of conditional distributions.
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The algorithm combines sparsity, mixture modeling, and non-linear dimensionality reduction for

efficient computation in high-dimensional continuous state spaces [45, 44, 42, 39]. The combined

system automatically initializes and recovers from failure – it can be used either stand-alone, or

as a component to bootstrap generative inference algorithms. This research has three technical

contributions:

(1) We establish the density propagation rules fordiscriminative inferencein continuous, tem-

poral chain models. The ingredients of the approach are:(a) the structure of the graphical model

(see fig. 1 and§2.1); (b) the representation of local, per-node conditional state distributions (see(2)

below and§2.2); (c) the belief propagation (chain inference) procedure (§2.1). We work parametri-

cally and analytically, to predict and propagate Gaussian mixtures [41], but non-parametric belief

propagation methods [50, 38] can also be used to solve(c).

(2) We propose flexible algorithms forlearningto contextually predict feedforward multimodal

state distributions based on compact, conditional Bayesian mixture of experts. (An expert is any

functional approximator,e.g.a perceptron or regressor.) These are based on hierarchicalmixtures

of experts [24, 55, 53, 7], an elaborated version of clusterwise or switching regression [13, 33],

where the expert mixture proportions, called gates, are themselves observation-sensitive predictors,

synchronized across experts to give properly normalized conditional state distributions for any

input observation. Our learning algorithm is different from the one of [55] in that we use sparse

greedy approximations, and differs from [7] in that we use type-II maximum likelihood Bayesian

approximations [30, 29, 51, 26], not structured variational ones.

(3) We validate the framework empirically on the problem ofreconstructing 3d human mo-

tion in monocular video sequences. Our tests on both real and motion capture-based sequences

show important robustness and performance gains compared to nearest-neighbor, regression, and

structured prediction methods.

Paper Organization: We introduce the discriminative density propagation framework, referred

as BM3E , in §2 as follows: §2.1 reviews the structure of the graphical model and the equa-

tions used for temporal density propagation (precise derivations are given in the Appendix),§2.2
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describes the Conditional Bayesian Mixture of Experts Model (BME) and explains its parameter

learning algorithm;§2.3 shows how to construct structured predictors and restrict inference to low-

dimensional kernel-induced state spaces (kBME). In§3 we describe experiments on both synthetic

and real image sequences, and evaluate both high-dimensional and low-dimensional models. We

conclude and discuss future research directions in§4. The work is based on our previous results in

[42, 41, 45, 44].

Terminology: We refer to the full modeling framework in§2, consisting of a conditional Markov

Model with local distributions represented as conditional Bayesian Mixture of Experts (BME) as

BM3E. Its low-dimensional version based on local kBME conditionals is referred askBM3E.

2 Formulation of the BM 3E Model

We work with a conditional graphical model with chain structure, shown in fig. 1a. This has con-

tinuous temporal statesxt and observationsrt, t = 1 . . . T . For notational compactness, we write

joint states asXt = (x1,x2, . . . ,xt), and joint observations asRt = (r1, . . . , rt). For learning and

inference we model local conditionals:p(xt|rt), andp(xt|xt−1, rt).

2.1 Discriminative Density Propagation

Figure 1: A conditional temporal chain model(a, left)reverses the direction of the arrows that link
the state and the observation (shaded nodes indicate variables that are not modeled – only instan-
tiated) compared with a generative one(b, right). The state conditionalsp(xt|rt) or p(xt|xt−1, rt)
can be learned using supervised methods and predicted during inference. Instead, a generative ap-
proach(b) will model and learnp(rt|xt) and do more complex probabilistic inference to invert it to
p(xt|rt) using Bayes’ rule.

For filtering, we compute the optimal state distributionp(xt|Rt), conditioned by observations
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Rt up to timet. The filtered density can be derived using the conditional independence assumptions

implied by the graphical model in fig. 1a, as follows:

p(xt|Rt) =

∫
p(xt|xt−1, rt)p(xt−1|Rt−1)dxt−1 (1)

Similarly, the joint distribution:

p(XT |RT ) = p(x1|r1)
T∏

t=2

p(xt|xt−1, rt) (2)

The detailed derivations of (1) and (2) are given in the Appendix.2

In practice, we modelp(xt|xt−1, rt) as a conditional Bayesian mixture ofM experts (c.f. §2.2).

The priorp(xt−1|Rt−1) is also represented as a Gaussian mixture withM components. To com-

pute the filtered posterior, we integrateM2 pairwise products of Gaussians analytically [39]. The

means of theM2-size posterior and used to initialize a fixedM-size component Kullback-Leibler

approximation, refined using variational optimization [41].

Remark:A conditionalp(xt|xt−1, rt) can be in practice more sensitive to incorrect previous state

estimates than ‘memoryless’ modelsp(xt|rt). We assume, as in any probabilistic approach, that

training and testing data are representative samples of theunderlying distributions in the domain.

To improve robustness, it is straightforward to include an importance sampler based onp(xt|rt) to

eq. (1), effectively sampling from a mixture of observation-based and dynamics-observation based

state conditionals – as we also use for initialization (see§3).3 It is also useful to correct out-of-

sample observationsrt (causede.g. by inaccurate silhouettes due to shadows) by projecting onto

p(r). Out of sample inputs or high entropy filtered posteriors canbe indicative heuristics for the

2Eqs. (1) and (2) can be derived more generally, based on a predictive conditional dependent on a longer window
of observations up to timet [42]. The advantage of these models has to be contrasted to:(i) Increased amount of data
required for training due to higher dimensionality.(ii) Increased difficulty to generalize due to sensitivity to timescale
and / or alignment with a long sequence of past observations.

3For the directed conditional model in fig. 1a), the filtered posterior is equal to the joint posterior, hence the influence
of future observations on past state estimates is eliminated. In certain directed, discrete conditional models used intext
processing,e.g. MEMMs [31], this model can encounter effects caused ‘label-bias’. In BM3E, these would only
occur in conjunction with incorrectly learned conditionals, but such failures would be harmful anyway, in any model.
In MEMMs [31], ‘label-bias’ occurs in models with sparse (asopposed to dense) state space transitions matrices,
whenever critical inter-state paths are absent, arguably,primarily a local conditional design and training problem.
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loss of track, or absence of the target from scene.

2.2 Conditional Bayesian Mixture of Experts Model (BME)

This section describes models to represent multimodal conditional distributions and algorithms

for learning their parameters. We modelp(xt|rt) for initialization or recovery from failure, and

p(xt|xt−1, rt) for density propagation,c.f. (1).

Representation: To accurately model multivalued image-state relations, weuse several ‘experts’

that are simple function approximators. The experts process their inputs4 and produce state predic-

tions based on their parameters. Predictions from different experts are combined in a probabilistic

Gaussian mixture with centers at predicted values. The model is consistent across experts and

inputs,i.e. the mixing proportions of the experts reflect the distribution of the outputs in the train-

ing set and they sum to 1 for every input. Certain input domains are predicted competitively by

multiple experts and have multimodal state conditionals. Other ‘unambiguous’ input regions are

predicted by a single expert, with the others effectively switched-off, having negligible probabil-

ity (see fig. 3). This is the rationale behind a conditional Bayesian mixture of experts, a powerful

model for representing complex multimodal state distributions contextually. Formally, the model

is:

p(x|r,W,Ω, λ) =
M∑
i=1

g(r|λi)p(x|r,Wi,Ω
−1
i ) (3)

with:

g(r|λi) =
f(r|λi)∑M

k=1 f(r|λk)
(4)

p(x|r,Wi,Ωi) = N (x|WiΦ(r),Ω−1
i ) (5)

4The ‘inputs’ can be either observationsrt, when modelingp(xt|rt) or observation-state pairs(xt−1, rt) for
p(xt|xt−1, rt). The ‘output’ is the state throughout. Temporal information is used to learnp(xt|xt−1, rt).
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wherer are input or predictor variables,x are outputs or responses,g are input dependent

positive gates, computed using functionsf(r|λi), parameterized byλi. f has to produce gatesg

within [0, 1], the exponential and the softmax functions are typical:

g(r|λi) =
eλ

⊤

i r∑
k eλ

⊤

k r
(6)

Notice howg are normalized to sum to 1 for consistency, by construction,for any given inputr.

In the model,p are Gaussian distributions (5) with covariancesΩ−1
i , centered at different ‘expert’

predictions, here kernel (Φ) regressors with weightsWi. We work in a Bayesian setting [29, 51, 7],

where the weightsWi (and the gatesλi), are controlled by hierarchical priors, typically Gaussians

with 0 mean, and having inverse variance hyperparametersαi (andβi) controlled by a second level

of Gamma distributions. This gives an automatic relevance determination mechanism [29, 51]

which avoids overfitting and encourages compact models witha small number of non-zero weights

for efficient prediction. The parameters of the model, including experts and gates are collectively

stored inθ = {(Wi, αi,Ωi, λi, βi) | i = 1 . . .M}. The graphical model at two different levels of

detail is shown in fig. 2.

Figure 2: The graphical model of a conditional Bayesian mixture of experts.(a) Left shows the
model block;(b) Rightgives a detail with the parameters and the hidden variables included (see
text). Shadowed nodes indicate variables that are not modeled, but conditioned upon (instantiated).

Inference (state or output prediction) directly uses (3). The result is a conditional mixture distri-

bution with input-dependent components and mixing proportions. In fig. 3 we explain the model

using an illustrative toy example, and show its relation with clusterwise and univalued regression.

Learning the conditional mixture of experts involves two levels of optimization. We describe the

general procedure, and refer the reader to [42] for additional derivations and discussion on models
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Figure 3: An illustrative dataset [7] consists of about 250 values ofx generated uniformly in(0, 1)
and evaluated asr = x + 0.3 sin(2πx) + ǫ, with ǫ drawn from a zero mean Gaussian with standard
deviation 0.05. Notice thatp(x|r) is multimodal.(a) Leftshows the data colored by the posterior
membership probabilityh (7) of three expert kernel regressors.(b) Middleshows the gatesg (6),
as a function of the input, but also the three uniform probabilities (of the joint distribution) that are
computed by a clusterwise regressor [13, 33].(c) Rightshows how a single kernel regressor cannot
represent a multimodal distribution – it may either averagethe data or zig-zag through its multiple
branches, depending on the kernel parameters.

and learning algorithms. As in many prediction problems, weoptimize the parametersθ, to max-

imize the log-likelihood of a data set,T = {(ri,xi) | i = 1 . . .N}, i.e. the accuracy of predicting

x given r, averaged over the data distribution. For learning, a full Bayesian treatment requires

the computation of posterior distributions over parameters and hyperparameters. Because exact

computations are intractable, we design iterative, approximate Bayesian EM algorithms, based on

type-II maximum likelihood [29, 51]. These use Laplace approximation for the hyperparameters

and analytical integrate the weights, which in this settingbecome Gaussian [29, 51]. The algorithm

proceed as follows. In the E-step we estimate the posterior:

h(x, r|Wi,Ωi, λi) =
g(r|λi)p(x|r,Wi,Ω

−1
i )∑M

j=1 g(r|λj)p(x|r,Wj,Ω
−1
j )

(7)

This computes the probability that experti has generated the datapointn, and requires knowl-

edge of both inputs and outputs (there is oneh
(n)
i variable for each expert-training pair). The data

generation process assumesN datapoints are produced by one ofM experts, selected in a stochas-

tic manner. This is modeled by indicator (hidden) variableswhich are turned-on if the datapoint

x(n) has been produced by experti and turned-off otherwise. In the M-step we solve two opti-

mization problems, one for each expert and one for its gate. The first learns the expert parameters

11



(Wi,Ωi), based on training dataT , weighted according to the current membership estimatesh (the

covariancesΩi are estimated from expert prediction errors [55]). The second optimization teaches

the gatesg how to predicth.5 The solutions are based on ML-II, with greedy (expert weight) sub-

set selection. This strategy aggressively sparsifies the experts by eliminating features6 with small

weights after each iteration [51, 57, 26]. This computationcan be viewed as a limiting series of

variational approximations (Gaussians with decreasing variances), based on dual forms in weight

space [57]. The double-loop algorithm is summarized below [24, 55, 42]:

1. E-step: For each data pair{(r(n),x(n)) |n = 1 . . .N} compute posteriorsh(n)
i for each expert

i = 1 . . .M , using the current value of parameters(Wi, λi,Ωi, αi, βi).

2. M-step: For each expert, solve weighted regression problem with data {(r(n),x(n)) | n =

1 . . .N} and weightsh(n)
i to update(Wi, αi,Ωi). This uses Laplace approximation for the

hyperparameters and analytical integration for the weights, and optimization with greedy

weight subset selection [51, 26].

3. M-step: For each gating networki, solve regression problem with data(r(n), h
(n)
i ) to up-

date(λi, βi). This maximizes the cross-entropy betweeng andh, with sparse gate weight

priors, and greedy subset selection [51, 26]. We use Laplaceapproximation for both the

hyperparameters and the weights.

4. Iterate using the updated parameter valuesθ = {(Wi, αi,Ωi, λi, βi) | i = 1 . . .M}.

5Prediction based on the inputonly is essential for runtime state inference, when membership probabilities (7)
cannot be computed as during learning, because the output ismissing.

6The selected ‘features’ are either specific examples for kernel-based predictors or components of the observation
descriptor for linear predictors. Sparse kernel predictors eliminate samples in the training set but leave the input feature
vector unchanged, whereas linear predictors work with the entire training set, but eliminate entries in the input.
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2.3 Learning Bayesian Mixtures in Kernel Induced State Spaces (kBME)

In this section we introduce low-dimensional extentions tothe originalBM3E model in order to

improve its computational efficiency in certain visual tasks. As introduced,BM3E operates in

the selected state and observation spaces. Because these can be task generic, therefore redundant,

and often high-dimensional, temporal inference can be moreexpensive or less robust. For many

visual tracking taks, low-dimensional models are appropriate. E.g. , the components of the joint

angle state and the image observation vector are correlatedin many human activities with repetitive

structure like walking or running. The low intrinsic dimensionality makes a high-dimensional

model of 50+ human joint angles non-economical.

In order to model conditional mappings between high-dimensional spaces with strongly corre-

lated dimensions, we rely on kernel non-linear dimensionality reduction and conditional mixture

prediction, as introduced in§2.2. Earlier research by Westonet al [56] introduced Kernel Depen-

dency Estimation (KDE), a powerful univalued structured predictor. This decorrelates the output

using kernel PCA and learns a ridge regressor between the input and each decorrelated output di-

mension. Our procedure is also based on nonlinear methods like kernel PCA [35], but takes into

z ∈ P(Fr)
p(y|z) // y ∈ P(Fx)

))R
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p(x|r) ≈ p(x|y)

Figure 4: The learned low-dimensional predictor, kBME, forcomputingp(x|r) ≡ p(xt|rt), ∀t.
(We similarly learnp(xt|xt−1, rt), with input(x, r) instead ofr – here we illustrate onlyp(x|r) for
clarity.) The inputr and the outputx are decorrelated using Kernel PCA to obtainz andy respec-
tively. The kernels used for the input and output areΦr andΦx, with induced feature spacesFr

andFx, respectively. Their principal subspaces obtained by kernel PCA areP(Fr) andP(Fx). A
conditional Bayesian mixture of expertsp(y|z) is learned using the low-dimensional representation
(z,y). Using learned local conditionals of the formp(yt|zt) or p(yt|yt−1, zt), temporal inference
can be efficiently performed in alow-dimensional kernel induced state space. This uses (1) with
y ← x and z ← r. For visualization and error measurement, the filtered density p(yt|Zt) is
transferred top(xt|Rt) using the pre-image,c.f. (9).
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account the structure of our monocular visual perception problem, where both the inputs and the

outputs may be low-dimensional and the mapping between themmultivalued. The output variables

xi are projected onto the column vectors of the principal spacein order to obtain their principal

coordinatesyi. A similar procedure is performed on the inputsri to obtainzi. In order to relate the

reduced feature spaces ofz andy (P(Fr) andP(Fx)), we estimate a probability distribution over

mappings from training pairs(zi,yi). As in §2.2, we use a conditional Bayesian mixture of experts

(BME) in order to account for ambiguity when mapping similar, possibly identical reduced feature

inputs to distant feature outputs, as common in our problem.This gives aconditional Bayesian

mixture of low-dimensional kernel-induced experts (kBME):

p(y|z) =

M∑
i=1

g(z|λi)N (y|WiΦ(z),Ω−1
i ) (8)

whereg(z|λi) is a softmax function parameterized byλi and(Wi,Ω
−1
i ) are the parameters and

output covariance of experti, here a kernel regressor, as before (3).

The kernel-induced kBME model requires the computation of pre-images in order to recover the

state distributionx from its imagey ∈ P(Fx). This is a closed form computation for polynomial

kernels of odd degree. In general, for other kernels, optimization or learning (regression based)

methods are necessary [5]. Following [5, 56], we use a sparseBayesian kernel regressor to learn

the pre-image. This is based on training data(xi,yi):

p(x|y) = N (x|AΦy(y),Σ−1) (9)

with parameters and covariances(A,Σ−1). Since temporal inference is performed in the low-

dimensional kernel induced state space, the pre-image has to be calculated only for visualization or

error reporting. The solution is transferred from the reduced feature spaceP(Fx) to the outputX

by covariance propagation. This gives a Gaussian mixture with M elements, coefficientsg(z|λi)

and componentsN (x|AΦy(WiΦ(z)),AJΦy
Ω−1

i J⊤
Φy

A⊤+Σ−1), whereJΦy
is the Jacobian of the

mappingΦy.
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3 Experiments

This section describes our experiments, as well as the training sets and the image features we

use. We show results on real and artificially rendered motioncapture-based test sequences, and

compare with existing methods: nearest neighbor, regression, KDE, both high-dimensional and

low-dimensional. The prediction error is reported in degrees (for mixture of experts, this is w.r.t.

the most probable one – but see also fig. 9 and fig. 15b) – and normalized per joint angle, per frame.

We also report maximum average estimates which are static ortemporal averages of the maximum

error among all joint angles at particular timestep. The models are learned using standard cross-

validation. ForkBM3E, pre-images are learned using kernel regressors with average error1.7o.

Database and Model Representation:It is difficult to obtain ground truth for human motion and

difficult to train using many viewpoints or lighting conditions. To gather data, we use, as oth-

ers authors [33, 36, 16, 3, 52], packages like Maya (Alias Wavefront), with realistically rendered

computer graphics human surface models, animated using human motion capture [1]. Our human

representation (x) is based on an articulated skeleton with spherical joints,and has 56 d.o.f. in-

cluding global translation (the same model is shown in fig. 5 and used for all reconstructions). The

database consists of 8262 individual pose samples obtain from motion sequence clips of different

human activities including walking, running, turns, jumps, gestures in conversations, quarreling

and pantomime. The training set contains pairs of either states and observations, when learn-

ing p(xt|rt), or states at two succesive timesteps and observations at one of them, when learning

p(xt|xt−1, rt). Fig. 6 shows data analysis for the database. The data is whithened (this is the format

used to train models) and we cluster the input features – either rt or (xt−1, rt), and the joint angle

vectors –xt, independently, using k-means. For every sample in the database, its input (eitherrt or

xt−1, rt) is assigned to the closest input cluster, and its output is assigned to the closest joint angle

cluster. Each input cluster stores themaxium number of different joint angle clustersselected by

samples assigned to it, and we build histograms of the maximum values across all input clusters.

The use of many clusters models input perturbations,e.g. caused by shadows or different body
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proportions. The number of joint angle clusters is selectedin the order of the expected number

of forward-backward ambiguous ‘sheets’ for monocular human pose –2#joints ≈ 1000 − 2000

[48] for a fully sampled pose space. Working with the previous state and the current observation

(fig. 6b) and c) does not eliminate uncertainty but this shifts by 2-3 units and peaks higher in the

low-mode domain. The ambiguity is severe enough to cause tracking failure or significant errors

during initialization. This is shown quantitatively in table 1 and fig. 9.Ambiguity always increases

Figure 5: Various ambiguities that make the observation-to-state mapping multivalued.(a) Left:
Example of180o ambiguity in predicting 3D human poses from silhouette image features (center).
It is essential that multiple plausible solutions (F1 andF2) are correctly represented and tracked
over time. A single state predictor will either average the distant solutions or zig-zag between
them, see also tables 1 and 2.(b) Middle: first three images show leg assignment ambiguities; last
two images show a global rotation ambiguity around verticalaxis. (c) Right: shows two reflective
ambiguities obtained by flipping the left and the right knee joints and the right arm shoulder joint.

with larger training sets, subject body and clothing variability and complex motions. A two-level

clustering strategy similar to the one used for the databaseanalysis (fig. 6), is used to initialize the

learning of BME models. We initially cluster based on the inputs and then separately cluster the

samples within each ‘input’ cluster, based on the outputs. This tends to avoid cases when single

experts would inconsistently represent multiple branchesof the inverse pose mapping (see fig. 3),

leading to poor models and likelihood optima.

Image Feature Descriptors:Our choice of image features is based on previously developed meth-

ods for texture modeling and object recognition [12, 32, 6, 28]. We mostly work with silhouettes

having internal edges, and we assume that in real settings these can be obtained using statistical

background subtraction – we use one based on separately built foreground and background models,

using non-parametric density estimation [15] and motion segmentation [8]. We use shape context

features extracted on the silhouette [6, 32, 3] (5 radial bins, 12 angular bins, with bin size range 1 / 8
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Figure 6: Data analysis for a 8262 sample human motion database. The ‘number of clusters’ axis
is shown on a logscale, the input and output vectors have beenwhitened, as for model training.(a)
Left: Thex|r dependency (1209 clusters).(b) Middle: Analysis ofxt|(xt−1, rt) (1203 clusters).
(c) Right: Same as(b) for 2808 clusters. We cluster the input features – eitherrt or (xt−1, rt), and
the joint angle vectorsxt, independently, in a large number of clusters using k-means. For every
database sample, its input – eitherrt or (xt−1, rt) – is assigned to the closest input cluster, and its
output is assigned to the closest joint angle cluster. For each input cluster, we store the maxium
number of different joint angle clusters accessed and histogram these across all input clusters.

to 3 on log scale). We compute shape context histograms by sampling features at a variety of scales

and sizes on the silhouette. To work in a common coordinate system, we cluster the image features

in a representative subset of the images in the training set into k = 60 clusters, using k-means. To

compute the representation of a new shape feature (a point onthe silhouette), we ‘project’ onto the

common basis (vector quantize w.r.t. the codebook) by inverse distance weighted voting into the

cluster centers. To obtain the representationr, of a new silhouette we regularly sample about 100-

200 points on it and accumulate the feature vectors in a feature histogram. This representation is

semi-local, rich and has been effectively demonstrated in many applications, including texture and

object recognition [12] or pose prediction [32, 36, 3]. We also experiment with descriptors based

on pairwise edge angle and distance histograms [4] and with block SIFT descriptors [28] extracted

on a regular image grid and concatenated in a descriptor vector. These are used to demonstrate our

method’s ability to produce reliable human pose estimates in images with cluttered backgrounds,

when silhouettes are not available. All image descriptors (histogram-based or block-based) are ex-

tracted over partially intersecting neighborhoods – hencethey are based onoverlapping features

of the observationand have strongly dependent components. In a conditional framework (fig. 1a),

this representation is consistent and tractable – differently from the generative case, the observation
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distribution is not modeled and no simplifying assumptionsare necessary.

Figure 7: Affinity matrices based on Euclidean distances fortemporally ordered silhouettes with
internal edges (darker means more similar). From left to right, joint angles (JA), external contour
shape context (SC), internal contour pairwise edge (PE), and block sift features (fized sized silhou-
ette bounding box) for different motions:(a) Top row:walking parallel to the image plane. Notice
the periodicity as well as the higher frequencies in the (SC)matrix caused by half-cycle ambiguities
for silhouettes;(b) Middle row: complex walk of a subject walking towards the camera and back;
(c) Bottom row:conversations. The joint angle and image features correlate less intuitively.

3.1 High-dimensional Models

Comparisons: We compare our conditional Bayesian Mixture of Experts Models (BME) with

competing methods: nearest neighbor (NN) or the relevance vector machine (RVM), a sparse

Bayesian regressor [51]. We test several human activities obtained using motion-capture and arti-

ficially rendered. This provides ground truth and allows us to concentrate on the algorithms and

factor out the variability given by the imperfections of ourhuman model, or the noise in the silhou-

ette extraction in real images. BME uses 5 modes, non-linearGaussian kernel experts, with most
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probable mode selected. The results are shown in table 1. We run two comparisons, one by training

separate models for each activity class and testing on it (top half of table 1), the other by training

one global model on the entire database and using it to track all motion types (the bottom half of

1). Training and testing is run on motions from different subjects.

Testing separate activity models:We use several training sets: walking diagonal w.r.t. to the

image plane (train 300, test 56), complex walk towards the camera and turning back (train 900, test

90), running parallel to the image plane (train 150, test 150), conversation involving some hand

movement and turning (train 800, test 160), pantomime (1000train, 100 test). During testing, we

initialize from ground truth. This is necessary for single hypothesis methods (NN, RVM), which

may immediately fail following and incorrect initialization, in the dynamic casep(xt|xt−1, rt).

BME gives better average estimates and significantly lower maximum errors. The large max-

imum error for running is consistent across methods and corresponds to the right hand joint. For

comparison we only consider the most probable BME prediction. While the correct solution is

not always predicted as the most probable, it is often present among the top modes predicted, see

fig. 13c. For probabilistic tracking, this ‘approximately correct’ behavior is desirable, because the

correct solution is often propagated with significant probability.

Testing the global model: We have also built one global model using the entire 8262 motion

database and tested on six motion types. We use 7238 samples to train the static state predictor

and 7202 samples to train the dynamic predictorp(xt|xt−1, rt). Testing is based on 2-fold cross

validation with test set sizes: normal walk - 55 Frames, complex walk - 100 frames, running -

150 frames, conversation – 100 frames, pantomime – 200 frames, dancing 270 frames. For these

experimentsonly we use conditional models based on 10 linear (as opposed to Gaussian kernel)

experts and a 200d shape context feature vector made of two 100d histograms computed separately

for the contour and internal edge features (this improved performance over a global histogram

computed on the entire silhouette). Results are shown in thebottom-half of table 1 and in fig. 9. As

expected, all methods have larger errors compared to the easier case of separately trained and tested

activity models. BME is robust and outperforms its competitors on this large and diverse database.
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p(xt|rt) p(xt|xt−1, rt)
Sequence

NN RVM BME NN RVM BME
NORMAL WALK 4 / 20 2.7 / 12 2 / 10 7 / 25 3.7 / 11.2 2.8 / 8.1
COMPLEX WALK 11.3 / 88 9.5 / 60 4.5 / 20 7.5 / 78 5.67 / 20 2.77 / 9

RUNNING 7 / 91 6.5 / 86 5 / 94 5.5 / 91 5.1 / 108 4.5 / 76
CONVERSATION 7.3 / 26 5.5 / 21 4.15 / 9.5 8.14 / 29 4.07 / 16 3 / 9

PANTOMIME 7 / 36 7.5 / 53 6.5 / 25 7.5 / 49 7.5 / 43 7 / 41

Normal walk 15.8 / 179.5 9.54 / 72.9 7.41 / 128.5 5.79 / 164.8 8.12 / 179.4 3.1 / 94.5
Complex walk 17.7 / 178.6 15 / 179.8 8.6 / 178.8 17.8 / 178.6 9.5 / 179.9 7.7 / 134.9

Running 20.1 / 178.2 10.6 / 76.8 5.9 / 177.4 9.3 / 64.9 8.64 / 76.8 3.3 / 59.5
Conversation 12.9 / 177.4 12.4 / 179.9 9.9 / 179.7 12.8 / 88.8 10.6 / 179.9 6.13 / 94.3
Pantomime 20.6 / 177.4 17.5 / 176.4 13.5 / 178.5 21.1 / 177.4 11.1 / 119.9 7.4 / 119.2

Dancing 18.4 / 179.9 20.3 / 179.9 14.3 / 179.9 25.6 / 179.9 14.9 / 149.8 6.26 / 124.6

Table 1: Comparative results showing RMS errors per joint angle (average error / maximum joint
average error) in degrees for two conditional models,p(xt|rt) and p(xt|xt−1, rt). We compare
three different algorithms on motion-capture, synthetically generated test data (we select the best
candidate for each test input, there is no probabilistic tracking, butp(xt|xt−1, rt) has memory).The
top tableshows result obtained by training separate activity modelseach sequence and testing on
motions in their class (BME uses 5 Gaussian kernel experts).Bottom table(motion types in bold)
shows results obtained by training one single global model on the entire 8262 sample database.
BME models are based on 10 sparse linear experts, RVM uses onesparse linear expert. In all tests,
accuracy is reported w.r.t. the most probable expert for BME, but see also fig. 9.

The dancing and pantomime sequences are the most difficult due to their inherently higher semantic

variability (compared to walking say), and given our training and testing setting based on motions

captured from different subjects. While BME’s ‘best expert’ errors are sometimes large, these

decrease substantially when measuring prediction error inany of the best-k most probable experts

– qualitatively illustrated in fig. 9. The average error of the best (most probable) expert is≈ 14.3o,

but the error in the best 3 experts is under10o, and the error in the best 7 experts is under5o. This

shows that a BME model can generalize well even for large motion variability at some decrease

in the confidence of its most probable predictions. An illustration of BM3E tracking (with 5-

mode filtered posteriors), applied to a dancing sequence, isgiven in fig. 8. Notice the large joint

angle trajectory separation in state space, and the different types of multimodality, including well

separated paths (fig. 8a), bundles (b) or merge / splits (c).
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Figure 8: (Best viewed in color) Illustration of theBM3E tracker in a dancing sequence, with
5 mode posterior, computed using (1). Time is unfolded on thehorizontal axis, filtered density
at timestep on the vertical (showing one selected variable), probability is color coded. Notice
different types of multimodality, including well separated paths (a, left), bundles (b, middle) and
merge / splits (c, right).
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Figure 9: Reconstruction error in the ‘bestk’ experts (k = 1 . . . 10) for a global model, trained
on the 8262 sample database – see also the bottom half of table1. Prediction accuracy is herenot
only computed only w.r.t. the most probable expert (1st bar on the left), but w.r.t. the best-k – we
measure the expert prediction closest to the ground truth with cutoff at thek-th most probable (each
error level is obtained for a differentk). (a) Left and (b) Middle:train and test errors for dancing.
(c) Right: test errors for a person walking towards the camera, turning180o and going back. In
testing, the most probable expert may not always be reliable, but prediction from top ones is.

Real Image Sequences. Walking, Picking and Dancing:We track usingBM3E with 5 mode

posteriors and local BME conditionals based on 5 experts, with RBF kernels and degree of sparsity

varying between 5%-25%. Fig. 10 shows a succesful reconstruction of walking – the frames are

from a 3s sequence, 60fps. Occasionally, there are leg assignment ambiguities that can confuse a

single hypothesis tracker, as visible in fig. 5, or in the affinity matrix of the image descriptor (fig. 7).

While the affinity matrices of 3d joint angles and image features for walking correlate well (fig. 7a)

(far better that for other motions like conversations or complex walking), the higher frequency in

the image affinity sub-diagonal bands illustrate the silhouette ambiguities at walking half-cycles.

21



Figure 10: Reconstruction of walking.(a) Left: original images;(b) Middle: reconstruction ren-
dered from the same viewpoint used in training.(c) Right: Images showing the reconstruction from
a different viewpoint.

In fig. 12, we show reconstruction results from a 2s video filmed at 60 fps, where a subject

mimicks the act of picking an object from the floor. We experiment with both Bayesian single

hypothesis tracking (single expert local conditionals), propagated using (1), as well asBM3E.

The single hypothesis tracker follows the beginning of the sequence but fails shortly after, when

its input kernels stop firing due to an out-of-range state input predicted from the previous timestep

(fig. 11).7

Figure 11: A single hypothesis Bayesian tracker based on (1)fails to reconstruct the sequence in
fig. 12 (bottom row)even when presented with only the silhouettes(top row). In the beginning, the
tracker follows the motion, but fails shortly after, by generating a prediction out of its input kernel
firing range. The track is lost with the expert locked to its bias joint angle values.

In fig. 12 we show results obtained with the 5 modeBM3E tracker. This was also able to re-

7We initialize using a BME forp(xt|rt). For single hypothesis tracking, we select the most probable component.
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construct the pose based on silhouettes alone (shown in the top row of fig. 11), but here we show a

more difficult sequence where the person has been placed on a dynamically changing background

and the tracker had no silhouette information. In this case,we use block SIFT image features and 5

linear experts for local BME. The model is trained on 1500 samples from picking motions, synte-

htically rendered on natural backgrounds, using our 3d human model. A rectangular bounding box

containing both the person and the background is used as input and SIFT descriptors are extracted

on a regular grid, typically over both foreground and background regions. Block features, linear

experts and training with different image backgrounds are effective in order to build models that are

resistent to clutter. Block descriptors are more appropriate than bag-of-feature, global histograms –

during training the model learns to downgrade image blocks that contain only background. Regions

with oscillatory foreground / background labels are assigned to different experts. The reconstruc-

tion is perceptually plausible, but there are imperfections, possibly reflecting the bias introduced by

our training set – notice that the knee of the model is tilted outward whereas the knee of the human

is tilted inward. We observe persistent multimodality for joints actively moving,e.g. the left and

right femur and the right shoulder.

In fig. 14, we show reconstruction experiments for a real dancing sequence, with quantitative

results given in fig. 13. We train on 300 synthetic motion samples and test on 100 images of a real

video. Our test subject (an author of this paper) has watchedthe motion capture video and tried to

imitate it. Given the complexity of the motion, the trainingand testing data is inherently different.

Our tracker generalizes well and succeeds in capturing the real 3d motion in a perceptually plausible

way. There are, however, noticeable imperfections in the reconstruction,e.g. in the estimates of the

arms and legs.

3.2 Low-dimensional Models

We learn kBME conditionals (§2.3) and reconstruct human pose in a low-dimensional kernelin-

duced state space, using the kBM3E tracker. Gaussian kernels are used for kernel PCA. We learn

kBME with 6d kernel induced state spaces and 25d feature spaces. In fig. 15a), we evaluate the
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Figure 12:(a) Top row: Original image sequence showing the silhouette of the person in fig. 11,
placed on different natural scene backgrounds. (The tracker is given a cluttered rectangular bound-
ing box of the person,not its silhouette.)(b) Middle row:Reconstruction seen from the same view-
point used for training,(c) Bottom row:Reconstruction seen from a synthetic viewpoint. Despite
the variablly changing background,BM3E can reconstruct the motion with reasonable perceptual
accuracy. However, there are imperfections,e.g. the right knee of the subject is tilted inward,
whereas the one of the model is tilted outward). A single hypothesis Bayesian tracker fails even
when presented with only silhouettes, see fig. 11.

accuracy of kBME for different state dimensions in a dancingsequence (for this test only, we use

a 50d observation descriptor). On dancing, which involves complex motions of the torso, arms

and the legs, the non-linear model significantly outperforms alternative PCA methods and gives

good predictions for compact, low-dimensional states. In table 2 and fig. 15, we show quantitative

comparisons on artificially rendered silhouettes – 3d jointangle ground truth is available for sys-

tematic evaluation. The low-dimensional non-linear models kBME outperform PCA-based models,

24



0 25 50 75 100
0

50

100

150

200

250

300

350

400

Frame Number

R
oo

t J
oi

nt
 D

eg
re

es

Mean Max Distance
Mean Min Distance

0 25 50 75 100
0

2

4

6

8

10

12

14

Frame Number

R
oo

t J
oi

nt
 D

eg
re

es

Mean Max Distance
Mean Min Distance

1 2 3 4 5
0

5

10

15

20

25

30

35
Most Probable Expert Predictions

Expert Number

Fr
eq

ue
nc

y 
− 

C
lo

se
 to

 g
ro

un
d 

tru
th

Figure 13: Quantitative 3d reconstruction results for a dancing sequence.(a) Left: shows the
maximum and minimum distance between the modes of the root joint (vertical axis) rotation angle.
The minimum distance is only informatively shown, it does not necessarily reflect modes that will
survive the mixture simplification. Most likely, modes thatcluster together collapse.(b) Middle:
same as(a) for the left femur.(c) Right:shows the good accuracy of BME. Notice that occasionally,
its most probable prediction is not the most accurate.

Figure 14: Tracking and 3d reconstruction of a dancing sequence. (a) Toprow shows original im-
ages and silhouettes (the algorithms use both the silhouette contour and the internal image edges);
(b) Bottomrow shows reconstructions from training (left) and new synthetic viewpoint (right).

and give results competitive to high-dimensional BME predictors. But low-dimensionality makes

training and tracking less expensive,c.f. (1). In fig. 16 and 17 we show human motion reconstruc-

tions based on two real image sequences. Fig. 16 shows a person performing an agile jump. Given

the missing observations in a side view, the 3d reconstruction of occluded body parts would not be

possible without prior knowledge. The sequence in fig. 17 shows simultaneous pose reconstruction

for two people mimicking domestic activities – washing a window and picking an object. We track

in a 12d state space, obtained by concatenating the 6d state of each person. We reconstruct suc-

cessfully using only 5 hypotheses, although the results arenot perfect – notice errors in the elbow
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Figure 15: (a) Left: Evaluation of dimensionality reduction methods for an artificial dancing
sequence (models trained on 300 samples). kBME is discussedin §2.3; KDE-RVM is a Kernel
Dependency Estimator (KDE) with a Relevance Vector Machine(RVM) [51] feature space map;
PCA-BME and PCA-RVM are models where mappings between feature spaces (obtained with
PCA) are learned with BME and RVM. Due to non-linearity, kernel-based methods outperform
PCA and give low prediction error for 5-6d models.(b) Middle: Histogram showing the accuracy
of various expert kBME predictors – how many times the expertranked ask-th most probable by the
model (horizontal axis) is closest to the ground truth. The model is consistent (the most probable
expert indeed is the most accurate most frequently), but occasionally less probable experts are
better.(c) Right: Histograms show the dynamics ofp(yt|yt−1, zt), i.e. how the probability mass is
redistributed among experts between two successive time steps, in a conversation sequence.

and the bending of the knee of the subject at the left, or in thewrist orientation of the subject at the

right.

KDE-RR RVM KDE-RVM BME kBME
Walk and turn 10.46 4.95 7.57 4.27 4.69
Conversation 7.95 4.96 6.31 4.15 4.79

Run and turn left 5.22 5.02 6.25 5.01 4.92
Walk and turn back 7.59 6.9 7.15 3.6 3.72

Run and turn 17.7 16.8 16.08 8.2 8.01

Table 2: Comparison of average joint angle prediction errorfor different models. All kPCA models
have 6 output dimensions. Testing is done on 100 video framesfor each sequence, with artificially
generated silhouette inputs, not in the training set. Existing 3d joint angle ground truth is used
for evaluation. KDE-RR is a KDE model with a ridge regression(RR) feature space map, KDE-
RVM uses an RVM. BME are the high and low-dimensional models discussed in§2.2 and§2.3.
kernelPCA-based methods use kernel regressors for pre-images.

Running times for different models: On a Pentium 4 PC (3 GHz, 2 GB RAM), a full dimensional

BME model with 5 experts takes 802s to trainp(xt|xt−1, rt), whereas a kBME (including the pre-
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Figure 16: Reconstruction of a jump (scaled selected frames). (a) Top row: original image se-
quence.(b) Bottom row:3D reconstruction seen from a synthetic viewpoint.

Figure 17: Reconstruction of domestic activities – 2 peopleoperating in an 12d state space (each
person has its own 6d state).(a) Top row:original image sequence.(b) Bottom row:3d reconstruc-
tion seen from a synthetic viewpoint.

image) takes 95s to trainp(yt|yt−1, zt). The prediction time is 13.7s for BME and 8.7s (including

the pre-image cost 1.04s) for kBME. The integration in (1) takes 2.67s for BME and 0.31s for

kBME. The speed-up of kBME is significant and likely to increase w.r.t. original models having

higher dimensionality.

4 Conclusions

We have introducedBM3E, a framework for discriminative density propagation in continuous

state spaces. We argued that existing discriminative methods do not offer a formal management
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of uncertainty, and explained why current representationscannot model multivalued mappings in-

herent in 3d perception. We contribute by establishing the density propagation rules in continuous

conditional chain models, and by proposing models capable to represent feedforward, multivalued

relations contextually. The combined system automatically self-initializes and recovers from failure

– it can operate either stand-alone, or as a component to initialize generative inference algorithms.

We show results on real and synthetically generated image sequences, and demonstrate significant

performance gains with respect to nearest neighbor, regression, and structured prediction methods.

Our study suggests that flexible conditional modeling and uncertainty propagation are both impor-

tant in order to reconstruct complex 3d human motion in monocular video reliably. We hope that

our research will provide a framework to analyze discriminative and generative tracking algorithms

and stimulate a debate on their relative advantages within acommon probabilistic setting. By virtue

of its generality, we hope that the proposed methodology will be useful in other 3d visual inference

and tracking problems.

Future Work: We plan to investigate alternative model state and observation descriptors that

would make possible to reconstruct complex dynamic scenes with occlusion, partial body views,

background clutter, and camera motion. We intend to study alternative learning and inference al-

gorithms based on bound optimization. Combining the strengths of generative and discriminative

methods remains a promising avenue for future research [46].

Appendix: Filtering and Joint Distribution for Conditiona l Chains

The filtering recursion (1). The following properties can be verified visually in fig. 1a, using a

Bayes ball algorithm [23] (‘⊥⊥’ denotes independence, and ‘|’ conditioning on)8:

8The model is conditional, hence no attempt is made to model the observations, which can have arbitrary inner or
temporal dependency structure. An arrow-reversed generative model as in fig. 1a, but without instantiated observations,
will have a dependency structure with marginally independent temporal observations:rt ⊥⊥ Rt−1. This has no effect
in a conditional model, where observations are always instantiated. Contrast this with the conditional independence of
temporal observations given the states, assumed by temporal generative models (fig. 1b).
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xt ⊥⊥ Xt−2|xt−1 (10)

xt ⊥⊥ Rt−1|xt−1, rt (11)

Xt−1 ⊥⊥ rt (12)

p(xt|Rt) =

∫
p(xt,xt−1|Rt−1, rt)dxt−1 = (13)

=

∫
p(xt|xt−1,Rt−1, rt)p(xt−1|Rt−1, rt)dxt−1 = (14)

=

∫
p(xt|xt−1, rt)p(xt−1|Rt−1)dxt−1 (15)

where in the last line we used:

(11)⇒p(xt|xt−1,Rt−1, rt) = p(xt|xt−1, rt)

(12)⇒p(xt−1|Rt−1, rt) = p(xt−1|Rt−1)

Remark:It is also possible to use a generative model, but express thepropagation rules in terms of

discriminative-style conditionals in order to simplify inference [42]:

p(xt|Rt) ∝
p(xt|rt)

p(xt)

∫
p(xt|xt−1)p(xt−1|Rt−1)dxt−1 (16)

wherep(xt) =
∫

p(xt|xt−1)p(xt−1)dxt−1. Implementing (16) requires recursively propagating

bothp(xt|Rt) andp(xt) (an equilibrium approximation could be precomputed9), two mixture sim-

9Alternatively, the ratio could be estimated.
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plification levels, inside the integrand and outside it through the multiplication byp(xt|rt) and a

division byp(xt) (see [42] for details).

The joint distribution (2). Using basic conditioning:

p(XT ,RT ) = p(XT−1,RT−1)p(rT |XT−1,RT−1)p(xT |XT−1,RT ) (17)

The independence of (12) can be used to simplify (17):

p(rT |XT−1,RT−1) = p(rT ) (18)

p(xT |xT−1,XT−2,RT−1, rT ) = p(xT |xT−1, rT ) (19)

Using (18) and (19) in (17), we obtain:

p(XT ,RT ) = p(XT−1,RT−1)p(rT )p(xT |xT−1, rT ) (20)

and (2) is verified given:

p(XT |RT ) =
p(XT ,RT )∏T

t=1 rt

(21)

andp(x1|r1) = p(x1, r1)/p(r1).
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