
End User Requirements for the Composable Web

Abdallah Namoun1, Tobias Nestler2, Antonella De Angeli1

1 Manchester Business School, Booth Street East, Manchester,

M13 9SS, United Kingdom

{abdallah.namoune, antonella.de-angeli}@mbs.ac.uk
2 SAP Research Center Dresden,

Chemnitzer Str. 48, 01187 Dresden, Germany

tobias.nestler@sap.com

Abstract. With the enormous auspices and resources EU research projects are

receiving to enable the diffusion of lightweight service composition approaches

among end users, it is imperative for these projects to understand and establish

the correct user requirements that lead to development of easy to use and

effective software platforms. To this end, a user-centric study which includes

15 participants is carried out to unravel users’ perception of software services

and service composition, their working ways, and identify users’ expectations

and usability problems of a future service composition tool. Several examples

and prototypes are used to steer this elicitation study, among which is a simple

composition tool designed to support non-programmers to create interactive

service-based applications in a lightweight and visual manner. Although a high

user acceptance emerged in regard to “developing service-based applications by

users”, there is evidence of a fundamental issue concerning conceptual

understanding of service composition (i.e. end users do not think about

connecting services). This paper discusses various conceptual and usability

problems of service composition and proposes recommendations to resolve

them.

Keywords: requirements, end user development, light weight composition, web

services, presentation layer, usability.

1 Introduction

Europe is continuously spending tens of millions of Euros funding service research

projects that aim at developing user-friendly software platforms to facilitate the

development of interactive service-based systems. Much of this research effort is

dedicated to solving technical complexities and implementation problems rather than

understanding what end users really need, how they think about service composition,

and their natural working ways to support their activities and enhance service

consumption and production. Unfortunately, some of the funded projects decide on

implementation strategies and solutions for their target user group before even starting

the project either because they want to pursue their research interest and agenda or

claim they understand the needs of their users.. This justifies why, despite the rapid

mailto:%7D@mbs.ac.uk
mailto:@sap.com

advancement in Service Oriented Architecture, user research in that area is still in its

early infancy. User studies that focus on understanding user development abilities,

needs, and mental models about service composition are evidently required to

establish correct and well-informed requirements.

Web 2.0 enables Internet users to add content to the web, interact with and

customize web pages, share their thoughts, collaborate, and develop the WWW. In

general, these activities do not necessitate acquisition of IT specialist knowledge

since, for example, the act of modifying a wiki page is fairly simple for anyone who

knows how to use a computer and browse the Internet. A promising approach to

empower users beyond web content development is to use and reuse loosely coupled

software components like web services in order to create composite applications

tailorable to their diverse needs. However, there is no substantial proof that naïve

users (i.e. users with no computer science/IT background) can combine functionalities

together to produce augmented software services. The question as to whether “do

users perceive or think about uniting/connecting independent functionalities to form

greater assemblies?” is a key answer to the success of many service composition

research projects.

This motivation becomes more interesting when taking into consideration the fact

that creating computer programs requires strong modeling abilities and problem-

solving skills which most Internet users do not acquire, a fact that always intimidates

end users. Changing and customizing web content is different from composing

software services since the latter is more complex and challenging. Transforming

ordinary consumers of services into actual producers of services invites other

unanswered research questions: what do users understand by web services? are they

just black boxes, interfaces they interact with, snippets of code, etc? are end users

willing to take the burden of connecting services together sacrificing time and effort?

how do we assist users to better understand service composition and encourage them

to uptake development activities? which metaphors should be used to enable easy

development of service-based applications?. Such understanding is crucial to the

representation of services and service composition in authoring and modeling

environments.

To sum up, this paper endeavors to:

• Capture users’ true understanding of web services and composition of service-

based applications; this finding will impact the way services will be represented to

developers in development environments.

• Identify conceptual and usability problems that relate to service composition, as

probed by realistic examples and prototypes of a visual composition tool.

• Improve the design of service development environments through a set of

guidelines and recommendations; thus enhancing the diffusion of services among

Internet user.

2 Existing Work on Data Mashups and Service Composition

At present the web offers users the capability to build personal pages through

customizable web portals, such as iGoogle1 and MyYahoo!2, whereby they add web

feeds and gadgets (i.e. programs that provide services) to their personalized pages. In

principle, users browse a list of services and add the desired ones to their pages such

as: Weather, Wikipedia, Google Map, and Day and Time services. They can also edit

these services and modify the look and feel of the pages by applying a desired theme

or moving the gadgets within the page outline. Customizable web portals are easy to

use and interact with but do not support the creation of complex software applications

because services can not be combined with each other, in other words users can not

create or manage links between services. Widget-based applications are merely a

collection of independent services that do not communicate to each other or have very

limited communication. It is more useful and interesting if ordinary users are enabled

to produce rich and complex service-based systems that fulfill their specific needs, but

also allowed to easily extend and customize applications.

Web 2.0 makes the formation of web-based communities and consumption of

services, such as: wikis, blogs, video-sharing, and social-networking sites, more

feasible. However, it does not allow the formation of powerful applications that

consist of web services interacting together ([8], [11]). Even though service

composition is well-understood and covered by existing approaches for technical

developers using composition languages (e.g. BPML, BPEL4WS, WSCDL … etc),

tools and methodologies for enabling end-user service composition have been largely

ignored ([9], [10]). The current technical aspects of service composition are not of

much interest to ordinary users who want to capitalize on the benefits offered by

Service Oriented Architecture. What really matters to end users is how these

technologies are presented to them and how they can easily use these advanced

technologies to perform their desired tasks.

Promising approaches for a lightweight user-driven application design are Mashup

platforms (overview provided by [4]), which came up with the growth of the Web 2.0.

The graphical composition style constitutes a first step towards user empowerment

and increasingly shifts the creation of individual applications to the domain experts.

Mashup platforms like Yahoo! Pipes3 or Open Mashup4 enable the creation of more

sophisticated service-based applications by aggregating web feeds, web pages and

web services from different sources. Unlike customizable web portals, users can

define relationships between modules by dragging and linking them together within a

visual editor. The output of one module can serve as the input of another. However,

mashups mainly focus on data aggregation and still lack of concepts to create

composite service-based applications by end-users ([3], [9]). Moreover, they require

modeling skills and good understanding of computing concepts such as message and

data passing which most users do not have.

1 http://www.igoogle.com
2 http://www.my.yahoo.com
3 http://pipes.yahoo.com
4 http://www.open-mashups.org

Namoune et al conducted focus groups to discuss the risks and benefits of end user

composition of service-based applications. End users were mainly concerned about

the privacy and security of their personal data, as well as the underlying technical

complexity they might encounter when composing service-based applications [6].

Despite the continuous progress in service-oriented technologies, service

composition by end users (non-programmers) is an area in its early stages. Therefore,

identifying the needs and specific requirements of ordinary users is a crucial

prerequisite to the design of “easy to use” and “easy to understand” service

composition environments. The challenge to service and Human-Computer

Interaction (HCI) research lays in finding new methods to open up service

composition to a larger population supplying non-technical users with an intuitive

development environment that hides the complexity of services and service

composition to create composite applications. This goal although desirable, opens

other interesting challenges to HCI.

3 Experimental Set Up

3.1 Procedure

The study at hand was conducted in the form of a contextual interview/inquiry,

wherein 15 non-technical students at the Manchester Business School participated.

Each individual interview took approximately one hour. Beyer and Holtzblatt argue

that contextual interviews are very useful for identifying user contextual needs and

how specific actions are performed in detail [2]. Moreover, they enable researchers to

understand users’ environments and their work conduct; thus portraying actual user

behavior. During the interview we set up a focus in regard to the objectives of the

ServFace project5 and how these objectives will be fulfilled. In this study, the focus is

to enable ordinary users to build composite software applications that are tailored to

their needs using a light-weight simple composition tool called ServFace Builder. To

guide the interview several widespread examples (e.g. iGoogle, Google Map Search

Service), low fidelity prototypes, and a high fidelity prototype of a future authoring

tool were used. The detailed steps participants were asked to complete are the

following:

1. Define web services, widgets, and web applications, and explain how these

software artifacts work from a user perspective. Following the participants’

answers, the interviewer provided the exact definition of each term with

examples

2. View a mock-up of the composition tool and make initial comments and

impressions

3. Walk through a simple service composition example “student course

enrolment” in which the purpose and main aspects of the tool were explained

5 www.servface.eu

(Figure 1). Through this carefully selected example that suits participants’

environment and background we aimed to effectively communicate the idea

of “service composition by end users”

4. Indicate their views regarding service composition and evaluate the mock-

ups of the tool

5. Go through a service composition scenario and build a composite service

using an early online prototype of the tool (Figure 2). Concrete task

description: “You are a team assistant for a team of 50 people. You can use

MS Office well and like to play around with the tools you use and customize

them to fit your needs. Since your colleagues often need to attend

conferences it is your responsibility to organize the travels. In the past you

spent a lot of time searching and booking suitable flights and hotels. In the

future, you want to build an application to allow your colleagues to do their

own booking without spending a lot of time on it. Thus you want to build a

special tool that facilitates travel booking”

6. Indicate their final views regarding the composition tool and the general

composition approach

3.2 Materials

3.2.1 Motivating Examples

To simplify the definition of software services, widgets and web applications for our

non-technical audience, we used widespread examples that most people are familiar

with, in particular: Google Map Search Service, Date and Time Gadget by Google,

and Google Suit (email, Calendar, Documents, Web, Reader, etc). These examples

were only shown to users after they had provided their definition and examples.

3.2.2 Low-Fidelity Prototypes and Student Scenario

Participants were presented with a set of mock-ups of our service composition tool

using Microsoft PowerPoint (figure 1). The mock-ups demonstrated how a student

can create a composite application that allows her to register to a particular course of

study. The interviewer went through the process of visual service composition and

explained the necessary steps. Participants were then invited to make comments or

ask questions.

3.2.3 High-Fidelity Prototype

The evaluated ServFace Builder was developed in the frame of the EU-funded

research project ServFace. The tool utilizes the advantages of web service annotations

[5] enabling a rapid development of simple service-based interactive applications in a

graphical manner. The tool applies the approach of service composition at the

presentation layer, in which applications are built by composing web services based

on their frontends, rather than application logic or data [7]. During the design process,

each web service operation is visualized by a generated UI (called service frontend),

and can be composed with other web service operations in a graphical manner. Thus,

the user, in his role as a service composer and application designer, creates an

application in WYSIWYG (What you see is what you get) style without writing any

code. It is worth noting that the tool depicted in figure 2 has been improved and looks

different now based on users’ feedback and design recommendations gained through

this study. However, for the interest of this paper, figure 2 shows the version of the

tool used to steer the contextual interviews.

Figure 1. Mockups of the Potential Simple Composition Tool –ServFace Builder-

Figure 2. Early Prototype of the Simple Composition Tool –ServFace Builder-

4 Results

4.1 User Perception of Software Services

Users provided diverse definitions of web services. 20% of the users defined services

as services that are available on the web, while another 20% of the users defined

services as the provision of information or knowledge. The remaining users referred

to services as: a tool to build the web and applications, online communities, search

engines, and interactive elements. 40% of the users argued that unlike traditional web

pages which are static, services are interactive elements which enable them to perform

tasks. When prompted to report examples of services 46% of the users mentioned

search engines (Google, Yahoo) and E-commerce sites (Amazon). Others mentioned

social-networking systems (such as: Facebook), website tools, and learning

environments (the University portal).

Once the concept of services was introduced to the participants and the Google

Map was presented as an example, users were all able to explain how it can be used.

They had a very clear idea of how to interact with it, data can be entered by typing in

their “search query or term” in the text field and clicking the “Search Maps” button.

The service then returns the results back to the users in the form of an image (i.e. a

map). Some users (3 users) also indicated that they can interact with the service by

editing its options (e.g. show satellite imagery and show traffic). All users referred to

the information they supplied as “input” and to the results returned by the service as

“output”, showing that this terminology is commonly shared amongst users with no

technical background.

The concept of widget appeared to be more difficult. Although some users

acknowledged to have heard the term, no one was able to define or guess what a

widget is. 33% of the users defined web applications as applications that run on the

web, for example iGoogle, Google docs, and Hotmail. Once the “Google suite” was

introduced to the participants, they all commented that it is useful to have one

application with many services bundled together as this is more convenient, saves

time, reduces workload, and prevents errors.

To sum up users were able to provide a very general definition of services

abstracted from technical details and describe the functionality of web services, and

web applications. Users seem to perceive service-hosting sites as single services

instead of a collection of web services as shown by the provided examples. However,

users had no knowledge of the term “widgets”. Users heard about Web 2.0 and

already used its technologies like blogs. Surprisingly many of them had already built

web sites by their own.

4.2 User Perception of Service Composition

All users liked “to develop their own software applications that suit their needs and

interests” with the help of authoring tools. They argued that this will allow them to

perform complex tasks more easily and rapidly. They also pointed out that assembling

many services within a single application is a powerful feature missing in today’s

applications which are usually built for one purpose, for example booking a flight,

finding a hotel and booking a car. In normal circumstances, users have to access

different online services to accomplish their goals. Users appreciated that the

introduction of this feature reduces the amount of work required to perform tasks (i.e.

logging into one service instead of many services/ applications), reduces the chance of

making mistakes, and it is more convenient to have external services grouped together

in one application. Furthermore, integrating services using their front-ends only

without worrying about the integration of data and business logic reduces the

complexity of application development

4.3 End User Composition Problems

As previously indicated the main objective of our evaluation is to identify conceptual

problems that can be generalized to other mashup editors and service composition

environments and propose measurements to resolve them. Motivated by the travel

booking scenario, participants pinpointed several drawbacks with the lightweight

composition. Table 1 lists and explains both conceptual and usability problems that

could face end users while composing services. Other usability problems that are very

specific to the ServFace Builder only are not reported below. We include a severity

rating for each detected problem using an ordinal scale (low, moderate, high).

Table.1. Conceptual and Usability Problems of Service Composition by End Users

Conceptual Problem Severity Usability Problem Severity

1- Awareness of service

composition/connection: despite

introducing the concept of “building

applications by users” in the

walkthrough example, some participants

had problems understanding the purpose

of the composition tool (i.e. that the tool

is designed to build applications).

Instead, they thought single services are

software systems which operate

independently. All users failed to

notice that web services can be

connected together. After we

informed them about the possibility

of combining services together and

asked whether they want the tool to

perform it on their behalf, all users

preferred to be involved in the

process of combining services

because they do not have full

confidence in the system and feared

it might cause problems.

High 1- Direct manipulation

of services: selecting and

placing services into the

main canvas was not

intuitive to the

participants and caused

problems. Upon placing

services into the design

area, users had difficulty

trying to move them

around to create an

organized visual layout.

Moreover, users wanted

to adjust the size of

services layout but this is

currently not supported

by the tool.

Moderate

2- Definition of execution flow of

services and application: users were

confused about specifying the execution

order of the services they added to the

design space. In other words, they had

troubles defining which service should

the application start with and which one

should come next, and so forth.

High 2- System support:

users were also not sure

if they were doing the

right actions and

complained that the

system did not inform

them about the

consequences of their

activities, emphasizing

that proactive help from

the system is important.

High

3- Understanding of technical terms:

users were intimated by some technical

jargon used in the tool and their meaning

such as service operation and

parameters, and asked for explanation.

Inability to understand parts and

concepts used within a design tool may

result in users giving up on the tool.

High

4- Security: there was a security

concern from users in relation to using

web services that require supplying

sensitive information such as: bank

details. Users were worried that services

retrieved by the tool could disclose their

personal information to third party

service providers or could be

compromised by experienced intruders

and hackers.

High

5- Distinction between design and

runtime: users had difficulty

understanding the difference between

design time and run time. Some users

started to input data into entry fields of

the services during the development

phase and expected the application to

process results instantly. Clearly they

had misconceptions about the two

phases.

Moderate

5 Discussion and Recommendations for End User Composition

Although users were some times confused about the purpose of the tool, they showed

a high likeability towards “composing applications that are tailorable to their needs”.

This agrees with the current trends that end users are becoming proactive about

developing the web [8]. Assembling various services within a single application was

favored by the participants because it saves time and effort, is convenient, and offers

multiple functionalities, agreeing with [6].

The striking result of this evaluation revealed that the tool was not self-reflective of

its composition aspect as users did not attempt to create links between services in the

task scenario. This may be attributed to the innovative idea of combining different

software components together which end users are unfamiliar with. In contract to

customizable web portals (e.g. iGoogle) and social networking sites (e.g. Facebook),

where users usually search for and add external services to their pages without having

to define relationships between services, this design tool and the alike require users to

wire atomic services together. Therefore, it is anticipated that users were unaware of

this new composition feature.

An challenge imposed by this tool is how end users with minimum service

composition experience can specify the steps they are required to undertake in order

to build an application. In particular, it is not an obvious task for users to recognize

the services that contribute towards the accomplishment of a particular user goal.

Surprisingly adopting common practices in future design tools does not necessarily

improve user experience and their usability. For example, although some users were

able to link the page flow section on the right hand side of our service composition

tool to the Microsoft Power Point slides section, they showed poor ability to use it

appropriately. It is important for designers to come up with and compare several

design solutions before committing to a particular design solution.

Other aspects of the tool that created confusion were related to the unfamiliar

service computing terms, such as: service operation, parameters. This can be

attributed to user unfamiliarity and poor knowledge of technical terms.

In light of the results of user understanding of software services and service

composition and identified service composition problems the following tentative

design recommendations are suggested:

• Service understanding and representation in service composition environments:

users showed a poor understanding of the technical details of web services; thus,

we encourage service designers to represent services via user interfaces to naïve

users since visual representations can communicate and express the purpose and

details of these services more effectively. Whilst abstract representations of

services (i.e. black box representations) are difficult to interpret and understand

by non-programmers, snippets of code are designed for serious programmers.

• Service composition strategy: there are two fundamental issues to service

composition (1) connecting services and (2) identifying the order by which

services should be executed. To realize service composition by end users we

propose to use a semi-automatic approach (system-guided composition) that

seamlessly creates links between services while giving users the power to modify

those links as they see most appropriate. Whenever a new service is selected from

a list of available services and added to the design space (e.g. service 3, Figure

3), the system should check for service compatibility issues and create the desired

connection (Serv 3 and Serv 19, Figure 3). The system may also highlight the

possible links from a new added service to other existing services. For the second

issue we recommend to use a task modeling view by which users can indicate the

goal of their application and the tasks/actions they are to required to perform in

order to accomplish their goal. Once the task analysis tree has been created users

can associate services to particular actions. The overall aim is to specify the

services that contribute towards the accomplishment of a user goal without

worrying about service connections. Furthermore, it is would be very useful if a

library containing several task analysis templates of possible assemblies are made

available. Users could then reuse and extend these templates according to their

specific needs.

Figure 3. A Potential Service Composition Design Solution

• Service related terms: technical jargon (i.e. service operations, parameter,

widgets) is not well understood by ordinary users; therefore, we propose using

friendly and self-explanatory titles to elevate technical complexity and enhance

users understanding of service composition aspects.

• Manipulation of services: service composition environments should provide a

suitable and large design area. In addition, users should be enabled to easily

interact with and visually manipulate services (i.e. moving services within the

canvas, changing their dimensions, color, deleting services … etc).

• Secure services: in addition to composition-related issues, the system has to deal

with security and privacy aspects. In that respect, the retrieved services must be

trustworthy and reliable and this should be clearly communicated to the users

through symbols (e.g. a secure digital e-sign, verisign identity protection), as well

as providing guarantees from service providers to compensate service consumers

in case of frauds.

• Continuous user feedback: users were sometimes inquisitive about the current

state of their design; hence, we suggest adding proactive assistance (e.g.

intelligent software agents) that continuously gives assurances and notifies users

about the consequence of their actions, especially in critical situations.

Further to these general design guidelines, we noticed that most of our users

designed their application in one page instead of multiple pages. Therefore, we

recommend enabling service composition within one design page as it is more

convenient and less confusing. In regard to the design tool’s name, users suggested

using names that reflect their personality and give them a feeling of ownership and

control over the tool such as: “myTool, myApplication, youDesign … etc”.

6 Conclusion and Future Work

This paper discusses users understanding of services and service composition, and

the main issues that end users with no modeling skills or programming knowledge

may face during the composition of services using service development environment.

Users liked the idea of being able to build their own applications but evidence showed

they were not thinking about linking services together to form augmented assemblies.

We therefore propose to support service composition environments with intelligent

mechanisms that automatically define connections between services (e.g. control and

data flow) “system-driven composition” while enabling users to control and

customize these connections. In future work, we plan to improve the current service

composition tool and address some of the identified and inferred problems to better

reflect the purpose of the tool and simplify the process of building applications.

Subsequently, a user study will be conducted to evaluate the usability of the latest

version of the ServFace Builder.

Acknowledgments. We thank all students of the University of Manchester who

participated in this research study. The work presented herein is supported by the EU-

funded project ServFace.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures,

and Applications. Springer Verlag. (2004)

2. Beyer, H. Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. San

Francisco: Morgan Kaufmann Publishers (1998)

3. Daniel, F., Casati, F., Benatallah, B., Shan, M.C.: Hosted Universal Composition: Models,

Languages and Infrastructure in mashArt. In Proceedings of ER’09 (2009)

4. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In Proceedings of

ICSOC (2008)

5. Janeiro, J., Preussner, A., Springer, T., Schill, A., Wauer, M.: Improving the Development

of Service Based Applications Through Service Annotations. In Proceedings of

WWW/Internet (2009)

6. Namoune, A., Wajid, U., and Mehandjiev, N.: Composition of Interactive Service-based

Applications by End Users. In the Proceedigs of UGS2009 - 1st International Workshop on

User-generated Services at ICSOC’09, Stockholm (2009)

7. Nestler, T., Dannecker, L., Pursche, A.: User-centric composition of service frontends at

the presentation layer. In the Proceedigs of UGS2009 - 1st International Workshop on User-

generated Services at ICSOC’09, Stockholm (2009)

8. O’Reilly, T.: What Is Web 2.0?. Retrieved 20 April 2010, from

http://oreilly.com/web2/archive/what-is-web-20.html.

9. Ro, A., Xia, L.S.Y., Paik, H.Y., Chon, C.H.: Bill Organiser Portal: A Case Study on End-

User Composition. In Proceedings of WISE (2008)

10. Schahram Dustdar and Wolfgang Schreiner.: A Survey on Web Service Composition. In

International Journal of Web and Grid Services, Vol. 1, No. 1. (2005)

11. Wong, J., Hong, J. I.: Making Mashups with Marmite: Towards End-User Programming for

the Web. In Proceedings of CHI (2007)

	End User Requirements for the Composable WebAbdallah Namoun1, Tobias Nestler2, Antonella De Angeli11 Manchester Business Sc

