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Abstract

An inquiring agent is concerned with obtaining as much new, error-free, information as
possible. One way of doing this is to simply incorporate information presented to an
agent asis. This strategy is adopted by many belief revision frameworks including the
popular AGM framework. A more natural strategy would be for the agent to first seek an
explanation or justification for the new information. After doing so, it could incorporate the
explanationintoitsepistemic statetogether with the new information. Such astrategy would
be particularly effectiveif the agent’s situation does not allow it to obtain new information
easily. We model this strategy through the use of abductive reasoning. This allows us to
then investigate the role of abductiveinference within abelief revision framework based on
the AGM. We not only look at the incorporation of new information but also at the removal
of information.

We begin by looking at some logical aspects of abduction and to contrast it, in a pragmatic
sense, with the process of induction as performed by inverse resolution. We proceed to de-
velop an account of an abductive expansion operator in the vein of the AGM framework. A
definition, postulates and several constructions, reminiscent of the AGM, are devel oped to-
gether with anumber of representation theorems. It is also shown how abductive expansion
is related to nonmonotonic inference, in particular, default reasoning. The process of con-
traction is then investigated and we note how abduction can already be viewed as an active
part of this operation. However, abductive expansion and AGM contraction do not exhibit
the dual behaviour one might expect. This leads us into an investigation of an alternate
operation known as Levi-contraction. We suggest a Grove style semantic modelling and
provide additional postulatesin order to obtain a complete characterisation. Our emphasis
on expansion and contraction is guided to alarge extent by Levi’s commensurability thesis
which statesthat any revision can be achieved through a series of expansion and contraction
operations. However, using our work on expansion and contraction, we briefly investigate
the repercussions for an abductive revision operator determined through the Levi identity.
It turns out that this problem relies heavily on that of iterated revision.
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Prologue

... suppose that on a public holiday you are standing in the street in a
town that has two hamburger restaurants. ... When you meet me, eating a
hamburger, you draw the conclusion that at least one of the two restaurantsis
open. ... Further, seeing from a distance that one of the two restaurants hasits
lights on, you believe that this particular restaurant is open. ...

When you have reached the restaurant, however, you find asign saying that
itisclosed all day. The lights are only turned on for the purpose of cleaning.

In contrast, suppose you had not met me or anyone el se eating a hamburger.
Then your only clue would have been the lights from the restaurant.

Sven Ove Hansson [40]*

1This example was used by Hansson [40] to motivate the use of belief bases rather than belief sets. We
shall make use of it herein a different context; to motivate the use of abductive reasoning within the process
of belief revision.

XVii
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Chapter 1

| ntroduction

Now, Erato, thy poet’smind inspire,
And fill his soul with thy celestial firel
Virgil, The Aenid, VI1:52-53

An inquiring agent, reasoning about its domain or “world”, must maintain a record of that
information which it believes to be true. It will be confronted with new information and
must decide what to add and/or delete to its current stock of beliefsto reflect thisfact. Itis
likely that the agent will do thisin such away asto fulfil certain requirementsit considers
important. For instance, its current stock of beliefs should be consistent; they should also
cohere in some way, etc. The study of the way in which an agent should modify its stock
of beliefs to deal with new information is known as belief revision or belief change. This
dissertation concerns itself with the area of belief revision and the role that a particular
form of reasoning known as abductive inference may play in it. Abductive inference (or
simply abduction) is a fundamental form of logical inference alongside deduction and
induction that aims to derive plausible explanations for data (the explanandum) in light of
certain background or domain knowledge. For example, suppose you know that everyone
suffering from measles develops ared rash on their skin. If someone comes to you with a
red rash on their skin you might hypothesise that they are suffering from measles, for this
would account for your observation. Of course, other explanations may be possible — the
person may be suffering from an allergic reaction for instance. Given that an agent seeks
to gain as much information about its world as possible, an abductive strategy in the belief
change process can prove very useful. Thisis especialy true when the agent’s ability to
acquire new information is severely limited. It isthistype of belief change that we study
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here, although not only regarding addition to the agent’s stock of beliefs but also when
beliefs are to be deleted.

As noted above, abduction isonly one of alarger class of important methods of inference.
In contrast to abduction, deductive inference (or deduction) seeks to derive logical conse-
guences from given facts. Modifying the previous example, from the facts that everyone
suffering from measles develops a red rash and John has the measles, one can deduce that
John has ared rash. Inductive inference (induction), on the other hand, attemptsto extract
general rules from individual instances. From instances of people suffering measles and
having ared rash, one might induce the rule that everyone suffering from measl es develops
ared rash.

We begin by elucidating the conceptsbriefly touched upon above, providing amorecomplete
description of our aims through the use of an example. The following propositions will be
useful and relate partly to the examplein the Prologue.

e | am eating a hamburger
phi/ph, | purchased a hamburger from Restaurant 1/Restaurant 2

01/ 02 Restaurant 1/Restaurant 2 is open
c1/c2 Restaurant 1/Restaurant 2 is being cleaned
/15 The lights are on in Restaurant 1/Restaurant 2

co1/con The cook of Restaurant 1/Restaurant 2 isin his restaurant
ch | cooked a hamburger at home

At any particular point intimetheagent will haveacertain stock of beliefs. Wecall thisstock
of beliefs (expressed in a suitable language), together with any (extralogical) relationships
between them that we wish to represent, the agent’s epistemic state (alternatively, belief
state). Consider yourself to be an agent in the situation outlined in the Prologue. Among
the beliefs that you hold at the very beginning of that scenario, might be the following:

01 ANph1 — e
02 A\ phy — e
ch —e

01—)l1



02 — lz
c1 — ll
Co — lz
co1 — 01

CO2 — 02

Of course, these beliefshave certain (logical) consequences and we assume, for the purposes
of the work here, that they are also included in the agent’s epistemic state. That is, we are
interested in those beliefs the agent is, in a sense, committed to regardless of whether or
not it is feasible to determine them in practice. Levi [65] terms this the agent’s epistemic
commitment. Suchanagentisreferredto aslogically omniscient. Weshall usethesymbol K
torefer to your beliefs (above) and their consequences. Those expressionsof your language
in your epistemic state K are termed beliefs; they are currently believed.! Similarly, those
expressions whose negations are believed, are disbelieved while those which do not appear
in K and nor do their negations are neither believed nor disbelieved (i.e., indetermined).
In thisway, you have different epistemic attitudes towards expressionsin your language at
certain times. More fine-grained or discerning epistemic attitudes — some form of degree
of belief, for instance — are aso possible.

Asan agent you will also receive new information; again, expressed in a suitable language.
Thisisreferred to as an epistemic input. This epistemic input, « say, precipitates a change
in epistemic state from the current state K to a new state K/,. Belief revision is the study
of how this change is performed (see Figure 1.1); in particular, the nature of the new
epistemic state.? In the belief revision framework developed by Alchourron, Gardenfors
and Makinson [1, 31] (henceforth referred to asthe AGM framework) three types of belief
change are identified:

belief expansion theepistemicinput isadded to the current epistemic statewithout removal
of any existing beliefs

1We avoid the controversy surrounding whether the objects of beliefs are linguistic or propositional.
2Gardenforsalso usesthe term belief dynamics although L evi [65] claimsthat the term comparative statics
is more accurate.
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a Epistemic
I nput

Initial
Epistemic
State
K

New
Epistemic
State
Ko

Figure 1.1: Belief revision — the basic idea (cf. [31] p.13).

belief contraction beliefs are removed from the current epistemic state in order to effect

the removal of the epistemic input

belief revision the epistemicinput isincorporated into the current epistemic state but some
existing beliefs may also need to be removed to maintain consistency.

Suppose that you receive the input that | am eating a hamburger, as in the example. It is
likely that you would like to add thisto your current stock of beliefs and, given that you do
not believe anything which contradicts this input, you can expand your current belief state
by adding the input (e) to your current stock of beliefs together with any consequences that
result.

e

Many belief revision frameworks closely follow thisscenario; they aimto solely incorporate
the epistemic input and any resulting consequences.

However, it isour contention that amore natural and advantageous approach isfor the agent



tofirst seek someexplanation or justification for theepistemicinput inlight of their currently
held beliefs and to incorporate this explanation together with the epistemic input into their
new epistemic state. That is where abductive reasoning comes in. Abduction provides us
with a way of determining explanations for the epistemic input given our currently held
beliefs. For example, when you see me “eating a hamburger” (e) and given your current
beliefs (K) you might formulate as an explanation: “at least one of the two restaurants
is open” and | bought my hamburger from it ((o1 A phy) V (02 A phy)). Your thirst for
information could lead you to include this explanation and the original input into your new
epistemic state.

e

Cn(KO
{(o,Ophy) 0
(0, 0 ph,)})

Of course, severa explanations may be possible (e.g., | had cooked the hamburger at home)
— some possibly inconsistent — and it is up to the agent to determine which to include.

The original belief change strategy outlined clearly makes use of deductive inference. We
claim that it makes a certain amount of sense to augment this strategy with abductive and
inductive inference also. Levi [65] claims that an agent is interested in acquiring new
information while avoiding error. If one were to use only deduction, then the amount of
new information acquired is limited. More information can be acquired through the use
of abduction and induction, as also noted by Levi.® Thereis also psychological evidence
[108] suggesting that, for human agents, thisisin fact the case although we emphasise at
the outset that we are interested in developing a normative account of such belief change
rather than a psychological one. An agent also seeks to avoid error which precludes the
acquisition of too much information. A cautious or skeptical agent would include little

3Infact, Peirce[96] identifies abduction, deduction and induction as fundamental in the process of inquiry.
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extrainformation while an incautious or credulous agent is likely to include much more. In
this dissertation we take the AGM framework for belief revision as a guide and attempt to
develop an account of belief change operators that use abduction. We pay alot of attention
to abductive belief expansion — which is no longer atrivia operation as in the AGM —
since it, together with contraction, will be considered a primitive belief change operation
and can be used to construct a revision operator. Our main aim is to investigate what role
abductive inference can play in the process of belief change.

It isnot only the incorporation of new information (expansion and revision) in an abductive
manner that interests us here but also the removal of information (contraction). Suppose
that your epistemic state has now evolved to also include the following beliefs:

Iy
01

CcO1

That is, seeing the lights of restaurant 1 on, you concluded it was open and the cook is
present. However, upon reaching restaurant 1, you “find a sign saying that it is closed all
day”. You wish to retract the statement “restaurant 1 is open and | bought my hamburger
there” (o1 Aph1). Youmay alsoretract certain beliefsthat are” responsible” for thisstatement
because the statement is a consequence of these beliefs or because your confidence in them
has diminished — in this instance, that the cook is present in restaurant 1 for example.
Again, abduction can be used to single out such culprits. In fact, the AGM account can be
interpreted as already working in this fashion. We investigate another form of contraction,
however, that can be considered a dual of our account of abductive expansion. We also
discuss other work in thisregard.

The main aim of the present dissertation isto investigate, in aformal manner, the uses that
may be made of abduction for the purposes of belief revision. Our enterprise is guided,
to a large extent, by the account offered by the AGM and to the principles and insights
identified therein. Abduction was chosen because it can be rendered logically in away that
fits nicely with the AGM and because it has been demonstrated to be an effective technique
in many problem areas, including: database updates [57, 56], diagnostic reasoning [105],
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text understanding [123] and vision [14]. We begin with a brief logical investigation of
the notion of abduction. Using these insights we investigate the use of abduction in belief
expansion, contraction and revision. Our emphasis here is on the normative aspects of
such belief change. That is, we are more interested in the way belief revision “should” be
performed rather than the way in which it is carried out by specific agents (human agents,

for example).

1.1 Related Work

We briefly review some of the more pertinent work related to theaimsof thisdissertation. At
other times we shall also have occasion to review related work, usually of amore technical
nature, more specifically important to particular sections. The emphasis here will be on
abduction asit relates to the incorporation of new information in belief change sincethat is

what concerns most of the previous literature in the area.

1.1.1 Levi’sRoutineand Deliberate Expansion*

Levi [65] discusses two important forms of expansion: routine expansion and deliberate
expansion.> However, it is first important to understand that Levi’s agents are concerned
with two tasks:

(i) acquiring new information which is free from error; and

(i) incorporating new information into their current stock of beliefs.

For Levi, (i) is not restricted to epistemic inputs per se but these may be elaborated upon
through the use of other forms of inference or deliberation; in particular, abduction and
induction. The results of this first process are then taken to be the input to the second
process — they are incorporated into the agent’s epistemic state in the manner prescribed
by (ii). The agent’s beliefs are held in such high regard exactly because they are the result

4] am indebted to Abhaya Nayak for discussions regarding the significance of Levi’swork in this respect.
SHe also mentions expansion by choice but since this is only discussed briefly and is not essential to our
concerns, we shall not consider it.
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of such acostly process of inquiry. The AGM on the other hand is mainly concerned with
(i1). Itisassumed that epistemic inputs have been filtered in someway — which isnot made
entirely clear in their framework — and that the agent is concerned with incorporating only
that new information. In this dissertation we extend the formal AGM framework so that

new information can be obtained through the process of abduction.

In routine expansion an epistemic stateisexpanded “in conformity with somehabit, program
or routine” [65] (p. 43) asaresponseto someinput. Thisroutineis supposed, by the agent,
to be adequately reliable. That is, thereisonly alow chance that it will lead to error. This
does not mean that error will not occur however. If it does, contraction can be used to
restore consistency. The routine can of course be modified over time through a reasoned
process.

Deliberate expansion, on the other hand, is expansion through a deliberative or inferential
process. Essentialy, the agent uses abduction to determine potential expansions of the
initial epistemic state (the exact details of the abductive procedure used are not important
for our purposes here). The potential expansions thus determined constitute what is known
as an ultimate partition. The agent then evaluates the elements of the ultimate partition to
ascertain their informational value and the risk of error if that el ement were to be adopted.
Thesevauesare combined in aratio determined by the agent’s degree of caution or boldness
to determine an element’s expected epistemic utility. The new epistemic state is then given
by the join of those elements of the ultimate partition with maximal expected epistemic
utility. Since deliberate expansion isthe result of a deliberative process, the agent can only
expand into inconsistency in thismanner inadvertently unlike routine expansion where error
is possible though considered improbable by the agent. Levi offers a probabilistic account
of some of the notions referred to above but this shall not be of great concern to us here.

1.1.2 Abduction via Belief Revision

A different idea within the belief revision literature is the use of revision to determine

abductions or, more precisely, explanations.® This ideawould appear to be in some sense

5We do not equate the two notions here though one can think of abduction as producing explanations or
potential explanations.
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related to the Ramsey test [107] for conditional sentences. Basically, the Ramsey test states
that aconditional sentenceisacceptable precisely when incorporation of the antecedent into
the current epistemic state, modified in aminimal way so asto maintain consistency, leads
to belief in the consequent. 1n more contemporary work, Spohn [121] gives the following
definition, for one proposition to be a reason for another, which may be seen asan extension

of the Ramsey test:

« isareason for 3 for the person X at time s iff X's believing o a s would
raise the epistemic rank of 3 for X at s.”

Here, epistemic rank refers to the agent’s epistemic attitudes. In Spohn's framework, a
greater variety of epistemic attitudesare possi bl ethan thethreementionedin theintroduction
above (i.e, believed, disbelieved and neither believed nor disbelieved). Each proposition
has an associated degree of firmness indicating how firmly it is believed in relation to other
propositions. In this light, the condition above says that one proposition is a reason for
another if and only if believing the former more firmly leads to believing the latter more
firmly. Of course, the way in which epistemic rank is altered is related to the belief change

process in use.

Gardenfors [32] adopts Spohn’s definition and renders it in terms of the AGM framework.
Essentially, Gardenfors' definition says that « is areason for g if and only if either G is
included in the (minimal) revision by « but not in the revision by the negation of «, or
the negation of  is included in the revision by the negation of « but not in that by «.
However, the AGM allowsonly three epistemic attitudes (viz. believed, disbelieved, neither
believed nor disbelieved) and would thus appear to be less discerning than Spohn’s original
framework. In fact, Gardenfors notes that multiple reasons cannot be captured adequately
by such a definition and that it leads to undesirable circularity in reasons in the sense that
therewould be beliefs a1, a», ..., «o; suchthat oy isareason for as, a, isareason for s,

..., o isareason for a;.

Boutilier and Becher [9] pursue asimilar argument. They maintain three reasons for adopt-
ing such an approach over a more traditional abductive view of explanation: explanations

"We modify Spohn’s notation to maintain consistency with that adopted here.
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should not be required to deductively entail the given data but may do so nonmonotonically
or defeasibly; some notion of preference should exist to discriminate between potential
explanations; and, it is not possibleto explain datainconsistent with the background theory
using an abductive view. Although we do not address the relationship between abduction
and an intuitive notion of explanation here® we shall see through the course of this disserta-
tion that thelatter two pointsdo not turn out to be very problematicin atraditional abductive
view (in particular, for the second point refer to Chapter 5 and for the third, to Chapter 7).
Although perhaps attractiveinitially, the case for the first point is not convincing. Boutilier
and Becher [9] (p. 44) provide the following example:

The sprinkler being on can explain the wet grass; but the sprinkler being on
with awater main broken is not a reasonable explanation.

A lot of information is left implicit here but it is possible to adequately specify this in-
formation so that the sprinkler being on and the water mains being broken (at the same
time) are incompatible and thus not a possible abduction.® Moreover, abduction will lead
to nonmonotonicity. They then consider two types of explanation: predictive explanations
where, if the agent were to accept the explanation, it would be compelled to accept the
explanandum and nonpredictive explanations. In the former category they classify three
types of explanation:

factual if the explanandum is currently believed, then the explanation should be a belief

hypothetical if the explanandum isnot acurrent belief then anon-belief should be adopted
as the explanation (two further cases can be distinguished; one requiring disbeliefsto
explain disbeliefs and the other requiring propositions that are neither believed nor

8The interested reader is referred to Salmon [116] where, athough abduction is not specifically men-
tioned, parallels can be drawn from the discussion of work concerning Hempel and Oppenheim’s deductive-
nomological model of explanation [50].

9Presumably, in thisexample*“the sprinkler being on” refersto thetap (to which one presumesthe sprinkler
is connected via a hose etc.) being open. In which case, the sprinkler could be on (i.e., the tap open) and
the water mains broken yet the grass not wet. However, the fact remains that this formulation of what is
(implicitly) presumed to be the agent’s background knowledge is inadequately specified. It is possible to
give a proper specification of the background knowledge and, adopting an abductive view, obtain the desired
result. One must be careful when formalising the problem.
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disbelieved to be adopted as explanations for an explanandum that is neither believed
nor disbelieved)

counterfactual the explanation is something which, if brought about, would lead to the
occurrence of the explanandum (thisgeneralisesfactual and hypothetical explanations
only in the case where the explanandum is neither believed nor disbelieved).

Williams et al. [132] provide a rendering of Spohn’s condition in a setting that is much
closer in spirit to Spohn’soriginal framework (infact, slightly more general — see Williams
[130] for details). Using a process representing an absolute minimal change'® they show a
clear relationship with a definition of abduction like the one we adopt here. Moreover, it
does not suffer from the problems noted by Gardenfors and is also able to capture notions
identified by Boutilier and Becher.

Note, however, that part of the endeavour in this dissertation has different aims to the
idea outlined in this section. The approaches here use the revision process to determine
explanations or reasons and in particular cases identify this with abduction. We, among
other things, investigate the use of abduction as part of the revision process itself. That
is, in the framework developed here, abduction is “internal” to the belief change process
and helps determine the resulting beliefs whereas the approaches inspired by Spohn use the
belief change process to produce explanations.

1.1.3 Abduction in Database Updates

Kakas and Mancarella [57] use abduction for calculating updates to logical databases in
work that is similar to part of our proposal here. They suggest a number of reasons why
such amethod is useful. Firstly, it makes explicit certain information that isin some sense
implicit in the representation and could otherwise be lost. Also, if a knowledge base is
organised in a particular way — information is represented or stored in terms of certain
predicates or propositions, for instance— then it may be possibleto use abduction to ensure
that subsequent information is also organised in this way.

10gpohn isinclined towards one using a relative minimal change.
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The setting they useisthat of representing logical or deductive databases as|ogic programs
(i.e., essentialy Horn clauses) [68]. The databasesitself is divided into two parts:

extensional database (EDB) set of ground facts (over base relations) describing state of
domain

intensional database (IDB) set of rules (over view relations) from which new facts can be
obtained.

The base predicates (or abducibles) are a demarcated set of predicates that can be used in
forming abductions. Anupdaterequest (insert(«/) or delete(«)) istreated asan explanandum
(i.e., explain o or explain ~« respectively) and an attempt ismade to determine an abduction
which, when added to the EDB, would satisfy the request. Note that the DB remains fixed;
changes are only made to the EDB (in terms of ground base relations) to effect the desired
result. That isbecause the IDB can be thought of as the domain information.

An update request insert(«:) can be achieved by determining an abduction for new infor-
mation o with respect to the IDB. That is, some formula consistent with the IDB such
that, together with it, o follows as alogical consequence. This abduction isformulated in
terms of base predicates so the desired result can be achieved by inserting the abduction
into the EDB. For example, suppose the IDB contains bird(z) — flies(x) where bird is a
base predicate and the EDB is empty (the EDB plays little part in the abductive process)
and we receive an update request insert(flies(tweety)). This can be achieved by inserting
bird(tweety) into the EDB. The existence of negation can cause some problems but Kakas
and Mancarella show how to solve this by translating the database into an alternative form.
They also show that adelete(«) request can be achieved by an insert(—«) request.

The method described is promising. It can handle insert (and delete) update requests of
information inconsistent with the database (possi bl e through the transl ation process alluded
to above). In terms of belief revision, we note that this procedure is specific to the logic
programming domain and no general logical treatment is attempted (at |east not in the terms
we shall attempt here: providing rationality postulates, constructions and representation
theorems). Moreover, although one could identify the notion of epistemic state with the
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database (i.e., IDB U EDB), one would need both to give a clear epistemic motivation for
dividing the database up into two separate parts, and to explain their epistemic status. In
its defence, the approach is motivated by more pragmatic concerns rather than epistemic
concerns. We adopt a different setting and do not assume epistemic states to be divided in
such away. We aso find the use of base predicates (abducibles) objectionable and shall
return to this point later. Interesting extensions of thiswork can be found in Teniente [126]
and Fung [51].

1.2 Overview

The following two chapters provide an overview to the two main areas with which this
dissertation is concerned: belief revision and abductive inference. They survey important
concepts which will be useful in the subsequent chapters. Chapter 4 presents a logical
treatment of abduction including some of the notions discussed in Chapter 3. It also briefly
contrasts abduction and induction with particular regard to the manner in which they are
popularly dealt with in the field of artificial intelligence. In Chapter 5 we extensively
investigate an operation for performing abductive belief expansion. This is performed in
a fashion reminiscent of the AGM framework: through definitions, rationality postulates
and a number of constructions motivated by those for AGM contraction and revision. Its
relationship with the area of default reasoning is also discussed. This chapter forms the
cornerstone of the dissertation and is important for the work that succeeds it. Chapter 6
is devoted to the role of abduction in the process of belief contraction. We begin with a
semanticinvestigation of aform of contraction first suggested by L evi that can be considered
in some respects a dua of our account of abductive expansion. Other ways in which
abduction is related to belief contraction are also discussed. Chapter 7 presents a brief
look at abductive revision. Using the results of the previous sections on expansion and
contraction, an abductive revision operator is constructed. In the final chapter we present a
summary of the results obtained in this dissertation, discussing their significance. We end
with suggestions for future research possibilities arising from thiswork. The appendices at
the end of this dissertation contain the formal proofs of claims made throughout.
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1.3 Technical Preliminaries

We shall primarily consider a propositiona language £ with finitely many propositional
symbols. We shall restrict ourselvesto afinite language to simplify thisexposition. Strictly
speaking, however, this restriction is only necessary in certain circumstances which we
shall identify. £ will aso be assumed to contain the standard logical connectives, namely
-, V, A, = and < (with the understanding that they can be interdefined in the usua way)
and the propositional constants T (truth) and L (falsum). We identify £ with the set of all
itswell formed formulae. We use the notation £(I") to refer to the (smallest) language over
which aset of formulae I is formulated.

We normally adopt the following linguistic conventions:

e upper case Greek letters A, I, ... denote sets of formulae (in any particular form —
the relevant form shall be evident from the context)

e lower case Greek letters «, 3, ... denote formulae where the syntactic form is
unimportant

e upper case Roman letters A, B, C, ... denote clauses

e upper case Roman letters H, K, ... denote belief sets (i.e., deductively closed sets
of formulae)

e lower case Roman letters 5, k, [, ... denote (positive or negative) literals (i.e.,
propositional symbols)

The underlying logic will be identified with its consequence operator Cn. A conseguence
operator isafunction Cn : 2¢ — 2¢ with the following properties:

(i) T CCn(() (Inclusion)
(i) fr C A thenCn(l) C Cn(4) (Monotonicity)
(iii) Cn(T") = Cn(Cn(I)) (Iteration)

Moreover, we assume that C'n satisfies the following conditions:
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(iv) If o can bederived from I by classical

truth-functiona logic, then a € Cn(I") (Supraclassicality)
(v) BeCn(fU{a})ifandonlyif (o« — 3) € Cn(I) (Deduction)
(Vi) If a € Cn(T), thena € Cn(I"’) for some finite

subset'" C T (Compactness)

The following properties of a consequence operator Cn follows from those above and will
be useful in some of the proofs.

(vii) If o » B e Cn(l) anda € Cn(), then 5 € Cn() (Modus Ponens)
(viii)lif « - g € Cn(T), then =3 — —a € Cn(I") (Contraposition)

We often writel” - atomean o € Cn(lM) and - « for O - .

A set of formulae K C Lisatheoryin £ if and only if K isclosed under the consequence
operator Cn (i.e.,, K = Cn(K)). Weshall aso refer to such aset asabelief set (see §2). A
theory in £ isconsistent if and only if it does not contain formulae o and -« forany « € L.
A theory in £ isinconsistent if it is not consistent. In fact, there is a single inconsistent
theory in £ and we denote it K, (and notethat K, = £). A theory K is complete if and
only if forevery a € £, K - aor K F —a. A theory K isfinitely axiomatisable if and
only if thereisafinite set of formulae " such that for any formulaa € £, K F «iff T - a.
We denote the set of al belief sets (or theories) in £ by /. Animportant property of belief
sets or theoriesisthat their intersectionisaaso abdlief set (i.e., Cn(KNH) = KN H for
belief sets K and H).

At times (especialy in Chapters 3 and 4 when considering material from the logic pro-
gramming literature) we will have occasion to deal with clausal form logic [68]. Atoms, in
the propositional case, are simply propositional letters. In the first-order case, terms have
their usual meaning and atoms are predicate symbols applied to terms. A positive literal is
an atom while a negative literal is a negated atom. A clause C' = {cy, ..., c,} isafinite
set of literalsrepresenting their disunctioney Vv ... V ¢,. A Horn clause isa clause with at
most one positive literal while a definite clause is a clause with exactly one positive literal.
In first-order logic, asubstitution # is afinite set of pairsd = {v1/t4,...,v,/t,} wherethe
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v; arevariablesand ¢; terms. When applied to aterm, substitution replaces each occurrence
of the variable v; with theterm ¢;. A unifier of two terms (alternatively atoms) ¢, and ¢, is
asubstitution @ such that t,6 = ¢,0. The unifier # isamost general unifier (mgu) of ¢, and
t, if, for each unifier § of ¢; and ¢,, there is a substitution v such that 6 = 6~. Aninverse

substitution §~1 maps termsto variablesin ¢4.

Thefollowingisalist of common propertiesthat abinary relation R C D x D may possess

[125]. We shall adopt the familiar notation z Ry for (z, y) € R.

Reflexive Foral x € D, xRx

Symmetric Fordl z, y € D, if xRy, thenyRx

Transitive Fordl z, y, z € D,if tRy and yRz, then z Rz
Irreflexive For all x € D, ~(zRx)

Asymmetric Foral z, y € D, If zRy, then y Rx does not hold
Antisymmetric Fordl z, y € D,if tRy and yRx, thenx =y

(Strongly) Connected

Foradl z, y € D, either xRy or yRx

Equivalence R is Reflexive, Symmetric and Transitive
Preorder R is Reflexive and Transitive

Partial Order R is Reflexive, Transitive and Antisymmetric
Total Order R isaPartial Order and Connected

Simple Order R is Transitive and Antisymmetric

Strict Partia Order R is Asymmetric and Transitive

Strict Simple Order R is Asymmetric, Transitive and Connected

Anéeement x € D isan R-minimal (sometimesreferred to as R-first) element of aset D if
and only if for any y € D suchthat = # y doesz Ry hold. Anelement z € D isan R-lower
bound of aset D if and only if xRy for all y € D. An element z € D isan R-infimum
(or R-greatest lower bound) of aset D if and only if z isan R-lower bound and for any
R-lower boundy € D, yRz. Anelement z € D isan R-upper bound of aset D if and only
if yRx foral y € D. Anelement x € D isan R-supremum (or R-least upper bound) of a
set D if and only if z isan R-upper bound and for any R-lower bound y € D, zRy. A set
Disalatticereativeto R if and only if R isapartial ordering of D and for any z, y € D,
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{z, y} hasan R-supremum and R-infimumin D.

An order < isatransitive relation. We use < to refer to the strict part of < (i.e., x < y iff

r<yandy £ z).
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Chapter 2
Belief Revision

You could not step twice into the same
rivers, for other waters are ever flow-
ing on to you.

Heracleitus of Ephesus (as quoted by
Plutarch, On the E at Delphi)

As noted in the introduction, the concept of belief revision is, in essence, a simple one.
We are interested in characterising the dynamics of epistemic states; how an agent in a
particular epistemic state modifies this state upon receipt of some new information (or
epistemic input). Moreover, we are interested in investigating changes of belief that are
performed in arational manner.

2.1 Foundationalism Versus Coherentism

Before addressing the problem of how to alter an epistemic state given an epistemic input,
weshall briefly investigatethe nature of the statesthemselves. Thetwo foremost approaches
to modelling epistemic states are the foundational and coherence theories. Pollock [101]
refers to these as doxastic theories; they assume that the justificatory pedigree of beliefs
depends solely on those beliefs held by an agent.

The major distinguishing feature of the foundational approachisthat it demarcates a special
class of beliefs. These are often referred to as “epistemologically basic beliefs’ (or smply
“basic beliefs’). Every belief in afoundational system is supposed to be justified in terms
of other beliefswhich are, inturn, justified by further beliefs until ultimately we reach basic

19
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beliefs which have no need of justification. In a certain sense, they can be thought of as self
justifying.

Examples of foundational systems within artificial intelligence are Doyle's [21] Truth
Maintenance System (TMS)? and its successor the Assumption Based Truth Maintenance
System (ATMYS) [112]. Their basic task is to record inferences passed to them by a
domain dependent problem solver. Basicaly, the TMS consists of two structures: nodes
representing propositions; and, justifications representing reasons. Each node may be in
one of two states:

in  thenode has avalid justification and consequently is considered a current belief

out thenode doesnot have avalid justification; it is currently not believed

A justificationisapair of setsof nodes: aninlist and an outlist. A justificationisvalidif al
nodesonitsinlist arein and al those on its outlist are out. Clearly, a proposition becomes
a belief when one of its justifications is valid; it becomes a non-belief when none of its
judtifications are valid. The TM Stakes care of creating new nodes and adding or retracting
justifications. This may become a complex process as other nodes and justifications may
be affected. Also, circular justifications must not be admitted. It can also mark a node
as a contradiction. This has the effect of stating that the elements of a justification for
this node are inconsistent. If such a node acquires avalid justification a process known as
dependency-directed backtracking ensues, making sure that any justification is no longer
valid.?

Elkan [24] (see aso Reinfrank et al. [109, 110]) provides alogical rendering of the TMS
in order to show how it relates to Gelfond and Lifschitz’ [36] stable model semantics for
logic programming and Moore's [74] (propositional) autoepistemic logic. A justification
for aproposition ¢ issimply represented as a (directed) propositional clause

a1 AN...Napb A—biA...AN—b, = ¢

(where — represents negation as failure).® Propositions a4, . . ., a, represent those in the

1Theterm Truth Maintenance System has often been cited as a misnomer and the alternative Reason Main-
tenance System (RMS) suggested as a more appropriate alternative. However, the term Truth Maintenance
System appears to have stuck and we shall use it here.

2Thisis essentially achieved by retracting beliefs known as assumptions — having a justification with a
non-empty outlist — which, although not necessarily part of the justification, lead to it becoming invalid.

3In autoepistemic logic thisjustification may berendereda; A ... Aa, A —Lbi A ... A =Lb,, — c.
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justification’s inlist while b4, .. .,b,, are those in the outlist. A contradiction ¢ can be
represented by theclausea; A ... A a, — ¢ meaning that a;, . . ., a,, cannot al be believed

(think of a contradiction c as representing ).

One of the more popular successors of the TMS is de Kleer's [18] ATMS. It is based on
the idea of keeping track of the assumptions upon which a proposition is based as well as
its justifications.* In this case a node is composed of three parts: the datum representing
a proposition but treated as atomic; the label representing sets of assumptions — called
environments — which would alow the datum to be inferred; and, the justifications, each
contai ning antecedents supporting the datum. An assumption isanode with an environment
consisting of its datum only.> The nodes derivable from an environment (including those
corresponding to the elements of the environment itself) are referred to as contexts. Sets
of assumptions that cannot hold simultaneously are referred to as nogoods. They are
similar to contradictions in the TMS and act like integrity constraints, reducing the size
of the search space for any eventual query passed to the ATMS (by causing the deletion
of derived justifications that violate these constraints). When an inference is passed to
the ATMS it takes care of updating nodes. If the consequent is unknown, a new node is
created with the consequent as the datum. The antecedent of the inference becomes a new
justification for the node and |abel s of the antecedents are used in determining the label for
the node. All combinations of an environment from every label are used in determining

new environments. However, alabel must be

consistent no environment is a superset of a nogood

complete the environment from which the datum follows is a superset of some
environment in the datum'’s | abel

sound the datum follows from each environment

minimal no environment is a subset of another environment in the label

Soundness and completeness are guaranteed by the procedure used to compute environ-

ments. Inconsistent and non-minimal environments must be removed.

“Moreover, whereas the TMS concentrates on finding one support, the ATMS is geared towards finding
all supports.
5Cf. TMS — the notions differ.
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Logically, ATMSjustifications are ssmply Horn clauses
aN...Na, — ¢

where ¢ representsthedatumand ay, . . ., a,, @justification. Assumptionscan be represented
in the same manner however, in this case, ay, ..., a, IS taken from one of the datum’s
environments. Nogoods {ay, - . ., a, } arejust supportsfor fasity, a; A ... A a, — L.

Example 2.1.1 Using part of our previous hamburger example

01 ANphy — e
02 Aphy — e

Suppose also that the two restaurants serve milkshakes so that, if a restaurant is open and
| purchase a milkshake fromit (pm1/pms), then | will have a milkshake ()

o1 ANpmyi—m
02 A pmo —m

Moreover, supposethereisa municipal restriction stating that the two restaurants can never
be open at the same time. We express this fact through the addition of the following nogood

o1 Nop — L

Now, suppose a new inference is passed to the ATMS. | am satiated (s) after having a
hamburger and a milkshake

eANm— s

All possible justificationsfor e and m produce the following justifications for s

01 Aphi Apmy — s
01 Aphy Aoy Apmy — s
01 Apmy Aoz Aphy — s
02 A pho Apmp — s

However, the second and third violate the nogood and must be removed. All justifications
areminimal. O
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The coherence approach, unlike the foundational approach underlyingthe TMSand ATMS,
denies the existence of any select set of basic beliefs. On this account, beliefs are justified
by theway they interact or “cohere” with other beliefs. In other words, it istherelationship
with other beliefs that isimportant when determining whether a belief isjustified.

Pollock [101] distinguishes four types of coherence theories into two groups:

la) Positive Coherence

The agent must possess reasons for maintaining a belief. That is, each
belief must have “ positive support”.

1b) Negative Coherence

The agent is justified in holding a belief provided there is no reason to
think otherwise. (“All beliefs are *innocent until proven guilty”’, Pollock
[101] p. 72.)

2a) Linear Coherence

The agent adopts a more traditional (i.e., foundational) view of reasons
except that if welook at areason, the reasonsfor holding reasons, etc., we
would never stop; either we have an infinite sequence of reasons or there
is some circularity in the reason structure.

2b) Hoalistic Coherence

The agent isjustified in holding abelief due to some relationship between
the belief and all other beliefs held.

It is possible to have coherence theories which possess more than one aspect from thislist.

The distinction between the foundational and coherence approaches is often illustrated
through two metaphors: the foundationalist “pyramid” and the coherentist “raft”. These
are succinctly expressed by Sosa[119]:
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For thefoundationalist every piece of knowledge standsat the apex of apyramid
that rests on stable and secure foundations whose stability and security does
not derive from the upper stories or sections. For the coherentist a body
of knowledge is a free-floating raft every plank of which helps directly or
indirectly to keep all the others in place, and no plank of which would retain
its status with no help from the others.

The latter derives from a metaphor by Neurath [86] used to express the fact that it is
not possible (nor desirable) to start from scratch in developing a language for scientific
discourse:

We are like sailors who have to rebuild their ship on the open sea, without
ever being able to dismantle it in dry-dock and reconstruct it from the best
components.

Pollock [101] notesthat this metaphor is morein keeping with the negative coherence view.

2.2 The AGM Framework for Belief Revision®

We shall base our study on the AGM framework for belief revision [1, 31, 32]. This
approach is claimed, by Gardenfors [32] (also [31] p. 35), to be coherentist in nature. The
main reason for adopting this approach is that it is a well developed forma framework
that should allow us to take advantage of alogical theory of abduction (to be discussed in
Chapters 3 and 4). Such astudy has not been undertaken previously whereas investigations
of the relationship between TMSs and abduction have (e.g., [112]). Moreover, links have
been investigated between belief revision and other areas of artificial intelligence (e.g.,
nonmonotonic reasoning [34, 72]).

It was mentioned earlier that we are interested in accounts of rationa belief change.
Gardenfors and Rott [35] adopt the following rationality criteriaor “integrity constraints’:

5The results in this section may be found in the AGM literature; in particular, they are collected together
in Gardenfors[31] unless otherwise stated.



2.2. THEAGM FRAMEWORK FOR BELIEF REVISION 25

Where possible, epistemic states should remain consistent

Any sentence logically entailed by beliefsin an epistemic state should beincluded in
the epistemic state

When changing epistemic states, loss of information should be kept to a minimum?’

Beliefsheld in higher regard should be retained in favour of those held inlower regard

The third criterion can be thought of as a manifestation of Occam’s razor as applied to the
removal of information (rather than the making of hypotheses), and is held in high regard
in the AGM framework. In fact, it is often mentioned in connection with this framework.
We shall see that avariant of it also applies to the acquisition of new information.

The second criterion leads to the following conception of an epistemic state withinthe AGM
framework. Epistemic states are closed under logical consequence (C'n) and are referred to
as belief sets.® The set of al belief setsis denoted K. One specid type of belief set isthe
absurd belief set K, which contains al formulaein £. Thisrather idealistic modelling of
epistemic states may best be viewed as the agent’s doxastic commitment to full recognition
of the truth of the deductive consequences of what it believes (see Levi [65] p. 8). A lot of
attention has also been paid to the study of belief bases [30, 42, 80, 85]; sets of formulae
that are not necessarily closed under the logical consequence operation.

Given any consistent belief set K, there are three types of epistemic attitude toward a

sentence o

(i) «isaccepted (or believed) if « € K

(i) aisregected (or not believed) if —a € K
(iii) aisindeterminedif o ¢ K and ~a ¢ K

Epistemic inputs are represented by a single sentence from the object language. More
complex representations may be found in the literature (e.g., [45, 122]).

"This is also referred to as the Principle of Informational Economy [31] and, when informational oss
is measured by set inclusion, the Principle of Conservation [49]. They are special cases of the Principle
of Minimal Change [49] which states that minimal change should occur when beliefs are added as well as
removed.

8That is, belief sets are simply theories albeit with a special interpretation in mind.
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Belief change operators can be seen as prescribing how a given epistemic state is to be
altered given an epistemicinput. The AGM considersthreetypes of belief change operators
given abelief state K, representing the agent’s current epistemic state, and epistemic input

.

Belief Expansion (K}) Incorporation of new belief « into K without retraction of any
existing beliefs

Belief Contraction (/X_) Removal of belief o from K without introduction of any new
beliefs

Belief Revision (K) Incorporation of new belief « into K with possible removal of exist-
ing beliefs in order to maintain consistency

A belief change operator is essentially afunction taking a belief set K and epistemic input
o to anew belief set K/, (+,—,* : K x L — K).° These belief change operators are
investigated in a number of ways: through rationality postulates and through a variety
of constructions. The postulates are then related to the constructions via representation
theorems. Theideaisto study all possible belief change functions — that is, all possible
ways of expanding, contracting and revising K by o — in accord with the rationality
constraints imposed by the postul ates.

2.2.1 Postulates

Rationality postul ates specify constraints that the respective operators should satisfy. They
are guided by the rationality criteria outlined above which we adopt in this dissertation as
the standards for characterising arational agent.

9The restriction that the nature of an epistemic state be the same before and after undergoing change is
referred to as the Principle of Categorical Matching [35].
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Expansion

The expansion of a belief set K by an epistemic input « is denoted K. Expansion
is generally recommended when « is consistent with K. An AGM expansion operator
+: K x L — K satisfiesthe following rationality postul ates:

(K*1) For any sentence o and any belief set K,

K[ isabelief set (closure)
(K*2) a€e K[ (success)
(Kt3) K C K/ (inclusion)
(Kt4) Ifae K, thenK} =K (vacuity)
(Kt5) IfK CH,thenK} C H} (monatonicity)
(K*6) For dl belief sets K and all sentences «, K| isthe

smallest belief set that satisfies (K*1) — (K*5) (minimality)

The postulate of closure expresses the fact that + is a function taking a belief set and a
sentenceasinput and producesabelief set. Successstatesthat the epistemicinput isaccepted
in the expanded epistemic state. Inclusion saysthat no beliefs are retracted and isaform of
the Principle of Minimal Change as phrased above. Vacuity represents aboundary case and
states that nothing need be done if the epistemic input is already accepted.'® Monotonicity
says that, if one belief state contains at least the same information as another, then its
expansion will contain at |least the information of the expansion of the other with respect to
the same epistemic input. The postulate of minimality can be considered an expression of
the Principle of Minima Change applied to the addition of new beliefsto an epistemic state
K ; the smallest possible change to accommodate the new information is made. The term
“smallest” isunderstood with respect to set inclusion (of the original epistemic staterelative
to the expanded epistemic state). Thisleadsto the following representation theorem.

Theorem 2.2.1 The expansion function + satisfies (K1) — (K*6) ifand only if K =
Cn(K UA{a}).

Opostulate (K*+4) is superfluous asiit follows from postulates (K+1) — (K*3), (K+5) and (K*6).
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Therefore, to calculate an AGM expansion, one need only take the deductive closure of the
initial epistemic state and the new information.

Contraction

The contraction of a belief set K by epistemic input « is denoted K. Contraction is
recommended when doubt israised about acurrent belief or the agent wishesto temporarily
suspend belief in aproposition. It can be used together with expansion to perform revision,
aswe shall see, and satisfies the following rationality postul ates:

(K=1) For any sentence « and any belief set K,

K isabelief set (closure)
(K2 K,CK (inclusion)
(K3 IfagK,thenK, =K (vacuity)
(K74) Ifathena g K (success)
(K5 Ifae K,K C (K})! (recovery)
(K™6) Ifra< g, then K] = Kg (extensionality)
(K=7) KiNKz; CKg.yg (intersection)!
(K8) Ifad K4 thenK,,, CK, (conjunction)*?

Closure states that a contraction operation takes pairs of belief sets and formulae to belief
sets (— : K x L — K). Inclusion says that no new beliefs should be introduced into
the contracted epistemic state. Vacuity expresses the fact that nothing need be done if the
epistemic input is not currently accepted. It is a manifestation of the Principle of Minimal
Change. Successstatesthat if itispossibleto removethe epistemicinput, it will beretracted
fromthe current epistemic state. Theonly situationinwhichitisnot possibleto do so occurs
when the epistemicinput isalogical truth for, by the second of our rationality criteriaabove,
it will beincluded in all possible epistemic states. Recovery saysthat if we wereto retract a
belief from K and then expand the result by the same formula, all original beliefs would be
included in the final epistemic state. Thisbehaviour isalso dueto the Principle of Minimal

1 Also referred to as conjunctive overlap [44].
2Also referred to as conjunctive inclusion [44].
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Change to a certain extent since this principle dictates that beliefs not be unnecessarily
discarded when determining K, . Recovery is arguably the most controversial of the AGM
rationality postul atesand there areanumber of contributionsdiscussingitsremoval [41, 71].
Makinson [71] refers to a contraction operation satisfying postulates (K~1) — (K~4) and
(K~ 6) asawithdrawal. Extensionality expresses the Principle of Irrelevance of Syntax; it
is the content rather than the syntactic formulation of the epistemic input that is important
in belief change. These first six postul ates are often referred to as the basic postul ates for
contraction over K. The remaining two postul ates are supplementary postulates. They are
best motivated in the style of Nayak [80] (p. 506). Intersection states that, if one does not
give up belief in v when giving up belief in « nor in giving up belief in 3, then one should
not give up belief in v when giving up belief in the conjunction o A 3. Conjunction states
that, if one were to give up a when giving up the conjunction . A 3, then whatever one
givesup in giving up «, should also be given up ingiving up o A 3.

Revision

The revision of abelief set K by epistemic input « is denoted K. Revision is particularly
important when « isinconsistent with K and the agent wishesto incorporateitin such away
asto end up in a consistent epistemic state. It satisfies the following rationality postul ates:

(K*1) For any sentence o and any belief set K,

K} isabelief set (closure)
(K*2) a€e K} (success)
(K*3) K:CK[ (inclusion)
(K*4) If-a¢ K,thenK} C K* (preservation)
(K*5) K=K, ifandonlyif - -« (vacuity)
(K*6) Ift-a < B, then K = Kj (extensionality)
(K*7) K5 C (K2} (superexpansion)
(K*8) If = ¢ K, then (K})j C K4 (subexpansion)

(K*1) is the familiar postulate of closure (x : I x £ — K). Success states that the new
information should be included in the revised epistemic state. Inclusion saysthat expansion
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represents an “upper bound” when incorporating new beliefs (this will trivially hold in
case the negation of the epistemic input is already accepted). Preservation expresses that,
when the negation of the epistemic input is not accepted, revision reduces to expansion. It
is the conditional converse of inclusion. Vacuity tells us that the only situation in which
revision would end up in the inconsi stent epistemic state occurs when the agent is asked to
accept logically contradictory information. Extensionality, like its contraction counterpart,
IS an expression of the Principle of Irrelevance of Syntax. Again, (K*1) — (K*6) are
referred to asthe basic postulatesfor belief revision over K. Two supplementary postul ates
for revision exist and can be thought of as generalisations of Inclusion and Preservation.
Superexpansion states that any belief included in the revision of K by o A 8 should aso be
included if wefirst revise K by o and then expand the result by 5. Subexpansion says that,
if Bisnotreectedinrevising K by a, then any belief included by first revising K by o and
expanding the result by 4 should also be included in therevision of K by a A 5. That is,
K}z and (K}); consist of the same beliefs in this case. This postulate is the conditional
converse of Superexpansion.

Interestingly enough, not al of the above operators are essential; some may be defined in
terms of the other operators.'® A revision operator, for instance, may be determined from a
contraction operator and an expansion operator viathe Levi Identity:

(Def ) Ko = (Kp)a

It states that a revision of K by « can be performed by first removing —a (to avoid
inconsistency) and incorporating « into the result. The following theorem gives credence
to thisdefinition (and Levi’s clams).

Theorem 2.2.2 Let — be a contraction function satisfying postulates (K1) — (K~ 4) and
(K~ 6) and + an expansion function satisfying postulates (K * 1) — (K*6). Thentherevision
function x obtained from (Def x) satisfies (K*1) — (K*6). Moreover, if — satisfies (K~7),
then x satisfies (K*7) and if — satisfies (K~8), then x satisfies (K*8).

BIn fact, Levi [64] claims that the only “legitimate” forms of changing an epistemic state are expansion
and contraction, a view to which we subscribe. He refersto this as the commensurability thesis[65] (p. 65).
Such a view places less emphasis on the revision operator which is deemed achievable through a sequence
of expansionsand contractions. As aresult, we place a greater emphasis on these latter two operatorsin this
dissertation.



2.2. THEAGM FRAMEWORK FOR BELIEF REVISION 31

Notice that recovery isnot required in Theorem 2.2.2. Thistells us that revision operators
defined, viathe Levi Identity, from AGM contractions and those from withdrawal operators
arerevision equivalent. That is, they determine the same class of revision operators.

Alternatively, it ispossibleto define a contraction operator using arevision operator and set
intersection.** This may be achieved by the Harper Identity:

(Def —) K; =K n K~,

which states that contracting K by « consists of those beliefs in K that are retained
in revising K by —«. The motivation for this definition stems from the fact that K*
represents aminimal change of K required to incorporate —« (in aconsistent manner) and
should therefore include a large part of K that does not entail «.

Theorem 2.2.3 Let x be a revision function satisfying postulates (K*1) — (K*6). Then
the contraction function obtained from (Def —) satisfies (K~ 1) — (K~ 6). Moreover, if x
satisfies (K*7), then — satisfies (K~7) and if x satisfies (K*8), then — satisfies (K~ 8).

2.2.2 Constructions

Having outlined conditions that the various belief change operators should satisfy, it is
interesting to study how operators satisfying these postulates could be constructed. The
AGM framework possesses four main constructions: selection functions over maximal
subsets of K failing to imply «, Grove's system of spheres, epistemic entrenchment and
safe contraction.’®

Selection Functions

Given the Levi Identity and Theorem 2.2.1 regarding belief expansion, it is sufficient to
concentrate on contraction. One approach to constructing a contraction of belief set K
by epistemic input « isto seriously consider the Principle of Minimal Change and look at

14Recall that the intersection of two belief setsisalso abelief set.
15A construction in terms of nice preorders over models (see [61, 34]) is also presented by Peppas and
Williams [100] but we shall not consider it here.
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subsets of K which are as big as possible without entailing «. Such a set can be defined as
follows:

Definition 2.2.1 A belief set K’ isa maximal subset of K that failsto imply « if and only
if

(i) KCK

(i) a ¢ K’

(iii) forany B € £,if € KandB ¢ K, then3 — a € K’

The set of al belief setsthat are maximal subsetsof K failingtoimply « are denoted K 1 .

Generaly, K L« contains more than one maximal subset. The first ideain constructing a
contraction function is to apply a selection function v to select one element from K 1.6
Intuitively, v(K L) returns the “best” element from K L« and is known as a maxichoice
selection function. The contraction of K by « can be defined as follows

v(K La) whenever K Lo isnonemptyt’
K otherwise

[e%

(Def Max) K, = {

and is referred to as a maxichoice contraction function over K. Sure enough, such a
function satisfies the basic postul ates for belief contraction over K.

Lemma2.2.4 Let K beabedlief set. If — isa maxichoice contraction function over K, then
it satisfies postulates (K1) — (K~ 6) for belief contraction over K.

Unfortunately, we obtain the following undesirable results.
Lemma2.25 Let K beabeliefsetand o € L. If « € K and K is defined by means

of a maxichoice contraction function, then for any proposition 3 either a« V g € K or
aV-pe K.

16 selection function applied to a set X returns an element of the co-domain whenever X is nonempty.
"Notethat K La = @ only when - a.
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Corollary 2.2.6 Let — be a maxichoice contraction function over K. If a revision function
* 1S defined from — by the Levi Identity, then, for any « suchthat -« € K, K isacomplete
theory.

They suggest that maxichoice contractions retain too much information. In the resulting
revision, the agent has opinions as to the truth or falsity of every proposition.

It seems natural then to consider a selection function at the other extreme; one returning all
elementsof K L «. Thisisknown as afull meet selection function and leads to a full meet
contraction function over K which may be defined as follows.

N(K La) whenever K La isnonempty
K otherwise

[e%

(Def Meet) K = {

A full meet contraction function also satisfies the basic postulates for contraction.

Lemma22.7 Let K beabeief set. If — isa full meet contraction function over K, then
it satisfies postulates (K~1) — (K~6) for belief contraction over K.

However, we again have undesirable results.

Lemma2.2.8 Let K beabeliefsetand o € L. If o € K and K is defined by means of
a full meet contraction function, then for any proposition 3, 3 € K ifandonlyif g € K
and -« F .

Corollary 2.2.9 Let — be a full meet contraction function over K. If a revision function x
is defined from — by (Def «), then for any « such that -« € K, K} = Cn(«).

In a sense, too much information is removed. Thisis somewhat at odds with the Principle
of Minimal Change.

A remedy lies in making a compromise between these two extremes. We adopt a selection
function ~ that returns a subset of K 1 «. We can think of « as returning the set of “best”
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elements of K 1 o.*® Thisisreferred to as a partial meet selection function. The resulting
contraction — a partial meet contraction function over K — may be defined as follows

(Def Part) K, =

N~v(K La) whenever K 1« isnonempty
K otherwise

The following representation theorem says that such functions exactly coincide with the
basic postulates for contraction.

Theorem 2.2.10 Let K beabelief set and — be a contraction function. Then — isa partial
meet contraction function over K if and only if it satisfies postulates (K—1) — (K~6) for
contraction over K.

Itisinteresting to further investigatethe nature of the selection function -y and how it decides
which elementsof K L« arepreferred. Oneideaistoimposearelation < over the elements
of K 1L« and define v by the following marking-off identity (when K Lo # ():

(Def ) vKla)={K' € Kla:K" 2 K'foral K" € K1a}

Therelation < “marksoff” the most preferred elementsof K L «. When v isdefined in this
way, theresulting contraction function isreferred to asarelational partial meet contraction
function over K.

Lemma 2.2.11 Let K beabelief set. Anyrelational partial meet contraction function over
K satisfies postulate (K~ 7) for contraction over K.

A straightforward extension is to require < be transitive. In this case « is known as
transitively relational and the resulting contraction as a transitively relational partial meet
contraction function over K.

Lemma 2.2.12 Let K be a belief set. Any transitively relational partial meet contraction
function over K satisfies postulate (K ~8) for contraction over K.

The following theorem supports the utility of such a construction.

18Cf. thefourth rationality criterion. Each element of (K L«) containsbeliefs held in higher regard. The
beliefs held in highest regard are those common to the best elementsreturned of (K La).
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Theorem 2.2.13 Let K be a belief set and — be a contraction function defined over K.
Then — isatransitively relational partial meet contraction function over K if and only if
it satisfies postulates (K—1) — (K~ 8) over K.

The respective revision operation defined via the Levi identity satisfies postulates (K*1)
— (K*8). It can also be shown that requiring < to be connected does not lead to further
contraction postul ates.

Grove's Sphere Semantics

Grove[39] developed a“ sphere semantics” for the AGM framework inspired by Lewis’ [67]
semantics for counterfactual reasoning.’® He concentrated on revision functions although
theideaiseasily extended to deal with contraction (viathe Harper Identity) and expansion.

Grove views maximally consistent sets of formulae (consistent compl ete theories) as * pos-
sibleworlds’. He places an ordering over the set M, of all possible worlds. The possible
worlds consistent with any set K are denoted [K'] and may be defined as follows.

o[ imeM K Cm} ifK#K,
K] = 0 otherwise

In asimilar fashion, the possible worlds consistent with a formula « are denoted [«] and
defined as [o] = [{a}] (i.e, [o] = {m € M, : a € m}). We aso define a function
th : 2Mc — K mapping sets of possible worldsto belief sets. For any X € M, we have

N{me X} for X C M and X # ()

(Def th) th(X) = { il % g

We reproduce the following properties, listed by Grove [39], for reference.
Lemma 2.2.14 Propertiesof th [39].

(i) th([K]) = K for all belief sets (i.e., theories) K if the underlying logic is compact

(il) th(X) # K ifand only if X is nonempty

19Grove'sideacan be viewed as asemantics insofar asit givesa*“picture” for AGM belief change. Strictly
speaking however, it deals with syntactic objects.
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Figure 2.1: A system of spheres centred on [K].

(iii) For any sentencec € £ and X C M., th(X N [a]) = Cn(th(X) U {a})

(iv) For X, X' C M,,if X C X', thenth(X') C th(X)

(V) For K, K' e K,if K C K', then [K'] C [K]

A sphere is defined to be a set of possible worlds. A system of spheres centred on K is

an ordering over sets of possible worlds where [K] is the innermost sphere and M, the
outermost sphere. It can be formally defined as follows.

Definition 2.2.2 [39]
Let S be any collection of subsets of M. We call S a system of spheres, centred on X for
some subset X C M., if it satisfies the following conditions:

(S1) Sistotallyordered by C; thatis,if U, V € S,thenU C VorV CU
(S2) X isthe C-minimumof S (i.e, X € SandifU € S, then X C U)
(S3) M, isinS (thelargest element of S)

($4) If a € L, andthereisany spherein S intersecting [«], then there is a smallest sphere
in S intersecting [«] (thereisasphereU € S suchthat UN[a] # @, and V N [a] # 0
impliesU C Vforal Ve S)

A pictorial representation of a system of spheres centred on [K] isgivenin Figure 2.1.
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o)

Figure 2.2: Sphere semantics for belief revision showing K] shaded.

Condition ($4) guarantees that if any formula . has worlds intersecting M then thereis
a smallest sphere (in the sense of set inclusion) or innermost spherein S intersecting [«
We shall denote such a sphere by cs(a). If [a] does not intersect any spherein S (i.e,
[a] N M = (), then cs(a) = M (note that this will only occur whenever [«] = () by
condition (S3)).

With any system of spheres S centred on [K], we can associate afunction fs : £ — 2M«

defined in the following manner for any o € £

(Def fs) fs(a) =[a]Nes(a)

Intuitively, the function fs can be viewed as selecting those a-worlds® in M that are
“closest” to [K]. In other words, it selects the innermost a-worlds.

The sphere semantics for arevision operation is now simply specified as follows.

(K2l = fs(a)

That is, theworlds corresponding to arevision of K by « are exactly those a-worlds closest
to [K]. Such a choice is motivated by the Principle of Minimal Change interpreted with
respect to the sphere model outlined above and taking minimality to be “ proximity” to [K].
Itisillustrated in Figure 2.2 (with [K] = fs(«) = cs(a) N [«] shaded).

The following two representation theorems show that the given semantics is appropriate.

2An a-world is any world m € M, in which o holds (i.e., @ € m). [a] is, of course, the set of all
a-worlds.
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[a]

Figure 2.3: Sphere semantics for belief expansion showing [K ] shaded.

Theorem 2.2.15 [39]
Let S be any system of spheresin M, centred on [K] for some belief set K in K. If one
defines, for any o € £, K tobeth(fs(«)), then the postulates (K*1) —(K*8) are satisfied.

Theorem 2.2.16 [39]

Let x : K x £L — K be any function satisfying postulates (K*1) — (K*8). Then for any
(fixed) belief set K thereisa system of sphereson M, S say, centred on [ K] and satisfying
K: =th(fs(a)), foral a € L.

The semantics for belief expansion of an epistemic state K by epistemic input « iS now
straightforward to determine. In the principa case where - ¢ K we have that « is
consistent with K and therefore [K] N [a] # (. That is, the closest a-worlds reside within
the innermost sphere [ K] and the worlds consistent with the expanded epistemic state are
thus given by

K] = [K]N o]

This situation isillustrated in Figure 2.3. In the case that —a € K, wehave K} = K.
However, inthiscase [K] N [o] = @ and so again, [K}] = [K] N [«].

The sphere semantics for belief contraction is slightly more involved though not all that
complicated. In fact, it can be easily obtained from that of revision using the Harper
Identity. In this situation we are losing information and hence increasing the number of
possible worlds. In contracting an epistemic state K by epistemic input o we need to



2.2. THEAGM FRAMEWORK FOR BELIEF REVISION 39

® )

[-a]

Figure 2.4: Sphere semantics for belief contraction showing [ | shaded.

supplement the worldsin [K]. Specifically, we must at least incorporate some —a-worlds
otherwise oo would still beaccepted inthe contracted epistemic stateand thereforeviolatethe
postulate of success for belief contraction.?* In accordance with the Principle of Minimal
Change we should add the closest —«-worlds. Therefore, the worlds consistent with the
new epistemic state may be obtained by

[Kq]=[K]U fs(-a)

Thissituation isillustrated in Figure 2.4.

Epistemic Entrenchment

It was shown by Grove [39] that an ordering over possible worlds is equivalent to an
ordering over theformulaeof £. A more popular treatment along these lines was devel oped
by Gardenfors and Makinson [33] and is known as epistemic entrenchment. Intuitively,
such an ordering represents a preference ordering over formulae. Epistemic entrenchment
ismotivated, to a large extent, by the fourth rationality criterion above.

In contraction, less entrenched formulae would be removed in preference to more deeply
entrenched formulae. An epistemic entrenchment ordering may be formally defined as
follows.

2l\We are discussing the principal case hereinwhich o € K. If a ¢ K then no change in worlds occurs.
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Definition 2.2.3 ([33]) An ordering < over L is an epistemic entrenchment ordering if it
satisfies the following conditions:

(SEEl) Foranya, B, ye L,ifa<pand g < ~ythena <7y (transitivity)

(SEE2) Foranya, g€ L,if{a}F gthena < g (dominance)
(SEE3) Foranya, g€ L, eithra<aAnpor < aAnp (conjunctiveness)
(SEE4) When K # K, ,a ¢ K iffa< pgforal ge L (minimality)
(SEES) Ifg < «aforall g e L, thent « (maximality)

The first postulate ssimply states that an epistemic entrenchment ordering is transitive. The
Dominance postulate is based on the rational e that, whenever aformulaa entailsaformula
(3 and one or the other must be given up, asmaller change would result from abandoning a.
Giving up $ aoneis not possible since, being a consequence of «;, it would be retained in
the resulting belief set. Giving up o done, on the other hand, may be possible. Therefore,
in general, giving up « would imply a smaller change than giving up 3. Hence, 3 cannot
be strictly less entrenched than «. This postulate is clearly motivated by the Principle
of Minima Change. The Conjunctiveness postulate says that removing « A 3 can be
accomplished by removing either « or 3. The minimality postulate states that non-beliefs
are minimally entrenched. The maximality postulate, on the other hand, says that logical
truths are maximally entrenched; logical truths arethe hardest to give up.?? Essentially then,
an epistemic entrenchment represents atotal preorder over the formulae of the languagein
which tautol ogies are maximally entrenched and non-beliefs minimally entrenched.

Thefirst three postul ates (SEE1) — (SEE3) turn out to be quite significant and any ordering
satisfying them is referred to as an expectations ordering [34]. Such orderings provide
a strong link between the AGM account of belief revision and nonmonotonic inference
[34, 72]. Gardenforsand Makinson supply thefollowing properties satisfied by expectations
orderings, some of which will be useful in proving results later in this dissertation.

Lemma 2.2.17 ([33])

() a<pgorp<a(Connectivity)

2|n fact, they cannot be given up at all given our second rationality criterion.
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(i) HgAny<atheng<aory<a
(i) a<pgiffanpg<p

(ivy Ify<aandy < g, theny<aAp
vy Hfa<pthena<aAnp

41

Foo [29] also investigated epistemic entrenchment and provides the following further prop-

ertiesrelated to expectations orderings and epistemic entrenchment orderings. Notethat we

may writea = gfora < gand g < a. Also, a < gisashorthand fora < gand g £ a.

We denote the greater of a set of formulae I by max{I" } and the lesser by min{I }. Those

propertiesin the next lemmarel ate to expectations orderings and some will be helpful later

on.

Lemma 2.2.18 ([29])

(i) Ha<pandg <y, thena <y

(i) Ifa<Bandf <~ thena <y

@) Mfpg<~vadp<a,thenf <aAvy

(ivy af£aforanya e L

vy Hfa<p,thena<yvpforanyy e L

Vi) fa<pg,thena<aVp

(vii) fa< g, thenaAy < pforanyy e L

(viii) Ifa < G, thena Ay < 3

(ix) Ay <a,thenf<aory<a

x) IHfa<pgthenany<[GAy

xi) Ifa=pgthenaAny=06Ay

(xii) aAB=min{a, B}

(i) aV B> max{a, B}

(xiv) Ifa=aV g, thenmaz{a, f} =«

xv) a=avpor fg=aVgiffme{a, B} =aVvp
(xvi) « and 8 are not independentZiffa = a v gor 3 =a Vv 3

2Two formulae are independent if one can be removed without affecting the other.
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The following results relate to epistemic entrenchment orderings.
Lemma 2.2.19 ([29])

(i) Iffaandk B,thena < 3

(ii)* Suppose € K. Ifa < B,then3 € K
(i) Foralaandf ¢ K,a<pfandfg < «
(iv a¢Kiffa<pforal ge K

An epistemic entrenchment ordering < for a particular belief set K may be constructed
from a contraction function — using the following condition.

(C <) a<_ Biffag K, z0r Fanp

The principal part of the condition statesthat /3 is at least as epistemically entrenched as «
whenever o isremoved from K in contracting K by a A 3 since, to contract by o A 3, only
one of o or 3 need be removed and the fact that . has been removed means that it cannot
be strictly more entrenched than 3 (otherwise, only 3 need be given up). In the case where
« and g are both tautological, they are equally entrenched.

More importantly, it is possible to construct a contraction function —< (restricted to a
particular K)? from an epistemic entrenchment ordering as follows.

(C-) ge K, <iffbothg e Kandeithera <aVor -«

Clearly, any formulanot inthe original epistemic stateisnot going to occur in the contracted
epistemic state. In the situation where the epistemic input is alogical truth, it cannot be
retracted and thereforeno changeismade. Otherwise, wenotethat by therecovery postul ate,
—~aV € K, forany belief 3 € K. Now, if the digunction « vV 5 of the epistemic input
and somebelief 3 is more entrenched than the epistemicinput itself, then thisdigunctionis
going to be retained. These two facts imply that 5 will remain in the contracted state. The

2The proof of this property requires condition (C—) which we shall introduce shortly.
SNote that given an epistemic entrenchment relation <, the belief set over which it is restricted is easily
determinedas K = {a: 3 < a forsomeg € L}.
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following representation theorems show the appropriateness of the epistemic entrenchment
ordering and the conditions given above.

Theorem 2.2.20 [33]

Let K € K beabelief set and < be an epistemic entrenchment over K. If for any a € L,
we define K, using (C —), then (K™1) — (K~ 8) are satisfied as well as the condition (C
<).

Theorem 2.2.21 [33]

Let — : K x £ — K be any function satisfying (K~1) — (K—8). Then, for any belief set
K € K, if wedefine < using condition (C <), then < isan epistemic entrenchment ordering
(i.e, it satisfies (SEE1) — (SEE5)) and also satisfies condition (C —).

These three constructions are arguably the most important for the AGM framework. They
are clearly related as evidenced by the representation theorems. The interested reader is
referred to Gardenfors [31] and Peppas and Williams[100] for afurther discussion of these
relationships.

Safe Contraction

The construction termed safe contraction [3, 4] combines, in a certain sense, el ements
common to both epistemic entrenchment orderings and partial meet contraction functions.
On the one hand, it is assumed that an acyclic relation < of the elements of K is given.?®
Moreover, we consider the minimal subsets of an epistemic state K that imply epistemic
input o (in partial meet contraction functions, however, note that we deal with maximal
subsets of K failing to imply «). Such a subset may be defined as follows.

Definition 2.2.4 A set K' isaminimal subset of K implying « if and only if
() KCK
(i) K't+«

2Alchourron and Makinson refer to an acyclic relation as a “hierarchy”. It will be irreflexive and
asymmetric.
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(i) K"t «forany K" C K’
The set of all minimal subsets of K implying a isdenoted K || a (cf. K L«).

Definition 2.2.5 Any belief § € K is said to be safe with respect to « if and only if 5 is
not minimal under < with respect to the elements of any K’ € K || o. The set of all safe
elements of K isdenoted K\ «.

A belief issafeif it isnot “culpable’ for the presence of «. Intuitively, one element must
be removed from each subset of K in K || a. The ordering < helps us choose which
element to remove from each subset. The remaining beliefs are safe and can be used to
determine the safe contraction of a belief set K by o (modulo <). Specifically, we define
K, =Cn(K\ «).

Safe contraction functions satisfy the six basic postulates for contraction. It is interesting
to investigate particular types of hierarchies < over beliefs.

Definition 2.2.6 If K isabelief set and < isa hierarchy then, for all o, 8, v € K

(i) < continuesuptover K ifandonlyifa < gand g F vimply a < v
(i) < continuesdownt over K ifandonlyifat gand 8 < vimply a <~

(iif) < isvirtualy connected over K if and only if o < g implieseither o < yor v < 3

It can be shown [3] that, if < continues up or down I, then the resulting safe contraction
function satisfies the postulate of intersection (K~7) and, if < isvirtualy connected over
K, it satisfies the postulate of conjunction (K—8) over K. The following representation
theorem holds at least when K consists of afinite number of logically equivalent sentences
(i.e., when K is partitioned into afinite number of equivalence classes by the consequence
relation ).

Theorem 2.2.22 Let K be a belief set. A safe contraction function — is generated by a
hierarchy < that continues up and down - over K and isvirtually connected if and only if
— isatrangitively relational partial meet contraction function over K.
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2.3 Spohn — Ordinal Conditional Functions

An aternative approach to the problem of belief revision has been proposed by Spohn[122].
We shall only give a brief outline here as we do not make much use of this approach in this
dissertation.

Spohn bases his account on possible worlds athough one need not identify these with the
possible worlds considered by Grove [39]%". The set of all possible worlds is denoted
W. Possible worlds are considered to be ordered by a grading of disbelief. An ordinal
conditional function & is used for this purpose, assigning an ordinal to each world w € W.
The smaller the ordinal assigned to a world, the more plausible (less disbelieved) it is (0
being the smallest ordinal). In this manner, £ specifies an epistemic state.

Since propositions can be identified with sets of worlds, it is also possible to talk about
the grading of disbelief of a proposition «.. It is simply that of the most plausible of its
a-worldsi.e, k(o) = min{k(w) : « € w}. A grading of disbelief possesses two important
properties

e Either £(«) = 0 or k(—«) = 0 for any proposition o

e k(aUp)=min{k(a), k(3)} for consistent « and g.

We can therefore say that a proposition « is believed (or accepted) in an epistemic state
induced by & if and only if k(—«) > 0. This proposition « is said to be believed with
degree of firmness k(—«). An ordina conditional function then, allows us to say whether
one proposition is more firmly believed (more plausible) than another proposition 3 in an
epistemic state. In thisway, the number of possible epistemic attitudesis greater than those
possiblewith the AGM and therefore ordinal conditional functionsare more discriminating.

Another important difference between Spohn’'s framework and the AGM is the manner
in which belief change is effected. Spohn takes epistemic inputs to consist not only of
a proposition « but also of an ordinal. Intuitively, the ordinal represents the degree of
firmness a: should acquire after the change takes place. This means that belief expansion,

27Spohn’s possible worlds can be thought of as uninterpreted points.
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X o worlds

= - a worlds

Figure 2.5: An example of Spohn’s approach to belief revision.

contraction and revision, aswe have cometo know them in the AGM, can all be captured by
a single mechanism. The actua belief change process is known as conditionalisation. The
basic ideais that, for epistemic input « (proposition) and 7 (ordinal) the o and —« worlds
are “shifted” relative to each other in order to assign « degree of firmnessi. An example
isillustrated in Figure 2.5. In the ordina conditional function on the left £(«) = 1 and
k(—a) = 0 (i.e,, ~« is believed with degree of firmness 1) while that on the right shows
the result of conditionalisation on input «, 3. Another advantage of Spohn’s approach,
evidenced by this example is that it permits iterated revision. That is, it is possible to
perform a sequence of belief changes due to the fact that the ordering on worlds (grading
of disbelief) isstill defined after every change. Itisnot, at first, clear how thisis achievable
in the AGM since there is no selective mechanism (i.e., system of spheres, epistemic
entrenchment, etc.) defined after a change. However, a number of authors have attacked
the problem [38, 62, 81, 84, 114, 132].
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2.4 Summary and Discussion

Belief revision is the study of the dynamics of epistemic states. The two main approaches
to modelling epistemic states are known as foundationalism and coherentism. Essen-
tially, foundationalism posits the existence of a select set of epistemologically basic beliefs
whereas coherentism denies the existence of any such beliefs at all. Formally however,
any such difference has been called into question. Dixon and Foo [20] show, in the case
of contraction, how ATMS behaviour can be achieved through a particular ordering of
beliefs in an epistemic entrenchment ordering. Only the relative ordering of certain for-
mulae need be specified, giving rise to a partial epistemic entrenchment ordering. This
ordering characterises a class of epistemic entrenchment orderings, any of which exhibit the
same contraction behaviour as a particular ATMS context. Del Val [19] goes even further,
showing that, for afinite propositional language, a mathematical definition of a coherence
revision operator based on Katsuno and Mendelzon’s [58] version of the AGM and a def-
inition of a foundational revision operator motivated by syntax-based approaches to belief
revision (see [70, 85], for example) lead to identical classes of revision operators. This
result, however, only shows the equivalence of operators satisfying the definitions given
and leaves open the connection between coherence and foundational theories in general.
Moreover, one must keep in mind that these theories concern the nature of epistemic states
not the method employed to move from one epistemic state to another. We shall stick with
the more intuitive descriptions of the theories given here. Arguments for and against both
theories can be found in Gardenfors [32] and Doyle [22].

Our main concern hereiswith the (purportedly) coherent AGM framework, due principally
to its well developed logical theory. Katsuno and Mendelzon [59] claim that the AGM is
well suited to situationsin which an agent i sreasoning about astatic world but does not have
full information about it. They offer an account of an alternative belief change operator,
known as belief update, claimed to be suited to reasoning about dynamic worlds. Peppas
[99] investigates the relationship between the two approaches but since it is not central to
our concerns here, we shall not consider it further.
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Chapter 3

Abductive Reasoning

The surprising fact, C, is observed;
Butif A weretrue, C would bea matter
of course. Hence, there is reason to
suspect that A istrue.

Charles Sanders Peirce, [96] 5.189

The term “abduction” was introduced by the philosopher Charles Sanders Peirce [96, 97].
Hewasthefirst person to distinguishit asafundamental form of logical inference alongside
deduction and induction. However, this mode of reasoning appears to have its originsin
a syllogistic form of reasoning discussed by Aristotle in the Prior Analytics [7] (Book 1,
Chapter 25), known asapagoge.® Thissyllogismlooksfor premisesthat would makeagiven
conclusion more desirable. In English, the word “abduction”? would seem an appropriate
rendering. Peirce also refers to this form of reasoning as retroduction and presumption.

In this chapter we shall provide a brief overview of abduction, particularly asit pertainsto
artificia intelligence. We begin with an overview of Peirce's views on abduction. We then
investigate the two main categories of approachesin artificial intelligence: set-cover based
approaches and logic based approaches.

Yaraywyn = ané + dyw + 9
amwo = away, off, in return, back
ayw = lead
In many texts, thisword is trandated as reduction.
2The word abduction derives from the Latin word abducere = ab + ducere

ab = from, off
ducere=to lead, to take

49
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3.1 Peirce’s Conception of Abduction®

Peirce’'s main interest in logic stemmed from his desire to develop formal methods of
research especially with regard to the advancement of science. Histheory of abductionis
an attempt to furnish logic with a method for proposing hypotheses. Many philosophers
do not agree that logic is involved in proposing a hypothesis but, rather, that it is only
concerned with techniques for testing them.

Peirce classified the three fundamental forms of inference into two categories: explicative
inference and ampliative inference. Explicative inference refers to inference where the
conclusion follows necessarily from the premises— the conclusion explicates the premises
— while ampliative inference refers to inference where the conclusion does not follow
necessarily from the premises — the conclusion amplifies the premises. Therefore, de-
duction is a form of explicative inference whereas abduction and induction are forms of
ampliative inference. Peirce notes that from explicative inference to ampliative inference
the “security” (or certainty) of the inference decreases while the “uberty” (or productivity)

increases.

Peirce not only identified the three fundamental forms of logical inference but aso main-
tained that they represent three stages of scientific inquiry:

(i) abduction proposes hypotheses

(if) deduction derives the consequences of the hypotheses; and,

(ii1) induction tests or verifies hypotheses.

There are two mgjor factors which must be considered when investigating abductive rea-
soning:
(i) constructing or determining hypotheses; and,

(i) selecting the “best” or most plausible hypothesis from among these.

Concentrating onthelatter, Peirce suggeststhreemajor factorsthat areimportant in selecting
the best hypothesis:

30ur main reference for this section is Fann [28].
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e ahypothesis must be capable of explaining the facts
e we must be able to verify a hypothesis— in particular, through experiment; and,

e considerations of “economy” should guide the choice of best hypothesis.

With regard to this last factor, Peirce mentions three factors that should play a part. Firstly,
it is preferable to select a hypothesis which can be verified with lesser cost with respect to
“money, time, energy and thought” ([28] p. 43). Secondly, we should take into account
a hypothesis’ effect on other “projects’; one must take into account what will happen if a
hypothesis turns out to be incorrect and, in fact, attempt to avoid this eventuality. Finaly,
we need to consider the intrinsic value of a proposed hypothesis.

Peirce proposed a number of ways of ascertaining the intrinsic value of a hypothesis. The
notion of “simplicity” is one important consideration. Initially, Peirce used the concept of
logical simplicity to express this notion but later he maintained that the hypothesis which
appears more “natural” or which is suggested by “instinct” should be considered simpler.
Another consideration is the likelihood of a hypothesis, though Peirce suggests that care
should be exercised when adopting measures of likelihood as most are subjective. When
a hypothesis can be decomposed into parts an important consideration is to use “caution”
because “twenty skillful hypotheseswill ascertain what amillion stupid oneswill fail to do”
([28] p. 50). A final consideration isthe “breadth of a hypothesis’. Basically, ahhypothesis
which can explain more factsislikely to be more useful.

It isinteresting to note that, with respect to the considerations presented above, Peirce isnot
suggesting that the best hypothesisis “truer” but rather that it should be tested first. This
hypothesisis preferred because it appears to be the most easily verifiable. If, ultimately, it
isfound to be false then we can proceed to examine another hypothesis.

3.2 Set-Cover Based Approachesto Abduction

Set-cover based approaches consist of explicit sets of effects and causes with some repre-
sentation of the interconnections between them. The basic idea is to construct some set of
causes whose associated effects account for all of the effects withessed.
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Power Fuse 1 Fuse2 Gasline
Blackout Blown Blown Broken
dq d, dg dy

D Disorder Set

C Causal Associations

M Manifestation Set Lights Oven doesn't Stove doesn't
Out work work
my m, m g

Figure 3.1: An example causal network.

3.2.1 Parsimonious Covering Theory

Peng and Reggia[98] have devel oped a comprehensive set-cover based approach to solving
diagnostic problems through abductive inference. A diagnostic problem involves finding
an explanation for the existence of a set of manifestations (observations, symptoms, effects,
etc.) using existing knowledge. Peng and Reggia view the task of proposing hypothesesto
form an explanation as the “resolution of two conflicting goas’ ([98] p. 7):

(i) Covering goal — to explain al present manifestations; and,

(if) Parsimony goal — to minimise the complexity of the explanation.

It should be evident that these two goals correspond to the two aspects of abduction
mentioned in the previous section (i.e., constructing an explanation and selecting the best
explanation).

A diagnostic problem consists of two important entities: manifestations and disorders.
Manifestations refer to symptoms, effects, etc. that are observable (e.g., “the engine does
not start”, “John has a severe cough”). Disorders refer to diseases, malfunctions, etc.
and are considered to be causes of manifestations (e.g., “the battery is dead”, “John has a
cold”). Manifestationsarerelated to disorders by causal associationswhich can beexhibited
through the use of a causal network (see Figure 3.1).

Formally, Parsimonious Covering Theory expresses these notions through the following
definition.
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Definition 3.2.1 [9§]
A diagnostic problem P isa 4-tuple (D, M, C, M) where:
e D={dy,...,d,} isafinite, non-empty set of objects, called disorders
o M ={m,,...,my} isafinite, non-empty set of objects, called manifestations

e C C DxM isareationwithdomain(C') = D andrange(C) = M, called causation;
and,

e Mt C M isadistinguished set of M which is said to be present.

In an implementation based upon thisdefinition, the sets D and M and therelation C would
correspond to the knowledge base while the set M+ would correspond to the input to the
system. M * need not be fully specified to begin with but may be constructed incrementally.

In determining an explanation it is important to consider the effects of disorders and the
causes of manifestations. Therefore, we define the following two sets:

Definition 3.2.2 [9§]
For any d; € D andm; € M inadiagnostic problem P = (D, M, C, M),

effects(d;) = {m; : (d;, m;) € C'}, the set of objects directly caused by d,; and,

causes(m;) = {d; : (d;, m;) € C}, the set of objects which can directly cause m,.

It isalso possible that more than one disorder is present. Therefore, we extend the previous
definition to take account of the causes and effects of groups of items.

Definition 3.2.3 [98]
Forany D; C D and M; C M inadiagnostic problem P = (D, M, C, M%),

effects(D;) = Uy, p, effects(d;), and

causes(M ;) = Up;enr, CaUSES(mn;).
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Example 3.2.1 Using the causal network in Figure 3.1 we have the following examples.

eﬁeCtS(dz) = {ml}

CaUSGS(mz) = {dl, dg}

effects({dz, dg}) = {ml, mz}

causes({m1, my}) = {ds, dp, d3}

It should be quite clear that the disorders proposed as an explanation should account for the
observed manifestations. To this end, we define the notion of a cover.

Definition 3.2.4 [98]
Theset D; C D issaidto beacover of M; C M if M; C effects(Dy).

In other words, a set of disorders is considered a cover for a set of manifestations if their
direct effects include all these manifestations. This alows us to define what constitutes an

explanation.

Definition 3.2.5 [98]
Aset E C D issaid to be an explanation of M* for aproblenm P = (D, M, C, M™) iff
E covers M+ and E satisfiesa given parsimony criterion.

Therefore, an explanation consists of a set of disorders whose direct effects are capable of
accounting for al the observed manifestations and al so satisfy some selective criterion.

Examples of parsimony criteria are given in the following definition of various types of

covers.
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Definition 3.2.6 [98]

A cover D; of M; issaidto be minimumiif its cardinality is smallest among all covers of
M;y.

A cover D; of M; issaid to be irredundant if none of its proper subsetsis also a cover of
M itisredundant otherwise.

A cover D; of M issaid to berelevant if it is a subset of causes(M™); itisirrelevant
otherwise.

Of these, irredundant covers are usualy considered the most important. Even though
minimum covers explain the observed manifestations by hypothesising the presence of the
least number of disorders, there are many cases where this explanation may not be the
most plausible. For example, it may seem more reasonable to explain a set of symptoms by
hypothesi sing the presence of certain common diseases rather than proposing an explanation
consisting of a lesser number of relatively uncommon diseases. Relevant but redundant
explanations are usually not favoured because they contain more hypotheses than are
necessary to explain the manifestations present.

Example 3.2.2 Using the causal network in Figure 3.1 and supposing that neither the

lightsnor the oven work (i.e., M+ = {m,, my}), we have the following example of covers:

{d1} relevant, minimal and irredundant
{dz, ds} relevant and irredundant

{dy, dp, d3} relevant and redundant

{dy, d4} irrelevant

The solution to a diagnostic problem, then, is any cover which satisfies our selected parsi-
mony criterion.

Definition 3.2.7 The solution of a diagnostic problem P = (D, M, C, M), designated
Sol(P), isthe set of all explanations of M ™.
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It is evident that a solution may consist of many explanations. Peng and Reggia also
describe a probabilistic method that can be used to prune this collection. They also go on
to describe an algebra for constructing covers. The interested reader is referred to [98] for
further details.

An alternative set-cover based approach isthat by Allemang et al. [5] known as hypothesis
assembly. The proposed process consists of four phases or parts:

screening phase implausible hypotheses are ruled out of consideration
collection phase hypotheses accounting for each observation are collected
parsimony phase redundant hypotheses are removed

critique phase essential hypotheses are determined.

For each phase, algorithms are outlined which, when combined, compute abductions.

3.3 Logic Based Abduction

As the name suggests, logic based abduction attempts to capture the notion of abductive
reasoning through the use of aformal language and a suitablelogic over thislanguage. Itis
assumed that we have adomain theory or background theory expressing some conceptuali-
sation of the situation or world in question. Thistheory takes the form of a set of formulae
. Similarly, we are presented with a set of new data (often considered to be observations)
— aset of formulae ® — for which we are attempting to account. The purpose of abduction
Isto determine a set of hypotheses which, together with the domain theory, would alow us
to derive the observations using the underlying logic in question. Ideally, the hypotheses
should be consistent with the domain theory since any formulainconsistent with the domain
theory would suffice to account for the observations (in alogic such as the one we suppose
here).
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Definition 3.3.1 An abduction for a set of formulae ® with respect to a domaintheory I is
a set of formulae W such that the following two conditions are satisfied:

) TUWE

() TUWH L

Notethat by ' - ® wemean T + ¢ for every ¢ € ® which is not always the conventional
interpretation of such a sequent (cf. Segerberg [117]). That is, we essentially identify ®
with the conjunction of its elements. Often, a“unit” version of the definition is adopted in
which W and @ are replaced by singleformulae ) and ¢. We shall adopt such adefinitionin
this dissertation and will return to thisissue briefly in the following chapter. Note also our
use of theterm “abduction”. On the one hand we have used it to refer to aparticular method
of inference and, on the other, to the result of such an inference. An analogous practice
iscommon in the logical treatment of deduction (cf. Enderton [25] for instance). A more
popular term for the result of such an inference is*explanation”. However, itisnot entirely
clear to what extent the definition above captures an intuitive notion of explanation.* To
avoid inaccuracy, we shall continue to refer to the result of an abductive inference as an
abduction though occasionally deferring to the term “explanation” in order to provide an
intuitive understanding of the framework.

The definition above is quite general and may give rise to many abductions. More often
than not however, we are interested in asingle “best” abduction. Therefore, it is common
to impose further restrictions on abductions, beyond the two specified above, in order to
allow the selection of a single abduction or simply to prune the number of abductions
that need be considered at a later stage. Such restrictions or selection criteria comein a
number of categories and we shall briefly survey some of the more popular here (aswell as
investigating some common abductive frameworks).

4The interested reader is referred to Salmon [116] for a look at an overview of such issues. He dis-
cusses, among other things, the Hempel-Oppenheim [50] deductive-nomological model which bears close
resemblance to the notion of abduction.
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Syntactic Criteria

One of the more common types of restriction, particularly within artificial intelligence, are
syntactic restrictions on the background theory I', new data @ and abduction W. The most
frequent is to specify the background theory I as a set of clauses or Horn clauses.® As
we shall see (§ 3.3.5), this can help in the calculation of abductions. In fact, the main
motivation behind this restriction (and many others) is to make computation of abductions
tractable. Conversion of the background theory to clausal form, even when motivated by
computational considerations, indicate that one is less interested in the syntactic nature of
the knowledge itself. This can be seen as (at least partial) support for the Principle of
Irrelevance of Syntax (see § 2.2.1).

Another common syntactic restriction, especially anong implementations, isfor abductions
to be conjunctions of literals. For example, in Reiter and de Kleer’s Clause Management
System [112] “[e]xplanations are conjunctions of ground literals’ (p. 184). Harman [49]
makes the following comment: “[flurthermore, the relevant explanations are always of the
form Rbecause P. . ., and Q, explaining why or how it is that something is so. Achinstein
(1983) points out that there are other sorts of abduction”.®

Abducibles

Another very popular restriction (especially among Logic Programming approaches [56])
isto ensure abductions consist of propositional or predicate symbols from a predetermined
class. Such propositions and predicates are referred to as abducibles. One problem with
this approach is that it may be difficult to determine which propositions and predicates
should be deemed abducible. Stickel [123] also suggests that what may be considered a
suitable abducible in one situation may not be suitable in others and vice versa.

SThisis especialy true of Logic Programming approaches[56].
\We retain Harman's emphasis.
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Minimality (or Simplicity)

Restricting abductions to be minimal in some way is another very popular restriction. It is
often motivated by the concern to avoid suggesting superfluous hypothesesin an abduction.
This can be viewed as an adoption of the popular Occam’s Razor maxim. Often, this
criterion is used together with other restrictions. For instance, if we adopt the syntactic
restriction mentioned above, that abductions be conjunctions of literals, then minimal
abductions might be those for which no proper subset of their literals are also abductions.
Alternatively, abductions consisting of a minimal number of literals may be preferred. In
some cases minimality forms an integral part of a restrictive measure. In the cost-based
restrictions outlined below, abductions that minimise some cost measure are preferred. In
asimilar fashion, Charniak [13] adopts the hypothesis which maximises the expression %
where E isthe number of explained observations and A the number of assumptions made.
Ram and Leake [106] mention a few other such criteria. Firstly, the explanation whose
causal chain isshortest in overall length may be preferred. Alternatively, if one hypothesis
subsumes another, then the more general oneis preferred asit islikely to explain more (cf.
Specificity below).

Triviality

The simplest way to explain new datais simply to hypothesise that it is true. Intuitively
however, such explanations or abductions are not very compelling. One can overcome this
by specifying that abductions be non-trivial. None of the new data should appear in the
resulting abduction. Alternatively, one can specify that the abduction make some use of the
background theory I'. In other words, the abduction alone should not be able to prove the
new data (W t/ @).

Specificity

If an abduction, with the help of the background theory I', isableto prove another abduction,
then we say that the former isamore specific abduction than thelatter. Considering all such



60 CHAPTER 3. ABDUCTIVE REASONING

interconnections of specificity among abduction allows usto talk of the levels of specificity
of an abduction or explanation. Stickel [123] discusses three different types of abduction
based on thisidea. He restricts his background theory (which he calls a knowledge base)
to first-order Horn clauses and considers explanationsto be conjunctions of positiveliterals
(together with a substitution) but hisideas are applicable in other settings also.

By alowing only pure literals — literas that cannot be resolved with any clauses in the
background theory — to be assumed, we obtain abductions that are maximally specific in
Stickel’s setting. These are referred to as most specific abductions. Thistype of abduction
Isnot uncommon. Itisthetype of abduction computed by Pople's[105] procedure and also
by the procedure described by Cox and Pietrzykowski [17]. In fact, this type of abduction
Is often that identified by Abductive Logic Programming approaches [104].

Stickel claimsthat this form of abduction is suited to diagnostic tasks as it tends to neglect
trivial explanations. For instance, suppose we are trying to explain "the car won't start”.
Suggesting the trivial explanation — the car won't start — is unlikely to be of much use
whereas suggesting that the ignition system is faulty would seem to be more helpful. Of
course, explanations can be too specific. Suggesting that a specific component of the
ignition system is at fault may be of less use than simply hypothesising that the ignition
system is faulty and should be replaced.

At theother end of the spectrum, we could simply assumewhat we are attempting to explain.
That is, adopt the trivial abduction. Stickel refers to this as least specific abduction. He
arguesthat it is best suited to natural language interpretation where we may be uninterested
in the complexities underlying the situation at hand. In attempting to explain “the car won't
start”, one could simply hypothesise that the car won't start. The suggestion is that, when
we interpret a sentence, the meaning is near the surface. One advantage of this approach is
that it does not attempt to determine more specific abductions which often involve riskier
assumptions.

The other type of abduction suggested by Stickel is called predicate specific abduction
and is exactly the technique, outlined above, of adopting abducibles. That is, abductions
are constructed from a subset of predicates known as abducibles or assumables (Stickel’s
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terminology). He claims that this type of abduction is suited to planning and design
synthesis problems.

Coherence

Notionsof coherence — in an abductive setting, more commonly referred to as explanatory
coherence — attempt to determine the best abduction or explanation by measuring how
well component hypotheses “ stick together” or support each other.

Ng and Mooney [88] propose an explanatory coherence metric based on the proof tree for
the new data (which incorporates the abduction). The metric favours abductions possessing
certain properties. Those leading to more connections between any two observations (new
data) and fewer digoint partitions are particularly favoured. The metric can be formally

defined as follows:
C = M

¥(2)

where

| = total number of observations;

N = total number of nodes in proof graph; ( é ) = 20 - and,

N;,; = number of distinct nodes n, in proof graph such that there is a sequence of directed
edges from n;, to n; and a sequence of directed edges from n, to n;, where n; and n;
are observations.

The denominator scales the result so that it will lie within theinterval [0, 1]. The numerator
measures the total number of nodes in an explanation connecting pairs of observations,
increasing with the number of nodes in an explanation that simultaneously lend support to
a given connection. Ng and Mooney claim that, using a depth-first search agorithm, this
value can be calculated in O(IN + e) time, where ! and N are as above and e is the total
number of (directed) edgesin the proof graph.
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This approach has the advantage of being less affected by the way in which the background
theory is represented. There is also a good likelihood that abductions will consist of a
minimal number of assumptions. Ng and Mooney also point out that explanatory coherence
can be used to determine the specificity of an abduction. The more specific abduction is
adopted if it leads to an increase in the value of the coherence metric.

Thagard [127, 128] develops a comprehensive theory of explanatory coherence. Histheory
is based on a primitive notion of explanation’ and develops a notion of acceptability of a
proposition. A proposition that iscoherent with our beliefs should be accepted; aproposition
that is incoherent with our beliefs should be rejected; and, a proposition which is neither
coherent nor incoherent with our beliefs should be treated indifferently.® Thagard outlines
eight principles to determine coherence between propositions and the global coherence
of a system of propositions. We shall not delve into Thagard's principles here but note
that a certain “bias’ is directed towards propositions that require fewer assumptions to be
explanations, explain more observations, possess more specific explanations, or represent
observations.

Thagard also presents a network based implementation. Nodes of the network represent
propositionsand possess adegree of acceptability. Linksinthe network represent coherence
(or incoherence) of propositionsand possess a val ue representing the degree of coherence (a
negativeva ueif the propositionsincohere). Propositionsjoined by coherence links support
each other while those joined by incoherence links hinder each other. Acceptability values
are alowed to “propagate” through the network until they exhibit asymptotic behaviour.
The network is examined to determine which propositions have positive acceptability (i.e.,
are accepted) and which have negative acceptability values (i.e., are rgjected). Thagard
demonstrates hisimplementation, modelling competing scientific theories (e.g., phlogiston
theory versus Lavoisier’s theory of combustion) and legal arguments, among others. An
interesting advantage of thisimplementation is that new information can be added without
the need to restart computation from scratch. Another advantage is that explanations need

"Thagard does not tell us exactly what explanation is, beyond being a relation among propositions:
Pi,...,P,explain Q. He does however tell us what it is not and clearly does not intend a logic based
formulation — at least not as genera as that introduced at the beginning of this section.

8] two propositions do not cohere then they do not necessarily incohere.
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not account for all observations which sometimes appears to occur in reality. The main
problem with this approach is the lack of definitions for such notions as explanation and

analogy.

Probability Measures

Another way of discriminating among abductionsis to attach probabilities to propositions.
Such methods usually rely on Bayes' rule to combine probabilities. Often however, due
to the large number of probabilities required for a problem, simplifying assumptions and
heuristicsare adopted to reducethe complexity of cal culating the probability of an abduction.
We shall not elaborate on any specific probabilistic approaches here but note that many of
the simplifying assumptions and heuristics used have been criticised for being unrealistic.

Cost-based M easures

Cost-based measures [15, 123] work by associating a cost with making an assumption or
using an axiom from the background theory. The best abduction(s) is usually considered to

be that which, when assumed, minimises the overall cost.

Utility-based M easures

Many of the measures for determining the best hypothesis that we have discussed so far
have been directly related to the structural (syntactic) properties of an explanation. Ram
and Leake[106] introduce the notion of utility-based criteriawhich select hypotheses based
on a system’s intended use for an explanation. Their main use of these criteria are in
explanations of anomalies (i.e., situations where our expectations were not realised).

Ram and Leake claim that an explanation of an anomaly must answer two questions:

e Why didthingsoccur asthey did intheworld? Thisquestion focuseson understanding
and learning about the causal structure of the domain.
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e Why did | fail to predict this correctly? This question focuses on understanding and

improving the organisation of the reasoner’s own model of the domain.

Utility-based criteria are methods of evaluation related to these two criteria. Utility-based
criteria refer to any method of evaluating explanations based on goals arising from these
two questions. In order to clarify the form these criteria may take, we shall briefly discuss
these questions.

Thefirst of these questionsrelates to the causality of the domain and isthus called adomain
explanation. It leads to knowledge acquisition goal s which aim to collect moreinformation
about the domain. These goals are usually guided by the explainer’s tasks. Some of the
tasks that can giverise to knowledge acquisition goals are [106]:

e Choosing aresponseto an unexpected event — learn causes that allow discrimination

between possible plans by predicting events or identifying current circumstances
e Repairing an undesirable state — learn repairable causes of that state
e Causing recurrence — learn achievable causes
e Preventing recurrence — learn blockable causes
e Assigning credit or blame — learn particular actors' influence on an outcome

e Replicating another actor’s success — learn motivations of the observed actor’s

unusual planning decisions.

The second question invol ves the reasoning processes of the system and is called introspec-
tive or meta-explanation. It results in knowledge organisation goals which aim to improve
the organisation of knowledge in memory. Some of the factors that can characterise this
type of goal are [106]:

e Missing knowledge — learn new knowledge to fill gap in domain model

e Unconnected knowledge — learn new connection or new index



3.3. LOGIC BASED ABDUCTION 65

Implicit assumption — learn heuristics for when to check assumption explicitly

Calculated simplification — learn heuristics for when to check assumption in detall

Explicit assumption — learn new knowledge to correct the assumption

Conjunctive assumptions— learn new interactions.

3.3.1 Abduction and Default Logic

An important form of nonmonotonic inference that has become popular within artificial
intelligence is default reasoning [111]. Poole [102] presents a logical framework for
performing default reasoning, based on the THEORIST system [104], which is abductive
in nature. It is claimed that this method subsumes the “intuition behind Reiter’s default
logic” ([102] p. 27) and argued that there is no need to go to the trouble of defining a new
logic; one can ater the way logic is used. In fact, we shall find it close in spirit to part of
our aims here.

The main idea behind this framework is to require a set of hypotheses, together with a set
of facts, to entail some goal. Three types of formulae are distinguished:

F set of facts,;
A set of possible hypotheses; and,

g observation to be explained.

The set of facts are formulae representing those things we believe to be true in the world
and are not prepared to give up. In our belief change framework, F would essentialy
correspond to the agent’s epistemic state and the latter proviso could be weakened in
certain situations. The set of possible hypotheses are things we are prepared to accept
in constructing an explanation. Any ground instances of these formulae may be assumed
provided they are consistent. By thinking of these formulae as possible hypotheses or
abductions, the abductive nature of this formalism should be apparent. On the other hand,
thinking of them as defaults gives us default reasoning.



66 CHAPTER 3. ABDUCTIVE REASONING

The first definition we require is that of a scenario where the connection with abductionis
further borne out.

Definition 3.3.2 (Scenario [102])
A scenario of F, Aisaset D U F where D is a set of ground instances of elements of A
such that D U F is consistent.

This allows us to introduce a notion of explanation.

Definition 3.3.3 [102]
If g isa closed formula, then an explanation of g from F, A is a scenario of F, A which
implies g.

So, an explanation is a scenario implying the observation or new information. Note that
the only way that an abduction differs from an explanation is that we do not require an
abduction to include F.

Definition 3.3.4 (Extension[102])
An extension of F, A isthe set of logical consequences of a maximal (with respect to set
inclusion) scenario of F, A.

This notion of extension is moreimportant for default reasoning than abduction in general.
Weinclude it here for later reference.

Example 3.3.1 [102]
Suppose we have the following facts and defaults:

F = { Vz emu(z) — bird(z),
Vo emu(z) — —flies(z),
emu(polly),
bird(tweety)

}
A= { bird(z) — flies(z)}
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In this instance, the default set can be interpreted as saying that birds normally fly. The
formula flies(tweety) can be explained by the instance {bird(tweety) — flies(tweety)}.
That is, tweety is expected to fly because it is a bird. The formula flies(polly) is not
explainable because it is not consistent with the facts. O

Pool e shows that this framework is compact (i.e., any ¢ that can be explained, can be done
so with afinite scenario) and that it possesses a monotonicity property in that anything that
can be explained with a set of facts and a set of hypotheses can also be explained using the
same facts and a superset of the hypotheses. Thisdoes not hold in general if the set of facts
ischanged. A more important property follows.

Theorem 3.3.1 [102]
a isexplainableif and only if « isin some extension.

Poole introduces a method for naming defaults which simplifies both the notation and the
implementation of the system (THEORIST) on which the formalism is based. He also
introduces the notion of constraints, which we shall see in the following section, that can
be used to rule out the applicability of some hypotheses. Brewka [10] generalises this
framework by blurring the distinction between facts and defaults and allowing any number
of partitions of formulae which, for practical purposes, can be considered linearly ordered
when constructing extensions. Poole [103] aso extends this approach by introducing a
probabilistic approach based on Bayes' rule for determining the best explanation. Aswith
other probabilistic approaches, he makes anumber of assumptionsto reduce the complexity
of the calculations involved.

3.3.2 Abduction and Negation as Failure

An approach essentially the same as that of THEORIST but couched within a logic pro-
gramming setting, is proposed by Eshghi and Kowlaski [27]. They begin by defining an
abduction framework.
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Definition 3.3.5 Abduction Framework [ 27]

(T, I, A) isan abduction framework iff,
T isaHorn clause theory (without denials)
I isaset of integrity constraints; and,

A isa set of predicate symbols, called abducible predicates

Definition 3.3.6 [27]
Given the abduction framework (T, I, A) the hypothesis set A is an abductive solution for
the existentially quantified conjunction of atoms @ if and only if

A isa set of variable free abducible atoms

TUAEQ
T U A satisfies 1.

Using integrity constraints that are denials, this is the same use of integrity constraints as
proposed by Poole [102]. He stipulatesthat 7" U A U I (or using his notation, D U F U C)
should beconsistent. Inthisway, constraintsare used to reject scenarios but they arenot used
to generate abductions or explanations directly. This abductive framework can be used to
give an abductive semantics for negation as failure [68] in logic programming. Essentialy,
abductive hypotheses satisfying certain integrity constraints with respect to alogic program
can beidentified with negated literals. Thefield of abductivelogic programming has grown
out of such approaches and become a very important area of artificial intelligence. The
interested reader is referred to the survey by Kakas et al. [56].

3.3.3 Abduction and Truth Maintenance

The link between the ATMS and abduction is made clear by Reiter and de Kleer [112].
Actually, they develop the notion of a Clause Management System (CMS) which is a
generalisation of the ATMS. A CM S receives clauses and keeps track of them. It may aso
be queried with apropositional clause C' inwhich caseitstask isessentially to respond with
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all minimal justifications. More specificaly, it returnsall clauses S such that S'v C follows
logically from the clauses received so far but S itself does not follow logically from these
clauses (i.e, T F Sv CbutlT ¥/ S — wherel represents the currently stored clauses).
Moreover, S isrequired to be minimal in the sense that thereis no clause S’ containing a
subset of the literals (of appropriate sign) in S also satisfying these conditions. Reiter and
de Kleer point out that the ATMS is ssimply a CMS where clauses sent to the system are
either Horn (corresponding to justifications) or negative (corresponding to nogoods) and
gueries arerestricted to literals. A CMS, like atruth maintenance system, can be utilised as
part of alarger problem-solving architecture and, especially, in conjunction with a domain
dependent reasoner.

It turns out that what the CMS returns in response to a query can be converted into
abductions. Consider aquery C' and suppose the CM S (characterised by IN) returns, among
other things, aclause S. Thefirst restriction above, that S v C logically follows from the
clauses currently stored inthe CMS, isequivaentto ' - =S — C (where —S isviewed as
the negation of aclause— s0,if S = 51V s,V ... V5, then =8 = =51 A =85 A ... A 18,).0

The second proviso, that .S not be a logical consequence of the clauses in the CMS, is
equivalent to saying that I and —S are consistent (i.e., ' U {—=S} t/ L). Clearly then, =S
is an abduction. If it were to be added to the CMS, then the query C would be a logical
consequence of the clauses stored in the CMS.1°

However, the abductions returned by the CMS, or more correctly, the abductions that can
be obtained from the clauses returned, are of a specia type. It can be seen that they
are restricted syntactically to consist of conjunctions of literals and that these conjuncts
are minimal in the sense that no conjunct with a subset of these literals (including sign)
is also an abduction of the query with respect to the CMS. However, the CMS does
not apply any further mechanism to select the best clause (S). Referring back to our
overview of the ATMS (§ 2.1), it can be seen that the CMSis essentialy returning a label
for the query. When negated, the returned clauses are ssimply environments. The entire
collection of returned (negated) clauses constitute a label satisfying the requisite criteria

SAlternatively, if we view aclause asaset of literals S = {sy, s, ..., 8, }, then its negation can be viewed
asaset of (singleton) clauses =S = {{—s1}, {—s2}, .., {sn}}.
101t is easy to add —S to the CMS by transmitting all the negated literalsin S toit.
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(i.e., consistency, completeness, soundness, and minimality). The interested reader is aso
referred to the survey on Abductive Logic Programming by Kakas et al. [56] for other
rel ationshi ps between abduction and truth maintenance systems.

3.34 KnowledgeLevel Approach to Abduction

Levesgue [63] presents a knowledge level approach to abduction which subsumes, to a
certain extent, the approaches presented thus far. Some surveys (see Paul [95] for instance)
identify thisas an approach separate from both set-cover and logic based approaches though
it isessentialy logical in nature. Levesque's approach is based on enriching the language
to include a belief operator B,.** By varying this notion of belief, different notions of
abduction can be characterised. His motivation stems from a desire to move away from
notions of abduction based on material implication. It may of course be possibleto achieve
the same result to a certain extent by atering the underlying logic without extending the
language.*? He cites the following example:

If we know that Marc is 3 or 4 years old, then the fact that he is not yet 4 does
not explain why heis 3 even though it doesimply it.

This prompts the following definition of an abduction or explanation.

Definition 3.3.7 « expl, # with respect to epistemic state e if and only if ¢ = [By(a —
ﬂ) A _'B)\ﬁ&].

Basically, this definition says that « is an acceptable explanation for g if and only if we
believe that o implies ¢ and we have no reason to believe that o is false. Levesgue also
provides a notion of simplicity based on the set of (signed) literals of an explanation in
order to define the concept of aminimal explanation. Ultimately, the best explanations of a
formula can be considered the disjunction of all minimal explanations of that formula. We

"The X is used to denote different types of belief.
2This would of course preclude modal logics but the point remains that Levesque does not show the
necessity of introducing an operator for belief.
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shall not concern ourselves with the details here but refer the interested reader to Levesque
[63].

3.3.5 Computing Abduction

A variety of methods have been suggested for computing abductions. Reiter and de Kleer
[112] suggest that these methods may be classified into two groups: inter preted approaches
and compiled approaches. Interpreted approaches store the formulae in the domain theory
in the form they have been supplied and compute abductions on the fly. That is to say,
whenever abductions are required, they are computed from scratch. Compiled approaches
on the other hand “pre-compile’ the background theory I into an intermediate form which
allowsthe generation of abductionsto be performed quickly and easily. Precompilation may
consume time and resources athough the subsequent generation of abductions is usually
faster than interpreted approaches.

I nter preted Approach

Thistypeof approachiscommonly foundintheartificial intelligenceliterature on abduction.
It is present in very early work [105], forms the basis of the procedure developed for the
THEORIST system [104] and the method of Cox and Pietrzykowski [17] and is very
common in abductive logic programming. More often than not, the domain theory is
assumed to be a collection of Horn clauses or definite clauses. Adopting a procedural view
reminiscent of Prolog [68], the basic idea behind many of these approaches is to treat the
new information as agoal to be proved. Whenever there is a subgoal that cannot be proved
itissimply assumed. A possibleabduction can be derived by conjoining all the assumptions
made. Alternative abductions can be obtained through backtracking. An algorithm of this
type can be found in the description of the THEORIST system (see [104] p. 350).
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Compiled Approach

The most common method of pre-compilation transforms a clausal domain theory I' into a
set of logically equivalent prime implicates. '3

Definition 3.3.8 (see[112])

A primeimplicate of a set of clausesT” isa clause C' such that

M= C,and

M C' foranyC' c C

The set of all prime implicates of a set of clauses ™ is denoted P1(I").

Algorithms for generating prime implicates may be found in Jackson [54] and Kean [60].
Once the prime implicates of a domain theory have been generated, the task of computing
abductions (in the sense of conjunctions of literals) israther simple. There are two methods
commonly employed. Thefirst isthat described in § 3.3.3 for obtaining abductions from a
CMS. Given aclause O representing the explanandum, and a prime implicate P € PI(I')
of the domain theory such that P = E Vv O for some clause E, an abduction is given
by negating the clause E. Minimal abductions in the sense of set inclusion are obtained
by considering only those clauses E generated as above which are not subsumed by any
other likewise generated clauses (i.e., there is no other E' suchthat E' v O € PI(I') and
E' C E). More details on this method may be found in Reiter and de Kleer [112]. Another
way of computing abductions using prime implicates is to use a contrapositive argument.
We are looking for a set of singleton clauses, A, suchthat ' UA F O. Using contraposition
givesI U =0 F —A. Now —-A isaclause. Therefore abductions can be easily generated
by negating the explanandum clause O and deriving logical consequences with the domain
theory " (via resolution say). Since PI(I') is logically eguivalent to I', we need only
consider the prime implicates of the domain theory. Minimal abductions may be obtained

13Theterm primeimplicant is also used. However, we do not useit herein order to make aclear distinction
between the concept we now define and a dual notion which is often called a prime implicant.
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using a subsumption test. An agorithm using this method, based on an idea by Jackson
[52], will be presented in the next chapter.

We notice that the maj ority of approaches to computing abductions confinetheir attentionto
domaintheories specified in clausal or Horn clausal form and compute abductionswhich are
(minimal) conjunctionsof literals (and, in thefirst-order case, also ground). The problem of
finding all minimal abductionsin the sense of Reiter and de Kleer (i.e., minimal conjunction
of literals) using the interpreted approach is, in general, NP-hard [112]. On the other hand,
the generation of prime implicates may require an exponentia (in terms of propositional
symbols) amount of space. Empirical studies have shown that pre-compilation of the
domain theory can be beneficial [8]. It iseasy to see, however, that theinterpreted approach
will be more useful if there are likely to be more additions to the domain theory rather than
requests for abductions while the compiled approach is better if a lot more requests for
abductions are made. Kean [60] provides an algorithm for incrementally computing prime
implicates so that, when new clauses are added to the domain theory, additiona prime
implicates can be determined without computing the whole lot over again.

3.4 Summary and Discussion

We have surveyed a cross-section of the work on abduction, mainly in thefield of artificial
intelligence. This form of inference is beginning to receive increased attention as an
important form of reasoning. It has been applied to problems in a large number of areas:
diagnostic tasks [98, 105], database updates [57], natural language interpretation [13, 14,
88, 123] and scientific discovery and learning [76].

Such diverse applications suggest that it would be useful to incorporate abduction into a
belief revision framework which alows an inquiring agent to keep track of knowledge it
has gleaned. We adopt a logical notion of abduction in this dissertation because it is well
suited to the AGM framework for belief revision and present a formal study of the use of
abduction for the purpose of belief revision.
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34.1 Why (Logical) Abduction?

Why should one use abduction in preference to other existing techniques for reasoning? A
popular competitor to abductionin artificial intelligence, especially for diagnostic problems,
Isthe rule-based or production system often used in expert systems[53]. In these systems,
as the name suggests, knowledge is represented by a collection of rules or productions
which generaly take the form:
If effects then causes.

Theserulesarethen used deductively to diagnoseaproblem. Peng and Reggia[98] highlight
a number of problems with this approach which we shall briefly point out here. Firstly, it
isdifficult to represent knowledge in this form because, intuitively, we often think in terms
of the other direction (i.e., from causes to effects rather than the other way round). This
leads to some problems in the application of the rules. Say we have two production rules
in the form above leading to two different causes but one set of effects is a proper subset
of the other. If the system is presented with effects only from the smaller set then only
the associated cause will be suggested. Yet, the other cause is definitely a possibility since
it can produce the desired effects (and usually more). Another problem occurs when the
system is presented with, say, the larger set of effects. In this case both causes would be
suggested by the system (because they follow deductively) yet one would likely rule out
the cause associated with the smaller set of effects because it is not capable of accounting
for al the effects. There may be ways around these problems by adding further rules.
This solution, however, may be cumbersome and unintuitive. A further problem with this
approach isthat it has difficulty handling multiple causes. An abductive mechanism would
have the advantage of allowing the knowledge to be represented in a more intuitive way,
thus avoiding these problems.

This dissertation adopts alogical approach to abduction which will be explored in greater
depth in the following chapter. Our main reason for doing so is because alogical definition
fits well with the AGM framework which guides our work. However, what advantages or
disadvantages does such an approach have over a set-cover based approach? Parsimonious
Covering Theory surveyed here is only geared to finding explanations for conjunctions
of manifestations and cannot deal with more general situations (though it may not be
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too difficult to suggest ways of overcoming this problem). One other disadvantage of
Parsimonious Covering Theory isthat it relies heavily onthe causal diagram for representing
problems. Thagard [129] points out that this means it cannot deal with negative evidence,
the absence of a manifestation would rule out a disorder as a possible cause.

Thagard [129] also raises a number of other problems. He mentions that the notion of
parsimony in terms of irredundant covers may not provide the best explanation in all cases.
In some cases it may be possible that the presence of more than one disorder provides
the best explanation. For example [129], someone with a cough and a runny nose may
be suffering from both a cold and hay fever. This argument however also argues against
certain notions of minimality in alogical notion of abduction. Thagard claims that another
problem occurs when a cover cannot be found for the observations. (Thisisin fact not
possible given the definition of a diagnostic problem with Parsimonious Covering Theory.)
However, his argument is that in many cases an acceptable explanation need not cover all
observed manifestations. For instance [129], Newton's particle theory of light was deemed
acceptable even though it did not account for every known behaviour of light. In such
a case, Thagard suggests that the property of minimum cardinality has one advantage of
being applicable although a cover does not exist. The fact that every manifestation must be
caused by some disorder also means that the system cannot discover disorders to explain
the manifestations. This does not comply with Peirce’s idea that abductive inference is
concerned with discovery. Levesque [63] notes that set-cover based approaches suffer
from difficulty in being able to express how a minor alteration to the domain knowledge
can contribute to changing what constitutes an explanation. Logic based approaches, on
the other hand, tend to confine reasoning to globa properties of logic like consistency
and implication.** Logic based approaches tend to be more genera than set-cover based

approaches.

14| evesque's [63] knowledge level approach goes some way to solving this problem.



76

CHAPTER 3. ABDUCTIVE REASONING



Chapter 4

A Logical Exposition of the Notion of
Abductionl

... anew fact is a grain of sand that
irritatesthe mind and abduction forms
a pearl of wisdomaround it.

John F. Sowa[120] 19842

Since our chosen belief revision framework, the AGM, is essentially alogical oneit will be
advantageousto have aclear ideaof thelogical nature of the notion of abduction. Therefore,
we begin with an exploration of the logical aspects of abduction. After furnishing alogical
definition of abduction we shall investigate, in alogica manner, varioustypes of abduction;
somealready mentioned in the previous chapter. Wethen turn to the processof induction and
attempt to understand the difference between abduction and a particular form of induction.
Armed with our definition of abductionwe shall investigatetheroleit playsinbelief revision
in subsequent chapters.

4.1 Defining Abduction

We start with the definition of abduction given in the previous chapter. Asnoted there, this
definition is one of the more common ones to be found in the literature [52, 95, 102].

1Some of the work in this chapter has appeared in [90].
2Describing ametaphor by C. Lewis and R. Mack [66].
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Definition 4.1.1 An abduction of a set of formulae ® with respect to a set of background
formulael isa set W such that

rUYr o
ruwy L

Let us return to our example in the first chapter and suppose our background theory I
contains the following formul ae:

Fr={ oi1Aphs—e,
02 N\ phy — e,
ch — e,
cop — 01,
coy — 07

}

Suppose we wish to account for simply the data ® = {e}. Possible abductionsinclude:

{01, phi}

{o1 A pha}

{01 A phy, 02 A pha}
{(01 A ph1) V (02 A phy)}
{co1 N phi}

{co1 A phy, 01}

{ch}

Now, instead of considering those candidate ® which contain infinitely many formulae, let
usrestrict our attention to those containing only afinite number of formulae. We can justify
this restriction in a number of ways. Sincel’ UW F ® isto beinterpretedasl” UW F ¢
for every ¢ € ®wecanthinkof TUWF ®asl UWF A ® where A @ represents A; ¢;
such that ¢; € ®. However, if ® isinfinite or, more precisely, not finitely axiomatisable,
then A @ isnot expressiblein £. More to the point, since we are considering £ to be finite
here (see § 1.3), then there will only be finitely many truth functional propositions and so
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we are always assured that A\ @ can be expressed asaformula¢ € £. The same argument
can be applied to the abduction W justifying its replacement asaformulay € £. However,
the following two results show that this would follow from the compactness of Cn and the
representation of @ as aunit formulae.

Observation 4.1.1 2 If an abduction W of a formula ¢ with respect to a domain theory I
exists, then afiniteabduction W’ C W (where W' isunderstood to befinite) of ¢ with respect
tol exists.

By a finite abduction, we mean one containing a finite number of formulae from £. The
following result is also easily proved.

Lemma4.1.2 If afiniteabduction ¥ of ¢ withrespect toI™ exists, then it can be represented
byasingleformulasy (i.e, T U{y} F o, T U{y} ¥ L1).

We can strengthen this result as it holds for any finitely axiomatisable abduction V.

These results motivate the following rephrasing of our definition of abduction.

Definition 4.1.2 An abduction of aformula ¢ with respect toadomaintheoryl” isaformula
1) such that:

() ru{v}r ¢

(i) T U {v}isconsistent (i.e, I U {y} I/ L).

We also say that ¢ is abduced fromT™ and ¢.

Thisis the definition of abduction we shall adopt in this dissertation. It is aso commonly
found in the literature [ 73] and saysalot about our approach. The main reason for adopting
this approach is that it will allow an easy integration with the AGM, as we shall seein the
next chapter. It makes clear that we are not as much interested in the syntactic form of
the abductive inferences we make (or the form of new information for that matter) as we
are in the content of those inferences. That is, as with the AGM (and, in a sense, because

3Proofs for the resultsin this chapter may be found in Appendix A.
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of it) we adopt the Principle of Irrelevance of Syntax. The rationale behind this is that,
under our proposal, abductions in turn become objects of the agent’s beliefs and, due to
the adoption of this principle, beliefs are taken to be propositions. It aso shows that we
are only interested in abductions expressible in our language. In fact, it is not clear why
an agent would need to account for infinitely many items of data in one go although this
situation may well occur if al datais considered as one over the course of time. Moreover,
any finiteness asumptions will have adirect relevance to any eventual implementation.

In general, the definition of abduction above still permits a number of abductions for some
pieceof new information. We shall now go onto look at several typesof abduction discussed
in the previous chapter and this definition will prove helpful in characterising them with
simple definitions. These different types of abduction can be used to prune the space of
abductions that need to be considered.

4.2 Minimality

As we have seen in the previous chapter, one consideration often deemed significant when
determining abductions is to assume as little as possible in proving a formula ¢. This
expresses the desire to avoid superfluous abductions. A first attempt at accomplishing
this within alogical setting is to use the consequence relation + to define a notion of one
abduction being (logically) “weaker” than another.

Definition 4.2.1 An abduction v of ¢ with respect to I' is weaker than an abduction ¢’ of
¢ withrespect to I" if and only if ' - ¢. Wewritethisasy <r 4 1.

An abduction ) of ¢ with respect to I is minimal iff 1) <r 4 ¢’ for all other abductions ¢’
of ¢ with respectto .

That is, 1 isaweaker abduction of ¢ than v’ with respect to I if it can prove no more than
', Thefact that restaurant 1 isopen and | bought ahamburger there is apossible abduction
for you meeting me while | eat a hamburger; so is the fact that restaurant 2 is open and |
bought a hamburger there. Of course you may not be able to assume either fact with great
certainty and may be better off assuming that either one or the other is open and | bought it
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there (I .e, (01 /\phl) V (02 A phz) is an abduction and (01 A phl) V (02 A phz) Sr,e 01 A\ phy
(01 A ph1) V (02 A ph2) <r.e 02 A phy).

Observation 4.2.1 The “weakness’ relation <r , induces a partial order over the set of
abductions of ¢ with respectto .4

Intuitively, a minimal abduction under this weakness ordering would be some form of
maximal digunction of possible abductions. Since we assume a finite language, such a
proposition is expressible in our language. Thiswould not necessarily be the case with an
infinite language.

Observation 4.2.2 If there is an expressible minimal abduction with respect to <r 4 then
it must be weaker than the new information ¢.

So, if aminimal abduction exists, it must be weaker than the new information ¢ under the
ordering given by <r ,. The new information ¢ is, of course, an abduction of itself.

Theorem 4.2.3 For any abduction ) of ¢ with respect to I' weaker than ¢ and for any
de L,TU{y}rdiffTu{s}FJ.

This result has important consequences for abductive belief dynamics. Thus far we have
assumed a fixed domain theory I and so, in a sense, confined ourselves to static abduction.
Any interesting theory concerning an inquiring agent however, must alow for dynamic
abduction. One way to do this, and the way we shall do so here, is to let the chosen
abduction inlight of new information ¢ help the domain theory to evolveto I, inamanner
analogous to the aims of belief revision. The nature of I';, will be partially determined by
the rationality criteria adopted. In accordance with the second of our rationality criteria
(see § 2.2) our domain theory should be closed under Cn. A virtue of this constraint isthat
it vastly smplifiesthe account of belief change. Given thisconstraint, I';, may beidentified
with Cn(I" U {¢}). By Theorem 4.2.3 it then follows that, for every abduction ) weaker

“Here we are taking identity =r , to be logical equivalence (i.e, - 1 < ¢) rather than syntactic
equivalence. Effectively, we are treating formulae as propositions rather than sentences, as dictated by the
Principle of Irrelevance of Syntax.
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than ¢, the new domain theory I, is simply Cn(I" U {¢}). Thus the differences among
various abductions ) weaker than ¢ is effectively obliterated. This provides a reason for
not requiring the above rationality criterion to be satisfied; the domain theory need not
necessarily be closed under Cn. An analogous situation is found in the belief change
literature. Many writers advocate the use of belief bases rather than belief sets[80, 85]. In
thisway I, can simply be identified with " U {+/}. It must be noted, however, that as long
as 1) is weaker than ¢ the deductive closure of I}, will suffer this problem. On the other
hand, one might question the rationality of abductions weaker than the new information ¢
itself. Intuitively, such an abduction would not seem to make much sense. If you observe
me eating a hamburger, then assuming (or abducing) that either | am eating a hamburger
or restaurant 1 is open and | bought a hamburger there is not very sensible (or rational
perhaps). These observations suggest that this type of abduction is best avoided. We shall
maintain the rationality criterion that epistemic states be closed under C'n in accord with
the AGM. As we shall see later though, minimality when coupled with other restrictions
may be useful.

4.3 Triviality

It should befairly clear that, using our definition of abduction, we can obtain an abduction
of aformula ¢ with respect to a domain theory I' ssimply by taking the abduction to be ¢
itself, provided of course I' I —¢. In doing this we are gaining no new knowledge about
our domain apart from ¢ and its deductive consequences. We can extend this notion of
triviality by specifying that the abduction should make use of the domain theory and not be
able to prove the new information on its own (the case where I' = () being an exceptional
circumstance).

Definition 4.3.1 An abduction v of ¢ with respect to I" is trivia if and only if ¢ F ¢.
Otherwisg, it isnon-trivial.

Such atrivia abduction can be considered to occur with respect to a theorem of the logic
(viz., = v — ¢ by the deduction theorem). These types of abduction are inherent in the
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logic in acertain sense and may always be obtained regardless of the domain theory (up to

inconsistency).

Example 4.3.1 In the example of p. 78, simply hypothesising that e istrivial, as also, for
instance, ise A o1. O

However, as we have seen in the previous section, those abductions v of ¢ with respect to
I thet are logically weaker than ¢, (i.e., v <r , ¢) add no more new information and arein
asensetrivid. It istherefore tempting to identify trivial abductions of ¢ with respect to I
with those weaker than ¢. However, consider the scenario wherel” = {a} and ¢ = ¢. One
possible abductionis¢) = ¢ A a. Itisatrivial abduction in our earlier sense but it is not
weaker than ¢. Intuitively, this abduction istrivial because it Simply assumes what we are
trying to account for, so the use of logical “weakness’ would not be an appropriate way of
capturing this notion.

4.4 Specificity

In the previous chapter we discussed Stickel’s [123] notions of most and least specific
abduction. Stickel, however, does not provide a formal definition of these concepts and
the setting he adopts utilises Horn clauses. We shall introduce three types of specificity.
Moreover, the two extremes mentioned by Stickel can be generalised to help determine a
number of levels of specificity.

Abduction can in asense be viewed as an inference “backwards’ over an implication; from
consequent to antecedent. One way to view specificity then, isto treat propositions further
“back” aong an implication chain as more specific. We shall say that one abductionismore
specific than another if, together with the domain theory, it can prove the latter abduction.

It contains more information rel ative to the domain theory.

Definition 4.4.1 (relative specificity)
An abduction 1 of ¢ with respect to I is relatively more specific than an abduction v’ of ¢
with respect to I" iff I U {y} - ¢'. Wewrited’ <r , 1. We also say that + is a relatively
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least (respectively most) specific abduction of ¢ with respect to I™ iff ¢p < 4 ' (respectively
Y =<r.4 o) for all abductions )’ of ¢ with respect to I" such that t/ ¢ <» .

Example 4.4.1 In the example that we have been using thus far, we have the following
relative specificities:
e =<r 01 A phy =r . co1 A phy
e 2r,e 02\ phy

Observation 4.4.1 The relative specificity relation <r 4 is a (partial) pre-order over the
set of abductions of ¢ with respecttoI'.

Now, by the definition of abduction, I' U {¢} I ¢ for any abduction > of ¢. Consequently,
every abduction of ¢ is more specific than ¢ (i.e, ¢ <r, ¥) and therefore ¢ is a mini-
mal element under this ordering. Moreover, other possible least specific abductions are
characterised by the following result.

Lemma 4.4.2 If an abduction of ¢ with respect to I exists, then an abduction ) of ¢ with
respect to " isarelatively least specific abduction of ¢ with respectto I iff I = ¢ < 1.

This extends our previous observation by noting that the ordering is well-founded. In fact,
this ordering can be utilised as a way of arranging abductions into “levels of specificity”.
The relatively least and most® specific abductions can be considered at opposite ends of the
“gpectrum” of levels. The strict part of the ordering can be used to determine a particular
formulaslevel of specificity.

Oneproblemwiththedefinition of relative specificity isthat it includes abductionsthat prove
other abductions without the aid of the domain theory ({+} - ¢’ and therefore” U {¢} -
1" by monotonicity) in the ordering. We may be more interested in those abductions
establishing a “specificity sequence” with the required aid of the domain theory. We
have already seen arguments for disregarding abductions which prove the new information

SWhich is guaranteed to exist under our current assumption of afinite language.
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without the aid of the domain theory (trivial abductions), and similar arguments can be
applied to this case. Thisleads usto introduce the notion of strong relative specificity.

Definition 4.4.2 (strong relative specificity)
An abduction ¢ of ¢ with respect to " is strongly relatively more specific than an abduction
Y’ of ¢ with respect to I" iff ¢ isrelatively more specific than ¢’ but {1} t# ¢'.

Unfortunately, the resulting relation does not even satisfy transitivity (though it is irreflex-
ive). It istherefore difficult to see how to sensibly define levels of specificity or least and
most specific abductions. For completeness we introduce a further type of specificity.

Definition 4.4.3 (absolute specificity)
An abduction v of ¢ with respect to I is absolutely more specific than an abduction )’ of ¢
with respect to I" iff {1} - .

Note, however, that this induces an ordering identical to the weakness ordering used to
investigate the notion of (logical) minimality and so we shall not consider it further here.

45 Selection Criteria

All these types of abduction identify a subset of the potential abductions. However, even
restricting our attention to those abductions satisfying a number of these criteria may not
result in choosing asingle“best” abduction. We could of course combine those that remain
in someway — taking their disunction for instance— or we could impose further selection
criteria (in particular, using extralogical considerations) to help choose among those that
remain. A number of such selection methods were detailed in the previous chapter. We
shall not consider any other selection criteria, beyond those involving syntactic restrictions,
in the following sections but note that in the constructionsthat result from our belief change
operator, a selection mechanism will arise and can be viewed in a number of ways.
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4.6 Syntactic Restrictions

We mentioned in the previous chapter that syntactic criteria were a common restriction
placed on logic based abduction especially where computational issues are concerned. In
this and the following section then, the main inspiration is a pragmatic one. As such, we
shall assume that formulae are represented in clausal form (i.e., digunctions of literals).
This means that conjunctions may be represented as sets of (singleton) clauses and so we
shall revert to our initial definition of abduction for ease of presentation.

In discussing how to compute abductionsin the previous chapter we noted a method based
on a contrapositive argument: using the negated form of the new information to obtain
negated forms of abductions. This idea forms the basis of Jackson's [52] method for
calculating the abductive closure of a set of clauses (causal axioms) I' over a new data
set ®. An algorithm based on this might be developed as follows (we assume the more
interesting situation where I H —=® and " I ®).

Two sets are used:

HS hypothesis set containing possible abductions (i.e., a set containing sets of clauses).
Initially HS contains ® (HS = {{®}}) since ® is trivialy an abduction of itself
with respecttoI.

WS working set containing clauses used to calculate possible abductions. Initially WS
contains the clauses in the domain theory (WS =T).

1. Add the prine inplicates I(I') of the domain theory I' to WS.
WS =wWSsulI).
2. Negate an elenent A from HS obtai ni ng —-A.

3. Resolve an elenment of -A with a clause in WS to derive a new goal
C.

4. 1f the newgoal C is not a tautology and it is not subsuned by
any other clause in the closure WS add it to WS, negate it to
obtain —-C and add this negation to HS.

5. Repeat steps 2 - 4 until no new elenents of HS can be derived.
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When the algorithm terminates, the resulting abductions are contained in the hypothesi s set
HS.

Observation 4.6.1 Any abduction, other than the new data, generated by the above proce-

dureisa conjunction of literals.

Although this result may seem restrictive, we saw in the previous chapter that it is a
very common (in fact, the most common) type of abduction in the literature. In artificial
intelligence this is often what is meant by abduction. We shall refer to abductions of this
type as conjunctive abductions. If we restrict our attention to conjunctive abductions, then
the minimality criterion mentioned above can be made more specific. In fact, it coincides

with set inclusion®

e Minimality Criterion for Conjunctive Abductions’
A conjunctive abduction W of @ with respect to I' is conjunctive minimal iff thereis
no other conjunctive abduction W’ of ® with respect toI" such that W' C W.

Theorem 4.6.2 If W isa conjunctive minimal abduction of ® with respect to I' then W is
in the hypothesisset HS.

The converse may also be obtained by adding a further step to the algorithm removing
subsumed elements from the hypothesisset H.S.

We now shift our attention to the (pragmatic) relationship between abduction and induction.
It will turn out to berelated in an interesting way to what we have presented in this section.

4.7 Abductivelnference Versus|nductive Inference

The title of this section is a little misleading as we are really interested in pragmatic
considerations regarding these two types of inference. In particular, we shall contrast

SRecall that in clausal form, aconjunction of literalsy A ... A l,, canberepresented as {{l1},...{l,}}.

7Jackson [52] presents asimilar definition but failsto specify that W (which he denotes by E) should be a
conjunction of literals. Thisis clearly what is intended since, without it, some of the results presented there
would be incorrect. | am indebted to Peter Jackson for his discussion regarding this matter.
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abductive inference, restricted asin the last section, with a particular method claimed to be
inductive known as inverse resolution [77, 78, 79, 115]. But first a note on abduction and
induction in general by Carettini [11] (pp. 139, 140):

... Induction is based on a comparative process. It isacomparison of homo-
geneous facts, samples of a certain class; from this comparison it enunciates
general properties. Abduction on the contrary is based on a single fact, which
sometimes presents itself as an enigma, something unexplainable: at this point
the observer postulates a hypothesis, that is, he puts an idea into reality by
asking himsdlf if it can be demonstrated. . ..

Peirce insisted on induction’slack of originality, opposing to it the creative
character of the hypotheses generated by abduction.

Theimportant point to note isthat induction is often thought of as deriving generalisations.

Harman [47]8 however, claims that induction® is a special instance of abduction (or, more
precisely, what he terms “inference to the best explanation”). The generalisation that is
inferred during the process of induction can be considered an abduction; if assumed as a
hypothesis, then, together with the domain theory, it will prove the instances. In artificial
intelligence research, one popular method for performing induction is inverse resolution
which, as the name suggests, is based on inverting the resol ution process.

4.7.1 Overview of | nver se Resolution

Resolution is a valid inference procedure which deduces a clause C' from two clauses C'y
and C,. Given aclause C; containing aliteral [ and a clause C, containing the literal —l,
the resolved product (or resolvent) of C; and C; isdenoted C' = C.C5, where

C=(C\{lhu(C\{~1}) (4.1)
This process may be visualised with the help of the following diagram:©

8See also Ennis [26] views on Harman and Harman's reply [48].

9Actually, he confines his attention to enumerative induction. That is, inference of a generalisation from
a series of instances.

10The plus (+) (respectively minus (—)) sign in the diagram denotes that the literal resolved upon appears
positive (respectively negative) in that clause.



4.7. ABDUCTIVE INFERENCE VERSUS INDUCTIVE INFERENCE 89

Inverseresolution, on the other hand, isnot avalid inference procedure but isbased upon the
following characterisation of inductiveinference [77, 78]. Given apartial domain theory I
and apositiveexample £ that isnot aconsequence of thedomaintheory (I t E) we attempt
to determine a new domain theory I'’, using I' and E, that will account for the example
(" F FE) and aso the original domain theory (I’ + IM). If wethink of I'" asT” U I where
I represents the result of inverse resolution, then the relationship with abduction should
become much clearer. In practice, the domain theory and example are usually represented
as Horn clauses. As the name suggests, this technique is based on inverting the resolution
process and consists of five operators: two V-operators, two W-operators and the truncation
operator.

S0 as not to countenance invalid inference, the notion of an oracleisintroduced. An oracle
isan entity that accepts a clause, constructed using one of the inverse resolution operators,
if itisvalid in the intended model. Since we are only interested in the calculation of the
constructed clauses we shall not consider the oracle further here.

V-Operators

Previously, we represented a single resolution step in terms of a“V”-shaped diagram. The
two V-operators can derive a clause at one of the arms of this V given the clause at the
other arm and the clause at the base. The absorption operator constructs C, given C; and
C while the identification operator constructs C; given C, and C.

Since the new clause is constructed by finding the inverse of aresolved product, we define
the notion of aresolved quotient of C and C;! as C, = C/C;. Rearranging equation (4.1)
for resolution we can obtain C, = (C'\ (C1\ {l})) U {~{} under the following assumption

1\We consider absorption here. Identification is similar.
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e Separability Assumption — Clauses C; \ {l/} and C, \ {—/} contain no common
literals.

This assumption also simplifies the calculation of resolved quotients (i.e., absorptions or
identifications).

W-Operators

Combining two resolution “V” s we obtain aform analogous to that for the V-operators.

Cl A C(2

NN

B, B,

In thissituation acommon literal /, contained in A, resolveswith clauses C'; and clauses C»
to produce B; and B, respectively. Clauses B; and B, represent the new information and
clauses A, C; and C the constructed clauses. Interestingly, since [ is resolved away, the
constructed clauses A, C; and C, will contain a literal whose propositional symbol does
not appear in either B, or B,. If [ occurs negative in A then the operator is referred to as
intra-construction and if it occurs positivein A the operator is called inter-construction.

Truncation

The truncation operator results from the special case where the empty clause occurs at the
baseof aV or W schemata. |n apropositional system, this correspondsto dropping negative
literals from a clause. In the first-order case Muggleton and Buntine [79] show that two
literals may be truncated by taking their |east-general-generalisation. Rouveriol and Puget
[115] generalise this to a truncation operator which replaces terms by variables and drops
literals from clauses.

In the case of a propositional language, a number of schema may be used to compute the
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| Name | Rue |
i a—k, aNB—]
Absorption el arfol
| dentification Brk—j, anB—j
a—k

_ . aNB—j, aNy—k
Inter-Construction | z5= =200

i _aNB=j, aNy =g
Intra-Construction | o720y

Truncation anB—j

a—j

Table 4.1: Propositional inverse resolution operators.*3

required inverse resolution. These are displayed in Table 4.1 (see [77, 78]).*2

4.7.2 Calculating Inver se Resolution V-Operator s

Returning to the V resolution schema that was used to explain the inverse resolution V-
operators absorption and identification, we noticethat thisisequivalentto {C'1 } U{C>} - C.
Let us consider the absorption operator (identification is similar). Absorption attempts to
construct the clause C, given the clauses C; and C. We can in fact consider the clause
(1 to be a clause from the current domain theory I' and the clause C' to be the new data.
Therefore, according to the definition of abduction, {C,} isan abduction of C' with respect
to {C1} (or I sinceC; € I'). Applying the same analysis as that for conjunctive abduction
above, we obtain {C1} U —C F —C5.

This analysis is essentially provided aso in [115], with emphasis on Horn clauses and
together with afurther analysisfor absorption. However, if we apply the al gorithm described
in the previous section, we will derive only conjunctive abductions as we have seen.
Absorption on the other hand generates clauses which are digunctions of literals.

A resolution-based algorithm capable of performing absorption and identification is sug-
gested by the above analysis. As in the previous agorithm, this algorithm attempts to

12\We adopt a slight renaming of the terms to those presented in [78], having found them more amenable
to study. In the case of absorption and identification, the first clause on the top line of the schematais taken
from the domain theory while the second represents the new data.

BHerea, 3, « represent conjunctions of literalswhile j, &, I represent literals.
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determine all absorptions and identifications relative to clauses appearing in the domain

theory. (We do not consider those which may be obtained from consequences of the domain

theory although it would not be difficult to do so at the cost of added complexity).

We require three sets:

GS generated set containing possible absorptions/identifications (i.e., a set of clauses).

Initially contains the new data (GS = {C}).

WS working set containing clauses used to cal cul ate possible digjunctive abductions (ab-

sorptions and identifications in particular). Initially W.S contains the clauses in the
domain theory (WS =T).

CS construction set used to construct the absorptions or identifications

1.
2.
3.

WS =wSulI).
Negate the exanple clause C={l,...,l,} to obtain =C={{-l1},...,{-l2}}.

Sel ect a clause D ={ki,...,kn} from WS such that {ki,...,ki—1,kit1,.-.-,km} C
C for sone i, 1<i<m.

Let CS=-CU{D}.

Resol ve any two el enments of CS, replacing the two resol vents by
their resolved product CS=((CS\{X})\{Y}Hu{X.Y}. Repeat until
no resolution can be perforned.

Negate CS and place the resulting clause in GS. GS=GS U {-CS}.

Repeat steps 2 - 6 until no new el ements can be added to GS.

Alternatively, elements of G.S could simply be added to WS (and subsumed clauses

removed).

Observation 4.7.1 Any abduction generated by the above procedure (i.e., in GS) is a

digunction of literals (i.e., a clause).

We shall refer to such abductions as digunctive abductions in analogy to the conjunctive

abductions of the previous section.
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The role of minimality in digunctive abductions is dightly different from that played in
conjunctive abductions. On the one hand, if we use a syntactic criterion and attempt to
minimisethe size of the abduction (i.e., the number of literals) we noticethat, if {/4,...,0,}
is a digunctive abduction, then each of I,,...,[, are minimal digunctive abductions.
However, such abductionsare likely to specialise the theory too much.* On the other hand,
“logical minimality”, as expressed in Definition 4.1.2, would favour longer clauses which
may contain superfluous literals. Such clauses can be misleading; they are logicaly too
“weak” and, as we have seen, not of much use. The separability assumption can be seen
as an attempt to avoid such abductions at either extreme; a compromise between logical
minimality on the one hand and syntactic minimality onthe other. Assuch, we seethat there
are, in a sense, two opposing forces at work here — one attempting to prevent digunctive
abductionsfrom being too specialised and the other preventing them from being too general.
They are analogousto the notion of |east general generalisationsof Muggleton and Buntine
[79]. The syntactic and logica aspects of minimality alluded to above are a'so manifest in
conjunctive abductions. In that case, however, the logical and syntactic aspects coincide
rather than oppose each other.®®

Lemma4.7.2 Let thedomain theory I consist of consistent and non-tautological clauses.
If a clause A isin the generated set G'S, then it satisfies the separability assumption with
respect to the clause from the domain theory that was used to generateit.

Theorem 4.7.3 Let thedomaintheoryI” consist of consistent and non-tautol ogical clauses.
If a clause A isthe result of an absorption or identification of the new data C' together with
a clause fromthe domain theory I then it will bein the generated set G'S.

The domain theory is restricted to be consistent as the other case is less interesting and
non-tautol ogous elements are excluded because they are superfluous.

14 disjunctive abduction which isminimal in thisway would in fact be considered “maximal” in the sense
of Definition 4.1.2 (since, for clauses A and B, if A C B,then A+ B).
15Again, because considering conjunctions of literals as sets of singleton clauses, A C B implies A - B.



94 CHAPTER 4. A LOGICAL EXPOSITION OF THE NOTION OF ABDUCTION

4.7.3 ExtensiontoaFirst-Order Language

Probably the easiest way of extending the resultsin Section 4.7.2 to a first-order language
Isto use the “flattening” technique proposed by Rouveirol and Puget [115]. The basic idea
behind thismethod isto transform functions (including constants) into predicates so that the
inverse resol ution operations can deal with formulae (clauses) that do not contain function
symbols. For example, a clause such as {p(X, f(Y))} is replaced by the flattened clause
{p(X, Z), -new;(Y, Z)} and, in order to preserve the semantics, we introduce the new
predicate {new;(Y, f(Y))}

The propositional schemapresented in Table 4.1 can infact be used to construct new clauses
from these flattened clauses. Therefore, after flattening clauses in the domain theory and
the new data clause, we can, with a slight modification, apply the algorithm supplied in
Section 4.7.2 to perform absorption and identification. Any variables in the construction
set that are unified via a resolution step are unified with all instances of those variablesin
the construction set. This assumes that clauses have been standardised apart before being
placed in the construction set. However, this may not guarantee that all absorptions and
identifications will be calculated given the incompleteness of first order resolution.

4.7.4 W-Operatorsand Truncation

The W-operators would appear to be the most interesting of the inverse resol ution operators
for they construct a clause by introducing a new literal not present in the original domain
theory. Referring back to the W figurein Section 4.7.1 used to motivatethe W-operators, we
can expressthelogical relationship betweentheformulaeas{ A} U{C1} U{C>} - B1A Bo.
In both inter-construction and intra-construction, the two clauses B; and B, are used to
construct clauses A, C, and C5. This, too, conformsto the definition of abduction provided
ANCyNCyisconsistent with By A B,. However, in this case the abduction provesthe new
data directly, without help from the domain theory. As pointed out by Console et al. [16],
we are performing abduction with respect to an empty domain theory in thiscase. That is,
without the help of any formulae from the domain theory.
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| Name Theorem

Inter-Construction | - [(BAL = ) A AL k) Ala—D] = [(@AB =) A(aAy — k)]

Intra-Construction | - [(aAl— ) AB =)A= D] = [(@AB —5)A(@Ay—5)]

Truncation Fla— 4] = @A B — 4]

Table 4.2: Theorems corresponding to propositional inverse resolution operators.

Using the deduction theorem on the formula above we can obtain the logical theorem
F[AACyLACy — [By A Byl. Therefore, we can consider abduction in this case to occur
with respect to theorems of the logic rather than the domain theory. The performing of
induction in this way has been suggested previously. Morgan [75] suggests a method of
induction based on inverting the inference rules of a logical system. A similar analysis
can be applied to the truncation operator. The relevant theorems for the W-operators and
truncation, based upon the propositional schema presented in Table 4.1 are provided in
Table 4.2.

This all means that the W-operators construct abductions which are, in the sense of Def-
inition 4.3.1, trivial abductions. The following result reveas that this is not the only
apparent misgiving of this type of abduction. It suggests that, as a method of learning, the

W-operators are somewhat limited in power.

Theorem 4.7.4 Let I'; be a set of propositional Horn clauses over the language £(I,),
I"> be the result of performing Inter-construction or Intra-constructionon I" 1, and [ be the
newly introduced literal (i.e., [ € L(I"2)). If I & L(I"1), then, for any formula ¢ € L£(I'1),
Mo F ¢impliesTy - ¢.

This result tells us that use of the two W-operators leads to a conservative extension of the
original theory whenever theintroduced literal does not occur in the original theory (which
is invariably the case). In the case where the newly introduced literal is aready in the
language of Iy, it is possible to give counterexamples although this situation is contrary to
the spirit of the W-operators. The newly introduced clauses are only capable of expressing
concepts that are already expressible by the original theory. That is, the new literal may
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represent some new concept but that concept is ssmply the naming of a conjunction of
existing concepts. In general, this result does not hold for a first-order language since
generalisation may also occur (i.e., constant symbols may be replaced by variables).

Console et al. [16] point out how the inverse resolution operators are consistent with the
logical definition of abduction and identify a number of relationships between abduction
and inverseresolution. They point out, for instance, that in absorption and starting from the
deductive schemata %, abduction swaps the second premise with the conclusion.
In identification, on the other hand, abduction swaps the first premise with the conclusion.
Another point they makeisthat abduction of atomsisequivalent to deduction in acompleted
theory [68] while the results of inverse resolution V-operators are less specific than those
computed by abduction in a completed theory. They fail, however, to note what we
consider to be a very simple difference between the two — which is the point being made
in this section. In pragmatic terms (and, to be honest, inverse resolution is largely driven
by pragmatic considerations) abduction computes conjunctions of literals while inverse
resolution computes disjunctions of literals. Moreover, considerations of minimality are
important to both. A final point: one reason why inverse resolution is considered inductive
is the fact that it generates digunctions of literals or clauses. These are easily converted
into implicational form and can be (loosely) viewed as “rules’. It is often considered the

role of induction to generate rules from particular instances.

4.8 Background Theory Entails New I nformation

Before completing this chapter we briefly consider afurther situation that may seem trouble-
some. When thedomain theory I already accountsfor the new information ¢ an interesting
situation occurs.

Observation 4.8.1 If ' + ¢ thenany § € £ consistent with I" (i.e, T U {0} I L) isan
abduction of ¢ with respecttoI".

So, any formula consistent with the domain theory I' would be a possible abduction. In
contrast to trivial abductions the domain theory proves the new information independently
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of any abduction. One way around this problem would be to contract I' by ¢ and perform
abduction with respect to the contracted domain theory. This may be useful in other ways
for, if I is closed under logical consequence Cn, as in the AGM, then the damage has
already been done in a certain sense because v — ¢ € I for al ¢ € £, and it may
be difficult to determine which members of ' are relevant (or more relevant than others).
However, an operation like AGM contraction will remove those that are less epistemically
entrenched. In thisway, abelief change operation can be useful for the abductive process.
On the other hand, it may be that the selection criteria for a particular abductive operator
is discriminating enough to handle this situation, where many more abductions need to be
considered.

4.9 Summary and Discussion

We havelooked at various aspectsof |ogic based abduction including anumber of restrictions
outlined in the previous chapter. The proposed definitions were phrased in terms of a
consequence relation . That is because we are interested in logical characteristics of
abduction as they will be helpful in what follows. In fact, by varying the underlying logic,
the properties (and usefulness) of such definitionswill change. This approach may be able
to accomplish what Levesque [63] aimed to do — introducing an operator for belief to
characterise different forms of abduction — without needing to enrich the object language.
In subsequent chapters we will effectively have a selection mechanism for abduction, using
extralogical structures, which will single out the best abduction(s).

We aso had alook at the relationship between abduction and induction. In particular, we
adopted a pragmatic view of abduction and induction (in terms of inverse resolution) as
they are often considered in artificial intelligence. Inverse resolution can in fact be seen
to conform to our general definition of abduction thus lending credence to Harman's [47]
claim that (enumerative) induction isjust a special case of abduction (inference to the best
explanation) — at least in the propositional case. In practice abduction is used to calculate
hypotheses that are conjunctions of literals while the inverse resolution V-operators (and
W-operators for that matter) calculate disunctions of literas (i.e., clauses). This result
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might lead one to suggest that a better name for the inferential processin Definition4.1.2is
ampliativeinference rather than abduction. We, however, retain the definition and the name
abduction as thisisthe way it is defined in the literature. Moreover, notions of minimality,
taking various forms, are important to both types of abduction. One reason for considering
inverse resolution as inductive is the fact that clauses can be interpreted as rules (though
one must be careful with thisinterpretation of material implication). Theinverse resolution
W-operators can aso be considered to be performing abduction with respect to theorems
of thelogic (i.e., computing trivial abductions). Even though, at first, these operators seem
very interesting because they are able to introduce a new literal not present in the origina
domain theory (often called predicate invention or constructive induction) it turns out that
this leads to no additional expressive power in the propositional case. The new theory is
simply a conservative extension of the original. This means that this form of learning is
somewhat limited from alogical viewpoint. It may have other advantages, such as making
the representation of the theory more compact.



Chapter 5

Abductive Expansion?

Aman must bedownright crazy to deny
that science has made many true dis-
coveries. But every single item of sci-
entific theory which standsestablished
today has been due to abduction.
Charles Sanders Peirce, [96] 5.172

One of the fundamental types of belief change employed by an inquiring agent is that of
belief expansion. New information is incorporated into the agent’s current epistemic state
without the retraction of any existing beliefs. Most belief change frameworks — including
the AGM — simply incorporate this new information “as is’ together with any (logical)
consequences. We shall concentrate on this form of belief change here but instead of
incorporating solely the new information, we shall do so by looking for an explanation or
reason — via abduction — for this new information and incorporate this into the current
epistemic state together with any consequences (one of which is the new information). We
do thiswithin the setting of the AGM framework for belief change and adopting adefinition
of abduction asexploredinthe previous chapter because they complement each other nicely.
Primarily, we areinterested in characterising the class of all such belief expansion functions
much in the way the AGM examines its contraction and revision functions. That is, we
explore al ways of expanding an epistemic state by new information through the use of
abduction.

There are various motivating concerns behind this study. One is that advocated by Levi

1Some of the work presented in this chapter has appeared in [92, 93, 94].

99
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[65]: an agent is interested in acquiring new, error-free information. Abduction, which
Levi adoptsin hisaccount of deliberate expansion, isoneway of acquiring new information
beyond the current epistemic state and the epistemic input alone. In fact, by just adding the
new information and any consequences to the current epistemic state very littleinformation
is acquired. On the other hand, the agent must also consider that it may introduce error
by making an abduction which is not true of the actual world. This may lead to further
conclusionswhichwill besubsequently ill-founded. Although thismay beremedied through
contraction later on, the agent would have wasted val uable resources — something which
it isloathe to do. The amount abduced would therefore depend on the agent’s willingness
to court such error; their degree of caution or boldness.

We maintain that this abductiveway of belief changeisin fact more natural than the method
proposed by the AGM. Thereis psychological evidence[108] suggesting that human agents
do indeed follow this pattern of belief change through explanation. Weleave aside theissue
of how accurately the logical notion of abduction adopted here captures an intuitive notion
of explanation, which is beyond the scope of this dissertation. It is at least arguable that,
in alogical sense, the notion of abduction represents necessary conditions. Moreover, as
noted elsewhere, we are interested in the normative aspects of such belief change and are
not concerned with developing a psychological account. Another motivation stems from
the way the Principle of Minimal Change (see p. 25) isviewed in the various AGM belief
change operations. AGM expansion isthe only operation where this principleistaken with
respect to set inclusion. In AGM contraction, interpreting minimal change with respect
to set inclusion leads to maxichoice contraction which we have seen to be undesirable in
general (Theorem 2.2.5 (p. 32)). A similar situation holds for maxichoice revision arising
out of maxichoice contraction viathe Levi identity. Thisprinciplecan, however, be captured
semantically via Grove's sphere modelling. Following this example, we shall abandon the
interpretation of this principle via set inclusion (embodied by postulate (K*6)) and show

how it can be interpreted semantically.

These motivations lead us to suggest changes to the rationality criteria suggested by
Gardenfors and Rott [35] (listed in § 2.2). Firstly, we add Levi’s criterion that agents
should seek as much new, error-free information as possible (within the constraints of their
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degree of caution). We also question the interpretation of the third criterion regarding the
Principle of Minimal Change. Thisseems somewhat at odds with the principle we have just
added. Noting as above that this principle can be interpreted semantically in the AGM but
not with respect to set inclusion, we maintain that it is possible to retain this criterion, even
for expansion, if itisinterpreted uniformly inthisway. However, the criterion added above,
regarding the amount of new, error-free information, can be interpreted using set inclusion.
We proceed by proposing a definition for this new belief change operation and capture
this through rationality postulates. A number of constructionsin the spirit of the AGM are
presented together with the rel evant representation theorems. We refer to thisnew operation
as abductive expansion. Our basic framework will build on that of the AGM so we retain
their modelling of epistemic states as belief sets and epistemic inputs as formulae.

5.1 Defining Abductive Expansion

Our main aim here is to model the claim that agents often seek some explanation or
justification for newly acquired information and add this justification to their belief state
together withthe new information. We model thisusing the notion of abduction as presented
in Definition 4.1.2 (p. 79). More explicitly, our belief change operation is based on
the following idea: the agent attempts to find an abduction of the epistemic input (new
information) with respect to its current epistemic state (domain theory) and adds this
abduction to the current epistemic state, taking the deductive closure. |If an abduction
cannot be found — because the new information contradicts a current belief (i.e., isa
disbelief) — the epistemic state is not changed. We shall have more to say on this case
later but note that the definition of abduction would seem to support this and that it also
suggeststhat thereislittle need to consider revision at this point. A revision operator can of
course be constructed from abductive expansion (and a contraction operation) viathe Levi
identity. In accord with these remarks, and denoting the abductive expansion of belief set
K by epistemicinput « as K&, we have the following definition.
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Definition 5.1.1 K¢ isan abductive expansion of K with respect to « iff

Cn(K U {B}) for some e £ suchthat:
() KU{B8} F «
K¢ = (i) KU{B}y L
(Def AbExp)
K if no such 3 exists

Conditions (i) and (ii) correspond exactly to those of Definition 4.1.2 (p. 79). Since we
are interested in developing a genera framework characterising expansion by all types of
abductions, we do not add any further restrictions at this point. In the following sections
somerestrictionswill be considered to giveamorewell behaved operation (for instance, this
definition allows a nondeterministic abductive procedure) allowing constructions closer in
spirit to the AGM constructionsfor contraction and revision thus permitting amorereliable
comparison of the respective approaches.

Example5.1.1 Let K = Cn(I') whereT isexactly asin the example of p. 78. If wereceive
new information e, then AGM expansion simply gives K- = Cn(K U {e}). In abductive
expansion there are many possiblities. Some possibilitiesfor K® include Cn(K U {ch}),
Cn(K U {01 A phi A 0z A phy}) and Cn(K U {(o1 A pha) V (02 A phy)}). Interestingly,
suppose K¢ = Cn(K U {ch}), thenit is possible, given the above definition, that K&, =
Cn(K U {(o1 Aphi) V (02 A phy)}) (where the abductive expansion function is understood
to be the same in both cases) even though e and e A e are logically equivalent. We shall
soon introduce restrictions to ensure a more deter ministic underlying abductive procedure.

|

A Note Concerning Abducibles

Having noted already that we are interested in exploring agenera framework for abductive
belief change, we however make a small digression on the restriction to abducibles. Recall
that abducibles are a demarcated set of propositions or predicates from which abductions
may be constructed. Thisisavery common restrictionimposed on abductiveframeworks. It
Isvery important to note that we do not make use of abduciblesin Definition 4.1.2 nor do we
consider their usein the constructionsto follow. In adopting a coherence-based framework
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for belief revision, as Gardenfors [32] claimsthe AGM to be, we have already rejected the
(foundationalist) existence of epistemologically basic beliefs. Embracing abducibleswould
severely undermine this position for, having denied the existence of select beliefs on the
one hand (i.e., basic beliefs), we would countenance them on the other (i.e., abducibles).
One could argue that this simply corresponds to the specia case where all propositions or
predicates in the language are abducible. However, the fact remains, even in this situation,
that there are no propositions having a special status.

5.2 Postulatesfor Abductive Expansion

Keeping in mind our definition of abductive expansion and the discussion above, wedevelop
anumber of rationality postulates for this operation.

We begin with the ubiquitous postul ate of closure. An abductive expansion function &, like
the AGM operations, is assumed to be a function from pairs of belief sets and formulae to
belief sets (& : £ x L — K). It determines the new epistemic state of the agent given that
its current epistemic stateis K and it has acquired new information a.

(K®1) For any sentence o and any belief set K,
K? isabelief set (closure)

If the newly acquired information does not conflict with what is currently believed (i.e., the
new information is not a disbelief), then any explanation or justification accepted should
be for this new information. That is, the new information should be accepted in the
resulting epistemic state. This leads to a qualified version of the success postulates for
AGM expansion and revision.

(K®2) If -a ¢ K,thena € K¢ (limited success)

During the process of abductive expansion an agent is augmenting its current epistemic
state. It cannot lead to the retraction of currently held beliefs, and accords with our new
rationality criteria stating that the agent wishes to acquire new information.
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(K®3) K C K¢ (inclusion)

In the limiting case where the new information conflicts with currently held beliefs and it
is not possible to find an abduction (i.e., a consistent explanation) for it, no action is taken
in order to maintain consistency. This would be in keeping with the requirement to avoid
error and gives priority to maintaining consistency over guaranteeing success. Our rational
agent would refuse to accept the new information as it would lead to inconsistency.?

(K®4) If ~a € K, then K® = K (failure)

An dternativeideaisto make K = K, if no abduction can befound (i.e., no g satisfying
the stated criteria exists). Thiswould give a closer correspondence to AGM expansion in
the case where —a € K. Levi [65] aso alows his expansion operations the possibility of
expanding into inconsistency. It does seem odd, however, that alogically omniscient agent
concerned to avoid error would do so. We note that this only represents alimiting case and
any such change would pose no difficulty in the constructions to follow. The postulates
(K®2) and (K®4) would be altered to the following.?

(K®2) ae K? (success)
(K®4) If ma € K,then Ky = K| (inconsistency)

Whenever it is possibleto find an explanation for new information (in which case theinitial
epistemic state would have been consistent), the resulting epistemic state should remain
consistent. That is, the explanation process should not introduce any inconsistencies. This
will be the case if the expanded belief state remains consistent with the new information.

(K®5) If ma ¢ K, then—a ¢ K& (consistency)

2The situation is actually more complex and may be more appropriately handled by an abductive revision
operator constructed from abductive expansion and some form of contraction using the Levi identity. The
fact remains however, that, if we areinterested in expansion, then this would be arational choice.

3] am grateful to Abhaya Nayak who suggested this alternative to me. Krister Segerberg also points out
that it gives the resulting sphere semantics a nice symmetry.
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We note that postulate (K®5) is equivaent, given postulates (K®1) — (K®4), to either of
the two following conditions.*

5.1 If-a¢K,thenK? # K, (consistency’)
52 IHK#K, thenK?® #£K, (consistency”)

For reasons that will now become apparent, we shall refer to postulates (K®1) — (K®5) as
the basic postulates for abductive expansion over K.

Theorem 5.2.1 The function @ satisfies (K®1) — (K®5) iff

Cn(K U{p}) forsome g € L such that:
() KU{g} F«
K = (i) Ku{s}/ L

o

K if no such § exists

Thistheorem tellsusthat (K®1) — (K®5) capture the basic notions of abductive expansion
that wedesire. Itisin proving thisresult that our restriction to afinite languageisimportant.
This restriction eliminates the need to consider abductions which are inexpressible in a
language with infinitely many propositional symbols. That is, the correct 5 may not be
expressible. In fact, we could weaken this restriction for what we really require is the
set K¢ \ K to be finitely axiomatisable. This restriction is not necessary in many of the
results that follow although we shall retain it to simplify the presentation. An alternative
approach may be to consider a complete language (i.e., one allowing infinite conjunctions
and digunctions— cf. Gardenfors[31] p. 25).

We shall consider abductive expansion functions satisfying a further postulate. If, relative
to the agent’s beliefs, two inputs are considered to carry the same informationa content,
then their relevant abductive expansions will be identical.

(K®6) If K+ o+ 3, then K& = K (strong extensionality)

Thisis an expression of the Principle of Irrelevance of Syntax with respect to the agent’s
beliefsand isjustified by thefact that it iswith respect to the agent’s belief s that abductions

4Proofs for this, and other claims made in this chapter, are given in Appendix B.
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are to be found. We consider these six postulates (at least) since, if only the first five are
satisfied, then the abductive inference procedure may behave non-deterministically. It may
be possibleto consider the following weaker condition in place of postulate (K®6) (i.e., the

usual extensionality postulate of AGM contraction and revision).
(53) IfFa« g,then K = K (weak extensionality)

We shall not consider this postulate here but return to it briefly in alater section (§ 5.3.6).

It may also be interesting to contemplate other conditions which we do not adopt as

postul ates here.
(54) IfaeK,thenK? =K (vacuity)

The reason this postulate may seem plausibleisthat, if we already believe the new informa
tion «, then there is no need to explain it in order to incorporate it into our current beliefs
(cf. Boutilier and Becher’s [9] factua explanations). Moreover, as we saw in the previous
chapter, when o € K, then 8 — a € K for every § € £ and therefore any formula
consistent with K is a possible abduction. However, in the first instance it is possible that
an explanation for the new information « is not among the current beliefs even though
the new information is currently believed. In the second instance, although every formula
consistent with K implies «, it may be possible that the sel ection mechanism is discerning
enough to choose an explanation from among the many possibilities. This restriction is
not absolutely necessary for aminimal set of rationality postulates characterising abductive
expansion so we do not include it anong our postulates. This means that the agent, de-
pending on its cautious nature, will still attempt to acquire new, error-free information even
if it believesthe new information it receives. We could, however, add this condition to our
set of postulates with only minor alterations to the constructionsto follow as it would only
represent an (additional) boundary case.

We also do not alow the monotonicity postulate of AGM expansion (K*5) since the
selection mechanism may differ as the epistemic state changes.® Clearly we do not accept

SHow, exactly, this selection mechanism varies would be determined by an account of iterated belief
change which is beyond the scope of this dissertation.
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the AGM minimality postulate (K*6) having rejected it above as not permitting abduction
(beyond thetrivial).

One thing that will not work is the following condition.
(55 If-a¢KthenK C K¢ (proper inclusion)

The important case to consider hereiswhen oo € K.® We have already dismissed vacuity
above but that does not mean that the agent is always forced to expand when it believes the
new information. A cautious agent may choose not to court error by maintaining its current
epistemic state. In general, vacuity does not hold, though it may in some instances, thus
this condition will not hold in general either. The aternative, if o ¢ K, then K C K9
does not hold for similar reasons.

5.3 Constructions

Inthe AGM framework for belief revision three major constructionsare considered for con-
traction and revision operators (see § 2.2.2): selection functions (on maximally consistent
subsets of K failing to imply «), Grove's system of spheres and epistemic entrenchment.’
We now consider anal ogous constructions for abductive expansion operators. Thisanalysis
will help to place abductive expansion in the context of the AGM belief change operators
thus elucidating its relationship with them.

5.3.1 Sdection Functions

If the epistemic input « is consistent with the current epistemic state, the resulting abduc-
tively expanded belief set will be a superset of K containing «.. Therefore, a choice hasto
be made from among the supersets of K implying a.. However, it is easily noted that every
such superset closed under logical consequence Cn (i.e., abelief set) can be represented as

the intersection of a set of maximally consistent supersets of K that imply «.

60therwise this postul ate holds by success and inclusion.

"We do not consider safe contraction here asit appears less prominently in the literature than these other
constructions. Peppas and Williams [100] also present a construction in terms of nice preorders on models.
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Definition 5.3.1 (Maximally Consistent Superset of K that Implies )
A set K' isamaximally consistent superset of abelief set K that implies o if and only if

(i) K CK'
(i) a € Cn(K'")
(iii) Cn(K') # K,

(iv) Thereisno K" > K' satisfying (i), (ii) and (iii).8

We denote the set of all sets K’ that are maximally consistent supersets of K that imply o
by KTa (inanalogy to K | ).

Definition 5.3.2 The set of maximally consistent supersets that imply « isdenoted KT a.

Note that if it were the case that o € K, we obtain K Ta = (). It is straightforward to
show that KT« is composed of belief sets.

Observation 5.3.1 Let K beabeliefsetanda € £. Any K' € KTa isabelief set.

All elementsof K T« are, in fact, consistent complete theories.

Various constructions can now be provided using the notion of a selection function . The
most flexible idea would be for the selection function to choose a subset of the maximal
consistent supersetsof K implying «.. Intuitively, v selectsthe“ best” elementsfrom K T a.
This may be contrasted with Levi’s [65] deliberate expansion where potential expansions
of K by « (not necessarily maximal) are identified and some chosen after assessing their
expected epistemic utility. Note also that a selection function y is relative to a given belief
set K (this also holds for the analogous construction in the AGM — see Alchourron et al.
[1] p. 512). It may be more appropriate to denote it by ~, though we omit the subscript
unlessit isrequired, to avoid confusion. Before considering the proposal where v selects a
subset of KT a we examine two specia cases.

8That is, K’ can beidentified witha K U {a} “world”. Seealso § 5.3.3.
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M axichoice Abductive Expansion

Thefirst ideais to consider, as in the AGM, a selection function choosing a single “best”
element of K Ta. That is, we apply a maxichoice selection function. If K¢ is determined
by such a selection function, +, ensuring that v(K T «) is aways a singleton for any K
and o whenever KT a # (3, then we call @ amaxichoice abductive expansion function and

defineit as follows.
Definition 5.3.3 (Def Max)

Ko v(KTa) whenever KT isnonempty
o ) K otherwise

It can be shown that maxi choice abductive expansion functions satisfy thefirst six postul ates
for abductive expansion over K.

Lemma 5.3.2 Any maxichoice abductive expansion function satisfies (K?1) — (K®6).

Of course, such a function results in a maximally consistent belief set (i.e., a complete
theory). It corresponds to selecting an abduction which is maximally specific in the sense
of the previous chapter. Anagent expanding inthisway can be considered highly credulous.
As such, the agent is not very cautious and the risk of error is maximal. Therefore, this

strategy is not advisable in general.

Full Meet Abductive Expansion

At the other end of the spectrum we can consider a selection function choosing all elements
of KTa (i.e, afull meet selection function). If K& isdetermined by thistype of selection
function — one that ensures y(K Ta) = K Ta for any K and o whenever KTa # () —
then @ isreferred to as afull meet abductive expansion function.

Definition 5.3.4 (Def Meet)

KO _ N(KTa) whenever KT« isnonempty
« | K otherwise
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Such a selection function will result in abelief set as attested by the following observation.

Observation 5.3.3 N(K T«) isa belief set whenever K T« is nonempty.

Thistypeof abductive expansion al so satisfiesthefirst six postul atesfor abductive expansion
over K.

Lemma 5.3.4 Any full meet abductive expansion function satisfies (K®1) — (K%6).

Moreover, it can be shown that, in general, thistype of abductive expansion corresponds to
AGM expansion.

Theorem 5.3.5 Let & be an abductive expansion function. For any formula o € £ and
belief sets K and H such that —a ¢ K and —a ¢ H, the operation & is a full meet
abductive expansion for K with respect to « iff & satisfies postulates (K1) — (K*6) for
AGM expansion over K.

This theorem requires some explanation as it may appear a bit confusing at first sight. The
referenceto abelief set H correspondsto that mentioned inthe AGM monotonicity postul ate
for expansion (K*5). Without the proviso that —a ¢ H it may occur that AGM expansion
will expand into inconsistency while we have already seen that that is not possible with
abductive expansion (unless K = K |). In such a case the full meet abductive expansion
postulateswould fail to satisfy the AGM postulatesfor expansion. Thistheorem showsthat
AGM expansion represents aspecial case of abductive expansion (i.e., afull meet abductive
expansion function).

A full meet abductive expansion function corresponds to choosing the least specific (or
trivial) abduction o for new information o with respect to K. Usingresultsfrom the previous
chapter we can see that it also corresponds to choosing an abduction logically weaker than
«. This means that the agent has minimised the acquisition of new information. Such a
strategy would be adopted by a skeptical agent or hypochondriacal agent fearing possible
“contamination” of its beliefs. It will have avoided the introduction of error but at the cost
of no informational gain besides the new information and any deductive conseguences.
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Partial M eet Abductive Expansion

The obvious strategy, outlined above and to which we now return, isto adopt apartial meet
selection function (i.e., one selecting some subset of K T «) — a compromise between the
two extremes just discussed. If K¢ is determined by this type of selection function ~,
always returning some subset of K T« for any K and o whenever KTa # (), wecal & a
partial meet abductive expansion function.

Definition 5.3.5 (Def Part)

@ _ | NV7(KTa) whenever K Ta isnonempty
* | K otherwise

Taking the intersection of the “best” elements selected by this type of function will aso
lead to a belief set.

Observation 5.3.6 Let K be a belief set and € £. Then Ny(KTa) is a belief set
whenever KT « iS nonempty.

Moreover, such a function does indeed characterise the first six postulates for abductive

expansion over K.

Theorem 5.3.7 Let & be an abductive expansion function. For every belief set K, @ is
a partial meet abductive expansion function if and only if @ satisfies postulates (K®1) —
(K®6) for abductive expansion over K.

This type of abductive expansion function does not possess a bias towards any of the
particular types of abduction explored in the last chapter and generalises both maxichoice
and full meet abductive expansion functions. The selection function ~ represents the
abductive selection mechanism in this case.

Example 5.3.1 Continuing example 5.1.1, we see that the same behaviour as described
thereisobtained, except that postul ate (K®6) dictatesthat K& = K&, sincel” - e <> (eAe)

eNe

(infact, - e <> (e Ae)). O
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5.3.2 Supplementary Postulates

Anaogously to the AGM, a selection function v can be defined by imposing an ordering <
over the elements of K Ta. Thiswill alow us to examine more closely how the selection

function -y determines the “best” elements of K T a.
(Def v) Y(KTa)={K'€e KTa: K" <K' forall K" € KTa}

If the selection function ~ picks out the elements of KT« which are best according to some
preference relation <, then we say ~y is relational over K. The resulting (partia meet)
abductive expansion function is referred to as a relational partial meet abductive expan-
sion function. We now examine supplementary postulates related to relational selection

functions.
(K®7) K2 C On(KgE,5U{a}) (Supplementary 1)

This postulate says that any belief resulting from the abductive expansion of K by o will
aso result through adding « to the abductive expansion of K by « V 3. Its purpose
will become clearer upon examining some of its consequences (particularly the factoring
condition below). Thefirst consequenceof this postul ate statesthat any adopted explanation
that o and 8 have in common with respect to K will also be adopted in explaining o Vv 3
with respect to K.

(56) K2NK§CKS,

Another consequence of postulate (K®7) states that, whenever « isincluded in explaining
a V (3 then an explanation adopted in explaining « with respect to K is aso adopted in
explaining o V 3 with respect to K.

(5.7 Ifae K8, then K& C K2,

As desired, any relational partial meet abductive expansion function satisfies postulate
(K®7).
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Lemma 5.3.8 Any relational partial meet abductive expansion function satisfies (K ©7).

The most interesting case occurs when < is transitive (which is a minimal requirement
of an ordering). In this case v is caled transitively relational over K and the resulting
@ atransitively relational partial meet abductive expansion function. A supplementary
postulate beneficial inthisinstanceis:

(K98) If ~a & K4, then K3, 5 C K (Supplementary 2)

It states that whenever -« isnot included in an explanation of a vV 3 — so any explanation
of o would suffice as an explanation of o v  — then any explanation chosen for o vV 8
with respect to K is aso chosen as an explanation for o with respect to K. Again, the
situation where a more specific explanation of « is aso chosen is not precluded. The
postulate just sets alower bound on the type of explanation chosen for o with respect to K.
One consequence of this postul ate (together with postulates (K®1) — (K®6)) is that any
explanation chosen for « v 3 are also either chosen for o or chosen for 3.°

(58) Either K3, C K& or K35 C Kjj

Another consequence of this postulate is that, if o is not included in explaining o vV 3 —
so neither is any explanation of o« — then any explanation of « Vv 3 is aso adopted in
explaining 5.

59 Ifag K2, then K8, C K

Lemma5.3.9 Any transitively relational partial meet abductive expansion function satis-
fies (K®8).

Thefollowing postul ate is the conditional converse of postulate (K ®7) and can be shown to
be equivalent to (K®8) (in the presence of the other postulates).

SWe omit the qualification that an explanation be with respect to the epistemic state K with the under-
standing that all explanations (i.e., abductions, since we are using abduction as our notion of explanation) are
relative to the current epistemic state.
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(5.10) If ~a ¢ K25 then Cn(K2,,U {a}) C K&

Together, postulates (K®7) and (K®8) imply the following important factoring condition
which can be used to give them a clear motivation.

(5.11) Either K33 =K% or K33 = K or K3, 3 = K& N K

It states that in explaining « V 3 we can either adopt the best explanation for « or the best

explanation for 5 or we can take an explanation that they have in common. This condition
also holdsfor AGM revision (cf. Gardenfors[31] p. 57).

Another consequence of these two postulatesisthat, if one were to accept the weaker form
of extensionality (i.e., condition (5.3)), thentheir presence would guarantee that the stronger
form (postulate (K®6)) holds.

Lemma 5.3.10 Postulates (K®7) and (K®8) together with (5.3) imply postulate (K6) in
the presence of the other postulates ((K®1) — (K®5)) for abductive expansion over K.

More importantly, these two supplementary postulates exactly characterise transitively
relational partial meet abductive expansion functions. This is the central result of this

section.

Theorem 5.3.11 Let @& be an abductive expansion function. For every belief set K, @ isa
transitively relational partial meet abductive expansion function if and only if & satisfies
postulates (K®1) — (K®8) for abductive expansion over K.

5.3.3 Systemsof Spheres

We now turn to a semantic construction inspired by Grove's [39] sphere semantics. This
will be important in giving a clear picture of what occurs in abductive expansion. Recall
that Grove defines a sphere to be a set of possibleworlds (i.e., a set of maximally consistent
sets of formulag) and a system of spheres centred on K to be an ordering over worlds
in which [K] (the set of worlds consistent with K) comprises the innermost sphere and
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Figure 5.1: System of sphereswith [K ] shaded.

M (all possible worlds) the outermost sphere. That is, he essentialy orders those worlds
inconsistent with K. Concentrating on AGM expansion for a moment, bring to mind the
overview (§ 2.2.2) where we pointed out that the worlds consistent with K are exactly
those consistent with both K and . Thatistosay, [K ] = [K]N[a] asshowninFigure5.1.
However, we have aready seen that AGM expansion corresponds to the case where the
agent is acquiring a minimal amount of information. In abductive expansion however, the
agent is attempting to acquire as much new, error-free information as possible and so, in

general, adds more information to its epistemic state.

Adding more information corresponds to eliminating more worlds since each world rep-
resents certain possibilities and by acquiring more information the agent is ruling out
possibilities. This means that we need to select some subset of the worlds identified by
AGM expansion (i.e., somesubset of [K|N[a]). Toachievethis, weintroduce anew system
of sphereswithin [K] itself. That is, the agent’s current epistemic state, in terms of worlds,
is partitioned. This partitioning can be thought of as an ordering over the worlds consistent
with K (cf. our remark about Grove's original ordering being over worlds consistent with
K). Thisordering can be seen as expressing a preference over K-worlds. We can consider
[K] tobean “interna” system of spheres and define such a system, centred within a set of
worlds X, asfollows.

Definition 5.3.6 Let ZS be any collection of subsets of M, (ZS C 2M¢) and X some
subset of M, (X C M,). Wesay ZS is a system of spheres centred within (or by) X if it
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satisfies the following conditions:

(IS1) ZS istotally ordered by C
(,e,foranyU, Ve ZS,U CVorV CU)

(1S2) X isinZS and, moreover, it isthe C-maximal element of ZS
(e, X €eZS and, foranyU € IS, X C U)

(IS3) If « € L and there is a sphere in ZS intersecting [«], then there is a C-smallest
spherein ZS intersecting [a]
(i.e, if [@) N X # O, then thereisa U € ZS such that U N [«] # 0 and for any
VeIS, VNnial#0impliesU CV)

Note that, for any language, it immediately followsthat ZS has a C-minimal element (i.e.,
thereissomeV € ZS suchthat V' C U foral U € S). Thisisobviousfor afinitelanguage.
To see that it aso holdsin the general case notice that for any tautology « (in fact, for any
belief o € K) we have that [K] C [«]. Therefore, the smallest sphere intersecting «,
whose existence is guaranteed by (1S3), will be the “innermost” sphere — in other words,
the C-minima € ement.

Condition (I1S1) states that the internal spheres are nested one within the other. (1S2) says
that the C-maximal internal sphere contains al (and only) the worlds in X (which will
be identified with the current epistemic state [K]). (I1S3) ensures that, when X and [a]
have worlds in common (i.e., they are consistent), for any a € L, then there is some
C-minimal (innermost) spherein ZS intersecting [a]. This sphereis denoted czs(a). This

last condition, as in the Grove modelling, correspondsto Lewis [67] Limit Assumption.

Having defined aninternal system of spheres, ZS (centred within X') we associate afunction

fzs : L — 2Me withiit, defined in the following manner.
N if [a]N X #0
fIS(a) — { F;] CIS(a) Oﬂ[-]ae]rWI% 7é (Def fIS)

Intuitively, when X and « are consistent, fzs(«) returns the most preferred worlds in X
where o holds. If o doesnot hold in any X world, fzs(«) returnsal X worlds.



5.3. CONSTRUCTIONS 117

Figure 5.2: System of sphereswith [K®] shaded.

This internal system of spheres, together with the function fzs, can now furnish a sphere
semanticsfor abductiveexpansionover K whichissimilarin spiritto that for AGM revision.
Referring to Figure 5.2, the structure inside the bold boundary marked [ K] represents an
internal system of spheres ZS centred within [K] (we can ignore any spheres outside [K]).
The innermost internal sphere (dashed ring) represents the C-minimal element of ZS. It
containsthe most preferred worlds. That is, the agent has some predispositiontowardsthese
worlds over the other worlds consistent with K. The next (outer) internal sphere contains
the worlds within the next outermost dashed ring. This continues until the outermost (C-
maximal element of ZS ) interna sphere, represented by the bold boundary, containing
exactly al the worlds in [K]. The worlds that belong exclusively to this internal sphere
(i.e., to thisand no other internal sphere) are the least preferred worlds consistent with K.
This means we adopt the subset minimal change (AGM expansion) only when there is no

preference over worlds consistent with K and a.

Overdl, the internal system of spheres can be viewed as follows. The agent believes its
actual world can be identified with one of the worlds in [K] but does not have enough
information to decide which one. However, it has a predisposition to certain worlds
consistent with its beliefs over other worlds also consistent with its beliefs. When new
information « arises the agent would like to rule out as many worlds as possible but would
like to avoid, as much as possible, eliminating the actual world from further consideration.
Therefore, depending on the agent’s degree of boldness or caution — which specifies, in a
sense, the way in which the tension between these two desiderata is to be resolved — the
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agent uses this predisposition to select those a-worldsin which it has most confidence. The
agent’s degree of boldness or caution can, in fact, be identified with the granularity of the

internal system of spheres as we shall soon see.

The possible worlds consistent with the abductively expanded epistemic state K are those
determined by frs(«) (i.e, [KZ] = fzs(a)). Thatis, those in the intersection of [a] and
the innermost sphere intersecting [¢] (i.e., [a] N czs(@)) if K and o are consistent. If K
and « are inconsistent, then [K?] issimply [K]. The formulae in the new epistemic state
can be determined by K& = th([K?]) = th(fzs(a)).®°

We can now interpret the Principle of Minima Change with respect to this semantics. In
fact, wedo so inamanner that integrates nicely with the sphere semanticsfor AGM revision.
We consider ourselves to have a system of spheres centred on the most preferred worlds
(i.e., those within the innermost dashed ring). When we perform abductive expansion of
K with respect to «, we take those a-worlds closest to the most preferable worlds. We
are, however, limited by the boundary [K] and cannot move beyond this for expansion.
Minimal change, then, is taken from the most preferred worlds. For AGM revision, in the
principal case where the new information « isinconsistent with the current epistemic state
K, we go beyond [K] in search of the closest a-worlds. The agent’s desire to avoid error
would preclude it from identifying [ K] with the most preferred worldsinitially. Itisunsure
which of theworldsin [ K] isthe actual world but does have some preference or affinity for

certain worlds over others consistent with its beliefs.

The following theorems are the central results of this section and show that the sphere
semantics suggested here exactly characterises transitively relational partial meet abductive

expansion functions.
Theorem 5.3.12 Let K € K be some belief set and ZS any internal system of spheresin

M centred within [K]. If for any a € £ we define K to be th( fzs(«)), then postul ates
(K®1) — (K®8) are satisfied.

Theorem 5.3.13 Let® : K x £ — K beany function satisfying postulates (K ®1) — (K%8).

OProperties of the function th : 2M~z — K are surveyed in Lemma2.2.14 (p. 35).
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My,

0 - Restaurant open
- . L]
| - Lightson in restaurant 0,~ C,~ |

¢ - Restaurant being cleaned

K=cCn{(0- )0 - N}

Figure 5.3: System of spheresfor example.

Then for any belief set K € K thereis an internal system of spheres ZS on M centred
within [K] which, for all o« € £, satisfies K@ = th(fs(a)).

We continue with our example on the restaurant themewhichisillustrated in Figure 5.3. In
order to keep the number of possibleworlds at amanageable level, we restrict our language
to one consisting of three propositions:

0 The restaurant is open
c The restaurant is being cleaned
l The lights are on in the restaurant

Suppose our agent currently believes that, if the restaurant is open, then its lights are on
and, if it is being cleaned, its lights are also on. The manner in which it is predisposed to
the various possible worlds can be gleaned from Figure 5.3. The agent is presented with
new information that the lights of the restaurant are on (7). According to Figure 5.3 two
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Figure 5.4: Maxichoice abductive expansion — one world per internal “band”.

worlds are preferred (shaded section), leading to the belief set K2 = Cn({o} U {i}). The
restaurant is open (and itslights are on).

Having determined sphere semantics for transitively relational partial meet abductive ex-
pansion functions we shall briefly look at those for full meet and maxichoice abductive
expansion functions. In the case of full meet abductive expansion we have aready noted
that it corresponds to AGM expansion (refer to Figure 5.1 p. 115) with the proviso that the
negation of the new information does not appear in the current epistemic state. In this case,
K% = K while K = K, . Itisclear that full meet abductive expansion corresponds to
the situation in which there is only one interna sphere, namely [K]. The agent does not
have any preference among the worlds consistent with K. This corresponds to a cautious
or skeptical agent who refusesto guess and takes hard facts only. In the case of maxichoice
abductive expansion one world (maximally consistent theory) is selected by the abductive
process. In this situation, the innermost sphere contains one world and each subsequent
outer sphere contains one more world than the previous smaller sphere. That is, there is
one possible world per “band” or “level” asillustrated in Figure 5.4. This correspondsto a

maximally credul ous agent who makes very bold conjectures.

This analysis also suggests a way of assessing how cautious or bold an agent is in a
given epistemic state. If an epistemic state is divided — recall that spheres are nested
one within the other so we mean “divided” here in the sense of how many spheres there
are — into many spheres compared to the number of worlds, then the agent will be, on
average, very bold (i.e., have a high degree of boldness; a low degree of caution). On
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the other hand, if there are few spheres compared to the number of worlds, then the agent
will be, in general, very conservative (i.e., have a high degree of caution). This gives
a qualitative view of the agent’s degree of boldness (or caution, depending on how it is
measured). There would be many ways of assessing the agent’s degree of boldness or
caution quantitatively. One could simply count the number of spheres. This would have
the advantage of giving a comparative measure not only when there are a finite number of
worlds in [K] but also in certain cases where there are infinitely many worlds consistent
with K (infinite language) but contained in afinite number of spheres. Another ideawould
be to divide the number of spheres by the number of worlds consistent with K. This
would work if | [K] |, the number of worlds consistent with K, is finite. In the case
of a maxichoice abductive expansion function f% = 1 where | ZS | is the number of
internal spheres and, for full meet abductive expansion, %
other combinations are possible. A similar idea can be used to determine the specificity of

< 1 (closer to 0). Many

an abduction in abductive expansion. Thisis not unsurprising given the clear link between
boldness and specificity. A bold agent would seek a very specific abduction and the choice
of a maximally specific abduction corresponds to a maxichoice abductive expansion. A
cautious agent would choose a less specific abduction. Choosing aleast specific abduction
leads to full meet abductive expansion (i.e., AGM expansion). The number of levels of
specificity allowed by an abductive expansion function will correspond to the number of
internal spheres.

5.3.4 Epistemic Entrenchment

It has been shown that Grove's ordering on possibleworldsis equivalent to an ordering over
the formulae of £ [39] (see dso Gardenfors [31] p. 95). Similarly, we can show that the
internal system of spheres presented in the previous section aso leads to an ordering over
formulae. Inthe AGM framework, an epistemic entrenchment ordering is an ordering over
theformulaeof £ (refer totheoverviewin§2.2.2). Intuitively, it representsapreference over
current beliefs. In contraction, less entrenched formulae are given up in preference to more
entrenched formulae; they are easier to give up. The (standard) epistemic entrenchment
ordering conditions (SEE1) — (SEED5) [33] specify an ordering in which tautologies are
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maximally entrenched and non-beliefs are minimally entrenched. Therefore, the ordering
is essentially over formulae in the current epistemic state K. Gardenfors and Makinson
[34] also consider orderings satisfying conditions (SEE1) — (SEES3) which they refer to as
expectations orderings. They are mainly used to unify the area of belief revision with that
of nonmonotonic inference.

Inalike manner, we can specify an ordering over formulaeto help determinewhich formulae
to include after abductive expansion.

Definition 5.3.7 Anordering < over £ isan abductive entrenchment ordering if it satisfies
(SEE1) — (SEE3) and condition (AE4):

(SEEl) Foranya, B, ye L,ifa< pand g < ~ythena <~y (transitivity)

(SEE2) Foranya, g€ L,if{a} - gthena < g (dominance)
(SEE3) Foranya, e Lia<aAnporf<aAf (conjunctiveness)
(AE4) When K #K,,ac Kiffg<aforalpgeL (maximality)

Condition (AE4) specifies an ordering < that is essentially over formulae that are not
believed. Anabductiveentrenchment orderingis, then, an expectationsorderinginwhichall
beliefs are maximally entrenched. Like an expectations ordering, abductive entrenchment
iIsatotal preorder. We note some properties of thistype of ordering.

Lemma 5.3.14 If < satisfies postulates (SEE1) — (SEE3) and (AE4) then it also has the
following properties:

() fae Kand 8 ¢ K then 8 < «

(i) When K # K| ,if-ra€ Kthena < gforal g e L

(iii)) When K # K, ,if KU {a} F g, thena < 3.

Condition (i) tells us that beliefs, and only beliefs, are strictly maximally abductively

entrenched. They are maximal elementsof theordering and all areequally entrenched. This
gives us away of extracting the current epistemic state K from an abductive entrenchment
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ordering; just look at the maximally abductively entrenched formulae. The second condition
says that disbeliefs are minimally abductively entrenched athough they need not be the
only minimally abductively entrenched formulae. Condition (iii) showsthat a strengthened
version of the dominance condition for expectations orderings (SEE2) results from the
addition of (AE4). Dominance holds with respect to the current epistemic state, not only
with respect to the logic. Condition (ii) can also be seen to result from the following
interesting property of expectations orderings and condition (i).

Lemmab5.3.15 Let < be an SEE relation satisfying (SEE1)—(SEE3). For any o € L,
either o < gforall g € Lor —a < gforall g€ L.

It saysthat, in an expectationsordering, either aformulaor itsnegation (or both) isminimally
ordered, for any formula of the language.

Intuitively, the inequality o <  can be thought of as expressing that it is no more difficult
to assume 3 than it isto assume « in an abduction. We now consider conditions specifying
how to move backwards and forwards between an abductive entrenchment ordering < and
an abductive expansion function & over an epistemic state K. The following condition
determines an abductive entrenchment ordering < given an abductive expansion function
@ and abelief set K.

(C <) a <g piff eéither a ¢ K, s0r K-aAf

The subscript @ servesto emphasi sethat the abductive entrenchment ordering <, isderived
from an abductive expansion function & (assumed rel ative to an epistemic state K'). Weomit
it in future discussions and in the proofs unless this connection needs to be made explicit.
This condition can be motivated as follows. Going from right to left and concentrating
first on the latter part of the right-hand side, if both « and 3 are currently believed, then
they will be both maximally abductive entrenched by postulate (AE4) and therefore equally
entrenched, sotrivialy a < 3. Shifting to theformer part of the condition on the right-hand
Side, there are two possibilities to consider: either 3 € K or g ¢ K. Clearly, a is not
believed initially by postulate (K®3) and since o ¢ K?avﬁﬁ. If 3 isbelieved initialy, then

certanly a < g by postulate (AE4). However, if 3 is not believed, then all we know is
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that o does not occur in the abductively expanded belief state and therefore oo cannot be
strictly more abductively entrenched than 3, hence o < 3. Going from left to right can
best be motivated by considering the contrapositive (i.e., if o € K ?avﬁﬁ and K t/ a A (3,
then 8 < a). If aisin the abductively expanded belief state either it wasinitially believed
(o € K)oritwasneither believed nor disbelievedinitidly (o, —a ¢ K). If o wasbelieved,
then by the latter part of the condition, 5 was not believed and therefore 3 is strictly less
entrenched than «. On the other hand, if « was neither believed nor disbelieved initially,
then the fact that it is now currently believed (in the abductively expanded belief state)
meansthat 3 cannot be believed in the abductively expanded belief state (nor wasit initially
believed) and therefore, again, 3 is strictly less entrenched than o since « was assumed in
preferenceto .

The next condition alows us to determine an abductive expansion function &< for a
particular epistemic state K given an abductive entrenchment ordering <.

(Co) B € K< iff éither e Korboth—a ¢ Kanda — -3 < a — 3

Again, we omit the subscript < unless necessary. We can motivatethis condition asfollows.
Goingfirst fromright toleft, thefirst part of the condition saysthat, if 5 iscurrently believed,
then it will also be believed in the abductively expanded epistemic state (this follows from
postulate (K®3)). The latter part of the condition saysthat, if abduction is possible, then 5
will beincluded in the abductively expanded epistemic state if the information in 3 relative
to « is (strictly) easier to assume than that in - relative to «. Going from left to right
can be motivated by considering the contrapositive (i.e., if 5 ¢ K and either —a € K or
a— -0 £ a— 3, then g & KP). It saysthat, if §isnot already believed and, either
abduction is not possible (i.e., « is not “explainable”) or the information in 3 is no more
assumabl e than the information in =3 with respect to «, then § should not be assumed in

explaining a.

The following theorems show the adequacy of these definitions. The first shows that an
abductive expansion function, for a particular K, defined from an abductive entrenchment
relation using condition (Ca®) has the desired properties.

Theorem 5.3.16 Let K € IC be some bdlief set and < an abductive entrenchment for K.
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If for any o € £, we define K& using (C@®), then the operation & so defined satisfies
postulates (K®1) — (K®8) aswell as the condition (C<).

The next result shows the converse. We can use an abductive expansion function & and
condition (C<) to construct an abductive entrenchment relation with therequisite properties.

Theorem 5.3.17 Let & : K x £ — K be any function satisfying (K1) — (K®8). Then,
for any belief set K € IC, if we define < using (C<), then the relation < so defined is an
abductive entrenchment relation (i.e., it satisfies (SEE1) — (SEE3) and (AE4)) and also
satisfies condition (C®).

The following two results are very important and, as far as we know, the corresponding
results have not been shown for epistemic entrenchment.’* They further highlight the
appropriateness of conditions (Ce) and (C<). It isimportant to note that these results are
relative to a belief set K. Thisis because an abductive entrenchment relation < isrelative
to abelief set K and, for different belief sets, we have different abductive entrenchment
relations. The first result states that, if relativeto a belief set K we start with an abductive
expansion function & and determine the related abductive entrenchment ordering <, using
condition (C<) before applying condition (Ce) to obtain a new abductive entrenchment
function &<, , then the resulting function is exactly thesameastheorigina (i.e., ® = ®<,)
relativeto K.

@5@

Theorem 5.3.18 Let K € K beany belief set. Foranya, € £, K& = Ka

Thenext theorem showstheanal ogousresult, having started from an abductive entrenchment
ordering and applying condition (C®) followed by condition (C<) to obtain the same
abductive entrenchment ordering (i.e., <=<g S) relativeto K.

Theorem 5.3.19 Let K € K beanybelief set. Forany o, 8 € £, a < Biffa <g_ B.

In light of these results, we can view abductive entrenchment as an extension of epistemic
entrenchment. In fact, both are different types of the more general expectations ordering

11 am indebted to Abhaya Nayak for stressing the importance of being able to prove these results.
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with epistemic entrenchment essentially ordering beliefs and abductive entrenchment es-
sentially ordering non-beliefs. Therefore, given afull expectationsordering over abelief set
K (i.e., one not just ordering beliefs or ordering only the non-beliefs), we can use that part
of it which orders the elements of K to determine AGM contraction (and revision) and that
part ordering the non-beliefs to perform abductive expansion. Thisis quite an interesting
result in view of the suggested links between expectations orderings and nonmonaotonic
inference [72] which we shall return to shortly. It shows what use may be made of two
different “parts’ of an expectations ordering for the purpose of belief change. Moreover,
the extension of the Grove sphere semantics into the internal part of K] has removed an
asymmetry while imbuing these extended spheres with a natural interpretation.

Example 5.3.2 We continue the example used to illustrate the sphere semantics. The
agent’s predisposition would be reflected in an abductive entrenchment including the fol-
lowing relative orderings:

l——-o0o<l—o

l——c=l—c
wherea = fmeansa < fand g < «. Using condition (Co) and supposing—I, —o, ¢ ¢ K
initially, it iseasy to determinethat o € K;? andc ¢ K.

Suppose furthermore, that if the lights are on and there is a sign on the door saying the
restaurant is being cleaned (s), then we cannot abduce that the restaurant is open. This
can be expressed by the following inequalities in the same ordering as above:
INs—>—0=INs—o0
INs—= c<INs—c

In this case, using the same K, wehavec € K5 buto ¢ K2.. O

In the section on sphere semantics we indicated how it is possible to assess the degree
of caution or boldness of an agent in a particular epistemic state. These observations
can be carried over to abductive entrenchment orderings. However, instead of examining
the number of spheres, it isimportant to examine the number of “ranks’ in the abductive
entrenchment preordering. Similar remarksto those in the previous section can be made on
quantitatively or qualitatively assessing the degree of caution or boldness.
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Abductive entrenchment can aso be considered an embodiment of the notion of positive
coherence. It tells us how formulae positively cohere with one another. An inequality
a — - < a — [ can be thought of as saying that 5 coheres better with « than does
- (i.e., « and 3 positively cohere). That would explain why 3 should be embraced along
with « when new information « is acquired. On the other hand, epistemic entrenchment
is an expression of negative coherence. In an epistemic entrenchment ordering, o < 3
is taken to mean that, if a choice needs to be made in giving up « or 3, then prefer to
give up . Inthe (C—) condition, the inequality a < o Vv § expresses that o negatively
coheres with 5. Thiswould explain why belief in 5 won't be affected when the belief in o
is abandoned. Therefore, we can view abductive entrenchment as providing an el ement of
positive coherence and epistemic entrenchment an element of negative coherence. In the
AGM, expansion does provide an element of positive coherence but it is very weak. Here
positive coherence is used to determine which are the new beliefs and negative coherence
which beliefs to abandon (new non-beliefs). They complement each other as do expansion
and contraction. These remarks can aso be carried over to the sphere semantics to some
extent. The internal spheres can be thought of as expressing which worlds cohere better
with each other. Then, when new information is received, those cohering best with each
other and the new information are retained.

5.3.5 The Relationship Between Internal Spheres and Abductive En-
trenchment

We highlighted the fact that the internal sphere modelling for abductive expansion is
essentially an ordering over those worlds consistent with the current beliefswhile abductive
entrenchment essentially ordersformul ae representing non-beliefs. Thefollowing condition
specifies how to translate between the two modellings.

(AEZS) Forevery o, € L, a < gif and only if either 3 € K or both o ¢ K and

czs(—a) C czs(—B)

where czs(—a) denotes the innermost internal sphere containing —a-worlds if —« is con-
sistent with K and [K| otherwise. The appropriateness of this condition is shown by the
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following result.

Theorem 5.3.20 Let K € I be a consistent belief set. If < is an abductive entrenchment
ordering for K and ZS an internal system of spheres centred within [ K], then an abductive
expansion function determined from < by condition (C'®) and onefromZS via fzs arethe
sameif and only if condition (AEZS) is satisfied.

A similar condition holds for Grove's sphere modelling and epistemic entrenchment (see
[39] pp. 164 — 1672, [31] p. 95 and [100]).

5.3.6 Weakening Extensionality

Of the basic abductive expansion postul ates presented in this chapter perhaps strong exten-
sionality can be singled out as the most contentious. When considering epistemic states as
belief sets this postulate actually makes good sense due to the Principle of Irrelevance of
Syntax. Two formulae that are logically equivalent with respect to the current epistemic
state will have the same potential abductions. Soitisonly fair, if syntax isto be considered
irrelevant, to choose the same abduction(s) in both cases. The Principle of Irrelevance
of Syntax, however, can be imposed on a weaker level — with respect to the underlying
logic itself as is the case in AGM contraction and revision. This would especialy seem
to make more sense if we are representing epistemic states as belief bases rather than the
deductively closed belief sets since more “syntactic relevance” is given to those formulae
explicitly present in the base over any implicit consequences.

Adopting weak extensionality (condition (5.3) (p. 106)) in place of strong extensionality
clearly requires a modification to the existing constructions. Confining our attention to
the construction based on selection functions applied to maximal consistent supersets of a
belief set K implying new information «, we see that a single selection function for each
belief set K applied to K Ta does not suffice. This coincides with strong extensionality
(see the proof to Theorem 5.3.7). What we require is a different selection function vk 4
for each belief set K and logicaly distinct o. That is, given a belief set K there will

2Note however, that the rel ationship in Grove's paper is not with epistemic entrenchment but an alternative
ordering over formulae proposed by Grove [39].
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be a different selection function for each different truth functional proposition o applied
to KTa. Thereisin fact some similarity to Levi’s deliberate expansion. The elements
chosen by the selection function v, ,, can be considered an ultimate partition. However,
under the current proposal these elements are not subjected to scrutiny through evaluation
of their epistemic utility as in deliberate expansion. In this light, our original proposal
makes more sense. The elements of K T« can be considered the ultimate partition® and
the selection function vy, , returns those elements with highest epistemic utility. In terms
of the internal sphere modelling, we can consider each distinct truth functional proposition
« as partitioning [ K| into internal spheres. Thereisno onefixed internal system of spheres
for each K. There would be many sets of internal system of spheres for K and the one
to be adopted depends on the new information. Note, however, that by Lemma 5.3.10 if
the supplementary postulates (K®7) and (K®8) for abductive expansion over K hold, then
strong extensionality results.

5.4 Default Reasoning

The AGM postulates are intended to expound in epistemic terms how an agent’s beliefs
change when the agent is confronted with new information. That is, they are expressed in
terms of acurrent epistemic state, an epistemicinput and the modified epistemic state. Their
motivation is entirely with epistemic considerations in mind. Makinson and Gardenfors
[34, 72] link belief revision to non-monotonic inference and, in particular, full meet AGM
revision to a THEORIST style default logic [104, 102]. We consider this type of default
logic but without the notion of constraints. Using this connection they motivate thistype of
default logic in epistemic terms. It is our contention here that the epistemic interpretation
given to defaults can be better handled using abductive expansion. This is not entirely
surprising given the similar nature of thistype of default logic and abduction expansion. We
start by reviewing the devel opment from AGM belief change operations to non-monotonic
inference (and default logic) and back again.

In § 2.2.2 we saw how the AGM operators, described via postulates, can be modelled in

13| evi’s ultimate partition is usually smaller than K Ta.
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various ways. One important construction was that of epistemic entrenchment; a total
preordering of the formulae in the language in which tautologies (or logica truths) are
maximally entrenched and non-beliefs minimally entrenched. Essentialy, it isan ordering
of the agent’s current beliefs. Such an ordering satisfies the five postulates (SEE1) —
(SEE5) (refer top. 39). Intuitively, lessentrenched formul ae would be removed in favour of
more entrenched formulaein belief contraction. Epistemic entrenchment can be considered
an expression of the epistemic importance of different formulae. It is possible to provide
conditions specifying which formulae are to beincluded in acontracted or revised epistemic
state given the original epistemic state and the epistemic input. Such acondition was given
for belief contraction by Gardenfors and Makinson [33] and the corresponding condition
for belief revision may be determined using the Levi Identity (K = (K-,)1).

nle%

The next development was to notice that a belief revision operator * could be used to
determine conditions on anonmonotoni ¢ consequencerel ation 4 (and viceversa) [34, 72].
This was achieved via the following definition.

Definition 5.4.1 ap gifandonlyif 3 € K

The resulting tranglations turn out to be quite natural conditions on nonmonotonic conse-
guence relations. Many in fact have analoguesin common nonmonotonic logics. A natural
progression was to apply the epistemic entrenchment construction to nonmonotonic conse-
quence. Gardenfors and Makinson [34] noted that while the restriction that tautologies be
maximally entrenched and non-beliefs minimally entrenched could be justified in terms of
belief contraction and revision, they were not necessary when considering nonmonaotonic
consequences. This led them to drop the postulates of minimality and maximality for
epistemic entrenchment and define the more general expectations ordering. Expectations
orderings need satisfy only postulates (SEE1) — (SEES3).

Intuitively, an expectationsordering can beinterpreted as* degrees of firmness’ [34] (p. 209)
(or “degrees of defeasibility” [34] (p. 209), as we shall see). It can be used in conjunction

14\We also write C'(I") to denote {a : Tk a}.
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with the following condition [34] to determine nonmonotonic consequences. *°
ap yiffethrakFyora — vy <a—7y

Observethat thelatter part of thiscondition correspondsto theinequality in condition (Ca).
More importantly, Gardenfors and Makinson [34] suggested a way of encoding defaults
using expectations orderings and the latter part of this condition. We shall illustrate with
the following simple example.

Example 5.4.1 Suppose our language has the following predicates:

G(z): Thegrasswas wet on day x
S(z): Thesprinkler was on during day =
W (x): Water restrictions were in place on day

Now suppose we have two default rules:

(i) “ Thegrassiswet normally due to the sprinkler” , and
(i) “ Sprinklers cannot normally be used when water restrictions are in place’
In an expectations ordering, these two defaults coul d be expressed by the following inequal -
ities (using the inequality given in the condition above)
G(a) = —S(a) < G(a) — S(a)
W(z) — S(a) < W(a) = —S(a)
for certain constants a in our object language representing days.

Now suppose on one day we noticethat thegrassiswet despitethefact that water restrictions
are in place. What might we conclude? Evidently, this depends on the relative ordering
of certain formulae in the expectations ordering. The following possibility may seem
appropriatein this case.

(G(a) A W(a)) = =S(a) < (G(a) A\W(a)) = S(a)

15Gardenfors and Makinson [34] provide a number of other, equivalent conditions, but this one is more
suitable for our purpose here.
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That is, the sprinkler could still be used despite the fact that water restrictions were in
place. O

This example shows how nonmonotonicity can be achieved and defaults expressed through
expectations orderings. Actualy, Williams [131] notes. “[u]sing results from Gardenfors

and Makinson [34] together with the observation that setting normal defaultsto supernormal

T:a—p
a—f !

defaultsby way of %ﬁ = it can be seen that expectation orderings are asexpressive
as normal defaults with linear priorities” We can have a default T;‘T‘;ﬁ by ensuring the
inequality o — -3 < a — (3 in an expectations ordering. Williams[131] achieves this by

using what is known as a cut (see Rott [113]).

Thisbringsusto the crux of the problem wewishto addresshere. Makinsonand Gardenfors
[72] give an interpretation of THEORIST's default logic [104, 102] (see § 3.3.1 p. 65) in
terms of full meet revision [2, 31] based on the above ideas.'® They concentrate on the
skeptical inference operation

C(F) =({Cn(FU D) : Disamaxima subset of A consistent with 7}

They suggest a correspondence between full meet revision K and the skeptical inference
operation C'(«v).}” They notethat K* C C(«) athough the converseis not truein general.

We first note the following property of AGM revision.

If 6 € K, thena - € K

Now suppose we would like the presence of 3 in K to be due to some default rule Tof’T_;ﬁ.
This property tells us that we would have initially believed o — (. Returning to our
example above, if we would like to believe S(a) on the basis of G(a) through our first

default rule, then we would need to believe
G(a) — S(a).

But thisisessentially our default rule (expressed with the help of material implication). Itis
our contention that thisissomewnhat unintuitive. It suggeststhat defaultsmust, at some stage,

16Recall that we do not consider Poole’s[102] extension concerning constraints.
UThat is, I restricted to the singleton {a}.



5.4. DEFAULT REASONING 133

possess the status of full beliefsin order to be used. Thus, defaults are el evated to the same
statusasall other beliefs. Infact, asfar asthe epistemic state of the agent isconcerned, these
“defaults’ are indistinguishable from other beliefs. We maintain that defaults and beliefs
should not possess the same epistemic status — that some distinction should exist between
them — and suggest abductive expansion and its construction abductive entrenchment as a
way of making this distinction clear.

In Gardenfors and Makinson's proposal, the fact that defaults are at some time beliefs is
clearly borne out. There, as evidenced by the definitions above, K, in a sense, represents
the default set.® They justify their stance: “[f]or so long as we are using a belief set K,
its elements function as full beliefs. But as soon as we seek to revise K thus putting its
elements into question, they lose the status of full belief and become merely expectations,
...”. Onthisaccount, there appearsto be no difference between defaults and beliefs up until
the point where beliefs are altered. Intuitively, it would seem useful for an agent to better
distinguish between beliefs or facts on the one hand and defaults on the other. Beliefs/facts
would have a privileged epistemic status; only being retracted when absolutely necessary.
It is doubtful whether one would afford defaults the same epistemic status. Therefore, we
shall provide an epistemic interpretation of defaults in terms of an abductive expansion
operator which we fedl is more appropriate.

Note alsothat THEORIST type default reasoning is better modelled by abductive expansion
in the sense that facts (i.e., the agent’s firm beliefs) are never given up, which is aso the
case for the agent’s beliefs in expansion. In fact, THEORIST’s defaults sit separately in A
and are not conflated with the facts . Gardenfors and Makinson are conflating facts and
defaultsin the belief set K. Abductive expansion makes this distinction quite clear.

Our god isto find an epistemic model for defaults which distinguishes them from beliefs
thus, in our opinion, more accurately reflecting their epistemic status. Williams [131]
makes an interesting distinction between the formulae in an expectations ordering.’® She
essentialy claims that those formulae more deeply entrenched are beliefs and the formulae
less entrenched than the beliefs but not |east entrenched are defaults. The least entrenched

18Presumably, the facts are also part of the default set.
BActually, she deals with expectation rankings — a particular modelling of expectations orderings.
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formulae are neither beliefs nor defaults. This distinction can be easily modelled using
abductive entrenchment.

Using the same encoding for defaults as before but adopting an abductive entrenchment
provides a nice correspondence with Williams' [131] claim, noted above, that defaults are
less entrenched than beliefs. Moreover, it allows amore direct rendering of Poole's default
logic in epistemic terms. It can be seen that the facts F correspond to the current beliefs
K held by the agent.?® The defaultsin A correspond to non-beliefs and can be encoded in
abductive entrenchment as noted above.

Since an abductive expansion function maintains consistency, it is clear that it represents
some choice over defaults (for defaults may conflict). Infact, K& determines an extension.
Actually, the situation is slightly more complicated because different abductive expansion
operators are capable of expressing situations in which no defaults are applied?* through
to situations in which a maximum number of consistent defaults are applied. Restricting
our attention to abductive entrenchments where a maximum number of consistent defaults
from A are encoded® however, results in abductive expansion operators which calculate
extensions. Thislends credence to Williams' [131] claim that expectations orderings are as
expressive as hormal defaults with linear priorities.

We seethe contents of K asthosethingsthe agent really believes. What the agent considers
to be “normally the case” or “usualy true’, are not regarded in the same light but reside
outside K and are ordered among the non-beliefs.

Makinson and Gardenfors [72], on the other hand, essentially consider K to represent the
defaults (and supposedly thefactstoo), whiletheinterpretation given here associates K with
the facts and appropriately ordered non-beliefs with defaults. In this way, the epistemic
status of facts and that of defaults are not conflated and their role in belief change, and
nonmonotonic inference for that matter, becomes more explicit. Thisallowsamodelling of
more credulous forms of nonmonotonic inference than the skeptical inference operations
considered by Makinson and Gardenfors. We a'so avoid the full meet property of revision

2\We note however that while K is deductively closed, F need not be. This creates no real problems,

2L Apart, of course, from trivial ones like T:2=22¢ — if one considers them defaults also — and deductive
consequences.

2?Because such situations more accurately reflect what is actually intended by A.
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which is known to have undesirable consequences.

Perhaps, moreimportantly, thislink between abductive expansion and default reasoning can
be used to provide a “semantics’ for default reasoning. We can use the sphere semantics
for abductive expansion discussed in Section 5.3.3 to model THEORIST style default
reasoning. A default T(;"_j;ﬁ (or & — —f3 < o — [3) exists under this particular modelling
provided that ([a] N czs(a)) N [-8] = 0). That is, provided no —3-worlds coincide with

the closest a-worlds. Intuitively, al the preferred a-worlds are g-worlds; we do not want

—3 among our preferred a-worlds. Of course, it is aso necessary that —3 is not initially
believed.Z

5.5 Extracting Abductions from Abductive Expansion

Our main concern in belief revision is determining the nature of epistemic states as they
undergo change. In abductive expansion, as we have seen, the concern is to determine
which beliefs should be incorporated into the current epistemic state using an abductive
strategy to identify the appropriate expansion given new information. In so doing however,
the process of abduction has become “internalised” in the belief expansion process and
therefore, the actual abduction(s) made to effect a change in epistemic state is, in a sense,
lost. That is, it may not be possible to determine the abduction selected for a belief set
K and epistemic input « in the sense of Definition 5.1.1 (i.e., it may not be possible to
identify ). It is possible however, to determine, to a certain extent, an abduction capable
of doing the job. Examining the proof to Theorem 5.2.1 gives us an idea of how this can
be done. All we need do is examinethe set K \ K and determine a finite axiomatisation
of it.?* The conjunction of the elements of this finite axiomatisation will suffice as an
appropriate abduction. Infact, whenever - ¢ K and abductive expansion actually occurs,
it might make more sense to examine the set K& \ K provided the two do not coincide
(i.e, K& = K givesthat K& \ K = ) as this set will be smaler. In the case where

23Thiscan be obtained using the result of Section 5.3.5 rel ating epistemic entrenchment to sphere semantics.

20Oneis sureto exist given our finite language assumption which ensures all abductions are expressiblein
the object language.
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K} c K weknow that an abduction beyond the trivial o was selected and that it will
occur in K& but not in K. There may of course be many ways to (finitely) axiomatise
K9\ K (or K& \ K[) and here we may impose restrictions like those discussed in the
previous chapter to obtain abductions which are, for instance, minimal relative to some

syntactic restriction, or of some level of specificity etc.

Example5.5.1 Suppose we extend Example 5.3.2 (p. 126) dightly so that K = Cn({o —
l,c — 1,0\ ph — e,co — o}) where co means that the cook is present in the restaurant
and ph that | purchased a hamburger, at the restaurant. Now imagine the receipt of new

information e, that | am eating a hamburger, to result in the following abductive expansion

K& = Cn(K U{o,ph, co,e}).
A possiblefinite axiomatisation of K€ \ K iso A ph A co Ae.
However, if we specify that the abduction should be conjunctive minimal, then co A ph will
do because Cn(K U{coAph}) = Cn(K U{o, ph, co,e}). Onemust keep in mind however
that it may not always be possible to find an abduction of the desired type. O

An interesting question at this point is whether, due to the postulate of weak extensionality,
we should identify the same abduction for two syntactically different epistemicinputswhich
are equivalent relative to the current epistemic state. Weak extensionality does not specify
that the abductions should be the same because it is concerned with the nature of epistemic
states. One could argue that they should be, through the Principle of Irrelevance of Syntax

but we do not pursue the issue further here.

5.6 Restricting Possible Abductions

In this chapter our aim has been to furnish a genera framework for abductive expansion.
That is, to characterise expansion of an epistemic state by new information through all man-
ner of abductions. As such, we have only considered the very basic definition of abduction
(see Definition 4.1.2) and only added postulates that give a more well-behaved abductive
process. It is possible however, to impose further restrictions on potential abductions. One
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could specify that they be minimal, non-trivial or of a certain specificity for instance. This
would have the effect of further reducing the possible abductive expansion functions. This
would manifest itself in the form of additional postulatesand, moreimportantly, restrictions
on the constructions. In fact, we have already seen some examples. If we specify that the
abductions adopted should always be (logically) minimal, or least specific, then afull meet
abductive expansion function results (i.e., AGM expansion). If, on the other hand, we
specify that abductions should be maximally specific, then we have maxichoice abductive
expansions (i.e., there is one world per internal “band” and a similar restriction results for
abductive entrenchment). We can also envisage other interesting restrictions. Although we
discounted abducibles at the outset (p. 102), it is possibleto enforce such arestriction if one
so desires.?® That is, in order to introduce new information o, we must find an abduction 3
consisting entirely of abducibles and then take the deductive closure of K and 5. In terms
of abductive entrenchment we can see that, for a belief set K and new information o, we
must guarantee a formula 5 composed entirely of abducible propositions (or predicates)
such that, in the ordering, (8) « — =8 < a — 3 and (b) for any newly introduced belief
~v, it must be a consequence of 3 (i.e., 8 < v viaLemma5.3.14 (iii) for any v € £ where
a — =y < a — ). Other cases can be handled in asimilar manner and restrictions can be
tranglated into the various constructions. The important point to note however isthat, if one
wishes to restrict the notion of abduction, to capture a more intuitive notion of explanation
for instance, then thistranslatesinto restrictions on the admissi bl e abductive entrenchments,
internal spheres etc. (i.e., essentially a restriction on the admissible abductive expansion
functions). Of course the same epistemic state may be achieved even though aternative
abductions were sel ected.

5.7 Summary and Discussion

This chapter has focussed on modelling the claim that it is more natural for agents to seek
an explanation or reason for new information and incorporate that explanation together
with the new information when modifying their epistemic state. We concentrated on the

process of expansion for anumber of reasons. Firstly, in adopting Levi’s commensurability

2This can also be considered arestriction to Stickel’s [123] predicate specific abductions.
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thesis, we consider expansion and contraction to be the fundamental forms of belief change
and that any revision can be achieved through a series of expansions and contractions.
Moreover, when adding new information through an abductive process it makes more sense
to consider expansion than revision becauseit isclosein spirit to abduction. Determining an
explanation by abduction must be donerel ative to some domain theory and the natural choice
in belief revisionisto identify thiswith the agent’s epistemic state. If the new information
IS consistent with the epistemic state, then there is no need to resort to revision to effect
the change. On the other hand, if the new information is inconsistent with the epistemic
state, then no abduction is to be found and so there is no explanation to suggest itself for
either expansion or revision. Thissituation is better handled through contraction to remove
impediments to the abductive process and subsequently applying abductive expansion. We
shall come back to thisissue in Chapter 7. Abductive expansion is also an excellent way
of capturing the idea that an agent is interested in acquiring new, error-free information in
amanner dictated by the agent’s degree of boldness or caution. The account of expansion
offered by AGM results in the acquisition of little new information and isin fact a special
case of abductive expansion. Moreover, it isthe only AGM belief change operation where
the Principal of Minimal Change can be interpreted with respect to set inclusion. In this
chapter we have provided a normative account of an abductive expansion operation in the
spirit of the AGM.

Our account began with a definition of the belief change operation in question. This was
followed by rationality postul atesincluding some supplementary postul atesthat represented
a more well behaved abductive process. Three constructions, guided by those for AGM
contraction and revision, were presented: selection functions over maximally consistent
supersets of K implying o, systems of spheres centred within [K], and abductive entrench-
ment orderings. It was shown how the Principle of Minimal Change could be interpreted
with respect to the sphere modelling in a like manner to AGM contraction and revision.
Moreover, the agent’s degree of boldness or caution can be reflected in the sphere modelling
or other constructions. It can also be seen that abductive expansion embodies an aspect of
positive coherence (explanatory coherence) whereas contraction embodies that of negative
coherence. In fact, the constructions detail which propositions cohere (positively or nega
tively). Note however, that one must be very careful with thisinterpretation. Coherentism
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(and foundationalism for that matter) is concerned with the nature of epistemic states and
not their dynamics. However, belief sets, as models of epistemic states, are largely devoid
of structure and constructions such as the sphere model ling or entrenchment can be viewed
as adding structure to the belief set (albeit for the purpose of epistemic dynamics). This
view, of using asystem of spheres or entrenchment to add structure to belief sets, is adopted
by some approaches to iterated belief change [81, 83].

The process of abductive expansion can also be applied to the problem of nhonmonotonic
reasoning. In particular, it can be used to give an epistemic interpretation to default
reasoning. This clearly reflects the epistemic status of defaults. It in fact alows a more
direct rendering of the default logic underlying THEORIST (without constraints) than that
proposed by Makinson and Gardenfors [72]. This is not altogether surprising given the
similar motivation behind abductive expansion and THEORIST.

We presented a general framework for abductive expansion but further restrictions can be
considered. These lead to restrictions on the admissible abductive expansion functions
which manifest themselves as restrictions on the admissible internal systems of spheres or
abductive entrenchments. One might consider restrictions in an attempt to capture a more
intuitive notion of explanation than that afforded by abduction. Another topic considered
wasthat, in abductive expansion, the abductive process has become internalised to acertain
extent. It is possible however to identify abductions capable of effecting the resulting
change especialy if one restricts their attention to certain particular types of abduction.
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Chapter 6

Abduction and Contraction

The scientific spirit requires a man to
beat all timesready to dump hiswhole
cartload of beliefs, the moment expe-
rience is against them.

Charles Sanders Peirce, [96] 1.55

The process of contraction isessentially concerned with theremoval of abelief inwhichthe
agent no longer has confidence. Achieving this may involve the removal of further beliefs
that, together with others, logically entail the formula to be removed. That is, certain
reasons for holding a belief may need to be removed in order to retract the belief. Failure
to do so would mean that the belief which the agent wishes to expunge is maintained.

In the introduction we noted that abduction could be used to identify culprits to remove
in contraction. We need to determine the contracted state I' and set of culprits W for «,
the information to be removed. If wecanfindal suchthatl t/ o (and ' C K) then we
can identify Cn(I") with the contracted epistemic state K, and W represents those beliefs
(“culprits’) to beremoved from K (i.e. K = K, UW or, dternatively, K, = Cn(K \ V).
Abduction can be used to identify these culprits provided K # K,. A method based
on arelated ideais investigated by Aravindan and Dung [6] although they concentrate on
epistemic states represented as belief bases rather than belief sets. They perform abduction
with respect to an immutable set K’ ¢ K which is assumed not to entail ««. Abduction
of a with respect to K’ determines which beliefs to remove from the belief base K. We
review thiswork later in the chapter. We do not concentrate on this aspect of abduction here
because existing techniques are capable of determining ' and W. This simply represents
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Figure 6.1: Sphere semantics for full meet AGM contraction.

away of interpreting them abductively when K is consistent. Instead, we concentrate on
an alternative form of contraction to that proposed by the AGM before investigating some
other issues.

In the previous chapter we noted that abductive entrenchment used for abductive expansion
and epistemic entrenchment used for contraction complement each other. Expansion and
contraction would be expected to complement each other in a number of ways. In fact,
we could even go so far as to expect them to be duals of one another. After al, we are
taking them to be our two primitive belief change operations through the commensurability
thesis. However, considering our account of abductive expansion and AGM contraction,
thereis at least one areain which this duality does not appear to be borne out. Casting our
minds back to maxichoice abductive expansion § 5.3.1 we noted that the resulting expansion
consists of a consistent complete theory containing « (i.e, a single a-world, m € [a] see
also Figure 5.4, p. 120). This corresponds to an abduction which is maximally specific,
(i.e., hypothesising as much as possible). One would expect the dual operation, full meet
contraction, to result in giving up as much as possible — whenever something is to be
given up — that is, al but the logical truths to which an agent is always committed (i.e.,
K, = Cn(0)). For AGM contraction thisis not the case in general (see Figure 6.1 — we
consider, of course, the principal case where o € K and I/ «). However, thereis aform of
contraction suggested by Levi [65] that possesses this property and we shall take alook at it
now (particularly its semantics). In this sense at least it would appear to be an appropriate
dual to abductive expansion.
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6.1 Levi Contraction

Levi’s[65] contraction providesan interesting alternativeto AGM contraction. In particular,
because it does not satisfy the contentious property of Recovery (K.)! = K (where
a € K). Hansson and Olsson [46] have attempted a formalisation of this contraction. We
concentrate on thisformal version here.

The motivation behind Levi’s proposal stemsfrom the construction of an AGM contraction
function based on maximal consistent subsetsof K failingtoimply « (i.e.,, K 1 a). Elements
of K 1« have the following property [2]

Cn(K'U {—a}) isacomplete consistent theory for any K' € K 1 a.
These are not the only belief sets having this property and Levi claims we should consider
the wider class of belief sets satisfying this property. He refers to such belief sets as
saturatable contractions of K by removing c.

Definition 6.1.1 [46]

A set K' isa saturatable contraction of K by removing « if and only if
(i) K'=Cn(K")

(i) K C K

(iii) Cn(K'U {—a}) ismaximally consistentin L.

Welet K 1l o denote the set of saturatable contractions of K by removing .. Of course, all
maximal consistent subsets of K failing to imply « are also saturatable contractions of K
by removing « although the converse does not hold in general.

Lemma6.1.1 [46] Let K bealogically closed subset of £, andlet o € £. Then K Lo C
Kl a.

Hansson and Ol sson then apply aselection functiony to K LI« and investigate constructions
inthespirit of AGM’ s partial meet, full meet and maxichoice contractions. Beforereviewing
some of these results we briefly examine some postulates that such a contraction function
would be expected to satisfy. In the following we denote the Levi contraction of a belief
set K by epistemicinput o as KY.
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6.1.1 Postulates

It turns out that the various constructions will satisfy avariety of the following postul ates.

(K€1) For any sentence « and any belief set K,

K9 isabelief set (closure)
(K®2) K CK (inclusion)
(K®3) Iftfa,thena & KS (success)
(K®4) Ift-a« 6,then K = Kj (extensionality)
(K®5) Ifag K,thenKS = K (vacuity)
(K®6) If-a,then K = K (failure)
(K®7) K{NKG C Ky, (intersection)
(K8) Ifa g K55 then KS, 3 C KT (conjunction)

All these postul ates except that of failure (K©6) should be familiar from our survey of AGM
postulates for contraction over K (§ 2.2.1 p. 28). The failure postul ate says that there is no
contraction of logical truths; the agent remainsin itsinitial epistemic state. This postulate
also holds of AGM contraction being a consequence of postulates (K1) — (K~ 6). Note
also that the postulate of recovery (K~5), which issatisfied by AGM contraction, ismissing.
Thisis one of the main attractions of thistype of contraction. Thefirst six postulates can be
thought of as the basic postulates for Levi contraction over K while postulates (K©7) and
(K©8) assume a supplementary role again.

6.1.2 Results

We briefly survey some results by Hansson and Olsson [46] before adding some of our
own. In analogy to the AGM framework, Hansson and Olsson apply maxichoice, full
meet and partial meet selection functionsy setting the relevant contraction function K =
N~y (K 1lLa) whenever o € K and K§ = K otherwise. One of their main results is that
partial meet Levi contraction satisfies the basic postulates for Levi contraction over K.
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Theorem 6.1.2 [46] Let K be a belief set. & isa partial meet Levi-contraction operator
over K if and only if it satisfies postulates (K©1)—(K©6).

In the case of full meet Levi contraction they derive the following result which was our
origina motivation.

Theorem 6.1.3 [46] If & isafull meet Levi-contraction operator for K, then K = Cn(()
for all non-tautological o € K.

Based on Levi’sargument, Hansson and Ol sson introduce a measure of informational value
Y on belief sets satisfying the following weak monotonicity condition.?

If K C H,thenV(K) < V(H)
Thisis used to define a selection function in the manner of (Def ) (see § 2.2.2 p. 34).

Y(Kla)={K'e Klla:V(K") X V(K')foral K" € K1 a}

Levi advocates a probabilistic measure of informational value but Hansson and Olsson
consider a real-valued measure V. Using a selection function -y defined in this way leads
to a value-based Levi-contraction function.? Value-based contraction functions satisfy the
supplementary postulates (K©7) and (K©8).

Theorem 6.1.4 [46] Value-based Levi-contraction satisfies postulates (K©7) and (K©8).
Another interesting result concerning saturatable contractionsis the following result.
Lemma6.1.5 [46] KLaABC KllaUKLp

A similar result holds for maximal subsets of K but interestingly, other results regarding

the interaction of K Lo, K1 and K1la A B (or K La VvV g for that matter) do not carry
over to saturatable contractions.

1They also consider a strong monotonicity condition
If K C H,thenV(K) < V(H).
It turns out that constructions based on K |« and K 1L« coincideif this measure isimposed.
2Inthe AGM, atransitively relational selection function ~ can be defined using areal-valued measure V.
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Hansson and Olsson do not provide a completeness result for value-based contractions.
Such aresult would say whether a L evi-contraction function © satisfying postulates (K© 1)
— (K®8) is avaue-based contraction function. Our impression is that this will not hold
in general. We do not consider this further here for saturatable contractions but turn our
attention to the more intuitively appealing sphere modelling. The sphere modelling will
allow us amuch better comparison with AGM contraction (through its sphere construction)
and is arguably better motivated than saturatable contractions. Before doing so, however,
we make one final remark about saturatable contractions.

It turns out that we can consider the saturatable set K Ll « to be partitioned into lattices
relative to set inclusion (C). This gives a nice way of viewing the elements of K 1l «
and theinternal structure of K 1L oo when a measure of informational value satisfying weak
monotonicity is imposed. We begin by introducing some notation that will be helpful in
clarifying the results that follow.

Definition 6.1.2 Let K be a belief set and o« € K non-tautological. Define the Ax -
restriction of K 1l o for a maximally consistent set A in £ containing —« to be the set
Klla|A={K'e€ Klla: K' CA}

Thisideaof Ak ,-restriction will be used to partition K L cv.

Lemma6.1.6 3 Let K be a belief set and o € K non-tautological. The Ak o-restriction
setsfor all maximally consistent setsA in £ containing —« partition K 11 a.

The following result establishes connections between the elements of each A ,-restricted
partitions with respect to set inclusion.

Lemma6.1.7 Let K beabdief set, o € K non-tautological and A a maximally consistent
setin £ containing —a. If K'; K" € K1l o | A, then:

(i) K'NnK" € K1lo | Aand moreover K' N K" isthe greatest lower bound of { K/, K"}
in K1l o | Awithrespectto C.

3The proofsto this and the following results in this chapter are to be found in Appendix C.
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Lattices
Cn(a)n mf K'OKOa
m’IZI[—| (X]
Cn(o)n m” - K'OKOa
m"0O [~ a]

Figure 6.2: Elements of K Ll « partitioned into lattices relative to set inclusion.

(i) Cn(K'UK") € K1l a | A and moreover Cn(K' U K") isthe least upper bound of
{K', K"} inK1lla|Awithrespectto C.

The preceding results allow us to prove the following important theorem.

Theorem 6.1.8 Let K beabelief set, o € K non-tautological and A a maximally consi stent
setin £ containing —«.. Then K L« | Aisalatticerelativeto C.

This result establishes that the elements of a A ,-restricted partition form a lattice rel-
ative to set inclusion. Together with Lemma 6.1.6 it shows that K 1l . can be thought
of as a set of lattices relative to set inclusion. Incidentally, the maximal element of
each lattice will of course be an element of K L« and there will be as many lattices
as eements of K1«. The structure of K 1L« is illustrated in Figure 6.2 (maximal
elements — those in K La — are displayed to the right). One problem with value-
based contractions as they currently stand is that the following property does not hold
If (K lLar) # v2( K 1La), then Ny (K L) # Ny K La).
This suggeststhat more restrictions may need to be placed on value-based L evi-contraction
functions in order to obtain completeness. We now take a look at sphere semantics for
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® )

[~

Figure 6.3: Sphere semantics for belief contraction showing [ | shaded.

Levi-contraction.

6.1.3 Sphere Semantics

A sphere semanticsis not provided by Hansson and Olsson but we investigate it here. We
require some of the notions set out in § 2.2.2 surveying Grove's sphere modelling for the
AGM framework. We do not repeat them here but notethat, in the case of AGM contraction,
the possible worlds consistent with K are obtained by adding the closest —a-worldsto the
worlds consistent with K (i.e. [K[] = [K] U fs(—«) given asystem of spheres S centred
on [K]). Thisisillustrated in Figure 6.3 (we have reproduced Figure 2.4 for convenience).

In this section we shall again consider a system of spheres centred on [K]. Thereis no
need to consider any internal spheres since they only play a part in abductive expansion
and will have no role in contraction. Recall aso that cs(a) denotes the smallest sphere
in the system of spheres S intersecting [«] (but not the intersection itself). Let us first
consider elementsof K |« and K 11« in terms of apossibleworlds picturein order to gain
a clearer insight into the two types of constructions. We consider only the principal case
where o € K, the other being trivial. In the case of K |« each element is essentially the
result of a maxichoice selection function which results from adding exactly one —«-world
to [K]. Thisisillustrated in Figure 6.4. This contrasts with K 1l o where we require
Cn(K'U {—«a}) to be a consistent complete theory for each K’ C K (i.e. [K] C [K']).
Theworlds consistent with K’ € K 1l « are any superset of K -worlds with the proviso that
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(=)

[~d]

Figure 6.4: Representation of K’ € K La. [K'] = [K] U m for somem € [-a].

My,

(=)

[-a]

Figure 6.5: [K'] suchthat K’ € K 1L«

one and only one of them is a—~a-world*. Weillustrate thisin Figure 6.5.

Now, when a selection function is applied to K L« or K 1l « the elements are intersected
to obtain the contracted belief set. In possible world terms this corresponds to taking the
union of all worlds consistent with the selected elements(i.e., [y(K lLa)] = U{[K"] | K' €
v(K 1La)} and similarly for K L«).> The difference in possible world terms, between
the two constructions is now clear. In AGM contraction only —a-worlds are added to
those consistent with K (as evidenced by Figure 6.3) while in Levi contraction not only
—a-worlds but also some a-worlds, previously inconsistent with K, may be added to the
worlds consistent with K.

“Recall, by Lemma 2.2.14 (p. 35), that Cn(K' U {-a}) can be rendered [K'] N [-a]. Therefore, the
requirement that Cn(K' U {-a}) beacomplete consistent theory trans atesto the stipulation that [K'] N [«
be a single world.

SWe are considering a partial meet selection function y here.
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® )

[~d]

Figure 6.6: Sphere semantics for Levi contraction — Proposal 1

It turns out, however that more than one semantics is consistent with postulates (K€1) —
(K®8).

Sphere Semantics — Proposal 1

In order to guarantee success we need to ensure that there are some —«-worlds in the
contracted epistemic state. Taking into account the Principle of Minimal Change which
IS to be interpreted with respect to the semantics we should at least consider those in the
innermost sphere containing —~«-worlds (i.e., cs(—a)). However, in this sphere there are
also some a-worldsinconsistent with K. One possibility thenisto takeall theworldsinside
the sphere cs(—«) as depicted in Figure 6.6.

The rationale behind this choice is that the agent has already determined a preference over
worlds (inconsistent with K). The agent must include the “best” —«a-worlds but may have
aready stated a preference for certain a-worlds also. The agent does not prefer the —a-
worlds over these (closer) a-worlds just becauseiit is giving up belief in a. Its preferences
are determined prior to belief change taking place and there is no reason to change them in
light of the new information. The new information only determines the amount of change

required in order to suspend belief init.

With any system of spheres S centred on [K| we associate a function gs : £ — 2M«
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[~d]

Figure 6.7: Sphere semanticsfor Levi contraction — Proposal 2

selecting the best worlds.

(Def gs) gs(a) = { Ef(gﬁa) \c/)\ir‘zrnvev\llgre o] # Mo

That is, it selects al worlds in the closest sphere intersecting worlds consistent with [«
whenever « isnon-tautological and returnsall K -worlds otherwise. The following theorem
shows that this semantics is consistent with the postulates (K€1) — (K©8) for Levi-
contraction over K.

Theorem 6.1.9 Let S be any system of spheresin M . centred on [K| for some belief set
K € K. If, for any a € L, we define KS to beth(gs(«)), then postulates (K®1) — (K©8)
are satisfied.

Sphere Semantics — Proposal 2

An aternative ideais not to take all worldsin c¢s(—a) but only those soléely in c¢s(—«) and
no other sphere smaller than cs(—«) except [K]. This scenario isshown in Figure 6.7.

This can be seen as giving up fewer beliefsto effect contraction than the previous scheme,
with respect to the same system of spheres. It can be motivated in the following way. Each
band — worlds in a sphere but not inside any smaller sphere - can be seen as consisting
of equally preferred worlds or in Lewis' terms, worlds of equal similarity. The agent must
include at least the closest —«-worlds. Since they are equally similar to other worldsin the
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(=)

[-a]

Figure 6.8: Sphere semantics for full meet Levi contraction under both proposals.

same band, the agent is unable to discriminate between them. Unable to discriminate, the
agent adds all the worldsin the band to those consistent with K.

The function selecting the best worlds g% : £ — 2« which is associated with any system
of spheres L centred on [K] is defined as follows
[K]u{m € cs(-a) [m g UforanyU € S

(Def g5)  gs(a) = { suchthat U C cs(—a)} whenever [a] # M,
[K] otherwise

It selects those worlds in [K] and the innermost band intersecting [~«] whenever « is
non-tautological and al the K-worlds otherwise. This proposal is aso consistent with
postulates (K1) — (K©8) for Levi-contraction over K.

Theorem 6.1.10 Let S be any system of spheresin M centred on [ K| for some belief set
K € K. If, for any o € £, we define KS to beth(gs()), then postulates (K€1) — (K€8)
are satisfied.

It is now clear why both proposals give full meet contraction to be Cn () and weillustrate
the situation in Figure 6.8 (considering, of course, the situation where o € K and i/ ).

The sphere semantics for AGM contraction also satisfies these postulates, as one might
expect, because AGM contraction aso satisfies postulates (K€1) — (K©8). The only
difference being that AGM contraction also satisfies the postulate of recovery. Postulate
(K©6) as we have noted earlier is a consequence of postulates (K~1) — (K~ 6) for AGM
contraction over K.
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Completeness

We now have three different sphere modellings consistent with postulates (K©1) — (K©8).
The question we would now like to ask is whether any one modelling completely char-
acterises these postulates, and, if not, what postulates need to be added to obtain this
“completeness’. We can easily rule out AGM contraction because it requires the postulate
of recovery which is not satisfied by these postulates and, moreover, it does not exhibit the
full meet property we desire, unlike the other modellings. It also turnsout that neither of the
other two modellings exactly characterise (K®1) — (K©8) either. The following property
appears to be satisfied by both modellings but does not follow from the postul ates:
Ifa ¢ K and3 ¢ KT, then K = K. 6

Thismeans that further postul ates need to be added in order to obtain acomplete character-
isation in either case. It turns out, however, that such a*completeness’ result is attainable
for the first proposal through the addition of the following two postul ates.’

(K®9) Ifa ¢ KS,then K§ C KY
(K®10) If faand o € K§, then K§ C K§

In postulate (K©9), if o was not originally a belief (o ¢ K), then K = K by postulate
(K©5) and theresult K7 C K would follow trivially by postulate (K©2). Inthe principal
case where a € K, postulate (K©9) states that, if oo were to be removed when removing 3
from K, then removing « from K can be achieved by removing no more than was required
to remove 3 (removing lessisapossibility). That is, no more effort isrequired to remove «
than 5. Postulate (K©10) statesthat, if it is possible to remove a belief o when removing 3
from K but it isretained instead, then more would need to be done (i.e., more beliefs would

60ne way to easily seethat this postul ate does not follow from (K©1) — (K©8) isthat if it wereto follow
it would be satisfied by AGM contraction. However, it is easy to find an example where this condition is not
satisfied by sphere semantics for AGM contraction.

’Since the initial version of this dissertation, Hans Rott has communicated to me that he has an
equivalent axiomatisation achieved through the replacement of postulate (K€7) by the stronger postulate
(Ke7a) If t/ a, then K C KO?AB,
intended for an epistemic entrenchment construction. Hansson [44] contains a proof of the equivalence of the
sphere modelling of proposal 2 and Rott’s epistemic entrenchment modelling. Moreover, Hans Rott has since
shown me that postulates (K€1), (K©3) and (K©9) imply postulate (K©10). | am indebted to Hans Rott for

sharing his insights and for many interesting and thought provoking discussions on this topic.
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have to be removed) in order to remove o from K than was done to remove 3. In light
of our rationality criteria (p. 24) we might view these as follows. Postulate (K©€9), in the
principal case, saysthat if a is no more epistemically important than 3, then fewer beliefs
need to be given up in order to remove «.. Postulate (K©10), on the other hand, says that if
« ismore epistemically important than /3, then more needs to be given up to remove a.

It can be quickly seen that postulate (K©9) implies postulate (K©€8) in the presence of
postulates (K©1) — (K©6) by substituting a: A 8 for 3 in postulate (K©9). Postulate (K€9)
also implies postulate (K©7).

Observation 6.1.11 Postulate (K€9) implies postulate (K€7) in the presence of postulates
(K€1) — (K®86).

Therefore, we could infact deal simply with postulates (K€1) — (K©6), (K€9) and (K©10).
Another interesting consequence of these two postulates (in the presence of the basic
postulates for Levi-contraction over K) is the following condition.

(53) Either K§ C K§ or K§ C KY

This condition should be quite evident from the sphere modelling of proposal 1. These
newly introduced postul ates are certainly consistent with this proposal.

Lemma6.1.12 Let S be any system of spheresin M, centred on [K ] for some belief set
K € K. If wedefine, for any o € £, K tobeth(gs(«)), the postulates (K©9) and (K©10)
are satisfied.

It is quite easy to find examples where the sphere modelling for AGM contraction and that
of proposal 2 are not consistent with postulates (K©9) and (K©10).

The main result of this section shows that these postul ates are sufficient to characterise the
sphere modelling presented in proposal 1.

Theorem 6.1.13 Let © : K x £ — L be any function satisfying postulates (K€1) —
(K©10). Then for any belief set K € K thereisa system of sphereson M, say S, centred
on [K] and satisfying K = th(gs(«)) forany a € L.
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This result is important because, initially, our two sphere modellings were motivated by
our desire to capture value-based Levi-contractions. We have achieved a characterisation
of proposal 1 through the addition of two postulates. In fact, with respect to the same
system of spheres S centred on [K], it is easily seen that AGM contraction represents the
smallest change (with respect to set inclusion) while proposal 1 represents the greatest
change. Proposal 2, for which we do not have a complete characterisation, is intermediate
between the two. Proposal 1 exhibits the dual behaviour in terms of full meet contraction
that we initially sought and now we have a set of postulates that exactly characterise this
particular proposal.

6.2 Recovery via Abduction®

The recovery property of AGM is arguably the most contentious of the AGM postulates
for contraction over K (see [41, 71]). It states that, for any belief o € K, if one were to
contract K by « and then (AGM) expand the resulting belief set by «, one would retrieve
K.

K= (K])foranya € K

It isaconsequence of therecovery postulate (K ~5) together with postulates (K~ 1) — (K~ 4)
for contraction over K and the postulates for AGM expansion over K.

We have just seen, however, a type of contraction for which the recovery property is not
satisfied. Consider the first semantics we proposed for the Levi-contraction of a belief set
K by « (refer back to Figure 6.6). Now, in order to abductively expand the resulting belief
set K we require a system of spheres. Thisisin a sense the problem of iterated belief
change [38, 62, 81, 84, 114, 132] and is beyond the scope of this dissertation. However,
suppose that as much of the previous sphere structure is maintained as possible® — so
that the spheres in the shaded portion of Figure 6.6 become internal spheres (i.e., thosein
[K{]). One need only apply abductive expansion to retrieve the original epistemic state.
We illustrate this in Figure 6.9. If we were to consider the aternative sphere semantics

8Some of theideas in this section have appeared in [91].
9The Principle of Minimal Change in another incarnation!



156 CHAPTER 6. ABDUCTION AND CONTRACTION

Figure 6.9: Using abductive expansion to recover from Levi contraction Proposal 1.

proposed it is easy to see that the same situation holds except there are only two internal
spheres composed of the shaded portions of Figure 6.7 and the unshaded part forming the
usual (external) system of spheres.

The contention thenisthat abduction, through abductive expansion, can be utilised to obtain
the recovery property for (value-based) Levi-contraction. This claim, however, relies on
a number of assumptions. Firstly there is the issue of iterated change and the fact that
as much of the origina sphere structure is maintained as possible. In doing so we are
restricting which abductive expansion belief change operation is to be applied next, in the
following sense. For a particular K, a particular belief change function, be it &, ©, *, or
whatever, can be modelled by a particular system of spheres and vice versa. By specifying
the nature of the system of spheres we are restricting the agent’s choice of belief change
function. Thisis usualy not considered much of a drawback in the literature on iterated
belief change. A more problematic concern is that, in order for our proposal to work, we
must assume that there isinitially only one internal sphere — [K| itself. However, it does
appear that abduction can be of much usein obtaining recovery if onewereto desireit. One
use of recovery is suggested in the following problem. Normally, we think of the belief
revision process as taking some epistemic state K and some epistemic input « to anew state
K (refer to Figure 1.1). Consider, however, the situation where the resulting epistemic
state K], and epistemic input « are already known. Isit possible to determine the initial
epistemic state K or at least something about it? Given the contracted belief set K, or K¢
and epistemic input o« we can go backwards, as it were, and say something about K (see
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Figure 6.10: A usefor recovery in belief change.

Figure 6.10). Taking a different perspective, the origina epistemic state can be obtained
through recovery via abductive expansion; identifying K$ (or K,) as our domain theory
and « with the new information. It is our claim that abduction can be used to determine
the missing elements and view the epistemic state K as the restoration of these missing
elements. We of course assume that o occurred in the original epistemic state which is
reasonable under the given circumstances.

Given the discussion above we can see that, in the case of contraction, we can use the
recovery property as ameans of achieving this purpose.

6.3 Related Work

An interesting method for performing contraction in a belief base setting using abduction
has been proposed by Aravindan and Dung [6]. Asin the approach to computing database
updates by Kakas and Mancarella [57] (see § 1.1.3) they divide the belief base into two
parts. animmutabletheory K B; and an updatabletheory K By;.1° Theimmutabletheory is
supposed to represent those beliefs which the agent does not want to change over time (“the
laws of science’ is given as example). They then provide an algorithm for contracting a
sentence o from belief (or knowledge) base K B = K B; U K By. Thebasicideaisthat al

ODespite K B; and K By being referred to as theories, they are considered to be finite sets of sentences
from the object language L.
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kernel minimal abductionsfor o with respect to theimmutabletheory K B; are calculated. !
Then all elements of K B;; containing a kernel minimal abduction for o with respect to
K B; aredeleted. Thisresultsinthe (kernel restricted) contraction of K B by «.. Aravindan
and Dung note that the division of the belief base into immutable and updatable parts is
purely for practical rather than philosophical purposes. The division of the epistemic state
in this way adds more structure to the notion of epistemic state and, as we have noted
previously, would need to have a clear epistemic motivation (beyond practical concerns). It
isnot entirely clear what thismotivation would be. To posit that an agent has a select part of
its epistemic state which is not open to change seems contrary to the idea of belief change.
In fact, this notion reeks of foundationalism as, of course, does their use of abducibles.
Note also that the approach of Kakas and Mancarella [57] to database updates is capable
of handling deletion of information by translation of the database to an alternative form to
deal with negation.

6.4 Summary and Discussion

Inlight of thecommensurability thesis, expansion and contraction can beviewed astwo sides
of the same coin. The expansion operation is responsible for assimilating new information
in a coherent way while contraction is responsible for deleting information (in a coherent
way). In either case, abduction can play an important role. In the one, to identify beliefs
to add to the current epistemic state and, in the other, to determine “culprits’ to remove
(and thus those that remain in the new epistemic state). In this chapter we have investigated
another aspect of the duality between expansion and contraction.

It was noted that maxichoice abductive expansion and full meet AGM contraction do not
exhibit a certain dual behaviour that one might expect. Maxichoice abductive expansion,
where possible, expands into a consistent complete theory — expansion by a maximally
specific abduction. We might expect then, that full meet AGM contraction would, where
possible, remove all beliefs except the logical truths — contraction by amaximally specific

" Abductions are sets of abducibles. An abduction is kernel minimal with respect to aset I if and only if
thereisaset ' C I such that the abductionis minimal (in terms of set inclusion) with respect to I’ but not
with respect to any proper subset of .
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abduction. However, this is not always the case when contraction is possible. Levi [65]
has proposed a form of contraction which does possess the desired property. Hansson
and Olsson [46] have subjected this form of contraction to a more formal analysis which
we considered here. The idea is based on a construction involving selection functions
applied to saturatable contractions of an epistemic state K by removing new information
«. The set of saturatable contractions are a superset of the maximally consistent subsets
of K implying . An important feature of this form of contraction is that it does not, in
general, satisfy the contentious recovery postul ate satisfied by AGM contraction (of course,
every contraction function satisfying the basic postulates for AGM contraction over K is
also a Levi-contraction function over K). However, no completeness result is provided
by Hansson and Olsson for value-based Levi-contractions where a real-valued measure
satisfying weak monotonicity is used to define a selection mechanism.

We noticed that set inclusion can be used to partition the set of saturatable contractions
into lattices, the greatest elements of which are maximally consistent subsets of K failing
to imply a.. Thisgivesa clearer insight into the nature of saturatable contractions of K by
removing o« especially in contrast with maximally consistent subsetsof K failingtoimply a.
We then switched our attention to sphere semantics for value-based L evi-contractions due
to their potential for providing a clear insight into the underlying process and for effecting a
comparisonwith AGM contraction. Two modellingswere presented that are consistent with
the postul atesfor value-based L evi-contraction over K. Inthefirst, the ordering provided by
the spheresistaken to be very important and all worlds at least as closeto [ K| asthe closest
—a-worlds are included in the contracted epistemic state. In the second, each “band” is
taken to consist of worlds which are indistinguishable, hence al worldsin the same * band”
as close as the closest —«a-worlds are included in the contracted epistemic state. With
respect to the same system of spheres, then, we can see that AGM contraction represents a
smaller change than either of these alternatives. This observation would be supported by
our observation above regarding the lattice-like structure of saturatable contractions. In the
case of the first proposal we also supplied two extra postulates and obtained a complete
characterisation of this semantics.

One use for abduction in this setting is to furnish the opportunity to regain recovery
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through abductive expansion applied to (value-based) Levi-contraction. However, to do
this some assumptions are needed regarding the nature of the internal system of spheres
after contraction (i.e., the nature of the abductive expansion function applied). If as much
structure as possibleisretained after contraction, then the resulting abductive expansion can
guarantee recovery. One practical use of thisideaisto alow one to determine the nature
of acertain epistemic state given its contracted form and the information that was removed

from it.



Chapter 7

Abductive Revision

| have been hovering for sometime be-
tween the exquisite sense of the luxuri-
ous and a love for philosophy —were
| calculated for the former | should be
glad —but as| amnot | shall turn all
my soul to the latter.

John Keats, to John Taylor, April 24,
1818

We mentioned earlier that we have adopted Levi’s commensurability thesis which takes
the operations of expansion and contraction to be basic and states that any revision can be
achieved through a sequence of expansions and contractions. However, although we are
placing more emphasis on expansion and contraction, this does not mean that revision is
uninteresting. Inthe AGM, revision can al so be achieved through expansion and contraction
but still attracts alot of attention. The difference is though, that AGM expansion is avery
simplistic operation whereas the expansion operation devel oped here, abductive expansion,
is much more powerful.

Theobviousway to construct an abductiverevision operator isto apply thefollowing variant
of the Levi identity

Kg = (KS)a

Here, K2 represents the abductive revision of epistemic state K by new information .
The operation & represents some form of belief contraction — AGM contraction or Levi-
contraction for instance — and & an abductive expansion operator. It can be thought of as
functioning inthefollowing manner. Inorder to revise epistemic state K by new information
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« we must first remove any impediment to the explanatory or abductive process hence we
contract by the negation of the new information (K°<,). We then find an explanation for the
new information with respect to this contracted epistemic state using abductive expansion
(K$)®). It can be seen that, in contracting by —«, certain explanations will become
admissible while others will not because they are inconsistent with K€ and . We shall
now continue our look at abductive revision through the sphere modelling with itsintuitive

appeal.

Before going on to the sphere modelling we make a brief digression on whether we should
adopt AGM contraction or Levi-contraction. Levi-contraction would appear to be the
obviouschoicesince, inthe sense of the previous chapter, it appearsto be amore appropriate
dual of abductive expansion. It turns out however, that, for the purpose of revision viathe
Levi identity, there is very little difference between the two. Let us first consider the
Levi identity using AGM expansion. Because both AGM contraction and L evi-contraction
are withdrawal functions (i.e., satisfy postulates (K~1) — (K~4) and (K~6) for AGM
contraction over K — see Makinson [71] for details).! Therefore, we have the following
observation.

Observation 7.0.1 Let K € K beabelief set. If & isa Levi-contraction function over K
satisfying postulates (K€1) — (K©6), then there is a revision equivalent AGM contraction
function — over K satisfying postulates (K~1) — (K~6) and vice versa.

By revision equivalent, we mean that (K—,)7 = (KS,)* (i.e., equivaent under the Levi
identity) where + is AGM expansion. The result is a straightforward consequence of an
observation by Makinson [71] regarding withdrawal functions. This fact is also clearly
evident from the sphere semantics for AGM contraction and that for Levi-contraction
proposed in the previous chapter (either proposal will suffice) if the same system of spheres
centred on [K] is adopted. In AGM contraction of K by —«, the closest a-worlds are
added to the K-worlds. The subsequent AGM expansion by o simply resultsin the closest
a-worlds being retained. In Levi-contraction of K by —«, the closest a-worlds are added
to the K -worlds along with any —«-worlds which are just as close or closer.? Again, the

Inthelist of Levi-contraction postulates (p. 144) these have been renumbered (K€1) — (K©5).
2We consider only the first proposed sphere semantics for Levi-contraction, the other is similar.
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Figure 7.1: Sphere semantics for (a) AGM contraction showing [K -] shaded, and (b)
Levi-contraction (proposal 1) showing [K € ] shaded. The part shaded darker corresponds
to the resulting revision.

subsequent AGM expansion by « sSimply retains the closest a-worlds. This holds whether
—a € K or not. To better understand the situation, the two types of contraction are
contrasted in Figure 7.1 showing the principal case where —a € K. Note also that, in
Observation 7.0.1, right to left is obvious because, as we have noted previously, any AGM
contraction function is also a L evi-contraction function.

With thisin mind, let us return to abductive revision. We would like to use the suitably
modified version of the Levi identity adopting abductive expansion in the place of AGM
expansion. Referring to Figure 7.1 it is easy to see, asin AGM expansion, that we need
to identify a subset of the a-worlds retained in either picture. Since, as above, there is
going to be no real difference in whether we apply AGM contraction or Levi-contraction
before abductive expansion in the Levi identity to obtain abductive revision, we shall use
Levi-contraction (proposal 1). What we reguireis someinterna structurein [K €] in order
to discriminate between the a-worlds. How the structure of [K€ ] (or structure outside
[KE)] for that matter) evolvesis the problem of iterated revision which, as we have noted
previously, is beyond the scope of thisdissertation. The structureinside[K €, ] could evolve
in all manner of ways. This would alow a vast array of different abductive expansions
and hence a large variety of abductive revision functions. This situation does not occur
when using AGM expansion due to its simplistic nature (all a-worldsin [K—,] or [K€]
are chosen). Thisis, of course, clearly evident from the nature of the Levi identity itself.
An abductive revision function is obtained from a contraction function and an abductive
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Figure 7.2: A more discerning system of spheres for abductive revision.

expansion function. There are a large number of possible combinations of contraction
functions and abductive expansion functions to be had. However, there is only one AGM
expansion function (viz., Cn(K U {a}) by Theorem 2.2.1) and so, when AGM expansion
iIsused in the Levi identity, each contraction function gives rise to one revision function.

One observation we can make is that the strategy adopted in Section 6.2, when discussing
the use of abductive expansion for recovery, will not work here. The ideawas to maintain
as much of the present structure after contraction for the purpose of expansion. However, it
is easily noted that, if this strategy is used, all the a-worlds are confined to a single sphere
and we end up with the same result as if AGM expansion had been applied. An aternative
idea is to impose a finer structure on a system of spheres which is then to be used during
the abductive expansion stage but not for the initial contraction. This could take the form
of a “finer”or more discerning system of spheres as illustrated in Figure 7.2. The solid
lines are used for performing contraction and the dashed lines are then used to impose
internal structure over K€,
abductive revision can be seen as given by the closest a-worlds relative to the dashed and
solid spheres, taken together, as in the shaded section of Figure 7.2. In contrast, AGM

revision is taken solely with respect to the solid spheres.

which can be used for the abductive expansion. The resulting

There are, however, two problems with this suggestion. The first concerns the origin of
the spheres; where do they come from? However, the same question could be asked of the
original system of spheres and the answer would be that they are determined, in some way,
from the belief change operation to be applied (the abductive expansion operator in this
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case). The other problem isthat, if such “finer” detail was present originally, why wasn’t
use made of it all along? That is, the finer detail just gives another AGM revision function
(thisisevident if one considers the dashed and solid system of spheresin Figure 7.2 to be
a single system of spheres centred on [K]). Abductive revision determined this way just
givesthe same class of revision functionsas AGM revision. Interestingly enough, asimilar
statement regarding inference relations generated from epistemic entrenchment and those
generated from expectations orderings is made by Gardenfors and Makinson [34] (p. 223).
The reason is due to the fact that this more discerning structure is the same as that induced
by another AGM revision function. Therefore, if one wants to investigate the notion of
abductive revision as an entity along with abductive expansion and contraction, this idea
might not prove as fruitful as other methods for identifying internal structure. There is
no doubt however, that the way this structure is to be determined is important. One can
of course stick with abductive expansion and contraction as the ways of incorporating and
removing information and be just as content. Nevertheless, it is still possible to consider
postulates for abductive revision.

7.1 Postulates

Although, as we have seen, it is the method of iteration or, viewed differently, the interac-
tion of different abductive expansion and contraction functions, that determines abductive
revision, some postulateswill hold regardless of what combinationisemployed. We briefly
consider which rationality postulates an abductive revision function will necessarily satisfy
no matter which abductive expansion and contraction functions are used to generate it
via the Levi identity. It turns out that the following postulates are satisfied (we retain a
numbering which facilitates comparison with the AGM revision postulates — see p. 29).

(K®1) For any sentence o and any belief set K,

K? isabelief set (closure)
(K®2) Ift/ —a,thena € K2 (limited success)
(K®4) If -a¢ K,then K = K? (preservation’)

(K®5) K2 =K, ifandonlyifr ~aand K = K (vacuity’)
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(K®6) Ift- o« 6, then K§ = K (extensionality)

Thefirst postulate isthe familiar postulate of closure. The second postulateis a conditional
form of success which statesthat, aslong as thereis a possibility of finding an explanation
for the new information, it will be included in the abductively revised epistemic state. The
only time there will never be a possibility of finding an explanation through revision is
if the new information is alogical fasehood. The reason for this conditionalised version
goes back to our preference of maintaining consistency over success. Postulate (K®4) is
just the postulate of preservation for AGM revision (K*4) with a strengthened consequent.
It says that, if it is possible to find an explanation for the new information with respect
to the current epistemic state, then abductive revision reduces to abductive expansion. In
other words, there is no need to perform contraction in this case since abduction is already
permissible. The postulate of vacuity isaso adightly atered version of the corresponding
postulate for AGM revision (K*5) with an additional constraint on theright hand side. This
additional constraint is also the result of our preference for consistency over success. The
AGM versions of this postulate and that of success would hold if we preferred success
to consistency and adopted postulates (K®2') and (K®4') for abductive expansion over K.
The extensionality postulate is the familiar embodiment of the Principle of Irrelevance of
Syntax which also holdsfor AGM revision. Asthefollowing result shows, these postul ates
are satisfied by an abductive revision function obtained via the Levi identity using any
withdrawal function satisfying the postulate of failure (K©6). That is, by both AGM and
L evi-contraction functions.

Theorem 7.1.1 Let K € K be a belief set. Let © be a contraction function satisfying
postulates (K1) — (K©6) over K and & an abductive expansion function satisfying
postulates (K®1) — (K®6) over K. Then the abductive revision function ® obtained
through (Def *) satisfies postulates (K®1), (K®2) and (K®4) — (K®6) over K.

This is quite significant because, apart from the slight modifications to postulates (K*2)
and (K*4) due to our preference for maintaining consistency over success, the only basic
postulatefor AGM revision over K that isnot satisfied isthat of inclusion (K*3) K2 C K.
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By one hdlf of postulate (K®4), a conditional version of it — if -« ¢ K, then K@ C K®
— is satisfied. The reason that the unrestricted version is not satisfied is basically due to
the fact that the postulate of monotonicity (K *5) does not hold for abductive expansion (as
one would hope). Therefore, when one applies an abductive expansion function @ to an
epistemic state K and to the epistemic state K€, (as one does in determining the result of
K using the Levi identity) explanations of different specificity may be chosen, thusit is
not possibleto determine the rel ationship between K¢ and K without further information.
Of course, we are assuming that the same & is applied to the epistemic state K on the one
hand and to the epistemic state K€, using the Levi identity (to determine K&) on the other.
The fact that one cannot say anything about the relationship between K@ and H? for two
different epistemic states K and H aso meansthat the supplementary postulates (K*7) and
(K*8) for AGM revision over K are not satisfied in general.

7.2 Summary and Discussion

The commensurability thesis|eads usto place less emphasis on revision than expansion and
contraction. There are however still some interesting observations to be made regarding
abductiverevision. The abductive revision operators we discussed were constructed viathe
Levi identity K& = (K€,) which is an expression of the commensurability thesis. The
main problem with thisapproach stemsfrom thefact that there are many possible contraction
operators (be they AGM or Levi) and many possible abductive expansion operators. In
contrast, the AGM permits only one possible expansion operator — corresponding to a
specia type of abductive expansion at one extreme (i.e., set inclusion minimal change) —
and therefore, thereis, in a sense, a one to one relationship between AGM contraction and
AGM revision operators. In abductive revision this will be a many to many relationship.
This problem can also be identified with that of iterated revision where one essentially
identifies a more complex structure with epistemic states (often systems of spheres or
entrenchment) and attempts to give recipes as to how this structure is modified when
belief change takes place. An alternative idea might be to fix contraction to one extreme,
maxichoice contraction (the set inclusion minimal change) or full meet contraction, for
instance. In that way, there would be, in a sense, a one to one correspondence between
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abductive expansion functions and abductive revision functions through the Levi identity.
Even without these considerations though, it is interesting to note that many of the basic
postulates for AGM revision over K are still satisfied by abductive revision over K.

There are, of course, other ways of obtaining revision functions besides using the Levi
identity. Hansson [43], for instance “reverses’ the Levi identity.® That is, one first expands
by o« and then performs contraction® to obtain consistency. This too makes a lot of sense
in terms of abductive revision. One first finds the explanation that is desired and then
determines what to remove to achieve consistency. There is a problem, however, if one
uses abduction as the notion of explanation because, as we have seen, we will never find
an abduction that will lead to inconsistency. This might suggest dropping the consistency
reguirement for abduction at the risk of allowing many more potential abductions. Another
ideawould be to perform abduction with respect to a subset of the current beliefs. However,
as we have seen with Aravindan and Dung’s [6] method for contraction using abduction
(§ 6.3), thiswould require a modification of our notion of epistemic state as purely a belief
set (or belief base) and, moreover, one needs to have a clear epistemic justification for
demarcating this select set of beliefs which is not immediately evident (especialy, if one
wants to avoid a foundationalist approach).

3This idea, like the Levi identity, is still consistent with Levi’s commensurability thesis (see Levi [65]
p. 170 n. 23 and pp. 179 —180n. 8).

4When expansion leads to an inconsistent epistemic state, Levi [65] refers to this contraction as coerced
contraction asits use is necessary to regain consistency.



Chapter 8

Conclusion

When we have found all the mysteries
and lost all the meaning, we will be
alone, on an empty shore.

Tom Stoppard, Arcadia ll:7*

8.1 Summary

In this dissertation we have looked at the role that abduction can play within the belief
change process. Abduction, in a logical sense, can be viewed as expressing necessary
conditions for the process of explanation. Its utility has aso been demonstrated in many

areas of artificial intelligence.

We began with a logical look at abduction and various important types of abduction. In
particular we studied notions of minimality, triviality and specificity. We also compared
abduction with a particular type of induction, popular in artificia intelligence, known as
inverse resolution. This comparison was based on pragmatic grounds where it turns out
that abductions are calculated as conjunctions of literals while inverse resolution returns
disiunctions of literals (i.e., clauses). The fact that inverse resolution is consistent with the
definition of abduction lends credence to Harman's claim that (enumerative) induction isa

specia case of abduction (inference to the best explanation).

Having looked at some logical aspects of abduction we proceeded to investigate our first

1Stoppard [124] p. 94.
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abductive belief change operator, abductive expansion. The idea behind this operator
was to use the logical notion of abduction to determine an explanation or justification of
the epistemic input with respect to the current epistemic state and then incorporate this
explanation into the current epistemic state together with any deductive consequences. This
operator can be considered a basic modelling of an inquiring agent who is interested in
acquiring as much new, error-free information as possible. Such amodelling is particularly
effective when the agent’s situation makesiit difficult for it to receive new epistemic inputs.
Using the AGM framework as a guide, we investigated three constructive modellings
for abductive expansion: selection functions over maximally consistent supersets of K
implying «, a Grove-like sphere semantics, and an abductive entrenchment ordering. These
modellings help place abductive expansion in clear perspective with regard to the AGM
framework. In fact, they extend the current AGM framework in away that permits greater
flexibility and scope. It was aso pointed out how the agent’s degree of boldness or
caution could be reflected in the sphere modelling. Moreover, we indicated how the
abductive entrenchment ordering embodied the notion of positive coherence whileepistemic
entrenchment, when used for contraction, embodies the notion of negative coherence.

We proceeded to show how abductive expansion, through abductive entrenchments, could
be used for the purpose of nonmonotonic inference, in particular, default reasoning. Infact,
abductive expansion provides a more accurate modelling of the default logic underlying
the THEORIST system than a proposal by Gardenfors and Makinson involving full meet
revision. It clearly distinguishes, in an epistemic sense, between facts and defaults as does
THEORIST.

The belief change process is primarily concerned with the nature of epistemic states.
As such, the process of abduction in abductive expansion becomes internalised and the
best explanation is, in a sense, lost. We demonstrated how such explanations could be
retrieved by comparing the initial and final epistemic states. In this dissertation we have
been interested in the normative aspects of a general framework for abductive expansion
and abductive belief change. We indicated, however, that further restrictions could be
placed on the notion of abduction which would manifest themselves as restrictions on
the admissible constructions — that is, on the admissible internal systems of spheres or
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abductive entrenchments etc. — and therefore, as restrictions on the admissible abductive

expansion functions.

Shifting our attention to contraction, we noted that it can already be viewed as functioning
in an abductive manner. Abduction could be used to single out elements to remove (and
therefore to retain) in order to effect the removal of a belief from an epistemic state. How-
ever, we focussed our attention on another aspect of contraction. Noting that maxichoice
abductive expansion and full meet AGM contraction do not exhibit acertain dual behaviour
that one might expect, we concentrated on an aternative form of contraction known as
Levi-contraction which exhibits the desired duality. Levi-contraction can be viewed as a
generalisation of AGM contraction whose motivation stems from a construction based on
saturatable contractions of K by removing «.. After pointing out that the set of saturatable
contractions can be viewed as being partitioned into a set of |atticesrelativeto set inclusion,
we concentrated on the more intuitively appealing sphere semantics for Levi-contraction.
We demonstrated two “competing” sphere modellingsfor Levi-contraction. Relativeto the
samesystem of spherescentred on [ K] it turnsout that AGM contraction representsasmaller
change (in terms of set inclusion) than either of these modellings. Through the addition
of two further postulates, we obtained a completeness result for one of the two modellings
— that representing the greater change. We aso showed how, under certain assumptions,
abductive expansion could be used to attain recovery for Levi contraction based on the two
sphere modellings presented. This can also be achieved for AGM contraction, however,
in this case one need only use full meet abductive expansion (i.e., AGM expansion). Itis
possible to think of this as the agent attempting to determine what it might have believed
prior to the removal of some information, given its current epistemic state.

Adopting Levi’s commensurability thesis which states that any revision can be achieved
through a series of expansions and contractions, we placed more emphasis on (abductive)
expansion and (Levi) contraction. In fact, given the greater flexibility that can be achieved
through abductive expansion and contraction (beit AGM or Levi), one could argue that the
AGM framework would benefit greatly from amore general expansion operator such asthe
one suggested here. 1t would then have anice symmetry: abductive expansion for acquiring
new (error-free) information and contraction for relinquishing information. However, this
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does not mean that revision becomes totally devoid of interest. We suggested that one way
of obtaining an abductive revision operator is to adapt the Levi identity to use some form
of contraction and abductive expansion instead of AGM expansion. Infact, it turns out that
little difference may occur if one uses AGM contraction or Levi-contraction. Determining
the exact properties of an abductive revision operator turns out to rely on the problems
facing iterated revision. However, there are still some properties an abductive revision
operator, constructed using our variant of the Levi identity, must satisfy; these turn out,
with one exception, to be essentially the basic postulates for AGM revision. Therefore,
such arevision operator is clearly more general than the AGM revision operator.

In conclusion, adopting alogical notion of abduction has allowed usto investigatethe utility
of thismode of inference in ageneral setting reminiscent of the AGM framework and thus
gain aclear insight into the belief change process. Thisinvestigation has indicated that the
process of abduction can play a very important role in belief change and possesses great
potential.

8.2 FutureWork

There are many interesting avenues for further research arising from the work described in
this dissertation. Some have been aluded to in the text. We shall briefly outline some of
the more interesting of them.

One of the more glaring areas requiring investigation is that of iterated belief change
— particularly as it effects, say, the development of the internal system of spheres or
abductive entrenchment ordering. We have seen that thiswould allow amuch more detailed
investigation of abductive revision operators than that provided here. One problem is that
itisnot at first evident where a new internal system of spheres or abductive entrenchment
would come from. One idea in this regard has been suggested by Nayak et al. [82]
and involves abandoning the current idea of selecting the “best” a-worlds inside [K] and
embracing a strategy which rejects the “worst” «-worldsinside [K|. Such astrategy could
even be useful in the context of AGM contraction and revision. There is also the problem
of how anormal system of spheres centred on [ K| or epistemic entrenchment evolves after
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abductive expansion. An obvious suggestion would be to have the epistemic input more
deeply entrenched than an abduction. This would have the effect that, if some error or
suspi cion happened to arise, the agent could reject the abduction in favour of the epistemic
input.

We have investigated the rel ationshi p between abductive expansion and default reasoningin
the style of THEORIST but we have |eft open the connection with nonmonotonic inference
in general. The postulates could in fact be translated into properties of a nonmonotonic
consequence relation |~ in the way Makinson and Géardenfors [72] have done for AGM
revision (a|~ g iff 3 € K). These properties could then be analysed in the manner of
Lehmann et al. [61]. Such a trandation has actually been done in Pagnucco et al. [94]
(aj~ giff g € K2) but no analysis of the resulting properties was performed. One very
interesting fact did arise however. For AGM revision, conditionslike o € K are translated
as Th asince K* = K. Inthe case of abductive expansion however, K¢ # K in genera
(recall our discussion of the property of vacuity) but K¢ = K, so these conditions were
translated as L |~ « instead. Having established links with nonmonotonic inference, one
could take advantage of the range of constructions for abductive expansion. For instance,
one could supply a sphere semantics for nonmonotonic inference. Such a modelling was
discussed briefly for default reasoning.

Another possibility isthe adoption of belief bases rather than belief sets asthe modelling of
epistemic states. Apart from the obvious pragmatic advantages, it would also mean that one
could begin to consider syntactic factorsin determining an abduction. Thiswould have the
effect of weakening our interpretation of the Principle of Irrelevance of Syntax. A further
advantage is that the abduction adopted would be much easier to determine since it would,
presumably, explicitly occur in the abductively expanded belief base and therefore K@ \ K
would be a more manageable set. One problem with such an approach is that it may be
difficult to determine exactly which beliefs should occur in the abductively expanded belief
base. It would be difficult to justify the addition of only the abduction and the epistemic
input.

An aternative proposal in asimilar vein is to adopt a more complex notion of epistemic
state than the belief sets embraced here. This could have the advantage of providing extra
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information to guide abduction. However, one must be wary that so doing can lead away
from a coherentist approach, towards a foundational approach. We have already seen the
proposals of Kakas and Mancarella[57] (one of the original motivationsfor the theoretical
work here) and Aravindan and Dung [6] heading in this direction. In this regard too, the
work of Ghose [37] must be noted. Ghose adopts a more complex representation of the
agent’s epistemic state than that used by the AGM and in this dissertation. Epistemic states
are modelled as default theories [104, 102] in the manner of THEORIST. This allows a
clear distinction to be made between facts and defaults as advocated in Section 5.4 athough
both facts and defaults are included in the agent’s epistemic state. Moreovey, it allows for
the explicit recording of contractions through the use of (logic programming) constraints.
We allow only facts to be included in an epistemic state while defaults reside outside
it and are determined by the selection mechanism (i.e., abductive expansion operator)
imposed. Given the abductive interpretation that underlies THEORIST (see § 3.3.1) it is
arguable that Ghose's approach al so uses a deliberative procedure to perform belief change.
Another recent work in this regard and much closer to the aims of our work is that of
L obo and Uzcategui [69]. Using the Katsuno and Mendel zon [58] style of presenting belief
change operators (which inherently assumes afinitary language) they present postul atesfor
abductive belief change. However, their work is based on the adoption of abducibles which
wergject here asbeing against the coherentist spirit of the AGM. They al so concentrate more
on revision (the theory of expansion not being as detailed as the one in this dissertation),
contraction and update (see Katsuno and Mendelzon [59]) and thus do not adhere to Levi’s
commensurability thesis in the manner we do so here. A model-based construction, along
the lines of Katsuno and Mendelzon [58, 59] is provided.

In discussing (value-based) Levi-contraction, we only provided a completeness result for
one of our suggested sphere modellings. 1t would be interesting to determine the nature of
the postul ates that need to be added to obtain acompleteness result for the second proposal.
Thisisof particular interest because, as we have noted, the amount of change made by this
proposal is, in general, intermediate between that made by AGM contraction and our first
proposal.

In Chapter 7 we discussed how an abductive revision operator could be determined through
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the (modified) Levi identity. We also mentioned that an alternative idea is to “reverse’
the Levi identity asin Hansson [43]. Thisis interesting because the reversed version does
possess some intuitive appeal. We would be determining the explanation first and then
deciding what would need to be done to incorporate it in a consistent manner. On the
other hand, using the Levi identity, the result of removing information determines what
explanations are admissible. One problem with the reversed Levi identity is that, for it to
work, one would need to abandon the consistency requirement for abductions.

The use of methods of reasoning like abduction and induction have often been linked with
the problems of scientific discovery and theory formation. Considering the genera nature
of the AGM framework and the operators discussed here, it would seem natural to suggest
that they could be used for this purpose. One popular framework in artificial intelligenceis
the Model Inference System developed by Shapiro[118]. In this case, abductive expansion
could be used to suggest new theories as information is acquired and contraction could
take the place of the Contradiction Backtracking Algorithm whose job it isto identify false
hypotheses.
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Appendix A

Proofsfor Chapter 4

Note: Thischapter contains the proofs for claims made in Chapter 4.

Observation 4.1.1 If an abduction W of a formula ¢ with respect to a domain theory I
exists, then afiniteabduction W’ C W (where W' isunderstood to befinite) of ¢ with respect
tol exists.

Pr oof:

By definition of abduction, ' U W  ¢. So, by compactness, there is some finite W' C W
suchthat ' U W' I ¢. Furthermore, sincelr UW H | thenT U W't/ L. [ |

Lemmad4.1.2 If afiniteabduction W of ¢ withrespecttoI” exists, then it can be represented
byasingleformulay (i.e, T U{y} F o, T U{y}  1).

Proof:
We shall show the syntactic equivalenceof Wand 1 A ... Ay, (I.e, ¥ =1 A ... Ady).

Suppose afinite abduction W = {1, ..., ¢, } exists.
Proof by induction on size of the abduction W (i.e., n).

191
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(If {aby, ..., Y} E S, then{ws A ... Ath, } F 6)

BaseCase,n = 1: {{1} Fd = {¢1} 6.

Inductive Hypothesis, n = k: If {¢1,..., ¢} F 6, then {pa A ... A} F O
Inductive Case, n = k + 1. {¢1,..., k1) F 9.

{1, .., e} U {tksa}} 0.

{ah1, ..., Y} F 1 — & (Deduction).

{1 A ... A} F er1 — 0 (Induction Hypothesis).

F (1 Ao App) = (Ype1 — 6) (Deduction).
FIWL A A ) = (ke = 0)] < [(Va Ao Atgra) — 0]
F WA AYE1) 20

{1 A ... Atpyi1} F 6 (Deduction).

(f {or A .. AP} 6, then {oa, ... 0, } F6)

BaseCase,n = 1. {¢1} Fd = {¢n} F 6.

Inductive Hypothesis, n = k: If {¢)1 A ... A} F 6, then {a)q, ..., Yp} F 6.
Inductive Case,n =k + 1. {ty1 A... A1} F O

F (1 A ... Atry1) — 6 (Deduction).

FIW1 A A Y) = 0] & (Y A A k) = (Y1 — 6)]

F (WL A A Yg) = (Y1 — 6)

{1 A ... A} (Ypy1 — 6) (Deduction).

{1, ..., ¥} F Y1 —  (Induction Hypothesis).

{1, Ve U{ppa} B O {tbr, - ¥} U {¢g1a} 0 (Deduction).
{¥1, . g} E 6. u

Observation 4.2.1 The “weakness’ relation <r 4 induces a partial ordering over the set
of abductions of ¢ with respecttoI".

Pr oof:
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Reflexivity: ¢ -« for any ¢ € L. S0, if ¢ is an abduction of ¢ with respect to I', then
Y <rgp .

Anti-Symmetry: Suppose <r , ¢ and ' <, 1. Then, ¢ F ' and ¢’ - ¢ by definition.
Therefore, 1 - .

Transitivity: Suppose ¢ <r, ' and o' <r 4 ¢". Then, ¢’ I ¢ and " = ¢'. Therefore,
Y . Hence, ¢ <p 9", [ |

Observation 4.2.2 If there is an expressible minimal abduction with respect to <r 4 then
it must be weaker than the new information ¢.

Pr oof:

Suppose there is an (expressible) minimal abduction + with respect to <, and that it is
not weaker than ¢. Consider the formula vy v ¢. Now, since ¢» and ¢ are abductions of ¢
with respect to ', then T U {y} F ¢ and T U {¢} + ¢ soclearly then T U {4 V ¢} F ¢.
Moreover, TU{¢y} / LandT U {o} t/ LsoT U{yV o}t/ L. So, ¢ V ¢ isan abduction
of ¢ with respect to I'. Moreover, v V ¢ <r 4 1. Contradiction. Hence, any minimal
abduction under <r 4 isweaker than ¢. [ |

Theorem 4.2.3 For any abduction v of ¢ with respect to I" weaker than ¢ andany § € L,
ru{y}roiffru{e} k.

Pr oof:

Let ¢ be an abduction of ¢ with respect to I" such that v <r , ¢.

Inthe case wherel” and ¢ areinconsistent, I U {¢} I L, there can be no abductions whatsoever and the
result is vacuoudly true.
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(If)
Suppose I' U {¢} F 6. Therefore” - ¢ — o by (Deduction). U {y} F ¢ — §
(Monotonicity). ' U {1} - ¢ since ¢ isan abduction. I U {¢'} F § (Modus Ponens).

(Only If)

Suppose I' U {¢} + 6. Therefore ' = ¢ — § by (Deduction). T U {¢} F ¢ — §
(Monotonicity). ¢ 1 sincey <r, ¢. I U{¢} F ¢ (Monotonicity). ' U {¢} - § (Modus
Ponens). [ |

Observation 4.4.1 The relative specificity relation <r , isa (partial) pre-order over the
set of abductions of ¢ with respectto .

Pr oof:

Reflexivity: ' U {¢} - % by (Monotonicity) for any ¢ € L. Therefore, if ¢ isan abduction
of ¢ with respect to I, then obviously 1 <r 4 .

Transitivity: Suppose) <r 4 ' and ¢’ <, ¢". ThenT U {¢'} Fyand T U {¢"} - /.
By (Deduction) I' - ¢’ — ¢ and T F ¢" — @' so = " — 4. Thereforel" U {¢"} - 9
by (Deduction). Hence ¢ <r , ¥". [ |

Lemma 4.4.2 If an abduction of ¢ with respect to I' exists, then an abduction ) of ¢ with
respect to " isarelatively least specific abduction of ¢ with respectto I iff I - ¢ < 1.

Pr oof:

Let an abduction of ¢ with respect toI" exist. Then T t/ —¢.
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(If)

Let ¢ be arelatively least specific abduction of ¢ with respecttoI'. That is, ¢ <r , ¢’ for
any abduction v’ of ¢ with respect toI'. Now ¢ is an abduction of ¢ with respecttol". So
¥ =<r4 ¢. Therefore” U {¢} and by (Deduction) I' = ¢ — 1. Since v is an abduction
of ¢ with respect to I' we have by definition that ' U {4} F ¢ and by (Deduction) again
Y — ¢. Henceit followsthat I + ¢ <> 1.

(Only If)

Letl - ¢ <> ¢. Clearly thenT F ¢ — ¢ and by (Deduction) I' U {¢)} - ¢. Suppose
for reductio ad absurdumthat ' U {¢} - L. ThenT + —i. However, T - ¢ — o
so by (Contraposition) ' = = — —¢ and by (Modus Ponens) I' - —¢. Contradiction.
Therefore, ' U {¢} 1/ L and so ¢ is an abduction of ¢ with respect to I'. Now consider
any abduction v’ of ¢ with respect to . By definition” U {¢'} - ¢. Sincel + ¢ <> 1,
by (Monotonicity) ' U {¢'} - ¢ <> ¢ and by (Modus Ponens) I U {¢'} F 9. Therefore,
Y = ' for any abduction v’ of ¢ withrespect toI". Hence+) isaleast specific abduction.
[ |

Observation 4.6.1 Any abduction, other than the new data, generated by the above proce-
dureisa conjunction of literals.

Pr oof:

The crucial part of the algorithm is step 4 which is the only point in the algorithm besides
the initialisation where additions are made to the hypothesis set H.S containing abductions.
We see that a clause C' which is not a tautology and not subsumed by any other clause
in the working set WS’ is negated and added to HS. Since C' is a clause and therefore a
digiunction of literas, clearly its negation is a conjunction of literals. It is easy to see that
the algorithm computes abductions through the soundness of the resolution rule and the

contrapositive argument for computing abductions. [ |
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Theorem 4.6.2 If W isa conjunctive minimal abduction of ® with respect to I then W is
in the hypothesisset HS.

Proof:

(A similar result is given by Jackson [52] for his framework.) Suppose for reductio ad
absurdum that there is some conjunctive minimal abduction W of ® with respect to I' not
in HS at the termination of the algorithm. Sofr UWF ®and T u W' / ®d forany W C W
however W ¢ HS. The result is given by the refutation completeness of propositional
resolution [12] which ensures that every branch of —W’s proof tree will eventually be
generated (in step 4). This means that, at some point, W will be determined (in fact,
its negation initialy) and added to HS. Contradiction. Hence any conjunctive minimal
abduction will be added to H.S in due course. |

Observation 4.7.1 Any abduction generated by the above procedure (i.e., in GS) is a
digunction of literals (i.e., a clause).

Pr oof:

The elements of GS can be seen to be abductions through the analysis preceding the
algorithm and due to the soundness of the resol ution principle. Now consider any e ement of
GS. Eitheritwasthenew dataC or itistheresult of negating an element of the construction
set C'S. Intheformer case, sincethe new dataC' isassumed to be aclause, theresult follows
automatically. Inthelatter case, duetotheway clause D isselected at step 3, it isclear that
after m — 1 resolution steps at step 5 the construction set C'S will contain a set of singleton
sets(i.e., aconjunction of literals). Thiscan beseenasfollows. SupposeC = {cy,...,cn}-
At step 3, without loss of generality, D ischosentobe D = {cs,...,¢;, 1} wherei < m.
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Atstep 4, C isnegated giving -C' = {{—c1},...,{—cn}} and at step 5 repeated resolution
with D gives{{—l}, {—ciz1},---,{—cn}}. Whenthese are negated at step 6 we obtain (via
de Morgan’'slaws) aclause. Hence, in either case we get a digunction of literals. [ |

Lemma4.7.2 Let the domain theory I" consist of consistent and non-tautological clauses.
If a clause A isin the generated set G'S, then it satisfies the separability assumption with
respect to the clause from the domain theory that was used to generateit.

Pr oof:

Let clause A bein the generated set G'S and assume it was generated from clause D € T’
and new data clause C. We need to show that D \ {I} N A\ {~{} = 0 where [ is the
literal resolved upon. Suppose for reductio ad absurdumthat A and D do not satisfy the
separability assumption. So there is some literal £ say, such that £k € D and k € A.
Without loss of generality, suppose D = {k, di,...,d,} and A = {k, as,...,a,} for
n, m > 0. Now A results from negating the result of step 5 which would have had to
be {{-k}, {—ai},...,{a,}}. Theliterad —k either comesfrom D in which case D isa
tautology for £ € D but D comes from I which does not contain tautologies. Otherwise
{-k} € =C. Therefore k € C. However, if thiswere so, since k € D then =k would be
resolved away in step 5. Therefore no such £ exists contradicting our origina supposition.
Hence D \ {I} N A\ {~l} = 0 asrequired. u

Theorem 4.7.3 Let thedomaintheory I” consist of consistent and non-tautol ogical clauses.
If a clause A isthe result of an absorption or identification of the new data C' together with
a clause fromthe domain theory I then it will bein the generated set G'S.
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Pr oof:

Weverify that any clauseresulting from the absorption andidentification schemain Table4.1
using a clause from the domain theory and the new datawill be cal culated by the algorithm.

Absorption:

Inthiscasethenew dataC = a A — jand D = o — k isin thedoman
theory. We need to show G A k& — j results. Without loss of generality,
suppose C' = {—ay, ..., Gp, —by,...,7b,, j} and D = {-ay,...,—ay,, k}
(e, 0 = =a1AN...7a, and 8 = —by A ...—b,). SO we need to show
{=b1,...,7bm, -k, j} € GS eventudly. Clearly D \ {k} C C so would
eventually be selected at step 3. Now C'S = ~C U{D} =

{{ai}, .. Aan}, {01}, ..., {0}, {7}, {—aq,...,nan, k}} initidly. After
repeated resolution at step 5 we obtain {{b:},...,{b.}, {7}, {k}} which
negated gives { by, ..., by, j, 7k} € GS. asdesired.

| dentification:

ThenewdataC = a A3 — jand D = Ak — jisinthe domain the-
ory. We need to show o — k results. Without loss of generality, suppose
C ={-ay,...,"y, —by,...,7b,, j} ad D = {=by,...,—b,, -k, j} for
m, n>0(.e, a=-aAN...—a,ands=-b A...—b,). SOwe need to
show {—ay, ..., -a,, k} results. Clearly D \ {—k} C C sowould eventually
be selected at step 3. Now CS = -C U {D} =

{{a1}, .. A{an}, {b1},. .., {bn}, {—7}, {01, ..., "bpm, =k, j}}initidly. Af-
ter repeated resolution at step 5 we obtain {{a1},...,{an}, {—k}} which
negated gives {—ay, . . ., —a,,, k} asrequired.

Theorem 4.7.4 Let 'y be a set of propositional Horn clauses over the language £(I";),
[, be the result of performing Inter-construction or Intra-constructionon I, and [ be the
newly introduced literal (i.e,, I € £(I,)). Ifl ¢ L(I'1), then, for any formula ¢ € L£(I'1),
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Mo F ¢impliesTy - ¢.

Pr oof:

Let I'; be a set of Horn clauses over the language £(I"1), I, be the result of performing
Inter-construction or Intra-construction on I'; and [ the newly introduced literal. We shall
proceed as follows. We know that I'; C I, by the way inverse resolution is defined here.
So, supposing for reductio ad absurdum, that there is some formula ¢ € L£(I';) such that
Mo F ¢ but 'y I/ ¢, then the only way this can occur is through interaction of the newly
introduced clausesin I, (i.e., those formulaein I, \ I';). Therefore, considering, in turn,
inter-construction and intra-construction we show, using propositional resolution which is
a sound inference procedure, that any clause resulting through the resolution of a newly
introduced formula could a so be obtained through resolution of theinitial set of formulae.
Due to the soundness of the resolution rule, this shows that our supposition above is not

possible and hencel™; - ¢ asrequired.

We first consider inter-construction. In order for inter-construction to apply there must be
HornclausesaAf — j, aAy — k € 1. Thisgivesl'y = T1U{BAl — j, YAl = k, o —
[}. In order for resolution to take place we only need consider three cases (remembering
that € £L(I1)).

Case (i) Either j or k£ appearsin the antecedent of some Horn clausein I ;.

That is, thereisaclaused AN j - m el CT,or ANk —>mel, CTy
(note that I does not occur here since !l ¢ L£(I"1)). Inthe former case, the only
resolutionin Ty \ My iswith AL — j € T\ Iy producingd A BAL — m.
However, this clause is not in £(I';). The only possible way of obtaining
aformulain £(I",) is to resolve away [ and this can only be done through
resolution with o — [ which producesa A 8 A § — m. (It isvery important
to note here that the formulad A 8 A I — m may well resolve with formulae
in "y but this will not result in aformulain £(I";). Moreover, even though
such resolutions could produce formulae in £(I;) if resolved with o — 1
such formulae could easily be reproduced by applying the same sequence of
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resolutionsto o« A B A § — m. In short, such a strategy would make no
difference so we shall not consider it further in the cases that follow.) Now
ONj—m €T resolveswitha A3 — j €'y producinga A BAJ — mas
desired. Thelatter caseis similar.

Case (ii) Part of o occursin the consequent of some Horn clauseinT ;.

That is, thereisaruleind - aand o = o’ Aa. InT, \ I'; thisonly resolves
witha — [ (i.e, &’ A a — 1) producing § A o — [. Thisformulais not in
L(T'1) and the only possible way of obtaining aformulain £(I";) isto resolve
away [ using one of two clausesinl;: S Al — j producinga’ A B A S — j;
o,y Al — k producing o’ Ay ANd — k. Now, inT1, 6 — a resolves with
aANfB—=j@e,a NaANpB — j)producingd AGAS — j,anda Ay — k
(i.e, &' Aa ANy — k)producingo’ Ay Ad — k asrequired.

Case (iii) Part of 3 or v occursin the consequent of someHorn clauseinT ;.

Without loss of generality, assume part of § occurs in the consequent of some
clause (the other caseissimilar). That is, thereis some Horn claused — b €
M Clyandp=p Ab Inl,\ Iy thisonly resolveswith 5 AL — j (i.e,
B'ANbAL— j)producing 8 Ad Al — j whichisnot £(I'1). The only way
to resolve away [ is through resolution with o — [ producing 5’ Ad A o — 1.
Now inTq, d — bresolveswitha A B — I (i.e, a A B ANb — j) producing
aAf N6 — jasrequired.

Hence (due to the soundness of propositional resolution) anything provable from I™, (inter-

construction applied to I";) and belonging to £(I";) is provable from I";.

We now consider intra-construction. In order for it to apply there must be Horn clauses
alNp —j, a Ny — j € ' which gives, after intra-construction, ', = T, U{a Al —

J, B— 1, v—1}. Again we consider three cases.

Case (i) Literal j appearsin the antecedent of someHorn clauseinT ;.
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That is, thereisaclaused A j — m € I'; C I, Thisresolveswitha Al —
j €T\ producing @ A 6 Al — m whichisnotin £(I;). To get aformula
in £(I"1) thisresolvesonly with 3 — [ producinga A BAd — mandy — m
producinga Ay Ad — m. Now, inT1,§ A j — mresolveswitha A 5 — j
producinga A GA6 — manda Ay — jproducinga Ay Ad — m asrequired.

Case (ii) Part of o appearsin the consequent of some Horn clausein T ;.

That is, thereisaHornclaused wa €My ClMyanda =o' Aa. InT\ Iy,
thisresolveswitha Al — j (i.e, &' ANa Al — j)producing o’ AS AL — j
which however isnot in £(I";). To get aformulain £(I";) this resolves with
only 3 — [ producingo’ ABAJ — landy — [ producing o’ Ay A6 — 1.
Now, inT1,d — aresolveswitha A3 — [ (i.e, o’ Aa A 3 — 1) producing
dNANBANI—=>landany —=l(e,d AaAy—)producinga’ AyA S — 1
asrequired.

Case (iii) Part of 3 or v appearsin the consequent of some Horn clauseT ;.

Without loss of generality assume part of 3 occurs in the consequent of some
rule (the other case is similar). So there is some Horn clauseé — b € ', and
B=p Nb. InT,\ Ty thisresolveswith g — [ (i.e, ' A b — 1) producing
B'Ad — 1. This, however, isnotin £(I"1). Theonly way to obtainaformulain
L(I,) istoresolvethiswitha Al — j producinga A 3’ A6 — j. Now in Ty,
o — bresolveswithaAfB — j(i.e,aAB' Ab— j)producinga A ' Ad — j
asrequired.

Hence again, anything provable from I", (intra-construction applied to I';) and belonging
to £(I";) isprovablefrom ;. [ |
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Observation 48.1 If I F ¢ thenany 6 € £ consistent with ™ (i.e, T U {6} t/ L) isan
abduction of ¢ with respecttoI".

Pr oof:

Suppose ' F ¢. Now, - ¢ — (§ — ¢) (aparadox of materia implication). ' - 6 — ¢
(Modus Ponens). I' U {6} - ¢ (Deduction Theorem). [ |



Appendix B

Proofsfor Chapter 5

Note: Thischapter containsthe proofsfor claimsmadein Chapter 5. Proofs of observations
that will be of help in providing clarity and shortening the main proofswill also be supplied
as needed and named LemmaB.zx.

e Thefollowing postulates are equivalent given postulates (K®1)—(K©4).

(K®5) If ~a ¢ K,then—a ¢ K& (consistency)

5.1 If-a¢K,thenK? # K, (consistency’)
52 HK#K, thenK? #K, (consistency”)
Proof:

(K®5)=(5.1)

Let —a ¢ K. —a ¢ K by (K®5). Therefore, K@ # K, since—a € K.

(5.1)= (5.2)

Let K # K,.If—a € K,then K& = K by (K®4)andso K? # K, .

Otherwise, o ¢ K and K¢ # K, by (5.1). Again, K& # K, .

(5.2)=(K#5)

203
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Let - ¢ K. So K # K, and therefore K¢ # K, by (5.2). Moreover,
a € K2 by (K®2). Putting these last two facts together, we obtain —~« ¢ K
as desired.

It therefore follows that any of the postul ates above can be derived from any of the other
postul ates above. ]

LemmaB.l Let K beabeliefsetand o € L. If —a ¢ K thenthereisa § € £ such that
Ku{g}raand KU{p}/ L.

Pr oof:

We claim that if -« ¢ K then o isasuitable 5. We need to verify that K U {a} - a and
KU{a}lt/ L.

Firstly, K U {a} I a by (Reflexivity).

To show K U {a} t/ L, suppose for reductio ad absurdum that K U {«} + L. Then,
KU{a} F-aandso K + a — —a by (Deduction). But, - (o« — —«a) <> —a. Therefore,
K + =« by (Modus Ponens). Contradiction.

Hence, thereisa g € £ suchthat K U {f} Faand K U {8} t/ L |

LemmaB.2 Let K beabdief setand o € L. If —a € K thenthereisno § € £ such that
Ku{g}Fraand KU{p}/ L.

Pr oof:
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Let -« € K. For reductio ad absurdum suppose such a 3 exists. Now, since -« € K,
then K - —« and therefore K U {3} F —«a by (Monotonicity). But K U {#} F a s0
K U {p} F L. Contradiction. |

Theorem 5.2.1 The function & satisfies postulates (K®1)—(K®5) iff
Cn(K U{B}) for some € L such that:
(VKU{p}Fa«
K = (i) Ku{pri/ L

K if no such g exists

Proof:
(If)
We suppose K¢ is defined as above and verify that & satisfies each of (K®1) — (K®5).

(K®1) K© isabelief set.

Assume thereis a # such that K U {f#} F e« and K U {3} t/ L. So,
K® = Cn(K U {p}) by definition. Now, Cn(K®) = Cn(Cn(K U {3}))
by (Monotonicity). But, Cn(Cn(K U {8})) = Cn(K U {3}) by (Iteration).
So, Cn(K$) = Cn(K U {3}) and therefore Cn(K®) = K&. Thus K¢ isa
belief set.

Otherwise, no such g existsand K¢ = K. Therefore K isabelief set since
K isabelief set.

(K®2) If ma ¢ K,thena € K9

Let ~a ¢ K. By Lemma B.1 we have that there is a § € L such that
KU{p}Faand KU {3}t/ L. Therefore, K¢ = Cn(K U {3}) for some
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such g by definition. But K U {#} - e« and so a € Cn(K U {#}). Hence
a € KP asdesired.

(K®3) K C K®

Suppose thereisa @ € L suchthat KU {f} F caand K U {5} ¥ L. So
K = Cn(K U {3}) for some such 3 by definition. Now Cn(K) C Cn(K U
{6}) by (Monotonicity). But K = Cn(K) since K is a belief set and so
K C Cn(K U{p}). Therefore K C K2.

Otherwise no such § existsand so K = K by definition. Therefore K C K&
trivially.

(K®4) If ~a € K, then K& = K

Let ~a € K. Then, by LemmaB.2, thereisno 5 € £ suchthat K U {8} F «
and K U {8} I/ L. Therefore K¢ = K for some such 3 by definition as
desired.

(K®5) If =a ¢ K, then ~a ¢ K©

Let —a ¢ K. Then, by LemmaB.1, thereexistsa € £ suchthat KU{{} F «
and KU{3} t/ L. Therefore K& = Cn(KU{}) by definition. For reductioad
absurdumsuppose—~a € K. Thatis, —a € Cn(KU{3}). So KU{S} I —a.
But K U {3} Faandso K U{g}+F L. Contradiction. Hence ~« ¢ K2.

(Only If)
We suppose @ satisfies (K®1)—(K®5) and show that, for any o € L, it satisfies the
definition above.

We consider two cases:

() KUfa}ir L



Inthiscase, ~« ¢ K since K isabelief set and therefore, applying LemmaB.1,
thereisa € L suchthat K U {#} F aand K U {§} I/ L. We exhibit such a
£ and show that K = Cn(K U {§}).

Now K C K9 by (K®3) soconsider theset K’ = K¢ \ K. Since L isafinite
language, Cn(K') is finitely axiomatisable. (In particular, if K’ = (), then
Cn(K') is axiomatisable by any tautology.) Suppose K" = {ki, ..., kn}
is such afinite axiomatisation and consider 3 = k1 A ... A k,,, (Whichisaso
a finite axiomatisation of Cn(K")). We need to show (i) K U {8} F «, (ii)
K U{g} ¥/ Land (iii) K& = Cn(K U {3}).

(YKU{B8} F«

If o € K, then K U {8} F a by (Reflexivity). Otherwise, a ¢ K.
But « € K by (K®2). Thereforea € K’ and so K’ F «a. So
{B} F «a since 3 isafinite axiomatisation of K'.

(i) KU {B} i/ L

Since ~a ¢ K, then by (K®5) —«a ¢ K. Suppose, for reductio ad
absurdum, that K U {g} + L. ThenK - -fandso K UK'+ —f
by (Monotonicity). But K’ F 3 (since 3 is a finite axiomatisation
of K'and {5} - ). So K U K' - § by (Monotonicity). Therefore,
KUK'F pgand KUK'F = and, since K = KU K'. Then
K¢ F pgand K¢ F -6. So K¢ F —« and since, by (K®1), K®
is closed under Cn, then —a € K. Contradiction. Therefore
K U {p} V¥ 1 asdesired.

(i) Kg = On(K U {B})

We need to show K@ C Cn(K U{S}) and Cn(K U {5} C K?.
K® C Cn(K U{p}) (i.e, need to show that if v € K, theny €

Cn(K U{5})).

Letye K. NowK? =KUK' soye Korye K'. If y € K,

then K + v and so K U {3} F v by (Monotonicity). Otherwise

207



208 APPENDIX B. PROOFS FOR CHAPTER 5

v € K'. Then {5} I ~ since 3 is afinite axiomatisation of K’ and
so K U {p} F ~ by (Monotonicity). Therefore K U {3} I .

K® C Cn(K U{p} (i.e., need too show that if v € Cn(K U {3}) then
v e KP).
Suppose v € Cn(K U {3}). Then g8 — v € Cn(K) = K by
(Deduction). Therefore 5 — v € K2 since by (K®3), K C K?.
Now K' + 3 since {3} F § (and g isafinite axiomatisation of K)
andso,sinceK® = KUK',wehave K’ C K% I~ 5. But, by (K®1),
K& isclosed under Cn. So f € K& and furthermorey € K® by
(Deduction).

(INKUak L

Therefore K = o« — L by (Deduction) and since - -« <> (a« — L), then
K F —a. Thatis, —a € K since K isabelief set and therefore, by LemmaB.2,
thereisno  such that K U {f} - aand K U {5} t/ L. Hence, we need to
show that K€ = K. But this follows directly by (K®4). Thus satisfying the
definition.

LemmaB.3 Let K beabdiefsetanda € £. KTa =0 iff —a € K.

Pr oof:

(If)

Let ~o € K. Supposefor reductio ad absurdumthat K Ta # (. Thenforany K/ € K Ta,
-« € K' by Definition 5.3.1(i) and since -« € K. So —~a € Cn(K') by (Inclusion).
But o € Cn(K') by Definition 5.3.1(ii). Therefore Cn(K') = K, contradicting Defini-
tion 5.3.1(iii). Hence K Ta = 0.
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(Only If)

Let KTa = (). Suppose for reductio ad abdurdumthat —« ¢ K. Then K U {a} t/ L since
if KU{a}F Lthen K - a — L by (Deduction) and sincet ~a <+ (¢« — L) and K isa
belief set then —« € K which contradicts our assumption. Since K U{«} isconsistent then
thereissome K’ O K such that o € K'. Moreover, thereis such a K’ that is maximally
consistent. Therefore K’ € KTa and so K Ta # (). Contradiction. Therefore—a € K as
desired. u

Observation 5.3.1 Let K beabeliefsetanda € £. Any K’ € KTa isabelief set.

Proof:
If ~a € K then KTa = () and the observation becomes vacuously true.

Otherwise, —a ¢ K and so K T« # (). Suppose for reductio ad absurdumthat some K’ €
KTaisnot abelief set (i.e, K' # Cn(K')). We know that K’ C Cn(K") by (Inclusion)
but, since K’ # Cn(K'"), thenCn(K') > K'. But, thisviolates Definition 5.3.1 (iv) for K’
being an element of KT« (since Cn(K") satisfies at least Definition 5.3.1 (i)—(iii) and it
isaproper superset of K').

Henceany K’ € KTa isabelief set [ |

LemmaB.4 Let K beabdiefsetanda e L. KTa=KTBIiff K+ a <« 5.

Pr oof:

(I)

Weneedtoshow that if K - o« g, then KTa = KT4.
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If - € Kthen-3 € KsinceK - a <+ fandso KTa = KT3 = () by Definition 5.3.2.
Otherwise, we assume —a ¢ K andshowthat K Ta C KTgand KT C KTa.

KTaCKTp

(That is, we need to show that if K/ € KTa,then K' € KTJf3)

Suppose K’ € KTa. Then a € Cn(K') by Definition 5.3.1 (ii). So, 8 €
Cn(K')ysince K + a < g and K C K' by Definition 5.3.1 (i). Moreover,
K C K', K' # K, and K' maximal by Definition 5.3.1. Therefore, K’ isa
maximally consistent superset of K implying 5. Thatis, K' € KTg.

KTC KTa
Proved in the same manner.

(Only If)
Weneedtoshow that if KTa= KT8, then K - a + (.

Let KTa = KTS. f KTaa= KT8 =0, then ~a, -3 € K by LemmaB.3. Therefore
KFa+ S

Otherwise, KTa = KT # (. Now, we clamthat K U {a} U {-(a < 3)} t/ L iff
Ku{ptu{-(a « B)} ¥ L. For suppose this is not the case. Then there is some
maximal K’ with =(a <» ) € K' such that either both K’ € KTa and K' ¢ KT or
both K' ¢ KTaand K' € KTS. But KTa = KTf(# 0) so our supposition is not
possible. Now suppose, for reductio ad absurdum, that K t/ o <+ 5. We now consider two

cases.

() KU{a}U{~(ae A FLandKU{BU{=(ao f)}F L

Now, since K U{a}U{—(a <+ B)} F L,surdy K - o — 3 (two applications
of (Deduction) and note that - [ — ] < [a — (-(a < ) — 1)]).
Similarly, since K U {#} U{—(a <> )} F L, surely K - § — «. Therefore
K F a < (3. Contradiction.
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(i) KUu{a}U{=(a< B} Land KU{S}U{-~(a < B)} ¥ L

(That is, =(« <> 3) isconsistent with both K U {«} and K U {3}.) So there
issome K' € KTa (= KT4) suchthat —-(a «+» 3) € K'. Buta, g € K’
sinceK' € KTa = KT/ (and by Definition 5.3.1 (ii) and Observation 5.3.1).
Contradiction. -

Lemma 5.3.2 Any maxichoice abductive expansion function satisfies postulates (K1) —
(K®6).

Pr oof:

We shall verify that @, defined by (Def Max) (i.e., Definition 5.3.3), satisfies each of
(K®1)—(K®6).

Recall that v selectsasingle K’ € KTa and
o — | 7(KTa) whenever KTo # 0
@« 1K otherwise
(K®1) K2 isabelief set.

If ~a ¢ Kthen K® = (K Ta) = K' by Definition5.3.3. By ObservationB.3
KTa # () and by Observation 5.3.1 K’ is a belief set. Therefore, K¢ isa
belief set.

Otherwise, ~a € K and K = K by Definition 5.3.3. Since K isabelief set,

K@ istoo.
(K®2) If ma ¢ K,thena € K?

Let—a ¢ K. Now K® = v(KTa) = K' by Definition 5.3.3. Now K T # 0
by Observation B.3. By Definition 5.3.1, any K’ € KTa hasa € Cn(K')
(= K’ by Observetion 5.3.1). Therefore, « € K2
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(K®3) K C K®

If ~a ¢ K then K¢ = v(KTa) = K’ by Definition 5.3.3 and K Ta # ()
by Observation B.3. By Definition 5.3.1(i), K € K’ forany K' € KTa.
Therefore, K C K¢

Otherwise, —a € K and K¢ = K by Definition 5.3.3. Therefore K C K&
trivially.

(K®4) If =o€ K, then K& = K
Let ~« € K. Then by Definition 5.3.3 K¢ = K asdesired.
(K®5) If ~a ¢ K, then —a. ¢ K&

Let - ¢ K. Then K® = v(KTa) by Definition 5.3.3 and K Ta # () by
Observation B.3. Suppose for reductio ad absurdum that -« € K’ for any
K' € KTa. So—a € Cn(K') by (Inclusion). But by Definition 5.3.1(ii),
a € Cn(K'). Therefore, Cn(K') = K, . Thiscontradicts Definition 5.3.1 (iii)
andso —a ¢ K' forany K’ € KTa. Hence, ~a ¢ K2

(K®6) If K - o ¢ f, then K& = K

Let K - o+ 8.

Suppose o ¢ K. Then—-3 ¢ K sinceK - a < fandso K& = v(KTa)
and K¥ = (K Tp) by Definition 5.3.3. Now KTa # ) and KT8 # () by
Observation B.3. Also KTa = KTg by LemmaB.4. So K% = Kff since y
isafunction.

Otherwise —a € K. Then - € Ksince K - a + fandso K = K and
K§ = K by Definition5.3.3. Hence K¢ = K = K.
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Observation 5.3.3 Let K beabelief set and o € £. N(KT«) is a belief set whenever

KT« isnonempty.

Pr oof:

Let KTa # 0. KTa = {K,;, K, ...} where K; is closed under Cn (i.e, K; =
Cn(K;)) by Observation 5.3.1. Therefore, N(K Ta) = N{ K1, Kz, ...} = KiNK,N ...
So Cn(N(KTa)) = Cn(KiN KN ...) = Cn(K;) NCn(K,) N ... (as noted in the
preliminaries) = K1 N K, N ... = (K Ta) asdesired. |

Lemma 5.3.4 Any full meet abductive expansion function satisfies postulates (K% 1)—
(K®6).

Pr oof:

Weshall verify that &, defined by (Def Meet) (i.e., Definition 5.3.4), satisfieseach of (K 1)
— (K96).
Recall that v sdlectsall K’ € KT« and therefore

KO _ { N(KTa) whenever KTa # ()

a

K otherwise
(K®1) K? isabelief set.

If o ¢ K, then K¢ = N(KTa) by Definition 5.3.4 and by Lemma B.3
KTa # 0. NowN(KTa) isabelief set by Observation 5.3.3. Hence K@ isa
belief set.

Otherwise, ~a € K and K& = K by Definition 5.3.4. Since K isabelief s,
then K¢ istoo.

(K92 If ~a ¢ K,thena € K



214 APPENDIX B. PROOFS FOR CHAPTER 5

Let o ¢ K. Then K¢ = N(KTa) by Definition 5.34. KTa # 0 by
Lemma B.3 and, moreover, o € K’ for any K’ € KT« by Definition 5.3.1
and Observation 5.3.1. So oo € N(K T ) and thereforeac € K9,

(K®3) K C K®

If ~a ¢ K then, K& = N(KTa) by Definition 5.3.4. Also, KTa # ()
by Lemma B.3 and, for any K’ € KTa, K C K' by Definition 5.3.1 (i).
Therefore K C N(KTa) andso K C K2.

Otherwise, —a € K and so K@ = K by Definition 5.3.4. Therefore K C K¢
trivially.

(K®A) If - € K,then K& = K
Directly from Definition 5.3.4 (Def Megt).
(K®5) If ~a ¢ K, then ~a ¢ K&

Let o ¢ K. Then K& = N(KTa) by Definition 5.3.4 and K Ta # (0 by
Lemma B.3. Now, for any K’ € KTa, ~a ¢ K' since, otherwise, -« €
Cn(K'") by (Inclusion) and o« € Cn(K") by Definition 5.3.1 (ii) contradicting
Definition 5.3.1 (iii) that K' is consistent. Therefore -a ¢ N(K Ta) and so
- ¢ K& asdesired.

(K®6) If K - o ¢ §, then K& = K§

Let K - o < 6.

If - ¢ K,then -4 ¢ KsnceK - a +< 3. So K = N(KTa) and
K§ = N(KTp) by Definition 5.3.4. By LemmaB.4 KTa = KT and so
N(KTa) = N(KTp). Therefore K€ = K.

Otherwise ~o € K, then-3 € K since K +a « fandso K¢ = Kj = K
by Definition 5.3.4.
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Theorem 5.3.5 Let @ be an abductive expansion function. For any formula o € £ and
belief sets K and H such that —a ¢ K and -« ¢ H, the operation & is a full meet
abductive expansion for K with respect to « iff & satisfies postulates (K*1)—(K*6) for

AGM expansion over K.

Pr oof:

Now & satisfies (KT1)—(K*6) iff K& = Cn(K U{a}) by Theorem2.2.1 and, since ~« ¢
K, K isafull meet abductive expansion function iff K& = N(K T«) by Definition 5.3.4.
So it will suffice to show that (K Ta) = Cn(K U {«a}). Notethat since —a ¢ K, then
K # K, and KTa # () by LemmaB.3.

N(KTa) C Cn(K U{a})

(That is, we need to show that, if 3 € N(KTa), then g € Cn(K U {a}).)

Suppose # € N(KTa). Then g € K’ forevery K’ € KTa. Now a € K’
for every K' € KTa by Definition 5.3.1 (ii) and using Observation 5.3.1. So
a— € K forevery K' € KTa. Now, weclamthat K - a — (. To
show this we consider two cases. Firstly, if K U {a} U {—-(a — 3)} F L,
then K + a — [ straightforwardly (two applications of (Deduction) and
sncet (a —» ) + (@ = (o« — B) — 1) using (Monotonicity) and
(Modus Ponens)). Otherwise K U {a} U {—=(a — §)} I/ L and so there is
some K' € KTa such that -(a — ) € K’ (thatis, a A =3 € K' using
Observation 5.3.1) meaning that -3 € K’ contradicting the above. Therefore,
this latter case is not possible. So it followsthat o« — 5 € K since K isa
belief set and therefore 5 € Cn(K U {«a}) by (Deduction) as required.

Cn(K U{a}) CN(KTa)
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Now K C K'for every K' € KT by Definition 5.3.1 (i). Also« € Cn(K')
for every K’ € KTa by Definition 5.3.1 (ii) and, since K’ = Cn(K') by
Observation5.3.1,thena € K'forevery K’ € KTa. Therefore KU{a} C K’
andso Cn(KU{a}) C Cn(K') by (Monotonicity). SoCn(KU{«a}) C K'by
Observation 5.3.1 again. Thisholdsfor every K’ € KTasoCn(K U {a}) C
N(K Ta) asdesired.

Note: Althoughwe have not explicitly used the fact that —« ¢ H thisisrequired otherwise
itispossibletofinda H O K suchthat K€ ¢ H? contradicting postulate (K*5). [ |

Observation 5.3.6 Let K be a belief set and @ € £. Then Ny(K Ta) is a belief set
whenever K T« iS nhonempty.

Pr oof:

Let KTa # 0. v(KTa) = {Ki1, K, ...} where K; is closed (i.e, K; = Cn(K;))
by Observation 5.3.1. We nee to show that Cn(Nvy(KTa)) = Ny(KTa). Therefore,
NY(KTa) =Ky, Kz, ...} =KiNK,N.... 0Cn(Ny(KTa)) = Cn(K;N K, N
...) = Cn(K)NCn(Kz)N...(asnotedinthepreliminaries) = K1NKN. .= Ny(KTa)
as desired. |

Theorem 5.3.7 Let & be an abductive expansion function. For every belief set K, @ is
a partial meet abductive expansion function if and only if @& satisfies postulates (K®1)—
(K®6) for abductive expansion over K.

Pr oof:
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(I)

We suppose ¢ satisfies postul ates (K ®1)—(K®6) for abductive expansion over K and show
that & is a partial meet abductive expansion function (i.e., satisfies Definition 5.3.5). The
case where —a € K holds trivialy by (K®4). So we need to find a selection function
suchthat K¢ = Ny(KTa) if —a ¢ K. Inthis case we know, by Observation B.3, that
KTa # (. Let v be defined as follows:
YKTa)={K' | K¢ KTaand K® C K'} when KTa # ()
Y(KTa)={K}whenKTa =10
(In fact, it is not necessary to consider this latter case as KTa = § iff - € K by
Observation B.3 and thisis taken care of by Definition 5.3.5 (Def Meet)).

We need to show that: (i) v is a well-defined function; (ii) v is a selection function; and,
(i) NY(KTa) = K2 fordl o suchthat ~«a ¢ K.

(i) v isawell-defined function

We need to show that (K Ta) = y(KTB) if KTa=KT4.

Suppose KTa = KT8 (# 0 since ~a ¢ K as noted previously). By
Observation B4 K + a < 3 and so K& = Kj by (K®6). Therefore
v(KTa) =~(KTg) by the definition of .

(i) v isaselection function

(i.e, that v(KTa) isanonempty subset of KTa when KTa is honempty.)
We need to show that if K Ta # (), then y(K Ta) # 0.

We have noted abovethat K Ta # () and so —a ¢ K. By (K®2) and (K®3) we
have then, that K¢ C K’ € KT for some K’ € KT . By the Definition of
v itfollowsthat K’ € y(K Ta) and thereforey(K Ta) # () asrequired.

(i) Ny(KTa) = K? for dl a such that o ¢ K

Recal that KTa # @ and o ¢ K.

NY(KTa) C K



218 APPENDIX B. PROOFS FOR CHAPTER 5

We need to show that if 6 € Ny (K Ta), thend € K.

Suppose 6 € Nv(K Tea) and, for reductio ad absurdum, that 6 ¢
K. Sinced € Ny(KTa), thend € K' forevery K’ € v(KTa).
Also, sinced ¢ K2, then K$ t/ § since K¢ isclosed by (K®1) and
0o KU {6} I/ L (i.e, K& and - are consistent). Therefore,
there is a maximally consistent superset of K&, say K*, such that
K% C K*and—§ € K*. (Note, weknow that K& isconsistent since
—a ¢ K@ by (K®5).) But o € K® by (K®2) and so o € K* and
by (K®3) K C K9 C K*. Therefore K* € KT and, moreover,
K* € v(KTa) by definition of v. This contradicts the fact that
0 € K'for every K' € KTa since by Definition 5.3.1 (iii) every
such K’ isconsistent. Henced € K andso Nv(KTa) C K¢ as
required.

K3 CNy(KTa)

Holdsby thedefinitionof . Thisdefinitiontellsusthat K& C K’ for
any K' € y(KTa). Soit followsdirectly that K& C Nv(KTa).

(Only if)

We shall verify that @, defined by (Def Part) (i.e., Definition 5.3.5), satisfies (K®1)—(K®6).
Recall that v selects some nonempty subset of K Ta and

K | N7(KTa) whenever KTa 0
* | K otherwise

(K®1) K® isabelief set

If o ¢ K then K® = N~(KTa) by Definition 5.3.5 and KTa # 0 by
LemmaB.3. Therefore N v(K T ) isabelief set by Observation 5.3.6 and so
K? isabelief set.

Otherwise, ~a € K and K$ = K by Definition 5.3.5. Since K isabelief s,
0iIsSKY.
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(K®2) If ~a ¢ K, thena € K9

Let -a ¢ K. Then K¢ = Nv(KTa) by Definition 5.3.5and K Ta # () by
LemmaB.3. Now o € K’ for any K’ € KTa by Definition 5.3.1 (ii) and
Observation 5.3.1. Soaw € Ny(KTa). Hence o € K.

(K®3) K C K®

If -« ¢ K then K = N~y(KTa) by Definition 5.3.5 and KTa # () by
LemmaB.3. Now for any K' = KTa, K C K' by Definition 5.3.1 (ii).
Therefore K CNy(KTa)andso K C K2.

Otherwise ~a € K and K = K by Definition 5.3.5. Therefore K C K¢
trivialy.

(K#Y If ~a € K, then K& = K
Directly from Definition 5.3.5 (Def Part).
(K®5) If o € K, then -« ¢ KS?

Let - ¢ K. Then K¢ = N~vy(KTa) by Definition 535 and KTa #
0 by Lemma B.3. Now, for any K’ € KTa, ~a ¢ K' otherwise -~ €
Cn(K') by (Inclusion) and o € Cn(K") by Definition 5.3.1 (ii) contradicting
Definition 5.3.1 (iii). Therefore —a ¢ Ny(KTa) andso ~«a ¢ K.

(K®6) If K - o <> §, then K& = K §

Lete K Fa <+ (.

If o ¢ K,then -3 ¢ K since K - a < (. Therefore K& = Ny(KTa)
and K = (K Tp) by Definition 5.35. Also KTa # @ and KT3 # 0 by
LemmaB.3. But,by LemmaB.4, KTa=KTgandsoy(KTa) =v(KTp)
sincey isafunction. ThereforeNy(KTa) = Ny(KTH) andso K = K.



220 APPENDIX B. PROOFS FOR CHAPTER 5

Otherwise, o € K and s0 =3 € K since K + « <> (. Therefore K =
K§ = K by Definition 5.3.5.

(56) KZNK§CKE,

Proof:
We need to show that if § € K& N K, then§ € K¢ 5.
Supposed € K NKy. Sod € K& andé € K. We consider two cases.

—(aVvp)eK

Then —a A - € K since K isabelief set. That is, ~a« € K and - € K.
But, then K€ = K and Ky = K by (K®4). Therefored € K andsod € K34
by (K®3).

~(aVp) ¢ K

Sinced € K&, thend € On(KZ, ;3 U {a}) by (K®7) and thereforea — § €
Cn(Kg,z) by (Deduction). That is, « — § € K35 by (K®1). Similarly,
sinced € K§, thend € Cn(Kg, 5 U {6}) by (KE7)andso 3 — 6 € K3, 5 by
(Deduction) and by (K®1). Therefore (a — ) A (6 — 6) € K25 by (K®1)
and, duetothefact that - [(a — 0) A (B — 6)] > [(a V B) — d], we have by
(K®1) againthat (a v 8) = 6 € K3,5. Now a vV 8 € Kg 5 by (K®2) since
—(a Vv B) ¢ K. Therefore, putting these last together, we obtain § € K ffvﬁ by
(K®1) as desired.
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(57) IfaeKg,then K@ C K4

Pr oof:

Leta € K2 5. S0 K3, 5 U {a} = K¢, 5 and therefore Cn(K 3, U {a}) = Cn(K,5) =
K$,5 by (K®1). Now K¢ C On(KS,5 U {a}) by (K®7). Therefore K@ C K2 5. |

Lemma 5.3.8 Any relational partial meet abductive expansion function satisfies (K©7).

Pr oof:

Let ® be arelationa partia meet abductive expansion function. We need to show that
K$ C Cn(KZ,3U{a}) holds.

If - € K, then K¢ = K by Définition 5.3.5 (Def Part) and since K C K35 by
(K®3) which has previously been shown to be satisfied (see Theorem 5.3.7 (Only If)), then
K$ C On(Kg, 3 U{a}) issatisfied trivially.

Otherwise —a ¢ K. It follows that =(a VvV 8) ¢ K. So K = Nvy(KTa) and
K&,5 = Nv(KTa Vv B) by Définition 5.3.5 (Def Part). We need to show (K Ta) C
Cn(Nvy(KTavE)u{a}). Supposed € Ny (K Ta). Weneedtoshow s € Cn(Ny(KTaVv

p)u{a}).

Now consider any K’ € v(KTaV 3). Eithera ¢ K' ora € K'. Inthefirst case, —a € K’
since K’ ismaximal. Soa — 6 € K’ by Observation 5.3.1 (since obviously ~a vV é € K”).
Inthelatter case, o € K'. Clearly K’ € KTa. Moreover, this K’ issuchthat K* < K' for
al K* € KTaVvgbyrdationdity (i.e., (Def v)). Now K Ta C KTaV 3 (seeLemmaB.5).
Let K+ be an arbitrary element of K Ta. Then K+ € KTaV gandso K < K' by
relationality (i.e., (Def v)). Therefore K’ € v(KTa). But, since § € Ny(KTa),
then § € K'. By Observation 5.3.1, it follows that « — 6 € K'. So, in either case
a — § € K" and consequently « — § € K' for any K' € v(KTa Vv (). Therefore
a—deNY(KTaV ). Soby (Inclusion) it followsthat « — § € Cn(Ny(KTa V j)).
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Therefored € Cn(Ny(KTaV 3) U{«a}) by (Deduction) as desired. u

(5.8) Either K&, C KPor K%, C K
aVvg avp B

Pr oof:

Suppose (e V 3) € K. Then —a A =3 € K since K isabelief set. That is, o € K
and -3 € K, againsince K isabelief set. By (K®4) wehave K, ; = K, K& = K and
K =K.S0KZ,; C KSad K, ; C Kj trividly.

Otherwise =(a A ) ¢ K. By (K®5) we have —(a V () & Kg,5. SO~a A -0 ¢ KJ,
since (K®1) satisfied. That is, either ~a & K3, 5 0r =0 & K},5. Soby (K®8) K, 5 C ng
or KS,; C K7 asdesired. ]

59 Ifag KS, then K&, C K

Proof:
Leta & Kg‘?\/ﬂ

If -(a Vv p) € K,thena ¢ K33 = K by (K®4) and since, by (K®3), K C K then
ad K35 C Ky trivialy.

Otherwise, =(a VvV ) ¢ K. SoaV 3 € K, by (K®2). Now, -3 ¢ Kg,, since
otherwisea € K& avs DY (K®1) contradicting our original hypothesis. Therefore, by (K®8),
Kg,5 € K§ asdesired. [
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Lemma 5.3.9 Any transitively relational partial meet abductive expansion function satis-
fies (K®8).

Pr oof:

Let & be atransitively relationa partial meet abductive expansion function. We need to
show that

If ~a ¢ K35 then K2, C K9
holds.

Let mle% ¢ KOGLBVﬂ'

If ~(aV B) € K, then KE,; = K since (K®4) is satisfied. Also, since (K®3) is satisfied,
K CK?. SOKg, 5 C K¢ trivially.

Otherwise =(a v 3) ¢ K. Now, since ~a ¢ K2, 5, then by (K®3), ma ¢ K and therefore
KTa # 0 by LemmaB.3. Also, since —(aV 3) ¢ K, KTa V (3 # () by LemmaB.3.
Using Definition 5.3.5 we have that K3\ s = Nv(KTaV §) and K = Ny(KTa). So,
since—a & K5, ~a ¢ NY(KTaV G). Thereforethereissome K’ € (K TaV 3) such
that —a ¢ K'. Thatis, a € K’ since K’ ismaximal. It followsthenthat K’ € KT« and,
consequently, K’ € KTa N y(KTaV B). oK' e KTa N v(KTaV 8) # ( and by
LemmaB.6wehavethat v(K Ta) C y(KTaVg). ThereforeNy(KTavp) CNY(KTa)
by LemmaB.7. Hence K, s = Ny(KTaV 3) C Ny(KTa) = K asdesired. |

(510) If ~a & K3, 5, then Cn(Kg 5 U {a}) C K&

Proof:
We need to show that (5.10) is equivalent to (K®8) in the presence of the other postulates.

(K®8)=>(5.10)
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Let-a € K¢, 5. Therefore—o ¢ K by (K®3)and K, 5 € KT by (K®8). Now
Cn(Kg,3 U{a}) € Cn(Kg U {a}) by (Monotonicity). But, since ~a ¢ K,
a € K by (K®2). It followsthenthat Cn(K$ U {a}) = Cn(KY) = K2 by
(K®1). Hence Cn(K, 5 U {a}) C K.

(5.10)=(K®8)

Let ~a & K3, 5. Now K35 C Cn(K, 5 U {a}) by (Inclusion). Therefore
Kg,; € K& directly by (5. 10)

(511) K3 s=KorK3,;=K5orK3,;=KSnNKg

Pr oof:

In the case that —(a vV 3) € K (i.e, ~a A =3 € K since K is a belief set) we have that
K$ = Kj = K33 = K by (K®4) and so the above is trivially satisfied. We therefore
need only consider when —(a Vv ) ¢ K.

We consider four cases:
(hae K VﬂandﬁeK
In this case we have —a ¢ K, 5 and - ¢ K2, ; dueto (K®5). So by (K®8)

it followsthat K&,; € K¢ and K, 3 C Kjj. Also, sincea € K5 and § €
CY\,ﬂ,by(57)K@CKvﬂandK@CK(j‘fvﬁ Therefore K3,,; = K& = K.

(ilae K3 zand 8 & K3

Using (5.7) and the fact that o € Ka\/ﬂ we get K& C K9 ovg- Also, since
a e K25 (K®5) gives—a ¢ K 5. SOKS,; C K by (K®8). Therefore
K$,=Kg.

a
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(i) a ¢ K, VﬂandﬂeK
A similar argument to case (ii) glvesKavﬂ Kf}f.
(iV)a ¢ Kgavﬁ and 3 ¢ Kgavﬁ

So K33 € Ky and K33 C KZ by (5.9). Therefore K
Now K9 N Ky C K5 by (5.6). Hence K3 5 = K@ N K.

D
s € KENKj.

Therefore K, 3 = K& or K, 5 = K or K3, 5 = K& N K asdesired. u

Lemma 5.3.10 Postulates (K®7) and (K®8) together with (5.3) imply postulate (K®6) in
the presence of the other postulates ((K®1) — (K®5)) for abductive expansion over K.

Proof:
Let K - « < 3. We need to show that K& = ng. Consider the following two cases:

(i) ~o € K

It followsthat =3 € K since K F « «+ (. So, using (K#4), K& = K and
K§ = K. Therefore K¢ = K.

(i) ~a ¢ K

So -3 ¢ K since K - a + (3 and consequently —~(a VvV 8) ¢ K. Now,
snceKFa<+ gthenKt-a+ (avpB)andK F 3« (6Va). By
(K®3) we get K C K5 and K C Kg,,. So, with the help of (K®1),
a < (aVp) e Kgand g « (BVa) € K, (K%2) together with
the fact that ~(a v 3) ¢ K35 divesa VvV 3 € K, 5. Putting these last two
together with the help of (K®1) yields o € Kavﬂ and g € K ﬁVa So, by (5.1)
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(which is equivalent to (K%5) in the presence of postulates (K®1) — (K%4)),
~a ¢ K$,3 and -8 ¢ K§,, and therefore (K®8) gives K3, ; € K& and
Kg,o € K§. Now, since a € K¢, 4, then Cn(Kg, ; U {a}) = K&, using
(K®1). By (K®7) K& C Cn(Kg, 5 U {a}) and therefore K C K, 5. Since
B € Kj,,, asimilar argument gives K C Kg,,,. Sowe have K¢ = K} 5
and K§ = Kg,,. However, K3, ; = K§,, by (5.3). Therefore K¢ = K as

desired.

LemmaB.5 Let K beabdiefsetanda, € L. Then KTaVv =KTa U KT4.

Pr oof:

KTaVBCKTa U KT8

(Needto show that if K/ € KTaV g, thenK'€e KTa U KTj.)

Suppose K! € KTa Vv . Now a Vv g € K' by Definition 5.3.1 (ii) and
Observation 5.3.1. So, since K’ is maximal, either o« € K' or 8 € K'.
Therefore K' € KTaor K'e KTfandso K' € KTa U KTp.

KTa U KTBC KTaV

(Need to show that if K’ € KTa U KT, then K’ € KTa V 3.

SupposeK' € KTaUKTB. ThenK' e KTaorK' e KT3. IfK' € KTa,
then a € K’ by Definition 5.3.1 (ii) and Observation 5.3.1. Also,a VvV g € K'
by Observation 5.3.1. Therefore K’ € KTa Vv #. A similar argument shows
that K' e KTaVvpBif K'e KT3. Theefore KTa U KT C KTaV as
desired.
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LemmaB.6 Let K beabelief set and o, 5 € L. Let v be a selection function defined via
(Def ~) using atransitively relational marking-off identity <. If K Ta N y(KTaV3) # 0,
theny(KTa) Cy(KTaVpf).

Proof:
Lete KTany(KTaVg) # (. Needtoshowthatif K’ € v(KTa), thenK' € v(KTaV ).

Suppose K’ € y(KTea) and, for reductio ad absurdum, K’ ¢ v(KTa Vv 3). Now
K' e v(KTa)C KTa C KTaV( (thelatter part by LemmaB.5) but K’ & v(KTaV 3).
Therefore there is some K" € KTa Vv g with K” A K' by relationality of <. Also,
KTany(KTaV B) # (0 by hypothesissothereisa K* € KTa with K¥ € v(KTaV 3)
suchthat K” < K*. Also K* < K', since K’ € v(KTa), by relationality. So K" < K’
since < istransitive. Contradiction. Therefore K’ € v(K T« V ) asdesired. |

LemmaB.7 Let K be a belief set and o, 8 € £. Whenever KTa # 0, if y(KTa) C
Y(KTB), thenNy(KTB) CNy(KTa).

Pr oof:

Let v(KTa) C v(KTp). We need to show that Ny(KTB) C Ny(KTa) (i.e, if
§ € NY(KTP), thens € Ny (KTa)).

Suppose 6 € NY(KTH). Soéd € K' for every K' € v(KTf) and, since y(KTa) C
Y(KTS),thené € K' forevery K' € (K Ta). Therefored € Ny(K Ta) asdesired. ®H
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Note: Since (K®1)—(K®6) are satisfied by any partial meet abductive expansion function,
dueto Theorem 5.3.7, they are al so satisfied by any relational or transitively relational partial
meet abductive expansion function. Therefore we shall use them freely in the following
proofs.

Theorem 5.3.11 Let & be an abductive expansion function. For every belief set K, @ isa
transitively relational partial meet abductive expansion function if and only if & satisfies
postulates (K®1)—(K®8) for abductive expansion over K.

Pr oof:

(If)

We suppose ¢ satisfies postulates (K®1)—(K®8) for abductive expansion over K and
show that @ is a transitively relational partial meet abductive expansion function. Asin
Theorem 5.3.7 the case where - € K holds trivially by (K®4). So, we need to find a
transitively relational selection function v such that K& = Ny(KTa) if ~a ¢ K. By
Theorem 5.3.7 (If) we have that + is a selection function and that K2 = Ny(KTa) if
—a ¢ K. We need to show that -y istransitively relational.

We define < over all maximal consistent supersets of K asfollows:

Foral K' and K" € I, K" < K' iff the following three conditions hold.

() K', K" € KT« for somea such that —« ¢ K.
(i) K' e KTaand K@ C K’ for some« such that —« ¢ K.

(iii) Pordl a € L,if K', K" €¢ KTaand K C K? C K", then K¢ C K’

We define the completion +* of a selection function in the following manner.
Y (KTa)={K'€e KTa:Ny(KTa) C K'} for dl a suchthat ~a ¢ K
Y (KTa) ={K}when-a € K
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Clearly ~* isalso asdlection function for K and determinesthe same partial meet abductive

expansion function as .

We need to show that

(@) the relation < satisfies the marking-off identity as defined by (Def ~) (i.e, is
relational with respect to v*); and,

(b) therelation < istransitive with respect to v* for al « suchthat ~a ¢ K.
(a) therelation < satisfies the marking-off identity as defined by (Def ).

Recall that the marking-off identity is defined by (Def ) in the following way.

Y (KTa)={K'e KTa: K" < K'fordl K" € KTa}
To show that < satisfies the marking-off identity, we first show that if K’ €
v (KTa)and K" € KTa, then K" < K'. We then show the converse.

To show the former, suppose K’ € v*(KTa). Let K" € KTa. We need to
show that K" < K'. (Wenotethat if K' = K or K" = K then K ismaximal
andso KTa={K}foranya € L. Thatis, K' = K" = K. Inthiscase, the
results holds trivially by the definition of <.) Immediately, we have

() K" € KTa

(i) K"e KTaand K¢ C K’

Now, let § € £ and suppose K', K" € KT and Kj C K". To show that
K" < K', @l we need show isthat K C K’ (that is, we need to show that if
§ € K2, thend € K') and, putting all these together, use our definition of <
above.

Now either K\ s C K& or K53 C Kj by (5.8). Considering the latter case
gives K33 C Kj C K" € KTa. S0 —a ¢ K¢, (otherwise ~a € K"
contradicting Definition 5.3.1 (iii)). Therefore K3, 53 C K& by (K®8). Hence,
ineither case, K3, 5 € K¢ C K.
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Suppose, for reductio ad absurdum, that thereisad € K§9 withé ¢ K' (so
-0 € K'since K’ is maximal). Now, by (K®7), K§ C Cn(Kg,; U {3}).
So§ € Cn(KE,; U {A}) and consequently 3 — § € Cn(K,5). That is,
by (K®1), 8 — 6 € Kg5. S0, 3 — 6 € K' since K5 C K' by above.
However, K' € KT3 so 8 € K'. Therefore, by Observation 5.3.1, § € K’
contradicting our supposition as desired.

To show the converse we suppose that K’ ¢ v*(KTa) and K' € KTa. We
need to find a K” € KTa with K” A K'. Now we have that -« ¢ K
(this is also implied by our hypothesisthat K/ € KTa). So it follows that
KTa # () and therefore v* (K Ta) # () since v* is a selection function. Let
K" € v*(KTa). Noting that

() K', K" € KTa
(i) K" € v*(KTa), and
(i) K' ¢ v (KTa)

we seethat condition (iii) in our definition of < abovefailsinthe casethat 3 is
replaced by «.. Therefore K” A K’ asdesired.

(b) the relation < istransitive with respect to v* for al o such that —a ¢ K.

Suppose K# < K" and K" < K'. We need to show that K* < K'. (We note
that if any of K’ = K or K" = K or K¥ = K, then K is maximal and so
K' = K" = K* = K and the result holds trivially by the definition of <.)

Since K" < K' wehavethat K” € KT¢ and K C K' for somed € £ so
condition (ii) of our definition of < is satisfied. Since K* < K" we have that
K# ¢ KTé for somed € £ so condition (i) of our definition of < is satisfied.
We require condition (iii) of our definition of < be satisfied.

Suppose K*, K' € KT3 and Kj C K*. We need to show that K C K’
in order to satisfy condition (iii) of our definition of <. Since K’ € KT2,
then =3 ¢ K (otherwise Definition 5.3.1 (iii) is contradicted). Now, due to
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K* < K" thereisan o € L with K" € KTa and K® C K”. Also, since
KTaVvp = KTa U KT3 by LemmaB.5 we have that K*# K", K' €
KTaVp.

Now either K%, C Kj or K3, 3 C K& by (5.8). The former case gives
K¢,5 € K* by theaboveand so, because K* < K”, then K ; C K". Again,
since K" < K', then K§,; C K'. Similarly, the latter case gives K, ; C K"
and, since K" < K', then K ; C K'. So, ineither case, K., 5 C K.

Letd € K. We need to show that § € K'. Now K C Cn(Kg, 5 U {5}) by
(K®7). Sod € Cn(Kg, ;U {6}) and consequently § — 6 € Cn(Kg,4) by
(Deduction). Thatis, 3 — 6 € K, 4 by (K®1). So 8 — ¢ € K' by aboveand
therefore & € K’ by Observation 5.3.1 and since 8 € K'.

(Only If)

Directly from Theorem 5.3.7, Lemma5.3.8 and Lemma 5.3.9. [ |

LemmaB.8 Let K beabeiefsetand o € L. [K] N [a] =0 ifand onlyif -« € K.

Pr oof:

(If)
Let - € K. We need to show [K] N [a] = 0.

If K = K,,then [K] = 0 by definition and so [K] N [a] = 0 trivially.

Otherwise K # K,. Now, for any m € [K]|, we have —a € m. Therefore o ¢ m for
m € [K] sincethey are maximal consistent extensions of £. On the other hand, o € m for
al m € [a]. Hence [K] N [a] = 0.

(Only If)
Suppose -« ¢ K (i.e, K I maandaso K # K, ). Weneed to show [K] N [a] # (. Now
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K U{a}t/ L. So, thereissomem € M, suchthat K C m and moreover o« € m. But,
such an m isalso an element of [«]. Thereforem € [K] N [a]. Hence[K]N[a] #0. N

LemmaB.9 Let K beabdief setand o, § € L. [K] N [a] = [K] N [F] if and only if
KFa+ (.

Proof:

(If)
Let K - a <> 5. We need to show K] N [o] = [K] N [#] and do so by showing two cases:

() [K]N[o] € [K]N[A]

That is, we need to show that if m € [K] N [a], thenm € [K] N [F].

Supposem € [K] N [a] for somem € M. Som € [K|andm € [a]. Thatis,
a € m. Butsincem € [K]and K F o <> (3, thensurely 3 € m. Som € [f].
Thereforem € [K] N [(] asdesired.

(i) [K]N [8] € [K] N o]
Proved in asimilar manner to Case(i).

(Only If)

Let [K] N [a] = [K]N[B]. Soth([K] N [a]) = th([K] N [5]) by Lemma 2.2.14 (iv).
Now th([K] N [o]) = Cn(th([K]) U {a}) = Cn(K U {a}) by Lemma2.2.14 (iii) and (i)
respectively. Similarly th([K]| U [3]) = Cn(K U {3}). It followsthat Cn(K U {a}) =
Cn(K U{B}). Now a € Cn(K U {a}) by (Inclusion) and so o € Cn(K U {3}). Then
a — f € Cn(K) by (Deduction) and, since K is a belief set, « — 3 € K. A similar
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argument, since 5 € Cn(K U {3}), gives3 — «a € K. Therefore o +» € K (i.e,
K F « + (3) asdesired. [ |

Theorem 5.3.12 Let K € K be some belief set and ZS any internal system of spheresin
M centred within [K]. If for any o € £ we define K to be th(fzs(«)), then postulates
(K®1)—(K®8) are satisfied.

Proof: Let K& = th(fzs(«)). We show that each of (K®1)—(K®8) are satisfied.

(K®1) K® isabelief set

Now, K& = th(fzs(c)).

The result follows directly from the definition of ¢th (since th : 2Mc — L),
However, we can aso argue as follows.

If [K]N[a] =0 (i.e, ~a € K by LemmaB.8), then fzs(«) = [K] by definition
K% = K and hence K¢ isabelief set since K is.

Otherwise [K] N [a] # 0 (i.e, ~a ¢ K by LemmaB.8), and s0 fzs(a) =
[a] N ezs(a) by definition (Def fzs). Therefore K$ = th(fzs(a)) = th([a] N
czs(@)) = Cn(th(czs(a) U {a}) by Lemma 2.2.14 (iii). So K¢ is closed
under Cn and hence abelief set.

(K®2) If =a ¢ K, then v € K@
Let ~a ¢ K. So [K] N [a] # 0 by Lemma B.8 and therefore fzs(a) =
[Of] N Cl's((l/) by definition (Def fIS)- Now K(? = th(fl'g(a)) = th([a] N
czs(a)) = Cn(th(ezs(a)) U {a}) (the latter by Lemma 2.2.14 (iii)). But

a € Cn(th(czs(a)) U {a}) by (Inclusion). Therefore o € K& as desired.

(K®3) K C K®
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If [K]N[a] =0 (i.e, ~a € K by LemmaB.8), then fzs(a) = [K] by definition
(Def frs). Therefore K9 = th(frzs(a)) = th([K]) = K (the latter part by
Lemma2.2.14 (i)). So K C K¢ (= K) trividly.

Otherwise [K] N [a] # 0 (i.e, ~« ¢ K by LemmaB.8), and so, by definition
(Def fzs), fzs(a) = [a] N ezs(a). Now czs(a) € [K] by definition (it is
guaranteed by (1S2) and (IS3)) and so surely [a] N ¢zs(a) € [K]. Therefore
th([K]) C th([a] N ezs(a)) by Lemma2.2.14 (iv) and K@ = th(fzs(a)) =
th([a] Nezs(ar)). But th([K]) = K by Lemma2.2.14 (i). Hence K C K2 as
desired.

(K®4) If ~a € K, then K& = K

Let ~a € K. Then [K] N [a] = 0 by LemmaB.8 and so frs(«) = [K] by
definition (Def fzs). Now K& = th(fzs(«)) = th([K]) = K (the latter part
by Lemma2.2.14 (i)) as desired.

(K®5) If ~a ¢ K, then ~a ¢ K©

Let—a ¢ K. Then[K]N[a] # 0 by LemmaB.8and s fzs(a) = [a] Nezs ()
by definition (Def fzs). Now, for any m € [a], —a & m (since m is maximal
consistent and « € m) and so -« ¢ m for any m € [o] N czs(«). Moreover,
since[K]N[a] # 0, then by (1S3) thereisasmallest sphere, czs(«), intersecting
[o] (i.e [a] Nezs(a) # B). Therefore —a & th([a] N ezs(«)) by definition
of th (i.e, ~a & N{m € [a] N czs(c)}). Hence, since K& = th(fzs(a)) =
th([a] N ezs(@)), then —a ¢ K&.

(K®6) If K + o <> §, then K& = K¢

Let K - a «» (. So, by LemmaB.9, [K] N [a] = [K] N [[].

If [K]N[a] = 0 thensurely [K]N[3] =0 (i.e, ~a € Kad - € K
by Lemma B.8). So, by definition (Def fzs), fzs(a) = [K] and fzs(ﬂ) =
[K]. Therefore K¢ = th(frs(a)) = th([K]) = K (the latter part by
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Lemma 2.2.14 (i)). Similarly Kg3 = th(fzs(8)) = th([K]) = K. Hence
K = Kf;.

Otherwise [K]N[a] # O and [K]N[G] # 0 (i.e, ~a ¢ K and =3 ¢ K
by Lemma B.8) and there is some smallest sphere czs () intersecting [a] and
some smallest sphere czs() intersecting [3] (since czs (), czs(8) C [K] by
(1S2) and (1S3)). Now since [K] N [a] = [K] N [f], then, for any m € M,
m € [K]N[a] if and only if m € [K] N [3]. It followsthat czs(a) = czs(5)

and consequently o] Nezs(a) = [B]Nezs(B). SO frs(a) = frs(B) and K =
th(fzs(a)) = th(fzs(8)) = K5 by Lemma2.2.14 (iv). Hence K& = K.

(KE7) K € On(Kgyp U{a})

If [K]N[a] = 0 (i.e, -« € K by Lemma B.8) then frs(a) = [K] by
definition (Def fzs). Now K2 = th(fzs(«)) = th([K]) = K (the latter part
by Lemma2.2.14(i)). Also K C Kj‘fvﬂ by (K®3) whichissatisfied (see above).
Therefore K& C K¢),; and so certainly K& C Cn(K, 5 U {a}).

Otherwise [K] N [a] # 0 (i.e,, ~a ¢ K by LemmaB.8). Now, in the logics
that we are considering here, - o — a VvV 3. Therefore, any maximal consi stent
extension containing « aso contains « Vv 3 (i.e, [a] C [a V 3] — in fact,
[aV B3] = [a] U [B]) meaning that any sphere that intersects [«] also intersects
[aVg]. Itfollowsthen, that [K]N[aVE] # 0 (i.e, ~(aV3) ¢ K by LemmaB.8)
and so, according to (1S3), thereis some smallest sphere czs(«) intersecting [«
and somesmallest sphereczs(aV G) intersecting [V 3]. Moreover, by thesame
reasoning, it followsthat czs(aVg) C czs(a). Surely then, [aVS]Nezs(aVB)N
[a] C [a]Nezs(a). Thereforeth([a]Nezs(a)) C th([avp]Nezs(aVvB)N[al) by
Lemma2.2.14 (iv). Now th([o] N czs(a)) = th(frs(o)) = K by definition.
Also, th([aV BlNezs(aV B)Na]) = Cn(th([aV Bl Nezs(aV B)) U{a}) by
Lemma2.2.14 (iii) and th(la V 8] N ezs(a V B)) = th(fzs(a V B)) = K24
So Cn(th([a Vv B] N ezs(a Vv B)) U{a}) = Cn(KS,5 U {a}). Therefore
K$ C Cn(Kg,3 U{a}) asdesired.

(K28) If ~a & K&, 5, then K&, C K¢
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Let ~o ¢ K3, 5. Weneedtoshow K3, 5 C K.

Since(K#3) issatisfied (seeabove), then—a ¢ K andsocertainly —aA—(3 € K
(i.e, (o Vv p) ¢ K). Therefore [a vV f] N [K] # 0 by Lemma B.8 and
0 frs(a Vv B) = [aV B] N ezs(a Vv B) by definition (Def fzs). Similarly,
[a] N [K] # 0 by LemmaB.8 and so fzs(a) = [a] N czs() by definition (Def
fzs).

Now, since o € K34, there is some m € [KJ,4] such that —a & m
(i.e, since m is maxima consistent, o € m). Moreover, since K35 =
th(fzs(aV B)) = th([aV B]Nczs(aV B)) by definition, thenm € czs(aV B).
It follows that czs(«) C czs(a V B) since a« € m. So, keeping in mind that
[a] C [aV ], [a)Nezs(a) C [a] Nezs(a Vv B) C [aV B] Nezs(a Vv B).
Thereforeth([aV B Nezs(aV B)) C th(ja] Nezs(a)) by Lemma2.2.14 (iv).
Now th(la V 8] N ezs(a vV B)) = th(fzs(a Vv B)) = Kg,z by definition and
th([a] Nezs(a)) = th(fzs(a)) = K by definition. Hence K¢, ; C K¢ as
desired.

Theorem 5.3.13 Let @ : K x £ — K be any function satisfying postulates (K ® 1)—K®8).
Then for any belief set K € K thereis an internal system of spheres ZS on M centred
within [K] which, for all « € £, satisfies K = th(fs(a)).

Pr oof:

Let @ satisfy postulates (K1) — (K®8). We show how to construct such an interna system
of spheresZS centred within [K].

Webegin by letting ZS' betheclassof all nonempty subsetsU of M . suchthat thefollowing
two conditions hold (thisis based on asimilar construction by Grove [39] Theorem 2):

1. Vu € U,Ja € L suchthat u € [KT]
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2. If[a)nU # P forany o € £, then [K®] C u

Now, we let

7S — IS'U{[K]|} fK#K,
] {0} otherwise
It is straightforward to show that ZS, thus defined is an internal system of spheres centred
within [K]. We need to verify that K& can be obtained from ZS. That is, we need to show

that, for al « € £, K@ = th(fs(«)). We consider two cases.

Case(i): ra € K

Then by (K®4), K& = K. Moreover, [K] N [a] = § by LemmaB.8 and so
fzs(a) = [K] by definition (Def frs). Now th(fzs(«)) = th([K]) = K (the
latter part by Lemma2.2.14 (i)) as desired.

Case (ii): ma ¢ K (and therefore K # K |)

We need to show K@ = th(fs(a)) = th([e] N ezs(er)) and do so by showing
how to find such aczs(«).

Now [K®] C [K]N(N{U € ZS : UN[a] # 0}) from the definition above. To
show equality itissufficienttofindasphereU € ZS suchthat [K$] = [K]NU
(this U will correspond to the sphere czs(«) that we are attempting to find).
Welet U bethefollowing

U=[W{IK§]:[e] C[Bland B € L}

We notethat U C [K] (i.e., K C th(U) by Lemma 2.2.14 (i) and (iv)) since
@ satisfies (K®3) and so K C K for every g € L (i.e, [K§] C [K] by
Lemma2.2.14 (v)). Wefirst show that U is a sphere and then proceed to show
K2] C [0 NU.

Condition 1 above holds directly from the definition of U so it remainsto show
Condition 2. Suppose [§]NU # () forsomeé e L (i.e., [§]N[Kj] # 0 for some
B € L suchthat [a] C [3]) we need to show [K’] C U. Consider 3V §. Now



238 APPENDIX B. PROOFS FOR CHAPTER 5

[a] € [8] C[BV 4], s0[KR,] C U by definition of U (certainly [o] C [3V 4]
and so, if m € [Kffvé], thenm € U). It follows, by the ensuing argument, that
O] NV [KGs] # 0.

Suppose for reductio ad absurdum that [6] N [Kg,s] = 0. Then
-0 € K§,5 by LemmaB.8. Now, since [6] N U # () then surely
[BVONU # B and, sinceU C [K],then[3V ] N[K]# 0. That
is, 7(8 v é) ¢ K by LemmaB.8 and, by (K®2), 5 v § € Kg,.
Putting this together with the fact that =6 € K§,,; and using (K®1)
weobtain § € Kg,; and so by (K®5) -4 ¢ K 5. Now by (K®7),
K§ C Cn(Kg,; U{B}). But g € K§,5 and so using (K1) we get
Kg C Kj,s. Using (K®8) givesthe converse, K3 ; C K and so
Kg = Kg,s. Itfollowsthen, that ~0 € K. Thatis, by LemmaB.3
[6] N [Kg] = 0. This contradicts our initial supposition. Hence
18]V [K,q] # 0.

By LemmaB.3-d ¢ Kj ;. Soby (K®8) K,,; C Ky andby Lemma2.2.14(v)
itfollowsthat [K’] C [Kj,s]. But wenoted abovethat [Kg,;] C U. Therefore
[K®] C U asdesired. Hence U isasphere.

We now show that [K$] = [a] N U. If [a] N[KF] # (@ (by the definition of U
thereis not much point in considering the case where [o] N [K§] = 0), then by
LemmaB.8 ~a ¢ K. Moreover, by (K®3), K C K§ andso - ¢ K. So,
again by LemmaB.8, [a] N [K] # 0. Also, since[a] C [(] thent a — 3 and
soF B« aVp. SoKg = KZ,z by (K®6) (which is also a consequence of
(K®7) and (K®8)). Therefore ~a ¢ K5 and by (K®8) K5 C K2. Also
then K C K& and so Cn(Kg U {a}) C Cn(K& U {a}) by (Monotonicity).
But, since ~a ¢ K and by (K®2), then o« € K?. Therefore (with the help of
(K®1)) On(K$ U {a}) C K2. Now (K®7) gives K& C Cn(K,5 U {a})
which, by the above, gives K¢ C Cn(Kg U {a}). So (K®7) and (K®8)
give K& = Cn(Ky U{a}) (e, [KZ] = [KF] N [a] by Lemma 2.2.14 (v)).
Therefore [a]NU = U{[o]N[KF] : [o] C [6]}. Thatis, [o]NU istheunion of
anumber of termswhere each termiseither () or [K$] and at |east one of these
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terms is [K@] (viz., [a] N [K2]) — note that we have aready dealt with the
situationinwhich -« € K incase (i) and so —a ¢ K and by (K®5) —a ¢ K¢
guaranteeing [o] N [KP] # 0 by LemmaB.8). Therefore [o] N U = [KT] as
desired. (Applying Lemma 2.2.14 (iv) one obtains K¢ = th([a] N U) and U
can be equated with czs () as noted above.)

Lemma5.3.14 If < satisfies postulates (SEE1)—(SEE3) and (AE4). then it also has the

following properties:

() fae Kand g ¢ K then, 8 < «
(i) When K # K| ,if—ma€ Kthena < gforal g e L

(iii) When K # K, if K U{a} F 3, thena < 8.

Pr oof:

fae Kand§ ¢ K then, 8 < «

Supposeax € Kand g ¢ K. Clearly K # K,. Sincea € K, theny < «
foral v € £ by (AE4) and s0 § < «. Suppose, for reductio ad absurdum,
that o < 3. Therefore, by (SEEL) and the conclusion abovethat v < « for all
v € L,thena < pfordl vy e L. So s € K by (AE4) contradicting our initial
supposition. Therefore o £ § and consequently 5 < a.

(i)WhenK # K, ,if~a€ Kthena < gfordl g€ L

Let K # K, . Suppose—~« € K. NowtF (aA—a) +» L soaA—a = L. Also,
a A —a = min{a, ~a} by Lemma2.2.18 (xii). Since—~a € K and K # K|,
thena ¢ K. So, by part (i), « < ~aand soa A ~a = o = L. However,
L Fpfordl g e L. So, by (SEE2), | < gfordl g € L. Thereforea <
foral g e L.
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(i) When K # K, if K U{a} F 8, thena < 3.

Let K # K,. Suppose K U{a} F 3. So K + a — (3 by (Deduction) and
consequently o — g € K. By (AE4), vy < a — gforadl v € L. In particular,
a<a—f aha< (a— f)Aaby 2218 (X). Now - (a A a) < «
OaAa=a Al0(aAa) < ot §andconsequently (e Aa) +» a <
by (SEE2). Putting these together weget o < aAa < (A a) < a < .
Therefore, (SEEL) gives, o < 3 asdesired.

Lemma 5.3.15 Let < be an SEE relation satisfying (SEE1)—(SEE3). For any a € L,
githee a < gforall e Lor—-a < gforall g€ L.

Proof: Now F (e A —a) <> L. Soa A —~a = L. Alo, a A ~a = min{a, ~a} by
Lemma?2.2.18 (xii). Supposea < —a soaA—a =« = L. However, L - gforal g € L.
So, by (SEE2), L. < gforadl g € L. Therefore, o« < g foradl g € L. Otherwise —a < «

and asimilar argument gives —a < g foral g € L. [ |

Lemma B.10 Let < be an abductive entrenchment relation. Supposea < fand B A § <
aANvyforanya, 3, v, § € L. Then the following properties hold:

(i) 0 <«
(i) 6 < a

(i) 6 < 3
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Pr oof:

Nowsince A0 < aA~ytheneither 3 < aAyord < aAybyLemma2.2.18 (ix). Thefirst
case is clearly not possiblesince o < g and a A v = min{a, v} by Lemma 2.2.18 (xii).
S0 < aAyand, againsincea Ay = min{a, v} by LemmaZ2.2.18 (xii), clearly (i) § < v
and (i) 0 < «. It remainsto show part (iii). Now sinced < a and a < 3, then§ < g by
Lemma 2.2.18 (ii). [ |

LemmaB.11 Let < be an abductive entrenchment relation. If o < g and v < 6, then
aANy< BAdforanya, B, v € L.

Pr oof:

Leta < fandy < 3. Now {a Av} Fasoa Ay < aby (SEE2). Also a < (3 therefore
it followsthat o A v < g by Lemma 2.2.18 (ii). Smilarly {a Ay} Fysoa Ay < v by
(SEE2) and sincey < §,thena A v < v by Lemma 2.2.18 (ii). Thereforea Ay <y A d
by Lemma 2.2.18 (iii). [ |

Theorem 5.3.16 Let K € K be some belief set and < an abductive entrenchment for K.
If for any o € L, we define K& using (Ca®), then the operation & so defined satisfies
postulates (K®1)—(K®8) aswell as the condition (C<).

Pr oof:

Let « € £ and K2 be defined using condition (Ce). We first show that each of the
(K®1)—(K®8) are satisfied and then show that condition (C<) is satisfied.

Recall condition (C®): 5 € KT iff 5 € K or both—a ¢ Kanda — -4 < a — (.



242 APPENDIX B. PROOFS FOR CHAPTER 5

(K®1) K@ isabelief set

Suppose K& + ~. Sothereare 3y,...,0, € K$ with {f1,...,8,} F v by
(Compactness). We need to show v € K&. We can do thisif we can show, by
(Co),ye Korboth—-a ¢ Kanda — -y < a — 7.

If v € K theny € K directly so we suppose v ¢ K and we need to show
—a¢d Kanda = -y < a — 7. If ma € K then, by (C®), 84,...,0, € KY
iff 81, ..., 0, € K. Therefore, since K isabelief set, v € K. Thiscontradicts
the supposition above and we may conclude ~a ¢ K.

Itremainstoshow o — =y < a — v. Now {f, ..., B} Fyfor fa, ..., 0, €
K. Inthelimiting casewheren = Owegety € K since K isabelief set. But
weare supposing vy ¢ K sothiscaseisnot possible. Without |oss of generality
assume 3y, ..., 0 € K. If k =ntheny € K since K isaabelief set. Again,
this contradicts our supposition so we may assume k < n, Bri1,---,0n € K
and, foreachi =k +1<i<n,a— -0 <a— F;usng (Ca).

Note that since (1, ...,0; € K,then§ < g;foral 6 ¢ Kand1 <i < k by
Lemmab5.3.14 (ii)). Now g, Fa — 6, s0a — 6, € Kforl <i < k and
therefored < o — g; foral § ¢ K. Consider a — —g; fordl 1 < i < k.
If « - —8; € K thensince K isabelief set and a« — (; € K it follows
that -« € K. But this contradicts our supposition above so a — —f8; ¢ K
and consequently a« — —3; < a — ;. Combining this with the fact above,
that o - —f; < a = G; for k+ 1 < i < n and Lemma 2.2.18 (xii), we
seethat (¢ - —Gi)A...AN(a = 6,) < (@ = Bi)AN...A(a = ()
However [(a — =B) A ... A (e — =f,)] < [a = (061 A ... A—f,)] and
Flla=B)A...A(a—= B)] < [a— (BLA ... AB,)]. Therefore, through
theuseof (SEE2), @ — (=81 A ... A=8,) <a— (BLA ... A B). (1)

Now since B1 A ...A B, F ythena — (BiA...AB) F a — 7. So
a— (fLA...ABy) < a— by (SEE2). 2

Suppose @ — (mB1 A ... A=B3,) < a — —y. Now (1) and (2), by
Lemma 2.2.18 (ii), produce « — (=1 A ... A =3,) < a — 7. Also



243

a—= (LA ABIA(a =) Fa— (BfA...ADB)S0a —
(BLA...A=B) A (@ =) <a— (=LA ...A—p,) by (SEE2). By
Lemma2.2.18 (iii), « — (71 A ... A =Bn) < (@ = =) A (a — ). Then
a = (A AB )N = ) < (e = —y)A(a — ) by Lemma2.2.18ii).
Butk o —= (mGiA...A=B) Ala—=7y)] < [a = (2PN ...28, Ay)] and
F (o = =) Al = v)] <> —a. Thereforea — (m01A ... A=B, A7) < —a.
However ~a - a — (/1A . .A=B, Ay) S0 < o — (71N ... A=B, A7)
by (SEE2) which is a contradiction. So our initial supposition was incorrect
anditfollowsthat @ — =y < o — (281 A ... A =S,). (3)

Putting together (1), (2) and ) wegeta — vy < a — (=1 A ... A =8,) <
a— (fLN...0,) < a— . Thereforea — -y < a — v by (SEE1) as
desired.

(K®2) If ma ¢ K,thena € K?

If « € K thena € K& by (Ca) directly.

Otherwise o ¢ K (and so K # K ). We need to show by (C®) that @ —
a<a—>a NOWkFa—asoa— a € K. AloF (o - —a) - ~«a
and so a - —a ¢ K since ~a ¢ K and K is a belief set. Therefore
a — —a < a — o by Lemmab5.3.14 (ii) asrequired.

(K®3) K C K©
Suppose 5 € K. Then, directly by (C®), 8 € K&. Therefore K C K¢.
(K®A) If -a € K,then K& = K
Let -« € K. (K®3) gives one direction (viz., K C K?). We need to show
K® C K. By (Ca®), if 8 € K? then either 5 € K or both - ¢ K and

a— f < a— (. But na € K sothe latter half is not possible and so if
peKPthenfe K. SOK? C K. Therefore K = K.
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(K®5) If - ¢ K, then -« ¢ Kga

Let o ¢ K. Suppose for reductio ad absurdum that —a € K¢. So a@ —
-(—a) < a — -« by condition (C®). But - (¢ — —(—a)) < T and
F (@ = —a) < -« and therefore T < —a. However T € K since it is
a belief set and since —a ¢ K it followsthat o < T by Lemma 5.3.14 (ii),
contradicting the above. Hence ~ar ¢ K.

(K®6) If K + o ¢+ f, then K& = K

Let K - o > 3. Supposey € K&. We need to show 7 € K. Now, by
Condition (C®), either v € K or both—a ¢ K anda — -y < a — 7. We
need to show, according to Condition (Ca), that either v € K or both—4 ¢ K
and 5 — =y < B — ~. Intheformer case (y € K) we get by (C®) that
’yEKga. So, assumey ¢ K, ~a ¢ K anda — =y < a — 7. Clearly
K # K,. Now,sinceK - a < 3,wedsohave K - (a — 7) < (8 = 7).
and K + (o = —y) < (8 — —) Inthefirst case we have, since K isabelief
s, (a = 7y) « (8 — ) € K and consequently (o« — v) < (8 — v) by
Lemma 5.3.14 (iii). Similarly, in the latter case we have (8 — —y) — (o —
—y) € K and so Lemma 5.3.14 (iii) gives (4 — —y) < (a — —y). Putting
these together we get (6 — —) < (@ = ) < (@ = 7) < (B — 7).
Therefore, (6 — —y) < (8 — ) by transitivity.

(KE7) KT € Cn(Kg 3 U{a})

Suppose y € K£. Weneed to show v € Cn(K g, 5 U {a}).

If v € K, then by condition (C®), v € K3 5. Thereforey € Cn(Kg,;U{a})
by (Monotonicity).

Otherwisey ¢ K. Nowy € Ky so a ¢ Kanda — —y < a — v by
condition (C&). We need to show y € Cn(K S, 3 U {a}). We can do this by
showingthat o — v € Cn(Kg, ;) by (Deduction) and, since (K®1) is satisfied
(see above), that would be the same as showing that o — v € Kfj\,ﬁ.
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We note that since ~« ¢ K, then —a A -3 ¢ K (i.e, =(aV §) ¢ K) o, by
condition (Ca), weneedtoshow (aV 3) = —(a — 7) < (V) = (@ — 7).
Now {(aV @) = ~(a = y)}Fa— 0 (aVh) = —(a—7y) <a— —y
by (SEE2). Also {a — v} F (aV ) — (o — 7) therefore o — v <
(aVvp) = (a—=>7). So(@avp) = (o= v <a—7w<a—
v < (aV ) = (o = «). which, by (SEE1) and Lemma 2.2.18 (ii) gives
(aVp) = ~(a—7) <aVp) = (a—~). Theeforea — v € K3, 5 and
consequently v € Cn(Kg, 5 U {a}).

(K®8) If ~ar ¢ K&, then K&, C K&

Let ~a & K¢, 5. Then, by condition (C®), ~a ¢ K and eéither ~(aV ) € K
or (aV f) = a £ (aV f) = ~a. Weneed to show K¢, ; C K&. That is, if
v € K&,5, theny € K&, By condition (Ca), v € K3z if andonly if vy € K
orboth—(aV p) ¢ Kand (aV ) = v < (aV B) = 7.

If v € K, theny € K by condition (C®). Otherwise v ¢ K and so
~(aVvp) € Kand(aVpB) = -y < (aVp) = v Nowsince ~a & K3
and (K®3) satisfied (see above) then —a ¢ K.

Suppose for reductio ad absurdum that v ¢ K. So, by condition (C®),
v ¢ K and either - € K ofr « — =y £ a — ~. However, we have seen
that -a ¢ Ksoyg Kanda - v £ a—vy(e,a—v<a— —yhy
Lemma2.2.17 (i)).(2)

We also know, as noted above, that (« vV ) — =y < (aV ) — . Now
FllaVvB) = < (=) A B = -y)landE [(aVB) =] < [(a—
NA(B — 7)]. Consequently (& — —=7)A(B = =) < (@ = 7)A(B —7).(2)
Moreover, since~a € K¢, 5, thelatter part of condition (Ca) gives (aV 3) —
—(ma) £ (aVPB) - —a. Buthk [(aV ) — —(-a)] < (8 - «) and
Fllavp) = —a] & -a Sof — a £ —a or, by Lemma 2.2.17 (i),
—a < 3 — a.(3)

Therefore, using (1) and (2) together with LemmaB.10, weget (a) 8 — —y <
B—=v0Opf—>-v<a—yand(c)f — -y <a— —y. Now (b) and (c)
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give (6 = 7)) A (B — ) < (@ = 7) A (e = —y) by Lemma B.11. But
(B = )AB = )] < (8= ) andE [(a = 7)A (e = —7)] & -
Therefore 3 —» -y < —a. Now -8+ 8 —- -y s0o -3 < B — —v by
(SEE2) and it follows that =3 < —« by Lemma 2.2.18 (ii). Now - =3 «+
(68— a) A (B = —a)] 08 = min{ — «, B — —a} using this logical
equivalence and Lemma2.2.18 (xii). If =3 = § — athen § — a < -« since
-0 < —a. But this contradicts (3) ~a < 8 — a. SO -8 = f — —«a and o
8 — —a < —a since -3 < —a. However, {-a} F 3 — -« and therefore
—a < [ — -« by (SEE2). Therefore we have a contradiction in either case.
Hencey € K&.

Condition (C<) issatisfied.
Recall condition (C<): o < Biffa ¢ K& s OF K- aAp.

V-
(1)
Leteithera & K<, ;0or K+ a A B. Weneedtoshow o < §.

If o ¢ K€, 5 thenby condition (C®) a ¢ K andeither aAf € K or (naV—f3) = —a £
(maV —=3) = a. Thecasewherea ¢ K and a A 3 € K isobviously not possible since
K isabdlief set. Therefore supposea ¢ K and (—a V —8) = —a £ (-maV =3) = a.
Now, as noted above, - [(—a V =3) = —a] + (o — f) andF [(-a V =8) = a] + «a.
Soa — B £ ausing (SEE2). Therefore using Lemma 2.2.17 (i) (connectivity of <)
a < a— fanditfolowsthat o < a A (e« — §) by Lemma 2.2.17 (v). However
FlaA(a = f)] & (aANf). SOa < aA (B by (SEE2). Therefore o < g using
Lemma2.2.18 (xii) as desired.

Otherwise K + a A 3. Certainly then 8 € K and consequently v < § for al v € L by
(AE4). In particular o < 3 asrequired.

(Only If)

Let « < B and suppose a € K?avﬁ[,. We need to show K + a A . We note that it
is possible to easily dispense with the case where K = K, since K - «a A § trividly.
Therefore, in addition to the above, we suppose K # K. Since a € K?avﬁﬁ, condition
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(Co) givesa € K orbothaAp ¢ K and (—aV —8) = —a < (-aV —F) — a.
Considering the former, if o € K, theny < o fordl v € £ by (AE4). Now sincea < 8
theny < gforal v € £ by (SEEL). Soby (AE4) again, 5 € K. Therefore K - a A § as
required.

Otherwise o ¢ K. Consequently a A 3 ¢ K and (—a V —=f) — —a < (ma V —f§) — «a.
NowtF [(—maV—08) = —a] ¢+ (o — B) andF [(—aV —=3) — a] +> a. Thereforeit follows
by (SEE1) and (SEE2) that « — 8 < a. Also 3+ a — S soby (SEE2) 8 < o — 6.
Therefore, since o < 3, a < a — (3 by (SEE1). This contradicts our conclusion above
and so thiscaseis not possible. That is, « € K asdesired. [ |

Theorem 5.3.17 Let & : K x £ — K be any function satisfying (K®1)—K%8). Then,
for any belief set K € K, if we define < using (C<), then the relation < so defined is
an abductive entrenchment relation (i.e., it satisfies (SEE1)—(SEE3) and (AE4) and also
satisfies condition (C).

Proof: Let @ beafunction satisfying the postulates for abductive expansion (K #1)—(K®8)
and define < using condition (C<). Wefirst show that each of (SEE1)—(SEE3) and (AE4)
are satisfied and then show that condition (Ce) is satisfied.

Recall condition (C<): a < giffa & KE,,_s;0r K FaAp.

(SEE) Ifa< pand g < v,thena < ~yforany «, 3, v € L.

Suppose for reductio ad absurdumthat o < g and 8 < v but a £ ~ for
a, B, v € L. Using condition (C<) we get the following from our three
hypotheses respectively

(D) eithera ¢ KS,,_ ;0 K- aAf

(2 ether g K&, or K+ B3N~y

A
RaeKE, adKany.
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Consider K + a A g from hypothesis (1). If K - a A 3, then K + « and
K - (. Therefore 3 € K since K isabelief set. So, by (K®3), 6 € K%, .
It followsfrom (2) that K - 8 A ~. Therefore K + ~ and, since K + «, then
K a A vy. However, this contradicts (3) so K I a A S.

Consider K + B A v from hypothesis (2). If K = B A, then K -
and K F ~. Therefore v € K since K is a belief set and consequently
,y E —|O{V—\’y by (K®3) NOVV Q€ KE?OLV—!’)’

(K®1). Soa Ay € K by (K®5) (apply its contrapositive) and use the fact that
F(aA7y) < =(-aV —y). Therefore K F a A v which contradicts (3) and so

KWFBAny.
Now since K I a A g and K t B A v we havefrom (1), (2) and (3) above that

the following hold o ¢ K€, 5, B & K&, a € K&, and K I/ a: A .
We can obtain a contradiction by first using (K€7) to show a € K?avﬁﬂvﬂ

by 3)andsoa Ay € KE,,_ by

and then using (K®8) twice to show the opposite.

Now o € K9,

by (3). Therefore o € Cn(KS,, 5., U {—~aV —}) by
(K®7). Using (Deduction) we get (o V —y) = o € Cn(K%,,_4,.,) and o,
by (K®1), (raV —y) = a € K&, 5, However- [(maV —) — o] < a.
Hencea € K%, 4,

We now show that the opposite aso holds thus obtaining a contradiction. That
is, we need to show o« ¢ K€, _5,.,. Now K i/ o A 3 by our argument
above. Consequently K ¥ a A B A~y andsince K isabelief seta AGAy &
K (i.e, =(—maV -8V ) ¢ K since K isabeief sstand - (a A G A
7) ¢ 2(maV =BV ). Therefore certainly a A Ay & KO, 5, by
(K®5) and (K®1). So either a A B & KE,, 5, O v & KS,, 5, IN
the first case —(—a: vV =8) & KS,,_s,-, by (K®1) and it follows by (K®8)
that K©

—aV-BV—y
ﬁ Ay ¢ K—uVﬂﬂV—q us ng (K®1) That IS_‘(_'/B \ _'7) ¢ —uV—ﬂV—vy agaln by
(K®1). Therefore KS,,,_s,-, C K%, by (K®8). Now since 8 ¢ K%,

by (2), it follows that g ¢ Kﬁa\,ﬂﬂvﬁ,y andasoa A (G & Kﬁa\,ﬂﬁvﬂ using
(K®1). Thatis ~(—~a A =) & KS,,_s,-, again with the help of (K®1). So

C K¢, 5 Inthe second case (y ¢ K?avﬁﬁvﬁv) we get
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KS, sv—y € KS,,_5 by (K®8). Ineither case, then, KE,,_5,_,, C KE,_;.

Butoa ¢ K® Sav—p DY (1). Therefore o ¢ Kﬁavﬂﬂvﬂ as desired.

Hence our initial suppositionwasfaseand it followsthat, if o < gand § < 7,
thena < 7.

(SEE2) If {a} - B, thena < g forany «, € L.

Let {a} F . We need to show o < 3. By condition (C<) we can do this by
showing either o ¢ K€, _; or K - a A B. But, if a € KS,,,_; then by (K®1)
andsince{a} - 3,a A B € KS,, 5 (i.e, —~(-aV =) € KE,,_;. Therefore
by (K®5) (apply its contrapositive) a A f € K andso K + o A 3 asrequired.

(SEE)a < aAnporf<aApfforanya, € L.

Weneedtoshow o < aA g or § < a A 3. We can do this by showing,
according to condition (C<), that o ¢ K%, s O K F aA(aAB)or
6 ¢ Kﬁavﬂ(a/\ﬂ) or KFaA (aAnp).

Now sincet [-a V =(a A f)] < (—aV —=f) andF [a A (a A B)] < (e A B)
we have, by classical logic and (K®6), toshow o ¢ K& - O B ¢ vaﬁ[j or
K + aAnp. However, if thefirst two do not hold then certainly a A 3 € Kﬁavﬁﬁ
(ie, ~(—a Vv -p) € KS,, 5 by (K®1). Soa A B € K by (K®5) (apply its
contrapositive) and therefore K - o A # as required.

(SEE4) When K # K|, € Kifandonlyif g < aforal g € L.

Let K + K.

(If)

Let 3 < «afordl g e L. Weneedtoshow a € K.

Now choose 3 to be such that - 3. Certainly 8 < «. So, by condition (C<),
either 3 ¢ K%, or K+ 3 A . However, § € K since K isabelief set and
0 €K ﬁﬁvﬁa by (K®3). So the first case is not possible and consequently
K F B Aa. Theefore K - o and, since K isabelief set, o € K asdesired.
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(Only If)
Let « € K. We need to show § < « for adl g8 € £ We can do this, using
condition (C<), by showingthat 8 ¢ K%;,_, or K -aAgfordl g€ L.

Suppose K faA B (i.e,aAp & K since K isabelief set). So, since K isa
belief set, =(—a vV ) ¢ K and therefore, by (K®5), ~(-a VvV =) & K%, _,.

Thatis, aAp ¢ Kﬂﬂvﬁa by (K®1). However o € K soa € K%,,_, by (K®3).

Therefore 5 ¢ K ﬁﬂvﬁa asrequired.

Condition (Ce) is satisfied.
Recall condition (C®): € K2 iff 5 € Korboth—-a ¢ Kanda — =3 < a — f.

(If)
Let 3 € K orboth—a ¢ K anda — =8 < a — 3. Weneed to show g € K2.

If 3 € K, then g € K% by (K#3). Otherwise § ¢ K and so ~« ¢ K and o —
-8 < a— f[. Thelast patgivesa - - < a — fada - £ a — —fF by
definition. The former inequality, by condition (C<), givesaw — = ¢ K2 (e B)V-(a—sB)
or K - (o« —» B) A (e — —=3). However, - [-(a — =)V =(a = )] & « and
F (e = B8) A (e — —8)] + —a. Sowehavea — -3 ¢ K2 (thisisjustified by (K®6).
The latter inequality givesa — 8 € K&, 5 (o s @A K I (@ = B) A (@ — =) by
condition (C<). Using thelogical equivalences aboveweget« — 3 € K@ and K / —a.
Putting these together we have thefollowinga — - ¢ K@, o — g € K and ~a ¢ K.
Now, since ~a: ¢ K we have by (K®2) that « € K®. Therefore, sincea — 5 € K&, then

by (K®1) g € K® asrequired.

(Only If)
Let 3 € K. Weneedto show 3 € K or both—a ¢ K anda — = < a — (.

Suppose f ¢ K. Weneedto show —a ¢ K anda — =3 < o — (. That is, for the latter
part, we needtoshow o — - < a — fand a — § £ a — —4 by definition. Now
sincef € K& and 5 ¢ K surdly K& # K. It follows by (K®4) (apply its contrapositive)
that —a ¢ K. It remains to show the two inequalities. Now we have that -« ¢ K so, by
(K®5), ma ¢ K and therefore K@ # K, . Also, since ~a ¢ K thena € K by (K®2).
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Certainly a A f € K using (K®1) and, since K # K, then =(a A ) ¢ K. But
Fa(aAp) o (a— p)soa— &K Nowk a + [-(a — —f) V-(a— §)] s0
a— [ ¢ K?(a_hg)vﬁ(a_)g) by (K®6). Therefore oo — -3 < oo — (3 by condition (C<).

It remains to show the second inequality.

Since ~a ¢ K and K is a belief set then certainly K - —«. Now F —a < [(a —
B)A(a— =)0 K I (o= B) A(a — —=5).(1)

Thefactsthat 3 € K@ and § - o — [ give, by (K®1), that « — § € KP. However
Fa+ [-(a— —6)V-(a— ()] so, by (K¥6),a — [ € K?(aﬁﬁﬁ)vﬁ(aﬁﬁ).(Z)

With (1) and (2) condition (C<) givesusa — 3 £ a — =3 asdesired. [ |

D<g

Theorem 5.3.18 Let K € K beany belief set. Foranya, 3 € £, K = Ka

D<g

Suppose 5 € K$. Weneed to show § € Kq
If 3 € K, then 8 € Kq=° directly by Condition (C®).

So, assume 8 ¢ K. Therefore K¢ # K and, by (K®4), -a ¢ K. We get
by (K®2) that o € K& and aso, through (K®1), that « — g € K$. Now,
Fa+v [-(a—F)V-a(a— —g)]andk —a < [(a— B) A (a — —p)]. So,
using the results obtained above, & — B € K<, 5y (qp) D K I (0 —
B) A (o — —f). Therefore, by Condition (C<), weget o — 3 L5 o — —0.
By Lemma2.2.17 (i) (properties of entrenchment) weget o — =3 <4 a — .
Together with the fact that —a ¢ K, Condition (C®) givesus 8 € Ka=® as
desired.

Ka® C K® C



252 APPENDIX B. PROOFS FOR CHAPTER 5

Suppose 3 € Ka <®. We need to show 3 € K©.

It follows that either 3 € K or both - ¢ K and o — - <g o — (3 by
Condition (C®). In the former case, § € K by (K#3). In the latter case,
a— fB<ga—fanda— Ly a— 0. SOa%ﬁEKEB(a_)mVﬁ(a_hm
and K i/ (¢ — B) A (e« — =) by Condition (C<). Using the logical
eguivalences in the proof above, a — § € K2. Also, o € K& by (K®2) and
dueto —~a ¢ K. Therefore g € K& by (K®1).

Theorem 5.3.19 Let K € K beany beliefset. Forany«, 8 € £, a < Biffa <q_ B.

Pr oof:

(1)
Suppose o <g_ 3. We need to show o < f3.

By Condition (C<), ether a ¢ K?jvﬁﬁ or K - a A 3. Considering first the latter case,
wehave g € K since K isabelief set. Then~y < g fordl v € £ by (AE4). In particular
a < 3 asdesired.

In considering the former case, we can suppose K t/ a.A 3. Now since« ¢ K?(fvﬁﬁ then by

Condition (C®) « ¢ K andeither —(—aV—03) € K or (—aV-3) = —a £ (-aV-3) = «a.
The former caseis not possible since it contradicts our suppositionthat K t a A 3. Inthe
latter case, (—a V =) = a < (—a VvV =) — —a by Lemma 2.2.17 (i). Therefore, using
the equivalencest- a <> [(—a V =3) — o] and - (o — () < [(-a V =3) — —a] we get
a<a—f S0aha< (a— F)ANaby Lemma2.2.18 (x). Now (o« — ) Aa+ 30
(¢ = B) AN < B by (SEE2) and, similarly, - (e A a) +» a S0 a < a A a. Putting these
together weget o < a A a < (o — 3) A a < 3. Therefore, through (SEEL), o < (3 as
desired.

(Only If)
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Suppose o < (. We need to show « <o B

If K+ aApB, thena <qg_ 3 directly by Condition (C<). So, assume K I a A 3. Clearly
then K # K,. If a € K, then, sincea < 3 and by (AE4), § € K. It would follow
that K F o A 3 contradicting our assumption. Therefore o ¢ K. Now g + a — (3 so,
by (SEE2), f < a — B and consequently we get o < a — [ by (SEEL). Using the
equivaencesin the proof abovewe get (—aV —3) = a < (—aV —-3) — —« and therefore,
by Lemma2.2.17 (i), (~a V —=8) — —a £ (-a V —8) — «. Thistogether with the fact
that o ¢ K above, givesa ¢ Kiejvﬁﬂ by Condition (C#). Now, we also have K t a A .
Therefore, Condition (C<) givesa <g_ 3 asdesired. [ |

Theorem 5.3.20 Let K € K be a consistent belief set. If < isan abductive entrenchment
ordering for K and ZS an internal system of spheres centred within [K], then an abductive
expansion function determined from < by condition (C®) and onefromZS via fzs arethe
same if and only if condition (AEZS) is satisfied.

Pr oof:

Let K € K be consistent, < an abductive entrenchment for K and ZS a system of
spheres centred within [K]. We need to show that an abductive entrenchment function
@< determined from < by condition (C&) and one from ZS via fzs are the same (i.e,
K& = th(fzs(a))) if and only if condition (AEZS) is satisfied. We omit the subscript <
from the expansion function &< in the proof unlessit is required to remove confusion.

(If)
Let condition (AEZS) be satisfied. We need to show Ko< = th(frs(c)).

Ko< C th(fzs())

Suppose 5 € K$. Weneed to show 3 € th(fzs(«)).

By condition (Ce), either 3 € K or both—a ¢ K anda — -8 < a — (.
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In the former case, [K] C [5]. Now, there are two cases to consider: (i)
[K]N[a] = 0 and (ii) [K]N[a] # 0. Incase (i), ~« € K so, by condition (Ca)
K2 = K and fs(a) = [K], meaning that th(fzs(a)) = [K] = th([K]) = K
by Lemma 2.2.14 (i). Therefore, 5 € th(fzs(a)). In case (ii), czs(o) C
[8] since [K] is the C-maximal sphere in ZS. Then, czs(a) N [a] C [f]
and th([g]) C th(czs(a) N[a]) = th(fzs(e)). Using Lemma 2.2.14 (jii),
Cn(p) C th(fzs(a)). Hence 3 € th(fzs(«)) asrequired.

In the latter case, ~a ¢ K gives[K| N [o] # () and we can suppose 3 ¢ K as
we have aready dealt with this case. Therefore, frs(a) = czs(a) N [a]. Now
a — -3 < a — [ means, by definition, that « - -8 < a — fand a —
B £ a — —f. By condition (AEZS), czs(—(a — —8)) C czs(—(a — B))
and czs(—(a — B)) € czs(—(a — —p)). Thatis, czs(a A ) C czs(a A —f)
and czs(a A B) C czs(a A =) by logical equivalences. Now, since [a A ] =
[a] N [A], wehave czs(a) C ezs(a A 3) and thelatter inclusion above givesus
czs(a) N [a] C [B]. Therefore 8 € th(czs(a) N [a]) = th(fzs(a)).

th(frs(a)) C Ko<

Suppose 5 € th(frs(a)). Weneed to show 5 € K2.
We consider two cases.

() [K]N[o] =0

Therefore, fzs(a) = [K] by definitionand th(fzs(a)) = th([K]) =
K by Lemma2.2.14 (i). Hence 3 € K and g € K by condition
(Co).

(i) [K] N [a] # 0

Then —a ¢ K and fzs(o) = czs(a) N [o] by definition. It follows
that czs(a) N [a] C [4] by (Def th). Therefore, czs(a A ) C
czs(aA—3). Consequently, czs(aAB) C ezs(aA—p) and czs(aA
—f) Z czs(aA ). By condition (AE ZS) and logical eguivalences,



That the antecedent isin fact possible (i.e., that condition (AEZS) alows one

a— - f<a—pFanda— £ a— —Frespectively. Therefore
a— —f < a— 3. Hence g € K2 by condition (C).

to obtain < from ZSand vice versa), is easily verifiable.

(Only If)

Let K&< = th(frs(c)). We need to show that condition (AE ZS) is satisfied.

(If)

Let either 5 € K or both o ¢ K and czs(—a) C czs(—3). Weshow a < §.

If 6 € K, thena < g foradl £ by (AE4). Suppose 8 ¢ K, a ¢ K and

crs(—a) C ers(—F). We consider two cases.

(i) (czs(=8) N [=6]) N [~ # 0

Since 3 ¢ K then[K]N[=f] # 0. Also fzs(=) = czs(=8) N [-]
and therefore a & th(frzs(—8)) = th(czs(—8) N [-p5]). Conse-
quently o ¢ K%. By condition (C®), both o ¢ K and either
g€ Ko - - -a £ - — a Now 3 ¢ K, therefore
-8 = —a £ - = «a,then -0 - a < - = —a. Thee
fore(—=8 - a) Aa < (=8 = —a) A a by Lemma2.2.18 (x). Now
Fl(=8 = a)Aa] < aandt [(-8 = —a) Aa] « (aA f). It
followsthat o < a A 8. Therefore o < g by Lemma 2.2.18 (xii).
Hence o < G trividly.

(ii) (czs(=8) N [=B]) N [~a] =0

Sinceczs(—a) C ezs(—B) itfollowsthat (czs(—a)N[—-8])N[—a] =
¢ and, rearranging, (czs(—a) N [-a]) N [-6] = 0. Now, since
[—aV—8] = [~a]U[-5], then czs(—aV —=3) = czs(—a). Itfollows
that (czs(—aV—8)N[-~aV-8])N[-a] # 0. Also,sincea, § ¢ K,
then fzs(—a VvV =8) = [~a V =6] N czs(—a V —3). Therefore,
a ¢ K€, 5. By condition (C®), botha ¢ K andeither anf € K

—aV-
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or (~aV-f) - ~a L (-aV-p) - a Snceq, f ¢ K, then
aAp ¢ K. Therefore, (—aV —3) - —a £ (~aV —f§) — «. That
is, (—aV —p) = a < (-aV —-f) = —a. By logical equivalences
andsince (—a VvV —f3) - at a — g,thena < a — (3. Therefore
aNa < (a— 0)ANabylLemma2.2.18 (x). Thatis, a < a A S.
Hence o < 3 by Lemma2.2.18 (xii).

(Only If)

Let o < . Suppose f ¢ K. We need to show K I/ « and
czs(—a) C czs(—p).

By Theorem 5.3.16, condition (C<) is satisfied. Therefore, either
o ¢ K&, sor K aA (. The later case is not possible since
B ¢ K. Intheformer case, o & th(frs(—a V —=3)). We consider
two cases: (i) [K] N [-~a V=] = 0 and (i) [K] N [-a VvV —5] # 0.
in the former case, since [-a V =48] = [-a] U [=f], thena, B €
K. However, 5 ¢ K, therefore this case is not possible. In the
|latter case, frs(—aV —=8) = crs(—a VvV =8) N [~a Vv -F]. By
(Def th) and since o & th(frs(—a Vv =), then (czs(—a vV =) N
[-a vV =8]) C [~a]. Hence, again since [~a vV =48] = [-a] U [-4],
we have (czs(—a vV =8) N ([-a] U [-6])) C [~«] and therefore
(czs(—aV—=F)N[—a])U(czs(—aV—p)N[-8]) C [-a]. Therefore
czs(—a VvV =p) N [=8] C [-a]. Now czs(—a V =) C ezs(—f) and
consequently czs(—8) N [-a] # 0. Hence czs(—a) C czs(—0).



Appendix C

Proofsfor Chapter 6

Note: Thischapter contains the proofs for claims made in Chapter 6.

Lemma6.1.6 Let K bea belief set and o € K non-tautological. The Ak ,-restriction sets
for all maximally consistent setsA in £ containing —~« partition K L o.

Pr oof:

Let K beabelief set and o € K non-tautological. Need to show

(i) every K’ € K 1l o belongsto some Ak ,-restriction set; and,

(ii) the Ak ,-restriction sets are digoint (i.e., no K’ belongs to more than one Ak ,-
restriction set).

We do so by showing that K’ C A for some maximally consistent A in L
containing —c.. Since K’ € K 1l o weknow that Cn(K'U{—-«a}) ismaximally
consistent in £. Moreover, ~a € Cn(K' U {-a}) so Cn(K' U {-a}) isa
maximally consistent set in £ containing —«. Now K’ C K'U {—«a} so by
(Monotonicity), K’ = Cn(K') C Cn(K' U {—a}). Hence Cn(K' U {-a}) is
an appropriate A.

(i)
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Need to show that K’ does not belong to more than one A ,-restriction set.
Suppose for reductio ad absurdumthat K’ € K1l | A, K Lo | &' for max-
imally consistent sets A, A’ in £ containing —« such that A # A’. Therefore
K'CAand K' CA. Now K'U{-a} CAU{-a}=Aand K'U {-a} C
N U {-a} = A. Using (Monotonicity) Cn(K' U {-a}) C Cn(A) = A and
Cn(K'U{-a}) C Cn(A') = A'. However, Cn(K' U {-a}), A and A" are
maximally consistentin £. SoCn(K'U{-a}) = Aand Cn(K'U{-a}) = &'
Consequently, A = A’ contradicting our supposition above. Hence K’ belongs
to only one Ak ,-restriction set.

Lemma6.1.7 Let K beabelief set, « € K non-tautological and A a maximally consistent
setin £ containing —a. If K', K" € K 1L« | A, then

(i) K'NnK" € Klla|Aandmoreover K' N K" isthe greatest lower bound of { K/, K"}
in K 1la | Awithrespect to C.

(i) Cn(K'U K") € K1la | A and moreover Cn(K' U K") isthe least upper bound of
{K', K"} Cn(K'U K") isthe least upper bound of {K’, K"} in K1l | A with
respect to C.

Pr oof:

Let K be a belief set, a € K non-tautologica and A a maximally consistent set in £
containing ~«. Let K', K" € K1l o | A.

(i) Needtoshow K', K" € K 1L | Aand K'N K" isthegreatest lower bound of { k', K"}
in K 1l o | Awithrespectto C.

Now K' N K" = Cn(K' N K") since K', K" are closed under Cn. Also,



since K', K" C K it follows tha K' N K" C K. We now show that
Cn((K'nK")U{-a})ismaximally consistentin £. Now C'n(K'U{-«a})and
Cn(K" U {—a}) aremaximally consistentin £. So, for any g € L both either
B € Cn(K'U{—~a})or—4 € Cn(K'U{—-a}) andeither § € Cn(K"U{-a})
or =4 € Cn(K" U {—a}). We consider two cases (the other two are similar).
Pick some € L.

@ p€Cn(K'U{~a})and g € Cn(K" U {-a}).

By (Deduction) -« — € Cn(K') = K' and -« — § €
Cn(K") = K". Therefore—a — € K'N K" and, using (Deduc-
tion) again, § € Cn((K'N K") U {—-a}) asrequired.

(b) g € Cn(K'U{—-a}) and =3 € Cn(K" U {—a}).

By (Deduction) -« — € Cn(K') = K' and -« — § €
Cn(K") = K". Now K', K" C As0—-a — 3, ~a — =3 € A
But A ismaximally consistent in £ (and hence closed under C'n) so
a € A(sncek a « [(na = 8) A (~a — —B)]). However, this
contradicts the fact that - € A and A is consistent. So thiscaseis

not possible.
(©) =8 € Cn(K' U {~a}) and 8 € Cn(K" U {-a}).
Similar to case (b).
(d) -8 € Cn(K'U {—~a})and -3 € Cn(K" U {-a}).
Similar to case (a).

It followsthat either 5 € Cn((K'N K") U {—-a}) or =3 € Cn(K'N (K") U
{ma}).

We now show Cn((K' N K") U {-a}) is consistent. Suppose for reductio
ad absurdum that L € Cn(K' N (K") U {-a}). Therefore -a — 1 €
Cn(K'nK") = K'nK". Soa € K'NK" bylogical equivalence. Thena € K’
and o € K" contradicting the fact that Cn(K’ U {—a}) and Cn(K" U {—a})
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(i) Need to show K', K" € K1l | A and Cn(K' U K") isthe greatest lower bound of

APPENDIX C. PROOFS FOR CHAPTER 6

are consistent in £. Therefore Cn((K' N K") U {-«}) is consistent. Hence
K'NK"e Klla|A.

It remains to show that K’ N K" is the greatest lower bound of {K’, K"} in
K1l o | Awithrespect to C. Clearly K' n K" isalower bound of {K', K"}
with respect to C for K’ N K" C K'and K'n K" C K”. Need to show
that if K* € K1lo | Aisalower bound of {K’, K"}, then K* C K' N K",
Suppose, for reductio ad absurdum that there is a lower bound of {K’, K"}
with respect to C, K# and that K* ¢ K' N K". That is, thereissome 3 € K*
and 3 ¢ K'n K". But K* isalower bound of { K, K"} with respect to C
0 K* C K'and K# C K". It followsthat 3 € K' and 3 € K". Therefore
B € K'n K" which contradicts our supposition above. Hence no such K#
existsand K’ N K" isthe greatest lower bound of { K', K"} in K L« | Awith
respect to C.

{K', K"} in K1l o | Awithrespectto C.

Now obviously Cn(Cn(K'UK")) = Cn(K'UK") by (Iteration). Also, since
K', K" C K clearly K’ U K" C K and by (Monotonicity) Cn(K' U K") C
Cn(K) = K. Now Cn(K'U {-a}) and Cn(K" U {-«a}) are maximally
consistent in £. So, for any § € L both either 5 € Cn(K' U {-a}) or
-4 € Cn(K" U {-a}). We consider two cases (the other two are similar).
Pick someg € L.

Case(a) f € Cn(K'U{—a})and g € Cn(K" U {-a}).
By (Deduction) ~o« — f € Cn(K') = K' and ~a — f €
Cn(K") = K". Therefore - — § € K' U {—«a} and by (Mono-

tonicity) ~a — 3 € Cn(K' U {K"}). Using (Deduction) again
B € Cn(Cn(K'U{K"})U{-a}) asrequired.

Case(b) B € Cn(K' U {~a}) and -8 € Cn(K" U {-a}).



By (Deduction) - — € Cn(K') = K' and ~a — (3 €
Cn(K") = K". New K', K" CAs0—-a — (3, ~a — =3 € A
But A ismaximally consistent in £ (and hence closed under C'n) so
a € A(sincet a < [(na — B) A (—a — —5)]. However, this
contradicts the fact that - € A and A is consistent. So thiscaseis

not possible.

Case(c) -4 € Cn(K' U {-a}) and g € Cn(K" U {—a}).
Similar to case (b).

Case(d) -3 € Cn(K'U {—a}) and =3 € Cn(K" U {—a}).
Similar to case (d).

It follows that either 8 € Cn(Cn(K' U K")U {-a}) or =3 € Cn(Cn(K'U
K") U {=a}) we need to show Cn(Cn(K' U K") U {-a}) is consistent.
Supposefor reductio ad absurdumthat | € Cn(Cn(K'UK")U{-a}). Then,
by (Deduction) and (Iteration) —a — L € Cn(Cn(K'UK")) = Cn(K'UK").
Now K', K" C Aso K'U K" C A and by (Monotonicity) Cn(K' U K") C
Cnd) = A SO-a — L € A, Butk (ma — 1) < a. Therefore
a € A. Thiscontradictsthe fact that A ismaximally consistent in £. Therefore
Cn(Cn(K'UK")U{—-a}) isconsistent. It followsthat Cn(K'UK") € K 1L«
and as we have just seen, Cn(K' U K") C A. Conseguently Cn(K' U K") C
Klla|A.

It remains to show that Cn(K' U K") is aleast upper bound of {K', K"}
in K 1la | A with respect to C. Clearly Cn(K' U K") is an upper bound of
{K', K"} withrespect to C for K', K" C Cn(K' U K"). Need to show that
if K € K1la | Aisan upper bound of {K’, K"}, then Cn(K'UK") C K*.
Supposefor reductio ad absurdumthat thereis an upper bound K# of { K’, K"}
with respect to C and that Cn(K' U K") ¢ K*. That is, there is some
B e Cn(K'UK") and 8 ¢ K*. Now, by (Compactness) there are some
MCKandlN, CK"(solhiulN, C K'"'UK")suchthat 5 € Cn(lF,UTl). It
followsthat not al of 'y U, areelementsof K* otherwise 3 € Cn(K*) = K*.
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However, then K'UK" ¢ K* soeither K' ¢ K* or K" ¢ K*. Thiscontradicts
the supposition that K* is an upper bound of {K’, K"} with respect to C.
Therefore, no such K*# exists. Hence Cn(K' U K") isthe least upper bound of
{K', K"} in K1l o | Awithrespect to C. -

Theorem 6.1.8 Let K beabélief set, o € K non-tautological and A a maximally consi stent
setin £ containing —a.. Then K L | Aisalatticerelativeto C.

Pr oof:

Let K be a belief set, o € K non-tautological and A a maximally consistent set in £
containing —«. Clearly C partially ordersthe elementsof K 1L« | A. It followsdirectly by
Lemma6.1.6 and Lemma6.1.7 that K 1l o | Aisalatticerelativeto L. |

Theorem 6.1.9 Let S be any system of spheresin M, centred on [K| for some belief set
K € K. If, for any a € L, we define KS to beth(gs(«)), then postulates (K€1) — (K©8)
are satisfied.

Pr oof:
Let K = th(gs(a)). We show that each of (K®1) — (K®8) is satisfied.

Recall that
- whenever M
(Def gs) gS(a) = { FPS(S Oé) otherwise[a] 7 £
(K®1) KS isabelief set

Directly from the definition of th (since gs : £ — 2M¢).
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(KS2) K C K

Suppose [a] = M, (i.e, F ). Then gs(a) = [K]. Now K = th(gs(e)) =
th([K]) = K by Lemma2.2.14 (i). So K C K trividly.

Otherwise [a] # M (i.e, I/ @). Then gs(a) = cs(—a). Now [K] C cs(—a)
since [ K] isthe smallest sphere by definition. Thereforeth(cs(—a)) C th([K])
by Lemma 2.2.14 (iv). However, th(cs(—«a)) = th(gs(a)) = K. Hence
K9 C K by Lemma2.2.14 (i).

(K93) If i/ a then o ¢ K©

Lett/ o. Itfollowsthat [a] # M. Therefore K = th(gs(a)) = th(cs(—a)).
By definition of cs(—a), [a] N cs(—a) # 0. Hence by (Def th) o ¢
th(cs(—a)) = KY.

(KA If - o ¢ B, then KO = K§

Let o < (. Then [a] = [5]. Suppose [a] = M. Clearly then ] =
M. Then gs(a) = [K] and gs(8) = [K]. Therefore, KS = th(gs())
th([K]) = K and K§ = th(gs(8)) = th([K]) = K. Hence K = K§ (
K).

Suppose [a] # M. Then [3] # M. Now gs(a) = cs(—a) and gs(8) =
cs(—03). However, cs(—a) = cs(—f) soth(gs(a)) = th(cs(—a)) = th(cs(—8)) =
th(gs(6)) by Lemma2.2.14 (iv). Hence K§ = Kj .

(KS5) If « ¢ K, then K© = K

Leta & K. Then[-a]N[K] # @ and [a] # M. Now gs(a) = cs(—a). Since
[Fa]N[K] # 0 (K # K, sincea ¢ K) and [K] isthe C-minimal sphere by
definition, then cs(—a) = [K]. Therefore K€ = th(gs(a)) = th(cs(—a)) =
th([K]) = K by Lemma2.2.14 (iv) and (i).
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(K®6) If o, then K© = K

Let - . Then [a] = M. Now gs(a) = [K] by définition. Therefore,
K$ =th(gs(a)) = th([K]) = K by Lemma2.2.14 (iv) and (i).

(KS7) KS N K5 C KS,4

If = «, then, asin (K®6), K = K and (a A §) + (. Therefore, as
in (K®4), Kg,; = K5. Now, asin (K®2), K§ C K. Together we have
K{NKG =Ky = K35 Hence K§ N K C K¢, 4 trivially.

Similarly for - g.

Suppose i/ « and t/ 3. Then clearly t/ a A 5. It follows that [a] # M,
[8] # M and [a A §] # M. Therefore gs(a) = cs(—a), gs(8) = cs(—5)
and gs(a A B) = cs(—(a A B)) = cs(—a VvV =5). Now [-a V =] = [a] U [5].
Consequently, either cs(—aV—5) C cs(—a) or cs(—aV—03) C cs(—fF). (These
can, of course, be strengthened to equivalence but C will suffice to demonstrate
the result.) Therefore, th(cs(—«)) C th(cs(—a Vv —f)) or th(cs(—F)) C
th(cs(—av—0)). Itfollowsthat th(cs(—a))Nth(cs(—F)) C th(cs(—aVv—P3)).
That is, th(gs(a)) Nth(gs(B)) C th(gs(a A B)). Hence K N K C KJ4.

(Ke8) If a & K5, then K5, 5 C K

Leta ¢ KS,,. Thenl aandlf a A . Itfollowsthat [a] # M and [a A ] #
M. Consequently, gs(a) = cs(-a) and gs(a A B) = cs(=(a A B)) =
cs(—a vV —p). Now, since o & K, 5 = th(gs(a A B)) = th(cs(-a vV —f),
then cs(—a vV =8) N [-a] # 0. Therefore cs(—a) C cs(—a VvV —4) and
th(cs(—aV—p)) C th(cs(—a)) by Lemma2.2.14 (iv). Thenth(gs(aAB)) C
th(gs(a)). Hence K, ; C KS.
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Theorem 6.1.10 Let S be any system of spheresin M . centred on [ K] for some belief set
K € K. If, for any « € L, we define K§ to beth(gs(«)), then postulates (K®1) — (K©8)
are satisfied.

Proof:
Let K = th(gs(a)). We show that each of (K1) — (K©8) is satisfied.

To simplify the proofs, we denote by Cs(«) those worlds in the innermost “band” in-
tersecting [o]. That is, Cs(a) = {m € cs(a) | m ¢ UforanyU € S suchthat U C
cs(a) ywhenever [a] # M. In other words,

vy ) [K]UCs(—a) whenever [o] # M,
95(4) =\ K] otherwise

(K©1) K© isabelief set
Directly from the definition of ¢A (since g% : £ — 2M=).
(KS2) KO C K

Suppose [a] = M, (i.e, F ). Then gs(a) = [K]. Now K§ = th(gs()) =
th([K]) = K by Lemma2.2.14 (i). So K$ C K trividly.

Otherwise [a] # M, (i.e, t/ «). Then g5(«) = [K] U Cs(—a). Now [K] C
[K]UCs(—a). Thereforeth([K]UCs(—a)) C th([K]) by Lemma2.2.14 (iv).
However, th([K] U Cs(—a)) = th(gs(e)) = K. Hence K C K by
Lemma2.2.14 (i).

(KE3) If t/ athenav & KT

Let i/ . It followsthat [a] # M. Therefore K = th(gs(a)) = th([K] U
Cs(—a)). By definition of Cs(—a), [-a] N Cs(—a) # 0. Hence by (Def th)
a ¢ th([K]U Cs(na)) = K7

(KS4) If - o ¢ 6, then KS = K
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Let & <» (5. Then [« = [5]. Suppose [a] = M. Clearly then [§] =
M. Then gi(a) = [K] and g5(8) = [K]. Therefore, K = th(gs(a)) =
th([K]) = K and K§ = th(gs(6)) = th([K]) = K. Hence K = Kj (=
K).

Suppose [o] # M. Then [5] # M. Now g5(a) = [K] U Cs(—«) and
9s(B) = [K] U Cs(—8). However, cs(—a) = cs(=8) and consequently
Cs(—a) = Cs(—p) by definition. Therefore, [K] U Cs(—a) = [K]U Cs(—0)
and it follows that ¢g5(a) = g5(8). Hence KS = th(gs(a)) = th(gs(8)) =
K§g by Lemma2.2.14 (iv).

(KS5) If a ¢ K, then K& = K

Leta ¢ K. Then[—a]N[K] # @ and [a] # M. Now g5(a) = [K]UCs(—a).
Since[-a]N[K] # 0 (K # K, sincea ¢ K) and[K] isthe C-minimal sphere
by definition, then cs(—a) = [K]. It follows, by definition, that Cs(—a) =
cs(—a) = [K]. Therefore K = th(gs(a)) = th([K|UCs(—a)) = th([K]) =
K by Lemma2.2.14 (iv) and (i).

(K®6) If - o, then K© = K

Let - «. Then [a] = M. Now g5(«a) = [K] by definition. Therefore,
K$ =th(gs(a)) = th([K]) = K by Lemma2.2.14 (iv) and (i).

(Ke7) KS N Kﬁe C KSM

If = «, then, asin (K®6), K = K and+ (a A §) + (. Therefore, as
in (K®4), K35 = Kg. Now, asin (K®2), Kj C K. Together we have

(o7

K$NKp =Kj = K;,;. Hence K§ N Ky C K, 4 trivialy.

Similarly for - g.

Suppose i/ o and t/ 3. Then clearly t/ o A 5. It follows that [a] # M,
(8] # M and [a A 3] # M. Therefore g5(a) = [K| U Cs(—a), g5(8) =
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[K]U cs(=B) and gis(a A B) = [K] U Cs(~(a A B)) = Cs(ma vV ). Now
[~a VvV —=f] = [o] U [B]. Consequently, either cs(—a vV =) = cs(—a) or
cs(—a VvV —fB) = cs(—f). This, by definition, gives either Cs(—a VvV —3) =
Cs(—a) or Cs(—a VvV —=f3) = Cs(—f). Therefore, either [K]UCs(—aV —f5) =
[K]UCs(—a) or [K]UCs(—aV —3) = [K]UCs(—8). Inother words, either
gs(a A B) = gis(a) or g A B) = gs(B). Thenth(gs(a A ) = thgs(e))
or th(gs(a A B)) = th(gs(3)) by Lemma 2.2.14 (iv). Consequently, either
K$\s = K§ or K5, = Kg. Hence, ineither case, K N K C K§, 5.

(K®8) If a & K5, then K, 5 C KE

Let o & K5,5. Thent/ aoand i/ o A 3. It follows that [o] # M, and
[\ B] # M. Consequently, g's(a) = [K]U Cs(~o) and gs(ar A B) = [K]U
Cs(~(anB)) = [K]UCs(~av-5). Now,sincea ¢ K5, = th(gs(aAf)) =
th([K]UCs(=aV=p), then ([K]UCs(-~aV-3))N[-a] # 0. Therefore, either
[K]N[-a] # 0 or Cs(—aV —6)N[-a] #0(i.e, cs(—aV —p)N[-a] #0).
In the first case, cs(—a) = [K] and c¢s(—a V ~3) = [K]|. Consequently,
Cs(—a) = [K]and Cs(—aV-3) = [K]. Therefore, g5(a) = [K|UCs(—a) =
[K]U[K] = [K]and gs(a A §) = [K]U Cs(~(a A §)) = [K] U [K] = [K].
Then K§ = th(gs(a)) = th((K]) = K and K,y = th(gs(a A f)) =
th([K]) = K. Asaresult, K;,; C K$. Inthelatter case, and using the fact
that [-a V =] = [-a] U [=4], it can be seen that cs(—a V =) = cs(—a)
(otherwise cs(—a V =) N [-a] = O because the —3-worlds that are not —«-

worlds are in an inner sphere). Consequently Cs(—a VvV =8) = Cs(—a).
Therefore, g5(a) = [K]UCs(—a) = [K]UCs(=(a A B)) = gs(aA B). Then
K$ = th(gs(a)) = th(gs(a A B)) = K5z Again, K7, ; C KS. Hence, in
either case, K, 5 C K.

Note, the reason we have equality instead of inclusion in both cases is because
we have actually demonstrated a stronger result that followsfrom the postul ates
for value-based L evi-contraction over K.
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Observation 6.1.11 Postulate (K©9) implies postulate (K©7) in the presence of postul ates
(K1) — (K®6).

Proof:

Suppose both v and  arein K5, 5. Thatis, «, 8 € K5, 4. By (K®1), oA € K, 5. Then
FaA B by (KS3)and KS,; = K by (K®6). Now, by (K°2), K¢ C K and K§ C K.
Hence K$ N K5 C K = Kapg.

Suppose one of o or Fisnot in KC?,\B. Without loss of generality, assume o ¢ Kf/\ﬂ. By
(K®9), K55 € K. Clearlyt/ a by (K®1). Thereforea ¢ K by (K©3) and consequently

a

aNf ¢ KS by (KO1). Then K§ C KS, 5 by (K®9). Hence K N K C Kang. u

(53) Either K C Kj or K§ C KY

Proof:

Now, either o ¢ Kg or o € Kg. Inthe former case, (K°9) gives K C KY. Inthe
|latter, if I/ o (K®10) gives K C K?. If - «, then K = K by (K®6) and so, by (K®2)
K§ C K = K. Hence, eéither K§ C K or K C K¢, |

Lemma 6.1.12 Let S be any system of spheresin M, centred on [K] for some belief set
K € K. Ifwedefine, for anya € £, K tobeth(gs(«)), the postulates (K©9) and (K©10)
are satisfied.
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Proof:
Let K = th(gs(a)). We show that each of (K©9) and (K©10) is satisfied.

Recall that

(o) sot) = { f5f ) e o] # M

(K°9) If o ¢ K5, then K5 C K¢

Leta ¢ Kﬂ9.

I 3, thengs(8) = [K]andth(gs(8)) = th([K]) = K usingLemmaZ2.2.14(i).
Sincea ¢ K7, then oo ¢ K. Therefore [K] N [-a] # 0. Now clearly I o

S0 gs(a) = ¢s(—a) = [K] since [K] isthe C-minimal sphere. Consequently,

K =th(gs(e)) = th([K]) = K. Hence Kg C K¢ trivially.

Suppose i/ B. Then gs(B) = cs(—B). Since K = th(gs(B)) = th(cs(=5))
and o ¢ Kg, then cs(—3) N [-a] # 0. Therefore cs(—a) C cs(—6). Con-
sequently gs(a) € gs(8) and th(gs(5)) € th(gs(c)) by Lemma2.2.14 (iv).
Hence K? C KS.

(KS10) If ¥ a and @ € K5, then K& C K§

Lett/ aanda € K.

It 3, thengs(8) = [K]andth(gs(5)) = th([K]) = K usingLemma?2.2.14(i).
By (K®2) which is satisfied, « € K. Then [K] C [o] and since [K] is the
C-minimal sphere, then [K] C gs(«). Therefore th(gs(a)) C th([K]) by
Lemma2.2.14 (iv). Hence K C K.

Suppose i/ 3. Then gs(8) = cs(—B) and K = th(gs(6)) = th(cs(—8)).
Now o € K = th(cs(—3)). Therefore cs(—3) C [o]. It follows that
cs(—f) C cs(—a) and, by Lemma 2.2.14 (iv), th(cs(—a)) C th(cs(—0)).
Sincel/ «, then gs(«) = cs(—a). Therefore th(gs(a)) C th(gs(8)). Hence
K$ C K3,



270 APPENDIX C. PROOFS FOR CHAPTER 6

Theorem 6.1.13 Let & : K x £ — L be any function satisfying postulates (K€1) —
(K©10). Then for any belief set K € K thereisa system of sphereson M/, say S, centred
on [K] and satisfying K = th(gs(a)) forany a € L.

Pr oof:

Lete : K x £ — L beafunction satisfying postulates (K®1) — (K®10). Let K € K bea
belief set.

Let S’ bethe class of all nonempty subsets U of M such that
[K{] =U forsomea € L.
Let S bethe system of spheresS’ U {M}if K # K, and &' U { M, 0} otherwise.

It is straightforward to show that S is a system of spheres centred on [K]. Condition
(S1) follows directly from property (5.3) which is a consequence of postulates (K€1) —
(K©10), (83) follows from postulate (K€2) and (S2) and (S4) follow directly from our

finite language assumption.

It remains to verify that, for al o € £, K = th(gs(a)). If - «a, then K = K by
(K®6). Also, [~a] = M and consequently gs(«) = [K]. Therefore K = th(gs(a)) =
th([K]) = K by Lemma2.2.14 (i).

Supposet/ a.. Then gs(«) = cs(—a) and we need to find such a sphere c¢s(—«) and show
that isthesameas[KY]. By Lemma2.2.14 (iv) it would then follow that K§ = th(gs(«)).
Since S is a system of spheres it can easily be seen that cs(—«) (the smallest sphere
intersecting —a) isgivenby N{U € & : UnN|[-a] # 0}. Now, by (K®3), a ¢ KS.
Therefore [K9] N [—a] # 0. Henceclearly N{U € S : Un|[-a] # 0} C [KZ]. We
need to show equality. We can do so by ensuring that there is no sphere V' € S such
that V N[-a] # 0 and V C [KS]. Suppose, for reductio ad absurdum, that such a V'
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exists. That is, thereisa V' = [Kg] (by construction) such that [K'] N [-a] # 0. V is
clearly a sphere by our construction. Moreover, since [K[?] N [-a] # 0, then a ¢ K[?. It
follows from (K©9) that K§ C K. Therefore [K$] C [Kj]| by Lemma2.2.14 (v). That
is, [K$] C V. This contradicts our supposition above. Therefore no such sphere exists.
[K$]=n{U € §: UnN|[-a] # 0} and since S isasystem of spheres, the right hand side
isasphere. Hence K = th(gs(«)). |
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Appendix D

Proofsfor Chapter 7

Note: Thischapter contains the proofs for claims made in Chapter 7.

Observation 7.0.1 Let K € K beabedlief set. If & isa Levi-contraction function over K
satisfying postulates (K1) — (K©6), then there is a revision equivalent AGM contraction
function — over K satisfying postulates (K~1) — (K~6) and vice versa.

Pr oof:
Let K € K beabelief set.

Suppose & is a Levi-contraction function over K satisfying postulates (K€1) — (K©6),
Clearly & is a withdrawal function. The result follows directly from the observation in
Makinson [71] (p. 389). Thistells usthat there is a unique AGM contraction function —
over K (i.e., satisfying postulates (K~ 1) — (K~ 6)) which isrevision equivalent to S.

To seethe converse, suppose — isan AGM contraction function over K satisfying postul ates
(K—1) — (K~6). By Makinson's observation, — is the greatest element (in terms of set
inclusion) of an equivalence class of withdrawal functions. It suffices to find one which
satisfies the postul ate of failure (K©6) for it will be a Levi-contraction function. However,
— isawithdrawal function satisfying the postulate of failure (this can be obtained from
postulates (K~1) — (K~5)) and therefore a suitable candidate (i.e., there may be others).
Note herethat thismeansthat every AGM contraction functionisal evi-contraction function
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which is obviousfrom the fact that any AGM contraction function satisfies (K€1) — (K©6)
and should also be evident given the relationship between K 1« and K 1L« in the last
chapter. [ |

Theorem 7.1.1 Let K € K be a belief set. Let © be a contraction function satisfying
postulates (K°1) — (K®6) over K and & an abductive expansion function satisfying
postulates (K®1) — (K®6) over K. Then the abductive revision function ® obtained
through (Def *) satisfies postulates (K®1), (K®2) and (K®4) — (K®6) over K.

Pr oof:

Let K € K beabélief set. Let & be a contraction function satisfying postulates (K©1) —
(K®6) over K, & an abductive expansion function satisfying postulates (K®1) — (K®6)
over K and ® an abductive revision function obtained through (Def *). We need to show
® satisfies postulates (K®1), (K®2) and (K®4) — (K®6) over K.

(K®1) K isabelief set
Directly by (K€1) and (K®1).
(K®2) If tf —a, thena € K&

Let t/ —a. By (K®4), ma ¢ KE,. Therefore o € (K))? by (K®2). Hence
a € K2 via(Def ).

(K®4) If ~a ¢ K, then K® = K©

Let o ¢ K, then K€, = K by (K®5). Therefore (K%,)Y = K. Hence
K& = K? viathe (Def «).

(K®5) K = K, ifandonly if F ~aand K = K|
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(If)

Let- -« and K = K,. By (K°6), K€, = K. Therefore (K9,)? = K.
However, o € K = K€ since K isabelief set. So K = K by (K®4).
Hence, by (Def %), K¥ = K = K, .

(Only If)

Let K® = K, . Thatis, by (Def ), (K2,)¢ = K, . By (5.1) and (5.2) which
follow from the postulates (K®1) — (K®5), o € K€, and K€, = K, (apply
the contrapositive). Therefore, by (K®3) + -« and by (K®6), K© = K.
Hencer —-aand K = K.

(K®6) If - a < B, then K¢ = K
Let - a < B. It followsthat - —a + —f (by contraposition). Therefore

KS, = K& by (KO4) and (KS,)2 = (K%;)? by (K®6). Hence K& = K by
(Déf #).



