
ITERATIVE COMBINATORIAL AUCTIONS:

ACHIEVING ECONOMIC AND COMPUTATIONAL

EFFICIENCY

David Christopher Parkes

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Ful�llment of the Requirements for the Degree of Doctor of Philosophy

2001

Lyle H. Ungar
Supervisor of Dissertation

Val Tannen
Graduate Group Chair

COPYRIGHT

David Christopher Parkes

2001

Acknowledgements

None of this would be possible without my advisor, Lyle Ungar. You cannot imagine how

grateful I am for your constant support and guidance. You are an amazing inspiration. I

hope this dissertation (and the tables!) will go some way towards expressing my thanks. I

am also deeply indebted to Patrick Harker for helping to start me o� in the right direction,

and to my other committee members, Mitch Marcus, Sampath Kannan, and especially to

Michael Wellman for insightful feedback and being a great mentor. I must also thank

Prof. Bird at Oxford, who �rst got me excited about computer science. Thanks also to

Lloyd for the animal crackers and bounded-rationality, and to Marta and Jayant for being

great researcher friends last summer and for the white board proofs. Other people that

have helped along the way include Peter Wurman, Amy Greenwald, Tuomas Sandholm,

William Walsh, Fredrik Ygge, Vijay Chandru, Bernardo Huberman, Rakesh Vohra, and

Sushil Bikchandani. Matthew, Doug, Harold, Rinaldo, Jon, Kathy and Panos, my PhD-

seeking friends. Mike Felker. Penn cycling, 1224 Rodman, Randy, Ay-Ay-Ay, Cat W.,...

just an amazing few years. My friends in Philadelphia. I am going to miss you all so much.

Especially Rob. Moooo. Dan, I know how proud you are. Thanks for believing in me all

the way through. Laura, Mum and Dad. I miss you and love you. Thanks for keeping so

close despite being so far away. Finally Phil. This book of mathematical dreams is all for

my star dreamer. I love you.

iii

Abstract

ITERATIVE COMBINATORIAL AUCTIONS:

ACHIEVING ECONOMIC AND COMPUTATIONAL EFFICIENCY

David Christopher Parkes

Supervisor: Lyle H. Ungar

A fundamental problem in building open distributed systems is to design mechanisms

that compute optimal system-wide solutions despite the self-interest of individual users and

computational agents. Classic game-theoretic solutions are often prohibitively expensive

computationally. For example, the Generalized Vickrey Auction (GVA) is an e�cient and

strategy-proof solution to the combinatorial allocation problem (CAP), in which agents

demand bundles of items, but every agent must reveal its value for all possible bundles

and the auctioneer must solve a sequence of NP-hard optimization problems to compute

the outcome.

I propose iBundle, an iterative combinatorial auction in which agents can bid for com-

binations of items and adjust their bids in response to bids from other agents. iBundle

computes the e�cient allocation in the CAP when agents follow myopic best-response bid-

ding strategies, bidding for the bundle(s) that maximize their surplus taking the current

prices as �xed. iBundle solves problems without complete information revelation from

agents and terminates in competitive equilibrium. Moreover, an agent can follow a myopic

best-response strategy with approximate values on bundles, for example with lower- and

upper- bounds.

My approach to iterative mechanism design decomposes the problem into two parts.

First, I use linear programming theory to develop an e�cient iterative auction under the

assumption that agents will follow a myopic best-response bidding strategy. Second, I

extend the approach to also compute Vickrey payments at the end of the auction. This

iv

makes myopic best-response a sequentially-rational strategy for agents in equilibrium, in-

heriting many of the useful game-theoretic properties of the GVA.

iBundle implements a primal-dual algorithm, CombAuction, for the CAP, computing

a feasible primal (the provisional allocation) and a feasible dual (the ask prices) that sat-

isfy complementary slackness conditions. An extended auction, iBundle Extend&Adjust,

interprets a primal-dual algorithm, VickAuction, as an iterative auction. VickAuction

computes the e�cient allocation and Vickrey payments with only best-response informa-

tion from agents. Experimental results demonstrate that iBundle Extend&Adjust, which

keeps iBundle open for a second phase before adjusting prices towards Vickrey payments,

computes Vickrey payments across a suite of problems.

v

Contents

Acknowledgements iii

Abstract iv

Preface xvii

1 Introduction 1

1.1 Computational Mechanism Design . 2

1.1.1 The Mechanism Design Problem . 3

1.1.2 The Classic Vickrey-Clarke-Groves Solution 4

1.1.3 Computational Considerations . 5

1.1.4 A Challenge: Incentive-Compatible Iterative Mechanisms 7

1.2 The Combinatorial Allocation Problem . 8

1.2.1 Application Domains . 9

1.2.2 The Generalized Vickrey Auction . 11

1.3 Iterative Combinatorial Auctions . 12

1.3.1 Theoretical Underpinnings . 14

1.3.2 Approximations and Special-Cases 16

1.3.3 Myopic Best-response vs. Direct Revelation 17

1.4 Bounded Rational Compatible Auctions . 18

1.5 Important Related Work . 18

1.6 Outline . 21

2 Classic Mechanism Design 23

2.1 A Brief Introduction to Game Theory . 25

2.1.1 Basic De�nitions . 25

2.1.2 Solution Concepts . 27

vi

2.2 Mechanism Design: Important Concepts . 29

2.2.1 Properties of Social Choice Functions 31

2.2.2 Properties of Mechanisms . 33

2.3 The Revelation Principle, Incentive-Compatibility, and Direct-Revelation . 35

2.3.1 Incentive Compatibility and Strategy-Proofness 36

2.3.2 The Revelation Principle . 38

2.3.3 Implications . 40

2.4 Vickrey-Clarke-Groves Mechanisms . 41

2.4.1 The Groves Mechanism . 41

2.4.2 Analysis . 42

2.4.3 The Vickrey Auction . 43

2.4.4 The Pivotal Mechanism . 44

2.4.5 The Generalized Vickrey Auction . 47

2.5 Impossibility Results . 49

2.5.1 Gibbard-Satterthwaite Impossibility Theorem 51

2.5.2 Hurwicz Impossibility Theorem . 51

2.5.3 Myerson-Satterthwaite Impossibility Theorem 52

2.6 Possibility Results . 53

2.6.1 E�ciency and Strong Budget-Balance: dAGVA 54

2.6.2 Dominant-strategy Budget-Balance with Ine�cient Allocations . . . 56

2.6.3 Alternative implementation Concepts 57

2.7 Optimal Auction Design . 59

3 Computational Mechanism Design 62

3.1 Computational Goals vs. Game Theoretic Goals 63

3.2 Computation and the Generalized Vickrey Auction 65

3.2.1 Winner-Determination: Approximations and Distributed Methods . 67

3.2.2 Valuation Complexity: Bidding Programs and Dynamic Methods . . 73

3.2.3 Communication Costs: Distributed Methods 80

4 Linear Programming and Auction Design 83

4.1 Overview: The iBundle Auction . 86

4.2 Linear Programming Theory . 87

vii

4.2.1 Primal-Dual Algorithms . 89

4.3 Allocation Problems . 91

4.3.1 Price Adjustment . 93

4.3.2 Competitive Equilibrium . 95

4.3.3 Example: The English Auction . 96

4.4 Linear Program Formulations for the Combinatorial Allocation Problem . . 98

4.4.1 Integer Program Formulation . 99

4.4.2 First-order LP Formulation . 100

4.4.3 Second-order LP Formulation . 102

4.4.4 Third-order LP Formulation . 104

4.5 Tractable Combinatorial Allocation Problems 106

4.6 CombAuction: A Primal-Dual Method for CAP 110

4.6.1 Description . 110

4.6.2 Optimality Result . 113

4.6.3 Proof: CombAuction(2) . 115

4.6.4 Proof: CombAuction(d) and CombAuction(3) 120

4.7 Earlier Primal-Dual Auction Methods . 121

4.7.1 Assumptions on Agent Preferences 123

4.7.2 Relating to Primal-Dual Methods . 124

5 iBundle: An Iterative Combinatorial Auction 126

5.1 Auction Description . 128

5.1.1 A Myopic Best-Response Bidding Strategy 130

5.1.2 Discussion . 130

5.1.3 Example Auction Scenarios . 132

5.1.4 Worked Examples . 133

5.2 Theoretical Results . 135

5.3 Experimental Methods . 136

5.3.1 Metrics . 136

5.3.2 Problem Sets . 138

5.3.3 Comparison Auction Mechanisms . 139

5.3.4 Experimental Platform . 140

5.3.5 Normalized Bid Increment . 140

viii

5.4 Results I: E�ciency and Information Revelation 141

5.4.1 E�ect of Price Discrimination . 143

5.4.2 Information Revelation . 144

5.5 Results II: Winner Determination and Communication Cost 147

5.5.1 Minimal Bid Increment Approximations 148

5.5.2 Approximate Winner-Determination 150

5.5.3 Methods to Speed-up Sequential Winner-Determination 150

5.5.4 Communication cost . 152

5.6 Special Cases for Expressive Bid Languages 152

5.6.1 Unit-Demand Preferences (Assignment Problem) 152

5.6.2 Linear-Additive Preferences . 153

5.6.3 Gross Substitutes Preferences . 153

5.6.4 Multiple Homogeneous Goods . 153

5.7 Earlier Iterative Combinatorial Auctions . 154

6 Linear Programming and Vickrey Payments 159

6.1 Minimal Competitive Equilibrium Prices . 162

6.1.1 A Primal-Dual Formulation . 165

6.2 Adjust: Discounts for Minimal CE Prices 168

6.2.1 An E�cient Implementation . 170

6.2.2 A Primal-Dual Algorithm to Compute Minimal CE Prices 172

6.2.3 Speeding-Up: Pivot Allocations . 173

6.3 Adjust*: Discounts for Vickrey Payments 174

6.3.1 Example . 181

6.4 VickAuction: A Primal-Dual Vickrey Algorithm 182

6.4.1 Speeding-up: Pivot Allocations . 186

7 iBundle Extend & Adjust 188

7.1 Overview . 190

7.2 Manipulation of iBundle . 192

7.3 iBundle Extend & Adjust: Description . 193

7.3.1 Discussion . 196

7.3.2 Variation: iBundle(2) and PhaseII 196

ix

7.3.3 Worked Examples . 197

7.4 Iterative Vickrey Auctions . 198

7.5 Proxy Agents: Boosting Strategy-Proofness 202

7.5.1 Consistency Checking and Best-response 205

7.5.2 Special Case: Upper and Lower Bounds 206

7.5.3 Example: Incremental Information Revelation 208

7.5.4 Example: Strategic Revelation in a Proxied English Auction 210

7.5.5 Real World Proxy Agents . 212

7.6 Theoretical Analysis . 212

7.7 Experimental Analysis . 214

7.7.1 Results I: iBundle and Adjust* . 214

7.7.2 Results II: iBundle Extend&Adjust 218

7.8 Discussion: PhaseI to PhaseII Transition . 221

7.8.1 Unresolved Issues . 223

8 Bounded-Rational Compatible Auctions & Myopic Best-Response 225

8.1 Agent Decision Problem . 227

8.2 Bounded-Rational Compatible Auctions . 229

8.2.1 Illustrative Examples . 232

8.2.2 Preliminary Theoretical Results . 234

8.2.3 Discussion . 235

8.2.4 Approximation-Proofness . 235

8.3 Complexity of Myopic Best Response . 237

8.3.1 Structural Analysis . 238

8.4 Costly Deliberation and Single-Item Allocation 240

8.4.1 Model of Agent Bounded-Rationality 240

8.4.2 Auction Models . 241

8.4.3 Metadeliberation and Bidding Strategies 243

8.4.4 Experimental Results: Costly Computation 246

8.5 Limited Computation and Multiple Items 254

8.5.1 Performance Metrics . 256

8.5.2 Auction Models . 256

8.5.3 Agent Metadeliberation . 258

x

8.5.4 Experimental Results: Limited Computation 259

8.5.5 Discussion . 263

8.6 Related Work . 264

8.6.1 Resource-Bounded Reasoning . 264

8.6.2 Auction Models With Costly Participation 266

9 Extended Example: Distributed Train Scheduling 270

9.1 Introduction . 271

9.2 The Train Scheduling Problem . 274

9.2.1 Track Network: Topology and Constraints 274

9.2.2 Schedules . 276

9.2.3 A Mixed Integer Programming Formulation 276

9.3 An Auction-Based Solution . 279

9.3.1 Auction Innovations . 280

9.3.2 Dispatcher Auction . 281

9.4 The Bidding Problem . 286

9.4.1 Myopic Best-response Bidding Strategy 287

9.5 Experimental Results . 290

9.5.1 Dispatcher model . 290

9.5.2 Example Problem . 290

9.5.3 Results . 292

9.6 Related Work . 295

9.7 Discussion . 295

10 Conclusions 297

10.1 A Brief Review . 299

10.2 Future Work . 307

10.2.1 Iterative Combinatorial Auction Extensions 307

10.2.2 Electronic Commerce Foundations 310

10.2.3 Approximations, Intractability, and Bounded-Rationality 312

Bibliography 314

xi

List of Tables

2.1 Mechanism design: Impossibility results. 49

2.2 Mechanism design: Possibility results. 53

3.1 Agent values in Example 3. 79

4.1 Problem 1. 101

4.2 Problem 2. 101

4.3 Problem 3. 104

4.4 Tractable structure on bids . 108

4.5 Constraints on valuation functions . 108

4.6 Proof outline for CombAuction . 114

4.7 Primal-dual auction methods. 121

5.1 Problem 4 . 133

5.2 iBundle(2) on Problem 4. 134

5.3 Problem 5 . 134

5.4 iBundle(2) on Problem 5. 135

5.5 Problem characteristics. 139

5.6 Performance comparison with SEQ, RAD and AUSM on problems 1, 2 and 3. . . . 141

5.7 Achieving optimal solutions with iBundle, problems 1 and 2. 142

5.8 Problems for the easy-hard scalable performance test. 145

5.9 Performance in the Decay, WR, random, and uniform problems. 149

5.10 Winner-determination time with caches of size 0, 1, and T 151

5.11 Problem 6. 156

5.12 iBundle(2) on Problem 6, with v2(BC) = 6 and v2(BC) = 7. 157

5.13 iBundle(d) on Problem 6, with v2(BC) = 7. 158

6.1 Problem 7. 181

xii

7.1 Problem 8. 192

7.2 Problem 9. 208

8.1 Deliberation bounds. 244

8.2 Bounded-rational levels and corresponding initial deliberation bounds 247

9.1 Comparative performance: Auction vs. Centralized methods. 293

xiii

List of Figures

1.1 The implementation problem. 4

1.2 An example combinatorial allocation problem. 9

3.1 A simple combinatorial allocation problem. 78

4.1 A primal-dual interpretation of an auction algorithm. 90

4.2 Auction-based primal-dual algorithm in which the linear program formulation is

strong enough to eliminate all fractional solutions. 93

4.3 Primal-dual algorithm (a) and Primal-dual auction method (b) in which the linear

program relaxation is too weak, and V �

LPR > V �

IP. 94

4.4 Primal-dual interpretation of an ascending-price auction. 95

4.5 The CombAuction algorithm. 111

5.1 Auction scenarios. 132

5.2 Performance of SAA-w `x', iBundle(2) `+', and a naive central resource allocation

algorithm `o'. Bid increment � = 5%. (a) E�ciency. (b) Correctness. 141

5.3 Performance of iBundle as the bid increment � decreases. `+' iBundle(2); `�' iBun-

dle(d); `�' iBundle(3). Problem 0.5-comp(3). 143

5.4 Performance of iBundle as the problem di�culty is increased. `+' iBundle(2); `�'

iBundle(d); `�' iBundle(3). Decay problem set, for 2, 10, 25, and 50 agents. 146

5.5 Total computation time in iBundle(2), the GVA, and a sealed-bid auction with

truthful agents, in problem set Decay. 148

6.1 The Adjust algorithm . 171

6.2 Procedure Adjust*. 178

6.3 PhaseII: Collecting additional information to compute Vickrey payments 183

6.4 The PhaseII algorithm. 185

xiv

7.1 Proxy bidding agents. 203

7.2 Average performance of iBundle with price-adjustment Adjust* and Adj-Pivot*

in problems PS 1{12. 215

7.3 Performance of iBundle with price-adjustment Adj-Pivot* problem sets Uniform,

Decay, Random, and Weighted-random. 217

7.4 Distance to Vickrey payments in PS 1{12. 218

7.5 Distance to Vickrey payments in problem sets Uniform, Decay, Random, and

Weighted-random. 220

7.6 Uniform problem set example: 25 goods, 10 agents, 150 bundles. 222

8.1 The agent decision problem. 228

8.2 Example scenario in the English auction. 233

8.3 Optimal bidding and deliberation strategies in each auction. 245

8.4 E�ciency in the sealed-bid [SB] auction, for agents with bounded-rational levels

[1] to [4], and for agents that know their value for the item [Opt]. 248

8.5 E�ciency in the posted-price [PP] `o' and sealed-bid [SB] `x' auctions, for agents

with bounded-rational levels [1] to [4]. 249

8.6 E�ciency in the ascending-price [AP] `+' and posted-price [PP] `o' auctions, for

agents with bounded-rational levels [1] to [4]. 251

8.7 Performance of [SB], [PP] and [AP] for a mixture of agent types, with jIj = 30

agents. Fraction f of agents have bounded-rational level [4], while fraction 1 � f

of agents know their value for the item. 252

8.8 Comparison of agent deliberation for jIj = 30 agents with bounded-rational level

[4]. (a) Average deliberations performed by a single agent (b) Average best-case

number of deliberations and average second-best number of deliberations. 253

8.9 The Lazy Deliberation and Eager Bidding agent participation model. 255

8.10 Single-item problem with 20 agents. (a) Bounded-e�ciency as comp budget in-

creases, (b) Bounded-computation as comp budget increases, (c) Bounded-e�ciency

vs. bounded-computation. 260

8.11 Additive-value problem. 262

8.12 Assignment problem with 20 agents. (a) Bounded-e�ciency; (b) Optimal alloca-

tions; (c) Bounded-e�ciency vs. bounded-computation. 263

xv

9.1 The train scheduling problem. 274

9.2 A safe train schedule. 275

9.3 The dispatcher territory structure. 280

9.4 The myopic best-response bidding problem. 287

9.5 The network structure for a single dispatcher. 290

9.6 Example solutions: 7 trains and 1 dispatcher territory. 291

xvi

Preface

This is a slight revision of my dissertation, as handed in on May 4, 2001 to College Hall.

This version is available as Technical report MS-CIS-01-17, Department of Computer and

Information Science, University of Pennsylvania.

David C. Parkes, May 24, 2001.

xvii

Chapter 1

Introduction

The Internet embodies a new paradigm of distributed open computer networks, in which

agents| users and computational devices |are not cooperative, but self-interested, with

private information and goals. A fundamental problem in building these systems is to de-

sign incentive-compatible protocols, which compute optimal system-wide solutions despite

the self-interest of individual agents. This emerging area of study, called computational

mechanism design, is at the interface of game theory, arti�cial intelligence, and algorithmic

theory.

Examples of the many interesting applications of mechanism design in open systems in-

clude: (a) network routing problems, with self-interested packets and routers; (b) procure-

ment problems in electronic commerce between businesses and suppliers; (c) logistics prob-

lems, with task allocation across multiple self-interested shipping companies; (d) scheduling

problems, for example to schedule time slots at airport gates across self-interested airlines.

We can view these problems as distributed optimization problems, with an objective

function that depends on the private information of the agents in the system. A rational

self-interested agent will choose to reveal incomplete, and perhaps untruthful, information

about its goals and preferences if that leads to an individually preferable outcome. The

central goal in mechanism design is to address this problem of agent self-interest, and

design incentives to encourage agent behavior that leads to good system-wide solutions to

distributed multi-agent optimization problems. One classic approach is to design incentives

for agents to provide truthful information about their preferences over di�erent outcomes,

and compute an optimal system-wide solution with this information.

Given that market-based mechanisms have proved able to coordinate the activities of

1

many autonomous individuals in human societies, it is perhaps natural to look to eco-

nomic principles to design coordination mechanisms in computational systems. Indeed,

the explosion of Internet-based commerce creates a huge demand for e�cient market-based

mechanisms, for example to support automated negotiation across and within groups of

individuals and businesses. Market-based mechanisms are a very natural way to respect

the autonomy and information decentralization in open systems, and promise to revolu-

tionize how we design and evaluate open computer systems. In particular, auction-based

mechanisms can often provide enough structure to enable strong theoretical claims about

the strategies that agents will select and the optimality properties of �nal solutions.

Exploring the interface between economic mechanisms and distributed agent-based op-

timization problems exposes a number of deep computational problems. Limited and/or

costly computation, both at the network and at the level of distributed computational

agents, coupled with the inherent combinatorial complexity of many interesting problem

domains (e.g. those in scheduling and resource allocation) can quickly break naive im-

plementations of classic game-theoretic mechanisms. Yet, computation and self-interest

interact in non-obvious ways: while approximate solutions can destroy the incentive prop-

erties of a mechanism, agent bounded-rationality can also be used to design mechanisms

that cannot be manipulated without solving an intractable problem.

1.1 Computational Mechanism Design

The challenge in computational mechanism design is to resolve the tensions between what

one might choose to do game-theoretically and what is desirable computationally. In some

cases the best game-theoretic solution also provides useful computational bene�ts. The

most obvious example is the concept of dominant strategy implementation, which implies

that each agent has an optimal strategy irrespective of the preferences or strategies of other

agents. This is useful computationally because agents do not need to model or deliberate

about the strategies of the other agents in the system. We are not always so lucky. To give

a counterexample, a direct-revelation dominant strategy implementation, in which every

agent must compute and reveal its complete preferences over all possible outcomes, is a

useful simplifying concept game-theoretically but often intractable computationally.

A useful mechanism must control both the computational costs of the auctioneer (or

2

in general, of the mechanism infrastructure) and the computational costs of the agents,

while retaining useful game-theoretic properties that handle agent self-interest.

In what follows I introduce the mechanism design problem, and consider computational

problems with the classic game-theoretic approach, in particular in application to combi-

natorial problem domains. Then I briey highlight some important computational costs

in mechanism implementation, and introduce a number of di�erent approaches to make

mechanisms more computationally reasonable.

1.1.1 The Mechanism Design Problem

Consider a system with I agents, indexed i = 1; : : : ; I, and a set of outcomes O. Each

agent has private information about its utility for di�erent outcomes, which is a quantitative

measure of its \happiness" given each outcome. It is useful to think of an agent having

a type, denoted �i 2 �i, that determines its utility over di�erent outcomes. The set �i

represents all possible preferences available to agent i. We can write ui(o; �i) to denote the

utility of agent with type �i for outcome o 2 O. With this, then outcome o1 is preferred

to outcome o2 by agent i, written o1 � o2, if and only if ui(o1; �i) > ui(o2; �i).

The implementation problem, illustrated in Figure 1.1, is to compute the solution to

a social choice function, f : (�1;�; : : : ;�;�I) ! O, that selects an optimal outcome

o� = f(�) based on the types � = (�1; : : : ; �I) of all agents.

A common social choice function selects an outcome to maximize total utility over

agents:

f(�) = argmax
o2O

X
i

ui(o; �i); for all � 2 �

This is the classic utilitarian objective, known as allocative-e�ciency in allocation prob-

lems.

The mechanism design problem is to solve the implementation problem with self-

interested agents that have private information about their preferences. Essentially a

mechanism de�nes the \rules of a game"; i.e., the actions available to agents and the

method that is used to compute the outcome based on those actions.

Auctions are simple mechanisms for resource allocation, in which the actions available

to agents are to submit bids and the outcome is computed, for example, to maximize

revenue given bids.

3

f

θ θ

θ

(θ , θ , θ , . . .)

θ

2 3

4 3

1

2

1

Figure 1.1: The implementation problem.

A game-theoretic approach is central to mechanism design. Game theory is a method

to study a system of self-interested agents in conditions of strategic interaction, with

rational agents modeled as expected-utility maximizers. Game-theoretic analysis computes

the equilibrium outcome in a mechanism, for particular agent preferences, in which every

agent plays an expected-utility maximizing best-response to every other agent. A number

of solution concepts are de�ned, each of which makes di�erent assumptions about the

information available to agents and methods used by agents to select strategies.

With this, a mechanism is said to implement a particular social choice function, or

solve an implementation problem, if the solution to the social choice function is computed

by the mechanism in a game-theoretic equilibrium with self-interested agents.

1.1.2 The Classic Vickrey-Clarke-Groves Solution

One particularly useful solution concept in mechanism design is dominant strategy imple-

mentation, in which each agent has the same optimal strategy whatever the strategies and

preferences of other agents. A mechanism that implements a desired social choice function

in dominant strategy is a robust solution to an implementation problem, because it makes

very few assumptions about the information available to agents, or about agents' beliefs

4

about the rationality of other agents. Informally, we might say that a dominant strat-

egy solution \removes game theory" from the problem. Agents can participate without

modeling the preferences or strategies of other agents.

This dominant-strategy solution concept is achieved in the important Vickrey-Clarke-

Groves (VCG) family of mechanisms, in which an agent's dominant strategy is to truthfully

reveal its preferences to the mechanism, whatever the strategies or preferences of other

agents. This property of dominant-strategy truth-revelation is known as strategy-proofness.

Moreover, in the context of resource allocation problems the VCG mechanism implements

the allocatively-e�cient solution, or the resource allocation that maximizes value over all

agents. In fact, there is quite a strong sense in which any strategy-proof and e�cient

mechanism must compute the outcome of the VCG mechanism.

Unfortunately, the VCG mechanism provides an extremely centralized solution to the

resource allocation problem. Every agent must provide complete information about its

preferences to the mechanism. There are many problems, for example the combinatorial

allocation problem, in which this is intractable for an agent. Agents often have di�cult

local valuation problems [PUF99, Mil00a]. Resolving this tension between computational

concerns and game-theoretic concerns, and moving towards an iterative implementation of

the VCG mechanism, is a central contribution of this dissertation.

1.1.3 Computational Considerations

Computation occurs at two di�erent levels within a mechanism:

� For the mechanism infrastructure: How much computation is required to compute

the outcome of the mechanism, for example given bids from agents?

� For agents:

(a) (strategic complexity) Is game-theoretic reasoning required to follow an optimal

strategy, or does an agent have a dominant strategy?

(b) (valuation complexity) Must an agent compute evaluate its preferences for all

possible outcomes to compute its optimal strategy?

Approaches to reduce the computational demands on the mechanism include: intro-

ducing approximations; identifying tractable special-cases; and distributing computation

to the agents in the system. The challenge in each case is to relax computational demands

5

without losing useful game-theoretic properties. Perhaps one can identify a set of ax-

ioms that an approximation algorithm must satisfy to retain strategy-proofness, or restrict

problem instances to a smaller set of tractable special-cases. Section 3.2.1 in Chapter 3

discusses some interesting approaches in more detail.

The strategic complexity of a mechanism is closely linked to its game-theoretic prop-

erties. In particular, a mechanism in which every agent has a dominant strategy| an

optimal strategy whatever the strategies and preferences of other agents |is useful com-

putationally, in addition to game-theoretically. From a computational perspective, with a

dominant strategy an agent can avoid costly modeling and game-theoretic reasoning about

other agents.

The valuation complexity of a mechanism is related to the amount of information rev-

elation that is required from agents, and the complexity of providing that information.

Agents must often compute their value for di�erent outcomes, each of which might involve

solving a hard local optimization problem. This is an important problem that is essen-

tially ignored in classic mechanism design. For example, in a single-shot direct-revelation

mechanism such as the VCG mechanism, agents must provide complete information about

their preferences.

Approaches to reduce valuation complexity include:

� Design iterative mechanisms that solve problems with minimal information revelation

from agents.

� Provide structured bidding languages to allow compact representations of agent pref-

erences in high-dimensional problems, and exploit the structure computationally

throughout the mechanism.

An iterative mechanism allows agents to provide incremental information, and can

hope to solve the implementation problem without unnecessary information about agent

preferences.

Of course, to reduce the amount of valuation work required by an agent it is also nec-

essary that an agent can provide this incremental information without �rst evaluating its

complete preferences over all outcomes; i.e. follow its optimal strategy without computing

its complete preferences. For example, it is useful if partial orderings over outcomes allow

an agent to provide a response.

6

1.1.4 A Challenge: Incentive-Compatible Iterative Mechanisms

One important challenge in computational mechanism design, given bounded-rational but

self-interested agents, and hard combinatorial domains, is:

: : : develop an iterative mechanism in which incremental revelation of truthful infor-

mation is a dominant strategy for every agent, and which computes an optimal solution to

the system-wide problem with minimal total information revelation.

Addressing this challenge requires a very careful synthesis of ideas from AI, for exam-

ple to handle high-dimensional bid spaces; from algorithmic theory, for example to solve

intermediate allocation and pricing problems; and from game theory to wrap all of this

within a strategy-proof system.

The goal is to allow agents to reveal information about their preferences, perhaps

approximate and perhaps incomplete, whenever that information is required to compute

the optimal system-wide solution and without concern for strategic e�ects. In this way

distributed agent computation on the value for di�erent outcomes can be performed in

parallel within a joint search for a system-wide solution, with only as much information

computed about the local problems of each agent as is required to compute and verify an

solution.

The incentive-engineering problem depends on agent preferences, and the mathemati-

cal formulation to make a mechanism incentive-compatible is indepedent of the language

with which agents can represent their preferences. However, the computational e�ciency

of a solution will depend on the representation language; the language should allow an

agent to accurately state information about its preferences and/or respond to challenges

in an e�cient and compact form, and allow tractable computation by the mechanism

infrastructure.

This dissertation proposes an iterative combinatorial auction, iBundle Extend&Adjust,

that makes signi�cant progress towards this challenge for the combinatorial allocation prob-

lem (CAP), introduced in the next section. It is important to avoid complete information

revelation in solving the combinatorial allocation problem, because agents often have hard

valuation problems to compute their value for any single outcome, and there are an expo-

nential number of possible outcomes.

7

1.2 The Combinatorial Allocation Problem

The combinatorial allocation problem (CAP) is a resource allocation problem in which a

set of items are to be allocated across a set of agents. Agents are assumed to have non-

linear values for bundles of items, e.g. \I only want A if I also get B", and the goal is to

determine the allocation that maximizes the total value over all agents.

The CAP is relevant to many interesting and important real-world applications, in-

cluding scheduling, logistics and network computation domains. Indeed, it has attracted

considerable recent attention in the academic literature because of its application to the

FCC spectrum auctions. It is quite reasonable that there are geographical synergies across

licenses, for example with the value of a wireless license for the New York metropolitan

area contingent on also acquiring a license for the Philadelphia and Boston areas.

Moreover, the classic mechanism design solution to the CAP, the Vickrey-Clarke-Groves

mechanism, often requires the solution to a number of intractable problems. Not only must

agents report their values for a perhaps exponentially large number of di�erent combina-

tions of items (and solve a perhaps NP-hard problem to compute their value for any one

combination), but the mechanism infrastructure must solve a number of NP-hard problems

to compute the outcome of the mechanism.

In the CAP there are a set G of discrete items and a set I of agents. Each agent has

a valuation function vi : 2
G ! R+ , that de�nes its value vi(S) � 0 for bundles of items,

S � G. The valuation function de�nes the agent's type, i.e. its preferences over di�erent

outcomes. Assume vi(;) = 0, and free disposal of items, implying that agents have weakly

increasing values for bundles, i.e. vi(S) � vi(S
0) for all S0 � S.

An outcome de�nes an allocation S = (S1; : : : ; SI) of items to agents, with agent i

receiving bundle Si. A feasible allocation assigns each item to no more than one agent.

The social choice function, or objective, is allocative-e�ciency, i.e. to select the allocation

that maximizes the total value over agents.

max
(S1;::: ;SI)

X
i2I

vi(Si) (CAP)

s.t. Si \ Sj = ;; 8i 6= j

In words, the CAP problem is to compute an allocation of items to maximize the total

8

A, 4 D, 8

C, 6

E, 5

B, 8

Agent 1 Agent 2 Agent 3

Figure 1.2: An example combinatorial allocation problem.

value over the agents, without assigning the same item to more than one agent.

Of course, in mechanism design we assume that the valuation functions are private

information to agents, and a solution to the CAP must handle this self-interest, for example

providing incentives to promote truth-revelation.

A simple combinatorial allocation problem is illustrated in Figure 1.2. In this example

there are nine items (shown as disks) and three agents, with positive values for bundles of

items as shown (and zero values for smaller bundles, the same value for any bundle that

contains the indicated bundle). For example, agent 1 has value 4 for the bundle identi�ed

A, and value 8 for the bundle identi�ed B. The optimal solution, to maximize the total

value across all agents, is to allocate bundle A to agent 1 and bundle C to agent 2, with

no allocation to agent 3, for total value 10.

1.2.1 Application Domains

The combinatorial allocation problem arises in many domains. Consider the following

examples:

� Dynamic resource allocation [FNSY96, Che00]. Consider a bandwidth allocation

problem. Slots of bandwidth are available, of a �xed size and duration, with network

tie-in points. Agents have value for bundles of slots, for example representing a

virtual circuit of a particular bandwidth in a particular time interval.

� Job shop scheduling. [WWWMM01] Machine time in a exible manufacturing envi-

ronment is to be allocated across competing jobs. Jobs require time slots across a

sequence of machines, and have deadlines and costs of delay.

9

� Course registration. [GSS93] A number of slots are available in di�erent classes and

sections, and each student wants to register for a bundle of classes that �t their major

and have no time scheduling conicts.

� Airport landing and takeo� scheduling. [RSB82] A number of take-o� and landing

slots are available across major airports in the U.S. Competing airlines need pairs of

takeo� and landing slots that are compatible with ight-time and schedule require-

ments.

� Distributed vehicle routing. [San93, LOP+00] A number of delivery tasks are to be

assigned to a eet of independent trucks. The marginal cost to pick-up a packet from

a location where a drop-o� is to be performed is quite small, so the value to an agent

for performing one task is contingent on being able to perform other compatible

tasks.

� The FCC Spectrum allocation problem. [McM94] The FCC was mandated by Congress

to achieve an e�cient (value-maximizing) allocation of new spectrum license to wire-

less telephone companies. The mobility of clients leads to synergistic values across

geographically consistent license areas, for example the value for New York City,

Philadelphia, and Washington DC might be expected to be much greater than the

value of any one license by itself.

� Collaborative planning. [HG00] Consider a system of robots that want to perform

a set of tasks, and have a joint goal to perform the tasks at as low a total cost as

possible. Roles in a team to be conditioned on various constraints, for example time

constraints, to protect the feasibility of local commitments.

� Distributed Query Optimization. [SDK+94] Consider the problem of performing a

query that has a number of components. Each agent might have a di�erent expertise,

and be able to e�ciently answer di�erent decompositions of the query.

� Supply-chain coordination. [WWY00] Consider the problem of allocating compo-

nents to competing manufacturers. Each manufacturer needs a supply of the right

combination of components for its own product, without all the components the

supply is useless.

10

� Travel packages. [WWO+01] Consider the allocation of ights, hotel rooms, and

entertainment tickets to agents that represent clients with di�erent preferences over

location, price, hotels, and entertainment. Moreover, a client has no value for an

outward ight without a matching return ight or a hotel room without a ight.

1.2.2 The Generalized Vickrey Auction

The Vickrey-Clarke-Groves [Vic61, Cla71, Gro73] provides a dominant-strategy solution

to the combinatorial allocation problem. Known as the Generalized Vickrey Auction (or

GVA) in this domain, the mechanism is a one-shot direct-revelation solution. In the �rst

stage the agents are asked to report their valuation functions. Then, the mechanism com-

putes an allocation based on the information, and computes payments to agents. The

payments make truth-revelation the dominant strategy for an agent, whatever the infor-

mation reported by other agents (and even if other agents are untruthful!). As such, the

mechanism successfully aligns the incentives of individual agents with the system-wide

objective of computing an e�cient allocation.

The VCG mechanism is introduced in detail in the next chapter, but for now let us

note that it satis�es the following desirable properties:

Desiderata

� Allocative e�ciency. The mechanism implements the e�cient allocation, the al-

location that maximizes total value across agents, given rational agent strategies.

� Strategy-proofness. Truth-revelation is optimal for an agent whatever the strate-

gies of other agents, there can be no successful (unilateral) manipulation of the

outcome.

� Individual-rationality. The expected utility from participation is non-negative

(with a rational strategy), whatever the strategies of other agents.

� (Weak) Budget-balance. Each agent makes a non-negative payment to the auc-

tioneer, so the net revenue collected by the auctioneer is non-negative.

11

In fact, in quite a strong sense (see the next chapter) the Vickrey-Clarke-Groves mecha-

nism de�nes the only mechanism for the combinatorial allocation problem with these prop-

erties. The mechanism is unique amongst single-shot direct revelation mechanisms, which

are su�cient via the revelation principle. However, as discussed above in Section 1.1.3,

direct revelation mechanisms are quite unattractive computationally in many interesting

application domains. Consider for example the distributed vehicle routing application, in

which each truck would need to compute and report its value for all combinations of jobs

that it has positive value.

My dissertation develops an iterative mechanism, an ascending-price combinatorial

auction, with provable e�ciency properties for agents that follow a myopic best-response

strategy; i.e. taking prices as �xed and bidding for the bundle that maximizes their surplus

in each round. I also propose an extended auction that provably terminates with Vickrey

payments in a number of interesting special-cases, and an experimental method that is

shown empirically to compute Vickrey payments across a complete suite of problems.

An iterative combinatorial auction that terminates with Vickrey payments and the e�-

cient allocation shares many of the good game-theoretic properties of the GVA, i.e. myopic

best-response becomes a sequentially-rational equilibrium of the auction, and relaxes the

computational demands on agents. An agent can follow a myopic best-response strategy

with an approximate evaluation of its preferences over di�erent outcomes, for example

with lower- and upper- bounds on its value for di�erent bundles.

1.3 Iterative Combinatorial Auctions

Combinatorial auctions allow agents to bid for bundles of items directly, and express logical

constraints over items, such as \I only want A if I also get B." Early combinatorial auctions

were proposed to solve distributed optimization problems with self-interested agents that

have contingent values for items; e.g. an airport scheduling problem in which planes

need pairs of compatible takeo� and landing slots, or a course registration problem in

which students can bid to take sets of classes. Although combinatorial auctions can be

approximated by multiple auctions on single items, this often results in ine�cient outcomes

and can lead to di�cult bidding problems for agents.

In an iterative combinatorial auction agents can adjust their bids in response to bids

12

from other agents, as the auctioneer updates a provisional allocation and bundle prices. It-

erative combinatorial auctions can compute optimal solutions to realistic problem instances

with less information than sealed-bid auctions, and without agents computing accurate val-

ues for all interesting bundles of items. Despite a considerable research e�ort over the past

decade, in both arti�cial intelligence and economics, it was not known how to design an

optimal iterative combinatorial auction in general problems until my dissertation.

iBundle is an ascending-price combinatorial auction, in which agents can adjust their

bids for bundles of items across rounds. The auction computes a provisional allocation

to maximize revenue in each round, and increases prices on bundles of items based on

unsuccessful bids from agents. It terminates as soon as soon as every agent still bidding

in the auction wins a set of items in the provisional allocation, with an e�cient alloca-

tion (maximizing total agent value) for agents that follow a myopic best-response bidding

strategy. Myopic best-response assumes that agents bid for bundles that maximize their

utility taking the current ask prices as �xed.

The two most important contributions are:

(a) an iterative combinatorial auction that terminates with the e�cient allocation for

agents that follow myopic best-response bidding strategies.

(b) an iterative combinatorial auction that terminates with the e�cient allocation and

Vickrey-Clarke-Groves payments, provably in special-cases, and conjectured (with experi-

mental support) in all cases.

With this result the auction inherits much of the strategy-proofness of the VCG solu-

tion, and myopic best-response becomes a sequentially-rational strategy for an agent.

The central components of my solution are:

� iBundle. I introduce an ascending-price auction, iBundle, which is the �rst iterative

auction for the CAP that implements e�cient allocations for a reasonable bidding

strategy, in this case with myopic best-response strategies. A myopic best-response

strategy is to bid for the bundle that maximizes surplus (value - price), taking the

prices in the current round as �xed and ignoring the e�ect of bids on future prices and

future strategies of other agents. iBundle allows incremental information revelation

by agents and solves realistic problems without agents revealing, or even computing,

complete information about their local preferences.

� Extend and Adjust. I propose the Extend&Adjust methodology to extend iBundle

13

for a number of additional rounds, and compute a price discount to each agent at

the end of the auction. My conjecture,1 is that the discounted prices are equal to

the payments in the Vickrey-Clarke-Groves (VCG) mechanism for the combinatorial

allocation problem. This is signi�cant because it makes myopic best-response a

sequentially-rational strategy in equilibrium, inheriting a good degree of robustness-

to-manipulation from the VCG mechanism.

� Proxy Bidding Agents. Finally, I propose proxy bidding agents, that sit between

real agents and the auction and restrict agents to myopic best-response strategies for

some (perhaps untruthful) valuation function. Agents provide proxy agents with in-

cremental value information, and the proxy agents submit best-response bids when-

ever there is enough information. The proxies enforce consistency of incremental

preference information across rounds. The e�ect is to further boost robustness-to-

manipulation, while retaining useful computational properties.

The combined system, of iBundle Extend&Adjust and proxy bidding agents, provides

a quite compelling framework for an iterative and strategy-proof mechanism for the com-

binatorial allocation problem.

1.3.1 Theoretical Underpinnings

The proof of optimality makes an interesting connection with linear programming theory.

iBundle implements a primal-dual algorithm for a linear program formulation of the combi-

natorial allocation problem. The provisional allocation in each round is a feasible solution

to the primal problem, and the ask prices in each round have a natural interpretation as

a feasible solution to the dual problem.

Myopic best-response strategies from agents provide enough information to compute

and verify primal and dual solutions to the CAP that satisfy complementary slackness

conditions. This is the basic methodology that allows optimal solutions to the combi-

natorial allocation problem to be computed without complete information about agents'

valuation functions. Simply announcing a feasible dual solution and computing a primal

solution that satis�es complementary slackness conditions is enough. A similar connection

1This conjecture is proved in a number of special cases, and a general proof is limited only by the lack
of a technical lemma about termination.

14

was made by Bertsekas for the Assignment problem [Ber87], in which each agent wants at

most one item.

Perhaps the most signi�cant technical contribution in this dissertation is to connect

this primal-dual auction-based methodology back to the Vickrey-Clarke-Groves mecha-

nism. Although previous authors have recognized that it is useful to compute Vickrey

payments at the end of an iterative auction, to the best of my knowledge this is the �rst

direct application of primal-dual techniques to compute Vickrey payments in the general

combinatorial allocation problem.

In its basic form, an agent can manipulate the outcome of iBundle, for example placing

jump bids, signaling false intentions, or waiting to bid until the end of the auction. A

concrete example is provided in Chapter 7. By computing the Vickrey payments at the end

of the auction, myopic best-response becomes a sequentially rational strategy for an agent

in equilibrium. In addition, with the proxy bidding agents, incremental truth-revelation

becomes a dominant best-response to any value information provided by other agents,

so long as that information is not itself conditioned on information revealed dynamically

during the auction.

I provide a linear program formulation to compute Vickrey payments, and derive a

primal-dual algorithm, VickAuction, to compute the Vickrey payments and e�cient al-

location. VickAuction computes the outcome of the GVA without complete information

revelation from agents, instead requiring that agents provide myopic best-response to a

sequence of ascending prices on bundles. VickAuction has a natural interpretation as an

iterative combinatorial auction, iBundle Extend&Adjust. The linear program formulation

for Vickrey payments computes the minimal \competitive equilibrium" (CE) price on the

bundle each agent receives in the e�cient allocation. Although there are some problems

in which no single set of CE prices support Vickrey payments to every agent, I show that

it is always possible to compute the Vickrey payment as the minimal price to each agent

over all CE prices.

The approach in iBundle Extend&Adjust is to:

(a) keep the auction open long enough to collect enough best-response information

from agents to compute Vickrey payments as the minimal CE prices

(b) adjust prices towards Vickrey payments after the auction terminates, so that agents

pay less than what they �nally bid.

15

1.3.2 Approximations and Special-Cases

The winner-determination problem in each round of iBundle remains NP-hard. However,

each problem instance in iBundle is typically smaller and easier to solve than the problem

instances that an auctioneer must solve in the single-shot direct-revelation Vickrey-Clarke-

Groves mechanism. Agents only need to bid for the bundles that maximize their utility in

each round of iBundle, while they must bid for all bundles with positive value in the VCG

solution.

However, there is no escaping the NP-hardness of the top-level combinatorial allocation

problem, and it is necessary to introduce approximations and/or identify special-cases for

large problem instances. There are a number of interesting ways to introduce approxima-

tions within iBundle without changing the incentives for agents to follow the same myopic

best-response strategy.

First, we can increase the minimal bid-increment in the auction, which de�nes the

rate at which prices are increased across rounds. The number of rounds in the auction

are approximately inversely-proportional to the bid increment, so doubling the bid incre-

ment halves the number of rounds to termination and the number of winner-determination

problems to solve. Experimental results demonstrate an order-of-magnitude speed-up over

the VCG mechanism with at least 99% allocative e�ciency, with the same combinatorial

optimization algorithm to solve winner-determination problems in both mechanisms. Ad-

ditional signi�cant speed-ups are achieved as the bid increment is increased and allocative

e�ciency is traded for computational e�ciency.

Second, we can introduce approximate winner-determination algorithms into iBundle.

A simple property of \bid monotonicity" (see Chapter 5) ensures that the same incentives

are present for agents to follow a myopic best-response bidding strategy. Experimental

analysis demonstrates that the auction can often achieve quite high allocative-e�ciency

with negligible computation using a greedy winner-determination algorithm.

Third, we can identify tractable special-cases of the winner-determination, and restrict

agents to bidding languages that are compatible with these tractable special-cases. In

cases in which this restriction leaves agents with enough expressiveness to follow truth-

ful myopic best-response this gives a signi�cant computational speed-up with no loss in

allocative-e�ciency. In general the expressiveness of the language leads to a tradeo� be-

tween computational and allocative e�ciency, and can also change the incentive properties

16

of an auction if an agent is forced to choose from a \second-best" set of bids.

1.3.3 Myopic Best-response vs. Direct Revelation

I would like to comment briey about the complexity of myopic best-response, in compar-

ison with direct revelation. In addition to solving the CAP with incremental information

revelation, it is important that agents can follow myopic best-response strategies without

computing their exact value for all bundles.

Consider the simpler case of a single-item allocation problem. Assume that an agent

maintains bounds on its value for the item, and has an approximation algorithm that

updates the bounds for a cost (perhaps the opportunity cost of lost computation time

on another problem). Compare the valuation problem for an agent in an ascending-price

auction with that in a sealed-bid auction:

(a) ascending-price auction. In the ascending-price auction the agent can bid while the

price is less than its lower bound, and drop out when the price is greater than its upper

bound. It only needs to perform valuation work when the price is between its two bounds

and the auction is about to terminate. Intuitively, if the agent's actual value is close to

the highest value over all other agents then it will need to compute a quite accurate value

to place optimal bids. However, if the agent's actual value is quite far from the highest

outside value then it will be able to bid optimally with a quite rough approximation.

(b) sealed-bid auction. In the sealed-bid auction an uninformed agent, that has no infor-

mation about the bids from the other agents, must compute its exact value to submit an

optimal bid. As soon as it bids an approximate value it risks missing a good outcome, if

the second highest bid in the auction is between its true value true and its bid price.

The same computational advantages hold for iterative solutions in combinatorial allo-

cation problems. In a combinatorial search space it is important that an agent can prune

that space e�ectively, based on ask prices and its approximate values for bundles, for ex-

ample using the value of one bundle to make inferences about the values of other bundles,

or the price for one bundle to make inferences about the prices of other bundles.

The e�ect of auction design on allocative-e�ciency and agent deliberation is explored in

more detail in Chapter 8, with a concrete model of agent valuation and bounded-rationality.

17

1.4 Bounded Rational Compatible Auctions

To capture the notion of an auction that allows an agent to bid without computing its exact

value for all possible outcomes, I de�ne bounded-rational compatible auctions. A bounded-

rational compatible (BRC) auction allows an agent to compute its equilibrium bidding

strategy with only approximate information about its own preferences across outcomes.

This parallels the concept of a strategy-proof auction, in which an agent can compute its

optimal strategy without modeling the other agents. BRC auctions are useful in application

to domains with agents that have limited computation and hard valuation problems.

Iterative auctions present a special case of bounded-rational compatible auctions. As

discussed above, in an iterative auction an agent can follow a myopic best-response strategy

in response to a sequence of prices with an approximate valuation functions. I say that an

iterative auction is myopic bounded-rational compatible. By comparison, a strategy-proof

single-shot sealed-bid auction, in which truth-revelation is an agent's dominant strategy,

is not (dominant-strategy) bounded-rational compatible because an agent cannot reveal

complete information about its valuation function with an approximate valuation function.

A bounded-rational compatible auction need not be allocatively-e�cient. For exam-

ple, a posted-price auction is bounded-rational compatible, but not e�cient unless the

auctioneer is well-informed about the preferences of agents and able to set equilibrium

prices. Experimental results for a simple model of bounded-rational agents, with costly

and/or limited computation, demonstrate that iterative auctions can compute more e�-

cient allocations than sealed-bid auctions. Feedback in an iterative auction allows agents

to focus limited computational resources on computing values for those outcomes that are

important to �nd a good �t with the preferences of other agents. In addition to leading

to more e�cient allocations, the results also demonstrate that it is possible to reduce the

total amount of computation that agents must perform to compute an e�cient allocation.

1.5 Important Related Work

I introduce related literature throughout my dissertation, in appropriate places. However,

let me briey mention some work that is very closely related in motivation and methodol-

ogy.

18

Nisan & Ronen [NR00, NR01] have been able to make some connections between ap-

proximate algorithms, bounded-rational agents, and mechanism design. This work, that

they coin algorithmic mechanism design, considers the following aspects:

(a) connections between approximate winner-determination algorithms and approximate

mechanisms

(b) a \challenge and response" mechanism to improve incentive-compatibility with approx-

imate winner-determination algorithms

(c) a \feasible dominance" concept, that describes an auction in which truth revelation is

optimal given a subset of possible strategies.

One thing that is absent from their work is any consideration of the costs of agent val-

uation and preference revelation. The focus instead is on the cost of winner-determination

and strategic behavior. Similarly, the work of Tennenholtz et al. [TKDM00] on the prop-

erties required for an approximate winner-determination algorithm to satisfy incentive-

compatibility within a Vickrey like mechanism focuses in on single-shot sealed-bid mech-

anisms.

Nisan [Nis00] has also considered the tradeo�s between the expressiveness and e�-

ciency of bidding languages, and proposed a language OR* with a good combination of

properties. Recently La Mura and Shoham [MS99] have considered the role of concise

bidding languages in auctions, for example using hierarchical tree structures to represent

preferences and reasoning in this abstract representation language.

Shoham & Tennenholtz's [ST01] work on the communication complexity of auction

mechanisms does draw comparisons between iterative and single-shot sealed-bid auctions.

For example, the authors note that a Dutch (descending-price auction) is a minimal com-

putational complexity solution to a single-item allocation problem. This work does not

consider the valuation work required of agents, just the communication complexity.

Feigenbaum et al. [FPS00] have proposed a decentralized mechanism design for routing

in a multi-cast tree, with self-interested users at the nodes interested in receiving optimal

streams of information. The mechanism design is innovative in that it decentralizes the

winner-determination work to nodes in the tree.

Wurman & Wellman propose a design for an iterative combinatorial auction, AkBA

[Wur99, WW00]. The main di�erences between AkBA and iBundle are in the structure of

prices and price updates. AkBA has only anonymous prices, and although it terminates in

19

an equilibrium (for agents, but not the auctioneer), the cost is a loss in allocative e�ciency

in some CAP problem instances. Nevertheless, experimental results demonstrate high

allocative e�ciency for myopic best-response agents across a set of problems. An analysis

of the incentive properties of minimal and maximal dual price solutions is also performed,

but no strong connection is made to Vickrey-Clarke-Groves payments.

Other important work in iterative auction design includes that of Gul & Stacchetti

[GS00], and particularly Ausubel [Aus97, Aus00]. Ausubel is able to achieve Vickrey pay-

ments even in some problems in which Vickrey payments are supported in no competitive

equilibrium. Recent analysis by Bikchandani et al. [BdVSV01] provides a primal-dual

interpretation of Ausubel's methods. A primal-dual approach was earlier proposed for the

Assignment problem, by Leonard [Leo83] and Demange et al. [DGS86]. Bikchandani et al.

[BdVSV01] and Bikchandani & Ostroy [BO00] also discuss a linear programming model for

computing VCG payments in the general CAP problem. However I am not aware of any

earlier work that develops a primal-dual method, or an auction mechanism, to compute

the Vickrey payments in the general problem.

Sandholm [San93, SL95, SL96, SL97, San00] has proposed a number of methods to

handle agent bounded-rationality and game-theoretic concerns in a distributed system. In

contrast to my work on auction mechanisms, much of Sandholm's work relates to decentral-

ized task/resource allocation systems with no centralized auctioneer. Some contributions

that are relevant to my work include:

(1) a marginal-cost analysis of a contract-net style protocol, that demonstrates how agents

might bid with approximate solutions to local valuation problems.

(2) a leveled-commitment protocol that allows agents to make initial contracts under un-

certainty and decommit if necessary at a later time.

(3) a mechanism to allow coalition formation between bounded-rational self-interested

agents, that allows explicitly for the cost of computing the values of di�erent coalitions

during negotiation.

In recent work, Larson & Sandholm [LS00] have studied a model of deliberation in

equilibrium, for bounded-rational agents in a strategic environment.

20

1.6 Outline

Chapter 2 introduces important ideas from game theory, economics, and mechanism design,

including concepts of Nash equilibrium and dominant strategy equilibrium, the revelation

principle, the Vickrey-Clarke-Groves family of mechanisms, and impossibility and possi-

bility results.

Chapter 3 introduces concerns in computational mechanism design, and considers a

number of ways to handle computational complexity, at both the agent and the infrastruc-

ture level.

Chapters 4 and 5 relate to the design of an iterative auction under the assumption that

agents follow myopic best-response bidding strategies, while Chapters 6 and 7 relate to

an extension to the design to justify myopic best-response with a connection back to the

Vickrey-Clarke-Groves mechanism.

Chapter 4 introduces a linear programming approach to iterative mechanism design,

and presents a primal-dual algorithm CombAuction for the combinatorial allocations

problem. The algorithm corresponds with iBundle for myopic best-response agent strate-

gies. Chapter 5 also surveys the known tractable special-cases of the combinatorial allo-

cation problem. Chapter 4 also contains a survey of earlier iterative auction designs both

(implicitly at least) primal-dual based, and more ad-hoc. Chapter 5 presents iBundle, my

ascending-price combinatorial auction, along with experimental results relating to both

the economic and computational e�ciency of the auction.

Chapter 6 introduces a linear programming approach to computing Vickrey payments

in the combinatorial allocation problem. A novel linear programming formulation is derived

to compute Vickrey payments from a suitable set of competitive equilibrium prices and

the e�cient allocation. This leads to an adjustment procedure Adjust* to take prices at

the end of iBundle and compute discounts to each agent, adjusting prices towards Vickrey

payments. I characterize necessary and su�cient conditions for the procedure to compute

Vickrey payments, and propose a complete primal-dual algorithm, VickAuction to com-

pute Vickrey payments. This is signi�cant, because it has a natural auction interpretation

as an extension to iBundle.

Chapter 7 presents the Extend&Adjust method, which introduces a second phase to

iBundle. The purpose of the second phase is to collect enough additional information

from agents to compute Vickrey payments when the auction terminations, in addition

21

to the e�cient allocation. Proxy bidding agents are introduced, to boost robustness-to-

manipulation in an iterative auction that terminates with Vickrey payments with myopic

best-response agent bidding strategies. Experimental results demonstrate the convergence

of auction prices in iBundle Extend&Adjust to Vickrey payments in general CAP problems.

Vickrey payments make myopic best-response a Bayesian-Nash equilibrium of the auction.

Chapter 8 focuses on agent computation in mechanisms, in particular on the agent

valuation work that is required across di�erent solutions. Bounded-rational compatibility

is proposed to characterize auctions that allow an agent to compute an optimal strategy

with approximate information about its own preferences. Experimental results compare

the e�ciency and agent computation in iterative and sealed-bid auctions, for a simple

model of agent bounded-rationality and myopic metareasoning. I also present a structural

analysis of the worst-case complexity of myopic best-response in combinatorial auctions, in

comparison with the worst-case complexity of complete revelation, and identify conditions

that provide an exponential speed-up for iterative mechanisms.

Chapter 9 considers a concrete application of an auction method to a distributed op-

timization problem, a distributed train scheduling problem. The problem is to compute

a shared schedule for trains over a network, such that trains run as close to on-time as

possible and the cost of early/late arrivals and departures is minimized. The structural

assumption is that trains are self-interested and autonomous, and would like to travel on-

time irrespective of the e�ect on other trains. In addition, individual dispatcher agents

control separate network territories. Trains bid for the right to enter and exit territories at

particular times, and dispatchers select bids to maximize revenue such that a safe schedule

exists to get trains across the region. The continuous quality of time is handled in the

auction with a constraint-based bidding language. The train-scheduling problem is not a

combinatorial allocation problem, for example because the feasible combinations of items

(which we can think of as entry and exit times) are not statically de�ned, but depend

on the ability to construct feasible time-location schedules for trains. However, iBundle

price-update, winner-determination and termination semantics prove useful in this domain.

My conclusions are in Chapter 10, together with a brief discussion of interesting areas

for future work.

22

Chapter 2

Classic Mechanism Design

Mechanism design is the sub-�eld of microeconomics and game theory that considers how

to implement good system-wide solutions to problems that involve multiple self-interested

agents, each with private information about their preferences. In recent years mecha-

nism design has found many important applications; e.g., in electronic market design, in

distributed scheduling problems, and in combinatorial resource allocation problems.

This chapter provides an introduction to the the game-theoretic approach to mechanism

design, and presents important possibility and impossibility results in the literature. There

is a well-understood sense of what can and cannot be achieved, at least with fully rational

agents and without computational limitations. The next chapter discusses the emerging

�eld of computational mechanism design, and also surveys the economic literature on lim-

ited communication and agent bounded-rationality in mechanism design. The challenge

in computational mechanism design is to design mechanisms that are both tractable (for

agents and the auctioneer) and retain useful game-theoretic properties. For a more general

introduction to the mechanism design literature, MasColell et al. [MCWG95] provides a

good reference. Varian [Var95] provides a gentle introduction to the role of mechanism

design in systems of computational agents.

In a mechanism design problem one can imagine that each agent holds one of the

\inputs" to a well-formulated but incompletely speci�ed optimization problem, perhaps a

constraint or an objective function coe�cient, and that the system-wide goal is to solve

the speci�c instantiation of the optimization problem speci�ed by the inputs. Consider for

example a network routing problem in which the system-wide goal is to allocate resources

to minimize the total cost of delay over all agents, but each agent has private information

about parameters such as message size and its unit-cost of delay. A typical approach

23

in mechanism design is to provide incentives (for example with suitable payments) to

promote truth-revelation from agents, such that an optimal solution can be computed to

the distributed optimization problem.

Groves mechanisms [Gro73] have a central role in classic mechanism design, and promise

to remain very important in computational mechanism design. Indeed, Groves mechanisms

have a focal role in my dissertation, providing strong guidance for the design of mechanisms

in the combinatorial allocation problem. Groves mechanisms solve problems in which the

goal is to select an outcome, from a set of discrete outcomes, that maximizes the total

value over all agents. The Groves mechanisms are strategy-proof, which means that truth-

revelation of preferences over outcomes is a dominant strategy for each agent| optimal

whatever the strategies and preferences of other agents. In addition to providing a robust

solution concept, strategy-proofness removes game-theoretic complexity from each individ-

ual agent's decision problem; an agent can compute its optimal strategy without needing

to model the other agents in the system. In fact (see Section 2.4), Groves mechanisms

are the only strategy-proof and value-maximizing (or e�cient) mechanisms amongst an

important class of mechanisms.

But Groves mechanisms have quite bad computational properties. Agents must report

complete information about their preferences to the mechanism, and the optimization

problem| to maximize value |is solved centrally once all this information is reported.

Groves mechanisms provide a completely centralized solution to a decentralized problem.

In addition to di�cult issues such as privacy of information, trust, etc. the approach

fails computationally in combinatorial domains either when agents cannot compute their

values for all possible outcomes, or when the mechanism cannot solve the centralized prob-

lem. Computational approaches attempt to retain the useful game-theoretic properties

but relax the requirement of complete information revelation. As one introduces alter-

native distributed implementations it is important to consider e�ects on game-theoretic

properties, for example the e�ect on strategy-proofness.

Here is an outline of the chapter. Section 2.1 presents a brief introduction to game

theory, introducing the most important solution concepts. Section 2.2 introduces the the-

ory of mechanism design, and de�nes desirable mechanism properties such as e�ciency,

strategy-proofness, individual-rationality, and budget-balance. Section 2.3 describes the

revelation principle, which has proved a powerful concept in mechanism design theory, and

24

introduces incentive-compatibility and direct-revelation mechanisms. Section 2.4 presents

the e�cient and strategy-proof Vickrey-Clarke-Groves mechanisms, including the Gener-

alized Vickrey Auction for the combinatorial allocation problem. Sections 2.5 and 2.6

summarize the central impossibility and possibility results in mechanism design. Finally,

Section 2.7 is provides a brief discussion of optimal auction design and the conict between

the goals of revenue-maximization and e�ciency.

2.1 A Brief Introduction to Game Theory

Game theory [vNM47, Nas50] is a method to study a system of self-interested agents in

conditions of strategic interaction. This section provides a brief tour of important game-

theoretic solution concepts. Fudenberg & Tirole [FT91] and Osborne & Rubinstein [OR94]

provide useful introductions to the subject. Places to start for auction theory include

McAfee & McMillan [PMM87] and Wurman et al. [WWW00].

2.1.1 Basic De�nitions

It is useful to introduce the idea of the type of an agent, which determines the preferences

of an agent over di�erent outcomes of a game. This will bring clarity when we discuss

mechanism design in the next section. Let �i 2 �i denote the type of agent i, from a set of

possible types �i. An agent's preferences over outcomes o 2 O, for a set O of outcomes,

can then be expressed in terms of a utility function that is parameterized on the type. Let

ui(o; �i) denote the utility of agent i for outcome o 2 O given type �i. Agent i prefers

outcome o1 over o2 when ui(o1; �i) > ui(o2; �i).

The fundamental concept of agent choice in game theory is expressed as a strategy.

Without providing unnecessary structure, a strategy can loosely be de�ned as:

Definition 2.1 [strategy] A strategy is a complete contingent plan, or decision rule,

that de�nes the action an agent will select in every distinguishable state of the world.

Let si(�i) 2 �i denote the strategy of agent i given type �i, where �i is the set of all

possible strategies available to an agent. Sometimes the conditioning on an agent's type

is left implicit, and I write si for the strategy selected by agent i given its type.

In addition to pure, or deterministic strategies, agent strategies can also be mixed, or

stochastic. A mixed strategy, written �i 2 �(�i) de�nes a probability distribution over

25

pure strategies.

Example. In a single-item ascending-price auction, the state of the world (p; x) de�nes

the current ask price p � 0 and whether or not the agent is holding the item in the

provisional allocation x 2 f0; 1g. A strategy de�nes the bid b(p; x; v) that an agent will

place for every state, (p; x) and for every value v � 0 it might have for the item. A

best-response strategy is as follows:

bBR(p; x; v) =

8<
:

p , if x = 0 and p < v

no bid , otherwise

One can imagine that a game de�nes the set of actions available to an agent (e.g. valid

bids, legal moves, etc.) and a mapping from agent strategies to an outcome (e.g. the agent

with highest bid at the end of the auction wins the item and pays that price, checkmate

to win the game, etc.)

Again, avoiding unnecessary detail, given a game (e.g. an auction, chess, etc.) we can

express an agent's utility as a function of the strategies of all the agents to capture the

essential concept of strategic interdependence.

Definition 2.2 [utility in a game] Let ui(s1; : : : ; sI ; �i) denote the utility of agent i

at the outcome of the game, given preferences �i and strategies pro�le s = (s1; : : : ; sI)

selected by each agent.

In other words, the utility, ui(�), of agent i determines its preferences over its own

strategy and the strategies of other agents, given its type �i, which determines its base

preferences over di�erent outcomes in the world, e.g. over di�erent allocations and pay-

ments.

Example. In a single-item ascending-price auction, if agent 2 has value v2 = 10 for

the item and follows strategy bBR;2(p; x; v2) de�ned above, and agent 1 has value v1 and

follows strategy bBR;1(p; x; v1), then the utility to agent 1 is:

u1 (bBR;1(p; x; v1); bBR;2(p; x; 10); 10) =

8<
:

v1 � (10 + �) , if v1 > 10

0 , otherwise

where � > 0 is the minimal bid increment in the auction and agent i's utility given

value vi and price p is ui = vi � p, i.e. equal to its surplus.

26

The basic model of agent rationality in game theory is that of an expected utility

maximizer. An agent will select a strategy that maximizes its expected utility, given its

preferences �i over outcomes, beliefs about the strategies of other agents, and structure of

the game.

2.1.2 Solution Concepts

Game theory provides a number of solution concepts to compute the outcome of a game

with self-interested agents, given assumptions about agent preferences, rationality, and

information available to agents about each other.

The most well-known concept is that of a Nash equilibrium [Nas50], which states that

in equilibrium every agent will select a utility-maximizing strategy given the strategy of

every other agent. It is useful to introduce notation s = (s1; : : : ; sI) for the joint strategies

of all agents, or strategy pro�le, and s�i = (s1; : : : ; si�1; si+1; sI) for the strategy of every

agent except agent i. Similarly, let ��i denote the type of every agent except i.

Definition 2.3 [Nash equilibrium] A strategy pro�le s = (s1; : : : ; sI) is in Nash equi-

librium if every agent maximizes its expected utility, for every i,

ui(si(�i); s�i(��i); �i) � ui(s
0
i(�i); s�i(��i); �i); for all s0i 6= si

In words, every agent maximizes its utility with strategy si, given its preferences and

the strategy of every other agents. This de�nition can be extended in a straightforward

way to include mixed strategies.

Although the Nash solution concept is fundamental to game theory, it makes very

strong assumptions about agents' information and beliefs about other agents, and also

loses power in games with multiple equilibria. To play a Nash equilibrium in a one-shot

game every agent must have perfect information (and know every other agent has the

same information, etc., i.e. common knowledge) about the preferences of every other

agent, agent rationality must also be common knowledge, and agents must all select the

same Nash equilibrium.

A stronger solution concept is a dominant strategy equilibrium. In a dominant strategy

equilibrium every agent has the same utility-maximizing strategy, for all strategies of other

agents.

27

Definition 2.4 [Dominant-strategy] Strategy si is a dominant strategy if it (weakly)

maximizes the agent's expected utility for all possible strategies of other agents,

ui(si; s�i; �i) � ui(s
0
i; s�i; �i); for all s0i 6= si, s�i 2 ��i

In other words, a strategy si is a dominant strategy for an agent with preferences �i if

it maximizes expected utility, whatever the strategies of other agents.

Example. In a sealed-bid second-price (Vickrey auction), the item is sold to the highest

bidder for the second-highest price. Given value vi, bidding strategy

bi(vi) = vi

is a dominant strategy for agent i because its utility is

ui(bi; b
0; vi) =

8<
:

vi � b0 , if bi > b0

0 otherwise

for bid bi and highest bid from another agent b0. By case analysis, when b0 < vi then any

bid bi � b0 is optimal, and when b0 � vi then any bid bi < b0 is optimal. Bid bi = vi solves

both cases.

Dominant-strategy equilibrium is a very robust solution concept, because it makes

no assumptions about the information available to agents about each other, and does not

require an agent to believe that other agents will behave rationally to select its own optimal

strategy. In the context of mechanism design, dominant strategy implementations of social

choice functions are much more desirable than Nash implementations (which in the context

of the informational assumptions at the core of mechanism design are essentially useless).

A third solution concept is Bayesian-Nash equilibrium. In a Bayesian-Nash equilibrium

every agent is assumed to share a common prior about the distribution of agent types,

F (�), such that for any particular game the agent pro�les are distributed according to F (�).

In equilibrium every agent selects a strategy to maximize expected utility in equilibrium

with expected-utility maximizing strategies of other agents.

Definition 2.5 [Bayesian-Nash] A strategy pro�le s = (s1(�); : : : ; sI(�)) is in Bayesian-

Nash equilibrium if for every agent i and all preferences �i 2 �i

ui(si(�i); s�i(�); �i) � ui(s
0
i(�i); s�i(�); �i); for all s0i(�) 6= si(�)

28

where ui is used here to denote the expected utility over distribution F (�) of types.

Comparing Bayesian-Nash with Nash equilibrium, the key di�erence is that agent i's

strategy si(�i) must be a best-response to the distribution over strategies of other agents,

given distributional information about the preferences of other agents. Agent i does not

necessarily play a best-response to the actual strategies of the other agents.

Bayesian-Nash makes more reasonable assumptions about agent information than Nash,

but is a weaker solution concept than dominant strategy equilibrium. Remaining problems

with Bayesian-Nash include the existence of multiple equilibria, information asymmetries,

and rationality assumptions, including common-knowledge of rationality.

The solution concepts, of Nash, dominant-strategy, and Bayesian-Nash, hold in both

static and dynamic games. In a static game every agent commits to its strategy simulta-

neously (think of a sealed-bid auction for a simple example). In a dynamic game actions

are interleaved with observation and agents can learn information about the preferences

of other agents during the course of the game (think of an iterative auction, or stages in

a negotiation). Additional re�nements to these solution concepts have been proposed to

solve dynamic games, for example to enforce sequential rationality (backwards induction)

and to remove non-credible threats o� the equilibrium path. One such re�nement is sub-

game perfect Nash, another is perfect Bayesian-Nash (which applies to dynamic games of

incomplete information), see [FT91] for more details.

Looking ahead to mechanism design, an ideal mechanism provides agents with a dom-

inant strategy and also implements a solution to the multi-agent distributed optimization

problem. We can state the following preference ordering across implementation concepts:

dominant � Bayesian-Nash � Nash. In fact, a Nash solution concept in the context of a

mechanism design problem is essentially useless unless agents are very well-informed about

each others' preferences, in which case it is surprising that the mechanism infrastructure

itself is not also well-informed.

2.2 Mechanism Design: Important Concepts

The mechanism design problem is to implement an optimal system-wide solution to a

decentralized optimization problem with self-interested agents with private information

about their preferences for di�erent outcomes.

29

Recall the concept of an agent's type, �i 2 �i, which determines its preferences over

di�erent outcomes; i.e. ui(o; �i) is the utility of agent i with type �i for outcome o 2 O.

The system-wide goal in mechanism design is de�ned with a social choice function,

which selects the optimal outcome given agent types.

Definition 2.6 [Social choice function] Social choice function f : �1 � : : :��I ! O

chooses an outcome f(�) 2 O, given types � = (�1; : : : ; �I).

In other words, given agent types � = (�1; : : : ; �I), we would like to choose outcome

f(�). The mechanism design problem is to implement \rules of a game", for example

de�ning possible strategies and the method used to select an outcome based on agent

strategies, to implement the solution to the social choice function despite agent's self-

interest.

Definition 2.7 [mechanism] A mechanism M = (�1; : : : ;�I ; g(�)) de�nes the set of

strategies �i available to each agent, and an outcome rule g : �1�: : :��I ! O, such that

g(s) is the outcome implemented by the mechanism for strategy pro�le s = (s1; : : : ; sI).

In words, a mechanism de�nes the strategies available (e.g., bid at least the ask price,

etc.) and the method used to select the �nal outcome based on agent strategies (e.g., the

price increases until only one agent bids, then the item is sold to that agent for its bid

price).

Game theory is used to analyze the outcome of a mechanism. Given mechanism M

with outcome function g(�), we say that a mechanism implements social choice function

f(�) if the outcome computed with equilibrium agent strategies is a solution to the social

choice function for all possible agent preferences.

Definition 2.8 [mechanism implementation] Mechanism M = (�1; : : : ;�I ; g(�)) im-

plements social choice function f(�) if g(s�1(�1); : : : ; s
�
I(�I)) = f(�), for all (�1; : : : ; �I) 2

�1 � : : : � �I , where strategy pro�le (s�1; : : : ; s
�
I) is an equilibrium solution to the game

induced by M.

The equilibrium concept is deliberately left unde�ned at this stage, but may be Nash,

Bayesian-Nash, dominant- or some other concept; generally as strong a solution concept

as possible.

To understand why the mechanism design problem is di�cult, consider a very naive

mechanism, and suppose that the system-wide goal is to implement social choice function

30

f(�). The mechanism asks agents to report their types, and then simply implements the

solution to the social choice function that corresponds with their reports, i.e. the outcome

rule is equivalent to the social choice function, g(�̂) = f(�̂) given reported types �̂ =

(�̂1; : : : ; �̂I). But, there is no reason for agents to report their true types! In a Bayesian-

Nash equilibrium each agent will choose to announce a type �̂i to maximize its expected

utility, and solve:

max
�0
i
2�i

E��iui(�
0
i; s�i(��i); �i)

given distributional information about the types of other agents, and under the assump-

tion that the other agents are also following expected-utility maximizing strategies. This

announced type �̂i need not equal the agent's true type.

Looking ahead, the mechanism design problem is to design a mechanism| a set of

possible agent strategies and an outcome rule |to implement a social choice function with

desirable properties, in as strong a solution concept as possible; i.e. dominant is preferred

to Bayesian-Nash because it makes less assumptions about agents.

2.2.1 Properties of Social Choice Functions

Many properties of a mechanism are stated in terms of the properties of the social choice

function that the mechanism implements. A good place to start is to outline a number of

desirable properties for social choice functions.

A social choice function is Pareto optimal (or Pareto e�cient) if it implements outcomes

for which no alternative outcome is strongly preferred by at least one agent, and weakly

preferred by all other agents.

Definition 2.9 [Pareto optimal] Social choice function f(�) is Pareto optimal if for

every o0 6= f(�), and all types � = (�1; : : : ; �I),

ui(o
0; �i) > ui(o; �i)) 9j 2 I uj(o

0; �j) < uj(o; �j)

In other words, in a Pareto optimal solution no agent can every be made happier

without making at least one other agent less happy.

A very common assumption in auction theory and mechanism design, and one which I

will follow in my dissertation, is that agents are risk neutral and have quasi-linear utility

functions.

31

Definition 2.10 [Quasi-linear Preferences] A quasi-linear utility function for agent i

with type �i is of the form:

ui(o; �i) = vi(x; �i)� pi

where outcome o de�nes a choice x 2 K from a discrete choice set and a payment pi by the

agent.

The type of an agent with quasi-linear preferences de�nes its valuation function, vi(x),

i.e. its value for each choice x 2 K. In an allocation problem the alternatives K rep-

resent allocations, and the transfers represent payments to the auctioneer. Quasi-linear

preferences make it straightforward to transfer utility across agents, via side-payments.

Example. In an auction for a single-item, the outcome de�nes the allocation, i.e. which

agent gets the item, and the payments of each agent. Assuming that agent i has value

vi = $10 for the item, then its utility for an outcome in which it is allocated the item is

ui = vi� p = 10� p, and the agent has positive utility for the outcome so long as p < $10.

Risk neutrality follows because an expected utility maximizing agent will pay as much

as the expected value of an item. For example in a situation in which it will receive the

item with value $10 with probability �, an agent would be happy to pay as much as $10�

for the item.

With quasi-linear agent preferences we can separate the outcome of a social choice

function into a choice x(�) 2 K and a payment pi(�) made by each agent i:

f(�) = (x(�); p1(�); : : : ; pI(�))

for preferences � = (�1; : : : ; �I).

The outcome rule, g(s), in a mechanism with quasi-linear agent preferences, is decom-

posed into a choice rule, k(s), that selects a choice from the choice set given strategy pro�le

s, and a payment rule ti(s) that selects a payment for agent i based on strategy pro�le s.

Definition 2.11 [quasi-linear mechanism] A quasi-linear mechanism

M = (�1; : : : ;�I ; k(�); t1(�); : : : ; tI(�)) de�nes: the set of strategies �i available to each

agent; a choice rule k : �1 � : : : � �I ! K, such that k(s) is the choice implemented

for strategy pro�le s = (s1; : : : ; sI); and transfer rules ti : �1 � : : : � �I ! R, one for

each agent i, to compute the payment ti(s) made by agent i.

32

Properties of social choice functions implemented by a mechanism can now be stated

separately, for both the choice selected and the payments.

A social choice function is e�cient if:

Definition 2.12 [allocative e�ciency] Social choice function f(�) = (x(�); p(�)) is

allocatively-e�cient if for all preferences � = (�1; : : : ; �I)

IX
i=1

vi(x(�); �i) �
X
i

vi(x
0; �i); for all x0 2 K (E�)

It is common to state this as allocative e�ciency, because the choice sets often de�ne

an allocation of items to agents. An e�cient allocation maximizes the total value over all

agents.

A social choice function is budget-balanced if:

Definition 2.13 [budget-balance] Social choice function f(�) = (x(�); p(�)) is budget-

balanced if for all preferences � = (�1; : : : ; �I)

IX
i=1

pi(�) = 0 (BB)

In other words, there are no net transfers out of the system or into the system. Taken

together, allocative e�ciency and budget-balance imply Pareto optimality.

A social-choice function is weak budget-balanced if:

Definition 2.14 [weak budget-balance] Social choice function f(�) = (x(�); p(�)) is

weakly budget-balanced if for all preferences � = (�1; : : : ; �I)

IX
i=1

pi(�) � 0 (WBB)

In other words, there can be a net payment made from agents to the mechanism, but

no net payment from the mechanism to the agents.

2.2.2 Properties of Mechanisms

Finally, we can de�ne desirable properties of mechanisms. In describing the properties of a

mechanism one must state: the solution concept, e.g. Bayesian-Nash, dominant, etc.; and

the domain of agent preferences, e.g. quasi-linear, monotonic, etc.

33

The de�nitions follow quite naturally from the concept of implementation (see de�nition

2.8) and properties of social choice functions. A mechanism has property P if it implements

a social choice function with property P.

For example, consider the de�nition of a Pareto optimal mechanism:

Definition 2.15 [Pareto optimal mechanism] Mechanism M is Pareto optimal if it

implements a Pareto optimal social choice function f(�).

Technically, this is ex post Pareto optimality; i.e. the outcome is Pareto optimal for

the speci�c agent types. A weaker form of Pareto optimality is ex ante, in which there is

no outcome that at least one agent strictly prefers and all other agents weakly prefer in

expectation.

Similarly, a mechanism is e�cient if it selects the choice x(�) 2 K that maximizes total

value:

Definition 2.16 [e�cient mechanism] Mechanism M is e�cient if it implements an

allocatively-e�cient social choice function f(�).

Corresponding de�nitions follow for budget-balance and weak budget-balance. In the

case of budget-balance it is important to make a careful distinction between ex ante and

ex post budget balance.

Definition 2.17 [ex ante BB] Mechanism M is ex ante budget-balanced if the equi-

librium net transfers to the mechanism are balanced in expectation for a distribution over

agent preferences.

Definition 2.18 [ex post BB] Mechanism M is ex post budget-balanced if the equilib-

rium net transfers to the mechanism are non-negative for all agent preferences, i.e. every

time.

Another important property of a mechanism is individual-rationality, sometimes known

as \voluntary participation" constraints, which allows for the idea that an agent is often

not forced to participate in a mechanism but can decide whether or not to participate.

Essentially, individual-rationality places constraints on the level of expected utility that

an agent receives from participation.

Let ui(�i) denote the expected utility achieved by agent i outside of the mechanism,

when its type is �i. The most natural de�nition of individual-rationality (IR) is interim

IR, which states that the expected utility to an agent that knows its own preferences but

34

has only distributional information about the preferences of the other agents is at least its

expected outside utility.

Definition 2.19 [individual rationality] A mechanismM is (interim) individual-rational

if for all preferences �i it implements a social choice function f(�) with

ui(f(�i; ��i)) � ui(�i) (IR)

where ui(f(�i; ��i)) is the expected utility for agent i at the outcome, given distributional

information about the preferences ��i of other agents, and ui(�i) is the expected utility

for non-participation.

In other words, a mechanism is individual-rational if an agent can always achieve as

much expected utility from participation as without participation, given prior beliefs about

the preferences of other agents.

In a mechanism in which an agent can withdraw once it learns the outcome ex post IR

is more appropriate, in which the agent's expected utility from participation must be at

least its best outside utility for all possible types of agents in the system. In a mechanism

in which an agent must choose to participate before it even knows its own preferences

then ex ante IR is appropriate; ex ante IR states that the agent's expected utility in the

mechanism, averaged over all possible preferences, must be at least its expected utility

without participating, also averaged over all possible preferences.

One last important mechanism property, de�ned for direct-revelation mechanisms, is

incentive-compatibility. The concept of incentive compatibility and direct-revelation mech-

anisms is very important in mechanism design, and discussed in the next section in the

context of the revelation principle.

2.3 The Revelation Principle, Incentive-Compatibility, and

Direct-Revelation

The revelation principle states that under quite weak conditions any mechanism can be

transformed into an equivalent incentive-compatible direct-revelation mechanism, such that

it implements the same social-choice function. This proves to be a powerful theoretic tool,

leading to the central possibility and impossibility results of mechanism design.

A direct-revelation mechanism is a mechanism in which the only actions available to

35

agents are to make direct claims about their preferences to the mechanism. An incentive-

compatible mechanism is a direct-revelation mechanism in which agents report truthful

information about their preferences in equilibrium. Incentive-compatibility captures the

essence of designing a mechanism to overcome the self-interest of agents| in an incentive-

compatible mechanism an agent will choose to report its private information truthfully,

out of its own self-interest.

Example. The second-price sealed-bid (Vickrey) auction is an incentive-compatible (ac-

tually strategy-proof) direct-revelation mechanism for the single-item allocation problem.

Computationally, the revelation principle must be viewed with great suspicion. Direct-

revelation mechanisms are often too expensive for agents because they place very high

demands on information revelation. An iterative mechanism can sometimes implement

the same outcome as a direct-revelation mechanism but with less information revelation

and agent computation. The revelation principle restricts what we can do, but does not

explain how to construct a mechanism to achieve a particular set of properties. This is

discussed further in Chapter 3.

2.3.1 Incentive Compatibility and Strategy-Proofness

In a direct-revelation mechanism the only action available to an agent is to submit a claim

about its preferences.

Definition 2.20 [direct-revelation mechanism] A direct-revelation mechanism M =

(�1; : : : ;�I ; g(�)) restricts the strategy set �i = �i for all i, and has outcome rule g :

�1 � : : : � �I ! O which selects an outcome g(�̂) based on reported preferences �̂ =

(�̂1; : : : ; �̂I).

In other words, in a direct-revelation mechanism the strategy of agent i is to report

type �̂i = si(�i), based on its actual preferences �i.

A truth-revealing strategy is to report true information about preferences, for all pos-

sible preferences:

Definition 2.21 [truth-revelation] A strategy si 2 �i is truth-revealing if si(�i) = �i

for all �i 2 �i.

In an incentive-compatible (IC) mechanism the equilibrium strategy pro�le s� = (s�1;

36

: : : ; s�I) has every agent reporting its true preferences to the mechanism. We �rst de�ne

Bayesian-Nash incentive-compatibility:

Definition 2.22 [Bayesian-Nash incentive compatible] A direct-revelation mechanism

M is Bayesian-Nash incentive-compatible if truth-revelation is a Bayesian-Nash equilib-

rium of the game induced by the mechanism.

In other words, in an incentive-compatible mechanism every agent's expected utility

maximizing strategy in equilibrium with every other agent is to report its true preferences.

A mechanism is strategy-proof (or dominant-strategy incentive-compatible) if truth-

revelation is a dominant-strategy equilibrium:

Definition 2.23 [strategy-proof] A direct-revelation mechanismM is strategy-proof if

it truth-revelation is a dominant-strategy equilibrium.

Strategy-proofness is a very useful property, both game-theoretically and computation-

ally. Dominant-strategy implementation is very robust to assumptions about agents, such

as the information and rationality of agents. Computationally, an agent can compute its

optimal strategy without modeling the preferences and strategies of other agents.

A simple equivalence exists between the outcome function g(�̂) in a direct-revelation

mechanism, which selects an outcome based on reported types �̂ and the social choice

function f(�) implemented by the mechanism, i.e. computed in equilibrium.

Proposition 2.1 (incentive-compatible implementation). An incentive-compatible

direct-revelation mechanism M implements social choice function f(�) = g(�), where g(�)

is the outcome rule of the mechanism.

In other words, in an incentive-compatible mechanism the outcome rule is precisely

the social choice function implemented by the mechanism. In Section 2.4 we introduce the

Groves mechanisms, which are strategy-proof e�cient mechanisms for agents with quasi-

linear preferences, i.e. the choice rule k(�̂) computes the e�cient allocation given reported

types �̂ and an agent's dominant strategy is truth-revelation.

37

2.3.2 The Revelation Principle

The revelation principle states that under quite weak conditions any mechanism can be

transformed into an equivalent incentive-compatible direct-revelation mechanism that im-

plements the same social-choice function. The revelation principle is an important tool for

the theoretical analysis of what is possible, and of what is impossible, in mechanism design.

The revelation principle was �rst formulated for dominant-strategy equilibria [Gib73], and

later extended by Green & La�ont [GJJ77] and Myerson [Mye79, Mye81].

One interpretation of the revelation principle is that incentive-compatibility comes

for free. This is not to say that truth-revelation is easy to achieve, but simply that if

an indirect-revelation and/or non-truthful mechanism solves a distributed optimization

problem, then we would also expect a direct-revelation truthful implementation.

The revelation principle for dominant strategy implementation states that any social

choice function than is implementable in dominant strategy is also implementable in a

strategy-proof mechanism. In other words it is possible to restrict attention to truth-

revealing direct-revelation mechanisms.

Theorem 2.1 (Revelation Principle). Suppose there exists a mechanism (direct or

otherwise)M that implements the social-choice function f(�) in dominant strategies. Then

f(�) is truthfully implementable in dominant strategies, i.e. in a strategy-proof mechanism.

Proof. If M = (�1; : : : ;�I ; g(�)) implements f(�) in dominant strategies, then there

exists a pro�le of strategies s�(�) = (s�1(�); : : : ; s
�
I(�)) such that g(s�(�)) = f(�) for all �,

and for all i and all �i 2 �i,

ui(g(s
�
i (�i); s�i); �i) � ui(g(ŝi; s�i); �i)

for all ŝi 2 �i and all s�i 2 ��i, by de�nition of dominant strategy implementation.

Substituting s��i(��i) for s�i and s�i (�̂i) for ŝi, we have:

ui(g(s
�
i (�i); s

�
�i(��i)); �i) � ui(g(s

�
i (�̂i; s

�
�i(��i)); �i)

for all �̂i 2 �i and all ��i 2 ��i. Finally, since g(s
�(�)) = f(�) for all �, we have:

ui(f(�i; ��i); �i) � ui(f(�̂i; ��i); �i)

38

for all �̂i 2 �i and all ��i 2 ��i. This is precisely the condition required for f(�) to be truth-

fully implementable in dominant strategies in a direct-revelation mechanism. The outcome

rule in the strategy-proof mechanism, g : �1� : : :��I ! O, is simply equal to the social

choice function f(�).

The intuition behind the revelation principle is as follows. Suppose that it is possible

to simulate the entire system| the bidding strategies of agents and the outcome rule |

of an indirect mechanism, given complete and perfect information about the preferences

of every agent. Now, if it is possible to claim credibly that the \simulator" will implement

an agent's optimal strategy faithfully, given information about the preferences (or type)

of the agent, then it is optimal for an agent to truthfully report its preferences to the new

mechanism.

This dominant-strategy revelation principle is quite striking. In particular, it suggests

that to identify which social choice functions are implementable in dominant strategies, we

need only identify those functions f(�) for which truth-revelation is a dominant strategy

for agents in a direct-revelation mechanism with outcome rule g(�) = f(�).

A similar revelation principle can be stated in Bayesian-Nash equilibrium.

Theorem 2.2 (Bayesian-Nash Revelation Principle). Suppose there exists a mecha-

nism (direct or otherwise) M that implements the social-choice function f(�) in Bayesian-

Nash equilibrium. Then f(�) is truthfully implementable in a (Bayesian-Nash) incentive-

compatible direct-revelation mechanism.

In other words, if the goal is to implement a particular social choice function in

Bayesian-Nash equilibrium, it is su�cient to consider only incentive-compatible direct-

revelation mechanisms.

The proof closely follows that of the dominant-strategy revelation principle. One prob-

lem with the revelation principle for Bayesian-Nash implementation is that the distribution

over agent types must be common knowledge to the direct-revelation mechanism, in addi-

tion to the agents.

39

2.3.3 Implications

With the revelation principle in hand we can prove impossibility results over the space

of direct-revelation mechanisms, and construct possibility results over the space of direct-

revelation mechanisms.

However, the revelation principle ignores computational considerations and should not

be taken as a statement that it is su�cient to consider only direct-revelation mechanisms

in practical mechanism design. The revelation principle states what can be achieved,

what cannot be achieved, but without stating the computational structure to achieve a

particular set of properties. In particular, in my dissertation I argue that iterative and

indirect mechanisms are important in many combinatorial applications, and can provide

tractable solutions to problems in which single-shot direct-revelation mechanisms fail.

Rather, the revelation principle provides a rich structure to the mechanism design

problem, focusing goals and delineating what is and is not possible. For example, if a

particular direct-revelation mechanism M is the only mechanism with a particular com-

bination of properties, then any mechanism, including iterative and indirect mechanisms,

must implement the same outcome (e.g. allocation and payments) as mechanism M for

the same agent preferences.

For example:

� Suppose that the only direct mechanisms with useful properties P1, P2 and P3 are

in the class of mechanisms M0. It follows that any mechanism m with properties

P1, P2 and P3 must be \outcome equivalent" to a direct mechanism in M0, in the

sense that m must implement the same outcome as a mechanism in this class for all

possible agent types.

� Suppose that no direct mechanism has properties P1, P2 and P3. It follows that

there can be no mechanism (direct or otherwise) with properties P1, P2 and P3.

The next section introduces an important family of mechanisms with dominant-strategy

solutions.

40

2.4 Vickrey-Clarke-Groves Mechanisms

In seminal papers, Vickrey [Vic61], Clarke [Cla71] and Groves [Gro73], proposed the

Vickrey-Clarke-Groves family of mechanisms, often simply called the Groves mechanisms,

for problems in which agents have quasi-linear preferences. The Groves mechanisms are

allocatively-e�cient and strategy-proof direct-revelation mechanisms.

In special cases there is a Groves mechanism that is also individual-rational and satis�es

weak budget-balance, such that the mechanism does not require an outside subsidy to

operate. This is the case, for example, in the Vickrey-Clarke-Groves mechanism for a

combinatorial auction.

In fact, the Groves family of mechanisms characterize the only mechanisms that are

allocatively-e�cient and strategy-proof [GJJ77] amongst direct-revelation mechanisms.

Theorem 2.3 (Groves Uniqueness). The Groves mechanisms are the only allocatively-

e�cient and strategy-proof mechanisms for agents with quasi-linear preferences and general

valuation functions, amongst all direct-revelation mechanisms.

The revelation principle extends this uniqueness to general mechanisms, direct or oth-

erwise. Given the premise that iterative mechanisms often have preferable computational

properties in comparison to sealed-bid mechanisms, this uniquenss suggests a focus on

iterative Groves mechanisms because:

any iterative mechanism that achieves allocative e�ciency in dominant-strategy imple-

mentation must implement a Groves outcome.

In fact, we will see in Chapter 7 that an iterative mechanism that implements the

Vickrey outcome can have slightly weaker properties than those of a single-shot Vickrey

scheme.

Krishna & Perry [KP98] and Williams [Wil99] have recently proved the uniqueness of

Groves mechanisms among e�cient and Bayesian-Nash mechanisms.

2.4.1 The Groves Mechanism

Consider a set of possible alternatives, K, and agents with quasi-linear utility functions,

such that

ui(k; pi; �i) = vi(k; �i)� pi

41

where vi(k; �i) is the agent's value for alternative k, and pi is a payment by the agent to

the mechanism. Recall that the type �i 2 �i is a convenient way to express the valuation

function of an agent.

In a direct-revelation mechanism for quasi-linear preferences we write the outcome

rule g(�̂) in terms of a choice rule, k : �1 � : : : � �I ! K, and a payment rule,

ti : �1 � : : :��I ! R, for each agent i.

In a Groves mechanism agent i reports type �̂i = si(�i), which may not be its true type.

Given reported types �̂ = (�̂1; : : : ; �̂I), the choice rule in a Groves mechanism computes:

k�(�̂) = argmax
k2K

X
i

vi(k; �̂i) (1)

Choice k� is the selection that maximizes the total reported value over all agents.

The payment rule in a Groves mechanism is de�ned as:

ti(�̂) = hi(�̂�i)�
X
j 6=i

vj(k
�; �̂j) (2.1)

where hi : ��i ! R is an arbitrary function on the reported types of every agent except

i. This freedom in selecting hi(�) leads to the description of a \family" of mechanisms.

Di�erent choices make di�erent tradeo�s across budget-balance and individual-rationality.

2.4.2 Analysis

Groves mechanisms are e�cient and strategy-proof:

Theorem 2.4 (Groves mechanisms). Groves mechanisms are allocatively-e�cient and

strategy-proof for agents with quasi-linear preferences.

Proof.

We prove that Groves mechanisms are strategy-proof, such that truth-revelation is

a dominant strategy for each agent, from which allocative e�ciency follows immediately

because the choice rule k�(�) computes the e�cient allocation (1).

The utility to agent i from strategy �̂i is:

ui(�̂i) = vi(k
�(�̂); �i)� ti(�̂)

= vi(k
�(�̂); �i) +

X
j 6=i

vj(k
�(�̂); �̂j)� hi(�̂�i)

42

Ignoring the �nal term, because hi(�̂�i) is independent of an agent i's reported type,

we prove that truth-revelation �̂i = �i solves:

max
�̂i2�i

2
4vi(k�(�̂i; �̂�i); �i) +X

j 6=i

vj(k
�(�̂i; �̂�i); �̂j)

3
5

= max
�̂i2�i

2
4vi(x; �i) +X

j 6=i

vj(x; �̂j)

3
5 (2)

where x = k�(�̂i; �̂�i) is the outcome selected by the mechanism. The only e�ect of the

agent's announced type �̂i is on x, and the agent can maximize (2) by announcing �̂i = �i

because then the mechanism computes k�(�̂i; �̂�i) to explicitly solve:

max
k2K

vi(k; �i) +
X
j 6=i

vj(k; �̂j)

Truth-revelation is the dominant strategy of agent i, whatever the reported types �̂�i of

the other agents.

The e�ect of payment ti(�̂) = (�) �
P

j 6=i vj(k
�; �̂j) is to \internalize the externality"

placed on the other agents in the system by the reported preferences of agent i. This aligns

the agents' incentives with the system-wide goal of an e�cient allocation, an agent wants

the mechanism to select the best system-wide solution given the reports of other agents

and its own true preferences.

The �rst term in the payment rule, hi(�̂�i), can be used to achieve (weak) budget-

balance and/or individual rationality. It is not possible to simply total up the payments

made to each agent in the Groves scheme and divide equally across agents, because the

total payments depend on the outcome, and therefore the reported type of each agent.

This would break the strategy-proofness of the mechanism.

2.4.3 The Vickrey Auction

The special case of Clarke mechanism for the allocation of a single item is the familiar

second-price sealed-bid auction, or Vickrey [Vic61] auction.

In this case, with bids b1 and b2 to indicate the �rst- and second- highest bids, the item

is sold to the item with the highest bid (agent 1), for a price computed as:

b1 � (b1 � b2) = b2

43

i.e. the second-highest bid.

One can get some intuition for the strategy-proofness of the Groves mechanisms in this

special case. Truth-revelation is a dominant strategy in the Vickrey auction because an

agent's bid determines the range of prices that it will accept, but not the actual price it

pays. The price that an agent pays is completely independent of its bid price, and even

if an agent knows the second-highest bid it can still bid its true value because it only

pays just enough to out-bid the other agent. In addition, notice that weak budget-balance

holds, because the second-highest bid price is non-negative, and individual-rationality holds

because the second-highest bid price is no greater than the highest bid price, which is equal

to the winner agent's value in equilibrium.

2.4.4 The Pivotal Mechanism

The Pivotal, or Clarke, mechanism [Cla71] is a Groves mechanism in which the payment

rule, hi(�̂�i), is carefully set to achieve individual-rationality, while also maximizing the

payments made by the agents to the mechanism. The Pivotal mechanism also achieves

weak budget-balance whenever that is possible in an e�cient and strategy-proof mechanism

[KP98].

The Clarke mechanism [Cla71] computes the additional transfer term as:

hi(�̂�i) =
X
j 6=i

vj(k
�
�i(�̂�i); �̂j) (2.2)

where k��i(�̂�i) is the optimal collective choice for with agent i taken out of the system:

k��i(�̂�i) = argmax
k2K

X
j 6=i

vj(k; �̂j)

This is a valid additional transfer term because the reported value of the second-best

allocation without agent i is independent of the report from agent i. The strategy-proofness

and e�ciency of the Groves mechanisms are left unchanged.

The Clarke mechanism is a useful special-case because it is also individual rational in

quite general settings, which means that agents will choose to participate in the mechanism

(see Section 2.2.2).

To keep things simple, let us assume that agent i's expected utility from not partici-

pating in the mechanism is ui(�i) = 0. The Clarke mechanism is individual rational when

the following two (su�cient) conditions hold on agent preferences:

44

Definition 2.24 [choice set monotonicity] The feasible choice set available to the mech-

anism K (weakly) increases as additional agents are introduced into the system.

Definition 2.25 [no negative externalities] Agent i has non-negative value, i.e.

vi(k
�
�i; �i) � 0, for any optimal solution choice, k��i(��i) without agent i, for all i and all

�i.

In other words, with choice set monotonicity an agent cannot \block" a selection, and

with no negative externalities, then any choice not involving an agent has a neutral (or

positive) e�ect on that agent.

For example, the conditions of choice-set monotonicity and no negative externalities

hold in the following settings:

� In a private goods market environment: introducing a new agent cannot make existing

trades infeasible (in fact it can only increase the range of possible trades); and with

only private goods no agent has a negative value for the trades executed between

other agents (relative to no trades).

� In a public project choice problem: introducing a new agent cannot change the range

of public projects that can be implemented; and no agent has negative value for any

public project (relative to the project not going ahead).

Proposition 2.2 (Clarke mechanism). The Pivotal (or Clarke) mechanism is (ex

post) individual-rational, e�cient, and strategy-proof when choice-set monotonicity and

no negative externalities hold and with quasi-linear agent preferences.

Proof. To show individual-rationality (actually ex post individual-rationality), we

show that the utility to agent i in the equilibrium outcome of the mechanism is always

non-negative. We can assume truth-revelation in equilibrium. The utility to agent i with

type �i is:

ui(�i; ��i) = vi(k
�(�); �i)�

0
@X

j 6=i

vj(k
�
�i(��i); �j)�

X
j 6=i

vj(k
�(�); �j)

1
A

=
X
i

vi(k
�(�); �i)�

X
j 6=i

vj(k
�
�i(��i); �j) (3)

45

Expression (3) is non-negative because the value of the best solution without agent i,P
j 6=i vj(k

�
�i(��i); �j), cannot be greater than the value of the best solution with agent i,P

i vi(k
�(�); �i). This follows because any choice with agents j 6= i is also feasible with

all agents (monotonicity), and has just as much total value (no negative externalities).

The Clarke mechanism also achieves weak budget-balance in special-cases. A su�cient

condition is the no single-agent e�ect:

Definition 2.26 [no single-agent e�ect] For any collective choice k0 that is optimal in

some scenario with all agents, i.e. k0 = maxk2K
P

i vi(k; �i), for some � 2 �, then for all

i there must exist another choice k�i that is feasible without i and has as much value to

the remaining agents j 6= i.

In words, the no single-agent e�ect condition states that any one agent can be removed

from an optimal system-wide solution without having a negative e�ect on the best choice

available to the remaining agents. This condition holds in the following settings:

� In an auction with only buyers (i.e. the auctioneer holds all the items for sale), so

long as all buyers have \free disposal", such that they have at least as much value

for more items than less items.

� In a public project choice, because the set of choices available is static, however many

agents are in the system.

Proposition 2.3 (Clarke weak budget-balance). The Pivotal (or Clarke) mechanism

is (ex post) individual-rational, weak budget-balanced, e�cient and strategy-proof when

choice-set monotonicity, no negative externalities, and no single-agent e�ect hold, and

with quasi-linear agent preferences.

Proof. Again, we can assume truth-revelation in equilibrium, and prove that the

total transfers are non-negative, such that the mechanism does not require a subsidy, i.e.

X
i

ti(�) � 0

for all � 2 �. Substituting the expression for agent transfers, we have:

X
i

0
@X

j 6=i

vj(k
�
�i(��i); �j)�

X
j 6=i

vj(k
�(�); �j)

1
A � 0

46

This is satis�ed in Clarke because the transfer is non-negative for every agent i, i.e.:

X
j 6=i

vj(k
�
�i(��i); �j) �

X
j 6=i

vj(k
�(�); �j); 8i

This condition holds by a simple feasibility argument with the no single-agent e�ect,

because any solution to the system with all agents remains feasible and has positive value

without any one agent.

As soon as there are buyers and sellers in a market we very quickly lose even weak

budget-balance with Groves-Clarke mechanisms. The budget-balance problem in a combi-

natorial exchange is addressed in Parkes, Kalagnanam & Eso [PKE01], where we propose

a number of methods to trade-o� strategy-proofness and allocative e�ciency for budget-

balance.

2.4.5 The Generalized Vickrey Auction

The Generalized Vickrey Auction is an application of the Pivotal mechanism to the combi-

natorial allocation problem. The combinatorial allocation problem (CAP) was introduced

in Section 1.2. There are a set G of items to allocate to I agents. The set of choices

K = f(S1; : : : ; SI) : Si \ Sj = ;; Si � Gg where Si is an allocation of a bundle of items

to agent i. Given preferences (or type) �i, each agent i has a quasi-linear utility function,

ui(S; pi; �i) = vi(S; �i)�pi, for bundle S and payment pi. For notational simplicity we will

drop the \type" notation in this section, and simply write vi(S; �i) = vi(S).

The e�cient allocation computes an allocation to maximize the total value:

S� = arg max
S=(S1;::: ;SI)

X
i

vi(Si)

s.t. Si \ Sj = ;; for all i; j

The Pivotal mechanism applied to this problem is a sealed-bid combinatorial auction,

often called the Generalized Vickrey Auction (GVA). The special case for a single item is

the Vickrey auction. In the GVA each agent bids a value for all possible sets of items, and

the mechanism computes an allocation and payments.

The GVA has the following useful properties:

47

Theorem 2.5 (Generalized Vickrey Auction). The GVA is e�cient, strategy-proof,

individual-rational, and weak budget-balanced for agents with quasi-linear preferences in

the combinatorial allocation problem.

Description

Each agent i 2 I submits a (possibly untruthful) valuation function, v̂i(S), to the auc-

tioneer. The outcome rule in the Pivotal mechanism computes k�(�̂), the allocation that

maximizes reported value over all agents. In the GVA this is equivalent to the auctioneer

solving a \winner-determination" problem, solving CAP with the reported values and com-

puting allocation S� = (S�1 ; : : : ; S
�
I) to maximize reported value. Let V � denote the total

value of this allocation. Allocation S� is the allocation implemented by the auctioneer.

The payment rule in the Pivotal mechanism also requires that the auctioneer solves a

smaller CAP, with each agent i taken out in turn, to compute k��i(��i), the best allocation

without agent i. Let (S�i)
� denote this second-best allocation, and (V�i)

� denote its value.

Finally, from the Groves-Clarke payment rule ti(�̂), see (2.1) and (2.2), the auctioneer

computes agent i's payment as:

pvick(i) = (V�i)
� �

X
j 6=i

v̂j(S
�
j)

In words, an agent pays the marginal negative e�ect that its participation has on the

(reported) value of the other agents. Equivalently, the Vickrey payment can be formulated

as a discount �vick(i) from its bid price, v̂i(S
�
i), i.e. pvick(i) = v̂i(S

�
i)��vick(i), for Vickrey

discount:

�vick(i) = V � � (V�i)
�

Analysis

E�ciency and strategy-proofness follow immediately from the properties of the Groves

mechanism. Weak budget-balance also holds; it is simple to show that each agent pays

a non-negative amount to the auctioneer by a simple feasibility argument. Individual-

rationality also holds, and agents pay no more than their value for the bundle they receive;

48

Name Preferences Solution Impossible Environment
concept

GibSat general dominant Non-dictatorial general
(incl. Pareto Optimal)

Hurwicz quasi-linear dominant E�& BB simple-exchange
MyerSat quasi-linear Bayesian-Nash E�& BB & IR simple-exchange
GrLa� quasi-linear coalition-proof E� simple-exchange

Table 2.1: Mechanism design: Impossibility results. E� is ex post allocative e�ciency, BB is ex
post (and strong) budget-balance, and IR is interim individual rationality.

it is simple to show that discounts are always non-negative, again by a simple feasibility ar-

gument. Alternatively, one can verify that conditions choice-set monotonicity, no negative

externalities, and no single-agent e�ect hold for the CAP.

2.5 Impossibility Results

The revelation principle allows the derivation of a number of impossibility theorems that

outline the combinations of properties that no mechanism can achieve (with fully rational

agents) in particular types of environments. The basic approach to show impossibility is

to assume direct-revelation and incentive-compatibility, express the desired properties of

an outcome rule as a set of mathematical conditions (including conditions for incentive-

compatibility), and then show a conict across the conditions.

Table 2.1 describes the main impossibility results. Results are delineated by conditions

on agent preferences, the equilibrium solution concept, and the assumptions about the

environment. The \Impossible" column lists the combinations of desirable mechanism

properties that cannot be achieved in each case.

As discussed in Section 2.2.2, ex post refers to conditions tested at the outcome of

the mechanism. Interim individual-rationality means that an agent that knows its own

preferences but only has distributional information about the preferences of other agents

will choose to participate in the mechanism.

A few words about the interpretation of impossibility results are probably useful. Im-

possibility for restricted preferences in an exchange is more severe than for general prefer-

ences and general environments, because general conditions include these as special cases.

49

In addition, impossibility for weak solution concepts such as Bayesian-Nash is more restric-

tive than impossibility for strong solution concepts like dominant strategy implementation.

We also need a few more de�nitions:

Definition 2.27 [dictatorial] A social-choice function is dictatorial if one (or more)

agents always receives one of its most-preferred alternatives.

Definition 2.28 [general preferences] Preferences �i are general when they provide a

complete and transitive preference ordering � on outcomes. An ordering is complete if for

all o1; o2 2 O, we have o1 � o2 or o2 � o1 (or both). An ordering is transitive if for all

o1; o2; o3 2 O, if o1 � o2 and o2 � o3 then o1 � o3.

Definition 2.29 [coalition-proof] A mechanismM is coalition-proof if truth revelation

is a dominant strategy for any coalition of agents, where a coalition is able to make side-

payments and re-distribute items after the mechanism terminates.

Definition 2.30 [general environment] A general environment is one in which there is

a discrete set of possible outcomes O and agents have general preferences.

Definition 2.31 [simple exchange] A simple exchange environment is one in which

there are buyers and sellers, selling single units of the same good.

The Gibbard [Gib73] and Satterthwaite [Sat75] impossibility theorem shows that for

a su�ciently rich class of agent preferences it is impossible to implement a satisfactory

social choice function in dominant strategies. A related impossibility result, due to Green

and La�ont [GJJ77] and Hurwicz [Hur75], demonstrates the impossibility of e�ciency and

budget-balance with dominant strategy implementation, even in quasi-linear environments.

More recently, the Myerson-Satterthwaite impossibility theorem [Mye83] extends this

impossibility to include Bayesian-Nash implementation, if interim individual-rationality is

also required. Williams [Wil99] and Krishna & Perry [KP98] provide alternative deriva-

tions of this general impossibility theorem, using properties about the Groves family of

mechanisms.

Green & La�ont [GL79] demonstrate that no allocatively-e�cient and strategy-proof

mechanism can also be safe from manipulation by coalitions, even in quasi-linear environ-

ments.

The following sections describe the results in more details.

50

2.5.1 Gibbard-Satterthwaite Impossibility Theorem

A negative result due to Gibbard [Gib73] and Satterthwaite [Sat75] states that it is im-

possible, in a su�ciently rich environment, to implement a non-dictatorial social-choice

function in dominant strategy equilibrium.

Theorem 2.6 (Gibbard-Satterthwaite Impossibility Theorem). If agents have general

preferences, and there are at least two agents, and at least three di�erent optimal outcomes

over the set of all agent preferences, then a social-choice function is dominant-strategy

implementable if and only if it is dictatorial.

Clearly all dictatorial social-choice functions must be strategy-proof. This is simple to

show because the outcome that is selected is the most preferred, or maximal outcome, for

the reported preferences of one (or more) of the agents| so an agent should report its

true preferences. For a proof in the other direction, that any strategy-proof social-choice

function must be dictatorial, see MasColell et al. [MCWG95].

Impossibility results such as Gibbard-Satterthwaite must be interpreted with great care.

In particular the results do not necessarily continue to hold in restricted environments. For

example, although no dictatorial social choice function can be Pareto optimal or e�cient,

this impossibility result does not apply directly to markets. The market environment natu-

rally imposes additional structure on preferences. In particular, the Gibbard-Satterthwaite

impossibility theorem may not hold if one of the following conditions are relaxed:

| additional constraints on agent preferences (e.g. quasi-linear)

| weaker implementation concepts, e.g. Bayesian-Nash implementation

In fact a market environment has been shown to make implementation easier. Section

2.6 introduces a number of non-dictatorial and strategy-proof mechanisms in restricted

environments; e.g. McAfee [McA92] for quasi-linear preferences in a double-auction, and

Barber�a & Jackson [BJ95] for quasi-concave preferences in a classic exchange economy.

2.5.2 Hurwicz Impossibility Theorem

The Hurwicz impossibility theorem [Hur75] is applicable to even simple exchange economies,

and for agents with quasi-linear preferences. It states that it is impossible to implement

51

an e�cient and budget-balanced social choice function in dominant-strategy in market set-

tings, even without requiring individual-rationality and even with additional restrictions

on agent valuation functions.1

Hurwicz [Hur72] �rst showed a conict between e�ciency and strategy-proofness in a

simple two agent model. The general impossibility result follows from Green & La�ont

[GJJ77] and Hurwicz [Hur75], and more recently Hurwicz and Walker [HW90]. Green &

La�ont and Hurwicz established that no member of the Groves family of mechanisms has

budget-balance, and that the Groves family is the unique set of strategy-proof implemen-

tation rules in a simple exchange economy. I �nd it useful to refer to this result as the

Hurwicz impossibility theorem.

Theorem 2.7 (Hurwicz Impossibility Theorem). It is impossible to implement an ef-

�cient, budget-balanced, and strategy-proof mechanism in a simple exchange economy with

quasi-linear preferences.

This result is quite negative, and suggests that if allocative e�ciency and budget-

balance are required in a simple exchange economy, then looking for dominant strategy

solutions is not useful (via the revelation principle). Fortunately, strong budget-balance

if often not necessary, and we can achieve strategy-proofness, e�ciency and weak budget-

balance via the Vickrey-Clarke-Groves mechanisms in a number of interesting domains.

2.5.3 Myerson-Satterthwaite Impossibility Theorem

The Myerson-Satterthwaite impossibility theorem [Mye83] strengthens the Hurwicz impos-

sibility result to include Bayesian-Nash implementation, if interim individual-rationality

is also required.

Theorem 2.8 (Myerson-Satterthwaite). It is impossible to achieve allocative e�ciency,

budget-balance and (interim) individual-rationality in a Bayesian-Nash incentive-compatible

mechanism, even with quasi-linear utility functions.

1Schummer [Sch97] has recently shown that even for the case of two agents with linear preferences it is
not possible to achieve strategy-proofness and e�ciency.

52

Name Pref Solution Possible Environment
Groves quasi-linear dominant E� & (IR or WBB) exchange VCG
dAGVA quasi-linear Bayesian-Nash E� & BB exchange [dG79, Arr79]
Clarke quasi-linear dominant E� & IR exchange [Cla71]
GVA quasi-linear dominant E�, IR & WBB comb auction VCG
MDP classic iterative Pareto exchange [DdlVP71, Mal72

local-Nash Rob79]
BJ95 classic dominant BB & non-dictatorial exchange [BJ95]

Quadratic classic Nash Pareto & IR exchange [GL77b]

Table 2.2: Mechanism design: Possibility results. E� is ex post allocative e�ciency, BB is ex post
strong budget-balance, WBB is ex post weak budget-balance, IR is interim individual-rationality,
Pareto is ex post Pareto-optimality.

Myerson & Satterthwaite [Mye83] demonstrate this impossibility in a two-agent one-

good example, for the case that trade is possible but not certain (e.g. the buyer and seller

have overlapping valuation ranges). Williams [Wil99] and Krishna & Perry [KP98] provide

alternative derivations of this general impossibility result, using properties of the Groves

family of mechanisms.

An immediate consequence of this result is that we can only hope to achieve at most

two of E�, IR and BB in an market with quasi-linear agent preferences, even if we look

for Bayesian-Nash implementation. The interested reader can consult La�ont & Maskin

[LM82] for a technical discussion of various approaches to achieve any two of these three

properties.

In the next section we introduce the dAGVA mechanism [Arr79, dG79], that is able

to achieve e�ciency and budget-balance, but loses individual-rationality. The dAGVA

mechanism is an \expected Groves mechanism."

2.6 Possibility Results

The central positive result is the family of Vickrey-Clarke-Groves (VCG) mechanisms,

which are allocatively-e�cient (but not budget-balanced) strategy-proof mechanisms in

quasi-linear domains. VCG mechanisms clearly demonstrate that it is possible to im-

plement non-dictatorial social choice functions in more restricted domains of preferences.

However, as expected from the impossibility results of Green & La�ont [GJJ77] and Hur-

wicz [Hur75], they are not e�cient and strong budget-balanced.

Table 2.2 summarizes the most important possibility results. A quick check con�rms

53

that these possibility results are all consistent with the impossibility results of Table 2.1!

By the revelation principle we e�ectively get \incentive-compatibility" for free in direct-

revelation mechanisms, and these are all incentive-compatible except the iterative MDP

procedure.

The possibility results are delineated by agent preferences, the equilibrium solution

concept and the environment or problem domain.

We need a few additional de�nitions to explain the characterization.

Definition 2.32 [classic preferences] Classic preferences are strictly quasi-concave, con-

tinuous and increasing utility functions.

Definition 2.33 [exchange environment] Exchange simply refers to a bilateral trading

situation, with agents that have general valuation functions (including bundle values).

Contrary to impossibility results, for possibility results a strong implementation con-

cept is more useful than a weak implementation, e.g. dominant is preferred to Bayesian-

Nash, and a general environment such as an exchange is preferred to a more restricted

environment such as a combinatorial auction (which can be viewed as a one-sided ex-

change).

The Groves, Clarke (Pivotal), and GVA mechanisms have already been described

in Section 2.4. Checking back with the impossibility results: Groves mechanisms are

consistent with the Gibbard-Satterthwaite impossibility theorem because agent prefer-

ences are not general but quasi-linear;2 and Groves mechanisms are consistent with the

Hurwicz/Myerson-Satterthwaite impossibility theorems because strong budget-balance does

not hold. Groves mechanisms are not strong budget-balanced. This failure of strong

budget-balance can be acceptable in some domains; e.g., in one-sided auctions (combina-

torial or otherwise) with a single seller and multiple buyers it may be acceptable to achieve

weak budget-balance and transfer net payments to the seller.

2.6.1 E�ciency and Strong Budget-Balance: dAGVA

An interesting extension of the Groves mechanism, the dAGVA (or \expected Groves")

mechanism, due to Arrow [Arr79] and d'Aspremont & G�erard-Varet [dG79], demonstrates

that it is possible to achieve e�ciency and budget-balance in a Bayesian-Nash equilibrium,

2MasColell also notes that there are no dictatorial outcomes in this environment.

54

even though this is impossible in dominant-strategy equilibrium (Hurwicz). However, the

dAGVA mechanism is not individual-rational, which we should expect by the Myerson-

Satterthwaite impossibility theorem.

Theorem 2.9 (dAGVA mechanism). The dAGVA mechanism is ex ante individual-

rational, Bayesian-Nash incentive-compatible, e�cient and (strong) budget-balanced with

quasi-linear agent preferences.

The dAGVA mechanism is a direct-revelation mechanism in which each agent an-

nounces a type �̂i 2 �i, that need not be its true type. The mechanism is an \expected-

form" Groves mechanism [Rob87, KP98].

The allocation rule is the same as for the Groves mechanism:

k�(�̂) = max
k2K

X
i

vi(k; �̂i)

The structure of the payment rule is also quite similar to that in the Groves mechanism:

ti(�̂) = hi(�̂�i)�E��i

2
4X
j 6=i

vj(k
�(�̂i; ��i); �j)

3
5

where as before h(�) is an arbitrary function on agents' types. The second term is the

expected total value for agents j 6= i when agent i announces type �̂i and agents j 6= i

tell the truth. It is a function of only agent i's announcement, not of the actual strategies

of agents j 6= i, making it a little di�erent from the formulation of agent transfers in

the Groves mechanism. In e�ect, agent i receives a transfer due to this term equal to the

expected externality of a change in its own reported type on the other agents in the system.

The Bayesian-Nash incentive-compatibility with this transfer follows from a similar

line of reasoning as the strategy-proofness of the Groves mechanisms. A proof is in the

appendix to this chapter.

The interesting thing about the dAGVA mechanism is that it is possible to choose the

hi(�) functions to satisfy budget-balance, such that
P

i ti(�) = 0 for all � 2 �i. De�ne the

\expected social welfare (or value)" of agents j 6= i when agent i announces its type �i as

SW�i(�̂i) = E��i

2
4X
j 6=i

vj(k
�(�̂i; ��i); �j)

3
5

55

and note that this does not depend on announced types of agents j 6= i. The additional

term in the payment rule is de�ned, for agent i, as:

hi(�̂�i) =

�
1

I � 1

�X
j 6=i

SW�j(�̂j)

which is the \averaged" expected social welfare to every other agent given the announced

types of agents j 6= i. This gives budget-balance because each agent also pays an equal

1=(I � 1) share of the total payments made to the other agents, none of which depend on

its own announced type. See the appendix of this chapter for a proof.

The incentive properties and properties of full optimality, i.e. e�ciency and budget-

balance, make the dAGVA procedure very attractive. However, the dAGVA mechanism

has a number of problems:

(1) it may not satisfy the individual rationality constraint (even ex ante)

(2) Bayesian-Nash implementation is much weaker than dominant-strategy implemen-

tation

(3) it places high demands on agent information-revelation

Roberts [Rob87] provides a very interesting discussion of the conditions required for an

iterative method to implement the dAGVA mechanism with less information from agents.

In fact, he claims that it is impossible to �nd a successful iterative procedure because

an agent's announcement in earlier periods must also a�ect its payments in subsequent

periods, breaking incentive-compatibility.

2.6.2 Dominant-strategy Budget-Balance with Ine�cient Allocations

A number of mechanisms have been proposed to achieve budget-balance (perhaps weak

budget-balance) in dominant strategy mechanisms, for some loss in allocative e�ciency.

McAfee [McA92] presents a mechanism for a double auction (with multiple buyers and sell-

ers) that is strategy-proof and satis�es weak budget-balance, but for some loss in allocative

e�ciency.

Barber�a & Jackson [BJ95] characterize the set of strategy-proof social-choice func-

tions that can be implemented with budget-balance in an exchange economy with clas-

sic preferences. Comparing back with the Gibbard-Satterthwaite impossibility theorem

[Gib73, Sat75], it is possible to implement non-dictatorial social choice functions in this

restricted set of preferences, even though preferences are not quasi-linear. In fact Barber�a

56

& Jackson show that it is necessary and su�cient to implement \�xed-proportion trad-

ing rules", in which (loosely speaking) agents trade in pre-speci�ed proportions. Given

Hurwicz's impossibility theorem, it is not surprising that the trading rules are not fully

allocatively-e�cient.

2.6.3 Alternative implementation Concepts

One method to extend the range of social-choice functions that can be implemented is

to consider alternative equilibrium solution concepts. In the context of direct-revelation

mechanisms (i.e. static games of incomplete information) we have already observed that

Bayesian-Nash implementation can help (e.g. in the dAGVA mechanism). One di�culty

with Bayesian-Nash implementation is that it requires more information and rationality

assumptions of agents. Similarly, we might expect that moving to a Nash implementation

concept can help again.

Groves & Ledyard [GL77] inspired much of the literature on Nash implementation.

The Quadratic mechanism is Pareto e�cient in the exchange environment with classic

preferences, in that all Nash equilibria are Pareto e�cient. In this sense, it is demon-

strated that it is possible to implement budget-balanced and e�cient outcomes with Nash

implementation, while (Myerson-Satterthwaite) this is not possible with Bayesian-Nash.

However, the Nash implementation concept is quite problematic. An agent's Nash

strategy depends on the strategies of other agents, and on complete information about

the (private) types of each agent. Clearly, it is quite unreasonable to expect agents to

select Nash strategies in a one-shot direct-revelation mechanism. The solution concepts

only make sense if placed within an iterative procedure, where agents can adjust towards

Nash strategies across rounds [Gro79].

Moore & Rupullo [MR88] consider subgame-perfect Nash implementation in dynamic

games, and show that this expands the set of social-choice functions that can be im-

plemented in strategy-proof mechanisms. Of course, introducing a new solution concept

requires a new justi�cation of the merits of the subgame-perfect re�nement to Nash equi-

librium in a dynamic game. A fascinating recent idea, due to Kalai & Ledyard [KL98]

considers \repeated implementation", in which the authors consider the implementable

social-choice functions in a repeated game, with strong results about the e�ect on imple-

mentation.

57

The mechanism design literature is almost exclusively focused on direct-revelation

mechanisms and ignores the costs of information revelation and centralized computation.

One exception is the MDP planning procedure, proposed by Dr�eze & de la Vall�ee Poussin

[DdlVP71] and Malinvaud [Mal72]. The MDP mechanism is an iterative procedure, in

which in each round each agent announces \gradient" information about its preferences

for di�erent outcomes. The center adjusts the outcome towards a Pareto optimal solution

in an exchange environment with classic agent preferences. If the agents report truthful

information the MDP procedure is Pareto optimal (i.e. fully e�cient).

Dr�eze & de la Vall�ee Poussin [DdlVP71] also consider the incentives to agents for

reporting truthful information in each round, and showed that truthful revelation is a

local maximin strategy (i.e. maximizes the utility of an agent given that other agents

follow a worst-case strategy). Truth revelation is also a Nash equilibrium at termination.

In addition, Roberts [Rob79] proved that if agents play a local Nash equilibrium at

each stage in the procedure, to maximize the immediate increase in utility of the project,

then the mechanism will still converge to a Pareto optimum even though the agents do

not report truthful information. Roberts retains a myopic assumption, and studied only a

local game in which agents did not also consider the e�ect of information on future rounds.

Champsaur & Laroque [CL82] departed from this assumption of myopic behavior, and

assumed that every agent considers the Nash equilibrium over a period of T periods. The

agents forecast the strategies of other agents over T periods, and play a Nash equilibrium.

The MDP procedure is still Pareto optimal, but the main di�erence is that the center has

much less control over the �nal outcome (it is less useful as a policy tool). The outcome

for large T approaches the competitive equilibrium.

Modeling agents with a Nash equilibrium, even in the local game, still makes the

(very) unreasonable assumption that agents have complete information about each others'

preferences, for example to compute the equilibrium strategies. Roberts [Rob79] discusses

iterative procedures in which truthful revelation locally dominant at each stage. Of course,

one must expect some loss of e�ciency if strategy-proofness is the goal.

iBundle [Par99, PU00a] is an e�cient ascending-price auction for the combinatorial al-

location problem, with myopic best-response agent strategies. The auction is weak budget-

balanced, and individual-rational. Although myopic best-response is not a rational sequen-

tial strategy for an agent, it is certainly a more reasonable implementation concept than

58

a local Nash strategy, requiring only price information and information about an agent's

own preferences. As discussed in Chapter 7, an extended auction, iBundle Extend&Adjust,

provably computes VCG payments in many problems. Computing the outcome of a Groves

mechanism with myopic best-response strategies makes myopic best-response a Bayesian-

Nash equilibrium of the iterative auction.

2.7 Optimal Auction Design

In a seminal paper, Myerson [Mye81] adopted a constructive approach to mechanism design

for private-values auction, in which an agent's value is independent of that of other agents.

Myerson considers an objective of revenue maximization, instead of allocative-e�ciency,

and formulates the mechanism design problem as an optimization problem. The objective

is to design an outcome function for a direct-revelation mechanism that maximizes the

expected revenue subject to constraints on: feasibility (no item can be allocated more than

once); individual-rationality (the expected utility for participation is non-negative); and

incentive-compatibility.

Focusing on direct-revelation mechanisms (following the revelation principle), Myerson

derives conditions on the allocation rule k : � ! K and the payment rules ti : � ! R

for an auction to be optimal. Without solving for explicit functional forms k(�) and ti(�)

Myerson is able to derive the revenue equivalence theorem, which essentially states that

any auction that implements a particular allocation rule k(�) must have the same expected

payments.

In general the goals of revenue-maximization and e�ciency are in conict. Myerson

constructs an optimal (revenue-maximizing) auction in the simple single-item case, and

demonstrates that a seller with distributional information about the values of agents can

maximize its expected revenue with an ine�cient allocation-rule. The seller announces a

non-zero reservation price, which increases its revenue in some cases but also introduces a

slight risk that the seller will miss a pro�table trade (making it ine�cient).

Krishna & Perry [KP98] develop a generalized revenue-equivalence principle:

Theorem 2.10 (generalized revenue-equivalence). In quasi-linear environments, all

Bayesian-Nash incentive-compatible mechanisms with the same choice rule k(�) are expected

revenue equivalent up to an additive constant.

59

This is essentially a statement that all mechanisms that implement a particular allo-

cation rule are equivalent in their transfer rules. We have already seen a similar result,

i.e. that the Groves mechanisms are unique among e�cient & strategy-proof mechanisms

[GL87].

Krishna & Perry also show that the GVA maximizes revenue over all e�cient and

individual-rational mechanisms, even amongst mechanisms with Bayesian-Nash implemen-

tation:

Theorem 2.11 (Revenue-optimality of GVA). The GVA mechanism maximizes the

expected revenue amongst all e�cient, (Bayesian-Nash) incentive-compatible, and individual-

rational mechanisms.

It is interesting that the dominant-strategy GVA mechanism maximizes revenue over

all Bayesian-Nash incentive-compatible and e�cient mechanisms.

Ausubel & Cramton [AC98] make a simpler argument for e�cient mechanisms in the

presence of after-markets. Intuitively, in the presence of an after-market that will allow

agents to achieve an e�cient allocation outside of the auction, the auctioneer maximizes

pro�ts by providing agents with an allocation that they �nd most desirable and extracting

their surplus. A similar argument can be made in the presence of alternate markets. If

the auctioneer does not compute e�cient allocations then agents will go elsewhere.

Appendix: Proof of dAGVA properties

The intuition behind the Bayesian-Nash incentive-compatibility of the dAGVA mechanism

follows a similar line of reasoning to that for the strategy-proofness of Groves. Suppose that

the other agents announce their true types, the expected utility to agent i for announcing

its true type (given correct information about the distribution over the types of other

60

agents) is:

E��i [vi(k
�(�i; ��i); �i)] +E��i

2
4X
j 6=i

vj(k
�(�i; ��i); �j)

3
5

=E��i

2
4 IX
j=1

vj(k
�(�); �j)

3
5

and this is greater than

E��i

2
4 IX
j=1

vj(k
�(�̂i; ��i); �j)

3
5

for all �̂i 2 �i because by reporting its true type the agent explicitly instructs the mech-

anism to compute an allocation that maximizes the inner-term of the expectation for all

possible realizations of the types ��i of the other agents.

Finally, we show that the dAGVA mechanism is budget-balanced:

X
i

ti(�) =

�
1

I � 1

�X
i

X
j 6=i

SW�j(�j)�
X
i

SW�i(�i)

=

�
1

I � 1

�X
i

(I � 1)SW�i(�i)�
X
i

SW�i(�i)

= 0

Intuitively, each agent i receives a payment equal to SW�i(�i) for its announced type,

which is the expected social welfare e�ect on the other agents. To balance the budget each

agent also pays an equal 1=(I � 1) share of the total payments made to the other agents,

none of which depend on its own announced type.

61

Chapter 3

Computational Mechanism Design

The classic mechanism design literature largely ignores computational considerations. It

is common to assume that agents can reveal their complete preferences over all possible

outcomes (the revelation principle), and that the mechanism can solve an optimization

problem to select the best outcome (e.g. the Groves mechanisms).

It is useful to take a \markets-as-computation" view of computational mechanism

design. Our goal is to use a market-based method, such as an auction, to compute a

social-welfare maximizing outcome to a distributed problem. This markets-as-computation

view has received attention in computer science for a number of years, and in particular

within arti�cial intelligence. Inuential early work is the Market Oriented Programming

(MOP) paradigm of Wellman [Wel93], which adopted economic equilibrium concepts as

a technique to compute solutions to distributed optimization problems. Other classic

early work includes that of Huberman & Clearwater [HC95] on a market-based system for

air-conditioning control, and Sandholm [San93] on economic-based mechanisms for decen-

tralized task-allocation amongst self-interested agents.

Early motivation for the market-based approach recognized that markets can provide

quite e�cient methods to solve distributed problems, prices for example can summarize

relevant information about agents' local problems [Wel96]. The game-theoretic considera-

tions of mechanism design were secondary to computational considerations. In recent years

there has been increasing focus on game-theoretic issues, at �rst without much concern

to computational tractability [RZ94], but later with attempts to integrate game-theoretic

concerns and computational concerns [SL96, PU00b, Par01].

The tensions between classic game-theoretic solutions and tractable computational so-

lutions soon become evident as one considers the application of mechanisms to di�cult

62

distributed optimization problems, such as supply-chain procurement or bandwidth allo-

cation.

Here is an outline of this chapter. Section 3.1 considers the di�erent computational

concerns in an implemented mechanism, looking at computation both at the agent and at

the mechanism infrastructure level. I consider the consequences of the revelation principle

for computational mechanism design. Section 3.2 focuses on the Generalized Vickrey

Auction, and introduces methods to address both the cost of winner determination, the cost

of complete information revelation, and to reduce communication costs. I also review work

in the economics literature on mechanism design with limited communication structures.

3.1 Computational Goals vs. Game Theoretic Goals

Much of classic mechanism design is driven by the revelation principle (Section 2.3), which

states informally that we only ever need to consider direct-revelation mechanisms. In a

direct-revelation mechanism agents are restricted to sending a single message (the agent's

preferences) to the mechanism, where that message makes a claim about the preferences

of the agent over possible outcomes.

The revelation principle provides a very important theoretical tool, but is not useful

in a constructive sense in di�cult domains. The transformation assumed in the revelation

principle from indirect mechanisms (e.g. an iterative auction) to direct-revelation mech-

anisms (e.g. a sealed-bid auction) assumes unlimited computational resources, both for

agents in submitting valuation functions, and for the auctioneer in computing the outcome

of a mechanism [Led89]. In particular, the revelation principle assumes:

| agents can compute and communicate their complete preferences

| the mechanism can compute the correct outcome with complete information about

all relevant decentralized information in the system.

It can soon become impractical for an agent to compute and communicate its complete

preferences to the mechanism, and for the mechanism to compute a solution to the central-

ized optimization problem. Direct-revelation mechanisms convert decentralized problems

into centralized problems.

Yet, the revelation principle does have a vital role in the design of all mechanisms,

both direct and indirect, sealed-bid and iterative. The revelation principle provides focus

63

to the design of iterative mechanisms. Taken along with the uniqueness of the Groves

mechanisms amongst all e�cient and dominant-strategy mechanisms (Section 2.4), then

any e�cient and iterative mechanism with incremental truth-revelation as a dominant

strategy must compute the outcome of a Groves mechanism for the underlying preferences

of agents. This is to avoid the existence of an equivalent direct-revelation mechanism for

the mechanism that is outside of the class of Groves, which would be impossible.

It is useful to characterize the computation in a mechanism within two distinct levels:

1. At the agent level:

(a) Valuation complexity. How much computation is required to provide preference

information within a mechanism?

(b) Strategic complexity. Must agents model other agents and solve game-theoretic

problems to compute an optimal strategy?

2. At the infrastructure level:

(a) Winner-determination complexity. How much computation is expected of the

mechanism infrastructure, for example to compute an outcome given information

provided by agents?

(b) Communication complexity. How much communication is required, between

agents and the mechanism, to compute an outcome?

Dominant strategy mechanisms, such as the Groves mechanisms, are e�cient and

strategy-proof mechanisms, giving them excellent strategic complexity. An agent can com-

pute a dominant-strategy without modeling the other agents and without game-theoretic

reasoning. However, the direct-revelation property of Groves mechanisms provides very

bad (in fact worst-case) agent valuation complexity. An optimal bidding strategy requires

that an agent determines its complete preferences over all possible outcomes. Complete

information is required in all instances, even though it is often possible to solve a par-

ticular instance with incomplete information, with an interactive solution such as that

provided in equilibrium solutions. The winner-determination complexity of Groves mech-

anisms in combinatorial domains also limits their applicability as problems get large; e.g.

winner-determination in the combinatorial allocation problem is NP-hard.

Approaches to resolve this tension between game-theoretic and computational proper-

ties include:

64

� Approximation methods. Compute approximate outcomes based on agent strategies,

and make connections between the accuracy of approximation and game-theoretic

properties of the mechanism.

� Distributed computation. Move away from a centralized model of mechanism imple-

mentation towards models of decentralized computation to compute the outcome of

a mechanism, based on information about agent preferences.

� Special cases. Identify tractable special cases of more general problems, and restrict

the implementation space to those tractable special cases.

� Compact preference representation languages. Provide agents with expressive and

compact methods to express their preferences, that avoid unnecessary details, make

structure explicit, perhaps introduce approximations, and make the problem of com-

puting optimal outcomes more tractable.

� Dynamic mechanisms. Instead of requiring single-shot direct-revelation, allow agents

to provide incremental information about their preferences for di�erent outcomes and

solve easy problem instances without complete information revelation.

The challenge is to make mechanisms computationally feasible without sacri�cing useful

game-theoretic properties, such as e�ciency and strategy-proofness.

3.2 Computation and the Generalized Vickrey Auction

The Generalized Vickrey Auction (GVA) is a classic mechanism with many important

applications in distributed computational systems [NR01, WWWMM01]. As described in

Section 2.4, the GVA is a strategy-proof and e�cient mechanism for the combinatorial

allocation problem, in which there are a set of items, G, and a set of agents, I, and the

goal is to compute a feasible allocation of items to maximize the total value across all

agents. Agents report values v̂i(S) for each bundle S � G, and the GVA computes an

optimal allocation based on reported values and also solves one additional problem with

each agent taken out of the system to compute payments.

From a computational perspective the GVA presents a number of challenges:

65

� Winner determination is NP-hard. Winner determination in the GVA is NP-hard,

equivalent to the maximum weighted set packing problem. The auctioneer must

solve the winner-determination problem once with all agents, and then once more

with each agent removed from the system to compute payments.

� Agents must compute values for an exponential number of bundles of items. The

GVA requires complete information revelation from each agent. The valuation prob-

lem for a single bundle can be hard [Mil00a], and in combinatorial domains there are

an exponential number of bundles to consider.

� Agents must communicate values for an exponential number of bundles of items.

Once an agent has determined its preferences for all possible outcomes it must com-

municate that information to the auctioneer. In addition to the network resource

cost, this might be undesirable from a privacy perspective.

A number of proposals exist to address each of these problems, surveyed below. The

�rst problem, concerning the computational complexity of the auctioneer's winner de-

termination problem, has received most attention. In comparison, the second problem,

concerning the complexity on participants to determine their preferences has received

considerably less attention. Exceptions include the brief discussion of bidding programs

in Nisan [Nis00], and the recent progress that has been made on dynamic mechanisms

[WW00, Par99, PU00b].

This dynamic approach includes my iBundle mechanism, and recent extensions to

compute Vickrey payments. iBundle is an iterative combinatorial auction mechanism,

able to compute e�cient allocations without complete information revelation from agents.

The information savings follow from an equilibrium-based interactive solution concept, in

which the e�cient allocation is computed in an equilibrium between the auctioneer and

the agents. In addition to terminating without complete information revelation in realistic

problem instances, agents in iBundle can compute optimal strategies without solving their

complete local valuation problems.

66

3.2.1 Winner-Determination: Approximations and Distributed Meth-

ods

Possible ideas to address the complexity of winner-determination in the GVA include intro-

ducing approximation, identifying and restricting to special-cases, and distributed methods

that seek to involve decentralized agents in the mechanism's computational problem.

In each case, as new methods are used to compute the outcome of a Groves mechanism,

it is important to consider the e�ect on the strategy-proofness of the mechanism. There

are two reasons to be concerned about the loss of strategy-proofness with an approximate

Groves mechanism:

| agents can now bene�t from game-theoretic reasoning, which makes their strategic

bidding problem more di�cult

| the e�ect of agents misrepresenting their preferences might further decrease the

allocative-e�ciency.

Approximations

Simply replacing the optimal algorithm in the GVA with an approximation algorithm does

not preserve strategy-proofness. Recall that the utility to agent i in the GVA for reported

preferences �̂i, is:

ui(�̂i) = vi(k
�(�̂i; �̂�i); �i) +

X
j 6=i

vj(k
�(�̂i; �̂�i); �̂j)� hi(�̂�i)

where hi(�) is an arbitrary function over the reported preferences �̂�i = (�̂1; : : : ; �̂i�1; �̂i+1;

: : : ; �̂I) of the other agents.

Agent i chooses to announce preferences �̂i to make k
�(�̂i; �̂�i) solve:

max
k2K

vi(k; �i) +
X
j 6=i

vj(k; �̂j) (*)

Truth-revelation is a dominant strategy in the GVA because k�(�̂i; �̂�i) solves this

problem with �̂i = �i.

With an approximate winner-determination algorithm the auctioneer selects outcome

k̂(�̂i; �̂�i), which might not equal k�(�̂i; �̂�i). A rational agent will now announce a type �̂i

to try to make the approximation algorithm solve (*):

67

k̂(�̂i; ��i) = k�(�i; ��i)

In other words, the agent would like to make the approximation algorithm select the

best possible outcome, given its true preferences and the announced preferences of the

other agents, and this might perhaps be achieved by manipulating its inputs to the al-

gorithm to \�x" the approximation. Truth-revelation is a dominant strategy within a

Groves mechanism if and only if an agent cannot improve on the outcome computed by

the mechanism's algorithm by misrepresenting its own preferences. This observation leads

to useful characterizations of necessary properties for an approximation algorithm to retain

strategy-proofness within a Groves mechanism.

Tennenholtz et al. [TKDM00] introduce a set of su�cient (but not necessary) axioms

for an approximation algorithm to retain strategy-proofness. The most important axiom

essentially introduces the following requirement (which the authors also refer to as \1-

e�ciency"):

vi(k̂(�i; �̂�i); �i) +
X
j 6=i

vj(k̂(�i; �̂�i); �̂j) � vi(k̂(�̂i; �̂�i); �i) +
X
j 6=i

vj(k̂(�̂i; �̂�i); �̂j);

for all �̂i 6= �i; �̂�i; �i.

In words, an agent cannot improve the solution with respect to a particular set of inputs

(�i; �̂�i) by unilaterally misrepresenting its own input �i. Strategy-proofness follows quite

naturally from this condition, given that a rational agent will only misrepresent its prefer-

ences to improve the quality of the solution (for reported preferences from other agents and

the agent's true preferences) computed by the mechanism. An interesting open question

is the degree to which these axioms restrict the e�ciency of an approximation algorithm,

for a particular class of algorithms (e.g. constant factor worst-case approximations, etc.).

Nisan & Ronen [NR00] take a di�erent approach and de�ne conditions on the range

of an approximation algorithm, and require the algorithm to be optimal in its range|

a condition they refer to as maximal-in-range |for strategy-proofness with approximate

winner-determination algorithms. The conditions are necessary and su�cient.

The maximal-in-range condition states that if K0 � K is the range of outcomes selected

by the algorithm (i.e. k 2 K0 implies there is some set of agent preferences for which the

approximation algorithm k̂(�) = k), then the approximation algorithm must compute the

68

best outcome in this restricted range for all inputs.

k̂(�) = max
k2K0

X
i2I

vi(k; �i)

for all � 2 �, and for some �xed K0 � K.

Intuitively, strategy-proofness follows because the Groves mechanism with this rule

implements a Groves mechanism in the reduced space of outcomes K0. An agent cannot

improve the outcome of the allocation rule by submitting a corrupted input because there

is no reachable outcome of better quality. Nisan & Ronen partially characterize the nec-

essary ine�ciency due to the dual requirements of approximation and strategy-proofness,

and claim that all truthful mechanisms with approximate algorithms have \unreasonable"

behavior, for an appropriate de�nition of unreasonableness.

Lehmann et al. [LOS99] consider strategy-proof and approximate implementations for

a special case of the combinatorial allocation problem, with single-minded bidders that

care only about one bundle of items. Perhaps surprisingly, winner-determination remains

NP-hard even in this very restricted problem by reduction from weighted set packing.

Lehmann et al. allows the payment rules to change from those in a Groves scheme, and

propose a set of su�cient axioms for strategy-proofness in their problem. The axioms

apply to properties of the allocation rule and the payment rule. The most important

condition for strategy-proofness is the \critical" condition, which states that an agent's

payment must be independent of its bid and \minimal", closely following the intuition

behind the incentive-compatibility of the Vickrey-Clarke-Groves scheme. Lehmann et al.

propose a greedy allocation rule and a payment scheme that satis�es their axioms, which

together comprise a strategy-proof mechanism. Extending to \double-minded" agents, the

authors prove that there are no strategy-proof payment rules compatible with their greedy

allocation method.

Nisan & Ronen [NR01] present an interesting algorithmic study of mechanism design

for a task allocation problem, with a non e�ciency-maximizing objective (and therefore

outside of the application of Groves mechanisms). The objective in the task allocation

problem is to allocate tasks to minimize the makespan, i.e. the time to complete the �nal

task. Individually, each agent wants to minimize the time that it spends performing tasks.

Nisan & Ronen present su�cient conditions for the strategy-proofness of a mechanism,

and consider the class of approximation algorithms that satisfy those conditions. The

69

important axioms are independence, i.e. the payment to agent i does not depend on its

own bid, and maximization, i.e. the mechanism must compute an outcome that maximizes

the bene�t when each agent reports its true ability to perform tasks. For a particular class

of constant-factor approximation algorithms, the authors compute a lower-bound on the

degree-of-approximation for which strategy-proofness is possible. Nisan & Ronen continue

to show that a randomized mechanism can improve this best-case approximation factor.

Distributed Methods

Nisan & Ronen [NR00] propose an innovative \second chance" mechanism, which aims

to combine distributed challenges by agents with an approximate winner-determination

algorithm. The second-chance mechanism builds on the intuition that agents will manip-

ulate an Groves mechanism built around an approximation algorithm if they can improve

the solution by misrepresenting their own preferences, given the announcements of other

agents.

The second-chance mechanism provides a method to allow agents to improve the out-

come of the algorithm without also running the risk that agents will make the solution

worse, for example if they make bad predictions about the algorithm or about the an-

nouncements from other agents. Agents submit a claim �̂i about their preferences, as

in the standard Groves mechanism, and also an appeal function, which can be viewed

as an additional heuristic algorithm for the winner-determination problem. The appeal

function provides an alternative set of inputs for the auctioneer's existing algorithm, i.e.

l : �1 � : : : � �I ! �1 � : : : � �I , such that l(�̂) provides a new set of preferences

for each agent. Given reported types �̂, the mechanism solves the optimization problem

with its approximation algorithm once with the inputs �̂, and once with each appeal set

of inputs, e.g. li(�̂) for the appeal function of agent i, evaluating the outcomes in terms of

the reported types �̂.

Intuitively, providing an appeal function allows each agent to try to �x the approxi-

mate nature of the auctioneer's winner-determination algorithm without needing to adjust

its reported preferences away from its true preferences. Each agent will try to submit an

appeal function to improve the system-wide (reported) value of the chosen solution. \Fea-

sible truthfulness" of the second-chance mechanism is demonstrated, de�ned for a suitable

restriction on the rationality of agents (see below).

70

The appeal functions are very complex and require a high degree of insight on the part

of agents. Nisan & Ronen note that the agents themselves could be required to compute

the results of their appeal function. The mechanism therefore can be viewed as a method

to use decentralized computation to improve the performance of an approximate winner-

determination algorithm. It is also suggested that agents be given the chance to learn the

characteristics of the approximation algorithm, to enable them to generate good appeal

functions. Another idea is to integrate successful appeals progressively into the heuristic,

to improve its base performance.

Rothkopf et al. [RPH98] had earlier proposed decentralized computation approaches,

with \challenges" issued to agents to improve the quality of the auctioneer's solution.

Brewer [Bre99] also proposes a market mechanism to decentralize computation to agents.

Bounded-Rational Implementation

Returning to the concept of feasible truthfulness, there is one one sense in which bounded-

rationality can help in mechanism design.

Nisan & Ronen [NR00] introduce the concept of a feasible best-response and a feasible

dominant action. A feasible best-response is an agent's utility-maximizing action across a

restricted set of all possible actions, known as the agent's knowledge set. The knowledge set

is a mapping from the actions of other agents to a subset of an agent's own possible actions.

An action is then feasible dominant if it is the best-response in an agent's knowledge set for

all possible actions of other agents. This is a very similar concept to the maximal-in-range

idea introduced as an axiom for strategy-proofness with approximate winner-determination

algorithms.

Given this concept of feasible dominance, one might design mechanisms in which the

strategies that perform better than truth-revelation are in small measure compared to all

possible strategies, to make an agent require a lot of \knowledge" to have a non truth-

revealing dominant strategy, or perform a lot of computation.

One can also interpret the myopic best-response strategy, adopted in my own work

[Par99, PU00a], from the perspective of a bounded-rational agent. Certainly the assump-

tion of myopia considerably simpli�es an agent's problem, as it does not need to reason

about the e�ect of its bids in the current round on future prices or on the strategies of

other agents.

71

An interesting idea for future work is to design mechanisms that cannot be manipulated

unless an agent can solve an NP-hard computational problem; i.e. use the bounded-

ratonality of an agent to make it provably too di�cult to manipulate a mechanism.

Special-Cases and Structure

Finally, let us consider the role of tractable special-cases of winner-determination. Rothkopf

et al. [RPH98], Nisan [Nis00] and de Vries & Vohra [dVV00] characterize tractable special-

cases, identifying restrictions on the types of bundles that can receive bids and/or the types

of valuation functions agents can express over bundles (see Section 4.5). The approach is to

restrict an agent's bidding language to induce only tractable winner-determination prob-

lems.

Ideally, a restricted bidding language can support tractable winner-determination with-

out preventing agents reporting their true valuation functions. In this case the GVA mecha-

nism can be applied without any loss in either strategy-proofness or e�ciency. However, as

soon as one imposes a restriction on agents' bids there is a risk that e�ciency and strategy-

proofness will be compromised. If an agent cannot represent its true valuation function

with the restricted bidding language, then its rational strategy is to report an approximate

value that leads to the best outcome for its true preferences, and force the mechanism to

select the best solution from the set reachable from the restricted range of inputs. This

ability to improve the outcome through non-truthful bidding leads to a loss in strategy-

proofness, for example because the agent will now need to predict the strategies of other

agents. The tradeo� between approximate bidding languages, incentive-compatibility, and

e�ciency appears to have received little attention.

Graphical tree representations, such as the Expected Utility Networks [MS99], allow

an agent to capture independence structure within its preferences in much the same way as

Bayes-Nets provide compact representations of conditional probabilities in suitable prob-

lems. In addition to providing quite compact and natural representations for participants,

these structured approaches may allow tractable winner-determination and payment rules,

that exploit the structure to solve problems without explicitly computing values for indi-

vidual bundles.

72

3.2.2 Valuation Complexity: Bidding Programs and Dynamic Methods

The Groves mechanisms are direct-revelation mechanisms, requiring that every agent re-

ports its complete preferences over all possible outcomes. In application to large combina-

torial problems Groves mechanisms can fail because of the bounded-rationality of agents,

and the complexity of local valuation problems. The valuation problem for a single bundle

can be hard, and in combinatorial domains there are an exponential number of di�erent

bundles to consider.

Consider an application to a distributed package delivery problem, with agents com-

peting for the delivery jobs. Agents represent delivery companies, and may need to solve

hard local optimization problems to compute their costs to perform di�erent bundles of

jobs; each bundle may require that the agent computes an optimal schedule for its eet of

vehicles.

In these types of combinatorial problems a mechanism must not require an agent to

report its complete valuation function. In addition, an agent must be able to compute its

optimal strategy without computing its complete valuation function. It is not helpful to

require less information if the agents must still compute values for all bundles to provide

that information. In Chapter 8 I introduce a bounded-rational compatible characterization

of auctions. The theory of bounded-rational compatibility precisely captures this idea that

an agent can participate in an auction without performing unnecessary valuation work.

In a bounded-rational compatible auction an agent can compute its equilibrium strategy

with an approximate valuation function, at least in some problem instances.

Two interesting approaches to reduce information revelation in mechanisms for combi-

natorial allocation problems are:

(1) Retain the direct-revelation structure, but provide a high-level bidding language (or

\bidding program") to allow an agent to \represent and de�ne" its local problem without

explicitly solving its local problem in all possible scenarios.

(2) Implement a dynamic mechanism, that requests information incrementally from

agents and computes the optimal allocation and Vickrey payments without complete in-

formation revelation.

The �rst method may be helpful when speci�cation is easier than valuation, i.e. it

is easier for an agent to de�ne how it determines its value for a bundle of items than it

is to explicitly compute its value for all possible bundles. The second method may be

73

helpful when the iterative procedure terminates without complete information revelation

by agents, and when an agent can provide incremental information without computing its

complete valuation function. Let us consider each in turn.

Bidding Programs and High Level Bidding Languages

In choosing a bidding language for a mechanism there is a tradeo� between the ease with

which an agent can represent its local preferences, and the ease with which the mechanism

can compute the outcome. Nisan [Nis00] describes the expressiveness of a language, which

is a measure of the size of a message for a particular family of valuation functions, and the

simplicity of a language, which is a measure of the complexity involved in interpreting a

language and computing values for di�erent outcomes.

A natural starting point in combinatorial auctions is the XOR bidding language,

(S1; p1) xor (S2; p2), which essentially allows an agent to enumerate its value for all possi-

ble sets of items. This bidding language is simple to interpret, in fact given a bid b in the

XOR language, the auctioneer can compute the value b(S) for any bundle in polynomial

time [Nis00]. However, this bidding language is not very expressive. An obvious example is

provided with a linear valuation function, v(S) =
P

x2S v(x). XOR bids for this valuation

function are exponential in size (explicitly enumerating the value for all possible bundles)

[Par99]. In comparison, an OR bidding language (S1; p1) or (S2; p2), which states that the

agent wants S1 or S2 or both, has a linear-space representation of this valuation function.

Nisan observes that other combinations, such as XOR-of-OR languages and OR-of-

XOR languages, allow compact representations of certain preference structures and make

tradeo�s across expressiveness and compactness. Nisan proposes an OR* bidding language,

which is expressive enough to be able to represent arbitrary preferences over discrete items,

and as compact a representation as both OR-of-XOR and XOR-of-OR representations.

However, Nisan provides an example with no polynomial-size representation even with the

OR* language.

The expressiveness of a bidding language, or the compactness of representations that it

permits, becomes even more important when one considers the agent's underlying valuation

problem.

Suppose that an agent must solve an NP-hard constrained optimization problem [P]

to compute its value for a set of items, with objective function g and constraints C. In the

74

XOR representation the agent must solve this problem [P] once for every possible input

S � G, i.e. requiring an exponential number of solutions to an NP-hard problem. Now

consider an alternative bidding language, that allows the agent to send the speci�cation of

its optimization problem, i.e. [P] = (g; C) directly to the auctioneer. Strategy-proofness

is not a�ected (assuming the agent can trust the mechanism to interpret this bidding

language faithfully), but the agent saves a lot of value computation.

In general, we might consider a language in which the agent can send a \bidding

program" to the auctioneer, that the auctioneer will then execute as necessary to compute

an agent's value for di�erent subsets of items [Nis00]. This is really just the extreme

limit of the revelation principle: rather than requiring an agent to solve its local problem

and compute its value for all possible outcomes, simply allow the agent to send the local

problem speci�cation directly to the auctioneer.

From the perspective of the bidding agent this approach simpli�es its valuation problem

whenever the speci�cation of its local problem is simpler than actually computing its value

for all possible outcomes. A bidding program allows an agent to feed that speci�cation

directly to the auctioneer.

From the perspective of the auctioneer, this is an even more centralized solution than

providing a complete valuation function, and has worse-still privacy implications. The

bidding program approach shifts the valuation computational burden from agents to the

auctioneer. Notice for example that if the bidding program provides only \black box"

functionality, e.g. b : 2G ! R, the mechanism must compute b(S) for all S � G

(unless other consistency rules such as free disposal apply to an agents' values) to compute

the e�cient solution. However, if the bidding program, or language, provides a richer

functionality| for example allowing e�cient pruning \the value b(S0) on all bundles S0 � S

is less than b(S)"; or computing approximate values \the value of b(S) is between [a; b]";

or best-response \the bundle that maximizes b(S)� p(S) at those prices is S1" |then the

total valuation work performed by the auctioneer can be less than that required by agents

with the XOR bidding language. Savings of this kind can be realized within an algorithm

that makes explicit use of these types of query structures.

Let me outline some serious limitations of the bidding program model in some domains:

� The speci�cation problem can be as di�cult as the valuation problem. In particular,

the assumption above is that a single speci�cation allows an agent to compute its

75

value for all bundles. In many problems the agent might need to collect additional

information, consult human experts etc., to form a model with which to determine the

value of each bundle. As a concrete example, consider the FCC spectrum auction. For

any particular set of licenses a bidder might need to construct a new business model,

to determine its value, and this can require costly and time-consuming information

gathering, conference calls, and modeling e�orts [Mil00a].

� Local valuation problems might not be well formed, the agent might not be able to

provide a clear description of the method with which the value of each alternative is

determined. This is a particular concern in systems in which human experts must

be consulted to determine values.

� The size of the speci�cation of a problem might be too large to transmit to the

mechanism. Perhaps computing the value for a bundle requires access to a large

database of information?

� Value and sensitivity of information. In a supply-chain example, will IBM really

be happy to release the methods that it uses to take procurement decisions? This

information has considerable value to a competitor.

� Trust. Can the agent trust the auctioneer to faithfully execute its bidding program?

There might be a role for veri�cation mechanisms to enable an agent to verify the

value computation performed by a mechanism. Harkavy et al.[HTK98] and Naor et

al. [NPS99] provide an introduction to some ideas from secure distributed computa-

tion that can be used in auction environments.

Dynamic Methods.

An alternative approach is to \open up" the algorithm for computing the outcome of the

GVA, and involve agents dynamically in the computational process. It is easy to construct

examples in which it is not necessary to have complete information about agents' valuation

problems to compute and verify the outcome of the auction. A few simple examples are

described at the end of this section. A well structured dynamic method might ask agents

for just enough information to enable the mechanism to compute and verify the outcome.

A dynamic mechanism may elicit the following types of approximate information from

agents:

76

| ordinal information, i.e. \which bundle has highest value out of S1, S2 and S3?"

| approximate information, i.e. \is your value for bundle S1 greater than 100?"

| best-response information, i.e. \which bundle do you want at prices p(S)?"

| equivalence-set information, i.e. \is there an item that is substitutable for A?"

In addition to solving realistic problem instances without complete information reve-

lation, it is also important that dynamic methods allow an agent to respond to requests

for information with an approximate solution to its own valuation function. Notice that

in each of the preceding examples an agent can respond without �rst computing its exact

value for all bundles.

Examples: Complete Information is Not Necessary

Examples 1{3 are simple problems instances in which the optimal allocation and the Vick-

rey payments can be computed without complete information from agents. Although there

is no consideration of agent incentives at this stage, a well structured iterative auction can

compute optimal outcomes without complete information from agents and provide incen-

tives for agents to reveal truthful information.

Example 1. Single-item auction with 3 agents, and values v1 = 16; v2 = 10; v3 = 4. The

Vickrey outcome is to sell the item to agent 1 for agent 2's value, i.e. for 10. Instead of

information fv1; v2; v3g it is su�cient to know fv1 � 10; v2 = 10; v3 � 10g to compute this

outcome.

Example 2. Consider a combinatorial auction problem in which we ask every agent for

the bundle that maximizes their value. If the response from each agent is non-overlapping,

as illustrated in Figure 3.1 then we cam immediately compute the outcome of the GVA.

The e�cient allocation is to give each agent its favorite bundle; every agent gets its value-

maximizing bundle so there can be no better solution. The Vickrey payments in this

example are zero, intuitively because there is no competition between agents. We do not

need any information about the value of an agent for any other bundles, and we do not

need even need an agent's value for its favorite bundle.

Example 3. Consider the simple combinatorial allocation problem instance in Table 3.1,

with items A, B and agents 1, 2, 3. The values of agent 1 for item B and bundle AB are

stated as a � b and b � 15, but otherwise left unde�ned. Consider the following cases:

77

1

23

4

Figure 3.1: A simple combinatorial allocation problem. Each disc represents an item, and the
selected bundles represent the bundles with maximum value for agents 1, 2, 3 and 4. In this
example this is su�cient information from agents to compute the e�cient solution (and the Vickrey
payments).

[a < 5] In this case the GVA assigns bundle AB to agent 3, with V � = 15, (V�3)
� =

max[10+a; b], so that the payment for agent 3 is pvick(3) = 15�(15�max[10+a; b]) =

max[10 + a; b]. It is su�cient to know fa � 5; b � 15;max[10 + a; b]g to compute the

outcome.

[a � 5] In this case the GVA assigns item B to agent 1 and item A to agent 2, with

V � = 10 + a, (V�1)
� = 15, and (V�2)

� = 15. The payment for agent 1 is pvick(1) =

a�(10+a�15) = 5 and the payment for agent 2 is pvick(2) = 10�(10+a�15) = 15�a.

It is su�cient to know fa; b � 15g to compute the outcome.

Notice that it is not necessary to compute the value of the optimal allocation S� to

compute Vickrey payments; we only need to compute the allocation to each agent. Consider

Example 1. We can compute the optimal allocation (give the item to agent 1) with

information v1 � fv2; v3g, and without knowing the exact value of v1. Also, it is not even

necessary to compute V � and (V�i)
� to compute Vickrey payments because common terms

cancel. In Example 1, it is enough to know the value of v2 to compute agent 1's Vickrey

payment because the value of v1 cancels: pvick(1) = v1 ��vick(1) = v1 � (v1 � v2) = v2.

Useful Properties of Iterative Auctions

Iterative price directed auctions, such as ascending-price auctions, present an important

class of dynamic mechanisms. In each round of the auction the auctioneer announces prices

78

A B AB

Agent 1 0 a b
Agent 2 10 0 10
Agent 3 0 0 15

Table 3.1: Agent values in Example 3.

on the items, or bundles of items, and a provisional allocation (which agent is currently

receiving which items). A reasonable bidding strategy for an agent is myopic best-response,

which is simply to bid for the items that maximize its utility at the prices. Although myopic

best-response is in general not the optimal sequential strategy for an agent, it can be made

a Bayesian-Nash equilibrium of an iterative auction by computing Vickrey payments at

the end of the auction (see Chapter 7).

Useful properties of iterative auctions include:

� Iterative auctions can solve realistic problems without complete information from

agents. Consider an ascending-price auction for a single item. It is su�cient that the

two agents with the highest value bid in each round, the other agents do not need

to bid and can sit back and watch the price rise, without providing any information.

Implicit information is provided by not responding to prices.

� Agents can follow myopic best-response without computing exact values for all bun-

dles. For example, an agent can follow a best-response bidding strategy in a price-

directed iterative auction with lower and upper bounds on its values for bundles.

Myopic best-response only requires that an agent bids for the bundle(s) with maxi-

mum utility (value - price) in each round. This utility-maximizing set of bundles can

be computed by re�ning the values on individual bundles until the utility of one or

more bundles dominates all other bundles.

� The information requested dynamically in each round of an auction (implicitly, via

the new prices and the bidding rules of the auction) is quite natural for agents (and

people) to provide. The auction does not ask agents to make mysterious comparisons

across di�erent bundles, but rather lets agents consider their best-response (local

utility-maximizing strategy) given the new prices.

iBundle [Par99, PU00a], introduced in Chapter 5, is an ascending-price combinatorial

auction. Agents can adjust their bids in response to bids placed by other agents, and the

79

auction eventually terminates in competitive equilibrium. iBundle solves the problem in

Figure 3.1 in one round with myopic best-response agent strategies, because every agent

will bid for its value-maximizing bundle in response to zero prices and every agent will

receive a bundle in the provisional allocation. In fact, iBundle is provably e�cient with

myopic best-response agent strategies.

3.2.3 Communication Costs: Distributed Methods

Shoham & Tennenholtz [ST01] explore the communication complexity of computing simple

functions within an auction-based algorithm (i.e., with self-interested agents with private

information). Essentially, the authors propose a method to compute solutions to simple

functions with minimal communication complexity. Communication from the auctioneer

to the agents is free in their model, while communication from agents to the auctioneer is

costly. Given this, Shoham & Tennenholtz essentially provide incentive schemes so that

each agent i announces its value vi by sending a single bit to the mechanism whenever the

price in an auction is equal to this value. Max and min functions can be computed with a

single bit from agents, and any function over n agents can be computed in n bits, which

is the lower information-theoretic bound.

Feigenbaum et al. [FPS00] investigate cost-sharing algorithms for multicast transmis-

sion, in which a population of consumers sit on the nodes of a multicast tree. Each user

has a value to receive a shared information stream, such as a �lm, and each arc in the

multicast tree has an associated cost. The mechanism design problem is to implement the

multicast solution that maximizes total user value minus total network cost, and shares

the cost across end-users. Noting that budget-balance, e�ciency, and strategy-proofness

are impossibility in combination the authors compare the computational properties of a

Vickrey-Clarke-Groves marginal cost (MC) mechanism (e�cient and strategy-proof) and

a Shapley value (SH) mechanism (budget-balanced and coalitional strategy-proof).

A distributed algorithm is developed for MC, in which intermediate nodes in the tree

receive messages, perform some computation, and send messages to their neighbors. The

method, a bottom-up followed by a top-down traversal of the tree, computes the solution

to MC with minimal communication complexity, with exactly two messages sent per link.

In comparison, there is no method for the SH mechanism with e�cient communication

complexity. All solutions are maximal, and require as many messages per link as in a naive

80

centralized approach. Hence, communication complexity considerations lead to a strong

preference for the MC mechanism, which is not budget-balanced. The study leaves many

interesting open questions; e.g. are all budget-balanced solutions maximal, and what are

the game-theoretic properties of alternative strategy-proof minimal mechanisms?

The economic literature contains a few notable models of the e�ect of limited commu-

nication and agent bounded-rationality in mechanism design, and in systems of distributed

decision making and information processing. This work is relevant here, given the focus

in my dissertation on computational mechanism design and in particular on the costs of

complete information revelation.

In the theory of teams [MR72], Radner and Marschak provide a computational account

of the organization of management structures and teams, considering in particular the ef-

�cient use of information within a decentralized organization. One important assumption

made in the theory of teams is that all agents share a common goal (e.g. pro�t), no at-

tention is given to the incentives of agents. The goal is to compare the e�ciency (decision

quality) of di�erent information structures under the assumption that each structure will

be used optimally. The theory of teams proposes a two-step method to measure the e�ec-

tiveness of a particular organizational structure: (1) �nd the optimal mode of functioning

given a structure and compute the e�ciency; (2) subtract the costs of operation. The

second step in this methodology has not been done because there has traditionally been

no good way to assess the cost of communication. One method suggested to side-step this

problem is to compare the performance of di�erent communication structures for a �xed

number of messages. The work of Feigenbaum et al. [FPS00] certainly starts to integrate

communication complexity analysis into mechanism design.

Radner [Rad87] compares the e�ciency of four classic models of resource allocation, and

asks which is the minimal su�cient structure to compute e�cient solutions. Extensions

to consider agent incentives are also discussed.

Recently, Radner [Rad92, Rad93] has considered a decision-theoretic model of a �rm,

in which managers are modeled as bounded-rational decision makers, able to perform

some information processing and communicate. The model considers distributed decision

problems in which agents must perform local computation with local information because

of bounded-rationality and limited computation. One useful concept proposed by Radner

is that of a \minimally e�cient" network, which is the minimal communication network

81

(e.g. in terms of the number of links) that does not introduce delay the decentralized

decision making of agents.

Green & La�ont [GL87] consider the impact of limited communication on the perfor-

mance of incentive-compatible mechanisms. Starting with direct-revelation mechanisms,

which assume that agents can transmit information messages that are su�ciently detailed

to describe fully all their private information, Green & La�ont consider the e�ect of reduc-

ing the \dimensionality" of an agent's message space. In their abstract model the decision

problem is to select an x 2 Rn , an agent's preferences are � 2 Rm , and the communication

space is R 2 Rl . The authors characterize the e�ect of reducing the message dimension l,

while trying to maintain incentive-compatibility and decision optimality.

There is a well developed theory on the minimal communication complexity required

to implement e�cient allocations [Hur72, MR74, Rei74]. Mount & Reiter compare the

communication requirements at the equilibrium of di�erent market structures, in which

communication cost is measured in terms of the size of the message space that is used in

a mechanism. However, most models compare the costs in equilibrium, without consider

communication costs along the adjustment process, and without any attention to the com-

putation cost on agents and on the mechanism infrastructure [Mar87]. A central question

in the literature is: what is the minimal equilibrium message size required to implement a

particular social choice function? Classic results argue that the \competitive mechanism",

which implements allocations in equilibrium (the mechanism announces a set of prices

and agents self-select which bundles they will consume), is informationally e�cient. This

provides a good theoretical basis for the attention to equilibrium solutions to distributed

combinatorial optimization problems in this dissertation. Of course, I also carefully con-

sider information revelation in the adjustment process as well as in equilibrium, in addition

to the computational complexity of the agents and the auctioneer.

82

Chapter 4

Linear Programming and Auction Design

Mechanism design proposes the Vickrey-Clarke-Groves mechanism as a solution for the

combinatorial allocation problem. In fact, this mechanism is essentially the onlymechanism

with the critical properties of strategy-proofness and allocative-e�ciency. However, we

have identi�ed a number of inherent computational problems with Groves mechanisms:

� Every agent must provide its value for every bundle to the auctioneer.

� The auctioneer must solve multiple NP-hard problems to compute the outcome of

the auction.

The Groves mechanisms are centralized solutions to a decentralized optimization prob-

lem. They address the incentive issues in systems with distributed agents with private

information but fail to address important computational issues.

Naive approaches to address the auctioneer's computational problem will often break

the strategy-proofness of the mechanism, in addition to reducing the allocative-e�ciency

of the solution. One method discussed in Chapter 3 suggests computing approximate so-

lutions to the winner-determination problems, and computing Vickrey payments with the

approximate solutions. Strategy-proofness is lost as soon as the mechanism does not com-

pute the e�cient allocation, the allocation that maximizes the reported values of agents.

Instead an agent should try to misrepresent its valuation function in just the right way to

make the auctioneer compute the optimal winner-determination solution despite its approx-

imate algorithm. In other words agents should try to compensate for the approximation

within the mechanism.

Similarly, while it is possible to restrict a bidding language such that the mechanism's

winner-determination problem is tractable (see Table 4.4), as soon as the restricted expres-

siveness of the language forces the agent to submit an approximate report of its valuation

83

function, the agent must reason about which approximation will lead to the auctioneer

computing a solution to the winner-determination problem that is maximal for the agent's

true valuation function.

The motivation for iterative combinatorial auctions is to address the �rst computational

problem, that of agent valuation work, and retain the useful game-theoretic properties of

strategy-proofness and e�ciency. In many problems it is quite unrealistic to assume that

an agent can compute its value for all possible combinations of items, as is required in

the single-shot VCG mechanism. Iterative combinatorial auctions provide interactive so-

lutions, hopefully requesting just enough information from agents to compute the e�cient

allocation and the Vickrey payments. The uniqueness of Groves mechanisms (amongst

direct-revelation mechanisms) implies via the revelation principle that any iterative solu-

tion to the combinatorial allocation problem with these desirable game-theoretic properties

must compute the payments in the Vickrey-Clarke-Groves mechanism.

My approach is to �rst assume a simple bidding strategy for agents in each round of

an iterative auction. The strategy, myopic best-response, need not be game-theoretically

rational for an agent. However, this assumption allows a strong connection between linear

programming theory, in particular primal-dual algorithms, and iterative auction design.

Chapters 4 and 5 introduce primal-dual algorithm CombAuction, and its auction equiva-

lent iBundle, which computes e�cient allocations with myopic best-response agent strate-

gies. The prices computed in the dual solution have an economic interpretation, as the com-

petitive equilibrium prices. Later, in Chapters 6 and 7, I present an extended primal-dual

method, VickAuction, and an experimental auction design, iBundle Extend&Adjust, to

compute Vickrey payments and the e�cient allocation with myopic best-response agent

strategies. Vickrey payments make myopic best-response a sequentially rational strat-

egy for an agent in equilibrium with myopic best-response from other agents| justifying

my earlier assumption. This \LP + myopic best-Response + Vickrey" approach appears

to provide a compelling methodology for the design of iterative mechanisms with useful

game-theoretic properties.

Bertsekas [Ber87] had earlier proposed a primal-dual algorithmAuction for the assign-

ment problem, which is a special case of the combinatorial allocation problem. Auction

has a natural interpretation as an ascending-price auction, but does not compute Vickrey

payments and does not have any useful incentive-compatibility properties. As discussed

84

in Section 4.7, authors such as Demange et al. [DGS86] and Ausubel [Aus97, Aus00],

have proposed iterative auctions that compute both the e�cient allocation and Vickrey

payments for special-cases of the combinatorial allocation problem (CAP). In iBundle I

extend Bertsekas' primal-dual methodology to solve the CAP, without placing any re-

strictions on agent preferences, but for the moment without computing Vickrey payments

(see Chapters 6 and 7 for this extension). iBundle implements a primal-dual algorithm

CombAuction, which computes solutions to linear program formulations of the CAP

introduced in Bikchandani & Ostroy [BO99].

The extended auction, iBundle Extend&Adjust, implements a primal-dual algorithm,

VickAuction for a new linear program formulation of the Vickrey payments. VickAuc-

tion provably computes the e�cient allocation and Vickrey payments with best-response

information from agents. Computational results in Chapter 7 demonstrate that the experi-

mental auction, iBundle Extend&Adjust, which is an interpretation of primal-dual method

VickAuction, computes Vickrey payments over a suite of problem instances. A full proof

of the extended auction awaits a proof of termination of its �nal phase (see Chapter 7).

The outline of this chapter is as follows. Section 4.1 presents a brief description of

iBundle. Section 4.2 provides background on linear programming theory and primal-dual

algorithms. Section 4.3 relates primal-dual methods with allocation problems, and consid-

ers price-adjustment methods and competitive equilibrium. The English auction provides

a simple primal-dual example. Section 4.4 provides a hierarchy of linear programming for-

mulations for the combinatorial allocation problem. Section 4.5 also outlines the tractable

special-cases of the combinatorial allocation problem, and to provide practical interpreta-

tions as much as possible. This falls naturally within this chapter because the tractable

special cases can all be understood within linear programming theory.

Section 4.6 describes CombAuction, a primal-dual algorithm for the combinatorial

allocation problem. iBundle, introduced in the next chapter, is a straightforward auction

interpretation of CombAuction. Finally, Section 4.7 compares the characteristics and

properties of CombAuction and iBundle with earlier iterative auction mechanisms.

85

4.1 Overview: The iBundle Auction

iBundle [Par99, PU00a] is an ascending-price combinatorial auction, in which prices are

maintained on bundles of items and agents can bid for bundles of items directly. In this

section I give only a high-level description of the auction. Full details are presented in the

next chapter. The description here is included to give some context to the primal-dual

method, CombAuction, introduced to solve the CAP.

Allowing bids on bundles of items allows an agent to express a \I only want A if I

also get B" type of constraint, that is observed to be important in many applications (see

Chapter 1).

iBundle maintains an ask price, pi(S) � 0 for every bundle S � G and every agent

i 2 I. This is the minimal price that an agent must bid for that bundle in the current

round of the auction. The prices may be non-linear, pi(S) 6=
P

j2S pi(j), and may be non-

anonymous, pi(S) 6= pj(S). In practice it is not necessary to explicitly price every bundle,

prices are explicitly maintained on a subset of bundles (those which receive unsuccessful

bids) and can be computed on any bundle as necessary. The auction also maintains a

provisional allocation, S = (S1; : : : ; SI) in each round. This is adjusted across rounds in

response to agents' bids until the auction terminates, when it is implemented as the �nal

allocation.

The key components of iBundle are the bidding language, the winner-determination

rules, the price-update rules, and the termination conditions. Agents place exclusive-or

bids for bundles, e.g. S1 xor S2, to indicate than an agent wants either all items in

S1 or all items in S2 but not both S1 and S2. Each bid is associated with a bid price,

which must be at least the ask price for the bundle. The auctioneer collects bids and

computes a provisional allocation to maximize revenue given the bids. If every agent that

placed a bid receives a bundle the auction terminates. Prices are initially anonymous, with

pask;i(S) = pask;j(S) = p(S), but a simple rule introduces price discrimination dynamically,

as necessary to terminate with competitive equilibrium prices and an e�cient allocation.

The price on a bundle is increased to � > 0 above the highest bid price for the bundle from

any unsuccessful agent in the current round (an agent not in the provisional allocation).

iBundle terminates when every agent that bids at the current prices receives a bundle in

the provisional allocation.

The �nal prices are competitive equilibrium prices, and the �nal allocation e�cient, if

86

agents follow a myopic best-response bidding strategy, bidding for bundles that maximize

their utility given the prices in each round.

4.2 Linear Programming Theory

First, I provide a brief review of basic results in linear programming. See Papadimitriou

& Steiglitz [PS82] for a text book introduction, and Chandru's excellent survey papers

[CR99b, CR99a] for a modern review of the literature on linear programming and integer

programming.

Consider the linear program:

max cTx [P]

s:t: Ax � b

x � 0

where A is a m � n integer matrix, x 2 Rn is a n-vector, and c and b are n� and

m-vectors of integers. vectors are column-vectors, and notation cT indicates the transpose

of vector c, similarly for matrices. The primal problem is to compute a feasible solution

for x that maximizes the value of the objective function.

The dual program is constructed as:

min bT y [D]

s:t: AT y � c

y � 0

where y 2 Rm is a m-vector. The dual problem is to compute a feasible solution for y

that minimizes the value of the objective function.

Let VLP(x) = cTx, the value of feasible primal solution x, and VDLP(y) = bT y, the

value of feasible dual solution y.

The weak duality theorem of linear programming states that the value of the dual always

dominates the value of the primal:

87

Theorem 4.1 (weak-duality). Given a feasible primal solution x with value VLP(x)

and a feasible dual solution y with value VDLP(y), then VLP(x) � VDLP(y).

Proof. Solution x is feasible, so Ax � b. Solution y is feasible, so AT y � c.
Therefore, x � AT b and y � Ac, and cTx � cTAT b = bTAC � bT y, and P � D.

The strong duality theorem of linear programming states that primal and dual solutions

are optimal if and only if the value of the primal equals the value of the dual:

Theorem 4.2 (strong-duality). Primal solution x� and dual solution y� are a pair of

optimal solutions for the primal and dual respectively, if and only if x� and y� are feasible

(satisfy respective constraints) and VLP(x
�) = VDLP(y

�).

The strong-duality theorem of linear programming can be restated in terms of

complementary-slackness conditions (CS for short). Complementary-slackness conditions

expresses logical relationships between the values of primal and dual solutions that are

necessary and su�cient for optimality.

Definition 4.1 [complementary-slackness] Complementary-slackness conditions con-

strain pairs of primal and dual solutions. Primal CS conditions state xT (AT y� c) = 0, or

in logical form:

xj > 0) Ajy = cj (P-CS)

where Aj denotes the jth column of A (written as a row vector to avoid the use of

transpose). Dual CS conditions state yT (Ax� b) = 0, or in logical form:

yj > 0) Aix = bi (D-CS)

where Ai denotes the ith row of A.

The strong-duality theorem can be restated as the complementary-slackness theorem:

Theorem 4.3 (complementary-slackness). A pair of feasible primal, x, and dual solu-

tions, y, are primal and dual optimal if and only if they satisfy the complementary-slackness

conditions.

88

Proof. P-CS i� xT (AT y�c) = 0, and D-CS i� yT (Ax�b) = 0. Equating, and observ-

ing that xTAT y = yTAx, we have P-CS and D-CS i� xT c = yT b, or cTx = bT y. The LHS

is the value of the primal, VLP(x), and the RHS is the value of the dual, VDLP(y). By the

strong duality theorem, VLP(x) = VDLP(y) is a necessary and su�cient condition for the so-

lutions to be optimal.

4.2.1 Primal-Dual Algorithms

Primal-dual is an algorithm-design paradigm that is often used to solve combinatorial

optimization problems. A problem is �rst formulated both as a primal and a dual linear

program. A primal-dual algorithm searches for feasible primal and dual solutions that

satisfy complementary-slackness conditions, instead of searching for an optimal primal (or

dual) solution directly. Primal-dual can present a useful algorithm-design paradigm for

combinatorial optimization problems. Instead of solving a single hard primal solution, or

a single hard dual solution, a primal-dual approach solves a sequence of restricted primal

problems. Each restricted primal problem is often much simpler to solve than the full

primal (or dual) problem [PS82].

Primal-dual theory also provides a useful conceptual framework for the design of it-

erative combinatorial auctions. Prices represent a feasible dual solution, and bids from

agents allow a search for a primal solution that satis�es complementary-slackness con-

ditions. If the current solution is suboptimal there is enough information available to

adjust dual prices in the right direction. Complementary-slackness conditions provide the

key to understanding how it is possible to compute and verify optimal solutions with-

out complete information: it is su�cient to just verify that a feasible solution satis�es

CS conditions. Primal-dual algorithms are consistent with the decentralized information

inherent in distributed agent-based systems. Optimality reduces to a test of feasibility

and complementary-slackness, which is available from agent bids, rather than the direct

solution of a primal problem, which requires information about agent valuation functions.

A standard primal-dual formulation maintains a feasible dual solution, y, and computes

a solution to a restricted primal problem, given the dual solution. The restricted primal is

formulated to compute a primal solution that is both feasible and satis�es CS conditions

with the dual solution. In general this is not possible (until the dual solution is optimal),

89

and a relaxed solution is computed. The restricted primal problem is typically formulated

to compute this relaxed solution in one of two ways:

1. Compute a feasible primal solution x0 that minimizes the \violation" of

complementary-slackness conditions with dual solution y.

2. Compute a primal solution x0 that satis�es complementary slackness conditions with

dual solution y, and minimizes the \violation" of feasibility constraints.

Method (1) is more useful in the context of iterative auction design because it maintains

a feasible primal solution, which becomes the provisional allocation in the auction, i.e. a

tentative allocation that will be implemented only when the auction terminates. The

restricted primal problem can be solved as a winner-determination problem. I show that

computing the allocation that maximizes revenue given agent bids (the solution to winner-

determination) is a suitable method to minimize the violation of CS conditions between

the prices and the provisional allocation in each round iBundle. Prices in each round of

an auction de�ne the feasible dual solution, and agent best-response bids provide enough

information to test for complementary-slackness and adjust solutions towards optimality.

As discussed in the introduction to this chapter, I �rst assume myopic best-response,

but later justify this assumption with an extension to compute Vickrey payments at the

end of the auction in addition to the e�cient allocation (see Chapters 6 and 7).

Initial
Dual
Solution
(prices)

Compute

NO

x’

Terminate
Bids

Receive

(allocation)

Adjust Dual
Solution

y
(prices)

Feasible
SolutionPrimal

Do x’and

conditions?
satisfy CS

yYES

Figure 4.1: A primal-dual interpretation of an auction algorithm.

A primal-dual based auction method has the following form (see Figure 4.1):

90

1. Maintain a feasible dual solution (\prices").

2. Compute a feasible primal solution (\provisional allocation") to minimize violations

with complementary-slackness conditions given agents' bids.

3. Terminate if all CS conditions are satis�ed (\are the allocation and prices in com-

petitive equilibrium?")

4. Adjust the dual solution towards an optimal solution, based on CS conditions and

the current primal solution (\increase prices based on agent bids")

4.3 Allocation Problems

Let us consider the particular form of an allocation problem, in which there are a set of

discrete items to allocate to agents, and the goal is to maximize value. We assume quasi-

linear preferences, and use utility to refer to the di�erence between an agent's value for a

bundle and the price. The primal and dual allocation problems can be stated as follows:

Definition 4.2 [allocation problem: primal] The primal allocation problem is to al-

locate items to agents to maximize the sum value over all agents, such that no item is

allocated to more than one agent.

Definition 4.3 [allocation problem: dual] The dual allocation problem is to assign

prices to items, or bundles of items, to minimize the sum of (i) each agents' maximum

utility given the prices, over all possible allocations; and (ii) the maximum revenue over

all possible allocations given the prices.

Clearly, without information on agents' values the auctioneer cannot compute an op-

timal primal or an optimal dual (because of term (i) in the dual). However, under a

reasonable assumption about agents' bidding strategies (myopic best-response) the auc-

tioneer can verify complementary-slackness conditions between primal and dual solutions,

and adjust prices and the allocation towards optimal solutions.

An auction interpretation of the complementary-slackness conditions can be stated as

follows:

Definition 4.4 [allocation problem: CS conditions] The CS between a feasible primal

solution to an allocation problem, x, and a feasible dual solution, prices p, are:

91

(CS-1) Agent i receives bundles Si in the provisional allocation if and only if the bundle

maximizes its utility given the prices, and has non-negative utility.

(CS-2) The provisional allocation S = (S1; : : : ; SI) is the revenue-maximizing allocation

given the prices.

Left deliberately vague at this stage is the exact structure of the prices. In a combi-

natorial allocation problem these might need to be non-linear and non-anonymous prices

to support the optimal allocation. Similarly, the revenue-maximization concept must be

de�ned with respect to a particular linear program formulation. Note also that CS-2 is

not automatically satis�ed with a provisional allocation computed to maximize revenue

given agents' bids. CS-2 makes a stronger claim, that the provisional allocation must

maximize revenue over all possible allocations given the current ask prices, not just over

all allocations consistent with bids.

Primal-dual auction analysis requires the following assumption about agent strategies:

Definition 4.5 [myopic best-response] A myopic best-response bidding strategy is to

bid for all items or bundles of items that maximize utility at the current prices.

Best-response bids provide enough information to test CS-1, because the best-response

of an agent is precisely those bundles that maximize an agent's utility given the current

prices. For any feasible primal solution, the auctioneer can test CS-2 because that only

requires price information.

The restricted primal has a natural auction interpretation:

Definition 4.6 [auction restricted-primal problem] Given best response bids from each

agent allocate bundles to maximize revenue, breaking ties in favor of including more agents

in the provisional allocation.

Note well that a bundle is only allocated to an agent in the restricted primal prob-

lem if the agent bids for that bundle. This restriction ensures that CS-1 is satis�ed for

that agent, given the de�nition of myopic best-response. CS-2 is satis�ed with careful

price-adjustment rules, such that prices are increased \slowly enough" that the revenue-

maximizing allocation can always be computed from agent bids.

Given myopic best-response, the termination condition, which tests for complementary-

slackness between the provisional allocation and the prices, must check that CS-1 holds

92

for every agent. This is achieved when every agent to submit a bid receives a bundle in

the provisional allocation, i.e. in competitive equilibrium.

Our interest is in solving the CAP, which is most immediately formulated as an integer

program (see Section 4.4). In order to apply primal-dual methods it is essential that we

have a linear program formulation of the CAP. We must be careful enough to use a strong

enough formulation, such that the optimal solution is integral (0-1) and not fractional. The

ideal situation is illustrated in Figure 4.2. The auction implements a primal-dual algorithm

for a linear program that is strong enough to compute the optimal integer solution.

VIP
*

VLP

VDLP

Auction Round

V
a

lu
e

(integral)

satisfied.
slackness conditions
Complementary-

Figure 4.2: An auction-based primal-dual algorithm in which the linear program formulation is
strong enough to eliminate all fractional solutions.

In comparison, consider Figures 4.3 (a) and (b), which illustrate a primal-dual algo-

rithm and iterative auction method for a linear program that is not strong enough, and

admits optimal fractional solutions. The primal-dual algorithm algorithm terminates with

a fractional primal solution and value greater than the value of the best possible inte-

ger solution. The auction always maintains an integral primal solution (solving winner-

determination to compute the provisional allocation), but can terminate with a primal

solution that does not satisfy complementary-slackness conditions. Although the primal

solution is perhaps optimal, its optimality cannot be assessed without CS information.

4.3.1 Price Adjustment

Left unde�ned at the moment, and the challenging part of primal-dual auction design, are

the precise rules used to de�ne price updates. The goal is to use information from agents'

bids, and the current provisional allocation, to adjust prices towards an optimal dual

solution| that will support an optimal primal solution. Primal-dual methods traditionally

93

VLP

VDLP

VIP
*

Complementary-
slackness holds

Auction Round

V
al

ue

(a)

VIP
*

VDLP

VLP

Auction Round

V
al

ue

(integral)

(b)

Figure 4.3: Primal-dual algorithm (a) and Primal-dual auction method (b) in which the linear
program relaxation is too weak, and V �

LPR > V �

IP.

use the dual of the restricted primal to adjust the dual solution across iterations. A simpler

method in allocation problems is to increase prices on over-demanded items, or bundles of

items. The method can be explained both in terms of its e�ect on complementary-slackness

conditions and in terms of its e�ect on the value of the dual solution.

The idea is to increase prices to: (a) maintain CS-2 in the next round and (b) move

towards satisfying CS-1 for all agents.

Proposition 4.1 (progress). Progress is made towards satisfying CS-1 and CS-2 with

the provisional allocation and the ask prices if: (1) the auctioneer increases prices on one

or more bundles that receive bids in each round; and (2) the auctioneer increases prices

by a small enough increment that best-response bids from agents continue to maximize

revenue in the next round.

CS-1 holds whenever every agent that bids receives a bundle in the provisional alloca-

tion. This is trivially achieved for high enough prices because no agent will bid, but we

need to achieve this condition in combination with CS-2. The trick is to increase prices

just enough to maintain revenue-maximization from bids CS-2 across all rounds. This is

achieved in iBundle by ensuring that myopic agents continue to bid for bundles at the new

prices, i.e. increasing price on over-demanded bundles.

An alternative interpretation is that increasing prices on over-demanded items will

reduce the value of the dual, making progress towards the optimal solution, see Figure 4.4.

Recall that the value of the dual is the sum of the auctioneer's maximal revenue and each

94

agent's maximal utility at the current prices. A price increase will decrease the value of

the dual if the increase in maximal revenue from the price increase is less than the decrease

in total maximal utility summed across agents.

The auctioneer can achieve this e�ect of increasing revenue by less than the decrease in

agent utility by selecting over-demanded items, or bundles of items, on which to increase

the price. Suppose that two agents bid for bundle S1, and that both agents have at least

� > 0 more utility for that bundle than any other bundle at the current prices. Increasing

the price on over-demanded bundle S1 by � will decrease the maximal utility of both agents

by �, for a decrease in dual value of 2�. However, increasing the price on this one bundle

by � can increase the auctioneer's maximal revenue by at most �. The result is that the

net change in utility must a decrease of at least �.

VLP

VDLP
Complementary-
slackness holds

VIP
*

Auction Round

V
a

lu
e

Figure 4.4: Primal-dual interpretation of an ascending-price auction.

4.3.2 Competitive Equilibrium

The optimal primal and dual solutions in an allocation problem correspond to a classic

statement of competitive equilibrium.

Definition 4.7 [competitive equilibrium] Allocation S and prices p are in competitive

equilibrium when:

(a) every agent receives a bundle in its best-response (utility maximizing) set

(b) the allocation maximizes the revenue for the auctioneer at the prices

The allocation in competitive equilibrium is e�cient, by equivalence between compet-

itive equilibrium and primal-dual optimality:

Theorem 4.4 (competitive equilibrium e�ciency). An allocation S is e�cient if and

95

only if there exists competitive equilibrium prices p, for an appropriate type of prices (e.g.

linear, bundle, non-anonymous).

In the context of the combinatorial allocation problem Bikchandani & Ostroy [BO99]

have characterized the structure on prices required for the existence of competitive equi-

librium (and equivalently for integral solutions to linear program formulations of CAP).

These formulations are introduced in Section 4.4 and discussed at length.

In some problems it is necessary that prices are both non-linear (bundle prices) and

non-anonymous (di�erent prices for the same bundle to di�erent agents) to support a

competitive equilibrium solution.

Wurman & Wellman [WW99, WW00] propose an alternative de�nition of competitive

equilibrium, which is essentially complementary slackness condition CS-1 without CS-2.

This relaxed condition is su�cient for the existence of equilibrium prices even without

non-anonymous prices, but too weak to be able to claim that equilibrium prices imply an

e�cient allocation.

4.3.3 Example: The English Auction

The standard English auction illustrates the primal-dual framework for auction design. The

English auction is an ascending-price auction for single items, where the price increases as

long as more than one agent bids at the current price.

Let vi denote agent i's value for the item. The single-unit resource allocation problem

is:

max
X
i

vixi [IPsingle]

s:t:
X
i

xi � 1

xi 2 f0; 1g

where xi = 1 if and only if agent i is allocated the item, i.e. the goal is to allocate the

item to the agent with the highest value. This can be solved as a linear program, [LPsingle],

relaxing the integral constraint

96

max
X
i

vixi [LPsingle]

s:t:
X
i

xi � 1

xi � 0

and V �
LP = V �

IP, i.e. there is always an integral optimal solution to the relaxed problem.

The dual formulation, [DLPsingle], is

min � [DLPsingle]

s:t: � � vi; 8i

� � 0

The complementary-slackness conditions are

X
xi � 0) � = vi; 8i

� > 0)
X

xi = 1

The complementary-slackness conditions can be interpreted in terms of competitive

equilibrium conditions on the allocation and the prices. An allocation and prices in a

single-item auction are in competitive equilibrium, and the allocation is e�cient, when:

(i) the item is sold to an agent, that agent bids for the item at the price, and no other

agent bids for the item at the price.

or (ii) the item is sold to no agent, the price is zero, and no agent bids for the item.

It is straightforward to understand e�ciency in these cases: in (i) the agent with the

highest value receives the item; in (ii) no agent has a positive value for the item.

The English auction maintains price p on the item, initially p = 0. Agent i bids

whenever p < vi, and the provisional allocation sets xj = 1 for one of the agents that bids

in each round, and increases the price p whenever more than one agent bids.

Let the provisional allocation de�ne a feasible primal solution, and the price de�ne

dual solution � =
P

imaxf0; vi � pg+ p. This is feasible, � � maxf0; vi � pg+ p � vi for

all agents i.

97

Assume that agents follow a myopic best-response bidding strategy, bidding for the item

at the ask price whenever the price is below their value. The optimality of the English

auction can be understood in two di�erent ways:

� The English auction terminates with primal and dual solutions that satisfy CS-1 and

CS-2.

Clearly, CS-2 is satis�ed throughout the auction because the item is always allocated

to one of the agents. CS-1 is satis�ed when the auction terminates. Let j indicate

the only agent that bids at price p. Therefore vi � p � 0 for all agents i 6= j and

vj � p � 0 for agent j (because agents follow best-response bidding strategies), and

� =
P

imaxf0; vi � pg+ p = maxf0; vj � pg+ p = vj .

� The value of the dual strictly decreases in each round of the auction. Let m > 1

equal the number of agents that bid in each round of the auction except the �nal

round. For price increment �, the sum maximal utility to the agents decreases by m�

and the maximal revenue to the auctioneer increases by �, for a net change in � of

�(m� 1)�.

In fact, the �nal price in the English auction approaches the Vickrey payment (i.e. the

second-highest value) as the bid increment � ! 0. It follows that myopic-best response

is a rational sequential strategy for an agent, in equilibrium with myopic best-response

strategies from other agents (see Chapter 7 for a full discussion of the incentive properties

of iterative Vickrey auctions).

4.4 Linear Program Formulations for the Combinatorial Al-

location Problem

Primal-dual based auction methods require linear programming formulations of allocation

problems. Bikchandani & Ostroy [BO99] have formulated a hierarchy of linear programs for

the problem, introducing additional constraints to remove fractional solutions. Although

it is always possible to add enough constraints to a linear program relaxation to make the

optimal solution integral [Wol81a, Wol81b, TW81], the particular formulations proposed by

Bikchandani & Ostroy are interesting because the constraints have natural interpretations

as prices in the dual.

98

The hierarchy of linear program formulations, [LP1], [LP2], and [LP3], all retain the

set of integer allocations but prune additional fractional solutions. Each formulation in-

troduces new constraints into the primal, with the dual problems [DLP1], [DLP2], and

[DLP3] containing richer price structures. For example, in [DLP1] the prices on a bundle

are linear in the price of items, i.e. p(S) =
P

j2S p(j), where p(j) is the price of item j

in bundle S. Moving to [DLP2], the price on a bundle can be non-linear in the price on

items, and in [DLP3] the price on a bundle can be di�erent to di�erent agents. Bikchan-

dani & Ostroy prove that LP3 solves all CAP instances, and demonstrate the existence of

competitive equilibrium prices, even though they must sometimes be both non-linear and

non-anonymous.

Solving the CAP with the high-level linear program formulations is likely to be less

e�cient computationally than direct search-based methods applied to the integer program

formulation. Formulations [LP2] and [LP3] introduce an exponential number of additional

primal constraints, and dual variables, e�ectively enumerating all possible solutions to the

CAP. In comparison, search methods, such as branch-and-bound with LP-based heuristics,

solve the problem with implicit enumeration and pruning.

However the formulations are very useful in the context of mechanism design and

decentralized CAP problems. In Section 4.6 I present CombAuction, a primal-dual

algorithm for the CAP, which

(a) computes optimal primal and dual solutions without complete information about

agent valuation functions.

(b) computes optimal primal and dual solutions without complete enumeration of all

primal constraints and/or dual variables.

In fact most of the computation withinCombAuction occurs in winner determination,

which solves the restricted primal problem in each round, and winner-determination itself

is solved with a branch-and-bound search algorithm.

4.4.1 Integer Program Formulation

Introducing xi(S) to indicate that agent i receives bundle S the straightforward integer

program, [IP], formulation of the combinatorial allocation problem is:

max
xi(S)

X
S

X
i

xi(S)vi(S) [IP]

99

s:t:
X
S

xi(S) � 1; 8i (IP-1)

X
S3j

X
i

xi(S) � 1; 8j (IP-2)

xi(S) 2 f0; 1g; 8i; S

where S 3 j indicates a bundle S that contains item j. The objective is to compute the

allocation that maximizes value over all agents, without allocating more than one bundle

to any agent (IP-1) and without allocating a single item multiple times (IP-2). Let V �
IP

denote the value of the optimal allocation.

4.4.2 First-order LP Formulation

LP1 is a direct linear relaxation, which replaces the integral constraints xi(S) 2 f0; 1g with

non-negativity constraints, xi(S) � 0.

max
xi(S)

X
S

X
i

xi(S)vi(S) [LP1]

s:t:
X
S

xi(S) � 1; 8i (LP1-1)

X
S3j

X
i

xi(S) � 1; 8j (LP1-2)

xi(S) � 0; 8i; S

min
p(i);p(j)

X
i

p(i) +
X
j

p(j) [DLP1]

s:t: p(i) +
X
j2S

p(j) � vi(S); 8i; S (DLP1-1)

p(i); p(j) � 0; 8i; j

Prices p(j) on items j 2 G de�ne a feasible dual solution, with the substitution p(i) =

maxS

n
vi(S)�

P
j2S p(j)

o
.

Proposition 4.2 (�rst-order dual). The value of the �rst-order dual is the sum of the

maximal utility to each agent plus the total price over all items (this is the auctioneer's

maximal revenue).

100

A B AB

Agent 1 0 0 3
Agent 2 2� 0 2
Agent 3 0 2� 2

Table 4.1: Problem 1.

A B C AB BC AC ABC

Agent 1 60 50 50 200� 100 110 250
Agent 2 50 60 50 110 200 100 255
Agent 3 50 50 75� 100 125 200 250

Table 4.2: Problem 2.

The dual variables de�ne linear prices, the price for bundle S � G is p(S) =
P

j2S p(j).

From De�nition 4.7 the optimal dual solution de�nes competitive equilibrium prices if and

only if a partition of items exists at the prices that allocates each agent a bundle in its

utility-maximizing set and allocates every item with positive price exactly once.

Problem 1 in Table 4.1 can be solved with [LP1]; V
�
LP1

= VIP = 4. The optimal

allocation is x2(A) = 1 and x3(B) = 1, indicated by �. To see that VLP1 � 4, notice that

dual prices p(A) = p(B) = 1:6 gives a dual solution with value VDLP1 = 0+0:4+0:4+3:2 =

4. Remember that V �
LP1

� VDLP1 for all dual solutions by the weak-duality theorem of

linear programming. These are one set of competitive equilibrium prices.

However, in general the value V �
LP1

> V �
IP and the optimal primal solution makes

fractional assignments to agents. As an example of when [LP1] fails, consider Problem 2

in Table 4.2. In this problem V �
LP1

= 300 > V �
IP = 275. The primal allocates fractional

solution x1(AB) = 0:5; x2(BC) = 0:5 and x3(AC) = 0:5, which satis�es constraints (LP1-

1) because
P

S 3 j
P

i xi(S) � 1 for all items j 2 G. Prices p(A) = p(B) = p(C) = 100

solve the dual problem DLP1.

Kelso & Crawford [KC82] prove that gross-substitutes (GS) preferences are a su�cient

condition for the existence of linear competitive equilibrium prices, such that V �
LP1

= V �
IP.

To de�ne gross-substitutes preferences, let Di(p) de�ne the demand set of agent i at

prices p, i.e. the set of bundles that maximize its utility (value - price).

Definition 4.8 [gross-substitutes (GS)] For all price vectors p; p0 such that p0 � p, and

all S 2 Di(p), there exists T 2 Di(p
0) such that fj 2 S : pj = p0jg � T .

101

In words, an agent has GS preferences if an agent continues to demand items with the

same price as the price on other items increases. If preferences are also monotonic, such

that vi(S
0) � vi(S) for all S

0 � S, then GS implies submodular preferences.

Definition 4.9 [submodular preferences] Valuation function vi(S) is submodular if for

all S; T � G,

vi(S) + vi(T) � vi(S [T) + vi(S \ T)

Submodularity is equivalent to a generalized statement of decreasing returns:

Definition 4.10 [decreasing returns] Valuation function vi(S) has decreasing marginal

returns if for all S � T � G and all j 2 G,

vi(T)� vi(T n fjg) � vi(S)� v(S n fjg)

In other words, the value of an item increases as it is introduced to larger sets of items.

Subadditivity implies that the value for any bundle is no greater than the minimal sum of

values for a partition of the bundle.

In fact, gross-substitutes preferences de�ne the largest set of preferences that contain

unit-demand preferences (see De�nition 4.14) for which the existence of linear competitive

equilibrium prices can be shown [GS99].

The rest of this section introduces two alternative linear program formulations of CAP,

[LP2] and [LP3], due to Bikchandani & Ostroy [BO99].

4.4.3 Second-order LP Formulation

Introducing new constraints to the �rst-order linear program relaxation [LP1] of [IP] gives

a second-order linear program [LP2] with dual [DLP2]. The corresponding dual variables

to the new primal constraints are interpreted as bundle prices within an auction-based

primal-dual algorithm.

102

max
xi(S);y(k)

X
S

X
i

xi(S)vi(S) [LP2]

s:t:
X
S

xi(S) � 1; 8i (LP2-1)

X
i

xi(S) �
X
k3S

y(k); 8S (LP2-2)

X
k

y(k) � 1 (LP2-3)

xi(S); y(k) � 0; 8i; S; k

min
p(i);p(S);�

X
i

p(i) + � [DLP2]

s:t: p(i) + p(S) � vi(S); 8i; S (DLP2-1)

� �
X
S2k

p(S) � 0; 8k (DLP2-2)

p(i); p(S); � � 0; 8i; S

where k 2 K is a partition of items in set K, and k 3 S indicates that bundle S is repre-

sented in partition k. A partition is a feasible \bundling" of items, e.g. [A;B;C] or [AB;C],

etc., and K is the set of all possible partitions, e.g. K = f[A;B;C]; [AB;C]; [A;BC]; : : : ;

[ABC]g in Problem 2 (Table 4.2).

Constraints (LP2-2) and (LP2-3) replace constraints (LP1-1), and ensure that no more

than one unit of every item is allocated. The dual [DLP2] has variables p(i), p(S) and �,

which correspond to constraints (LP2-1), (LP2-2) and (LP2-3), and constraints (DLP2-1)

and (DLP2-2) correspond to primal variables xi(S) and y(k).

Dual variables p(S) can be interpreted as bundle prices, and with substitution p(i) =

max
S
fvi(S)� p(S)g, i.e. the maximal utility to agent i at prices p(S), and

� = maxk2K
P

S2k p(S), i.e. the maximal revenue to the auctioneer at prices p(S).

Proposition 4.3 (second-order dual). The value of the dual is the sum of the maximal

utility to each agent with bundle prices p(S) plus the auctioneer's maximal revenue over

all feasible (and non-fractional) allocations at the prices.

103

A B AB

Agent 1 0 0 3�

Agent 2 2 2 2

Table 4.3: Problem 3.

The dual variables correspond to bundle prices, p(S), and the optimal dual solution

de�nes competitive equilibrium prices (by De�nition 4.7) if there is an allocation that gives

each agent a bundle in its utility-maximizing set at the prices, and maximizes revenue to

the auctioneer over all possible allocations.

With the additional constraints [LP2] solves Problem 2. Allocation x1(AB) = x2(BC)

= x3(AC) = 0:5 is not feasible in [LP2] because it is not possible to allocate y(k1) =

y(k2) = y(k3) = 0:5 for k1 = [AB;C]; k2 = [AC;B] and k3 = [AB;C] without violating

constraint (LP2-3) and without this we violate constraints (LP2-2). [LP2] solves Problem

2, with V �
LP2

= V �
IP = 275. An optimal dual solution is given by bundle prices p =

(50; 60; 75; 190; 200; 200; 255), with total agent maximal utility 10 + 0 + 0 and maximal

auctioneer revenue 75 + 190 = 265, i.e. V �
DLP2

= 275.

However, Problem 3 is an example that [LP2] does not solve. The value of the optimal

primal solution is V �
LP2

= 3:5, which is greater than the value of the optimal feasible

allocation, V �
IP = 3. The primal allocates fractional bundles x1(AB) = 0:5 and x2(A) =

x2(B) = 0:5, which satis�es constraints (LP2-2) and (LP2-3) with y(k1) = y(k2) = 0:5 for

partitions k1 = [AB; ;] and k2 = [A;B]. Prices p(A) = 1:5; p(B) = 1:5; p(AB) = 3 solves

the dual problem DLP2.

4.4.4 Third-order LP Formulation

Introducing new constraints to the second-order linear program relaxation [LP2] of [IP]

gives a third-order linear program [LP3] with dual [DLP3]. The corresponding dual vari-

ables to the new primal constraints are interpreted as non-anonymous, or discriminatory

bundle prices, with di�erent prices for the same bundle to di�erent agents.

104

max
xi(S);y(k)

X
S

X
i

xi(S)vi(S) [LP3]

s:t:
X
S

xi(S) � 1; 8i (LP3-1)

xi(S) �
X

k3[i;S]

y(k); 8i; S (LP3-2)

X
k

y(k) � 1 (LP3-3)

xi(S); y(k) � 0; 8i; S; k

min
p(i);pi(S);�

X
i

p(i) + � [DLP3]

s:t: p(i) + pi(S) � vi(S); 8i; S (DLP3-1)

� �
X

[i;S]2k

pi(S) � 0; 8k (DLP3-2)

p(i); pi(S); � � 0; 8i; S

where k 3 [i; S] indicates that agent-partition k 2 K 0 contains bundle S designated

for agent i. Variable y(k) in [LP3] corresponds to an agent-partition k, where the set

of agent-partitions in Problem 3 is K 0 = f[(1; A); (2; B)]; [(1; B); (2; A)]; [(1; AB); (2; ;)];

[(1; ;); (2; AB)]. It is important to note that each agent can receive at most one bundle in

a particular agent-partition.

The dual variables pi(S) that correspond to primal constraints (LP3-2) are interpreted

as non-anonymous bundle prices, price pi(S) is the price to agent i for bundle S. As before,

substitutions p(i) = max
S
fvi(S)� pi(S)g, i.e. the maximal utility to agent i at individual

prices pi(S), and � = maxk2K0

P
[i;S]2k pi(S), i.e. the maximal revenue to the auctioneer

at prices pi(S) given that it can allocate at most one bundle at prices pi(S) to each agent

i.

Proposition 4.4 (third-order dual). The value of the dual to [LP3] is the sum of

the maximal utility to each agent with bundle prices pi(S) plus the auctioneer's maximal

revenue over all feasible allocations at the prices. In this case an allocation is feasible if it

allocates no more than one bundle to each agent.

105

The dual variables correspond to non-anonymous bundle prices, pi(S), and the optimal

dual solution de�nes competitive equilibrium prices if there is an allocation of items that

simultaneously gives each agent a bundle in its utility-maximizing set and maximizes the

auctioneer's revenue, over all possible allocations that sell at most one bundle to each

agent.

Bikchandani & Ostroy [BO99] prove this important theorem:

Theorem 4.5 (integrality). The optimal solution to linear program [LP3] is always

integral, and therefore an optimal solution to CAP, with V �
LP3

= V �
DLP3

= V �
IP.

Therefore, there are always competitive equilibrium bundles prices for CAP, although

these prices must be non-anonymous in some problems.

Consider Problem 3. Allocation x1(AB) = 0:5 and x2(A) = x3(B) = 0:5 is not feasible

in [LP3] because y(k1) = y(k2) = y(k3) = 0:5 for k1 = [(1; AB); (2; ;)]; k2 = [(1; A); (2; B)]

and k3 = [(1; B); (2; A)] violates constraint (LP3-3), but without this constraints (LP3-

2) are violated. In this problem V �
LP3

= V �
IP = 3. To see this, consider bundle prices

p1 = (0; 0; 2:5) and p2 = (2; 2; 2), for which the value of the dual is 0:5 + 0+ 2:5 = 3. This

proves that VLP3 � 3 by the weak-duality theorem of linear programming.

I will return to this hierarchy of linear-program formulations of the CAP in Section

4.6, when I introduce the CombAuction primal-dual algorithm. CombAuction con-

structs feasible primal and dual solutions to an appropriate linear program formulation,

and adjusts the solution until complementary-slackness conditions are also satis�ed.

4.5 Tractable Combinatorial Allocation Problems

The CAP is equivalent to the maximum weighted set packing problem (SPP), a well-

studied problem in the operations research literature. In SPP there are a set of items,

and a set of subsets each with non-negative weights, and the goal is to pack the items

into sets to maximize total value, without using any item more than once. CAP can

be reduced to SPP by introducing an additional \dummy item" for the XOR bids from

each agent. de Vries & Vohra [dVV00] also note two closely related problems, the set

partitioning problem (SPA), in which the goal is to select a set of subsets with minimal

106

cost that include all items at most once, and the set covering problem (SCP), in which

the goal is to select a set of subsets with minimal cost that include all items at least once.

Set covering problems �nd applications in railway crew-scheduling and airline scheduling,

where items are ights/trains, and bundles represent possibility sets for individual workers.

A considerable amount is known about the complexity of this class of problems.

A classic technique in combinatorial optimization theory is to relax an integer program

to a linear one. Many tractable special cases follow by considering the conditions on the

natural relaxation of the integer program that provide integer solutions. For example, one

su�cient condition is that the linear program is integral, such that all extremal feasible

points are integral, i.e. 0-1. In this case the integrality requirement can be dropped and

the problem solved as a linear program in polynomial time. Restrictions on the constraint

matrix, corresponding to restrictions on the kinds of subsets permitted in CAP, can provide

this integrality property [dVV00].

Additional restrictions, for example on the size of bids, or on the valuation structure of

bids, can also lead to tractable special cases. Given the connection with linear programming

relaxations this is a good place to review known tractable special-cases in the literature.

The results here are drawn from Rothkopf et al. [RPH98], de Vries & Vohra [dVV00],

Nisan [Nis00], and earlier work due to Kelso & Crawford [KC82].

It is important to understand the characteristics of tractable special-cases of CAP

because this knowledge can be leveraged within mechanism design, achieving tractable

and strategy-proof solutions (see Section 3.2.1 in Chapter 3).

Restrictions on Structure of Bundles

Table 4.4 presents tractable instances of CAP that follow from restrictions on the types

of bundles on which agents can submit bids. de Vries & Vohra note that the linear-

ordering (or consecutive ones) condition implies that the constraint matrix satis�es total

unimodularity,1 and that the nested-hierarchical structure implies that the constraint ma-

trix is balanced.2 Nisan [Nis00] provides a proof-by-induction that the linear program has

integral solutions in these cases, and also describes a method to combine two bid structures

with the integral property into a single structure that retains the property.

1A matrix satis�es total unimodularity if the determinant of every square submatrix is 0, 1, or -1.
2A 0-1 matrix is balanced if it has no square submatrix of odd order with exactly two 1's in each row

and column.

107

linear-order ordering G = (g1; g2; : : : ; gn) [RPH98]
every bid is for a contiguous sequence

circular ones also allow bids of form gng1g2, etc. [RPH98]
nested-hierarchical for every two subsets of items S1; S2 [RPH98]

that appear as part of any bid they are either
disjoint or one contains the other

or-singletons bids for single-items -
single-item bids one item -
bids for pairs of items cardinality constraint on size of bids [RPH98]
multi-unit, decreasing returns identical items, each agent has decreasing value for [Nis00]

each additional item

Table 4.4: Tractable structure on bids

non-decreasing and supermodular \increasing returns" [dVV00]
two-types of agents
gross-substitutes \decreasing-returns" [KC82]
unit-demand agents only want one item [Kuh55]
linear-additive agents have linear values across items [CK81]

Table 4.5: Constraints on valuation functions

Restrictions on Values on Bundles

Table 4.5 presents tractable instances of CAP that follow from restrictions on the value

structure of agents bids. de Vries & Vohra [dVV00] note that the non-decreasing and su-

permodular preferences condition again provides the linear program relaxation of the CAP

with integral solutions. Gross-substitutes were de�ned earlier in De�nition 4.8 and have

an intuitive interpretation as decreasing-returns, and also imply submodular preferences.

Definition 4.11 [supermodular preferences] Bid function bi(S) is supermodular if for

all S; T � G,

bi(S) + bi(T) � vi(S [T) + vi(S \ T)

The equivalence of supermodularity and increasing returns is well-known in the litera-

ture [GS99].

Definition 4.12 [increasing returns] Bid function bi(S) has increasing marginal returns

if for all S � T � G and all j 2 G,

bi(T)� vi(T n fjg) � bi(S)� v(S n fjg)

108

Note carefully that we can have any number of di�erent types of submodular valua-

tion functions, one from each agent, but only at most two di�erent types of supermodular

functions if the CAP problem is to be tractable. It is easier to solve a maximization prob-

lem, such as the CAP, with submodular (convex) objective functions than supermodular

(concave) objective functions.

Exact Solutions

Rothkopf et al. [RPH98] also suggest a dynamic programming algorithm for CAP, which

has run-time complexity independent of the number of bids actually placed, but quickly

becomes intractable for large numbers of items, with scaling property O(3m) in the number

of items m. Branch-and-bound search methods, either with AI-based heuristics [San99,

FLBS99], or with linear-program based heuristics [ATY00] have also been studied for

general CAP instances.

Approximate Solutions

The CAP is di�cult to approximate, at least within a worst-case multiplicative factor.

There is no polynomial time algorithm with a reasonable worst-case guarantee [Has99].

Approximation algorithms in the literature without this guarantee include a local-

search approach [HB00], a simple \relax and round" method [Nis00], and iterative methods

[FLBS99]. CombAuction can itself be viewed as an approximate algorithm for CAP.

CombAuction provides a worst-case bound on the di�erence between the value of its

solution and the value of the optimal solution. This error-term increases linearly with the

minimal bid increment, which de�nes the rate at which prices are increased across rounds,

while the number of rounds in the auction is inversely-proportional to the minimal bid

increment. A larger bid increment reduces the number of rounds in the auction, reducing

the number of winner-determination problems the auction must solve, in return for a loss

in worst-case e�ciency. Experimental results in Section 5.5.1 show the e�ectiveness of this

approach.

109

4.6 CombAuction: A Primal-Dual Method for CAP

CombAuction is a primal-dual algorithm for the linear program models of CAP intro-

duced in Section 4.4. The algorithm terminates with optimal primal and dual solutions to

an appropriate level in the linear-program hierarchy, selecting the price structure dynam-

ically to support the optimal allocation in equilibrium. In the next chapter I describe the

iBundle auction, which is an auction-based implementation of CombAuction for agents

that follow myopic best-response bidding strategies.

In CombAuction the prices are linear and anonymous in special cases, non-linear

and anonymous (bundle prices) in many problems, and non-linear and non-anonymous

when that is necessary to strengthen the dual formulation of the CAP. The decision about

anonymous vs. non-anonymous pricing is made dynamically during the algorithm, while

non-linear prices are introduced whenever an agent bids for a bundle of items instead of

individual items.

4.6.1 Description

Let pask(S) � 0 denote anonymous ask prices on bundles S � G. Set the initial ask prices

to zero, and use only anonymous prices at the start of the auction. The prices represent a

feasible dual solution in each round of the algorithm. Non-anonymous prices are denoted

pask;i(S), for the price on bundle S to agent i, and initially pask;i(S) = pask(S) for all agents

and all bundles.

Let Ŝ = (Ŝ1; : : : ; ŜI) denote the provisional allocation, computed from agents' bids in

each round to maximize revenue, where agent i is provisionally allocated bundle Ŝi. Let

p+i (S) denote personalized ask prices to agent i, computed as follows:

p+i (S) =

8<
:

pask;i(S) , if pask;i(S) � vi(S) and S 6= Ŝi

pask;i(S)� � , otherwise

The personalized ask price is the price that agent i can actually bid for bundle S. In

words, an agent must bid the ask price unless the ask price is greater than its value or the

agent receives the bundle in the current allocation, in which case it can bid � below the

ask price.

Figure 4.5 describes CombAuction. The basic variation, also known as CombAuc-

tion(d), introduces non-anonymous prices whenever agent bids are not \safe". Two other

110

CombAuction

input: agent values vi(�)
stop = false; Ŝ = ;; pask(�) = 0; anon = I;
while (: stop) f

update personalized prices p+i (S) for every agent i;
compute best-response set BRi(p

+
i) for every agent i;

compute partition of items Ŝ = (Ŝ1; : : : ; ŜI) to maximize revenue,

subject to Ŝi 2 BRi(p
+
i).;

if ((BRi(p
+
i) = ;) or unchanged(BRi(p

+
i)) or (Ŝi 6= ;)) for every i

stop = true;

else f
for every j with ((BRj(p

+
j) 6= ;) and (Ŝj = ;)) f

if ((safe(BRj(p
+
j))) and (j 2 anon))

pask = anon update(BRj(p
+
j);pask);

else f
pask;j = nonanon update(BRj(p

+
j);pask;j);

anon = anon n fjg ;

g
g

g
g
output: final allocation Ŝ, final prices pask;i(Ŝi).

Figure 4.5: The CombAuction algorithm. Special cases: CombAuction(2) sets safe(BRj(p
+

j))

true in every iteration; CombAuction(3) sets safe(BRj(p
+

j)) false in every iteration.

important variations include CombAuction(2), in which the safe condition is always as-

sumed true, and CombAuction(3), in which the safe condition is always assumed false.

Labels (D), (2), and (3) correspond to \dynamic" non-anonymous pricing, second-order

pricing (i.e. non-linear), and third-order pricing (i.e. non-linear and non-anonymous).

Prices are initially zero on all bundles, and identical across all agents such that pask;i(S)

= pask(S) for all i and all S. At the start of each iteration each the new personalized prices

p+i are computed for each agent. Next, each agent i 2 I reports its best-response set

BRi(p
+
i). The best-response set is the set of all bundles and corresponding personalized

prices that maximize utility to within � > 0:

BRi(p
+
i) = f(S; p+i (S)) j vi(S)� p+i (S) + � � max(u�i (p

+
i); 0) g

where u�i (p
+
i) = maxS vi(S) � p+i (S), i.e. the maximal utility over all bundles at the

current (personalized) prices. Constant � > 0 is the minimal bid increment, and controls

111

the rate at which prices are increased across rounds.

The provisional allocation Ŝ = (Ŝ1; : : : ; ŜI), is computed from agents' bids to maximize

revenue:

max
(S1;::: ;SI)

X
i2I

p+i (Si) (WD problem)

s:t: (Si; p
+
i (Si)) 2 BRi(p

+
i)

Si \ Sj = ;; 8i; j

Prices are increased based on bids from agents not in the current provisional allocation.

In each round the agents i 2 anon receive anonymous prices, pask(S), and the agents

i =2 anon receive non-anonymous prices, pask;i(S), which can charge a di�erent price for

the same bundle to di�erent agents. Initially every agent receives anonymous prices, and

anon = I.

The price-update step depends on whether an agent's bids are safe. The safe condition

is de�ned on a set of bundles S as follows:

safe(S) = :disjoint(S) or (jSj = 1)

where disjoint(S) is true if there is at least one pair of bundles S; T 2 S that are

non-overlapping, such that S \ T = ;, and jSj = 1 denotes a best-response set with only

one bundle.

Price increases based on unsuccessful but safe bids from an agent j in anon are com-

puted with update rule anon update(BRj(p
+
j);pask), which increases the price pask(S) to

p+j (S) + � on all bundles S in agent j's best-response bid set, where constant � > 0 is

the minimal bid increment. This price increase a�ects all agents in anon . Notice that

if the agent's personalized bid price is � below the current ask price, for example if an

agent is repeating a bid for a bundle in the provisional allocation, then the price on this

unsuccessful bid does not increase the price on the bundle.

In the �rst round that an agent's bids are unsuccessful and fail the safe condition the

agent is removed from the anonymous set and faces individual prices in all future rounds.

Price increases to an agent not in anon are based only on its own bids, and its bids never

directly a�ect the prices to agents that remain in anon . Individual ask prices are initially

set to the current anonymous prices. Price update rule nonanon update(BRj(p
+
j);pask;j)

112

increases the price pask;j(S) to agent j to p
+
j (S)+ �, for every bundle S in its best-response

set. Again, this will only increase the price if the personalized price is not discounted by

� from the ask price.

CombAuction terminates when every agent with a non-empty best-response set either

receives a bundle in the provisional allocation:

BRi(p
+
i) 6= ;) Ŝi 6= ; condition [T1]

or submits the same best-response bids in two successive rounds (condition [T2]).

CombAuction(2) is the special-case of CombAuction for which the safety condi-

tion is assumed true in all rounds and all agents remain in the anonymous set. Com-

bAuction(d) is the regular version of CombAuction, described above, in which non-

anonymous prices are introduced dynamically. CombAuction(3) is a variation in which

the safety condition is assumed false in all rounds and all agents face individual prices in

every round, i.e. the set anon = ; from round 1.

Discussion

The personalized prices ensure that price increases do not \overshoot" the values of agents

that receive a bundle in the e�cient allocation. Suppose for example that the allocation

problem has a single item, and there are two agents with the same value for the item. It

is essential that when the agents eventually drive the price above their value, one of the

agents, i.e. the agent with the item in the �nal provisional allocation, is able to repeat a

bid for the item at the previous price| just before it was forced to high.

Allowing agents to submit a best-response bid set, that can include more than one

bundle, and is accurate to within �, is also important in solving some problems. Consider

for example that agents 1 and 2 both want A or B, and a third agent that wants AB.

Allowing agents 1 and 2 to bid for both A and B, but only receive one of A or B in the

allocation, solves the coordination problem, in which agents 1 and 2 must be allocated

di�erent items to out-bid the third agent.

4.6.2 Optimality Result

We �rst state an optimality result for the variations onCombAuction with non-anonymous

prices.

113

(CS1a) Agents maximize utility:
S�i 6= ;) S�i = argmax

Si
vi(Si)� pi(Si)

true in every round because of best-response

(CS1b) Agents not in allocation happy:
S�i = ;) max

Si
vi(Si)� pi(Si) � 0

true in �nal round because of termination condition

(CS2) Auctioneer maximizes revenue:
S� = arg max

(S1;::: ;SI)

P
pi(Si)

true in every round because of price-update rules

Table 4.6: Proof outline for CombAuction

Theorem 4.6 (CombAuction optimality). (Optimality) CombAuction(d) and

CombAuction(3) compute an allocation with value within 3minfjGj; jIjg� of optimal.

for jGj items, jIj agents, and � bid increment.

Corollary 4.1 CombAuction(d) and CombAuction(3) compute the e�cient allo-

cation and competitive equilibrium prices for a small enough bid increment �.

Clearly as � gets smaller than the smallest �nite di�erence in agents' values for bundles

this converges to the optimal solution. Table 4.6 provides a sketched proof, while a full

proof is provided below.

Recall that within CombAuction it is assumed that agents provide best-response

information in response to prices in each iteration. Corresponding statements of the e�-

ciency of iBundle, the auction interpretation of CombAuction, make assumptions about

agent behavior explicit (see Chapter 5).

Algorithm CombAuction(2), without the safety check and without non-anonymous

prices, is also provably optimal in the following (su�cient) conditions:

Theorem 4.7 (anonymous optimality). CombAuction(2) is an optimal primal-dual

algorithm for CAP with anonymous prices in the following special-cases:

(a) agents have additive or superadditive values, i.e. v(S [S0) � v(S) + v(S0) for non-

conicting bundles S and S0; (b) agents demand bundles from the same partition of items,

114

e.g. all bids are for pairs of matching shoes, or single items; (c) the demand set of bundles

for agent i, the bundles it bids for over the auction, is disjoint from the demand set of

agent j, for all agents i 6= j; (d) bids from each agent are always overlapping; (e) bids from

each agent are always for a single bundle.

A proof of conditions (a{c) follow quite easily from the proof of the optimality of

CombAuction(d). When these conditions hold the auctioneer is sure to maximize revenue

from bids in the next round of the auction without introducing non-anonymous prices, even

in the case that bids from agents break the \safety" condition.3 In case (b) the auction

reduces to a simultaneous ascending-price auction on bundles in a �xed partition of items.

The assignment problem, in which agents have unit-demand for items, is a special case of

(b).

Conditions (d{e) follow trivially from the main result, because the safety condition

holds in all rounds under these conditions. Single-minded bidders [LOS99] satisfy (e).

Bidders that demand a core set of items with a selection from an additional set of items

satisfy (d); consider for example a bidder in the FCC spectrum auction that needs New

York, and then would like as many of the geographically neighboring licenses as possible.

4.6.3 Proof: CombAuction(2)

The optimality proof of CombAuction is inspired by a proof due to Bertsekas [Ber87]

for Auction, an iterative primal-dual algorithm with an auction interpretation for the

assignment problem.

I �rst prove optimality forCombAuction(2), in the special-case that the best-response

bid sets are safe in all rounds of the auction. The proof of optimality for CombAuction(d)

and CombAuction(3) follows from an equivalence between CombAuction(2) with a

dummy item introduced for each agent and appended to its bids, and CombAuction(3).

In outline, I show that CombAuction implements a primal-dual algorithm for [LP2]

and [DLP2], and computes integral solutions to [LP2] when agents follow myopic best-

response bidding strategies and bids are safe.

3For example, in the case of superadditive values whenever an agent bids for a compatible pair of bundles
S and S0 that violate the safety condition it must be the case that p(S[S0) > p(S)+P (S0). This condition
is su�cient to show that the auctioneer can continue to maintain (CS2) and maximize revenue from agent
bids in the next round.

115

First, I show that the allocation and prices in each round of the auction correspond to

feasible primal and dual solutions. Then, I show that the primal and dual solutions satisfy

complementary-slackness conditions when the auction terminates.

In a particular round, let Ŝi denote the provisional allocation to agent i, and pask(S)

denote the ask price for bundle S.

Feasible primal. To construct a feasible primal solution assign xi(Ŝi) = 1 and

xi(S
0) = 0 for all S0 6= Ŝi. Partition y(k�) = 1 for k� = [Ŝ1; : : : ; ŜjIj], and y(k) = 0

otherwise.

Feasible dual. To construct a feasible dual solution let dual variable p(S) equal the

ask price, pask(S), on bundle S in CombAuction. The following values for p(i) and �

then satisfy constraints (DLP-1) and (DLP-2):

p(i) = max

�
0; max

S�G
fvi(S)� p(S)g

�
(4.1)

� = max
k2K

X
S2k

p(S) (4.2)

The value p(i) can be interpreted as agent i's maximum utility at the ask prices, and

� can be interpreted as the maximum revenue that the auctioneer can achieve at the ask

prices (irrespective of the bids placed by agents).

It is not necessary to explicitly compute p(i), instead we will prove that allocation Ŝ

and prices pask(S) correspond to primal and dual solutions that satisfy complementary

slackness conditions when the auction terminates.4

Complementary-slackness conditions. The �rst primal CS condition, CS-1 is:

xi(S) >0) p(i) + p(S) = vi(S) (CS-1)

Given (4.1) it states that all agents must only receive a bundle that maximizes utility

at the current prices. CS-1 is maintained throughout the auction because bundles are only

allocated according to bids from agents, and agents place best-response bids.

Based on the best-response bidding strategy, we have

vi(Ŝi)� p+i (S) + � � max

�
0;max

S0
(vi(S

0)� p+i (S
0))

�

4This is just as well because the values vi(S) remain private information to agents during in CombAuc-
tion, and best-response is the only mode of interaction with an agent.

116

for any bundle Ŝi allocated to agent i. Then, because pask(S) � p+i (S) � pask(S) � �,

p(S) = pask(S), and xi(Si) = 1 implies that agent i bid for bundle Si, we have by case

analysis that:

xi(S) > 0) vi(S)� p(S) + 2� �max

�
0; max

S0
(vi(S

0)� p(S0))

�

Finally, substituting for p(i) from (4.1), we prove �-CS-1:

xi(S) > 0) p(i) + p(S) � vi(S) + 2� (�-CS-1)

The second primal CS condition, CS-2, is:

y(k) > 0) � �
X
S2k

p(S) = 0 (CS-2)

Given (4.2) it states that the allocation must maximize the auctioneer's revenue at

prices p(S), over all possible allocations and irrespective of bids received from agents.

We prove that the provisional allocation, computed to maximize revenue based on

agents' bids, is su�cient to maintain CS-2 in all rounds.

The following de�nition is useful:

Definition 4.13 [strict positive price] An ask price pask(S) is strictly positive if the

price is greater than the ask price for every bundle contained in S, i.e. pask(S) > pask(S
0)

for all S0 � S.

To see understand how CS-2 can hold in all iterations, notice:

(i) all bundles with strictly-positive prices receive bids in every round.

Agent i with one of the highest losing bid for bundle S in round t will continue to

bid for bundle S in rounds t + 1. Let uti(S) denote agent i's utility for bundle S in

round t. Then, ut+1
i (S) = uti(S)� � because the ask price for S increases by �. Also,

uti(S) � uti(S
0) for all bundles S0 for which agent i did not bid in round t. Hence,

with uti(S
0) � ut+1

i (S0) because the price of S0 can only increase in round t + 1, we

have ut+1
i (S) � ut+1

i (S0)��, and a bid for S0 can never exclude a bid for S from agent

i's best-response bids in round t+1. A similar argument can be made for the utility

of bundles that did receive a bid from agent i in round t.

117

(ii) all bundles in revenue-maximizing allocations receive bids from di�erent agents.

No single agent causes the price to increase to its current level on a pair of compatible

bundles. This follows because price updates are due to safe bids from agents. It is

clear that this cannot happen in a single round. Furthermore, it can be shown by

induction across rounds that an agent with a myopic best-response bidding strategy

cannot increase the price of compatible bundles over a sequence of rounds without

submitting unsafe bids in a single round.

Taking (i) with (ii), we have:

X
i2I

p+i (Ŝi) = max
k2K

X
Si2k

p+i (Si)

Removing personalized prices, because pask(S) � p+i (S) � pask(S)� �, we have:

X
i2I

pask(Ŝi) + minfjGj; jIjg� � max
k2K

X
Si2k

pask(Si)

otherwise the optimal solution to maxk2K
P

Si2k
pask(Si) is a better solution with per-

sonalized prices p+i (S) than Ŝ = (Ŝ1; : : : ; ŜI).

Finally, substituing for � from (4.2), and because y(k) > 0 implies k = k�, and with

p(S) = pask(S), the partition representing the provisional allocation, we prove �-CS-2:

y(k) > 0) � �
X
S2k

p(S) � minfjGj; jIjg� (�-CS-2)

The �rst dual CS condition, (CS-3), is:

p(i) > 0)
X
S�G

xi(S) = 1 (CS-3)

Given (4.1) it states that every agent with positive utility for some bundle at the current

prices must receive a bundle in the allocation. (CS-3) is only satis�ed during the auction

for agents that receive bundles in the provisional allocation, but we prove (CS-3) for all

agents when CombAuction terminates.

We immediately have (CS-3) for the agents that satisfy termination condition [T1],

because the agents receive a bundle in the provisional allocation. Similarly, we immediately

118

have (CS-3) for the agents that do not submit a best-response bid, because that implies that

they have negative utility for all bundles at the prices. Finally, for agents in termination

condition [T2] that receive no bundle but submit the same bids in two successive rounds;

these agents must bid at � below the ask price and have values just below ask prices

otherwise prices would increase and their bids would change.

Finally, the last pair of dual CS conditions, (CS-4) and (CS-5), are:

p(S) > 0)
X
i2I

xi(S) =
X

k2K;S2k

y(k) (CS-4)

� > 0)
X
k2K

y(k) = 1 (CS-5)

The assignment y(k�) = 1 for the partition k� = [Ŝ1 : : : ŜjIj] trivially satis�es the

right-hand side of both conditions.

Termination. By contradiction, assume the auction never terminates. Informally,

[T2] implies that one or more agents must submit di�erent bids in successive rounds,

but with myopic best-response bidding this implies that prices must increase and if the

auction does not terminate than one or more agents must eventually bid above their values

for bundles| a contradiction with myopic best-response.

Putting it all together.

Finally, we prove the worst-case error term in Theorem 4.6 when the auction terminates.

Let S� = (S�1 ; : : : ; S
�
jIj) denote the �nal allocation.

Summing �-CS-1 over all agents in the �nal allocation, and with p(i) = 0 for agents

not in the allocation by (CS-3),

X
i2I

p(i) �
X
i2I

vi(S
�
i)�

X
i2I

p(S�i) + 2minfjGj; jIjg�

because an allocation can include no more bundles than there are items or agents.

Introducing �-CS-2, because y(k�) = 1 for �nal allocation S�i , then � �
P

i2I p(S
�
i) +

minfjGj; jIjg�.

Adding these two equations, we have:

� +
X
i2I

p(i) �
X
i2I

vi(S
�
i) + 3minfjGj; jIjg�

119

The left-hand side is the value of the �nal dual solution, VDLP, and the �rst-term on

the right-hand side is the value of the �nal primal solution, VLP. We know V �
LP � VDLP,

where V �
LP is the value of the optimal primal solution, by the weak-duality property of

linear programs.

Thus, because VDLP � VLP + 3minfjGj; jIjg�, it follows that

VLP � V �
LP � 3minfjGj; jIjg�

Finally, because the primal solution is integral (by construction during CombAuc-

tion), it is a feasible and optimal solution to the combinatorial resource allocation prob-

lem.

4.6.4 Proof: CombAuction(d) and CombAuction(3)

A simple transformation of agents' bids reduces any problem in CombAuction(d) or

CombAuction(3) to a safe problem in CombAuction(2). Bertsekas [Bet92] proposes a

similar transformation method to derive an Auction method for combinatorial optimiza-

tion problems such as max-ow and the transportation problem, reducing problems to the

Assignment problem.

In CombAuction a simple transformation of agents' bids allows CombAuction(3)

to be implemented within CombAuction(2) without price-discrimination, and ensures

that agents' bids remain safe throughout the auction.

Whenever bids from agent i are not safe in CombAuction(2) we can simulate the

price-update rule in CombAuction(3) by introducing a new dummy item that is speci�c

to that agent, call it xi. This item is concatenated by the auctioneer to all bids from agent

i in this round and all future rounds. It has the following e�ects:

1. The outcome of winner-determination, or the allocative e�ciency of the auction, is

unchanged because no other agent bids for item xi.

2. Agent i's bids are always safe because every bid includes item xi, and no pair of bids

is compatible.

3. The price increases due to bids from agent i are isolated to that agent in all future

rounds because all price increases are for bundles that include item xi.

120

The optimality of CombAuction(3) follows immediately from the optimality of Com-

bAuction(2) without price discrimination.

4.7 Earlier Primal-Dual Auction Methods

Prior to iBundle there was no method to terminate in competitive equilibrium in the

general combinatorial allocation problem (CAP). Table 4.7 summarizes the progress in

iterative auction design over the past two decades. Each contribution relaxes assumptions

on agent preferences and/or strengthens the equilibrium analysis of the auction. Bidding

languages di�er in terms of whether agents can bid on items or bundles, whether agents

can submit single or multiple bids, and the logic used to combine multiple bids. Prices

di�er in terms of whether individual items or bundles are priced, and whether prices are

anonymous or non-anonymous.

Name Assumptions Price Bid Update outcome
structure structure method

CK81 linear-additive items OR-items greedy CE
KC82 GS items one bundle greedy CE

Ber79{87 unit-demand items one item greedy CE
DGS86 unit-demand items XOR-items minimal Vickrey
Aus97 homog subadditive one price one bundle clinch Vickrey
Aus00 GS items one bundle clinch & unclinch Vickrey

n+ 1 auctions
GS00 GS items XOR-bundle minimal min CE
Wur00 monotone bundles XOR-bundle minimal -

iBundle(2) safe bundles XOR-bundle greedy CE
iBundle(d) monotone bundles XOR-bundle greedy CE

non-anonymous
Adjust monotone bundles XOR-bundle greedy min CE

non-anonymous
Extend&Adjust monotone bundles XOR-bundle greedy (Vickrey)

non-anonymous

Table 4.7: Primal-dual auction methods.

All auctions terminate with e�cient allocations, but achieve di�erent levels of

robustness-to-manipulation. Vickrey payments provide more robustness-to-manipulation

than min CE prices, which provide more robustness than CE prices. Termination with

Vickrey payments makes myopic best-response a Nash equilibrium of the auction [GS00].

Termination with competitive equilibrium prices provides some incentive-compatibility, at

121

least in the last round of the auction. Minimal CE prices often coincide with Vickrey pay-

ments, but otherwise might be imagined to provide \intermediate" incentive-compatibility

properties between that of any CE outcome and the Vickrey outcome.

Computing adjusted prices after termination with iBundle andAdjust (see Chapter 7),

labeled (Adjust) in Table 4.7, implementsminimal CE prices. These prices support Vickrey

payments for both unit-demand and gross-substitutes agent preferences, i.e. capturing all

known previous iterative Vickrey auctions for the CAP problem. Moreover, I believe

that the extended auction, iBundle Extend&Adjust, is signi�cantly more powerful. I

conjecture that the extended auction is an iterative Vickrey auction for all CAP instances.

The relationship between the �nal prices in an auction and an auction's robustness to

manipulation is discussed in detail in Chapters 6 and 7.

The main structural di�erences across auctions are in the bidding-languages, the prices,

and the price-update rules. Beyond that, with the exception of Ausubel [Aus97, Aus00],

the auctions share the following essential steps:

(a) announce prices and a provisional allocation

(b) receive myopic best-response bids from agents

(c) look for a provisional allocation that satis�es every agent

(d) increase prices on over-demanded items (or bundles) if no solution is found

The auctions di�er in the method used to adjust prices across rounds, i.e. the choice

of overdemanded set. Price update methods are either greedy or minimal. In a greedy

update rule the price is increased on all over-demanded items (or bundles). In a minimal

update rule the price is increased on the smallest set of over-demanded items (or bundles).

Prior to the iBundle Extend&Adjust method, the usual approach to compute Vickrey

payments was to implement minimal price-updates in each round [DGS86, GS00] of the

auction. Minimal price updates are designed to adjust towards minimal CE prices, which

are equivalent to Vickrey payments in many problems [GS99]. The dual solution that

maximizes agent utility and minimizes auctioneer revenue corresponds to the minimal

competitive equilibrium solution. In iBundle Extend&Adjust prices are increased beyond

minimal CE prices, but adjusted back towards minimal CE prices, and Vickrey payments,

after termination.

122

4.7.1 Assumptions on Agent Preferences

The methods of Bertsekas [Ber79, Ber81, Ber88] and Demange et al. [DGS86] assume

unit-demand preferences, in which each agent demands at most one item:

Definition 4.14 [unit-demand] Agent i's valuation

vi(S) = max
j2S

vi(j)

The allocation problem for unit-demand preferences is known as the assignment prob-

lem, with the goal to assign a single item to each agent to maximize value.

Crawford & Knoer [CK81] assume linear-additive agent preferences.

Definition 4.15 [linear-additive] Agent i's valuation

vi(S) =
X
j2S

vi(j)

Kelso & Crawford [KC82], Gul & Stacchetti [GS00], and Ausubel [Aus00] assume that

agents have gross-substitutes (GS) preferences. Gross-substitutes states that if the prices

were increased from p to p0 then the agent would continue to demand any item whose

price did not increase (see De�nition 4.8). Unit-demand preferences and linear-additive

preferences are special cases of GS.

Ausubel's [Aus97] ascending-price auction assumes multiple identical (homogeneous)

items and subadditive preferences:

Definition 4.16 [subadditive] Valuation function vi(m), for m � 0 units of an item,

is subadditive if the marginal value for each additional item is (weakly) decreasing, i.e. if

vi(n+ 2)� vi(n+ 1) � vi(n+ 1)� vi(n) for n � 0 units.

Finally, in iBundle, and in AkBA [WW00], the only restriction on agent preferences is

that they are monotone:

Definition 4.17 [monotone] Valuation function vi(S) is monotone if vi(S1) � vi(S2)

for all S1 � S2, i.e. free-disposal of additional items.

123

4.7.2 Relating to Primal-Dual Methods

Bertsekas [Ber79, Ber81, Ber88] was the �rst to make an explicit connection between

primal-dual algorithms and auction mechanisms for combinatorial optimization problems.

Auction is a primal-dual based method to solve the assignment problem, in which agents

have unit-demand preferences. Although Auction has a natural auction interpretation,

with agents bidding for their favorite item in each round, there is no consideration of agent

incentives in Bertsekas' work. His motivation was to develop new algorithms to solve prob-

lems in parallel environments, although experimental analysis showed good performance

on single processors. See [Ber87] for a text book introduction to the Auction algorithm,

and [Ber90] for a tutorial.

Bertsekas has also proposed variants of his Auction algorithm for other combinatorial

optimization problems, including the transportation problem [BC89], a variation of assign-

ment with multiple identical items, and the minimal cost ow problem [Ber86]. Bertsekas

[Bet92] has recently provided a uni�ed framework of this large body of work, transforming

each optimization problem into the assignment problem.

The work of Demange et al. [DGS86] is important, as it was the �rst to consider agent

incentives and demonstrate an iterative auction procedure to compute Vickrey payments in

the assignment problem. TheDGS procedure was derived in the context of a linear program

formulation for Vickrey payments due to Leonard [Leo83]. Sankaran [San94] appears to

provide a primal-dual interpretation of DGS. Recently, Bikchandani et al. [BdVSV01]

provide an alternative primal-dual interpretation of DGS, with respect to a new linear

program formulation of the CAP.

Although primal-dual analysis is not explicit in the work of [CK81, KC82, DGS86,

Aus97, Aus00, GS00] a primal-dual explanation can be provided for an appropriate linear

programming model [BdVSV01].

Ausubel's auctions [Aus97, Aus00] are quite innovative. In Ausubel [Aus97] the auction

maintains one explicit price, but is able to compute multiple prices, one for each agent,

that equal the Vickrey payments. Ausubel describes a \clinching" process, whereby the

price for items is locked-in during the course of the auction. Bikchandani & Ostroy [BO00]

give a primal-dual algorithm and linear program for Ausubel's [Aus97] homogeneous good

auction. Bikchandani et al. [BdVSV01] propose an alternative derivation based on a

network path planning formulation. The clinching rule is reinterpreted as a discount from

124

a �nal clearing price in the auction.

Recently Ausubel [Aus00] proposes a complex auction procedure to compute Vickrey

payments with GS agent preferences. Ausubel maintains one price for each item, i.e. linear

prices, but actually must run I+1 auctions (a main auction, and one without each agent in

turn) to compute Vickrey payments. The auction's theoretical contribution is signi�cant

because it has been observed [GS00] that no single set of linear competitive equilibrium

prices can support Vickrey payments with GS agent preferences. Note however that there

is a set of non-linear (and perhaps non-anonymous) competitive equilibrium prices that

support the Vickrey payments with GS preferences [BdVSV01].

Gul & Stacchetti [GS00] state that no dynamic mechanism can reveal su�cient infor-

mation to implement the Vickrey mechanism with GS preferences. Ausubel's method is

outside the spirit of their negative result because of its reliance on multiple auctions. Simi-

larly, my work on iBundle escapes this negative result with non-linear and non-anonymous

prices on items. The �nal price adjust step might also be outside of the spirit of their

focus on \monotonic" price adjustment. iBundle with Adjust will provably compute

the e�cient allocation and Vickrey payments for GS agent preferences, based on myopic

best-response information from agents to an ascending sequence of prices.

Wurman's Ascending k-Bundle Auction (AkBA) [WW00] family of iterative combina-

torial auctions also maintain explicit prices on bundles of items, and were designed with

a generalization of the DGS [DGS86] auction in mind. In each round of AkBA Wurman

uses a linear program to increase (and sometimes decrease) prices. A1BA, thought to be

the most promising of the family, computes the maximal prices that solve a restricted dual

problem in each round.

125

Chapter 5

iBundle: An Iterative Combinatorial

Auction

In this chapter I introduce the iBundle ascending-price combinatorial auction, which fol-

lows quite directly from the primal-dual algorithm CombAuction for the combinatorial

allocation problem. The best-response information provided by agents in CombAuction

has a natural interpretation as a utility-maximizing bidding strategy for a myopic agent,

i.e. an agent that takes the current prices as �xed and does not look beyond the current

round.

Even without the added incentive properties that are inherited from the Vickrey-Clarke-

Groves mechanism via Extend&Adjust (see Chapter 7) the contribution of iBundle is sig-

ni�cant. It is the �rst iterative auction to provably terminate with an e�cient allocation

for a reasonable agent bidding strategy, without any restrictions on agents' valuation func-

tions. We make no assumptions about agent valuation functions, other than monotonicity

(or free-disposal). The main design decisions in iBundle are:

� Exclusive-or bids over bundles of items.

� A simple price-update rule with minimal consistency requirements on prices across

di�erent bundles.

� A dynamic method to determine when non-anonymous prices are required to price

the e�cient allocation in competitive equilibrium.

Myopic best-response need not be an agent's optimal sequential strategy in iBundle,

and the basic auction design is not strategy-proof like the GVA. This is addressed in

Chapter 7 with Extend&Adjust, a method to keep iBundle open for a second phase and

126

compute Vickrey payments.

The basic auction procedure is described for an exclusive-or bidding language over

items. However, as described in Section 5.6, there are natural extensions to more expressive

languages for particular domains

Experimental results con�rm the e�ciency of iBundle across a set of combinatorial

allocation problems from the literature. The auction computes e�cient solutions, even

with quite large bid increments. Results also demonstrate that non-anonymous prices

are only important above 99% allocative e�ciency. Information revelation in iBundle

is measured for a simple metric, that considers the degree to which agents reveal their

complete valuation function via their bids during the auction. iBundle is shown to have

scalable performance, only requiring agents to reveal a small amount of information in easy

problems.

The auctioneer in iBundle solves one winner-determination problem in each round,

compared to one for each agent in the �nal allocation in the GVA. Although the problem

of computing a provisional allocation in each round remains NP-hard the problem instances

in iBundle are much smaller than in the GVA because the agents only bid for a small subset

of bundles in each round. In addition, a number of tricks allow speed-ups:

(a) we can use cached solutions across rounds to speed-up solving a sequence of related

winner-determination problems;

(b) we can make trade-o�s between allocative e�ciency and winner-determination time

by adjusting the speed with which prices are increased in the auction;

(c) we can introduce approximation algorithms with a simple bid monotonicity property,

and still maintain incentives for the same myopic bidding strategy.

Computational results demonstrate an order-of-magnitude speed-up over the VCG

mechanism at 99% allocative e�ciency, with the same combinatorial optimization al-

gorithm to solve winner-determination problems in both mechanisms. An approximate

winner-determination algorithm also proves useful. iBundle can often achieve greater than

90% e�ciency with negligible computation using a simple greedy algorithm in each round.

The outline of this chapter is as follows. The �rst section gives a full description of

iBundle, including the bidding language, price update rules, and winner-determination

rules. Section 5.2 states the main theoretical results, which follow from the optimality

127

proofs for CombAuction. Section 5.3 introduces the experimental methods: agent mod-

els, problem sets, winner-determination algorithm, etc. The experimental results are split

over two sections. Section 5.4 is concerned with the e�ciency and information revelation

properties of iBundle, and based around Parkes [Par99]. Section 5.5 is concerned with the

winner-determination complexity and communication properties, and based around Parkes

& Ungar [PU00a]. Section 5.6 outlines special cases of iBundle for restricted bidding lan-

guages. Finally, Section 5.7 compares iBundle with earlier iterative combinatorial auction

designs.

5.1 Auction Description

iBundle has three variations, iBundle(2), iBundle(d) and iBundle(3), which di�er in their

price update rules.1 The iBundle(d) variation introduces price discrimination dynamically,

only as required to support the e�cient allocation in competitive equilibrium. It has prov-

able allocative e�ciency for myopic best-response strategies. Each variation implements

the associated CombAuction variation when agents follow myopic best-response strate-

gies. The rules make iBundle as robust as possible against non-myopic agent strategies.

For example, one rule states that an agent must repeat its bid (at the same or greater

price) in the next round for any bundle it receives in the provisional allocation. This rule

only restricts non-myopic strategies because an agent with a myopic best-response strategy

would always want to repeat its bid for a bundle that does not increase in price, because

the prices only increase on other bundles and never decrease.

Recall that G denotes the set of items to be auctioned, I denote the set of agents, and

S � G denote a bundle of items. The auction proceeds in rounds, indexed t � 1. We

describe the types of bids that agents can place, and the allocations and price updates

computed by the auctioneer.

Bids. Agents can place exclusive-or bids for bundles, e.g. S1 xor S2, to indicate

than an agent wants either all items in S1 or all items in S2 but not both S1 and S2.

Agent i associates a bid price ptbid;i(S) with a bid for bundle S in round t, non-negative by

de�nition. The price must either be within � of, or greater than, the ask price announced

by the auctioneer (see below). Parameter � > 0 de�nes the minimal bid increment, the

1I will sometimes use iBundle both to refer to the family of auctions in general, and iBundle(d) in
particular.

128

minimal price increase in the auction. Agents must repeat bids for bundles in the current

allocation, but can bid at the same price if the ask price has increased since the previous

round. An agent can also bid � below the ask price for any bundle in any round| but

then it cannot bid a higher price for that bundle in the future. This allows an agent to bid

for a bundle priced slightly above its value.

Winner-determination. The auctioneer solves a winner-determination problem in

each round, computing an allocation of bundles to agents that maximizes revenue. The

auctioneer must respect agents' XOR bid constraints, and cannot allocate any item to

more than one agent. The provisional allocation becomes the �nal allocation when the

auction terminates. Ties are broken in favor of assigning bundles to more agents, and then

at random, except when the same bids are received in two successive rounds when the

auctioneer selects the same allocation (and the auction terminates).

Prices. The price-update rule generalizes the rule in the English auction, which is

an ascending-price auction for a single item. In the English auction the price is increased

whenever two or more agents bid for the item at the current price. In iBundle the price on

a bundle is increased when one or more agents that do not receive a bundle in the current

allocation bid at (or above) the current ask price for a bundle. The price is increased to �

(the minimal bid increment) above the greatest failed bid price. The initial ask prices are

zero.

The auctioneer announces a new ask price, ptask(S) in round t, for all bundles S that

increase in price. Other bundles are implicitly priced at least as high as the greatest

price of any bundle they contain, i.e. pask(S
0) � pask(S) for S

0 � S. These ask prices are

anonymous, the same for all agents.

Price discrimination. In some problems the auctioneer introduces price discrimi-

nation based on agents' bids, with di�erent ask prices to di�erent agents, when this is

necessary to achieve an optimal allocation. A simple rule dynamically introduces price-

discrimination (or non-anonymous prices) on an agent-by-agent basis, when an agent sub-

mits bids that are not safe. As in CombAuction, safe bids are de�ned as:

Definition 5.1 [safe bids] An agent's bids are safe if the agent is allocated a bundle in

the current allocation, or it does not bid at or above the ask price for any pair of compatible

bundles S1; S2, such that S1 \ S2 = ;.

129

When an agent's bids are not safe the agent receives individual ask prices, pask;i(S), in

future rounds. Individual prices are initialized to the current general prices, ptask;i(S) =

ptask(S), and increased to � above the agent's bids in future rounds that the agent receives no

bundle in the provisional allocation. Intuitively, even though bids for compatible bundles

S1 and S2 from a single agent i are unsuccessful, it remains possible that bids for the

bundles from two di�erent agents can succeed at the same price because the XOR bid

constraint prevents the auctioneer accepting multiple bids from agent i.

Termination. The auction terminates when every agent that bids either [T1] receives

a bundle in the provisional allocation, or [T2] repeats the same bids in two consecutive

rounds.

5.1.1 A Myopic Best-Response Bidding Strategy

iBundle computes an optimal allocation with myopically rational agents that play a best

(utility-maximizing) response to the current ask prices and allocation in the auction. The

agents are myopic in the sense that they only consider the current round of the auction.

Let vi(S) denote agent i's value for bundle S, and assume vi(;) = 0 and free disposal

of items, so that vi(S
0) � vi(S) for all S

0 � S. Consider a risk-neutral agent, with a quasi-

linear utility function ui(S) = vi(S) � p(S) for bundle S at price p(S). Further, assume

that agents are indi�erent to within a utility of ��, the minimal bid increment. This is

reasonable as �! 0.

By de�nition, a myopic agent bids to maximize utility at the current ask prices (taking

an � discount when repeating a bid for a bundle in the provisional allocation or bidding for

a bundle priced just above its value). The myopic best-response strategy is to submit an

XOR bid for all bundles S that maximize (to within �) utility ui(S) at the current prices.

This maximizes the probability of a successful bid for bid-monotonic WD algorithms.

5.1.2 Discussion

Unlike earlier auction designs for the combinatorial allocation problem, iBundle permits

both non-linear prices (i.e. prices on bundles not equal to the sum of prices on items) and

non-anonymous prices (i.e. di�erent price for the same bundle to di�erent agents). Given

that competitive equilibrium is a central solution concept in e�cient auction design, and

that both non-linear and non-anonymous prices are required for competitive equilibrium

130

in some CAP problem instances, this appears essential to the e�ciency of iBundle [BO99].

iBundle is the �rst iterative auction to terminate with the e�cient allocation in the general

CAP problem for a reasonable agent bidding strategy, in this case myopic best-response.

iBundle also terminates in competitive equilibrium, such that the allocation simultaneously

maximizes the auctioneer's revenue and every agent's utility at the �nal prices.

The other main feature of the price-update rules in iBundle is that only weak con-

sistency is enforced across prices. Prices may be subadditive or superadditive, the only

requirement is that they satisfy a simple monotonicity requirement:

pi(S1) � pi(S2) , if S1 � S2

for bundles S1 and S2. Additional consistency rules fail to characterize competitive equi-

librium prices in some CAP problem instances.

Allowing agents to bid for bundles of items avoids the exposure problem identi�ed

in [BCL00] for auctions that do not allow combinatorial bids, for example simultaneous

ascending-price auctions. The exposure problem occurs when an agent loses its bid on

one-or-more items in a bundle and is left with an incomplete bundle. Bundle bids allow

agents to make explicit statements about contingencies, for example a bid on bundle AB

states \I only want A if I also get B".

Exclusive-or bids are not compact representations of an agent's demand in some prob-

lems, for example when an agent has a linear-additive valuation function (see Section

3.2.2). We can derive price-update rules for other bid languages [Par99]. For example, the

auctioneer can convert OR bids into equivalent XOR bids by creating a new \dummy"

agent to submit an XOR bid for each bundle that receives an OR bid from an agent (see

Section 5.6).

Non-linear prices can require enforcement, for example to prevent the possibility of

arbitrage in which a third-party pro�ts from subadditive prices on bundles (p(S1 [S2) <

p(S1) + p(S2)) by purchasing bundles to be \disassembled" and sold for pro�t. Similarly,

with subadditive prices a bidding cartel can form to take advantage of bundle discounts,

and this can also distort the e�ciency of the mechanism. A single agent might try to

avoid superadditive prices, with p(S1 [S2) > p(S1) + p(S2), by entering the auction under

multiple pseudonyms and purchasing smaller bundles for \assembly" after purchase.

In addition, the variations of iBundle with discriminatory prices, e.g. pi(S) 6= pj(S) for

agents i; j, may require an auctioneer to prevent agents entering under multiple pseudonyms.

131

ABC
$10

D
$5

AB
$5

CD
$5

ABC
$10

D
$5

AB
$5

CD
$5

ABC
$10

D
$5

CD
$5

ABC
$10

D
$5

AB
$5

(a) (b)

(c) (d)

AB
$5 $10

$10 $10

Price discriminateCD
$5$10

Figure 5.1: Auction scenarios.

Methods of enforcement include: prevent the transfer of items between agents in an af-

termarket (e.g. the airline industry); and prevent agents from entering an auction under

multiple pseudonyms, for example through cryptographic message authentication and sig-

nature techniques.

5.1.3 Example Auction Scenarios

Figure 5.1 shows four di�erent auction scenarios that illustrate winner-determination and

price-updates. In each scenario, bundles ABC, CD, D and AB each receive a bid from

some agent, but the scenarios di�er in the agents that submit the bids. The `boxes'

indicate XOR bids from the same agent, and the `circles' indicate the allocation selected

by the auctioneer to maximize revenue. Price increases are indicated with an `arrow'. The

minimal bid increment � = 5. Notice that the bid prices for bundles are consistent, such

that p(ABC) � p(AB) and p(CD) � p(D). This must be maintained in iBundle.

The auctioneer selects the same revenue-maximizing allocation in scenarios (a), (b)

and (d), allocating bundles ABC and D to two di�erent agents. In (c) the same agent

bids for bundle ABC and D and the auctioneer must select another allocation, because

it must respect the XOR bid constraint. Allocation D and AB is chosen in preference to

ABC because it includes more agents.

In (a) the auction terminates because the revenue-maximizing allocation includes a bid

from every agent that bids. In (b) the auction does not terminate because the agent that

132

bids (AB; $5) is not happy. The ask price for AB is increased to 5 + �, the minimal bid

increment, in the next round. Scenario (c) is similar, except that the provisional allocation

is di�erent, and the price is increased on CD in the next round. In (d) the bids from the

agent that receives no bundle in the provisional allocation are not safe because bundle CD

and AB are compatible. The auctioneer introduces individual prices for this agent in the

next round. The ask price remains unchanged for the agents in the provisional allocation,

but ask prices increase to 5 + � for bundles CD and AB to the third agent.

5.1.4 Worked Examples

Consider Problem 4 in Table 5.1, in which agent 1 wants either A or B, and has value 2

for each, and agent 2 wants only A and B, and has value 3 for AB. The e�cient allocation

is to allocate AB to agent 1. Table 5.2 illustrates the ask prices, allocation, and bids from

agents in each round of iBundle(2). The bid increment is � = 0:5. Notice that agent 1

bids � below the ask price in round 4 because it repeats a bid for a bundle in the current

allocation, and agent 2 takes a discount in round 11 because the ask prices are greater than

its values. The provisional allocation in each round is indicated �. The auction terminates

with the optimal allocation [1; AB] in round 11 because it receives the same bids as in

round 10. The �nal prices are subadditive, in fact as � ! 0 the �nal prices approach

p(A) = p(B) = 2 = p(AB). The ask price on AB remains within � of the maximum (and

not the sum) of the prices on A and B because agent 2 bids for both A and B and the

auctioneer cannot sell multiple bundles to the same agent.

A B AB

Agent 1 0 0 3�

Agent 2 2 2 2

Table 5.1: Problem 4

There are no linear (i.e. prices on items) that support the e�cient allocation in Problem

4 in competitive equilibrium. Actually, there are not even any non-linear and anonymous

prices that support the e�cient allocation in competitive equilibrium. For examples, prices

p(AB) = p(A) = p(B) = 2:1 are not in competitive equilibrium with allocation [1; AB]

because the auctioneer wants to sell A and B separately to maximize revenue. Non-linear

and non-anonymous prices, such as p1(A) = p1(B) = 0; p1(AB) = 2:5 and p2(A) = p2(B) =

p2(AB) = 2:1 are required to support the e�cient allocation in competitive equilibrium.

133

Round Prices Bids Allocation Revenue
A B AB Agent 1 Agent 2

1 0 0 0 (AB, 0)� (A, 0) (B, 0) (AB, 0) [1, AB] 0
2 0.5 0.5 0.5 (AB, 0) (A, 0.5)� (B, 0.5) (AB, 0.5) [2, A] 0.5
3 0.5 0.5 0.5 (AB, 0.5)� (A, 0.5) (B, 0.5) (AB, 0.5) [2, A] 0.5
4 1 1 1 (AB, 0.5) (A, 1) (B, 1)� (AB, 1) [2, B] 1
5 1 1 1 (AB, 1) (A, 1) (B, 1)� (AB, 1) [2, B] 1
6 1 1 1.5 (AB, 1.5)� (A, 1) (B, 1) (AB, 1.5) [1, AB] 1.5
7 1.5 1.5 2 (AB, 1.5) (A, 1.5) (B, 1.5) (AB, 2)� [2, AB] 2
8 1.5 1.5 2 (AB, 2)� (A, 1.5) (B, 1.5) (AB, 2) [1, AB] 2
9 2 2 2.5 (AB, 2) (A, 2)� (B, 2) (AB, 2) [2, A] 2
10 2 2 2.5 (AB, 2.5)� (A, 2) (B, 2) (AB, 2) [1, AB] 2.5
11 2.5 2.5 2.5 (AB, 2.5)� (A, 2) (B, 2) (AB, 2) terminates.

Table 5.2: iBundle(2) on Problem 4, Bid incr. � = 0:5. Provisional allocations indicated *.

It is interesting that iBundle(2) terminates with the e�cient allocation in Problem 4

even without non-anonymous prices. In fact, safety fails in many rounds, for example in

rounds 3, 6, 8 and 10, and iBundle(d) would introduce a separate set of prices for agent

2. The anonymous prices combined with the winner-determination rule in each round of

iBundle(2), which prevents the auctioneer selling A and B to agent 2, simulate the e�ect

of non-anonymous competitive equilibrium prices| essentially the allocation [1; AB] does

become the revenue-maximizing solution for the auctioneer because it is unable to sell both

A and B simultaneously.

A B AB

Agent 1 0 0 3
Agent 2 2� 0 2
Agent 3 0 2� 2

Table 5.3: Problem 5

Let us now consider Problem 5 in Table 5.3, in which the e�cient allocation is to

allocate A to agent 2 and B to agent 3. Linear prices are su�cient to support the optimal

allocation in competitive equilibrium in this problem, for example p(AB) = p(A)+p(B) =

1:6 + 1:6 = 3:2. Table 5.4 illustrates the progress of iBundle(2). The �nal prices in this

case are approximately linear, and as � ! 0, the ask prices approach p(A) = p(B) = 1:5

and p(AB) = 3. In this case a successful bid for AB must be at least the sum (not the

maximum) of the bid prices for A and B, because di�erent agents| agents 2 and 3 |bid

for A and B. This explains why the ask price for AB remains within � of the sum of the

134

Round Prices Bids Allocation Revenue
A B AB Agent 1 Agent 2 Agent 3

1 0 0 0 (AB, 0) (A, 0)� (AB, 0) (B, 0)� (AB, 0) [2, A], [3, B] 0
2 0 0 0.5 (AB, 0.5)� (A, 0) (AB, 0.5) (B, 0) (AB, 0.5) [1, AB] 0.5
3 0.5 0.5 1 (AB, 0.5) (A, 0.5)� (AB, 1) (B, 0.5)� (AB, 1) [2, A], [3, B] 1
4 0.5 0.5 1 (AB, 1) (A, 0.5)� (AB, 1) (B, 0.5)� (AB, 1) [2, A], [3, B] 1
5 0.5 0.5 1.5 (AB, 1.5)� (A, 0.5) (B, 0.5) [1, AB] 1.5
6 1 1 1.5 (AB, 1.5) (A, 1)� (AB, 1.5) (B, 1)� (AB, 1.5) [2, A], [3, B] 2
7 1 1 2 (AB, 2) (A, 1)� (B, 1)� [2, A], [3, B] 2
8 1 1 2.5 (AB, 2.5)� (A, 1) (B, 1) [1, AB] 2.5
9 1.5 1.5 2.5 (AB, 2.5) (A, 1.5)� (AB, 2) (B, 1.5)� (AB, 2) [2, A], [3, B] 3
10 1.5 1.5 3 (AB, 3) (A, 1.5)� (B, 1.5)� [2, A], [3, B] 3
11 1.5 1.5 3.5 (AB, 3) (A, 1.5)� (B, 1.5)� terminates.

Table 5.4: iBundle(2) on Problem 5, Bid incr. � = 0:5. Provisional allocations indicated *.

ask prices for A and B throughout the auction.

Notice that bid safety is never violated by the bids from an unsuccessful agent in any

round of iBundle in Problem 5, providing direct evidence that non-anonymous prices are

not required for a competitive equilibrium outcome.

5.2 Theoretical Results

We can make an immediate claim about the e�ciency of iBundle with agents that fol-

low myopic best-response strategies, based on the analysis of the primal-dual algorithm

CombAuction in the previous chapter. See Parkes & Ungar [PU00a] for a direct proof.

Recall that jGj is the number of items, jIj is the number of agents, and � is the minimal

bid increment.

Theorem 5.1 (optimality). iBundle terminates with an allocation that is within

3minfjGj; jIjg� of the optimal solution, for best-response agent bidding strategies.

The auction is optimal as the bid increment approaches zero because the error-term

goes to zero.

As described earlier, the optimality follows from a primal-dual analysis: the provisional

allocation is always a feasible primal solution, the prices a feasible dual solution, and

complementary-slackness conditions hold on termination.

135

In a simpler variation, iBundle(2), the auctioneer never tests for bid-safety and never

introduces price discrimination.

Theorem 5.2 (anonymous optimality). iBundle(2) terminates with an allocation that

is within 3minfjGj; jIjg� of the optimal solution when bids are safe, for best-response agent

bidding strategies.

As noted in the context of CombAuction (Theorem 4.7), special cases on agent pref-

erences for which iBundle(2) remains e�cient, include the following:

(1) Every agent demands di�erent bundles

(2) Agents have additive or superadditive values, i.e. v(S [S0) � v(S) + v(S0) for non-

conicting bundles S and S0

(3) The bundles that receive bids throughout the auction are from a single partition of

items, e.g. bids are for pairs of matching shoes or individual items.

5.3 Experimental Methods

Experimental results support the theoretical claims about the allocative e�ciency of

iBundle. Results also demonstrate that iBundle continues to perform well with quite large

bid increments, and without price discrimination. The performance of iBundle is tested on

randomly generated problems sets and with myopic best-response agent bidding strategies.

5.3.1 Metrics

Given allocation S = (S1; : : : ; SI) we compute the following metrics:

[E�ciency] Allocative e�ciency, e� (S), is measured as the ratio of the value of the

�nal allocation S to the value V � of the optimal allocation that maximizes total value

across the agents: e� (S) =
P
i

vi(Si)=V
� where vi(Si) is agent i's value for bundle Si.

[Correctness] Correctness, corr (S), is measured as the average number of times that

an auction �nds the optimal allocation. Correctness can provide a more sensitive measure

of performance than e�ciency.

[Revenue] Revenue, rev(S), is measured as auctioneer's �nal revenue, as a ratio of the

value of the optimal solution: rev(S) =
P
i

pi (Si)=V
� where pbid;i(Si) is the �nal payment

136

made by agent i for bundle Si.

A simple metric is used to assess information revelation in the auction.

[Information Revelation] Information revelation, inf (i), for agent i is measured as

the sum of the �nal price bid by the agent for all bundles in its valuation function, as a

fraction of the sum of the true value of each bundle:

inf (i) =

P
S2bidi

p�bid;i(S)P
S2val funi

vi(S)

where p�bid;i(S) is the maximum bid from agent i for bundle S during the auction; bidi

is the set of bundles that receive bids from agent i; and val funi is the set of bundles with

positive value in agent i's valuation function.

The overall information revelation, inf , is computed as the average information reve-

lation over all agents. Asymptotically, if the auction terminates after the �rst round, as

is would in the example in Figure 3.1 in Chapter 3, inf = 0%, while if the auction termi-

nates only after every agent has revealed its complete value for all bundles in its valuation

function, inf = 100%. The information revelation in the GVA is clearly 100%.

In addition to reducing information revelation, we would also like an agent to be able

to follow a myopic best-response strategy in an iterative auction without computing its

exact value for all bundles. Chapter 8 considers the complexity of an agent's best-response

bidding problem. In simple terms, best-response is possible without exact values on all

bundles because an agent must only determine the bundle with a utility (value - price) that

dominates the utility of the other bundles at the current prices. This can be determined

with appropriate upper- and lower- bounds on the value of each bundle. In this chapter I

take information revelation as a proxy for agent valuation. This is reasonable in the limit

because complete information revelation certainly requires that an agent computes exact

values for all bundles.

[Communication Cost] The communication cost is a measure of the number and

size of messages sent between agents and the auctioneer during an auction. A bundle is

de�ned with jGj bits, an item with log2 jGj bits, and a value with log2 Vmax, where Vmax is

the largest possible value (for integer values). In iBundle both price increases and best-

response bids require that only the bundle is speci�ed, which costs jGj bits. This is because

the bid price on a bundle is exactly the ask price in myopic best-response, while the amount

of a price increase is always �. As a fraction of the communication cost in the GVA, we

137

measure the total cost to an agent in iBundle as:

comm i =
jGj(nbid + nprice)

jVi jjGj log2 Vmax

where there are nbid bids, nprice increases, and jVij bundles with non-zero value in the

agent's valuation function. In some implementations the price messages may be broadcast,

in which case this communication cost is atomized across all agents.

5.3.2 Problem Sets

iBundle is tested on several problem sets from the literature. The problem set charac-

teristics are summarized in Table 5.5. The CalTech problem set [LPR97] is designed to

represent a hard spatial �tting problem, and has been used to test the AUSM and RAD

bundle auctions [DKLP98]. Problem sets PS1 and PS2 are resource allocation problems

that have been used to test the performance of a sequential auction mechanism (SEQ)

with adaptive agent bidding strategies [BGS99].

Problem sets 4-8 are designed to represent di�erent levels of subadditivity and super-

additivity over items. I refer to these problem sets as k-comp(g). Agents have subadditive

values for combinations of items when k < 1, and superadditive values when k > 1. The

parameter g indicates how many items are covered by bundles with positive value in each

agent's valuation function.

Problem sets 9-16 are generated from bid distributions used to test a new winner deter-

mination algorithm for bundle auctions [San99]. Agent valuation functions are generated

by partitioning the bid distributions across the agents. In problem sets 9{12 agents have

exclusive-or values across bundles, i.e. vi(S [T) = max(vi(S); vi(T)), while in problem

sets 13{16 agents have additive-or values, i.e. vi(S[T) = vi(S)+vi(T) for disjoint bundles

S \ T = ;.

Larger problem sets than those in Table 5.5 are constructed from Sandholm's Decay,

Random, Uniform, and Weighted-Random distributions, increasing the number of agents

and/or the number of items. In our main experiments the number of items, jGj = 50, and I

scale the problems by increasing the number of agents, jIj, from 5 to 40, with values for 10

bundles per agent. Sandholm's � parameter in the Decay distribution is set to � = 0:85,

and bundles of size 10 are computed in the Uniform distribution.

Table 5.5 states the number of items jGj in each problem set, the number of agents jIj,

the average number of bundles with positive value for each agent, and whether the agents

138

Problem jGj jI j Number (X)or Num Naive Naive Num
Name bundles / agents in e� corr trials

per agent (O)r sol (%) (%) (%)
1 CalTech 6 5 5 X 40.0 63.2 2 50
2 PS1 12 4 3.97 X 89.0 82.1 20 50
3 PS2 12 5 4.07 X 58.4 79.3 20 50
4 0-comp(4) 5 5 15 X 85.6 61.2 0 50
5 0.5-comp(4) 5 5 15 X 80.8 63.2 0 50
6 1-comp(4) 5 5 15 X 71.2 63.0 0 50
7 2-comp(4) 5 5 15 X 49.2 65.3 4 50
8 4-comp(4) 5 5 15 X 43.6 63.5 6 50
9 random 10 5 10 X 84.8 64.9 8 25
10 w-random 10 5 10 X 38.4 82.8 20 25
11 uniform 20 5 10 X 60.0 73.0 8 25
12 decay 20 5 10 X 96.0 80.2 12 25
13 random-or 10 5 10 O 74.4 55.3 0 25
14 w-random-or 10 5 10 O 39.2 82.4 20 25
15 uniform-or 20 5 10 O 48.8 69.6 4 25
16 decay-or 20 5 10 O 92.8 72.5 0 25

Table 5.5: Problem characteristics.

have OR or XOR values over bundles. Table 5.5 also records the average percentage of

agents in the optimal allocation. All other things being equal, we would expect a greater

proportion of agents to receive bundles as the number of items increases, the number of

agents decreases, and the level of superadditivity decreases. For example, the number

of agents in the optimal solution falls as k increases in the k-comp(g) problem sets. I

also compute the performance of a naive central algorithm naive for each problem set, to

provide a baseline for the performance of the auction-based solutions. The naive algorithm

repeatedly selects an agent at random (without replacement) and tries to allocate bundles

to the agent until it is happy, choosing bundles in order of decreasing value.

5.3.3 Comparison Auction Mechanisms

I compared the performance of iBundle with reported results for other auctions. AUSM

and RAD are iterative auctions that allow agents to bid for bundles [LPR97, DKLP98].

SEQ [BGS99] is a sequential auction, in which each item is sold in a sealed-bid auction in

sequence, and agents must learn to anticipate the future prices of items that they need to

complete a bundle when bidding for early items.

I also implemented a simple simultaneous ascending price auction, with and without

bid withdrawal (SAA-w and SAA). In SAA-w agents can withdraw a bid in any round.

139

When an agent withdraws a bid (j; p) for item j 2 G at price p the ask price for the

item in the next round is set to p. If the item remains unsold the agent must pay its

bid price, but otherwise there is no penalty. This approximates the rule used in the FCC

spectrum auction [Plo97]. The best-response bidding strategy in SAA is to bid for items

that maximize utility, assuming they will win every bid. Without budget constraints agents

write-o� incomplete bundles with this strategy, in a phenomena described by Bykowsky et

al. [BCL00] as mutually destructive bidding.

The best-response strategy in SAA-w is similar, except that agents assume that they

can decommit for free. Once an agent has withdrawn a bid, the penalty represents a sunk

cost. There is continued debate about the e�ect of bid withdrawal on auction performance

[BCL00, Por99].

5.3.4 Experimental Platform

iBundle is coded in C++, with a branch-and-bound depth-�rst search used to solve the

auctioneer's winner determination problem in each round. Modules to generate random

problem sets, and simulate agent bidding strategies were also coded in C++. I have also ex-

perimented with the GAMS/CPLEX platform as a method to solve winner-determination

in each round of the auction.

A variation on Sandholm's depth-�rst branch-and-bound search algorithm [San99]

solves winner-determination in each round, and computes the allocation and prices in

the GVA. A new heuristic is introduced to make search more e�cient for XOR bids. The

heuristic computes an overestimate of the possible value of a partial allocation based on

allocating at most one bundle to each remaining agent without a bundle.

5.3.5 Normalized Bid Increment

In some tests it is useful to normalize the minimal bid increment across problem distribu-

tions, to give some consistency in comparisons of allocative e�ciency, etc. The minimal bid

increment � is adjusted to normalize for the number of bundles in an average solution and

the average value of an optimal solution; i.e. an increment of x% represents an actual bid

increment � = xV �=(100W �) where W � is the average number of bundles in the optimal

allocation and V � is the average value of the optimal allocation.

140

Problem Performance SEQ RAD AUSM iBundle(2)
Name measure � (%)

20 5

1 CalTech e� 90.4 94 96.4 99.7
corr 80 36 80
rev 79 71 70.6 77.7

2 PS1 e� 87 92.4 99.4

3 PS2 e� 80 92.8 99.7

Table 5.6: Performance comparison with SEQ, RAD and AUSM on problems 1, 2 and 3. Bid
increment � (%); E�ciency e� (%); Correctness corr (%); Revenue rev (%).

5.4 Results I: E�ciency and Information Revelation

Table 5.6 compares the performance of iBundle(2) with reported results for AUSM and

RAD [DKLP98, LPR97] on problem set 1 in Table 5.5. The experiments reported in

DeMartini et al. [DKLP98] are with human participants, and it is possible that software

agents could perform better (or worse). This aside, iBundle(2) achieves a higher e�ciency

than RAD and AUSM, and is competitive in revenue. I also compared the performance of

iBundle with SEQ [BGS99] on problem sets 2 and 3. iBundle(2) generates almost perfect

allocations, signi�cantly outperforming SEQ (results on corr and rev are not available for

SEQ). The empirical results reported for SEQ are with agents that follow sophisticated

bidding strategies, learned over many repeated trials of the same problem instance. In

comparison, iBundle agents follow simple best-response bidding strategies.

1 4 8 12 16
50

60

70

80

90

100

Problem Set

E
ffi

ci
en

cy
 (

%
)

(a)

1 4 8 12 16
0

20

40

60

80

100

Problem Set

C
or

re
ct

 (
%

)

(b)

Figure 5.2: Performance of SAA-w `x', iBundle(2) `+', and a naive central resource allocation
algorithm `o'. Bid increment � = 5%. (a) E�ciency. (b) Correctness.

141

Problem Perf iBundle(2) iBundle(d) iBundle(3)
Name measure
1 CalTech � 5 2 1 0.5 5 2 1 0.5 5 2 1 0.5

e� 100 100 100 100 100 100 100 100 100 100 100 100
corr 94 96 98 100 94 98 100 100 94 98 100 100

inf 87.6 89.8 90.4 91 87.6 89.8 90.4 91 87.6 89.8 90.4 91
2 PS1 � 5 2 1 0.5 5 2 1 0.5 5 2 1 0.5

e� 98.3 99.7 99.9 99.8 98.3 99.8 100 100 98.3 99.8 100 100
corr 65.8 91.1 98.7 97.5 65.8 92.4 100 100 65.8 92.4 100 100

inf 49.2 42.4 40.8 39.9 49.2 43.5 41.7 40.9 49.2 43.6 41.9 41.1

Table 5.7: Achieving optimal solutions with iBundle, problems 1 and 2. Bid increment �; E�ciency
e� (%); Correctness corr (%); Information revelation inf (%).

Figure 5.2 plots the e�ciency (a) and correctness (b) of iBundle(2) and SAA-w (with

� = 5%) for each problem set, together with the naive performance as a baseline. The

SAA auction fails in many problem sets (1, 3, 8, 10{16), in the sense that agents lose

utility through participation when the best-response bidding strategy leaves them with

incomplete bundles. The e�ciency of SAA is somewhat misleading in these problems

because it indicates a signi�cant problem with myopic best-response as an agent bidding

strategy. SAA-w allows bid withdrawal, and mitigates the exposure problem in problem

sets 12 and 13.

It is useful to consider average performance across all problem sets. For the sake of

analysis I substitute the e�ciency and correctness of naive, and the revenue from the

Generalized Vickrey Auction (GVA), in problem sets where SAA and SAA-w fail. The

naive central algorithm provides a useful lower bound on e�ciency and correctness, but

revenue is unde�ned. The GVA provides a lower bound on revenue, for agents that follow

rational bidding strategies in an auction that generates e�cient solutions.

iBundle(2) (with � = 5%) achieves an e�ciency of 99%, compared to 83.3% e�ciency for

SAA-w, 81.6% for SAA, and 70.1% for naive. SAA-w performs well in problem set 2 (where

there is little competition for resources), and sets 4, 5 and 6, where agents have subadditive,

linear-additive or slightly superadditive values on bundles. Average correctness is 67.2%

for iBundle(2), 23.9% for SAA-w, and 7.8% for naive. Finally, iBundle(2) generates 75.6%

revenue, compared to 70.8% for SAA-w and 62.9% for the GVA.

142

10
−2

10
0

10
2

0

20

40

60

80

100

120

Bid increment

w
or

k au
ct

io
ne

er

(iii)

10
−2

10
0

10
2

0

20

40

60

80

Bid increment

In
fo

rm
at

io
n

R
ev

el
at

io
n

(%
)

(ii)

10
−2

10
0

10
2

0

20

40

60

80

100

Bid increment

(%
)

(i)

Correct

Efficiency

10
−2

10
0

10
2

0

1000

2000

3000

4000

5000

6000

Bid increment
co

m
m

ag
en

t (
%

)

(iv)

Figure 5.3: Performance of iBundle as the bid increment � decreases. `+' iBundle(2); `�' iBun-
dle(d); `�' iBundle(3). Problem 0.5-comp(3).

5.4.1 E�ect of Price Discrimination

Figure 5.3 (i) compares the e�ciency and correctness across each auction variation for prob-

lem set 0.5-comp(3), which is a problem with 5 agents, 5 items, and 7 bundles/agent. Al-

though price discrimination is required for 100% correctness in this problem, the e�ciency

improvement is negligible. The increase in e�ciency with iBundle(d) and iBundle(3),

compared to iBundle(2) is marginal. With � = 5%, iBundle(3) achieves 99.1% e�ciency,

compared to 99% e�ciency for iBundle(2). Table 5.7 presents similar results for Problems

1 and 2.

Price discrimination only makes a di�erence for very small bid increments, when the

communication cost begins to increase rapidly. For bid increment � > 0:5% the perfor-

mance is almost identical. The relationship between average number of rounds to termi-

nation and bid increment is approximately linear, with � = 5%; 0:5%; 0:05% corresponding

to 6, 49, and 480 rounds respectively. An auctioneer may choose not to operate below

0:5% because of high communication costs, computation costs, and indirect costs due to

elapsed time.

143

Figure 5.3 (ii) plots the information revelation; (iii) the auctioneer's computation cost;

and (iv) the agent's communication cost. The computation cost in this experiment is as-

sumed to scale exponentially with the worst-case size of the winner-determination problem

solved in iBundle, and with the size of the winner-determination problem with all agents

in the GVA. Size is measured as the product of the number of bids received (or bundles

with values in the GVA) and the number of items. Finally, the cost is normalized on a

log-scale, with the cost of the GVA equaling 100%. We might expect the worst-case run-

time in iBundle to be dominated by the time on the largest problem in any round because

winner-determination is NP-hard. Similarly, the cost of solving WD for all agents should

dominate in the GVA.

The results show that iBundle can tradeo� performance for communication, compu-

tation, and information revelation costs. iBundle(2) achieves allocations that average

91.7% e�ciency across all problem sets and terminates after 5.7 rounds with bid incre-

ment � = 20%, down from 99% e�ciency after 18 rounds with bid increment � = 5%.

Price discrimination only helps for bid increments less than around � = 0:5, at which point

the communication cost begins to increase rapidly. It is likely that an auctioneer would

choose not to operate in this region anyway. The performance of all auction variations

is approximately identical in the region with reasonable communication cost. As the bid

increment decreases we can achieve a continuous tradeo� between performance (e�ciency

and correctness), information revelation, and communication cost. Notice also that the

dynamic and third-order iBundle auctions require more information revelation and auc-

tioneer computation than the second-order iBundle auction in this problem domain, but

have less communication cost.

5.4.2 Information Revelation

iBundle(2) requires an average of 57.5% information revelation at � = 20% (when the allo-

cations are 91.7% e�cient), and an average of 71% information revelation at � = 5% (when

the allocations are 99% e�cient). The (sealed-bid) GVA requires 100% information reve-

lation from agents to achieve 100% e�ciency. I would expect information revelation to be

smaller in real-world problems. The agents in the problem sets have sparse valuation func-

tions, which limits the size of the worst-case information revelation, i.e. the denominator in

the information-revelation metric. In addition, information revelation would be smaller in

144

Problem jGj jIj Number (X)or Num Naive Naive Num
Name bundles / agents in e� corr trials

per agent (O)r sol (%) (%) (%)

17 decay(2) 20 2 25 X 100 93.0 64 25
18 decay(10) 20 10 5 X 77.2 75.5 4 25
19 decay(25) 20 25 2 X 37.4 61.2 0 25
20 decay(50) 20 50 1 X 20.6 62.8 0 25

Table 5.8: Problems for the easy-hard scalable performance test.

\easier" problems, for example with signi�cant over-demand or signi�cant under-demand.

In the former only a few agents need to drive the price adjustment, while in the latter we

would expect iBundle to terminate quickly because it is likely that an early provisional

allocation would include bids from all agents.

One of the main claims for iterative auctions vs. sealed bid auctions is that they provide

major computational advantages in easy problem instances, terminating quickly with little

information revelation and computation. To test this claim I studied the Decay problem

set as the number of agents increased from 2 to 50. Table 5.8 summarizes the statistics

for the problems. The problem is relatively easy with a few agents, but as the number of

agents increases the level of competition increases and it is more di�cult to compute the

optimal solution. For example, all agents are in the optimal allocation with a few agents,

and the e�ciency and correctness of the naive algorithm is high.

Figure 5.4 illustrates the performance of iBundle as the \di�culty" of the combinatorial

allocation problem is increased. In each trial I select a bid increment to make iBundle

compute a solution with the same quality, i.e. with a similar e�ciency and correctness,

see Figure 5.4 (i).

As the instances get more di�cult the auctioneer's computational cost steadily in-

creases, see Figure 5.4 (iii). As described above, this is measured as the size of the largest

winner-determination problem the auctioneer must solve, as a fraction of the size of the

problem in the GVA (with full valuation functions from each agent). In easy problems the

largest winner-determination problems in iBundle are about half the size of the problems

in the GVA, which could be signi�cant for an NP-hard problem.

Communication cost in iBundle(2) and iBundle(d) is a linear function of the number

of agents, see Figure 5.4 (iv), essentially because a cost is accounted to send price updates

to all agents. This is not a very accurate measure, as simple methods that allow agents

145

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Problem Complexity (Number of Agents)
co

m
m

ag
en

t (
%

)

(iv)

0 10 20 30 40 50
30

40

50

60

70

80

90

100

Problem Complexity (Number of Agents)

(%
)

(i)

Efficiency

Correct

0 10 20 30 40 50
10

20

30

40

50

60

Problem Complexity (Number of Agents)

In
fo

rm
at

io
n

R
ev

el
at

io
n

(%
)

(ii)

0 10 20 30 40 50
0

20

40

60

80

100

120

Problem Complexity (Number of Agents)

w
or

k au
ct

io
ne

er

(iii)

Figure 5.4: Performance of iBundle as the problem di�culty is increased. `+' iBundle(2); `�'
iBundle(d); `�' iBundle(3). Decay problem set, for 2, 10, 25, and 50 agents.

to drop out of the auction will give similar communication costs across iBundle(2), (d)

and (3). Essentially, the communication scaling properties are strongly sublinear in the

number of agents, because many agents quickly drop out as prices get too high.

Figure 5.4 (ii) plots the e�ect on information revelation in iBundle as the problem

complexity varies. The most interesting e�ect can be observed between 0 and 10 agents.

For less than 10 agents the problem is solved with very little information from agents. The

peak information revelation occurs for problems of intermediate size, when every agent in

the system must report quite accurate and complete information. As the number of agents

increase the average information revelation falls because information from some agents

becomes irrelevant.

146

5.5 Results II: Winner Determination and Communication

Cost

The auctioneer must solve one WD problem in each round, and a naive worst-case analysis

gives O(BVmax=�) rounds to converge, for a total of B bundles with positive value over

all agents, maximum value Vmax for any bundle, minimal bid increment �, and myopic

best-response. In the worst-case the price of a single bundle must increase by at least � in

each round the auction remains open, and prices are bounded by the maximum value over

all agents. The number of rounds to termination is inversely proportional to the minimal

bid increment.

The auctioneer announces only price increases in each round, and does not maintain

explicit prices for all possible bundles. Instead, bid prices are veri�ed dynamically in each

round, to check that bids are at least as large as the ask price of all contained bundles.

The total work in checking each bid is linear in the number P of bundles that have explicit

ask prices, with a naive linked-list data structure. Similarly, price monotonicity can be

maintained in linear time in P for each new price increase. In addition, P � B, with

agents that have values for B bundles, because only bundles that receive bids can receive

explicit ask prices.

The winner-determination (WD) problem that the auctioneer solves in each round of

iBundle is NP-hard, itself a small instance of the CAP problem. However, each problem

is smaller than the problems in the GVA, because the winner-determination problem is

revenue-maximization given agents' best-response bids, while in the GVA the problem is to

compute the e�cient allocation directly from valuation functions. However, the problem

instances might also be hard instances because all agents bid at similar prices for bundles

(Andersson et al. [ATY00]), which can restrict the ability of search-based methods to

prune the search space.

The following sections describe a number of interesting methods to speed-up the winner-

determination problem in iBundle. First, the provisional allocation from the previous

round provides a good initial solution to the WD problem, because agents must re-bid

bundles received in the previous round. This allows pruning of the search for a revenue-

maximizing allocation. An additional saving in computation time is achieved by limiting

search to an allocation at least � better than the value of the allocation in the previous

147

round. Approximations can be introduced to speed-up winner-determination, both through

increasing the minimal bid increment and decreasing the number of winner-determination

problems to solve (one in each round), and with approximate winner-determination algo-

rithms. Another approach is to cache provisional allocations from previous rounds, and

use cached solutions to compute good initial solutions in the current round of the auction.

One interesting heuristic suggested by an analysis of the hit statistics of the cache is the

\ip-op" heuristic, which adopts a cache hit as the new provisional allocation without

additional search.

5.5.1 Minimal Bid Increment Approximations

5 10 15 20 25 30 35 40
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of Agents

A
uc

tio
ne

er
 C

P
U

 T
im

e
(s

)

80%

85%

Truthful

95%
99%

GVA

Figure 5.5: Total computation time in iBundle(2), the GVA, and a sealed-bid auction with truthful
agents, in problem set Decay. The performance of iBundle is plotted with di�erent bid increments
�, selected to give allocative e�ciency of 80%, 85%, 95% and 99%.

One method to introduce approximations is via the minimal bid increment. Figure 5.5

plots the total auctioneer winner-determination and price-update time2 in iBundle in the

Decay problem set. Performance is measured for di�erent bid increments, with the bid

increment selected to give allocative e�ciency of 80%, 85%, 95% and 99% (�1%). Figure

5.5 also plots performance for the GVA, and for a sealed-bid auction in which agents are

assumed to bid truthfully. The GVA proved intractable for 30 and 40 agents. In those

problems the run time is estimated as the time to compute the optimal solution in a single

2Time is measured as user time in seconds on a 450 MHz Pentium Pro with 1024 MRAM, with iBundle
coded in C++.

148

WD problem multiplied by the number of agents in the optimal allocation. Results are

averaged over 10 trials. First, note that the curves are sublinear on the logarithmic value

axis as the number of agents increases, indicating polynomial computation time in the

number of agents.

The performance improvement of iBundle over GVA is striking, achieving at least one

order of magnitude improvement with 99% allocative e�ciency and three orders of mag-

nitude with 85% allocative e�ciency. For up to 95% e�ciency I essentially get the myopic

truth-revelation properties of iBundle for free, because iBundle's run-time is approximately

the same as for the sealed-bid auction with truthful agents.

Problem GVA iBundle Approx-
' 90% ' 95% ' 99% Bundle

Decay E� (%) 100 91.5 94.9 98.3 85.1
67.3%d WD-timea (s) 41700 831 2400 5650 0
13.4e Pr-timeb (s) { 26 34.5 44 39.2

Commc (kBit) 18.8 221 306 394 377

WR E� (%) 100 90.7 94.9 99.2 79.4
71.5% WD-time (s) 3 0.6 1.7 6 0
1 Pr-time (s) { 5.4 11.5 40.9 12.2

Comm (kBit) 18.1 20.5 52.1 144 53.1

Rand E� (%) 100 89.3 97 99 95.8
37.8% WD-time (s) 68 4.4 7.4 11 0
11.2 Pr-time (s) { 6.5 9.7 12.1 12.9

Comm (kBit) 18.7 49.5 66.4 82.6 85.6

Unif E� (%) 100 { 95.6 99.1 76.2
58% WD-time (s) 25 { 6.6 18.7 0
3 Pr-time (s) { { 14.7 42.0 46

Comm (kBit) 18.2 { 56.5 120 124

Table 5.9: Performance in the Decay, WR, random, and uniform problems. a Auctioneer WD
time. b Price-update time. c Communication cost. d Alloc. e�. of a sealed-bid auction with a
greedy WD algorithm and truthful agents. e Average number of agents in the optimal solution.

Table 5.9 compares iBundle with the GVA for all Sandholm's problems, for problems

with 30 agents. These WR and Uniform problem instances are quite easy because the

optimal allocation sells large bundles to a few agents, which allows considerable pruning

during search. In comparison, The Random and, in particular, Decay problems tend to

be harder because the optimal allocation requires coordination across a number of agents,

see also Sandholm [San99] and Andersson et al. [ATY00]. In all problems iBundle has less

WD time at 95% allocative e�ciency than the GVA.

149

Note that the price-update step is relatively expensive in the otherwise easy weighted-

random (WR) problem, because bid prices for large bundles must be checked for price

consistency against the price of all included bundles.

5.5.2 Approximate Winner-Determination

Another method to introduce approximation is via a greedy winner-determination algo-

rithm in each round of the auction.

The auctioneer can maintain the same incentives for myopic agents to follow the same

bidding strategy for any approximation algorithm with the bid-monotonicity property:

Definition 5.2 [bid-monotonicity] An algorithm for winner-determination satis�es bid-

monotonicity if whenever an agent i is allocated a bundle with bids Bi, it is also allocated

a bundle with bids Bi [B that include a bid for an additional bundle B.

It is straightforward to prove that optimal winner-determination algorithms are bid-

monotonic. One simple algorithm with the bid-monotonicity property is due to Lehmann

et al. [LOS99], which allocates bundles in order of decreasing value-per-item.

Table 5.9 presents the e�ciency in iBundle with this approximation algorithm for

winner-determination. Notice that iBundle computes a fast solution to all problems with

the approximate winner-determination algorithm, even in the hard Decay problem set.

The average allocative-e�ciency of iBundle with the approximate winner-determination

algorithm in Decay is a quite respectable 85.1% (notice that a greedy centralized solution

with truthful agents achieves only 67.3%), and with more than a 1000-fold reduction in

winner-determination time. I believe that other, slightly less greedy, approximate algo-

rithms will give even further performance improvements.

5.5.3 Methods to Speed-up Sequential Winner-Determination

The sequential nature of winner-determination in iBundle suggests that cache-based meth-

ods can speed-up winner-determination. I experimented with a cache of all provisional

allocations computed in previous rounds. The auctioneer �rst checks the cache when new

bids are submitted. This provides an initial solution for winner-determination and is used

to prune search. A simple linear program is used to select the best allocation from the

cache.

150

Problem WD Time % Cache
0 1 T T ! Correct

Decay 50/15/150a 415 371 355 291 0 28 47 59
WR 50/50/1000 253 243 231 163 0 11 57 57
Rand 50/30/600 1823 1616 1491 864� 0 6 30 78
Unif 50/40/800 343 337 336 110 0 14 29 49

Table 5.10: Winner-determination time with caches of size 0, 1 (last round), and T (all previous
rounds). In cache T ! revenue maximizing cached solutions from previous rounds are assumed
optimal. E� > 99% in all problems except �, where E� = 96:8%. a jGj / jI j / # bundle values.

Table 5.10 compares the WD time in each problem with and without caching of previous

allocations. Although the overhead time required to maintain and test the cache is small,

the e�ect of even a complete cache on all previous rounds is not very dramatic. The

problem is that the hard part of solving a winner-determination problem, and an instance

of the CAP, is not �nding the optimal solution, but verifying that the solution is optimal. A

straightforward use of a cache might help to �nd the optimal solution, but does not speed-

up the search required to verify that solution, For example, although an extended cache

in the Decay problem provides the correct allocation in 47% of problems, the speed-up is

limited to around 14%.

In an attempt to leverage the correct solutions from the cache, I tested the performance

of iBundle under an additional assumption that if a cached solution from before round

t � 1 generates more revenue than the solution from round t � 1, this is adopted as the

new provisional allocation without further computation. The rule is designed to capture

\ip-op" competition between a number of good allocations during an auction.

Labeled T !, the rule proves useful in Decay, WR and Uniform, reducing computation

by 30%, 36% and 68% from the time with no cache for a negligible drop in allocative

e�ciency. However, one must be careful: although we also see a speed-up in Random, the

allocative e�ciency falls from 99% to 96:8%. Further analysis shows that cached solutions

prove optimal in 54%, 97% and 49% of rounds in Decay, WR and Uniform, but only

optimal 34% of rounds in Random.

Further optimizations should be possible, for example using cached solutions once a

large enough cache is constructed, and solving WD when an auction is about to terminate

with cached solutions. Another useful approach is �-scaling, that adjusts the bid increment

during an auction [Ber90].

151

5.5.4 Communication cost

Communication cost is computed using the metric speci�ed in Section 5.3.1, with 10 bits

to specify a value in the GVA. Cost is measured as jGjnbids for each agent plus jGjnprices,

given nbids bids and nprices prices. I assumed that prices are broadcast to agents, and

assess the cost of price information independently of the number of agents in an auction.

Only the cost of bids is counted in iBundle(3), with non-anonymous prices, because the

price changes are implicit in the new provisional allocation. An agent's new prices are �

above its bid price whenever its bids are unsuccessful.

There is a communication cost penalty in using iBundle compared with the GVA in

these problems (Table 5.9) because of repeated bids across a number of rounds. This would

change in problems with agents that have values for many bundles because all values must

be reported in the GVA, or in easier problems because iBundle will terminate quickly with

less bids.

5.6 Special Cases for Expressive Bid Languages

It is possible to derive fast special cases of iBundle for restrictions on agent bidding lan-

guages, which solve the combinatorial allocation problem for assumptions about agent

preferences. The advantage of identifying special cases is that the winner-determination

problem is tractable for particular structures on bundles and price functions over bundles

(see Section 4.5).

5.6.1 Unit-Demand Preferences (Assignment Problem)

In problems where agents have single-unit demands (the standard assignment problem) we

can restrict iBundle in two ways (leading to two di�erent auction mechanisms):

� Restrict agents to placing OR bids on items. In this case iBundle(2) reduces to a si-

multaneous ascending-price auction, that was shown to be optimal for the assignment

problem by Crawford & Knoer [CK81].

� Restrict agents to placing XOR bids on items. In this case the winner-determination

problem in iBundle(2) can be formulated as a max-ow problem, and solved e�-

ciently.The auction only generates prices on items, and is a variant on the auction

152

proposed by Demange et al. [DGS86].

5.6.2 Linear-Additive Preferences

In problems where agents have linear-additive demands on items we can restrict agents

to OR bids on items. The auction reduces to a simultaneous ascending-price auction,

equivalent to Crawford & Knoer's [CK81] auction for the problem.

5.6.3 Gross Substitutes Preferences

Gross substitutes (GS) preferences implies that an agent that demands bundle S in round

t will continue to demand items in S that do not increase in price as the price of other

items increases [KC82]. Linear-additive and unit-demand preferences are special-cases of

gross substitutes. Kelso & Crawford prove GS are a su�cient condition for the existence of

linear competitive equilibrium prices. Again, we can restrict agents to OR bids on items:

� Agents bid for all the items in the single bundle that maximizes their utility in each

round. Gross substitutes implies that an agent will continue to demand any subset

of the items as the price of other items increases, and be happy to continue to bid

for items it receives in a partial allocation. In this case iBundle(2) reduces to a

simultaneous ascending-price auction, that was shown to be optimal for GS by Kelso

& Crawford [KC82].

5.6.4 Multiple Homogeneous Goods

The multiple homogenous good allocation problem is to allocate jGj identical items across

agents, to maximize the total value over all agents. Each agent has a valuation function

vi(m) � 0 de�ned for (integer) quantities m � 0 of the item.

A suitable bidding language allows an agent to submit exclusive-or bids of type (m; p),

which states that the agent will pay at most p for a bundle of at least m items. Essentially,

each bid represents a set of exclusive-or bids over all bundles of items in G of size m. The

winner-determination problem is a multi-unit allocation problem, where each agent must

receive exactly the number of items in its bid. Finally, prices are increased on unsuccessful

bids, with prices maintained for each possible size of bundle (with non-anonymous prices

of the same kind also introduced dynamically). Again, we do not want to maintain an

explicit price for each distinct set of bundles of the same size.

153

An unsuccessful bid at price p on bundles of sizem > (jGj=2) indicates that the minimal

bid price on all bundles of size m must be at least p+� in future rounds. It is not necessary

to announce, or maintain, explicit prices on all possible bundles of size m, but rather just

announce a price on bundles of sizem. Notice thatm > (jGj=2) implies the safety condition

holds over the underlying exclusive-or set of bundles.

An unsuccessful bid at price p on bundles of size m � (jGj=2) must be handled a little

more carefully because it remains possible for the same bid from two di�erent agents at

that price to be successful. We must introduce separate prices for this agent, and increase

its ask price on bundles of size m by �. Notice thatm � (jGj=2) implies the safety condition

does not hold over the underlying exclusive-or set of bundles.

E�ectively, we might expect bids in this auction design to start-o� anonymous while

agents bid for large bundles of items at low prices, and then become more non-anonymous

as agents begin to bid for smaller bundles as the prices increase on large bundles. Even-

tually, it is quite possible that the auction will terminate with di�erent prices to di�erent

agents for bundles of the same size. The exact details of this auction, and an e�cient

implementation, are left for future work.

5.7 Earlier Iterative Combinatorial Auctions

Rassenti et al. [RSB82] propose a sealed-bid bundle auction for the problem of allocating

airport slots, where airlines value take-o� and landing slots in pairs. Agents submit sealed

XOR bids for bundles of take-o� and landing slots. The auction computes linear prices

that approximately clear the market, given agent bids. Finally, agents can place bids and

asks for individual slots in a secondary market, to cleanup their �nal allocation. Although

the auction design is fairly ad-hoc, empirical results with human bidders suggest that the

market can achieve high e�ciency with experienced bidders.

The recent FCC spectrum auction generated a lot of debate among economists about

combinatorial auction mechanisms. Spectrum licenses have non-additive value in bundles

because of network synergies from spatially-coherent geographical regions. The �nal FCC

auction design was a variant on a simultaneous ascending-price auction that allowed agents

limited decommitment rights, and placed participation constraints on agents to enable

information exchange via prices during the auction [MM96]. The goal was to allow agents

154

to �nd a good \�t" between their demand sets and the demand sets of other bidders, and

win coherent bundles of spectrum licenses.

Bykowsky et al. [BCL00] demonstrate the exposure and existence problem with linear

prices for the combinatorial allocation problem, and study the AUSM auction [BLP89]

as an example of a bundle auction to address the problem. AUSM allows agents to bid

for arbitrary bundles of items, and maintains a revenue-maximizing allocation. There

are no pricing rules, and agents must coordinate their own bids. Theoretical analysis

is di�cult because of the exible auction rules, but see Milgrom [Mil00b]. AUSM has

reasonable performance empirically, see Ledyard et al. [LPR97]. Bykowsky et al. identify

the \threshold problem" for bundle auctions, where smaller bidders must coordinate bids

to outbid a larger bidder. Although iBundle solves this problem for agents that follow

best-response bidding strategies, the e�ect of alternative agent bidding strategies on the

threshold (or coordination) problem is unknown.

Recently, DeMartini et al. [DKLP98] proposed RAD, an auction that allows agents to

place XOR bids on bundles but generates prices on items. Although promising empirical

results have been presented, there are no theoretical results on its allocative e�ciency.

RAD also borrows from the FCC auction design, agents must re-submit winning bids,

and there are activity rules to encourage information revelation early in the auction and

encourage coordinate bidding.

Wurman's AkBA combinatorial auction was discussed in Section 4.7. It allows exclusive-

or bids on bundles of items in each round, and maintains anonymous prices on bundles. A

linear-program based price-update rule is used to adjust prices across rounds.

Appendix: Dynamic Price Discrimination

In the Appendix to this chapter I illustrate the dynamic rule for introducing non-anonymous

prices in iBundle on a simple set of parameterized problems, which demonstrate the im-

portance of price-discrimination to achieve allocative-e�ciency in some problems.

Consider Problem 6 in Table 5.11, in which the value of agent 2 for bundleBC, v2(BC),

can take integer values between 5 and 10. The values for bundles not explicitly listed are

consistent with free disposal of items, i.e. v(S0) � v(S) for all S0 � S. The optimal

allocation is ([1; AC]; [2; B]) for every value v2(BC) in this range. The problem is a hard

155

coordination problem because: agent 1 values B more highly than agent 2, but the optimal

solution allocates B to agent 2; and both agents value BC more than any other bundle

but receive another bundle in the optimal allocation.

A B AC BC

Agent 1 2 9 8� 10
Agent 2 2 5� 3 v2(BC)

Table 5.11: Problem 6. Agent values, with 5 � v2(BC) � 10. E�cient allocation indicated �.

In this problem �rst- and second-order CE prices exist for v2(BC) � 7, but only third-

order CE prices exist for v2(BC) > 7. For example, when v2(BC) = 6 and v2(BC) = 7,

then p(A) = 2; p(B) = 5, and p(C) = 2 are CE prices. However, when v2(BC) = 8,

no �rst- or second-order CE prices exist, and v(LP1) = v(LP2) = 13:5 > v(IP) = 13.

It is not possible to price BC high enough (so that agent 2 demands B but not BC)

without making the auctioneer's revenue from selling A and BC together greater than its

revenue from selling B and AC together. Third-order CE prices for v2(BC) = 8 include

p1 = (2; 9; 8; 10) and p2 = (0; 3; 1; 6) for bundles A;B;AC and BC, with other prices set

high enough to satisfy pi(S
0) � pi(S) for all S

0 � S.

Although iBundle(2) solves the problem when v2(BC) = 6, the auction fails when

v2(BC) � 7, terminating with allocation ([1; BC]; [2; A]). Auction iBundle(d), with price

discrimination, solves the problem. The auction switches to price discrimination, and

separates the e�ect of agent 1's bids from ask prices to agent 2. Agent 2 continues to bid

for B and the auction terminates with the optimal allocation ([1; AC]; [2; B]).

Table 5.12 (a) shows iBundle(2) for Problem 6 in Table 5.11, for v2(BC) = 7. The

auction fails even though second-order CE prices exist. Price-updates are not safe, for

example in rounds t + 1 and t + 3, so we might expect the auction to terminate with a

suboptimal allocation. Agents 1 and 2 compete on bids for BC, and agent 1 also drives up

the price on B and AC and prevents agent 2 from bidding for B because v1(BC)�v1(B) <

v2(BC)� v2(B). The auction terminates with the suboptimal allocation ([1; BC]; [2; A]),

because agent 2 bids for item A but not B.

Table 5.12 (b) shows the auction for Problem 6 with v2(BC) = 6. In this case the

auction solves the problem. Agent 2 can bid B in all rounds of the auction because

v2(BC) � v2(B) � v1(BC) � v1(B), and the revenue to the auctioneer from allocation

([1; AC]; [2; B]) eventually exceeds the revenue from ([1; BC]) or ([2; BC]). The auction

156

Round Prices Bids Revenue
A B AC BC Agent 1 Agent 2

t� 1 (BC, 4.4)� 4.4
t 0 3.4 2.4 4.4 (B, 3.4) (AC, 2.4) (BC, 4.4)� (BC, 4.4) 4.4

t+ 1 0 3.4 2.4 4.6 (B, 3.4) (AC, 2.4) (BC, 4.4) (BC, 4.6)� 4.6
t+ 2 0 3.6 2.6 4.6 (B, 3.6) (AC, 2.6) (BC, 4.6)� (BC, 4.6) 4.6
t+ 3 0 3.6 2.6 4.8 (B, 3.6) (AC, 2.6) (BC, 4.6) (A, 0) (BC, 4.8)� 4.8
t+ 4 0 3.8 2.8 4.8 (B, 3.8) (AC, 2.8) (BC, 4.8)� (A, 0)� (BC, 4.8) 4.8

(a) v2(BC) = 7. iBundle(2) fails.

Round Prices Bids Revenue
A B AC BC Agent 1 Agent 2

t� 1 (BC, 2.4)� 2.4
t 0 1.4 0.4 2.4 (B, 1.4) (AC, 0.4) (BC, 2.4)� (B, 1.4) (BC, 2.4) 2.4

t+ 1 0 1.6 0.4 2.6 (B, 1.6) (AC, 0.4) (BC, 2.4) (B, 1.6) (BC, 2.6)� 2.6
t+ 2 0 1.8 0.6 2.6 (B, 1.8) (AC, 0.6) (BC, 2.6)� (B, 1.8) (BC, 2.6) 2.6
t+ 3 0 2.0 0.6 2.8 (AC, 0.6) (BC, 2.6) (B, 2.0) (BC, 2.8)� 2.8
t+ 4 0 2.0 0.8 2.8 (B, 2) (AC, 0.8)� (BC, 2.8) (B, 2)� (BC, 2.8) 2.8

(b) v2(BC) = 6. iBundle(2) works.

Table 5.12: iBundle(2) on Problem 6. Bid incr. � = 0:2. Provisional allocations indicated *.

terminates with optimal allocation ([1; AC]; [2; B]).

Table 5.13 shows the performance of iBundle(d) in Problem 6 (Table 5.11) for v2(BC) =

7. I use '/' to indicate the prices for each agent. The e�ect of price discrimination is to

separate the price increases caused by bids from agent 1 from the price increases to agent

2. In particular, agent 1's bids for B do not increase the price of B to agent 2, and agent 2

can continue to bid for B (unlike in iBundle(2) on this problem). The auction terminates

with the optimal allocation ([1; AC]; [2; B]).

It is interesting to examine the �nal prices in the auction, to check how well the auction

minimizes CE prices. A methodAdjust is introduced in the next chapter which will adjust

prices after iBundle(3) terminates to minimal CE prices in all CAP problems. We will also

begin to explore the connections between minimal CE prices and Vickrey payments.

In Problem 6, when v2(BC) = 7, the auction terminates with ask prices are p1 =

(0; 3; 2; 4) and p2 = (0; 2; 0; 4) for bundles A;B;AC and AB. Agent values are v1(2; 9; 8; 10)

and v2 = (2; 5; 3; 7). These are minimal CE prices because any lower prices that maintain

best-response changes the revenue-maximizing allocation from ([1; AC]; [2; B]) to an allo-

cation of BC to one of the agents. In fact, the auction increases prices to agents while the

157

Round Prices Bids Rev
A B AC BC Agent 1 Agent 2

s� 1 (BC, 1.8)� 1.8
s 0 0.8 0 1.8 (B, 0) (AC, 0.8) (BC, 1.8)� (BC, 1.8) 1.8

s+ 1 0 0.8 0 2.0 (B, 0) (AC, 0.8) (BC, 1.8) (BC, 2.0)� 2.0
s+ 2 0 / 0 1.0 / 0.8 0.2 / 0 2.0 / 2.0 (B, 1.0) (BC, 2.0)� (BC, 2.0) 2.0
s+ 3 0 / 0 1.0 / 0.8 0.2 / 0 2.0 / 2.2 (B, 1.0) (BC, 2.0) (BC, 2.2)� 2.2
� � � � � � � � � � � � � � �
t� 1 (BC, 3.6)� 3.6
t 0 / 0 2.6 / 1.6 1.6 / 0 3.6 / 3.6 (B, 2.6) (AC, 1.6) (BC, 3.6)� (B, 1.6) (BC, 3.6) 3.6

t+ 1 0 / 0 2.6 / 1.8 1.6 / 0 3.6 / 3.8 (B, 2.6) (AC, 1.6) (BC, 3.6) (B, 1.8) (BC, 3.8)� 3.8
t+ 2 0 / 0 2.8 / 1.8 1.8 / 0 3.8 / 3.8 (B, 2.8) (AC, 1.8) (BC, 3.8)� (B, 1.8) (BC, 3.8) 3.8
t+ 3 0 / 0 2.8 / 2.0 1.8 / 0 3.8 / 4.0 (B, 2.8) (AC, 1.8) (BC, 3.8) (B, 2.0) (BC, 4.0)� 4.0
t+ 4 0 / 0 3.0 / 2.0 2.0 / 0 4.0 / 4.0 (B, 3.0) (AC, 2.0)� (BC, 4.0) (B, 2.0)� (AC, 0) (BC, 4.0) 4.0

Table 5.13: iBundle(d) on Problem 6, with v2(BC) = 7. Bid incr. � = 0:2. Provisional allocations
indicated *.

allocation BC is revenue-maximizing (see Table 5.13).

158

Chapter 6

Linear Programming and Vickrey

Payments

We have assumed up to this point that agents follow myopic best-response bidding strate-

gies. This assumption proved useful, as it allowed the construction of a primal-dual based

auction for the Combinatorial Allocation Problem (CAP). iBundle is the �rst auction to

compute e�cient allocations in general CAP problem instances, even under an assumption

of myopic agent rationality.

In this chapter we make this assumption of myopic best-response quite reasonable. I

retain myopic best-response, but develop a primal-dual based method to compute Vickrey

payments at the end of the auction. When successful this makes myopic best-response a

sequentially rational strategy for an agent, given that every other agent also follows myopic

best-response. Myopic best-response becomes a sequential Bayesian Nash equilibrium of

the auction, for all priors over agent preferences. Connecting primal-dual theory back to

the Groves mechanisms, and in particular in this case to the Generalized Vickrey auction,

provides powerful incentive-compatibility and robustness-to-manipulation.

This approach of \LP + myopic best-Response + Vickrey" appears to provide a pow-

erful constructive tool for useful iterative mechanism design. Indeed, Bikchandani et al.

[BdVSV01] have recently demonstrated that many of the successful iterative Vickrey auc-

tions known in the literature, such as Demange et al. [DGS86] for unit-demand and

Ausubel [Aus97] for multi-item decreasing returns have interpretations as primal-dual al-

gorithms for appropriate linear program formulations of the top-level allocation problem.

This chapter develops a primal-dual algorithm, VickAuction, to compute Vickrey

payments. Chapter 7 then interprets the algorithm as iBundle Extend&Adjust, which

introduces a second phase at the end of the auction.

159

Earlier iterative Vickrey auctions, with the exception of Ausubel's designs [Aus97,

Aus00] compute Vickrey payments through careful price adjustment (see Table 4.7). Prices

are increased on the minimal overdemanded set of bundles in each round, in order to

terminate in minimal competitive equilibrium prices, which are Vickrey payments in many

problems.

The main innovations in my extended iBundle approach are:

� Prices are adjusted after the auction terminates towards Vickrey payments. This

relaxes the requirement of \minimal" price increases during the auction, because it

is not necessary to terminate in the minimal competitive equilibrium solution.

� The adjusted prices need not be in competitive equilibrium, which allows Vickrey

payments to be computed even when there is no competitive equilibrium solution

that supports all Vickrey payments simultaneously.

Conceptually, it is useful to consider two distinct phases in VickAuction, and in the

extended iBundle auction presented in Chapter 7. The purpose of Phase I is to compute the

e�cient allocation from myopic best-response bids. The purpose of Phase II is to compute

Vickrey payments from myopic best-response bids. The transition from Phase I to Phase

II is designed to be hidden from bidders. Prices continue to increase monotonically across

the two phases and the auction rules are unchanged. The provisional allocation continues

to change from round-to-round in Phase II, although the �nal allocation implemented is

that computed at the end of Phase I.

� Phase I is iBundle(3), the auction variation with separate prices for each maintained

explicitly from the �rst round. The allocation at the end of Phase I becomes the

�nal allocation.

� Phase II continues from the prices at the end of Phase I, but injects additional com-

petition into the system in the form of \dummy" agents simulated by the auctioneer

to mimic continued bidding from real agents as they drop-out. Phase II terminates

as soon as enough additional information has been collected from agents to compute

Vickrey payments.

The bids from an agent in Phase II do not change the allocation or the price that it

�nally pays. The only e�ect of bids is to decrease the �nal price paid by other agents

160

in the e�cient allocation. One possible weakness of this experimental auction design is

the separation of concerns between Phase I and Phase II. In other auction designs the

allocation decision is made concurrently with the payment decision. In Section 7.8 in

the next chapter I discuss whether this decomposition of the problem across Phase I and

Phase II might make collusion and other well-known vulnerabilities of Vickrey solutions

more likely.

The outline of this chapter is as follows. First I present a linear program formulation of

the Vickrey outcome, based on the third-order dual linear program for the CAP introduced

in Section 4.4 of Chapter 4. The optimal dual solution that minimizes revenue to the

auctioneer will compute Vickrey payments to all agents in some problems. In addition, I

show that the minimal price to each agent over all optimal dual solutions computes the

Vickrey payment in all problems. The linear program formulation leads to a primal-dual

method, Adjust, to compute minimal CE prices from a suitable set of CE prices, which

is introduced in Section 6.2. I prove that the prices computed at the end of iBundle are

su�cient to compute minimal CE prices with Adjust.

Section 6.3 introduces primal-dual method Adjust*, which extends Adjust, to com-

pute Vickrey payments from a suitable set of CE prices. Adjust* is useful in an auction

context because it computes Vickrey payments without explicit information about agent

valuation functions. I characterize necessary and su�cient conditions for Adjust* to

compute Vickrey payments.

Finally, Section 6.4 presents a primal-dual method, VickAuction, which computes

Vickrey payments and the e�cient allocation from only best-response agent information.

VickAuction extends CombAuction (see Section 4.6) with a second phase, PhaseII,

that is designed to collect enough additional information from agents to adjust prices

to Vickrey payments after termination. In the next chapter I introduce iBundle Ex-

tend&Adjust, which is an extension of iBundle, designed to implement VickAuction

as an auction. The main di�culty is making sure that an agent cannot detect the transi-

tion from iBundle into the extended phase. Bids in the second phase a�ect only the prices

paid by other agents, and an agent that knows it is in this bidding phase would choose to

drop out, or perhaps even act collusively with other agents.

161

6.1 Minimal Competitive Equilibrium Prices

In Chapter 4 I introduced a hierarchy of linear program formulations for CAP. The third-

order dual problem, DLP3, characterizes all non-linear and non-anonymous competitive

equilibrium prices.

This formulation is repeated below, with xi(S) = f0; 1g to denote whether bundle

S � G is allocated to agent i, and vi(S) � 0 denote agent i's value for bundle S. As

before, k 2 K denotes a possible allocation, allocating a particular bundle to a particular

agent and without giving any agent more than one bundle or allocating any item more

than once. The variable y(k) 2 f0; 1g indicates which solution is implemented.

max
xi(S);y(k)

X
S

X
i

xi(S)vi(S) [LP3]

s:t:
X
S

xi(S) � 1; 8i (LP3-1)

xi(S) �
X

k3[i;S]

y(k); 8i; S (LP3-2)

X
k

y(k) � 1 (LP3-3)

xi(S); y(k) � 0; 8i; S; k

min
p(i);pi(S);�

X
i

p(i) + � [DLP3]

s:t: p(i) + pi(S) � vi(S); 8i; S (DLP3-1)

� �
X

[i;S]2k

pi(S) � 0; 8k (DLP3-2)

p(i); pi(S); � � 0; 8i; S

The dual variable p(i) associated with constraint
P

S xi(S) � 1 can sometimes be

interpreted as agent i's marginal product [BdVSV01].

Definition 6.1 [marginal product] The marginal product of agent i, MP(i) is the

di�erence in total value of the optimal allocation with and without agent i.

MP(i) = V � � (V�i)
�

162

where V � is the value of the optimal allocation, and (V�i)
� is the value of the optimal

allocation with agent i taken out of the problem.

This interpretation of p(i) as the marginal product follows from considering the e�ect

of reducing the right-hand side on the constraint for agent i to zero. The dual price conveys

information about an the e�ect of an incremental change in the right-hand side value on

the value of the optimal primal solution. In problems for which the price remains valid for

a reduction from one to zero, p(i) = MP(i).

This provides a tie-in with Vickrey payments, because an agent's marginal product is

precisely its utility in the dominant strategy equilibrium of the GVA.

ui(vi; v�i) = vi(S
�
i)� pvick(i)

= vi(S
�
i)� ((V�i)

� � V �
�i)

= MP(i)

where V �
�i denotes the value V

� minus the value of the optimal solution with all agents in

the problem to agent i, and S�i is the bundle allocated to agent i in the e�cient allocation.

Thus, when p(i) = MP(i) then pi(S
�
i) = pvick(i) because dual variable pi(S

�
i) is inter-

preted as the price to agent i for bundle S�i . In general the optimal dual solution to [DLP3]

is not unique. The value of the dual is computed as the sum of the utility over all agentsP
i p(i) and the auctioneer's revenue �. This provides some exibility in prices pi(S) on

bundles in the dual solution, as a tradeo� is made between revenue and agent utility.

The Vickrey payments can be computed in the optimal dual solution that minimizes

revenue, or in the minimal competitive equilibrium prices, when the agents-are-substitutes

condition holds [BO99].

Minimal competitive equilibrium (CE) prices are de�ned as:

Definition 6.2 [minimal CE prices] The minimal CE prices are computed in the opti-

mal dual solution that minimizes the revenue to the auctioneer, �, or alternatively maxi-

mizes the marginal product (or utility) of the agents,
P

i p(i).

The agents-are-substitutes condition is stated in terms of agent marginal products:

Definition 6.3 [agents-are-substitutes] Vickrey payments are computed at the minimal

163

competitive equilibrium prices if and only if

V (I)� V (K) �
X

j2InK

[V (I)� V (I n j)] 8K � I

where V (K) denotes the value of the optimal solution to CAP with agents K � I.

Intuitively, the marginal product of a group of agents is required to be greater than

the sum marginal product of each agent in isolation. One can imagine factory workers,

where each additional worker at the margin has a small e�ect on the productivity of the

factory but the cumulative e�ect of having many people not turn up for work (a strike) is

signi�cant.

The equivalence between minimal CE prices and the Vickrey payment is easy to under-

stand for a single item Vickrey auction. For a single item the price to the winning agent

must be greater than the maximum price that any other agent is prepared to pay, i.e. the

value of the second-highest bid, if the solution is to be in competitive equilibrium. The

English auction selects this price by increasing prices by a minimal amount across rounds.

The minimal CE prices can be computed as a restricted dual problem, denoted [minCE],

which selects the optimal dual solution that minimizes the auctioneer's revenue �:

min
p(i);pi(S);�

� [minCE]

s:t: p(i) + pi(S) � vi(S); 8i; S (minCE-1)

� �
X

[i;S]2k

pi(S) � 0; 8k (minCE-2)

� +
X
i

p(i) = V (I) (minCE-3)

p(i); pi(S); � � 0; 8i; S

This restricted dual is di�erent from the regular dual problem [DLP3] in that the

objective function is min� instead of min� +
P

i p(i) and constraint (minCE-3) is new.

Constraint (minCE-3) ensures that the value of the dual solution p(i); �; pi(S) computed

by [minCE] is equal to the value of the optimal primal, and therefore an optimal dual

solution. A similar approach was earlier proposed by Leonard [Leo83] to compute minimal

CE prices and Vickrey payments in the assignment problem.

Bikchandani & Ostroy [BO99] prove the following result.

164

Theorem 6.1 (min CE prices). The minimal CE prices, as computed by [minCE],

support the Vickrey payments to each agent when the agents-are-substitutes condition holds;

i.e. pi(S
�
i) = pvick(i), for minimal CE bundles prices pi(S).

In the next section I develop a primal-dual formulation, which can compute the minimal

CE prices without explicit information about either the value of the e�cient allocation or

agents' valuation functions.

6.1.1 A Primal-Dual Formulation

At this stage my approach departs from that in Bikchandani & Ostroy [BO99] and Bikchan-

dani et al. [BdVSV01]. Bikchandani & Ostroy close their paper with a note that the

existence of a linear program formulation for Vickrey payments might lead to an iterative

Vickrey auction for CAP. Bikchandani et al. [BdVSV01] provide primal-dual auction in-

terpretations of the Demange et al. [DGS86] and Gul & Stacchetti [GS00] auctions, noting

that the price updates adjust prices on a \minimal overdemanded set" of items, which

selects the optimal dual solution with minimal auctioneer revenue. Constructive meth-

ods to compute minimal dual solutions with primal-dual methods are also demonstrated

for Ausubel [Aus97] and Ausubel [Aus00]. However, the authors make no constructive

progress towards an iterative Vickrey mechanism for the general CAP.

I develop a primal-dual based formulation of [minCE] that does not require the value of

V (I). This value is not available in the competitive equilibrium at the end of an iterative

auction. Similarly, the formulation should not require explicit information about agents'

values vi(S) for bundles, beyond that which is available from best-response bids.

Given primal solution xi(S) and y(k) and dual solution p(i); �, and pi(S), the comple-

mentary slackness conditions are:

165

xi(S) > 0) p(i) + pi(S) = vi(S) (CS-1)

y(k) > 0) � �
X

[i;S]2k

pi(S) = 0 (CS-2)

p(i) > 0)
X
S�G

xi(S) = 1 (CS-3)

pi(S) > 0)
X
i2I

xi(S) =
X

k2K;[i;S]2k

y(k) (CS-4)

� > 0)
X
k2K

y(k) = 1 (CS-5)

I formulate an alternative to restricted dual problem [minCE], which replaces constraint

(minCE-3) with complementary-slackness conditions with the e�cient allocation. It is safe

to ignore conditions (CS-3), (CS-4) and (CS-5) because these are all trivially satis�ed.

min
p(i);pi(S);�

�

s:t: p(i) + pi(S) � vi(S); 8i; S (D1)

� �
X

[i;S]2k

pi(S) � 0; 8k (D2)

p(i) + pi(S
�
i) = vi(S

�
i); 8i 2 Isol (CS1)

� �
X
i

pi(S
�
i) = 0 (CS2)

p(i); pi(S); � � 0; 8i; S

Shorthand S�i is used to denoted the bundle allocated to agent i, i.e. the bundle

corresponding with xi(S) = 1, and Isol � I is the subset of agents with a non-empty

bundle, such that i 2 Isol ,
P

S xi(S) = 1. It is straightforward to see that constraints

(CS1) and (CS2) enforce complementary slackness with the optimal primal solution, while

the other constraints are the standard constraints for dual feasibility.

Combining (CS1) and (D1), we require:

p(i) = vi(S
�
i)� pi(S

�
i) � max

S
(vi(S)� pi(S))

Combining (CS2) and (D2), we require:

166

� =
X
i

pi(S
�
i) � max

k2K

X
[i;S]2k

pi(S)

With this the restricted dual [minCE] can be reformulated in terms of complementary-

slackness conditions as [minCE-CS]:

min
pi(S)

X
i

pi(S
�
i) [minCE-CS]

s:t: vi(S
�
i)� pi(S

�
i) � max

S
(vi(S)� pi(S)) (BR)

X
i

pi(S
�
i) � max

k2K

X
[i;S]2k

pi(S) (REV)

pi(S) � 0; 8i; S

In other words, every agent in the e�cient allocation must continue to demand its

bundle S�i at the adjusted prices (BR), and the revenue from the e�cient allocation must

continue to dominate the best possible revenue over all other allocations (REV).

This formulation will compute minimal CE prices without explicit information about

the value of the e�cient allocation. Although an agent's valuation function vi(S) still

appears in the right-hand side of the (BR) constraints, this condition can be maintained

by adjustment from CE prices; i.e., reduce the price to agent i on bundle S�i (the bundle it

receives in the e�cient allocation) by at least as much as the reduction in the price on all

other bundles. The second condition (REV) only requires information about the prices,

which is readily available to the auctioneer. I derive formulation [minCE-Adjust], which

computes minimal CE prices from suitable CE prices and the e�cient allocation in the

next section.

The following result follows from Theorem 6.1.

Lemma 6.1 Linear program [minCE-CS] will compute the Vickrey payment to each

agent when the agents-are-substitutes condition holds, as pi(S
�
i) where S�i is the bundle

agent i receives in the e�cient allocation and pi(S) are minimal CE prices.

167

6.2 Adjust: Discounts for Minimal CE Prices

In this section I propose a concrete algorithmAdjust to solve [minCE-CS] without explicit

information about agents' valuation functions, and without enumerating all (REV) con-

straints. Adjust is used at the end of CombAuction, and at the end of iBundle, to adjust

prices towards minimal CE prices and Vickrey payments after the auction terminates.

It is useful to introduce the concept of prices that are a negative translation of an

agent's valuation function, written pi(�) = vi(�)	 C.

Definition 6.4 [negative translation] Vector x is a negative translation of y by C � 0,

written x = y 	 C if xj = max(0; yj � C) for all j 2 f1; : : : ;dim(x)g.

Given that the objective in [minCE-CS] is to minimize
P

i pi(S
�
i), while constraint

(REV) requires this sum to be greater than the maximal revenue over all allocations, the

problem can be solved by setting values on pi(S
�
i) and computing values for the other

prices that are as small as possible without violating (BR).

For an agent i in the �nal allocation, with price pi(S
�
i) on bundle S�i , the smallest price

on bundle Si 6= S�i that also satis�es (BR) is:

pi(Si) = max(0; vi(S)� vi(S
�
i) + pi(S

�
i)); for all S � G

For an agent i not in the �nal allocation we require

pi(S) = vi(S); for all S � G

Prices that are negative translations of agent valuation functions, i.e. pi = vi � C, for

C = vi(S
�
i) � pi(S

�
i), satisfy these conditions. The restricted dual can now be restated

with only as many decision variables, C1; : : : ; CI , as there are agents:

168

max
(C1;::: ;CI)

X
i

Ci

s:t: pi(S) = vi(S)	 Ci 8i; S

Ci = 0 8i =2 Isol

pi(S
�
i)� Ci � 0 8i (*)X

i

pi(S
�
i) � max

k2K

X
[i;S]2k

pi(S)

Ci � 0; 8i

In words, we compute minimal CE prices as the maximal set of discounts Ci from agent

valuation functions that maintain complementary slackness conditions with the e�cient

allocation.

The �nal adjusted prices pi(S
�
i)�Ci are non-negative by constraint (*). The negative

translation, pi(S) = vi(S)	Ci, can be expressed with the following additional constraints:

pi(S
�
i) � vi(S

�
i)� Ci 8i 2 Isol

pi(S) � vi(S)� Ci 8(i; S) s.t. xi(S) = 0

pi(S) � 0 8i; S

Dropping information about agent valuation functions, we can rewrite this in terms

of prices pTi (S) that are competitive equilibrium prices and negative translations of agents'

valuation functions.

Linear program [minCE-Adjust] computes discounts �i � 0 to each agent i, to adjust

prices from pTi (S) to p
T
i (S)��i:

169

max
(�1;::: ;�I)

X
i

�i [minCE-Adjust]

s:t: pi(S) = pTi (S)	�i 8i; S (BR)

�i = 0 8i =2 Isol

pTi (S
�
i)��i � 0X

i

pi(S
�
i) � max

k2K

X
[i;S]2k

pi(S) (REV)

�i � 0; 8i

Formulation [minCE-Adjust] is useful because the prices computed at the end of Com-

bAuction(3), and equivalently at the end of iBundle(3) with myopic best-response agent

strategies, are CE prices and negative translations of an agent valuation functions.

6.2.1 An E�cient Implementation

The following lemma allows a solution to be computed without enumerating all k 2 K and

checking the (REV) constraints explicitly.

Given discounts � = (�1; : : : ;�I), i.e. such that pi(S) = pTi (S)	�i, let P
�
� denote the

value of the revenue-maximizing allocation, and (P�;�i)
� denote the value of the revenue-

maximizing allocation without agent i.

Lemma 6.2 The maximal discount, �i, to agent i without breaking (REV) is �i =

min(pTi (S
�
i)��; (P �� � (P�;�i)

�)).

Proof. A simple feasibility argument shows that the only allocations that might pro-

vide more revenue to the auctioneer as prices are decreased on bundles to agent i are alloca-

tions that do not assign a bundle to agent i. Any allocation that still contains agent i would

have also provided more revenue before prices are reduced. Therefore, prices can be reduced

until the adjusted revenue from allocation S� equals the best alternative, i.e. P �� ��i =

(P�;�i)
�.

This suggests the Adjust algorithm, in Figure 6.1. Adjust computes agent discounts,

taking each agent in S� in turn. Price reductions to each agent in the allocation are

170

Adjust: input pTi (�); S
�, output �

P = P � ;

for each i 2 I� f
�i = minfP � (P�;�i)

�; pTi (S
�
i)g;

P = P ��i;

g;

Figure 6.1: The Adjust algorithm

considered incrementally and not independently; discounts already allocated to agents

i < j are considered when computing a discount for agent j. This is relaxed in Adjust*,

introduced in the next section.

The following result is immediate:

Lemma 6.3 Procedure Adjust computes minimal CE prices from CE prices pT that

are negative translations of agent valuation functions.

Although the optimization problem in each round, to compute the revenue maximiz-

ing allocation given current discount, (P�;�i)
�, is NP-hard (equivalent to the CAP), and

therefore worst-case exponential, search-based algorithms have been demonstrated to per-

form well on average [San99, FLBS99, ATY00]. The advantage of Adjust over a direct

linear program implementation of [minCE-Adjust] is that it is not necessary to explicitly

enumerate all constraints (REV). Essentially, Adjust computes a solution to the linear

program [minCE-Adjust] through implicit enumeration, pruning many possible allocations

from consideration.

A fast approximate method to compute the solution to Adjust without solving the

revenue-maximization problem (P�;�i)
� is suggested in the next section. The Adj-Pivot

method uses computation performed during the auction to compute the minimal CE prices.

Combining Lemma 6.3 with the agents-are-substitutes condition, we have the following

important result:

Theorem 6.2 (Vickrey payments). Procedure Adjust computes Vickrey payments

when the agents-are-substitutes condition holds and prices pT (�) are CE prices and negative

translations of agent valuation functions.

171

The condition in Lemma 6.3 on prices is su�cient but not necessary. A weaker necessary

and su�cient condition, �-CS1-tightness is:

Definition 6.5 [�-CS1-tightness] (i) For every agent j in the optimal allocation all

bundles it receives in any second best allocation are in its best-response set at prices pT (�),

(ii) For every agent j not in the optimal allocation, its price must be within � if its value

for any bundle it receives in a second-best allocation.

The �-CS1-tightness condition implies that it is not possible to reduce the price on any

bundle that is in a binding second-best revenue-maximizing solution without violating the

best-response complementary slackness condition, CS1.

Lemma 6.4 Procedure Adjust computes minimal competitive equilibrium prices from

CE prices pT (�) if and only if agent best-response bids satisfy �-CS1-tightness, as bid in-

crement �! 0.

In the next section I use Adjust at the end of CombAuction(3) to compute minimal

CE prices from best-response agent information.

6.2.2 A Primal-Dual Algorithm to Compute Minimal CE Prices

Recall that CombAuction(3) refers to the variant of the primal-dual algorithm for the

third-order linear program formulations, [LP3] and [DLP3], in which separate prices pi(S)

are maintained for each agent in every iteration. Also, the �nal prices satisfy (BR) and

(REV), and satisfy the price-indi�erence property because of agent best-response bidding

strategies and the price-update rules.

From Lemma 6.3 we can state the following result:

Theorem 6.3 (min CE). CombAuction(3) followed by Adjust computes minimal

CE prices and the e�cient allocation, as the bid increment �! 0.

From Theorem 6.2 we can also make a claim about the ability to compute Vickrey

payments with CombAuction(3) followed by Adjust:

Theorem 6.4 (vickrey). CombAuction(3) followed by Adjust computes Vickrey

172

payments and the e�cient allocation when the agents-are-substitutes condition holds, as

the bid increment �! 0.

This iterative procedure captures and extends all known previous methods to com-

pute Vickrey payments from sequential agent best-response bids (see Table 4.7) in the

combinatorial allocation problem, including for Gross-substitutues agent preferences.

6.2.3 Speeding-Up: Pivot Allocations

Procedure Adjust is NP-hard because it computes the value of the revenue-maximizing

allocation once with all agents, and then for the system with each agent removed.

In Parkes & Ungar [PU00b] we propose a fast approximate method, Adj-Pivot to

compute minimal competitive equilibrium prices. The algorithm uses computation already

performed during earlier rounds of the auction to approximate the value of second-best

allocations. Section 7.7 in the next chapter demonstrates that the method is very accurate

and very fast. The experimental success of the method provides useful insight into the

nature of minimal competitive equilibrium prices.

To compute the revenue-maximizing allocation (P�;�i)
� without agent i, Adj-Pivot

computes the value of the best allocation over all pivotal allocations.

Definition 6.6 [pivotal allocations] The pivotal allocations are the set of partitions

that have formed provisional allocations in one or more iterations of CombAuction.

It is perhaps reasonable that these pivot allocations are the allocations likely to repre-

sent allocations with high value at the �nal prices.

The approximate method to compute minimal CE prices from pivotal allocations is

formulated and solved as a linear program:

173

max
(�1;::: ;�I)

X
i

�i [minCE-Pivot]

s:t: pi(S) = pTi (S)	�i 8i; S

�i = 0 8i =2 Isol

pTi (S
�
i)��i � 0X

i

pi(S
�
i) � max

k2Pivot

X
[i;S]2k

pi(S) (*)

�i � 0; 8i

where the right-hand side of (*) computes the best allocation consistent with the set Pivot

of pivotal allocations. An individual pivotal allocation, k 2 Pivot , de�nes an allocation

of bundles to agents. When matching against the pivot set in Adj-Pivot it is useful to

allow matches against permutations of pivot allocations, where the particular set of agents

that receive bundles in a partition can be di�erent from that in an intermediate round of

the auction.

Experimental results in the next chapter show thatAdj-Pivot is very fast, and appears

as accurate as Adjust for small bid increments. The experimental success of Adj-Pivot

provides an intuitive understanding of minimal CE prices:

Proposition 6.1 Minimal competitive equilibrium prices, and often Vickrey payments,

are approximately the smallest prices that the agents in the �nal \winning coalition" had

to bid with hindsight to beat the best provisional allocation that dropped at least one agent

in the coalition and included at least one outside agent.

Essentially the price adjust method Adj-Pivot allows agents that are in the winning

allocation and important provisional allocations to pay less than an agent that is very

dependent on the winning coalition to receive a bundle.

6.3 Adjust*: Discounts for Vickrey Payments

The key to VickAuction is to recognize that although there are problems for which the

agents-are-substitutes condition does not hold, the Vickrey payment for any agent can

174

always be computed as the minimal price for its bundle in the e�cient allocation over all

competitive equilibrium prices.

Recall that the minimal CE prices are prices in the optimal dual solution that minimize

the revenue to the auctioneer, or equivalently maximize the sum marginal product over

all agents. In fact, min CE prices compute Vickrey payments when there is a unique set

of minimal CE prices (this is an alternative interpretation of the agents-are-substitutes

condition):

Lemma 6.5 If the agents-are-substitutes condition holds there is a unique set of minimal

CE prices (in terms of the prices for bundles in the allocation), and those prices equal

Vickrey payments.

Proof. (sketch) All agents in the e�cient allocation remain in the e�cient allo-

cation without any one agent, by the agents-are-substitutes condition. It follows that

it is the values to the agents not in the e�cient allocation that de�ne the price dis-

counts to each agent, and the order with which agents are selected in Adjust does not

change their discount. This implies that there is a unique set of minimal CE prices.

This generalizes in the following useful way:

Lemma 6.6 If the agents-are-substitutes condition does not hold there are multiple min-

imal CE prices (in terms of the prices for bundles in the allocation), and the Vickrey

payment for any agent i is computed as the minimal price on its bundle in the e�cient

allocation over all minimal CE prices.

To understand why this is the case, consider the following linear program, [VDLP(i)],

which maximizes the utility, p(i), to agent i (or alternatively minimizes the price agent

i pays for its optimal bundle S�i). This linear program is the restricted Vickrey dual for

agent i.

175

max
p(i);pi(S);�

p(i) [VDLP(i)]

s:t: p(i) + pi(S) � vi(S); 8i; S (VDLP-1)

� �
X

[i;S]2k

pi(S) � 0; 8k (VDLP-2)

� +
X
i

p(i) = V (I) (VDLP-3)

p(i); pi(S); � � 0; 8i; S

I prove that [VDLP(i)] computes agent i's marginal product, p(i) = V (I) � V (I n i),

and sets pi(S
�
i) = pvick(i), agent i's Vickrey payment:

Lemma 6.7 (Vickrey dual problem). The solution to the restricted Vickrey dual for

agent i computes pi(S
�
i) = pvick(i) in all problems, where S�i is the bundle agent i receives

in the e�cient allocation.

In other words, the Vickrey payment, pvick(i), for agent i is computed in the optimal

dual solution that minimizes the dual price, pi(S
�
i), on the bundle, S

�
i , that agent i receives

in the e�cient allocation.
Proof.

The proof is constructive, based on Lemma 6.3 and an inspection of the Adjust

procedure. Lemma 6.3 states that Adjust computes minimal competitive equilibrium

prices for input prices pT (�) that: (a) are negative translations of agent valuation functions;

(b) satisfy (BR), such that agent i's optimal allocation is in its best-response set; and (c)

satisfy (REV), such that the auctioneer maximizes revenue at the prices with the value-

maximizing allocation.

Consider prices pi(S) = vi(S) for all agents i 2 I, and all bundles S � G. Clearly these

prices satisfy conditions (a), (b) and (c). To complete the proof notices that agents can

be selected in any order in Adjust, and we will still compute a valid set of minimal CE

prices. Without loss of generality, suppose agent i is selected �rst. The discount �i to

176

agent i is computed as:

�i = minfP � (P�;�i)
�; pTi (S

�
i)g

= minfV � � (V�i)
�; vi(S

�
i)g

= V � � (V�i)
�

and agent i's adjusted price, the price for its bundle in this optimal dual solution, is:

pi = pi(S
�
i)��i

= vi(S
�
i)� (V � � (V�i)

�)

= pvick(i)

which is agent i's Vickrey payment. Therefore, because any agent can be selected �rst,

and because there is always a set of minimal CE prices consistent with the adjusted

price computed for the initial agent, the Vickrey payment to any agent i can be com-

puted as the minimal price over all CE prices. Note| Bikchandani & Ostroy [BO99]

earlier show that Vickrey payments are always a lower bound on all minimal CE prices.

The signi�cance of this result is that it is always possible to compute Vickrey payments

to each agent with \enough" primal dual information, solving jIj restricted Vickrey dual

problems| one to maximize the marginal product for each agent.

We can state the important following result:

Theorem 6.5 The Vickrey payment for agent i can be computed as the minimal price

for bundle S�i in the e�cient allocation over all minimal CE prices, i.e. over all optimal

dual solutions that minimize the auctioneer's revenue.

The obvious next step is to propose a slightly modi�ed price-adjustment procedure,

Adjust*, to solve the restricted Vickrey dual [VDLP(i)] for all agents. See Figure 6.2.

Adjust* is identical to Adjust except that it computes the discount to each agent

separately, and independently of the discounts assigned to other agents. Whenever pi(�) =

vi(�) we compute the Vickrey discount for each agent. In other cases, the discounted price

remains a competitive equilibrium price in some dual solution, and is no less than the

agent's Vickrey payment.

The next lemma follows immediately from Lemma 6.3.

177

Adjust*: input pTi (�); S
�, output �

P = P � ;

for each i 2 I� f
�i = minfP � (P�i)

�; pTi (S
�
i)g;

g;

Figure 6.2: Procedure Adjust*.

Lemma 6.8 Adjust* computes a discounted price pTi (S
�
i)��i to agent i that is no less

than its Vickrey payment for prices pT (�) that are negative translations of agents' valuation

functions, and also satisfy (BR) and (REV).

We also have the following result, from Lemma 6.7.

Lemma 6.9 Adjust* computes a discounted price equal to agent i's Vickrey payment

for prices that are negative translations of agents' valuation functions, satisfy (BR) and

(REV), as the prices approach agents' valuation functions.

Let us characterize the conditions that enable us to compute Vickrey payments; i.e.

how far away can we be from complete information revelation but still compute the out-

come of the GVA? Remember, we want to compute Vickrey payments without complete

information about agent valuation functions.

As before, consider initial prices pTi (�) that are negative translations of agent valuation

functions, and satisfy (BR) and (REV) at the optimal allocation S�. Linear program

[VDLP-CS(i)] is a complementary slackness formulation of the restricted Vickrey dual

[VDLP(i)] that does not require explicit information about V (I) and vi(�).

178

max
(�1;::: ;�I)

�i [VDLP-CS(i)]

s:t: pi(S) = pTi (S)	�i 8i; S (BR)

�i = 0 8i =2 Isol

pTi (S
�
i)��i � 0X

i

pi(S
�
i) � max

k2K

X
[i;S]2k

pi(S) (REV)

�i � 0; 8i

In words, [VDLP-CS(i)], computes discounts to each agent to maximize the individual

discount, �i, to agent i from its CE price, while maintaining complementary slackness

conditions with the e�cient allocation. Procedure Adjust* solves this linear program.

Prices pTi (�) are negative translations of agents' valuation functions, i.e. p
T
i (S) = vi(S)	Ci,

for some Ci � 0. In proving Lemma 6.7 we showed that Ci = 0 for all agents i is a su�cient

condition. The necessary and su�cient conditions on the initial discounts Ci � 0 that

de�ne agents' initial prices, for [VDLP-CS(i)] to compute the Vickrey payment to agent i,

are:

(a) For agents j =2 Isol. We already require Cj � 0 by myopic best-response and (CS-1).

Now, if agent j receives a bundle in the second-best allocation without agent i we

need either Cj = 0, or a zero discounted price for agent i.

(b) For agents j 2 Isol. We already require Cj � 0 by myopic best-response and (CS-1).

Now, if agent j does not receive a bundle in the second-best allocation without agent

i we need either Cj = 0, or a zero discounted price for agent i.

Putting this all together, and ignoring this additional clause, we can state joint su�-

cient conditions on prices pTi (S) for procedure Adjust* to compute Vickrey payments to

every agent.

Theorem 6.6 (Adjust* optimality). Procedure Adjust* computes Vickrey payments

from CE prices pTi (�) that are (a) negative translations from agent valuation functions; and

(b) equal to value vi(�) for every agent i in the optimal allocation but not in a second-best

allocation for some agent j 6= i, j 2 Isol.

179

where the second-best allocation without agent i is the allocation that maximizes

revenue without agent i at the prices, i.e. the value of (P�i)
�. Condition (b) extends what

was required in Lemma 6.3 for procedure Adjust to compute minimal CE prices.

It is useful to de�ne a Vickrey Test, in terms of intuitive descriptions of the state of a

competitive equilibrium solution, including the dependents of an agent, the active agents,

and a needy agent.

Let P � denote the value of the revenue maximizing allocation at current prices, with

W � � I the set of agents in that allocation. Also, let (P�i)� denote the value of the revenue

maximizing allocation without agent i at the current prices, the second-best allocation, and

(W�i)
� denote the agents in that allocation.

The dependents of agent i are used to check whether Adjust* computes Vickrey

payments at current prices.

Definition 6.7 [dependent agents] The dependents �(i) of agent i are:

�(i) =W � n ((W�i)
�
S
i), if i 2W �

�(i) = ;, otherwise.

The dependents of agent i are agents that receive a bundle in allocation S� but do not

receive a bundle in the second-best allocation without agent i at the current prices.

An active agent is an agent that still requests bundles at the current prices:

Definition 6.8 [active agents] Agent i is active at prices pi(�) if its best-response set

of bundles (those bundles that maximize its utility) is non-empty, i.e. the agent continues

to demand one or more bundles.

A needy agent is an agent in the e�cient allocation that still has a non-zero adjusted

price in the algorithm:

Definition 6.9 [needy] An agent i is needy if its adjusted price is non-zero.

With this, I restate the su�cient conditions in Theorem 6.6 for Vickrey payments as

the Vickrey test:

Definition 6.10 [Vickrey test] CE prices satisfy the Vickrey test condition when they

are negative translations of agents' valuation functions, and no needy agent in the e�cient

allocation has any active dependent agents.

Procedure Adjust* computes Vickrey payments from CE prices whenever the prices

satisfy the Vickrey test. Note that the auctioneer can compute the needy, active and

180

dependent agents from best-response bids.

Finally, we can de�ne necessary and su�cient conditions for Vickrey payments, in

terms of the �-CS1-tightness condition introduced in Section 6.2:

Proposition 6.2 Procedure Adjust* computes Vickrey payments from CE prices pTi (�)

if and only if best-response bids satisfy �-CS1-tightness; and no needy agent i in the e�cient

allocation has any active dependent agents.

In the following section I give an illustrative example of Adjust*.

6.3.1 Example

Consider Problem 7 in Table 6.1. The optimal allocation is S� = (A;B; ;), i.e. with items

are allocated to agents 1 and 2. The Vickrey prices are pvick(1) = 30� (70� 40) = 0 and

pvick(2) = 40� (70� 50) = 20.

A B AB

Agent 1 30� 0 30
Agent 2 0 40� 40
Agent 3 0 20 40

Table 6.1: Problem 7. E�cient allocation indicated �. Vickrey payments: pvick(1) = 30� (70�
40) = 0, pvick(2) = 40� (70� 50) = 20.

First, let us check the \agents as substitutes" condition, to determine whether Vickrey

payments are supported in competitive equilibrium. The marginal products are MP(1) =

V (I) � V (I n 1) = 70 � 40 = 30, MP(2) = 70 � 50 = 20, and MP(3) = 70 � 70 = 0. We

must check:

V (I)� V (K) �
X

i2(InK)

[V (I)� V (I n i)] ; 8K � I

This condition does not hold, because for K = f3g, we have V (123)�V (3) < MP(1)+

MP(2), because 70� 40 < 30 + 20. Therefore the Vickrey payments are not supported in

competitive equilibrium. Indeed we might suspect this because pvick(1)+pvick(2) < v3(AB).

Consider using Adjust and Adjust* in two scenarios. Prices are in competitive

equilibrium in both cases, and are negative invariants of agent valuation functions. By

Lemma 6.3 we expect to compute minimal CE prices with Adjust in both scenarios.

181

Vickrey payments will depend on the conditions of Theorem 6.6, i.e. on the prices and

second-best allocations of agents 1 and 2.

� Scenario 1. Prices are pT1 = f25; 0; 25g, pT2 = f0; 25; 25g and pT3 = f0; 20; 40g.

Adjust computes discounts �1 = 50 � 40 = 10 and �2 = 40 � 40 = 0, or

�2 = 50 � 45 = 5 and �1 = 45 � 40 = 5, depending on which agent is selected

�rst. The adjusted, minimal CE prices are p1 = f15; 0; 15g and p2 = f0; 25; 25g,

or p1 = f20; 0; 20g and p2 = f0; 20; 20g, with p3 = f0; 20; 40g in both cases. Ad-

just* computes �1 = 50 � 40 = 10 and �2 = 50� 45 = 5, for �nal adjusted prices

p1(A) = 15 and p2(B) = 20. Agent 2 gets its Vickrey payment because agent 1 is

in the second-best allocation without agent 2. However, agent 1 does not gets its

Vickrey payment because agent 2 is not in the second-best allocation without agent

1, and does not bid its full value for B.

� Scenario 2. Prices are pT1 = f25; 0; 25g as before, but now p2 = f0; 40; 40g, i.e.

equal to its valuation function. We know immediately that Adjust* now computes

the Vickrey payments because the Vickrey Test condition is satis�ed for both agents

1 (it is not a dependent agent of 2), and agent 2 (it bids its valuation function). The

discounts computed in Adjust* are �1 = 65 � 40 = 25 and �2 = 65� 45 = 20, for

adjusted prices p1(A) = 25� 25 = 0 = pvick(1) and p2(B) = 40� 20 = 20 = pvick(2).

Notice that agent 1 does not need to reveal complete information about its valuation

function. Procedure Adjust computes either � = (25; 0; 0) or � = (5; 20; 0), which

give minimal CE prices but not Vickrey payments to every agent.

This example indicates how it is possible to compute (and verify) Vickrey payments

from CE prices, even when Vickrey payments are not supported in any single set of prices.

6.4 VickAuction: A Primal-Dual Vickrey Algorithm

In this section I present a primal dual algorithm, VickAuction, that provably computes

Vickrey payments and the e�cient allocation with best-response agent bids. In the next

chapter I develop an extended iBundle auction, iBundle Extend&Adjust, which is designed

to implement VickAuction as an ascending-price auction.

182

VickAuction is a sequential composition of CombAuction(3), as described in Chap-

ter 4, with a new algorithm PhaseII:

VickAuction = CombAuction(3) � PhaseII

VickAuction has a natural interpretation as an ascending-price combinatorial auction

because it has the following features:

(1) the only interaction with agents is via myopic best-response requests;

(2) prices are ascending throughout the algorithm;

(3) there is always a feasible allocation, the provisional allocation in an auction.

CombAuction(3) terminates with the e�cient allocation S� and competitive equilib-

rium prices pTi (S) that are negative translations of agent valuation functions.

CS1

p(2)

p(1)
price(1)

CS2
CS1

pr
ic

e(
2)

I

II

Figure 6.3: PhaseII: Collecting additional primal-dual information to compute Vickrey payments

Figure 6.3 illustrates the role ofPhaseII. The Figure plots the complementary-slackness

constraints with the e�cient allocation in a simple problem with only two agents in the

e�cient allocation. On the x-axis is the price on the bundle that agent 1 receives in the

e�cient allocation. On the y-axis is the price on the bundle that agent 2 receives in the

e�cient allocation. To the left of vertical line CS1 the prices satisfy CS1 for agent 1 (i.e.

the price is less than its value). Below line horizontal line CS1 the prices satisfy CS1 for

agent 2 (i.e. the price is less than its value). To the upper-right side of diagonal line

183

CS2 the prices satisfy CS2 (i.e. the e�cient allocation continues to maximize revenue for

the auctioneer). Inside the triangle, between these constraints, prices are all optimal dual

(or competitive equilibrium) prices on the bundles. The minimal CE price to agent 2,

indicated p(2) is its Vickrey payment. The minimal CE price to agent 1, indicated p(1) is

its Vickrey payment.

At the end of CombAuction(3), or Phase I in VickAuction, the primal-dual algo-

rithm might be in the state indicated by the �rst solid circle, closest to the origin. At

this point Adjust* will adjust prices to the points shown, but there is not enough infor-

mation to compute minimal prices over the simplex of optimal dual prices. The purpose

of PhaseII is to get enough additional information to move to a point like the second

solid circle, from which Adjust* drops down to the two extremal values and computes

Vickrey payments. In this problem agents 1 and 2 both needed to reveal their complete

value for their bundle in the e�cient allocation, but this is not the case in general. The

path from I to II on the plot represents the \valuation (or information) cost of achieving

incentive-compatibility".

Module PhaseII continues to increase prices and request best-response information

from agents until the prices satisfy the Vickrey test conditions. As soon as this condi-

tion holds there is enough primal-dual information to adjust prices to Vickrey payments.

PhaseII is described in Figure 6.4.

The combined algorithm, CombAuction(3) � PhaseII, which we call VickAuction,

is optimal.

Theorem 6.7 (VickAuction optimality). VickAuction is a primal-dual algorithm

to compute the e�cient allocation and the Vickrey payments for the combinatorial alloca-

tion problem.

Proof. CombAuction(3) computes competitive equilibrium prices p�i (�) that are

negative translations of agent valuation functions and the e�cient allocation S�. By

Lemma 6.10 the revenue-maximizing allocation in every round of PhaseII remains allo-

cation S� computed at the end of CombAuction(3). Prices remain negative translations

of agent valuation functions, and CE prices, because the prices continue to be increased

on the basis of best-response bids from agents. PhaseII terminates with the Vickrey

test conditions (de�nition 6.10) because there are no needy agents that also have active

184

PhaseII

Input: prices pTi (S) and allocation S� from CombAuction

active = active(BR(pT));
compute dependents(i) = W � � (W�i)

� � i for all i;
�init = Adjust*(pTi ; S

�);
needy(i) = true if �init(i) < pTi (S

�
i), false otherwise;

�i = �init(i); pi(�) = pTi (�);
while (9i : needy(i) & (dependents(i) \ active 6= ;)) f

for i 2 active

if (9j : needy(j) & i 2 dependents(j))

pi(�) = nonanon update(BRi; pi);
compute best-response set BRi(pi) for every agent i;
active = active(BR(p));

�i = �i + jdependents(i) \ activej �;
if (�i � pTi (S

�
i))

needy(i) = false;

else f
compute (W�i)

�;

compute dependents(i) = W � � (W�i)
� � i;

g;
g
output: adjusted prices max(0; pTi (S

�
i)��i) to each agent.

Figure 6.4: The PhaseII algorithm.

185

dependents.

Instead of computing the adjusted price with Adjust* explicitly, the discount �(i) is

initialized explicitly with Adjust* at the start of PhaseII and then maintained across

rounds. The di�erence between P � and (P�i)
� for agent i increases in each round by the

number of active dependents of agent i, multiplied by the minimal bid increment, plus an

additional � if the agent's own prices also increase; the e�ect is to increase the discount to

agent i by jdependents(i)\ activej � with respect to its price at the start of PhaseII.

The �nal adjusted price max(0; pTi (S
�
i)��(i)) for every agent i is equal to its Vickrey

payment as �! 0.

The proof uses the following lemma.

Lemma 6.10 The revenue-maximizing allocation S� does not change as prices are in-

creased in PhaseII. The value of the revenue-maximizing allocation therefore increases by

� every time the price is increased to one of the agents in S�.

Proof. No allocation to only agents in W �, i.e. agents currently in the provisional

allocation, can have more value than the current allocation as prices change because the

price on bundles S�i increases by at least as much as the price on all other bundles to agent i

(because of myopic best-response and the price-update rule). A simple feasibility argument

shows that no solution that combines di�erent bundles to agents inW � with some bundles

to agents outside of W � can become value-maximizing without the same allocation having

more value than solution S� at the original prices. Of course, the prices are not increased to

any agent not in W �.

6.4.1 Speeding-up: Pivot Allocations

Just as Adj-Pivot is a fast but accurate method to compute minimal CE prices at the end

of CombAuction, a similar technique Adj-Pivot* can be used to speed-up Adjust*

and VickAuction.

The inner-loop of Adjust* computes the value of the second-best allocation (P�i)
� at

the current prices (see Figure 6.2). Adj-Pivot* computes this value with the following

approximation:

186

(P�i)
� � max

x2Pivot

X
[j;S]2x;j 6=i

pTj (S)

where Pivot is the set of provisional allocations computed duringCombAuction, and a

single pivotal allocation x 2 Pivot de�nes an allocation [i; S] 2 x of bundles to agents. The

approximation restricts attention to allocations that have proved to be interesting during

the auction, and avoids computing a new solution to a large combinatorial optimization

problem in each round.

The same method can be used to approximate the computation of (W�i)
�, i.e. the

agents in the second-best allocation without agent i, during PhaseII of VickAuction,

also computing the approximation based on pivot allocations computed during the Com-

bAuction phase of the VickAuction algorithm.

187

Chapter 7

iBundle Extend & Adjust

Much of my dissertation addresses a fundamental problem with the GVA, which is that

it requires agents to compute and reveal their values for all combinations of items. This

can be very di�cult for bounded-rational agents with limited or costly computation. The

complete information requirement arises because of the single-shot nature of the auction.

Without an option to ask an agent for more information a mechanism can only compute

the e�cient allocation in every problem instance with complete information up-front about

every agent's valuation function.

In comparison, an iterative GVA can terminate with the same outcome (allocation and

payments) but with less information revelation. An iterative auction can elicit information

from agents dynamically, as required to determine the e�cient allocation. Terminating

with the Vickrey outcome provides an iterative procedure with much of the same strategy-

proofness as the sealed-bid GVA. The design of an iterative GVA is stated as an important

open problem in the auction design literature [BO99, Mil00b]. However, iterative Vickrey

auctions are only known for special cases [KC82, DGS86, GS00, Aus00], with restrictions

on agent valuation functions. See Table 4.7 for a survey of known results.

Previous attempts to design iterative auctions have (implicitly at least) relied on in-

creasing prices across rounds to compute minimal competitive equilibrium prices, which

equal Vickrey payments in special cases. This approach must fail in general problems be-

cause there are often no single set of minimal CE prices that compute Vickrey payments to

every agent. In addition, this approach requires careful price-adjustment, on the \minimal

overdemanded set of bundles".

My approach in VickAuction, and the extended iBundle auction, iBundle Extend&

Adjust, is to retain the greedy price-updates of iBundle and adjust the prices after the

188

auction terminates to compute minimal competitive equilibriumprices. With this approach

the auction does not need to terminate with minimal CE prices. The method also extends

to problems without a single set of minimal CE prices that compute Vickrey payments,

because we can compute the Vickrey payment to an agent as the minimal price on its

bundle over all minimal CE prices.

iBundle Extend&Adjust is a simple interpretation of VickAuction, introduced in

Chapter 6. The extended iBundle auction collects additional information from agents in

order to adjust prices to Vickrey payments. The goal is to implement the Vickrey outcome

with best-response agent strategies. The �rst phase is identical to iBundle(3), and the

allocation implemented at the end of the extended auction is that computed at the end of

the �rst phase, which is the e�cient allocation when agents follow myopic best-response

strategies. The purpose of the second phase is to compute Vickrey payments.

The iterative auction has better information properties than the sealed-bid GVA. In

each round agents must only bid for the set of bundles that maximize their utility given

current ask prices, which does not require agents to compute their exact values for every

bundle. Further discussion of agent computation is provided in Chapter 8.

As far as I know, iBundle with Adjust, but without the additional phase, is the �rst

auction with the following property:

Theorem 7.1 (min CE). iBundle with Adjust computes minimal CE prices and the

e�cient allocation, for myopic best-response agent strategies as the minimal bid increment

�! 0.

This follows quite directly from Theorem 6.3 in the previous chapter.

In addition, iBundle Extend&Adjust, which is equivalent to running iBundle with an

extended phase and then price-adjust method Adjust*, satisi�es the following property:

Theorem 7.2 (Vickrey). iBundle Extend&Adjust computes the Vickrey payments and

the e�cient allocation whenever the agents-are-substitutes condition holds, for myopic best-

response agent strategies as the minimal bid increment �! 0.

The agents-are-substitutes condition was introduced in the previous chapter (De�nition

6.3), and is necessary and su�cient for Vickrey payments to be computed at the minimal

189

CE prices. Special cases of this theorem capture all known iterative Vickrey auctions for

the combinatorial allocation problem (see Table 4.7), including1

| linear-additive preferences

| unit-demand preferences

| gross-substitutes preferences

| problems with a single agent in the e�cient allocation

| problems with two agents

Theorem 7.2 follows quite directly from the analysis in the previous chapter. The only

subtlety here is to prove that the auction will terminate immediately without entering its

extended phase when the agents-are-substitutes condition holds. This is proved in Section

7.6.

Finally, I also make the following conjecture for iBundle Extend&Adjust:

Conjecture 7.1 (iterative generalized Vickrey auction). iBundle Extend&Adjust is

an iterative Generalized Vickrey Auction, terminating with Vickrey payments and the ef-

�cient allocation for myopic best-response agent strategies as the minimal bid increment

�! 0.

While a full proof has yet to be completed, experimental results presented in Section

7.7 provide very strong support for the conjecture. I have a proof (see Section 7.6) that

if the extended auction terminates, then the adjusted prices are Vickrey payments. This

follows quite directly from the properties of VickAuction. What is left to prove is that

the method for quiescence detection and the introduction of dummy agents in the second

phase of the auction is su�cient to push the �nal phase of the auction to a state in which

the Vickrey test (De�nition 6.10) holds.

7.1 Overview

The extended auction has two distinct phases. The �rst PhaseIs used to determine the ef-

�cient (value-maximizing) allocation, while the second-PhaseIs used to determine Vickrey

1Bikchandani et al. [BdVSV01] show that gross-substitutes is su�cient for the agents-are-substitutes
condition.

190

payments. This transition from PhaseI to PhaseII is designed to be hidden from partic-

ipants. The basic auction rules across both phases are as in iBundle, and prices increase

monotonically between PhaseI and PhaseII. The novelties in the auction design are as

follows:

� Agents' payments are adjusted after the auction terminates, and agents do not pay

their �nal bid prices. This allows the implementation of non-equilibrium solutions,

which is important because the GVA outcome cannot always be supported in equi-

librium.

� Additional competition is introduced during the second phase of the auction, to make

the winning agents continue to bid and reveal more information, enabling �nal prices

to be adjusted to Vickrey payments.

Best-response bids from agents provide information about the complementary-slackness

conditions in a primal-dual formulation, and can be used to adjust towards an optimal

solution.

PhaseII is designed to force active agents to bid higher prices for bundles received in the

optimal allocation. With myopic best-response agent strategies the ask prices to all agents

remain valid competitive equilibrium prices during PhaseII. PhaseII terminates precisely

when there are no active agents, or at least no active agents still bidding in the auction

(which indicates that the ask price to those agents cannot be any higher).

The extended iBundle auction uses dummy agents to provide continued competition

for agents in the e�cient allocation and implement the second phase of VickAuction.

The dummy agents are designed to make agents in the e�cient allocation continue to

bid higher prices until there is enough information to compute Vickrey payments. The

method to introduce dummy agents, although experimental at this stage, does seem to

succeed in forcing the auction to the Vickrey state and computing Vickrey payments after

termination.

This dummy agent method is adopted instead of the straightforward price-update rules

in the second phase of VickAuction because it is important that bidders cannot detect

the transition from PhaseI to PhaseII. An agent's bids in PhaseII decrease the �nal price

paid by other agents, but have no other e�ect on the outcome of the auction. Thus, if

an agent knows it is in PhaseII it might decide to drop out of the auction because of

191

A B AB

Agent 1 0 a b
Agent 2 10 0 10
Agent 3 0 0 15

Table 7.1: Problem 8.

participation costs from continued bidding. Another possibility is that an agent might

attempt collusive manipulation with another agent. This is discussed below in Section

7.8.1.

The tricky part of the proof of optimality of iBundle Extend&Adjust is to show that the

competition from the dummy agents is su�cient to make PhaseII terminate, i.e. to push

the bid prices for all active agents high enough to satisfy conditions to compute Vickrey

payments. This remains a conjecture.

At the end of the chapter I discuss a number of re�nements that may boost computa-

tional performance with little loss in incentive and e�ciency properties.

7.2 Manipulation of iBundle

Up to this point I have assumed that agents follow myopic best-response strategies, truth-

fully revealing their demand in response to ask prices in each round of iBundle. The as-

sumption allowed a connection between agent bids, complementary-slackness conditions,

and primal-dual optimality.

However, iBundle leaves open the possibility of agent manipulation. iBundle terminates

with competitive equilibrium (CE) prices, often minimal CE prices, but this is not always

enough to prevent successful manipulation. Alternative strategies available to agents in-

clude: placing jump bids, signaling false intentions, or waiting to bid, all of which can

reduce economic e�ciency and require quite complex game-theoretic reasoning by agents.

Let us consider Problem 8 in Table 7.1, with a = b = 10. Suppose that agents 2

and 3 follow a myopic best-response strategy and consider the options available to agent

1. The e�cient allocation is S� = (B;A; ;), for value V � = 20. Let (p1; p2; p3) =

(p1(B); p2(A); p3(AB)). In competitive equilibrium, the prices must satisfy: p1 � 10,

p2 � 10, p3 � 15, and p1 + p2 � p3. One set of competitive equilibrium prices are:

192

p1 = 8; p2 = 8; p3 = 15.

Agent 1 might choose to follow myopic best-response. In this case iBundle terminates

with one agent paying 7 and the other paying 8, and agent 3 unwilling to pay 16 for bundle

AB. Agent 1 can do better by waiting while agent 2 bids against agent 3, and then bidding

for B to stop agent 3 winning AB when agent 2 has bid 10 for A and can bid no higher.

This \slow straightforward" bidding strategy [Mil00a] allows agent 1 to reduce the price

that it pays from 7 to 5, while agent 2 pays 10. Agent 1 is said to free-ride o� the bids of

agent 2 and ends up sharing less of the cost of out-bidding the third agent.

The Vickrey payments in this problem are $5 for each agent, i.e. pvick(1) = v1(B) �

(V � � (V�1)
�) = 10 � (20 � 15) = 5, and pvick(2) = v2(A) � (V � � (V�2)

�) = 10 � (20 �

15) = 5. These prices are precisely what agents 1 and 2 might hope to achieve with a

slow straightforward bidding strategy if the other agent follows its myopic best-response

strategy.

Computing Vickrey payments at the end of the auction with myopic best-response

strategies makes myopic best-response becomes a Bayesian-Nash equilibrium of the iter-

ative auction. Informally, each agent does as well as it could hope to do with any other

strategy, given that the other agents follow myopic best-response strategies.

Milgrom [Mil00a] has earlier observed that in cases in which the minimal CE prices

are not unique an agent's optimal strategy is this \slow straightforward" bidding. A slow

straightforward strategy submits a bid only when the auction is about to terminate, and

the agent is not currently receiving a bundle in the provisional allocation. The cases

without unique minimal CE prices are precisely those in which Vickrey payments are not

supported in CE.

7.3 iBundle Extend & Adjust: Description

iBundle Extend&Adjust has two distinct phases: PhaseI, in which the �nal allocation

is determined, followed by PhaseII, in which �nal payments are determined. PhaseI is

identical to iBundle(3), the variation of iBundle that maintains separate ask prices for

each agent throughout the auction. PhaseI ends when iBundle terminates, at which point

the auctioneer stores the provisional allocation. This allocation is implemented at the end

of the auction.

193

The purpose of PhaseII is to collect enough additional information to be able to com-

pute Vickrey payments. At the end of PhaseII, payments to agents are computed as the

bid prices at the end of PhaseI minus a discount, which is computed during PhaseII.

Both phases follow the price update rules, bidding rules, and winner-determination rules

of iBundle. The termination condition in PhaseII, and additional steps performed during

each round in Phase II to compute price discounts are new.

Let S� = (S�1 ; : : : ; S
�
I) denote the allocation at the end of PhaseI, P � denote the

auctioneer's revenue, W � � I denote the set of agents that receive a bundle in S�, (P�i)
�

denote the value of the revenue maximizing allocation without agent i at the current ask

prices, and (W�i)
� denote the agents in this second-best allocation. Also, let pIbid;i(S)

denote agent i's bid price for bundle S at the end of PhaseI.

As in Chapter 6, I will refer to the dependents of agent i as the agents that receive a

bundle in allocation S� but not in the second-best allocation without agent i at the current

ask prices. A needy agent is an agent that is in allocation S� and has a non-zero adjusted

price for its bundle. Finally, an active agent is an agent that is still bidding at the current

prices.

PhaseI: iBundle(3)

PhaseI is iBundle(3), with termination under the same conditions and unique prices for

each agent in every round of the auction. The allocation at the end of PhaseI is stored,

and �nally implemented at the end of PhaseII.

PhaseII: Extend&Adjust

PhaseII of iBundle Extend&Adjust shares many features with PhaseII of the primal-dual

algorithm VickAuction to compute Vickrey payments with best-response agent bids.

The purpose of PhaseII is to compute the discount from agent prices at the end of PhaseI

to adjust to Vickrey payments.

The �nal price for agent i at the end of PhaseII is discounted from its �nal bid price

at the end of PhaseI by the sum of its initial discount �init(i), computed at the start of

PhaseII, and an additional discount �init(i) computed during PhaseII.

194

At the start of PhaseII the initial discount, �init(i), is computed as:

�init(i) =

8<
:

P � � (P�i)
� , if i 2W �

0 , otherwise

and �extra(i) = 0 for all agents. The dependents for agents i 2 W � are computed as

�(i) =W � n ((W�i)
�
S
i), with �(i) = ; otherwise. The needy agents are those agents in

W � for which pIbid;i(S
�
i)� (�init(i) +�extra(i)) > 0.

The auctioneer introduces dummy agents to drive competition with agents past the end

of PhaseI, and push prices into the state where the Vickrey test (De�nition 6.10) holds.

The auctioneer simulates the dummy agents, generating bids in each round. These bids

are not visible to agents.

The auctioneer �rst introduces a dummy agent for any agent that dropped out of the

auction in the last round of PhaseI. Additional dummy agents are introduced dynamically

at the end of each round.

A simple rule is used to construct the valuation function of a dummy agent:

Definition 7.1 [dummy agent] The valuation function of a dummy agent constructed

to mimic agent j is based on the �nal ask prices of agent j: set v(S) = pask;j(S) + L for

bundles S with pask;j(S) > 0, and v(S) = 0 for all other bundles, for some large constant

L > 0.

The auctioneer updates the set of active agents, and performs the following steps at

the end of each round of PhaseII:

1. Compute the new second-best allocation without each needy agent in turn, restricting

attention to only the real agents (ignoring the dummy agents). Update (W�i)
�,

and compute the new dependents of each needy agent, comparing the agents in the

second-best allocation with the agents in the e�cient allocation.

2. For each needy agents with active dependents, increment �extra(i) by
P

j2�(i)�incr(j)

where �incr(j) � 0 is the increase in bid price by agent j for bundle S�j (the bundle

it receives in the allocation at the end of PhaseI) since the previous round.

3. Remove agent i from the set of needy agents if pIbid;i(S
�
i)� (�init(i) + �extra(i)) � 0.

Test for termination: PhaseII terminates when there no needy agents with active depen-

dents. Special cases of this termination condition hold where there are: no needy agents;

195

no active agents; no dependent agents, etc.

Otherwise, the auctioneer introduce dummy agents according to the following rules:

(1) for any agent that has just dropped out of the auction, i.e. that was active in the

previous round but is no longer active. Any dummy agent that already existed for this

agent is replaced with a new one.

(2) in a state of quiescence for the active agents,2 in which case a dummy agent is

introduced for: (i) an agent with no dummy that is not active; or failing that (ii) an active

agent with no dummy; or failing that (iii) an active agent that already has at least one

dummy agent.

After termination allocation S�, as computed at the end of PhaseI is implemented, and

the �nal adjusted prices are:

padjust(i) = max
�
0; pIbid;i(S

�
i)� (�init(i) + �extra(i))

�

Worked examples of iBundle Extend&Adjust are provided below.

7.3.1 Discussion

The precise de�nition of quiescence is not too important. I consider that the auction

is in quiescence if: the same active agents have participated in the auction for the past

three rounds; and all participating active agents have been allocated the same (non-empty)

bundle in the provisional allocation in the past three rounds, and for the same price.

7.3.2 Variation: iBundle(2) and PhaseII

One problem with the extended iBundle auction is that the �rst PhaseIs iBundle(3), which

maintains separate prices for each agent, and can take longer to converge than iBundle(2),

which has more direct feedback between agents.

In order to apply PhaseII and the Adjust* method to iBundle(2), with anonymous

prices, we might �rst build a set of individual ask prices for each agent, pi(S), for bundle

S. One approach is to initialize them to the anonymous prices, and then try to adjust

the prices towards prices that are approximately competitive equilibrium and negative-

translations of agent valuation functions; for example, reducing the price on bundles than

2It is possible that there is a bidding war between the dummy agents and non-active agents without
displacing the allocations of active agents.

196

an agent does not bid in the �nal allocation as far as possible. The goal is to compute

individual prices that allow the Adjust* algorithm to compute Vickrey payments.

Information in bids placed in earlier rounds of the auction can be used to adjust prices.

For example, if an agent bids for bundle S1 at price p1 in an earlier round, but not for bundle

S2 at price p2, then this indicates that v(S1)�p1 � v(S2)�p2, and v(S1)�v(S2) � p1�p2.

Now, if the agent bids for bundle S1 but not S2 at the �nal prices, then the �nal price

pI(S2) on bundle S2 can be reduced at least until pI(S2) = pI(S1)� (p1 � p2).

Similarly, we can reduce prices to an agent not in the �nal allocation to the prices in

the �rst round in which the agent placed no bids.

7.3.3 Worked Examples

It is useful to demonstrate iBundle Extend&Adjust on Problem 8 in Table 7.1, for di�erent

values of a and b. In each case the auction terminates with Vickrey payments for myopic

best-response agent strategies.

� Case (a = b = 3). PhaseI: S� = (;; ;; AB), P � = 13, W � = f3g, pIbid = (0; 0; 13).

PhaseII: First, compute: (S�3)
� = (B;A; ;), (P�3)� = 13, (W�3)

� = f1; 2g, �(3) = ;,

�init(3) = 13 � 13 = 0. Terminates immediately because agent 3 is the only agent

in the e�cient allocation, and therefore there are no dependents. The outcome is

to allocate bundle AB to agent 3 for p3 = 13 � (0 + 0) = 13, which is the Vickrey

payment, pvick(3) = 15 � (15� 13) = 13.

� Case (a = b = 10). PhaseI: S� = (B;A; ;), P � = 15, W � = f1; 2g, pIbid = (8; 7; 0).

PhaseII: First, compute: (S�1)
� = (;; ;; AB), (P�1)

� = 15, (W�1)
� = f3g, �(1) =

f1; 2g n f3; 1g = f2g, �init(1) = 15 � 15 = 0, (S�2)
� = (;; ;; AB), (P�2)� = 15,

(W�2)
� = f3g, �(2) = f1; 2g n f3; 2g = f1g, �init(2) = 15 � 15 = 0. Agents 1 and 2

are active agents.

Do not terminate because agents 1 and 2 are needy, and both have the other agent

as an active dependent. Instead, introduce a dummy agent for agent 3, with values

v4 = (0; 0; 15 + L) for a large L > 0. As prices increase agent 1 drops out �rst,

when p1(B) > 10. At this time �extra(2) = 2 because agent 1's bid has increased

by 2 since the end of PhaseI. A dummy agent is introduced for agent 1, with values

v5 = (0; 10 + L; 10 + L). Finally, agent 2 drops out when p2(A) > 10, at which

197

time �extra(1) = 3 because agent 2's bid has increased by 3 since the end of PhaseI.

PhaseII terminates because there are no active agents.

The outcome is to allocate item B to agent 1 for p1 = 8 � (0 + 3) = 5 and item A

to agent 2 for p2 = 7 � (0 + 2) = 5. These are the Vickrey payments: pvick(1) =

pvick(2) = 10� (20 � 15) = 5.

� Case (a = b = 20). PhaseI is the same as in case a = b = 10. PhaseII As in case

a = b = 10, introduce a dummy agent for agent 3, with values v4 = (0; 0; 15 + L)

for a large L > 0. This time, as prices increase agent 2 drops out �rst, when

p2(A) > 10 and �extra(1) = 3. Introduce a dummy agent for agent 2 with value

v5 = (10 + L; 0; 10 + L). Finally, agent 1 enters (S�2)
�, when p1(B) = 15 and

�extra(2) = 7. At this stage agent 2 is no longer needy, because its total discount

�init(2) + �extra(2) is equal to its bid price at the end of PhaseI.

The outcome is to allocate item B to agent 1 for p1 = 8 � (0 + 3) = 5 and item A

to agent 2 for p2 = 7 � (0 + 7) = 0. These are the Vickrey payments: pvick(1) =

20� (30 � 15) = 5 and pvick(2) = 10 � (30 � 20) = 0.

7.4 Iterative Vickrey Auctions

In Chapter 4 I surveyed previous results in the design of iterative Vickrey auctions (see Ta-

ble 4.7). Iterative Vickrey auctions are known for linear-additive, unit-demand, and gross-

substitutes agent preferences. All these auctions assume that agents will follow myopic

best-response bidding strategies, and compute Vickrey payments based on those strate-

gies. iBundle Extend & Adjust is an iterative Vickrey auction in all these cases, because

the agents-are-substitutes condition introduced in Section 6.1 holds.

It is useful to de�ne the concept of myopic-implementation of the Vickrey outcome (the

e�cient allocation and the Vickrey payments) in an iterative auction:

Definition 7.2 [myopic-implementation] Auction A myopically-implements the Vick-

rey outcome if the auction terminates with the Vickrey outcome for agents that follow

myopic best-response bidding strategies.

Let BR(vi ; p) denote the best-response bid for agent i with value vi(S) for bundles

S � G, given prices p(S) on bundles. Best-response can de�ne a set of bundles if the agent

198

is indi�erent across a number of bundles. Call BR(vi ; p) a truthful best-response bidding

strategy. Also, let BR(v̂i ; p) denote an untruthful best-response bidding strategy for agent

i, for some valuation function v̂i 6= vi.

One might imagine that an iterative auction that myopically-implements the Vickrey

outcome would share the same strong incentive-compatibility properties as the Vickrey-

Clarke-Groves mechanisms, i.e. strategy-proofness such that myopic best-response is a

dominant strategy for an agent, optimal whatever the strategies of other agents. In fact,

manipulation remains possible in such an auction, because agents do not simply have to

select a valuation v̂i and play a best-response BR(v̂i ; p), but have other options available

(such as adjusting their valuation, submitting jump bids, etc.)

Gul & Stacchetti [GS00] propose an iterative Vickrey auction that computes Vickrey

payments in cases in which they can be computed in the minimal linear-price competitive

equilibrium. The authors prove that Vickrey payments make truthful myopic best-response

a Bayesian-Nash equilibrium of the auction.

Lemma 7.1 Truthful myopic bidding is a sequentially rational best-response to truthful

myopic bidding by other agents in an iterative auction with linear-prices that myopically-

implements the Vickrey outcome.

Proof. The proof follows quite directly from the strategy-proofness of the GVA. Basi-

cally, for any other strategy the agent selects a GVA outcome for some non-truthful valua-

tion function, which is less preferable than the GVA outcome for its true valuation function.

See Gul & Stacchetti [GS00] for details.

In other words, Gul & Stacchetti show that if every other agent follows a myopic best-

response strategy in their auction, and if minimal CE prices compute Vickrey payments,

then myopic best-response is the optimal strategy for agent i.

Although the connection between Vickrey payments in an iterative combinatorial auc-

tion and incentive-compatibility appears to be widely accepted in the literature, I have not

found a general proof. Bikchandani & Ostroy [BO00], for example, state:

\...[in] an ascending-price auction [that] �nds the smallest market clearing (Walrasian)

prices ... buyers get their marginal product and therefore have the incentive to bid truth-

fully."

199

for the case that minimal CE (or Walrasian) prices support Vickrey payments (i.e.

agents-are-substitutes holds). While this connection between Vickrey payments and

incentive-compatibility is also implicit in Ausubel's [Aus97, Aus00] auctions, Ausubel does

also provide careful proofs of the incentive properties of his dynamic auctions.

Assuming for the moment that iBundle Extend&Adjust does indeed implement the

outcome of the GVA with myopic best-response agent strategies, I prove the Bayes-Nash

incentive-compatibility of the auction:

Lemma 7.2 (incentive-compatibility). Truthful myopic bidding is a sequentially ratio-

nal best-response to truthful myopic bidding by other agents in iBundle Extend&Adjust as

bid increment �! 0, if the auction myopically-implements the Vickrey outcome.

Proof. Suppose agent i 2 I follows a strategy other than truthful myopic best-

response, while the other agents follow truthful myopic best-response. Let pI(S) denote

the prices at the end of PhaseI, pII(S) denote the prices at the end of Phase II, but

before prices are adjusted, padjust;i(S) denote the adjusted prices at the end of PhaseII,

and Ŝ = (Ŝ1; : : : ; ŜI) denote the allocation computed at the end of PhaseI.

The �rst step in the proof is to construct a valuation function v̂i for agent i, for

which (padjust;i(Ŝi); p
II
�i(Ŝ�i)) are in competitive equilibrium with allocation Ŝ given agent

preferences (v̂i; v�i), i.e. agent i with value v̂i and agents j 6= i with values vj.

Consider the valuation function v̂i de�ned by:

v̂i(S) =

8>><
>>:

pIIi (Ŝi) , if S = Ŝi

pIIi (Ŝi) , if S � Ŝi

0 , otherwise

Prices (pIi (Ŝi); p
II
�i(Ŝ�i)) form a competitive equilibrium with allocation Ŝ and agent

preferences (v̂i; v�i). (CS1) holds for agent i with preferences v̂i because p
I
i (Ŝi) � pIIi (Ŝi) =

v̂i(Ŝi), and p
II
i (S0) � pI(Ŝi); 8S0 � Ŝi. (CS1) holds for agents j 6= i at the end of PhaseI,

and at the end of PhaseII because the agents continue to follow myopic best-response

strategies and prices pIIj are negative translations of agent's valuation functions. (CS2)

holds because allocation Ŝ maximized revenue to the auctioneer at the end of PhaseI, and

continues to maximize revenue at prices (pIi ; p
II
�i) because the price p

II
j (S) on all bundles

S 6= Ŝj increases by less than the price on bundle Ŝj during PhaseII.

200

By the analysis of the Adjust procedure in the previous chapter (see Section 6.2.1),

prices (pIi (Ŝi)� (P � � (P�i)
�); pII�i(Ŝ�i)) are also in CE with allocation Ŝ for agent prefer-

ences (v̂i; v�i); where P
� is the revenue from allocation Ŝ at prices (pIi (Ŝi); p

II
�i(Ŝ�i)), and

(P�i)
� is the value of the revenue-maximizing allocation without agent i at prices, pII�i, at

the end of PhaseII

The adjusted price padjust;i(Ŝi) at the end of PhaseII is equal to pIi (Ŝi)� (P � � (P�i)
�

because it is computed as pIIi (Ŝi)��(i), where �(i) = P � + �� (P�i)
�, for � = pIIi (Ŝi)�

pIi (Ŝi). Thus, (padjust;i(Ŝi); p
II
�i(Ŝ�i)) are in CE with allocation Ŝ for agent preferences

(v̂i; v�i).

The second-step in the proof is to show that agent i's utility with truth-revelation in

the GVA is greater than its utility at the outcome of the auction, i.e. vi(Ŝi)� padjust;i(Ŝi).

First consider its GVA payment with a report of v̂i, when the other agents report truthful

values v�i. The Vickrey outcome in this case is allocation Ŝ, as computed in the auction,

and agent i's utility is

ui(v̂i) = vi(Ŝi)� pvick;i(v̂i; v�i)

� vi(Ŝi)� padjust;i(Ŝi)

The inequality follows because the Vickrey payment is smaller than the minimal price over

all minimal CE prices.

Finally, it follows from the strategy-proofness of the GVA that

ui(vi) � ui(v̂i); for all v̂i 6= vi

and therefore agent i's utility from truth-revelation in the GVA is greater than its utility

from outcome (padjust;i; Ŝi) in the auction. This establishes that for agent i truthful myopic

bidding is a sequentially-rational best-response in equilibriumwith truthful myopic bidding

from other agents, under the assumption that the auction myopically-implements the Vick-

rey outcome.

In other words, terminating in Vickrey payments provides quite a high degree of

incentive-compatibility, but not full strategy-proofness. A method is introduced in the

next section to restrict agent strategies and make a slightly stronger claim about the

robustness-to-manipulation of an iterative Generalized Vickrey Auction.

201

7.5 Proxy Agents: Boosting Strategy-Proofness

Moving from single-shot Vickrey mechanisms to iterative Vickrey mechanisms makes it

necessary to accept a loss in full strategy-proofness. Full strategy-proofness requires that all

agents simultaneously commit to a (possibly untruthful) valuation function, which conicts

with the desire to allow agents to reveal incremental information.

Ideally, we would like to restrict agents to follow a (possibly untruthful) best-response

strategy, for some ex ante �xed valuation function. Such a restriction, if possible, would

allow the following strong claim about strategy-proofness:

Lemma 7.3 Truthful myopic bidding is a dominant strategy in an iterative Vickrey

outcome if agents are restricted to follow a myopic best-response strategy for some ex ante

�xed (but perhaps untruthful) valuation function v̂(�).

One sure way to enforce this restriction is to introduce a proxy-bidding agent interface

into the auction, which requires a bidding agent to provide a complete valuation function

up-front, and then follows a myopic best-response strategy with that value information

in the auction. However, this would transform the iterative auction into a single-shot

mechanism, and lose the incremental information revelation properties.

A middle ground, which provides some additional strategy-proofness over-and-above

Bayesian-Nash incentive-compatibility, but without providing complete strategy-proofness,

is to restrict an agent to follow a myopic best-response strategy that is at least consistent

with a single valuation function across all rounds.

One might imagine two ways to restrict agent i to a best-response strategy for some

consistent valuation function v̂i(�).

� Introduce additional bidding rules, for example preventing \jump bids" by making

an agent bid at the current ask price; and check that an agent's bids across multiple

rounds in the auction as prices change are consistent with a best-response strategy

for a particular valuation function.

� Provide semi-autonomous proxy bidding agents, one for each agent, that receive

incremental value information from agents and follow a myopic best-response strategy

consistent with that information.

202

Proxy 2

Proxy 1

Proxy n

Agent 2

new prices,
best-response bids

Auctioneer

incremental
value information

Figure 7.1: Proxy bidding agents.

In Parkes & Ungar [PU00b] we pursued the idea of semi-autonomous proxy bidding

agents, that sit between agents and the auctioneer, and submit best-response bids whenever

they have enough information about an agent's (possibly untruthful) valuation function

to determine the utility-maximizing bundle(s) at the current prices (Figure 7.1). Essen-

tially the proxy agents transform the iterative auction into an iterative direct-revelation

mechanism, in which agents report incremental information about their values for di�erent

bundles. In comparison, the classic mechanism design literature has typically considered

only single-shot direct-revelation mechanisms.

Semi-autonomous proxy agents retain the computational advantages of iterative auc-

tions because agents can provide incremental information about value; looking ahead to

the next chapter, an iterative auction with proxy bidding agents remains bounded-rational

compatible| an agent can follow its optimal strategy with an approximate valuation func-

tion.

The following result is a direct consequence of Lemma 7.2, the Bayesian-Nash incentive-

compatibility of an iterative combinatorial auction that myopically-implements the Vickrey

outcome:

Theorem 7.3 Truthful dynamic information revelation is a sequentially rational best-

response to truthful dynamic information revelation by other agents in an iterative auction

A with best-response proxy bidding agents that myopically-implements the GVA.

203

The restriction to best-response strategies does not itself strengthen the incentive-

compatibility properties of an iterative Vickrey auction. In one extreme (and unachievable)

case, if the proxy agents are able to force agents to provide incremental value information

consistent with a single ex ante �xed valuation function then we can make the following

claim:

Proposition 7.1 (dominant strategy). Truthful dynamic information revelation is a

dominant strategy in an iterative auction A with best-response proxy bidding agents that

myopically-implements the GVA, when agents must provide information consistent with an

ex ante �xed (but perhaps untruthful) valuation function.

In other words, incremental truth-revelation is a dominant strategy so long as the

decisions made by other agents about how to misrepresent their values for bundles are

not conditioned on observed information during the auction. This is a stronger claim

than Bayesian-Nash (Lemma 7.2), which states that myopic best-response is sequentially-

rational in equilibrium with myopic best-response from other agents, but weaker than the

full strategy-proofness of the GVA.

One might imagine a method in which an agent is made to commit to a particular

\manipulation function", a particular mapping from values to reported values, before it

computes its actual values for di�erent bundles. This manipulation function could also

reside in the proxy agent. However, this manipulation function would only provide the

required property of an ex ante �xed valuation if used in combination with a method

to validate that incremental information provided by an agent to its proxy was truthful

information, which ies in the spirit of mechanism design.

A middle ground can be achieved with proxy bidding agents that:

(a) enforce self-consistency in information reported across rounds

(b) require an agent to provide enough value information in each round to enable the

proxy agent to determine a bundle(s) that maximizes utility given prices in the current

round, for all possible valuations consistent with the current approximate information.

Here is a reasonable proposition about the incentive properties of such a proxied iter-

ative Vickrey auction:

Proposition 7.2 Given auction A, that myopically-implements the Vickrey outcome,

204

introducing proxy bidding agents with consistency checks \limits" the opportunities for

successful manipulation.

Intuitively, in every round that an agent reports more value information it commits

itself to a smaller set of possible reported valuation functions, and restricts its ability to

condition future announcements on information revealed by other agents. Providing a

theoretical and/or empirical measure of \limits" in Proposition 7.2 is left for future work.

7.5.1 Consistency Checking and Best-response

Formally, let us consider what is required for a proxy agent to: (a) have enough information

to compute a best-response bid; and (b) check information consistency across rounds.

Let v̂1approx;i; v̂
2
approx;i; : : : ; denote the sequence of approximate valuation information

provided by agent i, in rounds 1, 2, etc.

Given an approximate valuation function v̂approx;i, let C(v̂approx) � V denote the set of

completely speci�ed valuation functions that are compatible with approximate information

v̂approx, where V is the set of all possible valuation functions. The particular de�nition

of compatible is that which is natural given the type of approximation, for example if the

approximation states upper- and lower- bounds on values, then a compatible value is any

value between the bounds.

An approximation is consistent with an earlier approximation if all compatible valua-

tions were also compatible in the arlier approximation:

Definition 7.3 [consistent] Approximation v00approx is consistent with approximation

v0approx, written v00approx � v0approx, if the set of compatible values C(v
00
approx) � C(v0approx),

i.e. if v00approx places a stronger condition on the compatible valuation functions.

The consistency check by the proxy agent across rounds is de�ned as follows:

Definition 7.4 [consistency check] For consistency from round t to round t + 1, the

proxy agent requires

v̂t+1
approx;i � v̂tapprox;i

such that the approximation in round t+ 1 is consistent with the approximation in round

t.

205

In words, the information in round t + 1 must be a re�nement of the information in

round t, and therefore consistent with the information in all previous rounds by transitivity.

Each new piece of information must remove valuations from the reachable set without

introducing new possibilities.

Given prices pti(S) to agent i for bundles S � G in round t, the auctioneer requires

enough information from agent i to compute a best-response that is optimal for all future

re�nements.

Definition 7.5 [best-response information requirement] In round t agent imust provide

enough information, v̂tapprox;i, to allow a single bundle to solve the best-response problem,

for all valuations consistent with the approximation and for the current prices.

In other words, the agent's best-response must be the same for all valuation functions

consistent with its current approximate value information at the current prices.

Discussion

I have provided de�nitions for a worse-case framework; i.e. a new approximation is only

consistent with an old approximation if there are no new compatible valuations| not even

one. Similarly, the best-response condition states that there must be a single best-response

for every future set of consistent approximations.

These de�nitions are not suitable with some probabilistic approximations, such as \the

value for bundle S is Normally distributed with mean � and standard deviation �". More

suitable de�nitions would replace the worst-case guarantees with \with high probability"

guarantees. For example, a new approximation might be said to be �-consistent with a

current approximation if the probability that a valuation consistent with the new approx-

imation was also consistent with the previous approximation is at least 1� �. Consistency

might also require a probabilistic approximation with less variance and a consistent mean,

such that the distributions converge to a single consistent point in valuation space.

7.5.2 Special Case: Upper and Lower Bounds

An important special case occurs when an agent can provide approximate information in

the form of upper- and lower- bounds on value.

Bounds [v(S); v(S)]t in round t denote lower bounds v(S) � v̂(S) on bundles S and

upper bounds v(S) � v̂(S), for some (perhaps untruthful) valuation function v̂(S), and

206

every bundle S � G. Valuation function v̂(S) is compatible with bounds if v̂(S) � v(S)

and v̂(S) � v(S) for all S � G.

Given prices pi(S) and bounds [vi(S); vi(S)]), let ui(S) = vi(S) � pi(S) and ui(S) =

vi(S)� pi(S), denote the lower and upper bounds on utility.

In order to formulate the rules for su�cient information to compute a best-response

bid that is optimal for all consistent valuations with bounds on value, it is useful to de�ne

a bundle with strict-positive value:

Definition 7.6 [strict-positive value] Bundle S has strict-positive value vi(S) if the

value on the bundle is (strictly) greater than the value for all bundles contained in S, i.e.

if vi(S) > vi(S
0) for all S0 � S.

Intuitively, the bundles with strict-positive value are those bundles that are important

for an agent to consider when constructing its best-response bid set. Let SP denote the

set of bundles with strict-positive value to an agent. Given this, then value bounds provide

su�cient information to compute a best-response bid, if the following conditions hold on

the utility bounds of every strict-positive bundle S 2 SP:

either 8T 6= S; T 2 SP ; ui(S) + � � max(0; ui(T)) (dominates)

or 9 T 6= S; T 2 SP ; ui(S) � max(�; ui(T) + �) (is dominated)

In words, this states that every bundle must either:

| have a utility that dominates the utility of all other bundles, for all future re�ne-

ments, and is positive

| or, have a utility that is either dominated by at least one other bundle for all future

re�nements or negative.

As special-cases: if a bundle's upper-bound on utility is no greater than � the proxy

agent can know not to bid for that bundle; and if a bundle's lower-bound on utility is

negative (in fact less than ��) then the agent cannot bid for that bundle without re�nining

its value.

Clearly, the best-response bid when these conditions do hold on every strict-positive

valued bundle is to bid for the bundles that satisfy the (dominates) condition.

207

A B AB

Agent 1 0 14� 14
Agent 2 10� 0 10
Agent 3 4 5 12

Table 7.2: Problem 9.

7.5.3 Example: Incremental Information Revelation

This section presents a worked example of iBundle(2) with proxy bidding agents on Prob-

lem 9 in Table 7.2, in which the e�cient allocation S� = (A;B; ;).

Assume that the agents initially provide the following information to their proxy agents:

A B AB

agent 1 0 [13:5; 14:5] same as B

agent 2 [2; 12] 0 same as A

agent 3 [2; 6] [2; 6] [8; 16]

Assume that the minimal bid increment, � = 2. The proxied auction proceeds auto-

matically through 7 rounds with this information, as illustrated below:

Round Prices Bids Selected utility bounds

A B AB Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

1 0 0 0 (B; 0)� (A; 0)� (AB; 0) B:[13.5, 14.5] A:[2, 12] A:[2, 6] AB:[8, 16]

2 0 0 2 (B; 0) (A; 0) (AB; 2)� B:[13.5, 14.5] A:[2, 12] A:[2, 6] AB:[6, 14]

3 2 2 2 (B; 2)� (A; 2)� (AB; 2) B:[11.5, 12.5] A:[0, 10] A:[0, 4] AB:[6, 14]

4 2 2 4 (B; 2)� (A; 2)� (AB; 4) B:[11.5, 12.5] A:[0, 10] A:[0, 4] AB:[4, 12]

5 2 2 6 (B; 2) (A; 2) (AB; 6)� B:[11.5, 12.5] A:[0, 10] A:[0, 4] AB:[2, 10]

6 4 4 6 (B; 4)� (A; 4)� (AB; 6) B:[9.5, 10.5] A:[-2, 8] A:[-2, 2] AB:[2, 10]

7 4 4 8 (B; 4)� (A; 4)� (AB; 8) B:[9.5, 10.5] A:[-2, 8] A:[-2, 2] AB:[0, 8]

8 4 4 10 (B; 4) (A; 4) ? B:[9.5, 10.5] A:[-2, 8] A:[-2, 2] AB:[-2, 6]

In rounds 1{7 the proxy agents have enough information to submit a best-response bid

(to within �). However, in round 8, the approximate information provided by agent 3 is

not su�cient to determine the best-response. Notice that the utility bounds on bundle

AB do not satisfy the (dominates) condition with respect to the utility bounds on item A

(or on item B).

208

In this round agent 3 must provide more value information to its proxy agent. Only in-

formation consistent with v̂approx;3(A) = [2; 6]; v̂approx;3(B) = [2; 6]; v̂approx;3(AB) = [8; 16]

is allowed. Suppose that agent 3 provides bounds [11, 16] on bundle AB. This re�nes the

utility bound to [1, 6].

The auction can now proceed as follows:

A B AB Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

8 4 4 10 (B; 4) (A; 4) (AB; 10)� B:[9.5, 10.5] A:[-2, 8] A:[-2, 2] AB:[1, 6]

9 6 6 10 (B; 6) ? (AB; 10) B:[7.5, 8.5] A:[-4, 6] A:[-4, 0] AB:[1, 6]

At round 9 more information is required from agent 2. Suppose agent 2 �rst provides

new bounds vapprox;2(A) = [2; 10]. These bounds are consistent, but not su�cient for best-

response because the lower utility bound is still more than � below 0. With information

vapprox;2(A) = [6; 10] the auction can continue.

A B AB Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

9 6 6 10 (B; 6)� (A; 6)� (AB; 10) B:[7.5, 8.5] A:[0, 6] A:[-4, 0] AB:[1, 6]

10 6 6 12 (B; 6)� (A; 6)� (AB; 12) B:[7.5, 8.5] A:[0, 6] A:[-4, 0] AB:[-1, 4]

11 6 6 14 (B; 6) (A; 6) ? B:[7.5, 8.5] A:[0, 6] A:[-4, 0] AB:[-3, 2]

In round 11 more information is required from agent 3. Suppose that agent 3 provides

vapprox;3(AB) = [11; 13], which will adjust the utility bounds on AB to [-3, -1]. This is

enough information for the agent's proxy agent to compute an empty best-response:

A B AB Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

12 6 6 14 (B; 6) (A; 6) ; B:[7.5, 8.5] A:[0, 6] A:[-4, 0] AB:[-3, -1]

and the auction terminates with �nal allocation S� = (B;A; ;), which is the e�cient

allocation. The �nal information revealed to the proxy agents in this example is tabulated

below.

209

A B AB

agent 1 0 [13:5; 14:5] same as B

agent 2 [6; 10] 0 same as A

agent 3 [2; 6] [2; 6] [11; 13]

Notice two interesting e�ects of the proxy agents:

� The auction has a \multi-modal" interface. An agent can either submit quite ac-

curate information up-front, as is the case for Agent 1 in this example, or provide

incremental information as required, as is the case for Agents 2 and 3.

� The auction is now \staged", with a number of rounds performed automatically via

communication with the proxy agents but without communication with the actual

agents; e.g. round 1{8, 9{11.

7.5.4 Example: Strategic Revelation in a Proxied English Auction

In this section I illustrate the incentive properties of a proxied Vickrey auction with a

simple single item example.

Consider a proxy bidding-agent interface into the English auction, which is an ascending-

price auction for a single item in which the item is sold to the highest bidder for its bid

price. The English auction myopically-implements the Vickrey outcome as the bid incre-

ment �! 0, with the item sold to the highest bidder for � above the second-highest value

over all agents.

Introducing proxy agents that accept re�nements on upper- and lower- bounds on value

from agents makes the auction a staged Vickrey auction. As discussed above:

| iterative truth revelation is a dominant strategy in response to strategies from other

agents consistent with ex ante �xed valuation functions

| iterative truth revelation is a Bayesian-Nash equilibrium of the proxied auction, i.e.

a sequentially-rational best-response to iterative truth revelation from other agents

However, iterative truth-revelation is not a dominant-strategy equilibrium. I construct

an example below in which an agent can increase its utility with a non-truthful strategy.

210

Example

Consider an example with 3 agents, with values v1 = 5; v2 = 10 and v3 = 15. In this simple

example it is possible to construct an example of strategies for agents 1 and 2 for which

agent 3's best-response is not incremental truth-revelation.

I �rst consider agent 3's strategy when agents 1 and 2 reveal incremental information

consistent with a single �xed (but perhaps untruthful) valuation function. First, suppose

that each agent plays the Bayesian-Nash equilibrium, maintaining bounds compatible with

its true value. Consider initial bounds [2, 6], [5, 15], [8, 20]. Proxy agents 1, 2 and 3 bid

while p � 2, then agents 2 and 3 bid while p � 5. Finally, with the price at p = 5 + �,

agents 1 and 2 need to provide more information. Suppose agent 1 updates its bounds

[2; 6] ! [2; 5], and agent 2 [5; 15] ! [9; 12]. Proxy agent 1 drops out, while proxy agents

2 and 3 bid while p � 8. With the price at p = 8 + �, agent 3 provides more information.

Suppose agent 3 updates its bounds [8; 20] ! [12; 18]. With this information the price

increases to p = 9 + �, and agent 2 might continue re�ning its lower bound until it is

approximately 10. At this point agent 3 wins the auction, and pays 10 + �.

Even if agent 2 provides untruthful information, for example consistent with v̂2 = 9

instead of v2 = 10, agent 3's optimal strategy is still incremental truth-revelation. This

strategy will win the item for a price of 9+ �, which is the best possible outcome for agent

3.

However, the following example demonstrates that truthful incremental information

revelation is not a dominant strategy in a proxied iterative Vickrey auction. Suppose that

agent 1 follows a truthful strategy, while agent 2's (irrational) strategy is:

set initial bounds [4; 30]. At �rst request for more information, provide bounds [6; 30].

If the agent is provisionally allocated the item in the next state of the auction provide

bounds [25; 30], otherwise provide bounds [7; 7].

Notice that agent 2 makes a dynamic decision about whether to announce information

consistent with a value of 7, or with a value somewhere between 25 and 30.

First, consider the outcome if agent 3 follows the following incremental truthful strat-

egy. Set initial bounds to [5; 20]. The price will increase to 4 + �, at which point agent

3 is provisionally allocated the item. Agent 2 provides new bounds [6; 30], and the price

increases to 5 + �, with the item allocated to agent 2. Finally, agent 2 updates its bounds

to [25; 30], and the auction will terminate with agent 2 buying the item for price 15 + �.

211

Here is a non-truthful alternative strategy that produces a better outcome for agent

3. Set initial bounds to [30; 40]. The price will increase to 4 + �, at which point agent

3 is provisionally allocated the item. Agent 2 provides new bounds [6; 30], and the price

increases to 6 + �, with the item allocated to agent 3. Finally, agent 2 updates its bounds

to [7; 7], and the auction will terminate with agent 3 buying the item for price 7 + �.

7.5.5 Real World Proxy Agents

On-line auctions such as eBay, www.ebay.com, for consumer-to-consumer e-commerce

present a real-world example of auctions with separate valuation and bidding problems:

people value items, and eBay provides automated bidding agents that monitor auctions

and place bids. In an ascending-price auction, the proxy agents are con�gured with a user's

reservation value, the maximum she will pay for an item, and bid while the price is below

that value. Interestingly, the proxy agents do not convert ascending-price auctions into

sealed-bid auctions because they can inform a user by e-mail when her reservation value

has been reached, and accept updated values. This allows the user to deliberate further

about her value for the item, but only if that is required by the current price in the auction,

and makes the auction with proxy agents bounded-rational compatible.

Proxy bidding agents that restrict agents to placing a bid at the current ask price

may also be useful in preventing \code bidding" between agents in an auction, to achieve

collusive outcomes. This practice of adding \magic numbers" on the trailing digits of bids

to pass information to other bidders was observed in the FCC spectrum auction, an open

and simultaneous auction for individual licenses [CS00]. The FCC introduced \click-box"

bidding to constrain bids to be one of a �nite number of bid increments above the current

ask price.

7.6 Theoretical Analysis

In this section I provide a proof of Theorem 7.2, that iBundle Extend&Adjust computes

the Vickrey outcome whenever the agents-are-substitutes condition holds and the minimal

CE prices compute the Vickrey payments.

First, I prove that the auction computes the Vickrey outcome whenever it terminates,

212

irrespective of the agents-are-substitutes condition. This makes signi�cant progress to-

wards establishing Conjectre 7.1, because all that remains to prove (or disprove) is that

the current rules for introducing dummy agents is su�cient to force the auction into a

condition in which the Vickrey test conditions hold and it terminates, adjusting prices to

Vickrey payments.

Lemma 7.4 states that iBundle Extend&Adjust computes the GVA outcome whenever

it terminates.

Lemma 7.4 (optimality if terminates). iBundle Extend&Adjust computes the e�cient

allocation and Vickrey payments for myopic best-response bidding strategies as the minimal

bid increment �! 0, whenever the auction terminates.

Proof. The �nal prices in the auction satisfy the Vickrey test conditions (De�ni-

tion 6.10) by construction. The discounts computed during PhaseII of the extended auc-

tion are simply equal to the discounts that would be computed with Adjust* at the

end of PhaseII. Therefore, the �nal adjusted prices are Vickrey payments by Theorem

6.6 whenever the auction terminates. The allocation is the one from the end of PhaseI,

as computed with the regular iBundle auction, and therefore e�cient by Theorem 5.1.

Lemma 7.5 states that PhaseII will terminate immediately, without any dummy agents,

when the agents-are-substitutes condition holds.

Lemma 7.5 (terminate if agents-are-substitutes). iBundle Extend&Adjust terminates

whenever the agents-are-substitutes condition holds, for myopic best-response bidding strate-

gies as the minimal bid increment �! 0.

Proof. (sketch) The agents-are-substitutes condition implies that there is a unique set

of minimal CE prices (Lemma 6.5). The initial discounts computed in PhaseII with Ad-

just* compute this set of minimal CE prices. There can be no dependent agents and Pha-

seII will terminate immediately because there can only be dependent agents at minimal CE

prices when there are multiple sets of minimal CE prices.

Theorem 7.2, that iBundle Extend&Adjust computes the Vickrey outcome when-

ever the agents-are-substitutes condition holds, follows immediately from Lemma 7.4 and

213

Lemma 7.5.

7.7 Experimental Analysis

In this section I describe the results of experiments run with iBundle Extend&Adjust and

agents with myopic best-response strategies, on the same problem sets used to test iBundle

in Chapter 5. The �rst set of results measure the distance between minimal CE prices and

the result of using Adjust* on prices at the end of iBundle(3). The results demonstrate

that iBundle with adjusted prices computed at the end of the auction terminates with

minimal CE prices. The second set of results compare the adjusted prices at the end of

the extended auction, i.e. after PhaseII, with prices in the Generalized Vickrey auction.

Again, the results show very strong support for Conjecture 7.1, that the extended auction

is an iterative Generalized Vickrey auction.

7.7.1 Results I: iBundle and Adjust*

This section presents the results of experiments to compare the e�ect of computing adjusted

prices at the end of iBundle with computing minimal CE prices and Vickrey payments.

The variations Adjust, Adjust*, and Adj-Pivot*, introduced in the previous chapter,

are all considered. In these �rst set of experiments, �rst reported in Parkes & Ungar

[PU00b], the auction is not extended into PhaseII, and only computes Vickrey payments

when they are supported in competitive equilibrium.

The auction is tested on problems PS 1{12 in Table 5.5 (Chapter 5) and also problems

Decay, Weighted-random (WR), Random and Uniform in Sandholm [San99]. Each problem

set de�nes a distribution over agents' values for bundles of items.

In this set of experiments the distance D(pi(S�i); pvick(i)) between prices pi(S
�
i) and

Vickrey payments is measured with an L1 norm, as L1(pi; pvick) =
P

i jpi(Si) � pvick(i)j=P
i vi(Si), i.e. the sum absolute di�erence between the price charged to each agent and its

GVA price normalized by the total value of the allocation over all agents. An L1 norm is

appropriate because minimal CE prices is computed with a linear additive measure over

the auctioneer's price to each agent in the allocation, and because errors in the prices are

always one-sided (i.e. greater than the Vickrey payments).

There does not appear to be a useful measure of the distance to Vickrey payments

214

0 0.5 1 1.5 2
0

5

10

15

20

25

Rounds (normalized)

D
is

ta
nc

e
to

 G
V

A
 P

ric
es

 (
%

)

iBundle
Adjust*
Adj−Pivot*
CE

min

(a) Distance.

iBundle
Adjust*
Adj−Pivot*
CE

min

0 0.5 1 1.5 2
0

20

40

60

80

100

Rounds (normalized)

E
xa

ct
 G

V
A

 P
ric

es
 (

%
)

(b) Fraction Correct.

Figure 7.2: Average performance of iBundle with price-adjustment Adjust* and Adj-Pivot* in
problems PS 1{12 (see Table 5.5). The number of rounds to termination is varied by adjusting the
minimal bid increment.

in problems in which the auction's allocation is ine�cient, and di�erent from that in the

GVA. Thus, I compute the average distance over problem instances in which iBundle

computes the optimal allocation, which approaches 100% of problems as the bid increment

gets small.

Figure 7.2 plots the distance to the Vickrey payments in iBundle, before and after price-

adjustment using Adjust* and Adj-Pivot*, averaged over 25 trials each of problems PS

1{12. I ran iBundle with di�erent bid increments to vary the number of rounds to termina-

tion, and averaged performance across problem sets by normalizing the number of rounds

to termination according to the minimal number of rounds in which iBundle achieves 100%

allocative e�ciency. For comparison, I also plot the distance between minimal CE prices

and Vickrey payments.

The results show clear support for Theorem 7.1, which states that iBundle(3) followed

by Adjust* computes Vickrey payments whenever they are supported in minimal CE

prices. The average distance between minimal CE prices and GVA prices across these

problems is 5.3%. For small bid increments iBundle computes prices to within 6.5% of

the Vickrey payments, with Adjust to within 5.5% (not plotted), and with Adjust* and

Adj-Pivot* to within 5.2%. The prices continue to adjust towards the min CE prices for

bid increments smaller than those required for 100% allocative e�ciency, corresponding

to normalized rounds to termination > 1. It is noteworthy that the approximate method

215

Adj-Pivot* is as e�ective as Adjust* for small bid increments.

The bene�t of Adjust* over Adjust is quite marginal without the extended phase of

the auction. In comparison, the results withAdjust* after the second phase of the auction

demonstrate the importance of computing price adjustments beyond a single minimal CE

price vector (see Figure 7.5 for example).

I also compute the fraction of all problems in which D(pi; pvick(i)) < 2%, to test the

proportion of problems in which prices are approximately Vickrey. CE prices are equal

to Vickrey payments in approximately 57% of problem instances; and iBundle with both

Adjust* and Adj-Pivot* computes Vickrey payments in these problems, while iBundle

alone terminates with Vickrey payments in only around 38% of problem instances.

The minimal CE prices are close to GVA prices (average distance < 2:5%) in problems

PS 4{8, in which the agents in the optimal allocation also tend to be in the second-best

allocations. In contrast, the minimal CE prices di�er from the GVA payments by more than

5% in problems PS 1, 3, 9, 11 and 12, which are characterized by optimal allocations that

are very di�erent from second-best allocations, and agents with complementary demands

for bundles (see Table 5.5).

As expected, additional analysis shows that the Vickrey test (De�nition 6.10) is su�-

cient but not necessary for the adjusted prices to equal Vickrey payments. The speci�city

of the test was 100% (no false-positives), but its sensitivity was only 56% (some false-

negatives); i.e. some cases in which the adjusted prices were in fact Vickrey payments

were undetected.

The success of Adj-Pivot*, the approximate adjustment method that uses pivot allo-

cations from earlier rounds of the auction, is con�rmed in the results illustrated in Figure

7.3, for problems Decay, WR, Random, and Uniform. In Decay I set Sandholm's � param-

eter to 0.85. The distance to Vickrey payments is plotted against the run time of iBundle

with Adj-Pivot*, computed with respect to the time to solve the single-shot General-

ized Vickrey auction (for the same winner-determination algorithm in both auctions). I

varied the minimal bid increment to adjust the number of rounds in iBundle, and study

the distance between �nal prices and minimal CE and Vickrey payments as the allocative

e�ciency and correctness trends to 100%.

Minimal CE prices are equal to Vickrey payments in WR, because there is typically

a single agent in the e�cient allocation in this problem set. iBundle with Adj-Pivot*

216

iBundle
Adj−Pivot*
CE

min

0 2 4 6
0

10

20

30

40

50

Run Time / GVA Run Time

D
is

ta
nc

e
to

 G
V

A
 P

ric
es

 (
%

)

(a) Uniform. 50/30/600

0 1 2 3 4 5
0

10

20

30

40

50

Run Time / GVA Run Time

D
is

ta
nc

e
to

 G
V

A
 P

ric
es

 (
%

)

iBundle
Adj−Pivot*
CE

min

(b) Decay. 50/10/200

iBundle
Adj−Pivot*
CE

min

0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

Run Time / GVA Run Time

D
is

ta
nc

e
to

 G
V

A
 P

ric
es

 (
%

)

(c) Random. 50/20/400

iBundle
Adj−Pivot*
CE

min

0 10 20 30
0

10

20

30

40

50

Run Time / GVA Run Time

D
is

ta
nc

e
to

 G
V

A
 P

ric
es

 (
%

)

(d) WR. 50/30/600

Figure 7.3: Performance of iBundle with price-adjustment Adj-Pivot* in problem sets Uniform,
Decay, Random, and Weighted-random. The bid increment in iBundle is adjusted to give di�erent
run times.

computes the Vickrey payments in these problems. It is interesting that Adj-Pivot* is

able to compute prices closer to the Vickrey payments than the minimal CE prices in

Decay and Random. Recall that the Adjust* procedure minimizes each agent's payment

separately, and can compute prices that are closer to the Vickrey payments than any

single set of CE prices. Finally, notice that the minimal CE prices remain quite far from

Vickrey payments in the Uniform problem set. The second-best allocations in Uniform are

typically quite di�erent from optimal allocations, and the agents-are-substitutes condition

(De�nition 6.3) often fails.

Although my focus is not on the auctioneer's winner-determination work, it is worth

noting that the run time in the iterative auction is basically comparable to that in the

217

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Fraction of Allocations Correct

L 2 D
is

ta
nc

e
to

 G
V

A
 P

ay
m

en
ts Phase I

Initial Adjust
Phase II
Min CE

Figure 7.4: Distance to Vickrey Payments in PS 1{12.

GVA, if one considers the level of accuracy at which the performance of iBundle and Adj-

Pivot* levels out. The obvious exception here is in the weighted-random problem set,

but this was actually the easiest problem to solve| the GVA solved the problem in an

average time of 9.1 sec, compared with 362 sec, 1791 sec, and 138 sec for Decay, Random,

and Uniform, on a 450 MHz Pentium.

7.7.2 Results II: iBundle Extend&Adjust

iBundle Extend&Adjust is tested on the same suite of problem instances; i.e. problems PS

1{12 and problems Decay, Weighted-random, Random and Uniform. Problem sizes (num

agents, num items, num bundles) are set to (8, 50, 120) in Decay, (20, 50, 400) in Uniform,

(8, 30, 80) in Random and (15, 50, 300) in Weighted-random. Decay parameter � = 0:85.

The results are averaged over 40 trials.

The distance between agent payments in the auction and GVA payments is measured

with an L2 norm, as L2(pi; pvick) =
�P

i(pi � pvick(i))
2
�1=2

. I computed the average distance

to Vickrey payments over the instances in which the auction terminates with the optimal

allocation. As the bid increment gets small this fraction approaches 100%. This provides

a more useful measure of distance than computing the average L2 distance over all trials,

including those in which the allocation is not e�cient.

Figure 7.4 plots the distance between Vickrey payments and auction payments against

the \correctness" of the auction, the fraction of instances in which the auction computes

218

the e�cient allocation, which approaches 100% as minimal bid increment � ! 0, for PS

1{12. The allocative e�ciency in these experiments increases from around 90% at 23%

correctness, to almost 100% at correctness of 65% and above, as the bid increment gets

small. The �gure plots the distance between Vickrey payments and: (1) prices at the

end of PhaseI (iBundle); (2) after the initial price adjust at the start of PhaseII (iBundle

and Adjust*); (3) at the end of PhaseII (iBundle, Extend&Adjust); and (4) minimal CE

prices.

The adjusted prices in iBundle Extend&Adjust do converge to the Vickrey payments

as the minimal bid increment �! 0 across this suite of problems, showing strong support

for Conjecture 7.1 that the auction computes Vickrey payments with myopic best-response

bidding strategies.

A quick computational analysis shows that the number of rounds on PhaseII is smaller

than in PhaseI, although the auctioneer's computational problem is more di�cult in each

round of PhaseII. For example: at 95% correctness the average number of rounds in PhaseI

is 149, compared to 18 in PhaseII; each round in PhaseI takes an average of 0.5s, compared

to 2.8s in PhaseII; the agent valuation information provided at the end of PhaseI is 77%,

and increases to 83% at the end of PhaseII, using the metric introduced in Section 5.3.1 in

Chapter 5. Finally, approximately 1-in-3 agents receive a dummy agent during PhaseII.

Figure 7.5 illustrates the performance of the auction in problems Uniform, Decay,

Random, and Weighted-random. In all problems allocative e�ciency approaches 100% for

small bid increments, and the distance to GVA payments approaches zero. The e�ect of

PhaseII is quite signi�cant, with the prices in the extended auction approaching Vickrey

payments while the adjusted prices after Adjust* but without PhaseII remaining close

to the minimal CE prices. These results show further strong support for Conjecture 7.1

that iBundle Extend&Adjust computes Vickrey payments in all CAP problems as the bid

increment gets small, for myopic best-response bidding strategies.

It is worth noting that the auction implements the Vickrey outcome even in problems in

which the outcome is not supported in any competitive equilibrium; notice that the distance

between the minimal CE prices and the GVA payments is non-zero in all experiments.

This is important because there is often no single set of CE prices that supports Vickrey

payments.

219

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Fraction of Allocations Correct

L 2 D
is

ta
nc

e
to

 G
V

A
 P

ay
m

en
ts

Phase I
Initial Adjust
Phase II
Min CE

(a) Uniform.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

Fraction of Allocations Correct

L 2 D
is

ta
nc

e
to

 G
V

A
 P

ay
m

en
ts

(b) Decay.

0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

Fraction of Allocations Correct

L 2 D
is

ta
nc

e
to

 G
V

A
 P

ay
m

en
ts

(c) Random.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Fraction of Allocations Correct

L 2 D
is

ta
nc

e
to

 G
V

A
 P

ay
m

en
ts

(d) Weighted-random

Figure 7.5: Distance to Vickrey Payments in problems Uniform, Decay, Random and Weighted-
random.

220

7.8 Discussion: PhaseI to PhaseII Transition

It is important that agents cannot identify the transition from PhaseI to PhaseII, because

an agent's bids in PhaseII do not change either the �nal allocation or its own �nal payment.

The only e�ect of an agent's bids in PhaseII is to reduce the �nal payment made by other

agents. If it is costly to participate in the auction an agent would choose to drop out after

PhaseI. In addition, there are opportunities for collusion between agents in PhaseII (just

as the GVA itself is vulnerable to collusion).

Certainly, we must hide bids from dummy agents in PhaseI (or give the dummy agents

false identities). Each agent only needs information about its own ask prices, and whether

or not it is receiving a bundle in the provisional allocation. Agents do not need any

information about the bids, prices, or allocations of other participants.

It is also important that agents cannot distinguish the competitive e�ects of bids from

dummy agents from the competitive e�ects of bids from real agents. This is our reasoning

for constructing dummy agents to mimic the real agents that compete for items in PhaseI

of the auction.

Finally, another concern is that an agent cannot detect from the auctioneer's response

time that we have moved from PhaseI into Phase II.

Figure 7.6 illustrates a typical run of iBundle Extend&Adjust, in this case for a Uniform

problem instance, with 25 goods, 10 agents and 150 bundles with strictly-positive value.

Figure 7.6 (a) plots: (i) the e�ciency of the allocation implemented during the auction;

(ii) the revenue to the auctioneer, which increases monotonically across rounds; and (iii)

the adjusted revenue, which falls towards the Vickrey payment during PhaseII. Notice that

the e�ciency of the allocation oscillates during PhaseI until it is locked-in, and that the

�nal adjusted prices at the end of PhaseII are the Vickrey payments.

Figure 7.6 (b) plots the CPU time for the auctioneer in each round of the auction.

Notice that it climbs slowly during PhaseI, as agents submit more bids in each round and

the winner-determination problems get larger. The transition from PhaseI to II is quite

apparent, at around iteration 70, when there is a jump in CPU time. The auctioneer must

check Vickrey conditions at the end of every round during PhaseII.

Figure 7.6 (c) plots the number of active agents and dummy agents during the auction.

The number of active agents falls during PhaseI until all agents are in the provisional

allocation, at which point the optimal allocation is found and the auction enters PhaseII.

221

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Round

Eff
Rev
Adj Rev

(a) Performance.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Round

C
P

U
 ti

m
e

(s
/r

ou
nd

)

(b) Auctioneer CPU time.

0 20 40 60 80 100
0

2

4

6

8

10

Round

N
um

be
r

of
 a

ge
nt

s

dummy
regular

(c) Number of agents.

Figure 7.6: Uniform problem set example: 25 goods, 10 agents, 150 bundles.

222

During PhaseII the number of dummy agents increases as agents continue to drop out of

the auction.

7.8.1 Unresolved Issues

There are a number of interesting areas for future work. I divide them into computational

issues, and issues about agent incentives in iBundle Extend&Adjust.

Computational

First, it should be possible to reduce the computational demands on the auctioneer. For

example, it would be useful to allow the auctioneer to recompute the dependent agents in

each round of PhaseII without explicitly computing the second-best revenue-maximizing

allocations.

It would be interesting to investigate the performance of approximate methods such

as Adj-Pivot*, which proved very e�ective when used to adjust prices immediately after

iBundle. The pivot method uses the cached provisional allocations computed during the

auction to compute second-best allocations.

Agent Incentives

The separation of concerns between PhaseI and PhaseII in iBundle Extend&Adjust is

potentially dangerous. At the end of PhaseI the �nal allocation has been determined, and

the only e�ect of bids from an agent during PhaseII is to reduce the �nal payment made by

other agents. This separation is quite di�erent from the Groves mechanisms, in which the

agents submit their valuation functions up-front, and there is no sense of \what I am doing

now is changing the allocation" and \what I am doing now is changing the prices". Of

course, the situation in iBundle Extend&Adjust is not completely decoupled. Bids during

PhaseI do a�ect prices at the end of PhaseII, in addition to the allocation.

However, one concern is that the mechanism for potential collusion, which is a problem

in the regular Groves mechanism, is quite explicit in iBundle. For every $1 that agent

1 bids-up during PhaseII, one (or more) agents pay $1 less. To the extent to which the

opportunities for collusion are so transparent it will be very important that there is a

high-degree of uncertainty about the phase (I or II) of the auction.

223

It would be useful to investigate the incentive properties of proxied iterative mecha-

nisms, and to understand the di�culty of manipulation in with myopic best-response proxy

agents and consistency checks. An appropriate question to ask is the degree to which proxy

agents \limit" the opportunities for manipulation in Proposition 7.2.

Finally, I would like to reduce the level of price discrimination in the auction. For

example, in application to the allocation of a single item, the current auction maintains

a separate ask price for each agent. In comparison, the English auction implements the

Vickrey outcome with a single ask price which is the same to all agents.

224

Chapter 8

Bounded-Rational Compatible Auctions

& Myopic Best-Response

This chapter introduces the idea of bounded-rational compatibility, which captures the

concept of allowing an agent to implement an equilibrium bidding strategy without com-

puting its exact preferences across all outcomes. Bounded-rational compatibility parallels

the idea of strategy-proofness in auctions. In a strategy-proof auction an agent can com-

pute its optimal strategy without any information about the preferences of other agents.

In a bounded-rational compatible auction an agent can compute its equilibrium strategy

(e.g. Bayesian-Nash, dominant-strategy, etc.) without complete information about its own

preferences. In other words an approximate valuation function is su�cient to compute an

optimal strategy. This useful in problems in which agents have limited computational

resources, local valuation problems are hard, and there are many possible outcomes.

I also discuss the complexity of myopic best-response within the context of bounded-

rational compatibility; i.e., consider the conditions that allow an agent compute its myopic

best-response strategy without �rst evaluating its complete preferences over all outcomes,

and consider the computational advantages to an agent. Clearly an agent can compute its

set of best-response, or surplus-maximizing, bundles for a particular set of ask prices with

suitable bounds on the values of each bundle, but what about best-response to a sequence

of prices over the course of an iterative auction? An initial attempt is made to provide

a structural analysis of the myopic best-response problem, to identify conditions in which

myopic best-response is a polynomial problem while complete revelation is an exponential

problem.

An explicit model of the bounded-rationality of agents can provide a new insight into

computational mechanism design. In particular, we might take as a goal to maximize

225

allocative e�ciency given the bounded-rationality of agents. In a sense this turns Rus-

sell's de�nition of \bounded-optimality" [Rus95] on its head. Instead of requiring that a

bounded-rational agent takes the best decision possible given the constraints of its compu-

tational machine, let us design the environment of an agent| the mechanism |to extract

the most value from the metadeliberation and resource-bounded computation of agents.

Again, this brings us back to the concept of a bounded-rational compatible auction.

Experimental results presented in this chapter demonstrate that iterative auctions can

compute more e�cient allocations than sealed-bid auctions, for myopic best-response agent

strategies and limits on agent computation. Well designed mechanisms can allow agents

to avoid unnecessary computation and shift agent computation towards evaluating pref-

erences towards local problems that are compatible with good system-wide solutions. An

obvious example of good mechanism design is strategy-proofness, so that agents do not

waste computational resources in deliberation about other agents. Bounded-rational com-

patibility captures this more subtle idea of providing agents with information to make

good decisions about their own deliberation.

From a design perspective, one can imagine that bounded-rational compatibility in-

troduces a new constraint to mechanism design, which can be taken in combination with

other game-theoretic requirements such as incentive-compatibility and e�ciency. The pre-

cise type of bounded-rational compatibility depends on the equilibrium concept adopted

in analysis of a mechanism; e.g. dominant-strategy, Bayesian-Nash equilibrium etc. Es-

sentially an agent must be able to compute its equilibrium concept with an approximate

valuation function.

The formal de�nition of bounded-rational compatibility leads to a couple of metrics to

quantify the degree of BRC in an auction for a particular problem and a particular model

of agent bounded-rationality.

Experimental results are presented for two models of agent deliberation in equilibrium.

1. Costly computation and rational metadeliberation in a single-item allocation prob-

lem, comparing the properties of simple auction mechanisms.

2. Limited computation and myopic metadeliberation within a simple model of agent

interaction, called \lazy deliberation and eager bidding" (ldeb).

The ldebmodel provides a couple of metrics to quantify the degree of bounded-rational

226

compatibility of a mechanism. One metric, bounded-e�ciency, measures allocative e�-

ciency for di�erent computation budgets. Another metric, bounded-computation, measures

the amount of computation actually performed by agents for di�erent computation bud-

gets. In a bounded-rational compatible auction the bounded-computation peaks at a level

below that required for agents to compute their complete preferences.

The outline of this chapter is as follows. First I introduce the agent valuation problem,

de�ne bounded-rational compatibility, and present a few examples. Then, I consider the

complexity of myopic best-response in iBundle, and characterize conditions on problem

domains for which myopic best-response is polynomial while complete revelation is expo-

nential. The last two sections present two sets of experimental results. Section 8.4 presents

a comparison of simple auction models for a simple model of costly agent deliberation. Sec-

tion 8.5 presents a computational study of auction models for a simple model of limited

agent deliberation, in allocation problems with multiple items.

8.1 Agent Decision Problem

It is helpful to assume that an agent's decision problem can be separated into a valuation

problem, to compute the value of di�erent items, and a bidding problem, to compute an

optimal bid. Each problem is well-de�ned in separation, for example the valuation problem

can be solved with decision analysis tools and optimization methods that are independent

of the particular auction, while the bidding problem can be solved with game-theoretic

methods. Figure 8.1 illustrates this decision problem. The arrows show the ow of infor-

mation.

Auction design can inuence the e�ectiveness of an agent's deliberation on its local

valuation problem because an agent can decide how to deliberate dynamically during the

course of an auction, for example based on price information. Careful auction design can

simplify an agent's valuation problem; auctions can allow an agent to avoid unnecessary

computation on its valuation problem and bid with approximate valuations.

Before turning to valuation, note that the bidding problem can be hard, in particular

when an agent with information about the bidding strategies of other agents can manip-

ulate the outcome of the auction. Counter-speculation and game-theoretic reasoning is

di�cult. This is the critical role for strategy-proof mechanisms.

227

Other
Agentsmetadeliberation

bids

approximate
valuation

prices, other
information

Valuation
Problem Problem

Bidding

Bidding Agent

Auctioneer

constraints, goals

Problem
Local

optional information

Figure 8.1: The agent decision problem.

As an example of a hard valuation problem, consider an auction for machine time in

a multi-agent job-shop scheduling problem, in which each agent has jobs to schedule on

a shared machine. To compute the value of a bundle of machine times an agent must

compute its best schedule of jobs given the time speci�ed in the bundle, which can be a

NP-hard problem. Consider also an auction-based system for distributed task allocation

where agents need to reformulate local plans to compute costs for performing additional

tasks; or an auction-based system for allocating landing times at an airport, where the

valuation problem is to compute the value of a time slot based on local constraints such

as the availability of support and maintenance crews, gate availability, and costs for late

arrival.

Let vi(S) � 0 denote agent i's value for bundle S � G of items, where G is a set of

discrete items.

Definition 8.1 [valuation problem] The valuation problem for agent i is to compute

vi(S; �i) for all bundles S � G, given preferences �i 2 �i, where �i is the set of all possible

types.

Recall that the type of an agent de�nes its preferences, in this case the value of an

agent for all possible bundles of items. We can de�ne an approximate valuation function

in terms of stochastic information about an agent's type.

Let �app;i 2 �(�i) denote a distribution over types, where �(�i) is the set of distribu-

tions on types. Similarly, vi(S; �app;i) 2 �(R) de�nes a distribution over the agent's value

228

for bundle S. An agent has approximate information about its valuation function if the

value of one or more bundles is not completely de�ned:

Definition 8.2 [approximate valuation] Agent i has an approximate valuation function,

vi(S; �app;i), if there is at least one bundle S0 for which the value vi(S
0; �app;i) remains

uncertain.

Example approximate valuations in a combinatorial allocation problem include:

| lower bound, vi(S
0), and upper bound, vi(S

0), such that vi(S
0) � vi(S

0; �i) < vi(S
0),

for at least one bundle S0 � G

| vi(S
0; �i) = U(a; b), uniformly distributed between a and b, for some bundle S0 � G

An agent's metadeliberation problem is to estimate the value of additional computation

vs. acting, and to decide what to deliberate on and for how long. Russell and Wefald

[RW91] present a general model of metareasoning, that considers computational actions

explicitly within an agent's decision problem. A bounded-rational agent chooses a sequence

of actions, computational or otherwise, to maximize expected utility, given models of

computation and models of its world. The value of computation derives from the e�ect

that the computation has on the actions that an agent takes in the world. Russell and

Wefald develop myopic approximations to metareasoning and present an application to a

stochastic decision problem.

A bounded-rational compatible auction allows an agent to perform useful

metadeliberation. An agent with limited or costly computation and simple metadelibera-

tion can avoid further deliberation about value when it knows that its bid is optimal for

all possible values consistent with its approximate solution. An agent with costly compu-

tation, for example an opportunity cost associated with deliberation, considers the cost of

deliberation and the expected value of the e�ect of further deliberation on the utility of

its decision.

8.2 Bounded-Rational Compatible Auctions

A bounded-rational compatible (BRC) auction is an auction in which an agent can compute

its optimal strategy, for a particular equilibrium concept, with an approximate valuation

function and with minimal information about the other agents. We �rst introduced the

term bounded-rational compatible auctions in Parkes et al. [PUF99]. It is important to

229

qualify the de�nition in terms of information about other agents, because we wish to

identify auctions in which an agent can avoid valuation work without additional work

modeling the other agents. To understand this, consider the following example.

Example. An agent in the Vickrey auction without any information about the prefer-

ences or strategies of other agents cannot compute its optimal strategy without complete

information about its own valuation problem, because the optimal strategy of an unin-

formed agent is to bid its complete and accurate valuation function. However, an informed

agent in the Vickrey auction can compute its optimal strategy with approximate value

information. For example if an agent knows that the highest bid from another agent is $10

then it can bid optimally with a lower bound on its own value of $12; i.e. a bid of b = $12

will maximize utility.

A natural way to handle information in the characterization of bounded-rational com-

patible auctions is to require that an agent can compute its equilibrium strategy without

any additional information about the problems of other agents beyond that which is re-

quired to compute the optimal strategy with complete information about the agent's own

problem.

We de�ne the concept of an information-restricted agent:

Definition 8.3 [information-restricted] An agent i is information restricted if it has the

minimal amount of information about the other agents needed to compute its equilibrium

strategy with complete information about its own preferences.

In other words, an information-restricted agent has no more information than is mini-

mally required by the solution concept in the mechanism. For example:

| an information-restricted agent in a dominant-strategy equilibrium has no informa-

tion about the other agents, because it requires no information to compute its dominant

strategy.

| an information-restricted agent in a Bayesian-Nash equilibrium has the distribu-

tional information about agent preferences required to compute the expected-utility max-

imizing strategy in the Bayesian-Nash equilibrium.

With this concept we can de�ne a bounded-rational compatible auction. The equilib-

rium concept unde�ned in the general de�nition.

230

Definition 8.4 [bounded-rational compatible] An auction is bounded-rational compat-

ible (BRC) if an information-restricted agent can compute its equilibrium strategy with

approximate information about its valuation problem in one or more non-trivial problems.

In other words, in a BRC auction an agent can compute its equilibrium strategy with

incomplete information about its preferences and minimal information about the other

agents. This de�nition precludes an agent from compensating for less information about

its own problem by collecting information about the problems of the other agents.

We also exclude trivial problems from consideration:

Definition 8.5 [trivial problem] An instance of mechanism M for agent i, as de�ned

with preferences ��i = (�1; : : : ; �i�1; �i+1; �I) of the other agents, is trivial if the outcome

implemented in equilibrium f(�i; ��i) is the same irrespective of the type �i 2 �i of agent

i.

A problem is trivial for agent i if the same outcome would be implemented by the

mechanism for all possible preferences of agent i, even when agent i has complete and

accurate information about its preferences.

Example. Consider a second-price sealed-bid auction in which agent 1 is the only agent.

This is a trivial problem because the agent will win the item for $0 whatever its bid.

We exclude trivial problems from the de�nition of BRC because an agent can trivially

compute its optimal strategy with approximate information about its preferences in a

trivial problem (so long as it knows the problem is trivial!), because it can simply follow

a strategy for any possible set of preferences.

The precise interpretation of equilibrium in BRC is left unde�ned, and depends on the

analysis method adopted for a mechanism. Special cases of bounded-rational compatibility,

for particular equilibrium concepts, include:

Definition 8.6 [dominant BRC] An auction is dominant-strategy BRC if an information-

restricted agent can compute its dominant strategy with approximate information about

its valuation problem, in one or more non-trivial problems.

Definition 8.7 [myopic BRC] An iterative, price-directed, auction is myopic BRC if

an information-restricted agent can implement its myopic best-response strategy in every

231

round with approximate information about its valuation problem, in one or more non-

trivial problems.

Myopic bounded-rational compatibility requires that an agent computes its optimal

strategy in every round of the auction with an approximate valuation function, not just in

a single round.

Notice also that I choose to be a little loose with the use of \equilibrium" here, as myopic

best-response is not actually an equilibrium strategy for rational agents in an iterative

auction such as iBundle; rather it is an equilibrium strategy for myopic agents that view the

current round as the last round of the auction and take prices as given. Of course myopic

best-response is a (Bayesian-Nash) equilibrium of iterative Vickrey auctions, in which case

I would say that such an auction is Bayesian-Nash bounded-rational compatible.

8.2.1 Illustrative Examples

In this section I present some examples of BRC analysis, to the English and Vickrey

auctions, and a Posted-price market.

English Auction

Proposition 8.1 The English auction is myopic bounded-rational compatible.

Proof. Consider the English auction, an ascending-price auction for a single item,

with myopic best-response agent strategies. An agent that knows its value v can compute

its optimal myopic best-response strategy without any information about the bids from

other agents, i.e. b�(p) = p if p � v, and drop out of the auction otherwise. An agent

can also compute its optimal strategy with an approximate valuation, e.g. bounds v �

v � v, in some problems. For example, if the highest outside bid b = v � �, then the

agent can compute its optimal strategy (bid at every price) with lower bound v > v��.

Consider the simple example in Figure 8.2. Agents 3 and 5 will bid the ask price up to

just above agent 5's lower bound, the second-highest lower bound. At this price, agents 1

and 2 can drop out of the auction without computing their exact values, while agents 3,

4 and 5 must perform further deliberation. This bidding problem demonstrates the BRC

property of the English auction, in this example, for agents 1 and 2.

232

2

3
5

4

1
Ask Price

Figure 8.2: Example scenario in the English auction.

In fact, the English auction also terminates with the Vickrey payment for small enough

bid increments, and myopic best-response is a Bayesian-Nash equilibrium for agents; i.e.,

given that every agent is following a myopic best-response strategy (for some value) then

an agent's rational sequential strategy is also myopic best-response. This was discussed

extensively in Chapter 7.

The following result follows:

Proposition 8.2 The English auction is Bayesian-Nash bounded-rational compatible.

This is straightforward to show, given that the auction is myopic bounded-rational

compatible, and given that myopic best-response is a Bayesian-Nash equilibrium.

The Vickrey Auction

Proposition 8.3 The Vickrey auction is not dominant bounded-rational compatible.

Proof. An agent that knows its value v can compute its dominant strategy without

any information about the bids from other agents, i.e. s� = v. Therefore, in order to be

dominant BRC the Vickrey auction must allow an agent to compute its dominant strategy

without any information about the bids from other agents, and approximate value informa-

tion for its own problem. But its dominant strategy in this uninformed case is truthful and

complete revelation of its value information, which presents a conict with the demands of

BRC.

233

Posted-Price Market

Proposition 8.4 A posted-price market is dominant BRC.

Proof. A posted-price market with in�nite supply, or with an exclusive take-it or

leave-it o�er to an agent, is not a situation of strategic interaction. There is no relevant in-

formation about the other agents, and the optimal strategy| also a dominant strategy |is

to accept the price on an item if the price is below an agent's value. An agent can compute

this optimal strategy with approximate information about its value, for example with a

lower-bound that is above the ask price.

8.2.2 Preliminary Theoretical Results

It is useful to outline some possibility and impossibility results for mechanism design, once

bounded-rational compatibility is introduced into the mix of desirable auction properties.

Theorem 8.1 (possibility). The English Auction is e�cient and Bayesian-Nash

bounded-rational compatible for the single-item allocation problem.

Proof. Myopic best-response is a Bayesian-Nash equilibrium of the English auction,

i.e. the myopic best-response is sequentially rational for an agent given myopic best-

response by every other agent (see Section 7.4). The English auction is e�cient with this

strategy, and we have already shown an example of how myopic best-response can be imple-

mented with an approximate valuation function.

Theorem 8.2 (possibility). iBundle is e�cient and myopic bounded-rational compat-

ible for the combinatorial allocation problem.

Proof. iBundle is e�cient with myopic best-response strategies, and it is quite

straightforward to construct non-trivial problems in which at least one agent can implement

its myopic best-response strategy in each round without complete information about its val-

uation function.

For example, in the simple problem in Section 3.2.2 an agent can bid for its value

maximizing bundle with a partial-ordering over bundles.

234

Theorem 8.3 (impossibility). No strategy-proof (direct-revelation) auction can be dom-

inant strategy bounded-rational compatible and e�cient.

Proof. Dominant strategy bounded-rational compatibility requires that an agent can

compute its equilibrium strategy (in this case its dominant strategy) with an approximate

valuation function and with no information about the preferences or strategies of other

agents. A single-shot direct-revelation mechanism cannot be e�cient unless every agent

submits complete and accurate information about its valuation function in every problem.

Any approximate information, for example specifying an incorrect value for bundle S0 can

be exploited by constructing a non-trivial problem in which the values of the other agents

for particular bundles make the error in the value of bundle S0 cause the selection of an

ine�cient allocation. An uninformed agent with an approximate valuation function cannot

submit complete and accurate information about its valuation function in every problem.

8.2.3 Discussion

Although the de�nition of bounded-rational compatibility requires only a single non-trivial

problem in which the agent can compute its optimal strategy with approximate informa-

tion about its valuation problem the de�nition is successful in separating direct-revelation

and iterative auction designs. Bounded-rational compatibility also captures other mar-

ket mechanisms, such as posted-price mechanisms, and demonstrates that there is often

a trade-o� between allocative-e�ciency and bounded-rational compatibility. Of course,

iterative auctions such as iBundle are interesting because they can be BRC and e�cient.

8.2.4 Approximation-Proofness

The strategy-proofness of a mechanism can break when agents have approximate valuations

[San96]. An agent that is informed about the bids that another agent will place can

optimize its local computation about value, and submit more useful bids in the auction.

For example, the Vickrey auction is not strategy-proof for an agent with an uncertain

value for its item and costly computation. The agent can avoid costly computation if it

has access to free information about the other agent.

235

Proposition 8.5 A bounded-rational agent with uncertain values and limited computa-

tion can improve its expected utility with information about the bids from other agents in

a strategy-proof auction.

For example, if an agent has uncertain values on two items, but can only re�ne its

value for one item, it is helpful to know the likely prices on the items. In this way, the

bounded-rationality of agents can break the strategy-proofness of an auction.

However, so long as a mechanism satis�es approximation-proofness, then this loss in full

strategy-proofness is not a problem. The concept of approximation-proofness parallels that

of strategy-proofness, and states that an agent's dominant strategy is to report truthful

information (or statistics) about its approximate valuation function. As before �(�)i

denotes the set of possible approximations, given a set of possible types �i for agent i.

Let �(�(�)i) denote the set of possible statistics, given all possible approximations. This

de�nes the strategy-space available to an agent in a direct-revelation approximation-proof

mechanism (see Section 2.3 for an introduction to direct-revelation mechanisms). I de�ne

approximation-proofness as follows:

Definition 8.8 [approximation-proof] A direct-revelation mechanismM = (�(�(�)1);

: : : ; �(�(�)I); g(�)) is approximation-proof for statistics �(�app;i), if the dominant-strategy

equilibrium for agent i is to report truthful statistics about its approximate type informa-

tion, i.e. si(�app;i) = �(�app;i) for all possible approximate types.

In other words, a mechanism is approximation-proof for statistics �(�app;i), such as

mean, upper- and lower-bounds, etc., if an agent's dominant strategy is to reveal this

information about its approximation truthfully.

A special case is that the mechanism simply allows the agent to provide its complete

approximation, for example upper- and lower- bounds on the value of every bundle, and

truthful revelation of this information is an agent's dominant strategy.

Example. The single-item Vickrey auction, in which an agent can report a single

value for the item, is approximation-proof for mean statistics, with an expected utility

maximizing agent with a quasi-linear utility function. Given approximate information

vi(�app;i) the agent's dominant strategy is to report its true expected value. To understand

this, notice that the agent wants to buy the item whenever the highest bid from another

236

agent is less than its expected value.

Approximation-proofness does not imply that a mechanism is strategy-proof, it is a

weaker condition. An agent in an approximation-proof mechanism might continue to col-

lection information about other agents, and model the other agents, in equilibrium. How-

ever, in an approximation-proof mechanism this loss in strategy-proofness is not necessarily

a bad loss in strategy-proofness. In an approximation-proof auction it is bene�cial for an

agent to allocate its computational resources to maximize the e�ectiveness with which its

�nal valuation function provides accurate and useful information to the mechanism. With

approximation-proofness this information is used to perform better metadeliberation on

the agent's own valuation problem, and an agent will still reveal truthful information to

the mechanism. Of course, we would prefer an iterative auction that can guide agent

metadeliberation, and provide information to guide an agent's valuation deliberation for

\free" (this is the idea in bounded-rational compatible auctions).

I leave the design of approximation-proof mechanisms for combinatorial problems as

an important open problem. Note, for example, that the GVA is not approximation-

proof with expected-value information. The property that holds in the single-item Vickrey

auction requires linearity, which does not hold in the combinatorial allocation problem

and the GVA. By the revelation principle, we could simply look for approximation-proof

direct-revelation mechanisms, that allow an agent to report complete information about its

approximation to the mechanism. Perhaps more interesting is the design of approximation-

proof mechanisms for aggregate statistics on an agent's approximate information about its

preferences, such that truthful information of this statistic is a dominant strategy.

8.3 Complexity of Myopic Best Response

A running assumption in my dissertation can be stated as follows:

Claim 8.1 iBundle solves realistic problems with less information and less agent com-

putation than the GVA.

In hard problem instances we will need complete information revelation from agents to

compute and verify an optimal allocation, i.e. the performance of iBundle is just as bad

237

as the GVA in the worst case.

The claim is that despite the same worst-case performance, the average-case perfor-

mance of iBundle is good, in that we solve easy instances with as little information as

possible. Back in Chapter 3 I introduced a few examples that can be solved with incom-

plete information from agents. But, what about the computation required by an agent to

provide this incomplete information?

Leaving aside whether or not the sequential complexity of myopic best-response is

harder or easier than direct-revelation complexity, let us consider the simpler problem of

responding to a single price vector.

Definition 8.9 [best-response problem] Compute set of bundles, BR(p), to solve:

max
S

v(S) � p(S)

The following section considers conditions on an agent's local problem, valuation prob-

lem, and approximation algorithm for best-response to be easy while complete revelation

is hard.

8.3.1 Structural Analysis

One approach is to characterize the structure of an agent's valuation problem, approximate

valuation complexity, and exact valuation complexity, in which best-case myopic best-

response is polynomial-time computable (in the number of items) while worst-case complete

revelation is exponential-time computable (in the number of items).

Consider the following cases, in which myopic best-response is computable in best-case

polynomial time, while complete revelation remains hard:

(a) A polynomial-time approximate valuation algorithm, an exponential-time exact

valuation problem, and a polynomial number of interesting bundles.

(b) A polynomial-time approximate inference capability (e.g. if v(S1) = x then

v(S0) < x, for all S0 � S1), with exponential inference power, a polynomial algo-

rithm to compute the exact value of a single bundle, and an exponential number of

interesting bundles.

238

In case (a), the agent can compute its complete approximate valuation function in

polynomial time, computing an approximate value for each bundles in polynomial time on

a polynomial number of interesting bundles. It remains an exponential-time problem to

compute the agent's exact valuation function, because it must do an exponential amount

of work on each of a polynomial number of bundles.

In case (b), the agent can compute its complete approximate valuation function in

polynomial time, because it can compute the approximate value of an exponential number

of bundles (this is what is meant by the \exponential power" statement) in polynomial time,

based on the exact value of a single bundle that it can compute in polynomial time. This

approximate inference capability can be applied to a number of \seed" bundles, until the

agent has enough information to compute its best-response. It remains an exponential-time

problem to compute the agent's exact valuation function, because it must do a polynomial

amount of work on each of an exponential number of bundles.

Of course, this analysis is simplistic and ignores the subtle question of whether the ap-

proximate information allows an agent to compute its best-response. Factors that should

boost the ability of an agent to compute its myopic best-response with approximate infor-

mation and limited deliberation are:

| high variance in values for di�erent bundles with similar prices, or ask prices that

are very di�erent in structure from values.

| a small number of interesting bundles to enable single-bundle approximation meth-

ods without inference across bundles

| a structured local problem to allow approximate value inferences across bundles

| linear prices instead of non-linear prices on bundles

The results in the next couple of sections present an experimental comparison between

the computational and economic properties of di�erent auction mechanisms with a simple

model of a bounded-rational agent. The results demonstrate the e�ect that auction de-

sign can have on the e�ciency of an allocation. Iterative auctions allow agents to follow

strategies with less value computation and can lead to more e�cient allocations because

agents use deliberation to re�ne values on important items and/or bundles as feedback is

provided by the mechanism about the bids and preferences of other agents.

239

8.4 Costly Deliberation and Single-Item Allocation

The �rst set of experiments consider costly agent deliberation in a single-item allocation

problem. I compare the performance of three simple auction models: a sealed-bid auction,

an ascending-price auction, and a posted-price market.

An agent's metadeliberation problem is to determine how much deliberation to per-

form before placing a bid. The decision is a tradeo� between reducing uncertainty about

the value of the good so that the bid is accurate, and avoiding the cost of deliberation.

Given the model of an agent's valuation problem and decision procedure we derive optimal

metadeliberation strategies for agents. The key observation is that the value of deliber-

ation is derived from the e�ect of deliberation on an agent's bid. Deliberation can only

be worthwhile when it changes an agent's bid and expected utility from the decision is

greater than cost. To the best of my knowledge, this was the �rst model of normative

agent metadeliberation within an iterative auction [Par99].

An agent's optimal metadeliberation strategy does depend on the bids that other agents

will make, even in incentive compatible auctions (unlike an agent's optimal bidding strat-

egy). For example, an agent should never deliberate about its value for a good if its current

upper bound on value is less than the ask price, because further deliberation can never

cause the agent to accept the price. Metadeliberation is hard because of uncertainty about

the bids of other agent and the outcome of additional deliberation.

I describe normative metadeliberation strategies for risk-neutral agents, who receive

utility vi � p for purchasing a good at price p.

8.4.1 Model of Agent Bounded-Rationality

In Parkes [Par99] I proposed a simple model for the valuation problem of an agent, and de-

rived myopic metadeliberation strategies and bidding strategies in di�erent auction mech-

anisms. I do not expect the valuation problems and decision procedures of real agents

(or real experts) to have characteristics that match the precise assumptions (e.g. distribu-

tional assumptions) of the model. However, I believe that the same qualitative e�ect will

be observed with alternative models of agent deliberation and hard valuation problems.

The model of approximate valuation matches some of the properties of standard algo-

rithmic techniques for solving hard optimization problems, such as Lagrangian relaxation,

240

depth-�rst search, and branch-and-bound. Furthermore, the model supports a mode of

interaction between people and software bidding agents that is provided in some current

on-line auctions [PUF99].

Every agent i has an unknown true value vi for a good, and maintains a lower bound

vi and upper bound vi on its value, written [v; vi]. Agent i believes that its true value is

uniformly distributed between its bounds, vi � U(vi; vo). Given this belief the expected

value for the good is v̂i = (vi + vi)=2. As an agent deliberates its bounds are re�ned and

its belief about the value of the good changes, with expected value v̂ converging to v over

time.

Let �i = vi � vi denote an agent's current uncertainty about the value of the good.

Agents have a deliberation procedure that adjusts the bounds on value, reducing uncer-

tainty by a multiplicative factor �, where 0 < � < 1. The new bounds are ��i apart,

and consistent with the current bounds (but not necessarily adjusted symmetrically). For

a small � the uncertainty is reduced by a large amount, and we refer to (1 � �) as the

computational e�ectiveness of an agent's deliberation procedure.

An agent believes that the new expected value v̂0i for the good after deliberation will

be uniformly distributed v̂0i � U(vi + ��i=2; vi � ��i=2), such that the new bounds are

consistent with the current bounds.1

Finally, there is a cost C associated with each deliberation step performed by an agent,

measured in units of payment; i.e. an agent's utility for value v and cost C is v � C.

8.4.2 Auction Models

I compare the following auctions: second-price sealed-bid [SB], sequential posted-price

[PP], and ascending-price [AP]. The [PP] and [AP] auctions are BRC (dominant and

myopic), the [SB] auction is not BRC.

The auctions place di�erent information requirements on the auctioneer: the [PP]

auction requires a well-informed auctioneer for good performance, because the ask price

is critical; while the [AP] and [SB] auctions set the price dynamically from bids received

during the auction.

1This belief that the new bounds are uniform with respect to the current bounds is inconsistent with
the prior belief that the actual value of the item is uniformly distributed between the bounds. To support a
uniform value for the item over a sequence of deliberations the distribution for the value in the next round
must put more weight on values towards the center of the range. In simulation this distribution is carefully
computed to maintain a uniform prior for the true value after any sequence of deliberations.

241

Second-price Sealed-bid [SB]

Actions: bid.

In [SB] the auctioneer accepts bids bi from agent i, and then closes the auction. The

item is sold to the agent that submits the highest bid, for a price equal to the second-highest

bid (or $0 if only one bid is received). This is the Vickrey auction.

Sequential Posted-price [PP]

Actions: accept, reject.

In [PP] the auctioneer o�ers the item to each agent sequentially, for price p. The item

is sold to the �rst agent that accepts the price. The item is not sold if every agent rejects

the price.

In simulation I optimize the ask price o�-line to maximize revenue, given agent bidding

and deliberation strategies. This is equivalent to assuming a well-informed auctioneer.

Ascending-price [AP]

Actions: register, leave, bid, deliberate.

I use a variant on the standard ascending-price (English) auction that is designed to

simplify the analysis of deliberation and bidding strategies, without changing the per-

formance of the auction for rational agents. The auction includes a nominal charge for

remaining in the auction, and allows agents to explicitly state that they will leave the

auction.

Initially all agents register with the auctioneer. Then, agents can place bids until

they leave. Bids indicate the maximum that an agent is currently prepared to pay for

the item. A bid bi is accepted if bi � p, and the ask price is increased to � above the

second-highest bid received, for some bid increment � > 0. Agents can place new bids at

any time, and leave the auction at any time. Agents are charged a nominal participation

fee to remain in the auction, unless they hold the highest bid.

After a period of time without new bids, or without an agent leaving the auction,

the auctioneer announces the number of active agents in the auction, and the auction

enters a \going going gone" phase. An agent must bid, leave or deliberate to keep the

auction open. When an agent decides to deliberate it sends a deliberate message to the

auctioneer. The auctioneer then gives the agent time to deliberate, and then expects either

242

a bid or a leave message. The agent is dropped from the auction if it does not respond.

Finally, the auction will close, with the item sold to the agent with the highest bid for the

value of the second-highest bid received.

An alternative solution to prevent agents free-riding o� the deliberation of other agents

is to choose an agent at random in each round of the auction, and requests that the agent

places a bid or leaves the auction.

8.4.3 Metadeliberation and Bidding Strategies

In this section I briey describe optimal agent deliberation and bidding strategies in each

auction. The full mathematical analysis of an agent's optimal metadeliberation strategy in

[PP] is presented in the Appendix of this chapter. The optimal metadeliberation strategy

in [PP] is also relevant in [AP]. The value of deliberation is computed within Russell &

Wefald's [RW91] decision-theoretic framework.

Second-price Sealed-bid [SB]

The optimal bid, b�, for a risk-neutral agent with approximate value [vi; vi] that will

perform no further deliberation, is:

b�i = v̂i =
vi + vi

2

To decide how long to deliberate before bidding an agent needs to know the utility of

its bid, but this depends on the bids placed by other agents| information not available

to an uninformed agent. The agent can assume that the highest outside bid, p, is equal to

its current approximate value for the item, p = v̂i, but this will lead the agent to perform

too much deliberation. Similarly, if an agent assumes that p = v or p = v it will tend to

perform too little deliberation.

I assume that agents can compute a symmetric pure-strategy Nash equilibrium, where

every agent performs the same number of deliberations. The equilibrium number of de-

liberations are computed o�-line (to simulate long-term learning), so that the total cost

of deliberation is just less than the expected utility to the agent that wins the auction.

This provides a best-case number of deliberations for a symmetric pure Nash equilibrium

of metadeliberation decisions.

243

Value bounds Deliberation bounds Expected value Optimal action
for price p = 5

[6,8] [6.8,7.2] 7 accept

[4,7] [5.05,5.95] 5.5 accept

[3.5,6.5] [4.55,5.45] 5 deliberate

[3,8] [4.5,6.5] 5.5 deliberate

[4.5,5.3] [4.9,4.9] 4.9 reject

[2,4] [2.8,3.2] 3 reject

Table 8.1: Deliberation bounds for an agent with � = 0:5 and C = 0:05 and di�erent approximate
values. The optimal action (deliberate, accept or reject) is computed for ask price p = 5.

Sequential Posted-price [PP]

The optimal bidding strategy depends on the relation between the ask price p and the

agent's belief about its expected value v̂i:

b� =

8<
:

accept , if p < v̂i

reject , otherwise.

In [PP] the utility of a bid depends on the expected value v̂i, but not on the bids placed

by other agents. The optimal deliberation strategy depends on the price, an agent's ap-

proximation, and the deliberation procedure parameters � and C. An agent will deliberate

while the ask price is \close" to its current approximate value v̂i, where close is de�ned

with deliberation bounds:

Definition 8.10 [deliberation bounds] An agent should deliberate when the ask price

p is di < p < di, where di and di are lower upper deliberation bounds, and depend on

[vi; vi]; �; C.

I derive an analytic formula for the deliberation bounds in the Appendix. Table 8.1

presents bounds for an agent with � = 0:5 and C = 0:05, and di�erent approximate

values. The table also records the optimal action for ask price p = 5 in each case, i.e.

deliberate, accept or reject. The deliberation bounds are always tighter than the

value bounds. An agent should never deliberate when the ask price is outside its value

bounds because deliberation cannot change its bid. Deliberation is more useful as the

price is closer to expected value, as uncertainty increases, and as deliberation e�ectiveness

increases, because deliberation is more likely to change an agent's bid in each case.

Figure 8.3 (a) illustrates the combined bidding and deliberation strategy for an agent in

[PP]. The strategy is as follows: when the ask price is between the bounds on deliberation,

244

deliberate. Otherwise: if the ask price is less than v̂i (expected value of the item),

accept, and if the ask price is greater than v̂i then reject.

v-

v-

P
ric

e

Deliberate.

Reject

Accept

d-

d-

(a) Posted-Price market [PP].

v-

v-
Active
Agents

P
ric

e

[1] Bid.

[3] Leave auction.

[2] Wait. Deliberate if
auction will close, with
probability 1 / (N - 1)a

d-

d-

(b) Ascending Price auction [AP].

Figure 8.3: Optimal bidding and deliberation strategies in each auction. The optimal action
depends on the ask price, p, and the deliberation bounds. Agents are more bounded-rational from
level [4] to [1].

Ascending-price [AP]

The optimal myopic bidding strategy for a bounded-rational agent in [AP] depends on the

relation between the current ask price and an agent's deliberation bounds.

b� =

8>><
>>:

bid , if p < d̂i

leave , if p > d̂i

wait , otherwise.

The strategy is equivalent to accepting any ask price less than di and rejecting any ask

price greater than di, which is the optimal strategy in [PP]. However, when the ask price is

between the bounds an agent will now wait, and only deliberate when it must deliberate

and bid to keep the auction open. Agents that either wait or bid remain active.

This is a myopic metadeliberation strategy because the agents select deliberation and

auction actions in equilibrium at the current prices, and ignore the possibility that prices

might continue to increase and that an agent will not necessarily when an item at the

current ask price. In particular, the price might increase so that p > di, in which case the

245

agent is better to leave the auction than deliberate. This myopia is somewhat relaxed

because I assume that agents will try to \free-ride" o� the deliberation of other agents,

and only deliberate when absolutely necessary (e.g. to prevent the auction closing).

In the going-going-gone phase of the auction, an agent with bounds di < p < di, will

wait if another agent will deliberate and bid, and only deliberate and bid to prevent the

auction from closing.2 I call this the \waiting game". Agents try to free-ride o� the

deliberation of other agents. All deterministic Nash equilibrium solutions have a single

agent that deliberates, while all other agents wait: if no agent deliberates then it is

a rational unilateral deviation for any single agent to deliberate, and if more than one

agent deliberates that it is a rational unilateral deviation for one of those agents to wait.

In the uniquemixed Nash equilibrium (also symmetric) of the waiting game, with agents

that randomize among strategies, every agent deliberates with probability 1=(Na � 1),

where Na is the number of active agents. The denominator is Na�1 because the agent that

is currently holding the highest bid will not deliberate. Uninformed agents can implement

this strategy because the auction announces the number of active agents, Na, at the start

of every round. The agents do not need to know the strategies or utility functions of

other agents. Figure 8.3 (b) illustrates the combined bidding and deliberation strategy of

an agent in [AP]. The Nash equilibrium allows agents to deliberate sequentially. Agents

exchange information about their local problems through the ask price as they deliberate

and bid.

I assume in simulation that agents implement this outcome, and simulate the mixed

Nash equilibrium by choosing an active agents at random to deliberate. An agent that is

selected deliberates until the ask price is outside its deliberation bounds, when it either

bids or leaves the auction.

8.4.4 Experimental Results: Costly Computation

I compare the performance of each auction in terms of the allocative e�ciency.

In each trial a value for the item is assigned to each agent from the same distribution,

vi = U(0; 10), uniform between 0 and 10. Every agent has initial bounds on value, [vi; vi] =

[0; 10] (i.e. ignorance). Each auction is tested with four di�erent agent bounded-rational

levels, as summarized in Table 8.2, and with between jIj = 5 and jIj = 100 agents. In

2We assume that the auction allows enough time for an agent to deliberate later in the auction.

246

each experiment all agents have the same deliberation e�ectiveness, 1 � �, and the same

deliberation cost, C. The bounded-rational level in Table 8.2 can be interpreted as a

function of the computational power of an agent's deliberation procedure, or a function

of the di�culty of an agent's valuation problem. For example, moving from level [1] to

level [4], either the valuation problem gets easier, or the agents have more computational

resources.

Bounded-rational 1 - deliberation Deliberation Initial Deliberation
Level e�ectiveness cost bounds

� C d d

[1] 0.7 0.5 5 5
[2] 0.3 0.5 4.2 5.8
[3] 0.7 0.05 2.9 7.1
[4] 0.3 0.05 1.8 8.2

Table 8.2: Bounded-rational levels and corresponding initial deliberation bounds

I provide the agents with optimal deliberation and bidding strategies and simulate

agent deliberation procedures. In every deliberation step, the new bounds on value are

computed such that: (1) the true value remains between the bounds; (2) the true value

is uniformly distributed between the bounds with respect to all stochastic sequences of

deliberations.

The ask-price in [PP] is selected to maximize expected revenue to the auctioneer, and

the minimum bid-increment in [AP] is selected to make sure that agents have positive

utility from participation despite the myopia of their metadeliberation strategies.

Second-price Sealed-bid Auction [SB]

We choose the number of deliberations performed by each agent in the [SB] auction o�-

line, selecting the maximum number of deliberations for which the agents still gain utility

through participation in the auction.3 Figure 8.4 plots e�ciency as the number of agents

increases, for each level of bounded-rationality, and also the optimal performance (with

agents that know the value of the item). The results are averaged over 500 trials.

The sealed-bid auction performs well for small numbers of agents and easy valuation

problems (or agents that have su�cient computational-resources), i.e. for up to 20 agents

3The agents each perform the following numbers of deliberations for each level of bounded-rationality:
[1; 1; 0; 0; 0; 0; 0; 0; 0; 0]; [1; 1; 0; 0; 0; 0; 0; 0; 0; 0]; [17; 10; 7; 3; 2; 1; 1; 1; 0; 0]; [16; 10; 6; 2; 1; 0; 0; 0; 0; 0], for jIj =
[3; 4; 5; 10; 20; 30; 40; 50; 60; 100].

247

0 20 40 60 80 100
0.4

0.6

0.8

1

Number of Agents, N

E
ff

(%
)

[1,2] [4] [3]

[Opt]

Figure 8.4: E�ciency in the sealed-bid [SB] auction, for agents with bounded-rational levels [1]
to [4], and for agents that know their value for the item [Opt].

for type [3] and [4] agents, and for all types of agents when there are less than 5 agents.

However, the auction fails at high levels of bounded-rationality, (e.g. [1] and [2]), even

with small numbers of agents. No agent can deliberate when the total cost for every

agent to perform a single deliberation is greater than the expected utility to the agent

that receives the item. I computed pure strategy Nash equilibrium for [SB], in which

each agent performs the same number of deliberations.4 When no agent deliberates the

e�ciency is approximately 50% because every agent bids bi = 5, and the item is allocated

at random. The sealed-bid auction is not bounded-rational compatible, so agents cannot

reason e�ectively about when to deliberate.

It is interesting to compare this analysis with the result that is expected from traditional

auction theory, with agents that know their value for the item, as illustrated in line [Opt]

in Figure 8.4. The [SB] auction achieves 100% e�ciency for all numbers of agents if agents

have perfect information about their values, because an agent's dominant strategy is to

bid its true value.

4In an alternative model, we could compute a mixed-strategy equilibrium for agent deliberation, where
agents deliberate m times with probability p. The problem is that there are many such equilibrium, for
example 10 agents can deliberate twice for the same cost as 20 agents that deliberate once. There is no
simple mechanism for equilibrium selection in a system of uninformed agents.

248

Sequential Posted-price Auction [PP]

We set the price in the [PP] auction to maximize revenue.5 Figure 8.5 compares the

performance of [PP] `o' with [SB] `x' for each bounded-rationality level, as the number of

agents increases. Subplot [4] also shows, line `*', the performance of [PP] with agents that

know their value for item. The results are averaged over 1000 trials.

0 50 100
0.4

0.6

0.8

1
[1]

Number of Agents, N

E
ff

(%
)

0 50 100
0.4

0.6

0.8

1
[2]

Number of Agents, N

E
ff

(%
)

0 50 100
0.4

0.6

0.8

1
[3]

Number of Agents, N

E
ff

(%
)

0 50 100
0.4

0.6

0.8

1
[4]

Number of Agents, N

E
ff

(%
)

Figure 8.5: E�ciency in the posted-price [PP] `o' and sealed-bid [SB] `x' auctions, for agents with
bounded-rational levels [1] to [4]. Sub-plot [4] also shows the performance of [PP] with agents that
know their value for item (line `�').

The [PP] auction achieves low e�ciency with small numbers of agents, but tends to

support solutions with reasonable e�ciency as the number of agents increases. In compar-

ison [SB] is almost 100% e�cient for small numbers of agents, but fails for larger numbers

of agents. The [PP] auction does not perform well for small numbers of agents because the

optimal price varies considerably across trials. Similarly, [PP] with agents that know their

value of the item performs worse than [SB] with bounded-rational agents for small numbers

of agents. However, when there are many agents, o�ering agents a �xed price sequentially

allows agents to deliberate about their value for the item without losing utility. Agents

receive an exclusive o�er of the item, at a certain price. There is much more uncertainty

in the [SB] auction.

5The price is set as follows for each level of bounded-rationality: p� = [4:9; 4:9; 4:9; 4:9; 4:9; 4:9; 4:9],
p� = [5:8; 5:8; 5:8; 5:8; 5:8; 5:8; 5:8], p� = [6:6; 6:6; 7:0; 7:1; 7:1; 7:1; 7:1], p� = [6:8; 7:8; 8:2; 8:2; 8:2; 8:2; 8:2],
for jIj = [5; 10; 20; 30; 40; 50; 100]. The optimal ask price for agents that know the value of the item is:
p� = [6:8; 7:8; 8:6; 8:8; 9; 9:3; 9:5].

249

The [SB] and [PP] auctions have the same performance with agents that have limited

computational resources (level [1]). In this case there is no ask price that will motivate

agents to deliberate (see deliberation bounds in Table 8.2), and the best the auctioneer

can do is sell the item to the �rst agent for p = 4:9.

Also, notice that with agents that know their value for the item, the e�ciency in [PP]

approaches 100% as the number of agents increases. In comparison, the performance of

[PP] with bounded-rational agents does not approach 100%, even as the number of agents

increases. Let us consider type [4] agents. Table 8.2 shows that these agents have initial

deliberation bounds [d; d] = [1:8; 8:2]. This means that if the auctioneer charges a price

p > 8:2, no agent will deliberate, and the item will not be sold because every agent will

reject the price. The ask price is limited to p = 8:2, even for many agents, which limits

the ability of the auctioneer to sell the item to the agent with the highest value.

Ascending-price Auction [AP]

The bid-increment in the [AP] auction is set to the minimum value that allows agents to

gain positive utility from participation in the auction.6 Figure 8.6 compares the perfor-

mance of [AP] `+' with [PP] `o' for each bounded-rationality level, as the number of agents

increases. The results are averaged over 200 trials.

The [AP] auction has very good performance, matching [SB] for small numbers of

agents, and matching [PP] for larger numbers of agents. In particular, for agents that

have moderate computational resources (i.e. levels [3] and [4]), the [AP] auction generates

higher �nal ask prices than [PP] and supports better e�ciency. The performance of [AP]

holds up as the number of agents increases because agents deliberate in sequence, and wait

for other agents to deliberate. Around the same number of agents deliberate for all large

numbers of agents, because the bid increment is �nite. [PP] performs better than [AP]

with agents of type [2], because in this special case the ability to set an exact ask price

before the auction is critical to provide incentives for the right agents to deliberate.

[AP] always outperforms [SB], achieving as good a performance when [SB] does not fail,

but performing better than [PP] when [SB] fails. This is an interesting result, given the

equivalence of the English and Vickrey auctions in traditional auction theory [PMM87].

6The bid-increment is set as follows for each level of bounded-rationality: � = [1; 1; 1; 1; 1; 1; 1],
� = [0:7; 1; 1; 1; 1; 1; 1], � = [0:2; 0:2; 0:4; 0:4; 0:5; 0:5; 0:5], � = [0:2; 0:2; 0:6; 0:6; 0:6; 0:6; 0:6], for jIj =
[5; 10; 20; 30; 40; 50; 100].

250

0 50 100
0.4

0.6

0.8

1
[4]

Number of Agents, N

E
ff

(%
)

0 50 100
0.4

0.6

0.8

1
[3]

Number of Agents, N

E
ff

(%
)

0 50 100
0.4

0.6

0.8

1
[2]

Number of Agents, N

E
ff

(%
)

0 50 100
0.4

0.6

0.8

1
[1]

Number of Agents, N

E
ff

(%
)

Figure 8.6: E�ciency in the ascending-price [AP] `+' and posted-price [PP] `o' auctions, for agents
with bounded-rational levels [1] to [4].

It is perhaps surprising that the performance of [AP] can be sustained for large numbers

of agents. The �nite bid increment limits the total amount of deliberation in the auction,

even as the number of agents increases.

Mixture of Agents

Let us consider a market with a mixture of agents; some with hard valuation problems

(\inexperienced agents"), and some with easy valuation problems (\experienced agents").

We assume a fraction f of inexperienced agents; and a fraction 1�f of experienced agents

that know their value vi for the item. Fig 8.7 plots performance for I = 30, with � = 0:3

and C = 0:05.7

In this example, the performance of [AP] dominates [SB] and [PP] for all mixtures

of agents. With many experienced agents, e.g. f < 0:4, the [SB] and [AP] auctions

are approximately equivalent, and perform better than the [PP] auction. (This is the

traditional auction model). For a medium to large fraction of inexperienced agents, f >

0:4, the performance of [SB] falls o�, while [PP] approaches [AP]. This illustrates the

value of a bounded-rational compatible auction ([AP] vs. [SB]) with agents with limited

computation.

7In [SB] no agents perform any deliberation, In [AP] we choose bid increments: � =
[0:2; 0:3; 0:4; 0:4; 0:4; 0:6] for f = [0; 0:2; 0:4; 0:6; 0:8; 1:0]. In [PP] we choose the following ask-price:
p� = [8:8; 8:6; 8:2; 8:2; 8:2; 8:2].

251

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

Fraction of Bounded−Rational Agents

E
ff

(%
)

[AP]

[PP]

[SB]

Figure 8.7: Performance of [SB], [PP] and [AP] for a mixture of agent types, with jIj = 30 agents.
Fraction f of agents have bounded-rational level [4], while fraction 1�f of agents know their value
for the item.

Comparing Agent Deliberation across Auctions

In this section we compare agent deliberation in a system with jIj = 30 agents, and � = 0:7

and C = 0:05 (level [3] in Table 8.2). In this problem the [SB], [AP] and [PP] auctions

achieve e�ciency of 92.1%, 96.1% and 91.6% respectively. The [AP] auction outperforms

the other two auctions. The average utility for an agent that wins each auction is 2.52,

1.56 and 1.87 in the [SB], [AP], and [PP] auctions, so that the auctions can support an

average of 1.7, 1.0 and 1.2 deliberations per-agent (dividing by jIjC).

Figure 8.8 (a) plots the average number of deliberations performed by agents in each

auction, as a function of the true value of the agent for the item, averaged over 500 trials.

The agents in [SB] all perform the same number of deliberations, a single deliberation

in this case because the utility can support a maximum of 1.7 deliberations per-agent.

The average number of deliberations performed in [AP] is 1.0 (compared to a maximum

possible of 1.0), and 0.29 deliberations are performed in [PP] (compared to a maximum

possible of 1.2).

In fact, 81.2% of agents in [PP] perform no deliberation, including 80.9% of agents

with true value between 8 and 10. This occurs when other agents buy the item earlier,

and represents a clear loss in allocative e�ciency. The seller cannot set a higher price than

7.1, because no agents would deliberate and the item would remain unsold (see the initial

upper bound on deliberation in Table 8.2). In comparison, 53.4% of agents in [AP] do not

252

0 2 4 6 8 10
0

0.5

1

1.5

Agent Value, v
i

N
um

be
r

of
 D

el
ib

er
at

io
ns

[AP]

[PP]

[SB]

(a)

0 2 4 6 8 10
0

5

10

15

Agent Value, v
i

N
um

be
r

of
 D

el
ib

er
at

io
ns

Optimal
Constr−Optimal

(b)

Figure 8.8: Comparison of agent deliberation for jIj = 30 agents with bounded-rational level
[4]. (a) Average number of deliberations performed by a single agent, as a function of the agent's
(true) value for the item. (b) Average best-case number of deliberations to solve allocation problem
(Optimal), and average best-case distribution of a constrained number of total deliberations (1 per
agent) to maximize probability of correctness (Constr-Optimal).

deliberate, including 51.8% of agents with value between 8 and 10. In both systems agents

with high value for the item choose to deliberate more than agents with low value.

Figure 8.8 (b) plots the best-case deliberation to solve the allocation problem (Opti-

mal), averaged over 500 trials, and the best-case distribution of constrained deliberation

(1 per agent) to maximize probability of correctness (Constr-Optimal), averaged over 50

trials.

The Optimal deliberation distribution in a problem instance is computed assuming an

oracle, that decides which agents should deliberate and cooperative agents. The oracle has

perfect information about the true value of each agent, but cannot predict the stochastic

nature of the valuation procedure. Deliberation continues until the lower bound on one

agent is greater than the upper-bounds on all other agents. The Constr-Optimal solution

is computed for a total deliberation budget Cmax by computing the best solution from

the subset of deliberation allocations with increasing deliberation allocated to agents with

higher values (this is su�cient).

Notice that the agents with high value deliberate more than the agents with low value

in Optimal and in Constr-Optimal. Every agent must deliberate while its upper bound is

greater than the lower bound of the agent with the greatest value, and this requires more

deliberation for agents with high values. In Optimal the average number of deliberations

performed per-agent is 2.6, while the three agents with greatest value perform an average

253

of 5.8 deliberations each, and the single agent with the greatest value performs an average

of 10.2 deliberations.

The [AP] auction allows agents with high values to compute more accurate valuations,

and place more accurate bids, than agents with low values. Given a �xed budget for total

deliberation (because agents will not lose utility from participation in the auction) this

enhances the e�ciency of resource-allocations. In [PP] the ask price must be low enough

for agents to deliberate, and this can make it impossible to separate agents with high value

from agents with medium-high value. Agents with medium-high value might accept the

price, while agents with high value are not o�ered the item. In [AP] the ask-price increases

to the agents' initial lower bound on deliberation, and then continues to increase as agents

deliberate and bid sequentially. As the price increases it provides incentives for agents

with high values to continue to deliberate, while agents with lower values drop out of the

auction.

8.5 Limited Computation and Multiple Items

A second set of experiments considered limited computation and multiple items, and looked

at the ability to boost allocative e�ciency with bounded-rational compatible auction de-

sign, through the promotion of better metadeliberation. A useful BRC auction will maxi-

mize allocative e�ciency in a particular problem, given self-interested agents with limited

computation.

The results highlight the advantages of BRC auctions when agents have limited com-

putation and hard valuation problems, especially in multi-item allocation problems when

agents must compute the value of a number of di�erent items or bundles of items. For

example, the English auction achieves greater allocative e�ciency with less agent compu-

tation than a sealed-bid Vickrey auction.

I adopt a simple model of metadeliberation in a decentralized system, the lazy deliber-

ation and eager bidding (ldeb) model:

� Lazy sequential deliberation. Sequential (asynchronous) deliberation ensures that no

two agents deliberate at the same time. Agents are selected at random to either bid

or deliberate, and deliberate if the value from deliberation is greater than the value

from bidding at that moment.

254

� Eager bidding. Agents bid whenever the expected utility from bidding is greater than

the expected utility from deliberation, given the current approximate valuation of

the agent.

The sequential deliberation model, coupled with eager bidding and instant updates by

the auctioneer of the state of the auction (e.g. ask prices, current allocation) maximizes

the value of incremental deliberation by agents. Information about agents' re�ned values

is shared with other agents (via new prices, etc.) before any agent performs additional

deliberation.

No

Deliberation?

Yes

AA

1. Agents Bid 2. Update Prices
& Allocation

No

Yes

Quiescence? A

3. Deliberation

Terminate

Figure 8.9: The Lazy Deliberation and Eager Bidding agent participation model.

Figure 8.9 illustrates the ldeb model of agent participation. Steps (1), agents with

optimal bids place bids with the auctioneer, and (2), the auctioneer updates the state of

the auction, repeat until quiescence is reached. Then, (3) either (a) no agent wants to

deliberate and the auction terminates, or (b) one agent that prefers to deliberate than

have the auction terminate deliberates, and possibly bids. If the agent bids than ldeb

returns to step (1), otherwise (3) another agent deliberates or the auction terminates.

The lazy deliberation and eager bidding model provides a general model to compare

auction performance with bounded-rational agents. In this case the bid/deliberate deci-

sion is determined for agents with limited computation, but it could equally well apply to

agents with costly computation. The ldeb model is reasonable in a system with fast com-

munication and asynchronous updates, and provides a best-case measure of the allocative

e�ciency of auctions when agents have limited or costly computation.

255

8.5.1 Performance Metrics

I propose metrics bounded-e�ciency and bounded-computation to compare the performance

of di�erent auctions in a particular problem at design time. The metrics assume a model

of agent deliberation procedures, computational resources, and valuation problems.

Bounded-e�ciency and bounded-computation are de�ned as follows:

� Bounded-e�ciency Perf A(Cmax) of auction A is the allocative-e�ciency achieved

with agents that have limited computation budget Cmax, under model ldeb.

� Bounded-computation CompA(Cmax) of auction A is the average computation per-

formed by agents with computation budget Cmax, under model ldeb.

The bounded-e�ciency and bounded-computation metrics are computed in simulation

with the ldeb model and limited agent computation. The metrics are closely related to

the theoretical characterization of BRC auctions. For example, the amount of bounded

computation provides a direct measure of the bounded-rational compatibility of an auction:

Theorem 8.4 Auction A is bounded-rational compatible i� the bounded-computation

CompA(Cexact) < Cexact, where Cexact is the computation required by an agent to compute

exact values for all items.

In the Vickrey auction CompA(Cexact) = Cexact, while in the (BRC) English auction

CompA(Cexact) < Cexact because agents can bid optimally without exact values for items.

An asymptotic measure of the e�ciency of an auction mechanism is given by the

maximum bounded-e�ciency of an auction, Perf �A, computed as:

Perf �A = lim
C!1

Perf A(C)

In the English auction Perf �A = 100%, while in a posted-price market Perf �A < 100%.

8.5.2 Auction Models

The experiments study three di�erent allocation problems: the single-item problem, the

linear-additive problem, and the assignment problem. The linear-additive and assignment

problems are de�ned in the following way:

256

� Linear-additive problem. Allocate jGj items to maximize total value over all agents,

for agents with additive values for items. The value for bundle S � G of items

vi(S) =
P

j2S vi(j), with items that have values vi(j) = U(0; 10).

� Assignment problem. Allocate jGj items to maximize total value over all agents,

for agents that demand at most one item. The value for bundle S � G of items

vi(S) = maxj2S vi(j), with items that have values vi(j) = U(0; 10).

The auction models, i.e. Vickrey, ascending-price and posted-price market, are adapted

for each problem domain.

� Second-price sealed bid auction (Vickrey). In the additive-value multi-item problem

we allow agents to submit OR bids, e.g. (A; p1) or (B; p2) indicates that the agent

will pay up to p1 for item A and up to p2 for item B, for as many items as desired. To

compute the Vickrey outcome separate the bids across items, and run an individual

single-item Vickrey auction for each item. In the assignment problem we allow agents

to submit XOR bids, e.g. (A; p1) xor (B; p2), indicates that an agent will pay up to

p1 for A or up to p2 for item B but does not want both. The allocation and Vickrey

payments in this case can be computed by solving the problem with all agents and

then once without each agent in turn. A linear-program will solve the assignment

problem.

� Vickrey-minus. The Vickrey-minus auction is a Vickrey auction, except in an initial

round d agents are eliminated. The dropped agents perform no computation about

their values for items and place no bids.

� Simultaneous Ascending Price Auction. The simultaneous ascending-price auction

implements a separate ascending-price auction for each item. All auctions close

simultaneously when every individual auction has reached quiescence.

� Posted-price. I consider two simple generalizations of the posted-price market for the

additive and assignment multi-item problems. In both cases the auctioneer chooses

one price p, the same for all items. In the additive-value problem each item is taken

in turn and o�ered sequentially to agents, with agents selected at random. Items are

sold to the �rst agent to accept the price, and remain unsold if all agents reject the

257

price. In the assignment problem all unsold items, initially all items, are o�ered to

agents, with agents selected at random. Items are sold to the �rst agent to accept

the price, and remain unsold if all agents reject the price.

8.5.3 Agent Metadeliberation

The model of agent computation shares all the features of that in Section 8.4 except that

agents now have limited computation instead of costly computation. Each invocation of the

valuation procedure costs an agent a single unit, and each agent has a limited budget Cmax.

An agent selected to deliberate in the ldeb model deliberates if its expected utility from

deliberation is positive. Otherwise it places its optimal bid, given approximate information

about its values for di�erent items.

Agents do not deliberate past a minimal uncertainty on the value of each item, �min >

0, and once the uncertainty is within this minimal error the agent bids with an assumed

certain value at the mean of the �nal bounds. Similarly, when an agent exhausts its

deliberation budget it assumes mean values for each item.

In these problems an agent has multiple items to deliberate about. Agents compute

independent bounds on the value of each item j 2 G. In the additive-value model, this

implies that agent i has lower and upper bounds on a bundle S � G, with lower bound

vi(S) =
P

j2S vi(j) and upper bound vi(S) =
P

j2S vi(j). In the assignment model, this

implies that agent i has lower and upper bounds on a bundle S of vi(S) = maxj2S vi(j)

and vi(S) = maxj2S vi(j).

The following metadeliberation strategies are implemented for each market and allo-

cation problem:

� Sealed-bid. Every agent deliberates until it has accurate values for all items, or until

it has used all its computation budget. At each new deliberation step the next item

is selected at random.

� Price-based. (1) Additive-value problem. Every agent deliberates while the ask price

is between its bound on value for one or more items, selecting items at random.

The optimal bidding strategy is computed based on upper- and lower- bounds while

the deliberation budget is not exhausted, and otherwise based on the mean values.

(2) Assignment problem. An agent will bid for an item whenever the utility (value

258

- price) for one item dominates the utility for all other items, i.e. whenever the

minimum possible utility from some item j0 is at least the maximum possible utility

from all other items j 2 G, ui(j
0) = vi(j

0) � p(j0) � ui(j) = vi(j) � p(j) for all

j 6= j0. Otherwise, an agent deliberates about the value of an item that can possibly

maximize utility, selecting one of those items at random.

8.5.4 Experimental Results: Limited Computation

The results compare the bounded-e�ciency and bounded-computation of each auction

in single-item and multi-item allocation problems. In addition to computing bounded-

e�ciency and bounded-computation, I also compute the average number of times that the

�nal allocation is optimal. This can provide a more sensitive measure of the di�erence in

performance between two auctions than allocative e�ciency.

The number of agents are adjusted between 5 and 50, and the number of items �xed

at 10. Agents' values for individual items are independently and identically distributed

according to a uniform distribution between 0 and 10. The initial approximate value for

each agent for an item is (vi(j); vi(j)) = (0; 10), to represent complete uncertainty.

The deliberation parameter is � = 0:7, so that an agent reduces uncertainty in the value

of an item by 0:3� with a single deliberation step, where � is the di�erence between an

agent's upper and lower bound for the value of a particular item. The minimum uncertainty

�min = 0:5, and agents assume the approximation is accurate when vi(j) � vi(j) < 0:5

and take the value equal to the mean of the �nal bounds. Given this, the number of

deliberation steps required to compute an exact value for a single item is Cexact = 9.

The bid increment in the ascending-price auction is � = 0:1, and the Vickrey-minus

auction with between 10{50% dropped agents. The ask price in the posted-price market

is set to maximize bounded-e�ciency for a computation budget Cmax = 3, which is 33%

of Cexact.

The posted-price market requires that the auctioneer has distributional information

about agents' values, to set an ask price which maximizes performance on average. In

simulation the ask-price is set to maximize bounded-e�ciency for a particular agent com-

putation budget, with the same ask price used in all problem instances. The intention is to

provide a best-case analysis of the performance of a posted-price market. One can consider

an auctioneer that has participated in a marketplace for an extended period and has been

259

able to adjust its ask price to maximize performance.

Single-item Problem

Figures 8.10 (a) and (b) plot the bounded-e�ciency and bounded-computation for each

auction in the single-item allocation problem, with 20 agents. The results are averaged

over 100 trials. In the posted-price market p� = 7:3, and the Vickrey-minus results are

presented for 10 (i.e. 50%) eliminated agents. Figure 8.10 (c) plots bounded-e�ciency

versus bounded-computation, to compare the bounded-e�ciency against the computation

actually performed by agents.

0 2 4 6 8 10
70

75

80

85

90

95

100

Computation Budget C
max

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

English
Vickrey
Posted−price
Vickrey−minus

(a)

0 2 4 6 8 10
0

2

4

6

8

10

Computation Budget C
max

B
ou

nd
ed

−
co

m
pu

ta
tio

n

(b)

0 2 4 6 8 10
70

75

80

85

90

95

100

Bounded−computation

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

(c)

Figure 8.10: Single-item problem with 20 agents. (a) Bounded-e�ciency as comp budget in-
creases, (b) Bounded-computation as comp budget increases, (c) Bounded-e�ciency vs. bounded-
computation.

First, note that the bounded-e�ciency in the English, Vickrey and Vickrey-minus

auctions increases as Cmax increases, because agents perform more deliberation and place

more accurate bids. Paradoxically, the performance of the posted-price market actually

falls slightly for agents with large computation budgets because the price is set to maximize

performance for Cmax = 3. The agents in posted-price perform less average computation

as the available computation increases (see Figure 8.10 b). As Cmax increases the item is

more likely to be sold to an earlier agent, because the agents can compute more accurate

values. The same e�ect is observed for posted-price in the additive-value and assignment

problems, Figure 8.11 (a) and Figure 8.12 (a).

In this single item problem the English auction does not outperform the Vickrey with

agents that have the same computation budget, Figure 8.10 (a). An agent in the English

auction cannot use information about prices to make good allocation decisions; the only

decision that an agent can take is to avoid computation, because it only has a single

260

item for which to compute value. However, the English auction is e�ective in reducing

unnecessary agent computation, achieving 100% bounded-e�ciency with 49% less agent

computation than the Vickrey auction. This is illustrated in Figures 8.10 (b) and (c).

The posted-price market achieves around 90% bounded-e�ciency with as little as 8%

of the computation of the Vickrey auction, clearly demonstrating its bounded-rational

compatibility. Although the bounded-e�ciency of the Vickrey-minus auction is less than

for the Vickrey auction, it allows agents to perform 50% less computation on average

(Figure 8.10 b), because 50% of agents are eliminated.

I tested the performance of the auctions for di�erent numbers of agents, and found as

expected that the performance of the posted-price market and the Vickrey-minus auctions

increase with more agents.

Additive-value Problem

Figure 8.11 plots experimental results for the additive-value multi-item problem with 10

items. The performance of each auction is compared for 5, 20 and 50 agents, computed

over 80, 30 and 20 trials respectively. I set the posted price p� = 5:6; 8:4 and 8.8 for each

problem size, and drop 50% of agents in Vickrey-minus.

Figures 8.11 (a { c) plot the bounded-e�ciency, number of optimal allocations, and

bounded-computation for the problem with 20 agents. Figures 8.11 (d { f) plot bounded-

e�ciency versus bounded-computation for 5, 20 and 50 agents.

In this multi-item problem the English auction performs better than the Vickrey auc-

tion for agents with the same computation budget, as shown for example in Figure 8.11

(a) and (b). With 20 agents, for medium budgets, 30 � Cmax � 80, the bounded-e�ciency

is greater in the English auction, and the auction computes more optimal allocations. For

intermediate computation budgets the agents in the English auction can use prices to make

good decisions about how to allocate computational resources.

Furthermore, the agents in the English auction compute 100% e�cient allocations with

49% less computation than the agents in the Vickrey auction. This is illustrated in Figure

8.11 (c) and (e). For large computation budgets the agents in the English auction can

avoid computation altogether.

Figures 8.11 (d { f) show that as the number of agents increases from 5 to 50, the

agents in the English auction are able to avoid more computation on average, computing

261

0 20 40 60 80 100
70

75

80

85

90

95

100

Computation Budget C
max

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

English
Vickrey
Posted−price
Vickrey−minus

(a) Bounded-e�ciency.

0 20 40 60 80 100
0

20

40

60

80

100

Computation Budget C
max

O
pt

im
al

 A
llo

ca
tio

ns
 (

%
)

(b) Optimal allocations.

0 20 40 60 80 100
0

20

40

60

80

100

Computation Budget C
max

B
ou

nd
ed

−
co

m
pu

ta
tio

n

(c) Bounded-computation.

Performance vs. Computation budget with 20 agents.

0 20 40 60 80 100
70

75

80

85

90

95

100

Bounded−computation

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

English
Vickrey
Posted−price
Vickrey−minus

(d) 5 agents.

0 20 40 60 80 100
70

75

80

85

90

95

100

Bounded−computation

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

(e) 20 agents.

0 20 40 60 80 100
70

75

80

85

90

95

100

Bounded−computation

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

(f) 50 agents.

Bounded-e�ciency vs. Bounded-computation.

Figure 8.11: Additive-value problem.

100% e�cient allocations are computed with 31%, 49% and 58% less agent computation

than in the Vickrey auction.

Figures 8.11 (d { f) also show that the posted-price market performs especially well as

the number of agents increases, achieving bounded-e�ciency of 88%, 93% and 96% for 5,

20, and 50 agents, and with 20%, 10% and 5% of the computation in the Vickrey auction.

The Vickrey-minus auction eliminates 50% of the agents from the auction, and reduces

the average computation by 50%. For large numbers of agents it performs almost as well

as the Vickrey auction, with 97% bounded-e�ciency for 50 agents.

The number of optimal allocations does not reach 100% in either the Vickrey or English

auctions, see Figure 8.11 (b). This is because the agents do not re�ne their value for

items beyond uncertainty. This level of accuracy is su�cient for allocations which are

approximately 100% e�cient, but not su�cient for 100% optimal allocations. We see the

same e�ect for the assignment problem in Figure 8.12 (b).

262

Assignment Problem

Figure 8.12 plots experimental results for the assignment problem with 20 agents. The

results are averaged over 20 trials, with posted-price is p� = 6:5 and 10 dropped agents in

Vickrey-minus.

0 20 40 60 80 100
70

75

80

85

90

95

100

Computation Budget C
max

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

English
Vickrey
Posted−price
Vickrey−minus

(a)

0 20 40 60 80 100
0

20

40

60

80

100

Computation Budget C
max

O
pt

im
al

 A
llo

ca
tio

ns
 (

%
)

(b)

0 20 40 60 80 100
70

75

80

85

90

95

100

Bounded−computation

B
ou

nd
ed

−
ef

fic
ie

nc
y

(%
)

(c)

Figure 8.12: Assignment problem with 20 agents. (a) Bounded-e�ciency; (b) Optimal allocations;
(c) Bounded-e�ciency vs. bounded-computation.

The results are similar to in the additive-value allocation problem. The English auction

computes 100% e�cient allocations with 51% less computation than the Vickrey auction,

and has greater bounded-e�ciency for medium computation budgets because agents can

use prices to avoid computation on values for items with optimal bids, and perform com-

putation on the value of other items.

The Vickrey-minus auction has smaller bounded-e�ciency in this problem than in

the additive-value problem. Good allocations require careful coordination between agents

in the assignment problem, and dropping just one agent in the optimal allocation can

completely change the optimal allocation with the remaining agents. In comparison, good

allocations in the additive-value problem are more stable to removing agents.

The posted-price market performs well in this problem. Its bounded-e�ciency is 98%,

89% and 92% for 5, 10 and 20 agents, with 40%, 28% and 14% of the agent computation in

the Vickrey auction. This suggests that prices which support the optimal allocation tend

to be similar for all items.

8.5.5 Discussion

The experimental results demonstrate that the BRC auctions (ascending-price and posted-

price) can compute better allocations than non BRC auctions (the Vickrey auction) when

263

agents have limited computation budgets and must compute the values for multiple items.

In the additive-value and assignment problems the ascending-price auction has greater

bounded-e�ciency than the Vickrey auction for intermediate computation budgets, and

computes optimal allocations for signi�cantly less agent computation as agents' computa-

tion budgets increase. Agents can prune local computation based on information about

the values of other agents. The e�ect is particularly noticeable as the number of agents

increases, because more agents can avoid computation for incremental computation by any

one agent. In comparison, uninformed agents in the Vickrey auction can do no better than

select items on which to compute value at random. This is suboptimal when an agent has

multiple items to value.

Posted-price markets are useful in systems with many agents, at least if the auctioneer

is able to adjust the ask price over time to maximize performance. The posted-price

market provides a satis�cing approach. Prices can support good solutions with very little

computation, because items are often sold before they are o�ered to many agents and

prices allow agents to control computation.

The Vickrey-minus auction eliminates a fraction f of agents and reduces computation

by the same amount, f , can perform almost as well as the Vickrey auction in problems

with many agents and heavy competition between agents for items. The auction can

signi�cantly reduce agent computation for only a small reduction in allocative e�ciency.

Restricting participation might be useful in systems in which a single-round sealed-bid

auction is important, perhaps because communication is unreliable or expensive.

8.6 Related Work

In this section I briey survey releated work, �rst in resource-bounded reasoning and

metadeliberation, and then in auction theory.

8.6.1 Resource-Bounded Reasoning

Good [Goo71] and Simon [Sim76] provide early discussions on the explicit integration of

the costs of deliberation within a framework of agent computation. Later, Horvitz [Hor87]

introduced the concept of bounded-optimality, that an agent's actions maximize expected

utility given its bounds on computation, which is developed in [RSP93].

264

Horvitz [Hor87] and Boddy & Dean [BD89] introduced the idea of anytime algorithms

or exible computation, computational procedures that compute answers to hard problems

incrementally. Stochastic performance pro�les can be associated with anytime algorithms,

to allow an agent to reason about the expected value of further deliberation given a model of

the cost of further deliberation. In special cases they allow tractable models for normative

metadeliberation.

Sandholm [San93, San96] has considered the e�ect of agent bounded-rationality in

distributed task allocation problems. Sandholm [San93] implemented a ContractNet

[DS88] based system for a distributed task allocation problem, with agents that bid on the

basis of marginal values for tasks. The system, Traconet, allowed agents to bid with

approximate values and continue to deliberate during the auction.

In subsequent work Sandholm & Lesser [SL96] propose a framework for leveled com-

mitment contracts between agents, which allows agents to decommit from a contract. As

noted by the authors, this is useful with agents that have approximate values for tasks

and continue to re�ne their beliefs after striking initial contracts. For example, agents can

correct early mistakes as they continue to compute values for tasks. The technique allows

agents to integrate local deliberation with negotiation between many other agents.

Sandholm & Lesser [SL97] study a coalition formation problem, in which the problem

of computing the value of a coalition structure is complex because it requires determining

an optimal assignment of tasks to agents in the coalition. However, the authors do not

design a mechanism that allows approximate information about coalition values. Instead

it is assumed that agents predict value perfectly. There is no attempt to integrate the

formation and valuation problems.

Sandholm [San96] demonstrates that the strategy-proofness of an auction can break

when agents have approximate values for items and options to continue computation or

submit bids. An agent can make a better decision about whether or not to perform

further computation about the value of an item if it is well informed about the bids

from other agents. As discussed in section 8.2.4, this loss in strategy-proofness can help

to increase allocative-e�ciency so long as the auction is approximation-proof, such that

truth-revelation of approximate information is a dominant strategy for an agent.

Larson & Sandholm [LS01] model agent deliberation in an auction where agents make

explicit decisions about whether to deliberate about their own values or the values of other

265

agents. The authors determine equilibrium agent strategies and show that whether or not

agents engage in strong strategic deliberation, which is deliberating about the values of other

agents, depends on both the model of bounded-rationality and the auction mechanism.

Unlike my analysis Larson & Sandholm do not present any allocative-e�ciency comparisons

across auction designs with bounded-rational agents.

8.6.2 Auction Models With Costly Participation

A number of economic equilibrium models consider costs associated with participation in

an auction, for example costs of bid preparation and information acquisition. However,

almost all models assume that all participation decisions are made as a one-shot decision

before an auction starts, and the models cannot capture the important idea that agents

may continue to incur costs as an auction proceeds.

Matthews [Mat84] and Lee [Lee85] model auctions in which there is a cost of informa-

tion acquisition, but all agents have the same value for items. In Matthews [Mat84] agents

make a continuous decision about information acquisition, while in Lee [Lee85] agents

make a single-shot decision about whether or not to pay to become informed. Both au-

thors conclude that a seller that cares about revenue-maximization might want to restrict

participation, because it carries the total cost of agent participation. Similarly, Samuelson

[Sam85] shows that it can be useful to restrict participation when agents have participation

costs (for example bid preparation costs) and individual values for resources. The results

are consistent with my work on models of agent bounded-rationality within auctions, if

one views the cost of valuations as an external cost of participation.

Kolstad & Guzman [KG99] compute a rational expectations equilibrium for costly in-

formation acquisition in a �rst-price sealed-bid auction, in which agents choose the amount

of information to acquire within a cost-bene�t model. The information allows agents to

tender accurate bids in a construction project. Levin & Smith [LS94] compute mixed-

strategy rational-expectations entry strategies in �rst-price and second-price sealed-bid

auctions, for agents with costs of participation that make simultaneous entry decisions

based on initial estimates of value. The auctioneer can improve revenue by restricting

participation because agents adjust their bids to allow for costs of participation.

Stegeman [Ste96] derives a similar result for a private-value auction and agents with

one-time participation costs. Neither Levin & Smith or Stegeman can distinguish between

266

iterative and single-stage auctions because agents decide whether or not to enter the auction

before the auction starts.

In one of the few models to allow agents to enter sequentially, Ehrman & Peters [EP94]

compare the performance of di�erent auctions for agents with one-shot participation costs.

The authors show that a sequential posted-price auction is useful for high costs of partici-

pation because it controls participation, through controlling the number of agents that are

o�ered the item.

Similarly, in a model of a�liated values, in which the value of one agent for an item

is partially related to the value of other agents, Milgrom & Weber [MW82] show that

the English auction outperforms other auctions. The information during the auction, from

agents' bids and decisions to leave the auction, allow an agent that remains in the auction to

re�ne its estimate of value. Bids from other agents directly improve an agent's valuation. In

comparison, with hard valuation problems and an iterative approximation algorithm bids

from other agents provide information that improve an agent's metadeliberation. Milgrom

& Weber also show that providing expert appraisals always improves performance (the

\linkage principle"), which is analogous to providing free computational resources in a

model of bounded-rational agents and hard valuation.

Appendix

In this Appendix I derive the expected utility of deliberation for an agent in the posted-

price auction [PP], and present a method for computing the deliberation bounds (De�nition

8.10) which are used to determine when an agent should deliberate. Let v̂i denote the

current expected value (mean of bounds).

The expected utility of deliberation, ûi(D
m), for a sequence of m deliberations, is

computed as the estimated increase in utility minus the cost of deliberation:

ûi(D
m) = ûi(b

�
Dm)� ûi(b

�)�mC

where ûi(b
�) is the expected utility of the current optimal bid b�, and ûi(b

�
Dm) is the ex-

pected utility of the optimal bid b�Dm after deliberation. Both expected values are computed

with respect to the agent's belief about its expected value for the item after deliberation.8

8This is necessary to ensure that the utility of deliberation (before allowing for cost) is always positive.
Although deliberation might determine that the current optimal bid has less utility than the agent believed
before deliberation, the true utility is unchanged.

267

An agent will deliberate when ûi(Dm) > 0 for some m > 0.

We compute ûi(D
m) by case analysis on the ask price:

� [vi < p] No deliberation. ûi(D
m) = �mC for all m > 0 because the agent's optimal

bid is unchanged (reject), and ûi(b
�
Dm) = ûi(b

�) = 0.

� [vi < p < vi] See below.

� [p < vi] No deliberation. ûi(D
m) = �mC for all m > 0 because the agent's optimal

bid is unchanged (accept), and ûi(b
�
Dm) = ûi(b

�).

The case vi < p < vi can be divided into two subcases, v̂i < p < vi and vi < p < v̂i. We

solve subcase v̂i < p < vi. The solution is valid for the other subcase by symmetry. The

utility of deliberation depends on the distance between the ask price p and v̂i. Introduce

parameter, i, for the distance between p and v̂i:

i =
2

�i
jp� v̂ij

Parameter i is always between 0 and 1, and i = 0 when p = v̂i, and i = 1 when

p = vi, or p = vi. In this case the current optimal bid (without deliberation) is reject,

and ûi(D
m) can only be positive if the optimal bid after deliberation is accept, that is

when v̂i > p after deliberation. After a sequence of m deliberations the expected value is

distributed uniformly: v̂ = U(vi + �m�=2; vi � �m�=2), so the upper bound must be at

least p:

vi � �m�i=2 > p

Let m�(�;C) denote the minimum number of deliberations that can possibly have pos-

itive utility, computed (after substitution for) as:

m�(�;) =

�
log(1�)

log(�)

�

The estimated utility of an agent's optimal bid after m � m�(�;) deliberations is:

ûi(b
�
Dm) =

vi��m�=2Z
v̂i=p

(v̂i � p)

�(1� �m)
dv̂i

=
(vi � �m�i=2� p)2

2�i(1� �m)

=
�i(1� � �m)

8(1� �m)

268

because v̂i = U(vi + �m�i=2; vi � �m�i=2), and the agent will accept the price if v̂i > p,

for expected utility v̂i � p.

Putting everything together, because ûi(b
�) = 0 (the current optimal bid is reject),

the expected utility of deliberation in this case is:

ûi(D
m) =

8<
:

�i(1���m)2

8(1��m) �mC , if m � m�(�;)

�mC , otherwise.

Comparative statics con�rms our intuition about the value of deliberation to an agent.

Deliberation is more useful as: the price gets closer to an agent's expected value (because

it is more likely to change an agent's bid); the uncertainty increases; the deliberation

e�ectiveness increases; and the deliberation cost decreases.

� @ûi(D
m)=@ < 0

Proof. By contradiction. Assume @ûi(D
m)=@ = �2(1 � � �m)=8(1 � �m) is

positive, for some m � m�(�;). This implies that 1 � < �m. However, m �

m�(�;) i� 1� > �m, giving a contradiction

� @ûi(D
m)=@� > 0, when p = v̂i

Proof. With = 0, we have ûi(D
m) = �i(1 � �m)=8, and @ûi(D

m)=@�i = (1 �

�m)=8, positive because �m < 1

� @ûi(D
m)=@� < 0, when p = v̂i

Proof. With = 0, @ûi(D
m)=@� = �m��m�1=8, which is negative

� @ûi(D
m)=@C < 0

Proof. Trivial, because @ûi(D
m)=@C = �m

We can compute the deliberation bounds as the largest for which ûi(D
m) > 0 for

some m > 0. When no such exists, then di = di = v̂i and the agent will not deliberate

at all, for any ask price.

269

Chapter 9

Extended Example: Distributed Train

Scheduling

In this chapter I present a computational study of an auction-based method for decentral-

ized train scheduling.1 Auction methods are well suited to the natural information and

control structure of modern railroads. I assume separate network territories, with an au-

tonomous dispatch agent responsible for the ow of trains over each territory. Each train

is represented by a self-interested agent that bids for the right to travel across the network

from its source to destination, submitting bids to multiple dispatch agents along its route

as necessary.

The natural separation of track control across multiple dispatch agents precludes a

combinatorial auction for the entire problem. Instead each individual dispatcher runs an

auction for the right to travel across its territory, and trains must solve a coordination

problem to receive compatible entry and exit times across their complete route. Trains bid

for the right to enter and exit a territory at particular times. The dispatcher agents selects

bids to maximize revenue in each round. Feasibility requires that there is a safe schedule

for trains over the dispatcher's region given the bid times. As such, the scheduling problem

lies outside of the standard combinatorial allocation problem.

An additional di�culty in this domain is presented by the continuous time dimension to

a bid. Instead of imposing a �nite time discretization on the system I provide an expressive

bidding language that allows trains to bid for the right to enter and exit within ranges of

times (e.g. \arriving no later than 12 pm"). Prices are approximated with a �nite grid

of (entry, exit) pairs, and updated by dispatcher agents with iBundle-style price update

rules.

1This chapter draws a lot of material from Parkes & Ungar [PU01].

270

Computational results on a simple network with straight-forward best-response bidding

strategies demonstrate that the auction computes near-optimal system-wide schedules. In

addition, the method appears to have useful scaling properties, both with the number of

trains and with the number of dispatchers, and generates less extremal solutions than those

obtained using traditional centralized optimization techniques.

9.1 Introduction

Auction-based scheduling methods are well-suited to the decentralized information and

control structure of modern railroads. The ow of trains over a railroad network is not

controlled by a single centralized scheduler, but rather by the joint decisions of a number

of largely autonomous dispatcher agents, each responsible for a local track territory. In

addition, trains are operated by competing companies, each of which would prefer for their

trains to run on-schedule even if the trains of other companies must wait. Real train drivers

receive bonuses for on-line arrivals, and have private information about repair schedules,

etc.

Auction-based methods �ll two important needs. First, they respect the natural auton-

omy and private information within such a distributed system. Secondly, they can provide

incentives for trains to reveal truthful information (indirectly, via bids) about their values

for di�erent schedules. In a naive central implementation, a self-interested train with pri-

vate information about its time constraints, value, and costs, cannot be expected to act

truthfully, but rather to misrepresent this information if it will improve its own schedule

in the system-wide solution.

The train scheduling problem that I address in this chapter falls within a hierarchy of

interrelated train scheduling problems; see [KH95] for a recent survey. I assume that all

strategic planning, i.e. deciding on train routes and assigning values, times, and costs, is

already completed. The input is a set of trains, each with a de�ned routes over a track

network, a value for completing its journey, and an optimal departure and arrival time

and cost function for o�-schedule performance. The system-wide problem is to compute

a robust and safe schedule for the movement of trains over the network to maximize the

total cost-adjusted value over all trains.

In constructing an optimal schedule I depart from earlier models for automatic train

271

scheduling that used �xed-priority scheduling rules.2 These early models have been criti-

cized for a \hurry up and wait" approach [KHC91], with high priority trains moved down

lines as fast as possible, possibly causing problems and ine�ciencies at yards further down

the line. I build instead on the pacing models of Kraay et al. [KHC91], which control the

speed of trains in �nding optimal schedules.

The auction design has each dispatcher agent running a separate auction, for the right

to enter and exit its territory at particular times. There are necessarily multiple auctions,

to respect the autonomy of individual dispatchers to make local decisions. All auctions

terminate simultaneously, when there is quiescence across the system.

A train agent must bid for pairs of entry and exit times across multiple dispatchers

to complete its journey, which presents a coordination problem. The exit time from one

dispatcher must be early enough to allow the train to enter the next dispatcher on its

route at the required entry time. Iterative auctions (as opposed to sealed-bid auctions)

allow trains to adjust towards a good solution, and should help to solve this coordination

problem. In addition, trains can submit bids for sets of times, i.e. \I want to enter your

territory at any time after 10 am, but leave no later than 1.30 pm, and my maximum

travel speed is 100 km/hr." This constraint-based bidding language is a concise way to

handle the continuous time attribute of a bid without imposing an explicit discretization

on time.

In each round the auctioneer computes the set of bids that maximize revenue, subject

to the constraint that there must be a safe schedule for trains given the entry and exit times

in accepted bids. The winner-determination problem is solved without a discretization on

time, formulated as a mixed integer program.

Although there is no explicit discretization on time imposed on agents' bids, the prices

in the auction are maintained over a discrete price lattice. The lattice maintains prices on

pairs of entry and exit times, and prices are computed on-the-y for any pair of entry-exit

times based on the closest lattice points. The discrete price lattice does not restrict the

times that can receive bids, but rather provides an approximate method to maintain prices.

Prices are increased across rounds with an iBundle style price-update, i.e. based on the

bid prices from unsuccessful agents.

2Priority-based dispatching is still used in most North American railroads; high priority trains are
generally not delayed even if they are running early, while low priority trains are delayed even if they are
running late [Hal93].

272

Experimental results compare the quality of schedules computed in the auction-based

method with schedules computed under a traditional centralized optimization approach. In

order to make a fair computational comparison across the methods, the global scheduling

problem and the winner-determination problems are both formulated as (closely related)

mixed integer programs, and solved with CPLEX| a standard mixed integer program-

ming software package. The experiments compare centralized solutions (with complete

information about agents' preferences) with auction-based solutions, on a set of stochastic

problem instances.

In assessing the performance of the auction-based method I make a reasonable assump-

tion about agent bidding strategies, i.e. that agents follow a myopic best-response bidding

strategy, and submit bids to maximize value given the current ask prices.

The computational results demonstrate that the auction-based method can generate

better schedules than the centralized method, and in less time. Moreover, the auction-

based method appears to have good scaling properties with the number of agents and

dispatchers, at least for the auction parameters selected in the tests (e.g. price update

speed, time in each round to solve winner-determination, etc.)

Further experimentation is required to make a full assessment of the auction-based

method's computational properties. I expect that the performance of the simple myopic

bidding strategy might begin to fall-o� as the number of dispatchers continues to increase,

as agents' bid coordination problem becomes more di�cult. The myopic bidding approach,

in which agents bid across all dispatchers simultaneously in response to current prices can

leave agents \exposed" to times that they cannot �t with times from other dispatchers.

Agents would require alternative more sophisticated bidding strategies in these cases, to

avoid this exposure problem.

The outline of the rest of this chapter is as follows. In Section 9.2 I de�ne the global

train-scheduling problem, and formulate a mixed-integer program model under assump-

tions of centralized information about the local values and cost functions of each train. In

Section 9.3 I describe the key elements of the auction-based solution: the bidding language,

price-updates, winner-determination, termination conditions, and bidding rules. Section

9.4 formulates the bidding problem for a train agent in the auction as a shortest-path

problem, which is solved using dynamic-programming. Finally, Section 9.5 presents exper-

imental results over a set of stochastic train scheduling problems.

273

9.2 The Train Scheduling Problem

Each train is assumed to have a source and destination node, a value to complete its

journey, and a cost for o�-time departure and arrival. The global objective is to �nd a safe

schedule that maximizes the total net value, the total value minus cost of delay across all

trains that run. I introduce a novel mixed-integer programming (MIP) formulation that

allows trains to be dropped when necessary, i.e. to allow other high-valued trains to run

on-time. A very similar formulation is adopted for the winner-determination problem in

the auction (see the next section).

9.2.1 Track Network: Topology and Constraints

In modeling the train scheduling problem I make a number of simplifying assumptions,

both about the network structure and about the types of interactions that are allowed

between trains.

1 2 3 4 5 6 7 8

double track
(siding)

single track
yard

east

Figure 9.1: The train scheduling problem.

The key assumption is that of a single line operation| a sequence of single-track,

double-track, or yard sections, separated by nodes. The structure is illustrated in Figure

9.1. The single-line operation simpli�es the speci�cation of the global train-scheduling

problem and the winner-determination problem in the auction-based method. The sin-

gle line assumption also allows train agents to restrict their attention to tradeo�s across

multiple temporally di�erent routes, ignoring alternate paths over the network. The same

assumption is made across much of the train scheduling literature, for example in Kraay

et al. [KHC91], Kraay & Harker [KH95], and Hallowell [Hal93]. Section 9.7 discusses a

possible extension of this auction-based method to a multiple line network.

274

An interaction between a pair of trains may be a meet or a pass, and is associated with

a network location and a time. A meet is when two trains traveling in opposite directions

are at the same location at the same time. A pass is when two trains traveling in the same

direction are at the same location at the same time.

The feasibility of a schedule for trains across a network is determined by the safety of

meets and passes. This depends on the type of section:

(S1) Any number of trains can meet and pass in yards.

(S2) Any number of trains can meet on double-track sections, but no trains can pass.

(S3) No trains can meet or pass on a single-track section.

In addition, a feasible schedule must maintain a minimum separation distance, �safety,

between trains on single and double track sections. This minimum separation distance

requirement is waived for trains in yards (but not on exit into neighboring sections).

Finally, no train can exceed either its maximum speed or the maximum safe speed on any

section.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

Time

D
is

ta
nc

e
fr

om
 W

es
t Y

ar
d

West Yard

East Yard

T1 T2 T3T4 T5T6 T7T8 T9 T10

S

S

Y

Figure 9.2: A safe train schedule.

Allowing trains to meet but not pass on double-track sections reduces problem-solving

complexity because there are many ways for two trains to cross in the same direction

but only a few ways for two trains to cross in opposite directions. Similarly, modeling

in�nite-capacity yards and double-track sections (sidings) is a simplifying assumption.

275

Figure 9.2 illustrates a safe train schedule for a network with the track topology il-

lustrated in Figure 9.1. The exact parameters in this example are as described in the

experimental results in Section 9.5; in this case with ten trains of which trains 1, 2, 4, 5, 6,

8, 9 run East. The sidings (or double-track sections) in this network are illustrated with

an \S" on the right of the plot, the yard with a \Y". Notice that trains meet at sidings

and at the yard, but no trains meet or pass on the single track sections. In this example no

trains pass in the yard, but this is not precluded in the model. Notice also that the trains

remain the safety distance apart, and are expected to maintain constant speeds within

each section.

9.2.2 Schedules

A schedule speci�es the network position across time for each train in the system. It is

su�cient to consider schedules in which trains travel at a constant speed with each section

(the speed can vary from train to train and from section to section), by the following result:

Lemma 9.1 Any feasible schedule can be reduced to a feasible schedule where each train

travels at a constant speed within each track section.

The transformation that maintains feasibility is to hold times at nodes between track

sections constant, and smooth the speed of each train between these points. The proof is

quite straightforward| just show that the number of meets are the same for any speed

pro�le consistent with the entry and exit points, and that the number of passes is (weakly)

less when trains travel at a constant speed. I choose to ignore constraints on acceleration

across sections.

This observation reduces the size of the search space in the scheduling problem, and

simpli�es the problem of �nding optimal times for trains at the ends of each section.

9.2.3 A Mixed Integer Programming Formulation

Let I denote the set of trains and N denote the set of nodes between track sections. It

is useful to view the network in a west{east orientation, with nodes ordered such that

j > k for j 2 N further east than k 2 N . The trains are divided into a set east � I

that travel west-to-east and west that travel east-to-west. The nodes are labeled with

276

the type of section to the east, e.g. the section between node j and j + 1 is a yard if

j 2 yard , single-track if j 2 single, and double-track otherwise. The minimum travel time

for train i between node j and j + 1, its free-running time r(i; j), is de�ned by the length

of the section, the maximum speed of the train, and the maximum safe speed over the

section. This is the time to run from west-to-east for a train i 2 east , and from east-to-

west otherwise. Later, when I formulate the MIP for winner-determination I will leave this

information implicit in the bidding language to simplify the presentation.

Each train i 2 I has a source node and optimal departure time, (s(i); t�s (i)), a destina-

tion node and optimal arrival time, (d(i); t�d(i)), a value Vi � 0 for completing its journey,

and a cost penalty, cost i(ts; td), for o�-schedule performance. Following [Hal93] we assume

a linear additive cost penalty for each train. Given actual source ts and destination td

times for train i, the cost for o�-schedule performance is computed as:

cost i(ts; td) = Ci j ts � t�s (i)j +Ci j td � t�d(i)j

where Ci > 0 is train i's unit cost for o�-schedule performance.

This cost function assumes that performance is measured only on the basis of a train's

time at its source and destination nodes. This is reasonable for a freight train with a single

shipment to make, but less appropriate for a train that must make intermediate scheduled

stops.

Given that it is su�cient to consider only trains that travel at a constant speed across

each section (Lemma 9.1), we can specify a schedule with the time, t(i; j), of each train i

at node j. A train can be dropped from the schedule. Let y(i) 2 f0; 1g equal 1 if train i

is not dropped from the schedule, and 0 otherwise. Let �source(i) and �dest(i) denote the

absolute error in departure and arrival time for train i at source node s(i) and destination

node d(i). The system-wide objective is to maximize total value minus cost:

max
X
i

Viy(i)�
X
i

Ci�source(i) �
X
i

Ci�dest(i)

In congested networks with high cost penalties it can be better to drop low value trains

in allow more trains to run on schedule and avoid cost penalties. Dropped trains neither

achieve any value nor incur any cost penalties. This is achieved by a smart formulation of

the method to compute arrival and destination errors, �source(i) and �dest(i).

The constraints make sure schedules are feasible, i.e. that a schedule is safe, trains are

separated, and speed constraints are not violated. In the following (\the big M technique"),

277

M is a large positive number, used to make sure that dropped trains do not restrict

schedules for other trains, to allow dropped trains to incur zero penalties, and to implement

disjunctive logic constraints as a mixed-integer program.

Constraints (1a) and (1b) set the errors �source(i) and �dest(i) for train i:

�source(i) � jt(i; s(i)) � t�s (i)j �M(1� y(i)) 8i 2 I (1a)

�dest(i) � jt(i; d(i)) � t�d(i)j �M(1� y(i)) 8i 2 I (1b)

The absolute value constraint can be implemented by writing two greater than con-

straints, one for the positive term and one for the negative term.

Notice that if y(i) = 0 for train i then �(i) = 0 is a solution, and we count no penalty

for dropped trains. This avoids requiring non-linear terms, such as Ci�source(i)y(i), in the

objective function.

Constraints (2a) and (2b) ensure consistency of travel times for trains, given free run-

ning time r(i; j) for train i between node j and j +1. Again, neither constraint is binding

for a dropped train by the \big M" formulation.

t(i; j + 1) � t(i; j) + r(i; j)�M(1� y(i)) 8i 2 east ;8j 2 N (2a)

t(i; j + 1) � t(i; j) � r(i; j) +M(1� y(i)) 8i 2 west ;8j 2 N (2b)

The zero-one variables gap(i ; i 0; j) make sure that trains are a safe distance apart at

all times; gap(i ; i 0 ; j) = 1 i� train i trails train i0 by at least time safety at node j. The

\big M" technique is used to constrain a train to be either more than safety ahead or more

than safety behind another train. Note that constraint (3b) is true whenever at least one

of the trains is dropped, so that the times on dropped trains are not constrained.

t(i; j) � t(i0; j) +Mgap(i; i0; j) � safety ;8j 2 N ;8i; i0 2 I (3a)

t(i0; j) � t(i; j) +M(1� gap(i; i0; j)) +M(2� y(i)� y(i0))

� safety ;8j 2 N ;8i; i0 2 I (3b)

The zero-one variables after (i ; i 0; j) indicate whether train i arrives at node j after

train i0; after(i ; i 0; j) = 1 if train i is after train i0 at node j. This indicator variable is set

by constraints (4a) and (4b) to be consistent with the times de�ned by variables t(i; i0; j).

A dropped train can assume the same ordering with respect to all trains, allowing them

278

to trivially satisfy (4c) and (4d).

t(i; j) � t(i0; j) �Mafter (i ; i 0; j) ;8j 2 N ;8i ; i 0 2 I (4a)

t(i0; j)� t(i; j) �M(2� y(i)� y(i0)) �

M(1� after (i ; i 0; j)) ;8j 2 N ;8i ; i 0 2 I (4b)

Constraint (4c) captures the restriction that trains traveling in the same direction cannot

pass on sidings or single-track sections. East-bound train i must remain after east-bound

train i0 at node j if it is behind train i at node j + 1 and the section between j and j + 1

is not a yard. Similarly for west-bound trains.

after(i ; i 0; j) =after (i ; i 0; j + 1)

8j =2 yard ;8i ; i 0 2 east ;8i ; i 0 2 west (4c)

Finally, constraint (4d) captures the restriction that trains traveling in opposite direc-

tions cannot meet on single-track sections. If east-bound train i is after west-bound train

i0 at node j it must also have followed west-bound train i0 at node j + 1 for single-track

sections between j and j+1, otherwise the trains were on the same single-track section at

the same time and traveling in opposite directions.

after(i ; i 0; j) =after (i ; i 0; j + 1)

8j 2 single;8i 2 east ;8i0 2 west (4d)

Taken together with the objective function, the constraints specify a mixed-integer

program to solve the centralized train scheduling problem. The optimal solution speci�es

which trains are dropped (with y(i) = 0) and the times t(i; j) for other trains at each node

j in the network.

9.3 An Auction-Based Solution

In introducing the auction-based solution, let us assume that the track network is divided

across dispatcher territories, with each dispatcher responsible for the local ow of trains.

A separate dispatcher agent auctions the right to travel across each territory. Each train

is associated with a train agent that places bids for the right to travel across a territory,

and coordinates times across dispatchers on its route to achieve a good schedule. The

279

dispatchers have information about the local network topology, i.e. the location of the

double-track network sections and the location of the yards.

dispatcher 1 dispatcher 2 dispatcher 3

yardyard

Figure 9.3: The dispatcher territory structure.

The decentralized problem structure is illustrated in Figure 9.3. I assume that dispatch

territories are separated by neutral yards. This allows the safety constraints on meets and

passes to be decoupled across dispatch territories because yards have in�nite capacity and

allow arbitrary meets and passes. The dispatcher on each side of a connecting yard must

simply ensure that trains remain a safety distance apart as they enter and exit its territory.

9.3.1 Auction Innovations

The structure of the train scheduling problem requires a number of innovations in auction

design:

(1) A constraint-based bidding language to allow train agents to submit bids with contin-

uous time attributes, and represent a choice set over di�erent pairs of times.

(2) An approximate representation of a continuous and non-linear price space. Prices are

maintained over a discrete lattice with quotes computed on-the-y for any pair of times.

(3) An integer-programming method to compute feasible train schedules given entry and

exit times in bids, and check conicts across bids.

As noted earlier, there are multiple independent auctions, one for each dispatcher

territory. This respects the decision autonomy of each dispatcher. Given that trains must

receive compatible entry-exit times across multiple dispatchers, the auctions are necessarily

iterative to allow train agents to coordinate their bids across multiple auctions. All auctions

close simultaneously when bid quiescence is detected across the system.

280

9.3.2 Dispatcher Auction

Each dispatcher runs an ascending-price auction, maintaining ask prices for (departure,

arrival) times at pairs of nodes, and a provisional schedule. The ask price is a lower bound

on an acceptable bid price. A provisional schedule is computed in each round to maximize

revenue, based on bids from train agents. Train agents can bid for entry and exit times in

a territory, while the dispatcher agents have the exibility to decide exactly how a train

will run, so long as the schedule is consistent with those times. In the following I describe

a single dispatcher auction in some detail.

Bidding Language

The bidding language is quite expressive. A train can bid to enter a territory at time

tentry and depart at time texit, and state whether each time is �xed or exible. With a

�xed time the train must enter (or exit) the territory at that exact time. With a exible

entry time, any time after tentry is acceptable; with a exible exit time, any time before

texit is acceptable (subject to constraints on a train's minimal travel time). Finally, a train

agent can submit multiple bids to the same dispatcher, coupled with an \exclusive-or"

constraint, to state that the dispatcher can accept any one pair of times.

Let K denote the set of all bids received by a dispatcher, and �(i) � K the bids received

from agent i. A set of bids from agent i in a particular round are all associated with a

single entry node, nentry(i), a single exit node nexit(i), and true/false values �xed entry and

�xed exit to state whether the times are �xed or exible. Each individual bid k 2 �(i)

speci�es an entry time, tentry(k), an exit time texit(k), and a bid price p(k) � 0.

Example:

Bid (5; 10; $100) xor (7; 12; $150) for entry node A and exit node B, with �xed entry but

:�xed exit, states that the train agent is willing to pay up to $100 to enter at A at time 5

and depart before time 10, or up to $150 to enter at time 7 and depart before time 12.

To keep the winner-determination problem tractable I also �nd it useful to restrict the

number of bids that an agent can place in any round.3

3Experimentally, Bmax = 5 appears to work well in many problems.

281

Winner-determination

The auction has multiple rounds. In each round the dispatcher solves the winner-

determination problem, computing a provisional allocation to maximize revenue based on

bids. The provisional allocation must be consistent with some feasible schedule.

The winner determination problem is formulated as a mixed-integer program that is

very similar in form to that for the centralized train scheduling problem. However, it

tends to be much easier to solve because the problem is restricted to the space of solutions

compatible with the bids submitted by agents and the problem is for only a single territory.

As in the centralized problem, it is not necessary to select a bid from every train agent

even if there is a feasible solution involving every agent. Sometimes a schedule with fewer

agents will generate more revenue.

Borrowing as much from the earlier global MIP formulation (see Section 9.2.3) as

possible, we introduce new zero-one variables x(i; k) 2 f0; 1g for agent i 2 I and bid

k 2 �(i), where �(i) is the set of bids from agent i, with x(i; k) = 1 i� agent i's bid k is in

the provisional allocation. The linear objective function is:

max
X
i2I

X
k2�(i)

p(k)x(i; k)

i.e. accept bids to maximize total revenue where p(k) denotes the bid price of bid k from

agent i.

Constraints (2a, 2b, 3a, 3b, 4a, 4b, 4c, 4d) are retained from the MIP of the global

train scheduling problem, with train times computed on the basis of bids from agents.

Allowing for exible bid times, we write:

t(i; s(i)) =
X

k2�(i)

tentry(k)x(i; k) , if �xed entry(i) (1a')

t(i; s(i)) �
X

k2�(i)

tentry(k)x(i; k) , otherwise

t(i; d(i)) =
X

k2�(i)

texit(k)x(i; k) , if �xed exit(i) (1b')

t(i; d(i)) �
X

k2�(i)

texit(k)x(i; k) , otherwise

X
k2�(i)

x(i; k) � y(i) (1c')

282

for every train i 2 I.

The source node s(i) is the entry node nentry(i), and the destination node d(i) is the

exit node, nexit(i). Constraints (1a') constrain the schedule for train i to an entry time

consistent with its bid, similarly for (1b') for its exit time. Constraint (1c') ensures that

at most one bid is accepted per agent (exclusive-or bid constraints), and that no bids are

accepted from dropped trains.

Price Updates

Each dispatcher agent maintains ask prices on a discrete price lattice, but without imposing

a discretization on the times that a train agent can bid. Ask prices represent a lower-bound

on the price that a train agent must bid to have any chance of success in the auction, but do

not guarantee that a bid will be successful. The lattice structure is used to approximate

a continuous non-linear price space. A smaller unit of discretization leads to a higher

computational cost and slower convergence but perhaps to a higher schedule quality. An

alternative price structure might explicitly maintain unsuccessful bids and compute ask

prices on-the-y exactly.

Dispatcher agents provide a price-query function for train agents, to allow train agents

to compute the ask price for any pair of times on-the-y. Given a bid for a pair of �xed

times the ask price is determined as the price of the nearest point in the lattice. Given a

bid containing one or more exible times, the ask price is determined as the minimal price

over all lattice points with consistent times. The interpretation of consistent is the natural

one, a lattice point is consistent with a bid if it satis�es all constraints on entry and exit

times.

The minimal operator, used to compute ask prices across sets of lattice-times consistent

with exible bids, provides useful price semantics:

p(k1) � p(k2); if k1 � k2

for bids k1 and k2 if all times consistent with k1 are also consistent with k2, and the

bids have both exible entry and exit times. This follows immediately from the minimal

operator. The minimal price over the set of times consistent with k2 can be no larger than

the minimal price over the set of times consistent with k1, because the set of consistent

times for k1 is a subset of the times for k2. The relationship allows a train agent to prune

its local search when considering di�erent times in its best-response strategy.

283

Note, however, that it is not necessarily the case that p(k1) � p(k2) for a pair of �xed

times k1 and k2 with the entry time of k1 later than k2 and the exit time of k1 earlier

than k2; for example, bid k2 might hit a safety conict with an accepted bid from another

agent, which bid k1 might escape. In comparison, a exible bid, k2, would escape the

safety problem whenever k1 escaped the safety problem.

An unsuccessful bid increases the price on its nearest lattice point, or multiple consistent

lattice points in the case of an unsuccessful constraint-based bid. For each bid in an

unsuccessful exclusive-or set of bids we update the ask price on all grid points consistent

with the bid times, as follows:

(a) if the bid is for �xed times then �nd the point on the lattice closest to the bid,

otherwise �nd the set of consistent points,

(b) update the ask price at that lattice point to � above the unsuccessful bid price, or

on all lattice points in the set, where � > 0 is the minimal bid-increment in the auction.

The structure of this price-update is motivated by price updates in iBundle (Chapters

4{7), which increases prices on bundles of items by � in response to unsuccessful exclusive-

or bids.

The price is also increased because of bids submitted by train agents in the provisional

allocation that receive the same pair of times from the last round of the auction but are

trying to shift away from that allocation. I allow a train agent to indicate when it is merely

repeating a bid because that is required under the auction rules, rather than because it

really wants that pair of times.

Finally, an \in�nite" value is used to represent the case that the safety condition will

be violated with any bid close to a particular grid point. This is used as items are sold to

train agents at particular times (under the continuous clearing rules, see below), to move

a train's bid focus away from a time that cannot be accepted at any price.

Bidding Rules

The bidding rules are quite simple: (1) an agent must bid at least the ask price for a pair

of times, computed as appropriate for the exible/�xed attributes of the bid; and (2) an

agent must repeat a bid that supports a pair of times it receives in the current provisional

allocation. The two rules ensure that progress is made across rounds of the auction towards

a solution.

284

Clearing and Termination Rules

Every dispatcher auction terminates simultaneously when no new bids are placed by any

train agent to any dispatcher agent. In addition, the auctions have a continuous clearing

rule, in which a dispatcher commits to a particular pair of times for an agent that has

received the times in the provisional allocation for more than a �xed number of successive

rounds, Tclear.

Continuous clearing helps to reduce bidding complexity, committing trains to particular

times (although they can continue to bid for alternate times at an additional cost), and

focusing their search. A countervailing force is that early commits can also lock-in a

particular pair of times too quickly when continued search might �nd a better solution.

The MIP formulation for winner-determination is easily adapted to include committed

times. These times can be represented with bids from a dummy agent, with acceptance of

those bids forced within the MIP solution method.4

Speeding-up Winner-Determination

One useful technique to speed-up winner-determination in iterative auctions is to maintain

solutions from previous rounds in a cache, indexed against the bids that were submitted.

The cache can be checked for a solution before solving the mixed integer program.

A hit in the cache depends on the bid times and �xed/exible attributes in agents'

bids. We need a couple of de�nitions.

Definition 9.1 [less exible] A bid k1 for a pair of times at a price is weakly less exible

than another bid k2 if all times that are consistent with bid k1 are also consistent with bid

k2, and if the price on bid k1 is no greater than the price on bid k2.

In other words, a bid k1 which is less exible than another bid k2 will never be accepted

in the provisional allocation when bid k2 is not accepted.

Definition 9.2 [supports] A set of bids support a bid k0 if one or more of the bids in

the set is (weakly) more exible than bid k0.

In otherwords, the agent that submitted the set of bids would have been happy to

submit a successful bid k0.

4The exibility of mixed-integer program formulations of winner-determination problems was previously
noted by Andersson et al. [ATY00].

285

Given this, a set of bids received by a dispatcher match a set of cached bids if there is

some permutation of the new bids with a set of bids in the cache that satis�es:

(1) if bids from agent i and are successful in the cached solution, then the new bids

from i must support the time corresponding to the successful bid, and be (weakly) less

exible than the other times in the cached bid.

(2) if bids from agent i are unsuccessful in the cached solution, then the new bids from

i must all be (weakly) less exible than the old bids.

It is quite straightforward to understand why this cached solution is an optimal solution

with the new bids. Basically, no agents that are in the provisional allocation in the cached

solution submitted stronger bids on anything except the successful bid, and no unsuccessful

agents submit any stronger bids.

As a special case, a match also occurs when the new bids from every agent supports a

successful bid in a cached solution, and the prices on all the rejected bids from each agent

are no greater than on the accepted bids. In this case the rejected bids from an agent do

not need to be less exible than the other times in the cached bid.

9.4 The Bidding Problem

Recall that each train i 2 I has value Vi to complete its journey, subject to a cost

cost i(ts; td) for o�-schedule performance, given optimal source and destination times t�s (i)

and t�d(i) and actual times ts and td. The bidding problem is to purchase the right to travel

across the network from source to destination at minimal total cost, where cost is the sum

of the price it pays in each auction and the cost of o�-schedule performance. In addition,

if this cost is greater than the train's value then it would prefer to drop out completely.

The bidding problem is di�cult for two main reasons:

(a) coordination: a train agent must bid with multiple dispatchers when its route spans

more than one territory.

(b) dynamic pricing: a train agent cannot know the prices at which the auction will clear.

Each train agent is assumed to follow a myopic best-response bidding strategy, bidding

for the schedule that minimizes total cost given the current ask prices. Myopic best-

response provides a good starting point to analyze the performance of the auction method.

It would be interesting, but probably quite di�cult, to also consider the e�ect of fully

286

strategic agent behavior on the quality of scheduling solutions. It is possible that a train

agent can achieve a better outcome by anticipating the bids of other agents and considering

the e�ect of current bids on future prices.

9.4.1 Myopic Best-response Bidding Strategy

The myopic best-response bidding problem can be formulated as a shortest weighted path

problem. The edges in the graph correspond to pairs of entry-exit times at each dispatcher,

�xed or exible as appropriate. Edges are connected if the exit time on one edge is

compatible with the entry time on the next edge. The compatibility requirement here

simply requires that there is enough time for the train to leave the �rst dispatcher territory

at the exit time, travel across the connecting yard, and enter the second dispatcher territory

at the entry time. The cost associated with an edge represents the sum of the current ask

price, and any cost for o�-schedule arrival or departure if the dispatcher is at the source

or destination of a train's route.

21

[10,20]: $100 (30,50]:$120

[25,45]:$90

[40,55]:$100[10,35):$60

[10,40]:$50

3

direction of travel

Figure 9.4: The myopic best-response bidding problem.

Figure 9.4 illustrates a partially-completed graph, with nodes 1, 2 and 3 representing

the yard to the West of dispatcher d1, between d1 and d2, and to the East of d2 respectively.

For example, the times on the edges between yards 1 and 2 denote entry-exit times for

dispatcher d1, together with the ask price for those times, summed with any additional cost

of early/late departure if dispatcher d1 is also the �rst dispatcher in the train's itinerary.

287

Formulation

A train's best-response, taking current prices as �xed, is to select a path from source to

destination with minimal total cost (or no path at all in the case that the minimal cost is

greater than its value for completing the journey).

Given a set of dispatchers, D, let (d1; : : : ; dn) represent the dispatchers on the route

of a particular train. Let C�
1!n(t) denote the minimal total cost to enter dispatcher d1 no

earlier than time t, travel from d1 to dn, and exit from dispatcher dn. This cost represents

the cost of the best schedule, given current ask prices and the train's costs for o�-schedule

performance. The solution to C� can be computed as a recursive relationship:

C�
j!n(t) =

8<
:

min
�>t

�
cj(t; �) + C�

(j+1)!n(�)
�

, if j < n

min
�>t

cj(t; �) , if j = n

where cj(t1; t2) is the cost to enter dispatcher j at time t1 (or no earlier than t1 in the case

of a exible bid time), and exit dispatcher j at time t2 (or no later than t2 in the case of

a exible bid time), computed as the sum of the price for times and any additional cost

penalty for o�-schedule performance if dispatcher j is at the end of the train's route.

The price is the ask-price if the agent is not yet committed to the good (i.e. it has not

cleared), or zero otherwise (in which case the price represents a sunk cost). Trains treat

o�ered items in the same way as any other item, making an assumption that it can move

away from such an item if necessary without becoming exposed.

Trains consider exible bid times in the case of non-extremal nodes, but �xed times at

source or destination because a cost is incurred for any deviation from optimal departure

and arrival times. The intermediate time � represents the time to cross from dispatcher

dj to dj+1. In this description I have �nessed the detail about the time to travel across

yards between dispatch territories, which is simply incorporated into the recursion.

Dynamic Programming

Dynamic programming solves this shortest-path formulation of the myopic best-response

bidding problem, computing the best solution over a �xed set of time points selected by

the train agent, and working from dispatcher dn to d1, pruning any dominated solutions

(for example higher cost edges with earlier entry times). In related work, Boutilier et

288

al. [BGS99] proposed a dynamic programming algorithm for agent bidding strategies in

sequential auctions with complementarities.

We implement the following algorithm:

(1) determine the maximal compatible set of current o�ers and sold items, that leave enough

time for travel across the dispatch territories.

(2) for each maximal set, use dynamic programming to determine minimal-cost routes

in the gaps of the schedule. The gaps are contiguous sequences of dispatchers for which

the train is not currently holding a suitable pair of entry and exit times. Flexible time

constraints are selected for all entry and exit times except those representing a train's

initial departure or arrival time, at which nodes the train is not willing to be exible.

(3) �ll the gaps and select the solution with the lowest total cost (including the cost for

current o�ers/sold items used in the solution).

Compatible o�ers allow the train to complete its journey, including the time to travel

across dispatchers and across connecting yards, consistent with all entry and exit times in

the o�ers. A maximal set of compatible o�ers is a set of compatible o�ers with maximal

cardinality, given the current o�ers and the train's free-running travel times.

Whenever a gap occurs at the start or end dispatcher on a train's route the train agent

also considers tradeo�s between bid price and the cost of o�-schedule performance for

o�-time departure and/or arrival times.

This method includes a bias in favor of solutions compatible with times the train

receives in the current provisional allocations. This is reasonable, given that the ask prices

represent a lower-bound on what might be a successful bid price but provide no guarantees

that a bid will actually succeed. That an agent currently receives a pair of times conveys

useful information about the �t of those times with bids from other agents.

Finally, a train will submit as many bids that are consistent with its selected solution as

possible, making use of multiple exclusive-or bids with individual dispatchers, and using

constraints on times to submit multiple bids without compromising the solution. This

increases its own likelihood of success, and also helps the dispatchers to coordinate joint

search across multiple agents.

289

9.5 Experimental Results

The performance of the auction-based solution is compared with a centralized solution in

networks consisting of linear chains of dispatcher territories. Both the global MIP for-

mulation and the MIP for winner-determination in each round of the auction are solved

with CPLEX, commercially available linear-programming based branch-and-bound opti-

mization software. The rest of the code (myopic best-response, price-updates, etc.) was

written in C++.

9.5.1 Dispatcher model

Each dispatcher territory has the same simple network structure, as depicted in Figure

9.5. The total distance is 157.5 km, consisting of a single-track section followed by a

double-track section (siding) followed by a single-track section. Dispatcher territories are

connected together with yards. Trains have a maximal speed of 100 km/hr over single-

and double-track sections, and 1 km/hr within a yard. For simplicity, I model maximal

speed as 100 km/hr throughout the network and re-scale yards from size 0.5 km to a

model length of 50 km. The minimum separation distance, �safety, between trains is 20

km, corresponding to a run-time of 0.2 hrs at maximum speed.

siding

70 25 62.5

Figure 9.5: The network structure for a single dispatcher, with distances of each section (in km).

9.5.2 Example Problem

Consider a problem with a chain of two dispatchers, and 7 trains, each with value $200

and cost $50 per hour of delay. Trains 1, 2, 4, 5, and 6 run east with optimal departure

and arrival times (in hours) of f (1, 7), (3, 11), (8, 16), (11, 19), (10, 17) g, while trains 3

and 7 run west with optimal times of f (1, 7), (12, 18) g. Given a maximal speed of 100

km/hr the free-running time of a train across the network is 3.66 hrs. This is how long a

train would take with no delays.

290

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Time

D
is

ta
nc

e
fr

om
 W

es
t Y

ar
d

West Yard

East Yard

T1 T2 T3 T4 T5T6 T7

S

S

Y

(a) Auction solution.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Time

D
is

ta
nc

e
fr

om
 W

es
t Y

ar
d

West Yard

East Yard

T1 T2 T3 T4 T5T6 T7

S

S

Y

(b) Centralized solution.

Figure 9.6: Example: 7 trains, 1 dispatcher territory. Distance in 100's of kms, time in hrs.

291

The auction-based and centralized solutions to this problem are illustrated in distance-

time charts in Figure 9.6. Both methods �nd optimal solutions, with value $1400 (all

trains run on-time). This problem is quite under-constrained, with a number of possible

optimal schedules.

Notice that the auction-based solution is less extremal than the centralized solution.

This is quite typical, a result of the fact that train agents tend to bid less extreme times

than those selected with a global LP-based branch-and-bound method such as CPLEX,

and achieve a more evenly paced schedule from source to destination. We would expect this

property to make auction-based solutions more robust against unexpected minor delays

during the execution of a schedule.

9.5.3 Results

The experimental results are for problems with between 2 and 4 dispatcher agents, and

between 5 and 15 train agents, and with linear networks| formed from dispatcher ter-

ritories as shown in in Figure 9.5 and connected with yards. The auction algorithm was

parameterized as follows: at most 5 bids per-agent in each round, at most 240 seconds

to solve winner-determination in each round (with the best feasible solution used if the

optimal solution is not found), and a minimal price increment of $25. The price lattice

was maintained over points with a granularity of 0.2 hrs, and I used a time interval size of

0.3 hrs in the trains' dynamic-programming algorithm.

Problem Generator

A stochastic model is used to generate a set of problem instances. The model is loosely

based around instances in Kraay et al. [KHC91]. I refer the reader to Hallowell [Hal93]

for an account of other interesting train scheduling problem sets in the literature. The

problem sets are parameterized by constants: prob(E), �V , �V , �C , �C , depmax, �slack

and �slack , and the number of train and dispatcher agents, as described below

All trains travel from end-to-end over the network, and travel East with probability

prob(E). A train's value is selected from a normal distribution, Vi � N(�V ; �V), with

mean �V and standard deviation �V , and its unit cost Ci for o�-schedule performance is

normally distributedN(�C ; �C). The optimal departure time for a train, t
�
d(i), is uniformly

distributed, t�d(i) � U(0; depmax). Finally, a train's optimal arrival time, t
�
s (i), is computed

292

Model Size
num dispatchers 2 3 4
num trains 5 10 15 5 10 15 5 10 15

Global-time (s) 97 1438 2022 1161 2442 2495 886 2378 3155
Global-value ($) 895 1699 2097 854 1561 1177 898 1106 1132

Auc-time (s) 15 792 2568 15 1192 2039 26.9 944 2448
Auc-value ($) 850 1893 1737 842 1855 2632 768 1832 2162
Agent time (s) 0.4 0.6 2.7 0.9 2.2 3.3 1.9 4.4 8.8
Revenue ($) 315 698 1045 470 1030 1690 700 1365 2142
num rounds 12 13 25 13 16 18 16 16 23
Cache hit (%) 60 50 30 61 50 47 50 52 37

Table 9.1: Comparative performance: Auction vs. Centralized methods.

so that the relative slack, i.e. (available time - free-running time) / free-running time, is

normally distributed with mean �slack (%) and standard deviation �slack (%).

The complexity of a train-scheduling problem depends on many factors, including the

slack time available to each train, the network section types, and the number of \cross-

overs". A cross-over is counted whenever two trains traveling on-time must cross at some

point in the network. As I scaled the problems, with more train agents and more dispatcher

agents, I adjusted the depmax parameter to maintain the same number of average cross-

overs per-agent, in an e�ort to maintain a similar problem complexity. An appropriate

depmax value was computed o�-line for each problem size to achieve this property. Without

this adjustment adding more trains and more dispatchers increases the number of cross-

overs and makes problems much more di�cult to solve. My goal was to capture the

scaling properties of the two solution methods with the same per-train and per-dispatcher

complexity.

Results

In the experiments the stochastic problem generator is parameterized with: prob(E) = 0:7,

�V = $200, �V = 50, �C = $100, �C = 25, �slack = 100%, �slack = 25%, and set depmax

to give average cross-over complexity of 2 per-train. I generated 10 problem instances for

each problem size, as the number of train agents were increased from 5 to 15 and the

number of dispatchers from 2 to 4.

Table 9.1 presents the results. The computation time of the centralized method is

bounded at 3600 secs, at which point we take the best available solution. CPLEX also

293

ran out of memory (at 200 MB) while solving a few of the centralized problems, stopping

before 3600 secs but without an optimal solution. The computation time of the auction

is the total winner-determination and price-update time, summed over all rounds and all

dispatchers.

Notice that the quality of the schedule computed in the auction dominates that from the

centralized solution in hard problems, as the number of dispatchers and/or the number of

agents increase| the auction computes a higher quality solution in less time. The auction

also appears to have reasonable scaling properties, with the number of train agents and in

particular with the number of dispatchers. We believe that this advantage arises because

the auction is an e�ective method to decompose the computational problem across dis-

patchers, with critical (and di�cult) computation localized to a single critical dispatcher.

It is also noteworthy that the train agents' myopic best-response algorithm is quite fast,

indicating that it would be interesting to experiment with a smaller discrete time step. No-

tice also that the simple cache proves quite e�ective, �nding the optimal solution around

50% of the time.

More experiments are required, both to better understand the average-case scaling

properties of the auction and also to look more deeply at agent strategies. Based on

these limited results my conjecture is that the average-case run time in the auction scales

quadratically with the number of train agents, and perhaps sub-linearly with the number of

dispatch territories. It would be interesting to develop an analytic model to con�rm/reject

this conjecture.

In terms of agent strategies, I suspect that some agents purchase times that they cannot

use as the number of dispatchers increases and as the bid coordination problem gets more

di�cult. This belief is based on a comparison of the revenue with value in the auction, see

Table 9.1. If this is the case it will be necessary to consider more sophisticated bidding

strategies to avoid this exposure problem. A similar exposure problem is noted in the FCC

spectrum auction problem, in which agents need sets of compatible licenses, and bid across

simultaneous auctions [BCL00].

294

9.6 Related Work

This is not the �rst study of auction-based methods for train scheduling problems. Brewer

& Plott [BP96], proposed the BICAP ascending-price auction for distributed train schedul-

ing. The auction proposed in this chapter is more exible: we allow trains to construct

arbitrary schedules across the network, while BICAP restricts trains to bid from a small

set of �xed paths. Returning to centralized approaches to train scheduling, Kreuger et al.

[KCO97] have proposed a constraint-based method which appear to have better scaling

properties than straight applications of MIP methods, but is perhaps less suited to making

tradeo�s across schedules with di�erent qualities.

Market-based methods have also been advocated for other distributed scheduling prob-

lems, such as for airport take-o� and landing slot allocation problems [RSB82]. For ex-

ample, Wellman et al. [WWWMM01] propose an auction-based method for a factory-

scheduling problem, in which agents compete for periods of time on (one or more) shared

machines. As in the train-scheduling problem, agents in the factory-scheduling problem

(representing a job) often require a combination of time periods, perhaps also across mul-

tiple machines. The train scheduling problem di�ers in that it is not possible to de�ne a

static set of mutually-compatible times, any of which can be safely allocated to any agent.

Instead, a feasible allocation of times must be checked dynamically, by computing a safe

underlying meet/pass schedule. My approach is also rather di�erent to that adopted by

Wellman et al., since I avoid imposing a discretization of time into �nite slots, but provide

instead a simple and expressive constraint-based bidding language.

9.7 Discussion

The auction-based mechanism for the distributed train scheduling problem presented in

this chapter is a better match to the natural information and control structure of modern

railroads than traditional centralized scheduling solutions. Moreover, initial experiments

on a simple network structure show that the auction-based solution can generate better

solutions than a centralized approach, and more quickly. The auction-based approach also

appears to have useful scaling properties.

The main weakness in my current results is the lack of an interesting network structure.

I assume a single-line network, which while quite a common assumption in the academic

295

train scheduling literature [KHC91, KH95, Hal93] is perhaps not very realistic. In the

context of an auction-based method, relaxing the single line assumption would require two

important extensions:

(a) extend the mixed integer program formulation of the winner-determination problem

for each train agent to schedule trains across multiple lines,

(b) extend the bidding strategy of train agents to consider alternative routes, in addition

to alternative times.

Extension (b) does not seem to be too di�cult, given that train agents already consider

alternative times (but not alternative paths); the current shortest path approach should

extend quite readily. In addition, although it is not immediately clear how to formulate a

multi-line problem as a mixed integer program, extension (a), the problem is certainly no

more di�cult than that faced in a centralized solution.

In addition to introducing heuristic methods and approximations for winner-

determination in each round of the auction, it would also be interesting to compare the

auction-based method with heuristic centralized methods. The current comparison with

an integer-programming based centralized solver may be a little unfair, in that one can

view the auction-based method (with prices increases, and myopic best-response, etc.)

as combining special-case heuristic methods with a general-purpose integer-programming

method.

296

Chapter 10

Conclusions

Auctions o�er great promise as mechanisms for optimal resource allocation in complex

distributed systems with self-interested agents. However, limited and costly computation

necessitates a rethinking of traditional auction theory because direct extensions of auctions

that work well in small problems can fail in complex distributed systems. My thesis is that

it is necessary to take an explicitly computational approach to auction design. Indeed,

the value of auctions in e-commerce systems will depend on the ability to maintain the

desirable properties of auctions, for example economic e�ciency, robustness, and simplicity,

as methods are introduced to allow tractable computation. Once computational issues are

successfully addressed, auctions may provide simple, stable, and robust solutions to many

important distributed optimization problems.

Agents often demand bundles of items, and have values for bundles that are not equal

to the sum of the values of the items in the bundle; e.g., for task allocation, procurement

problems, and dynamic bandwidth allocation. Combinatorial auctions allow agents to

represent these preferences explicitly by submitting bids on bundles of items, for example

stating \I only want A if I also get B". Desirable properties of combinatorial auctions

include strategy-proofness, such that truthful bidding is optimal whatever the strategies

of other agents, and allocative-e�ciency, such that the auction implements the value max-

imizing allocation. However there is a tension between the classic game-theoretic solution

to this problem and computational e�ciency.

The Groves family of mechanisms, and the Generalized Vickrey Auction (GVA) in par-

ticular, are strategy-proof and e�cient. But the GVA is a sealed-bid combinatorial auction.

Every agent must �rst report its value for every possible bundle, before the auctioneer

297

computes the allocation and agent payments. Sealed-bid auctions are undesirable compu-

tationally because of this complete revelation requirement, which soon becomes intractable

in large complex domains for agents with hard valuation problems. Iterative mechanisms

are absolutely critical in such domains because they can solve problems without complete

information revelation from agents, and even without individual agents computing their

exact values for all outcomes. The revelation principle of mechanism design, coupled with

the uniqueness of Groves mechanisms provides useful guidance. Any strategy-proof and

e�cient iterative combinatorial auction must compute Groves payments at the end of the

auction.

My dissertation develops an e�cient iterative combinatorial auction, which avoids the

centralization and complete revelation problems of the GVA. The auction, iBundle, and its

extension Extend&Adjust, is an ascending-price combinatorial auction that allows agents

to adjust their bids in response to bids from other agents. iBundle solves realistic problems

without complete information revelation from agents, and with Extend&Adjust inherits

much of the strategy-proofness of Groves mechanisms by computing Vickrey-Groves pay-

ments at the end of the auction. Instead of terminating as soon as the e�cient allocation

has been determined, Extend&Adjust remains open just long enough to collect additional

information from agents (via best-response bids) to compute Vickrey payments.

In summary, the main contributions to computational mechanism design are:

� iBundle Extend&Adjust, an iterative combinatorial auction that computes minimal

competitive equilibrium prices in the combinatorial allocation problem, with myopic

best-response agent strategies.

� iBundle Extend&Adjust, an iterative combinatorial auction that computes the e�-

cient allocation and Vickrey payments in all problems in which Vickrey payments

can be priced in (non-linear and perhaps non-anonymous) competitive equilibrium,

with myopic best-response agent strategies.

Another signi�cant contribution is:

� VickAuction, a primal-dual algorithm that computes Vickrey payments with my-

opic best-response information from agents.

iBundle Extend&Adjust interprets the primal-dual algorithm VickAuction as an

298

ascending-price auction. The di�erence introduced in iBundle Extend&Adjust is an ex-

plicit method to adjust prices in the second \extend" phase of the auction, which aims

to be more \natural" to participants than the method in VickAuction. An agent's bids

in the rounds that follow the normal termination point of iBundle a�ect neither the �nal

allocation nor the �nal price that the agent pays. The only e�ect is to reduce the price

that other agents pay. Therefore it is important that an agent should not be able to detect

that the auction is in this phase, or else it would simply drop out and wait for the auction

to �nally terminate.

The outstanding challenge is to complete a proof of the following conjecture.

� (conjecture) iBundle Extend&Adjust is the �rst iterative combinatorial auction to

compute the e�cient allocation and Vickrey payments in all combinatorial allocation

problems.

We provably compute Vickrey payments and the e�cient allocation whenever the ex-

tended auction terminates, but still need a proof that the current dummy agent rules are

su�cient for termination. There is very strong experimental evidence that this is indeed

the case.

The combined system, iBundle Extend&Adjust, with a proxy bidding agent interface,

is a promising dynamic mechanism to solve combinatorial allocation problems with dis-

tributed self-interested agents. The proxy bidding agents constrain agents to follow myopic

best-response strategies, boosting the robustness-to-manipulation that is achieved through

terminating with Vickrey payments.

10.1 A Brief Review

Chapter 1 provides an introduction to the computational problems inherent in classic

game-theoretic mechanisms, such as the Groves mechanisms. The Groves mechanisms are

very centralized solutions to decentralized optimization problems. The mechanism makes

truth-revelation a dominant strategy for agents, but requires them to provide complete

information about their preferences, to the auctioneer which then computes an optimal

system-wide solution.

An important challenge in computational mechanism design is to develop a strategy-

proof and dynamic mechanism, in which it is an agent's dominant strategy to provide

299

truthful information incrementally to the mechanism, until just enough is known about

agents' problems to solve the system-wide problem. The scheme proposed in this disserta-

tion, comprising of iBundle Extend&Adjust, makes signi�cant progress in this direction for

the combinatorial allocation problem. Transformation techniques between the exclusive-or

bidding language provided in iBundle and other more expressive bidding languages also

promise to lead to domain-speci�c implementations that can exploit structure in agent

preferences without incurring the potentially exponential cost of a translation into explicit

values on bundles.

Chapter 2 introduces important results from classic mechanism design, including the

Groves family of mechanisms. Groves mechanisms are the only strategy-proof and e�-

cient mechanisms among direct-revelation mechanisms. Taken along with the revelation

principle, which states that any mechanism can be implemented as an equivalent direct-

revelation mechanism (with agents reporting complete information about their prefer-

ences), this uniqueness provides useful focus to the design of iterative mechanisms. In

particular, any e�cient and strategy-proof iterative mechanism must compute the out-

come of a Groves mechanism for the underlying preferences of agents.

The revelation principle does not mean that we need to only consider direct-revelation

mechanisms when constructing mechanisms for combinatorial problems. The revelation

principle assumes unlimited computational resources, both for agents in submitting val-

uation functions, and for the auctioneer, in converting a mechanism into a single-shot

direct-revelation solution. In fact, the work in my dissertation clearly demonstrates that

iterative auctions expand the implementation space when computation is an issue.

The tensions between classic game-theoretic solutions and tractable computational so-

lutions soon become evident as one considers the application of mechanisms to di�cult

distributed optimization problems, such as supply-chain procurement or bandwidth allo-

cation. Chapter 3 considered the computational demands within a mechanism, addressing

computation at both the infrastructure (e.g. auctioneer) and agent level.

The �rst important cost is the computational complexity on the mechanism infras-

tructure. I surveyed a number of methods to address this cost, including approximations,

special-cases and decentralized methods. Naive attempts to introduce approximations into

mechanisms can break useful game-theoretic properties, such as strategy-proofness.

The second important cost is the strategic complexity on agents, which is closely linked

300

to its game-theoretic properties. In particular, a mechanism in which every agent has

a dominant strategy, i.e. an optimal strategy whatever the strategies and preferences of

other agents, is useful game-theoretically and computationally. From a game-theoretic

perspective, a dominant strategy equilibrium is a very robust solution concept, stable for

example against \irrational" agents. From a computational perspective, with a dominant

strategy an agent can avoid costly modeling and game-theoretic reasoning about other

agents.

The third important cost is the valuation complexity on agents; valuation problems

are often hard, agents have limited and/or costly computation, and there are many di�er-

ent outcomes in combinatorial domains. I considered two approaches: high-level bidding

languages and dynamic methods.

High-level bidding languages, such as bidding programs, can help to address valuation

complexity in situations in which it is easier to specify a method to compute values for

outcomes than to compute values for every possible outcome. This might be the case if

an agent has a well-formulated optimization problem to compute its value for di�erent

resource bundles. However, it is quite likely that each outcome has a di�erent structure,

and requires additional information and a new speci�cation. Another problem with this

approach is that it shifts computation to the center and is problematic from a privacy and

informational perspective.

My dissertation suggests dynamic mechanisms as an alternative approach to address

valuation complexity, in which agents reveal incremental information about their prefer-

ences until the mechanism can compute and verify an optimal solution. iBundle is an

iterative combinatorial auction that solves realistic problems without complete informa-

tion revelation from agents. The idea is to \open up" the algorithm for computing the

outcome of the GVA, and involve agents dynamically in the computational process. It

is easy to construct examples in which it is not necessary to have complete information

about agents' valuation problems to compute and verify the outcome of the auction. Some

simple examples were described towards the end of Chapter 3. A well structured dynamic

method will ask agents for just enough information to enable the mechanism to compute

and verify the outcome.

Table 4.7 summarized the progress in iterative auction design over the past two decades.

301

Each contribution relaxes assumptions on agent preferences and/or strengthens the equi-

librium analysis of the auction. All auctions terminate with e�cient allocations and prices

that are in competitive equilibrium, or equal to Vickrey payments, or both. Prior to

iBundle there was no method that terminated in competitive equilibrium in the general

problem, let alone in the minimal competitive equilibrium solution, or with Vickrey pay-

ments.

My approach to iterative combinatorial auction design integrates principles from linear

programming and game-theoretic mechanism design.

First, I assumed that agents will follow a myopic best-response bidding strategy in

every round of the auction. This allowed the direct application of linear programming

theory, and primal-dual algorithms in particular, to auction design. With myopic best-

response there is an easy mapping from an suitable primal-dual algorithm to an ascending-

price combinatorial auction. The corresponding auction, iBundle, is the �rst e�cient and

iterative combinatorial auction for any reasonable agent bidding strategy, in this case

myopic best-response.

Second, I extended the approach to compute Vickrey-Groves payments at the end of the

auction, in addition to the e�cient allocation. When successful, this makes myopic best-

response an optimal sequential strategy for an agent in the auction, in equilibrium with

best-response from every other agent. I derived a new primal-dual algorithm, VickAuc-

tion, from a linear program formulation of the Groves mechanism for the combinatorial

allocation problem. VickAuction provably computes the Vickrey payments with only

best-response information from agents. VickAuction corresponds to iBundle with a sec-

ond phase, Extend&Adjust. The purpose of the second phase is to elicit enough additional

preference information from agents to compute Vickrey payments. It turns out that Vick-

rey payments requiremore information than that which is required to compute the e�cient

allocation. Vickrey-Groves payments are computed by an adjustment procedure from �nal

prices, based on primal-dual information collected from best-response bids from agents.

Chapters 4 and 5 presented the iBundle auction, which computes e�cient allocations

with agents that follow myopic best-response bidding strategies. Chapter 4 reviews linear

program models for the combinatorial allocation problem, and introduces a primal-dual

algorithm, CombAuction, that dynamically computes prices with enough structure to

support the e�cient allocation in competitive equilibrium. In some problems it is necessary

302

to use non-anonymous prices, with a di�erent price for the same bundle to di�erent agents,

and non-linear prices, with the price on a bundle di�erent from the total price over the

items in a bundle.

CombAuction has a natural interpretation as an ascending-price auction. The primal

solution corresponds to a provisional allocation and the dual solution corresponds to bundle

prices. Complementary slackness conditions demonstrate that a provisional allocation is

e�cient whenever: (1) every agent receives a bundle in its myopic best-response bid set,

and (2) the allocation maximizes revenue for the auctioneer. This connection to linear

programming theory proves the allocative-e�ciency of iBundle.

Experimental results con�rm that iBundle computes e�cient allocations across a suite

of problem instances with myopic best-response agent strategies, and with less information

revelation than in the GVA. In addition, the e�ect of price discrimination on allocative

e�ciency is small, and I expect iBundle to perform well with anonymous prices in most

problems. Approximations are possible within iBundle. For example, increasing the mini-

mal bid increment � in iBundle decreases the number of rounds and can provide an order-

of-magnitude speed-up for small losses in allocative e�ciency. Methods to leverage the

sequential nature of winner-determination within iBundle were also studied, via caching

and hot-start techniques.

Chapters 6 and 7 introduced Extend&Adjust, a method to extend iBundle and compute

Vickrey payments at the end of the auction, in addition to the e�cient allocation. The

method justi�es myopic best-response, making myopic best-response an optimal sequential

strategy for an agent in equilibrium with best-response strategies from other agents. The

design leaves iBundle basically unchanged, simply keeping the auction open for a few more

rounds and then computing discounts to agents at the end of the second phase. In the

end, agents are charged discounted prices based on discounts computed during the second

phase.

First, I derived a linear program to compute minimal competitive equilibrium (CE)

prices from a set of suitable competitive equilibrium prices and the e�cient allocation.

Minimal CE prices provide some protection against manipulation, and support the Vick-

rey payments in special cases. The linear program formulation leads to the procedure

Adjust, which computes minimal CE prices from the price information at the end of

303

CombAuction, and similarly at the end of iBundle. I characterized necessary and su�-

cient conditions under which Adjust will compute minimal CE prices, and proved that

iBundle(3) (the variation with non-anonymous prices in all rounds) with Adjust termi-

nates with minimal CE prices. The discounted prices are equal to Vickrey payments in all

problems for which minimal CE prices support Vickrey payments.

Theorem 10.1 iBundle and Adjust is an iterative Vickrey auction when minimal CE

prices support Vickrey payments.

A fast but accurate method AdjPivot computes approximate discounts to agents after

iBundle terminates, checking complementary-slackness conditions only with respect to the

\pivotal" allocations that were previously computed as provisional allocations during the

auction.

Second, I derived a linear program formulation to compute the Vickrey payment of

any one agent in all combinatorial allocation problem instances. The Vickrey payment to

every agent can then be solved as a sequence of independent linear programs. This leads

to a linear program to compute the Vickrey payment to an agent from a set of suitable

competitive equilibrium prices and knowledge of the optimal allocation (but without addi-

tional information about agent valuation functions or the value of the optimal allocation).

Finally, I proposed procedure Adjust*, a slight variation on Adjust, as a method to

compute Vickrey payments from the price information at the end of an iterative auction.

Considering necessary and su�cient conditions on CE prices for Adjust* to compute

minimal Vickrey payments, the most important non-obvious condition can be stated as

follows:

: : : if an agent in the optimal allocation is not in one or more second-best allocations

(without one of the agents in the allocation) then the price on the bundle it receives in the

optimal allocation must equal its value.

This condition will not necessarily hold at the end of CombAuction, or at the end

of iBundle. However, I was able to derive a primal-dual algorithm, VickAuction, which

computes Vickrey payments with Adjust*, by proposing a second phase to CombAuc-

tion, called PhaseII, which continues to adjust prices until the conditions for Vickrey

payments are met. VickAuction implements the allocation computed at the end of

304

CombAuction, with adjusted prices based on discounts computed during PhaseII.

I prove optimality for VickAuction:

Theorem 10.2 VickAuction is a primal-dual algorithm to compute the Vickrey pay-

ments and e�cient allocation in the combinatorial allocation problem, with only best-

response information from agents.

Signi�cantly, VickAuction, computes the Vickrey outcome with only best-response

information from agents and without direct information about agent valuation functions.

Chapter 7 introduces an experimental auction method, iBundle Extend&Adjust, to im-

plement VickAuction in a decentralized system. The auction introduces a second phase

to compute Vickrey payments, collecting just enough additional information from best-

response agent strategies. The main di�culty in implementing the primal-dual method,

VickAuction, as an auction arises because it is important that agents can not detect

the transition from Phase I to Phase II. The experimental method used to drive price

competition in the extended phase of iBundle introduces dummy agents into the auction

as real agents drop out, to: (a) provide enough competition to drive the prices to agents

in the e�cient allocation high enough to compute Vickrey discounts to every agent; and

(b) provide a \competitive e�ect" that is hard to distinguish from the bids of the real

agents they replace. The valuation functions of the dummy agents are con�gured by the

auctioneer dynamically to mimic continued bidding from the real agents as they drop out.

I proved that the adjusted prices in iBundle Extend&Adjust are Vickrey payments

when the auction terminates. The outstanding open question is whether the current rules

for quiescence detection and dummy agents are su�cient to generate termination condi-

tions in all problems.

Chapter 7 presented encouraging experimental results for iBundle Extend&Adjust.

The extended auction is indeed able to compute the Vickrey outcome with myopic best-

response agent strategies across a suite of problems. I make the following conjecture:

Conjecture 10.1 iBundle Extend&Adjust is an iterative Generalized Vickrey Auction.

Vickrey payments make myopic best-response becomes a Bayesian-Nash equilibrium of

the auction.

305

Theorem 10.3 Myopic best-response is a Bayesian-Nash equilibrium of an iterative

auction that myopically implements the outcome of the Generalized Vickrey Auction.

In other words, myopic best-response is a sequentially rational strategy for an agent

in such an auction, in equilibrium with myopic best-response strategies from every other

agent.

Finally, proxy bidding agents are suggested as a method to boost the strategy-proofness

provided by Vickrey payments. The proxy agents act as an interface between the auction

and the agents, receiving incremental information from agents about their preferences over

allocations, and following a myopic best-response strategy with that information. The

proxy agents check that the information provided in each round is mutually-consistent,

and only bid when there is enough information to determine the best-response.

Given proxy agents we have the following proposition:

Proposition 10.1 Dynamic truth-revelation is a dominant strategy to the proxy agents

if: (a) the proxy agents can constrain agents to providing information consistent with

a single ex ante �xed (but perhaps untruthful) valuation function; and (b) the auction

implements an iterative GVA with myopic best-response.

The proxy agents cannot actually limit agents to a single valuation function, but check-

ing consistency across rounds should be quite e�ective at constraining any possible manipu-

lation. The only gap that remains in the auction's strategy-proofness is the extent to which

consistency cannot be completely enforced without falling back on complete information.

Chapter 8 proposed a new auction property, bounded-rational compatibility, to char-

acterize auctions in which agents can compute equilibrium strategies with approximate

information about their preferences. For example, an iterative auction is myopic bounded-

rational compatible if an agent can compute its myopic best-response strategy with an ap-

proximate valuation function, for example bounds on its value, in some problems. iBundle

is (myopic) bounded-rational compatible, while the GVA is not (dominant-strategy)

bounded-rational compatible. The extended iBundle auction is certainly Bayesian-Nash

bounded-rational compatible in problems in which it computes Vickrey payments with

myopic best-response strategies, because myopic best-response is the equilibrium strategy

306

in this case.

To begin to understand the advantage of myopic best-response over complete revela-

tion I compared the e�ciency and computation in iterative and sealed-bid auctions for

a simple model of a bounded-rational agent. I modeled the deliberation decision of an

agent explicitly, and computed myopically-rational metadeliberation strategies for agents

in iterative and sealed-bid auctions. The experimental results showed that: (a) iterative

auctions compute more e�cient solutions than sealed-bid auctions, with agents allocating

limited computational resources to more \important" bundles; (b) iterative auctions allow

agents to avoid value computation.

Finally, Chapter 9 presented an application of auction-based methods to a distributed

train scheduling problem. Auction methods are well suited to the natural information and

control structure of modern railroads. In the model, trains bid for times to enter and

exit the territories of each dispatcher along their route, while each dispatcher operates

an ascending-price auction, for the right to enter and exit its territory at a particular

time. iBundle style price-update rules are applied to adjust the price on pairs of entry and

exit times across rounds. One innovation is that train agents can bid with an expressive

constraint-based bidding language to represent indi�erence across times, e.g. \any arrival

time before 12 pm is �ne", and without an imposed discretization on times. Computational

results on a simple linear network, for train agents with myopic best-response bidding

strategies demonstrated that the auction-based method computed better solutions than a

centralized method and in less time and suggest that the auction method has useful scaling

properties.

10.2 Future Work

Let me outline some areas for future work.

10.2.1 Iterative Combinatorial Auction Extensions

Expressive Bidding Languages

iBundle provides agents with a complete, but not very expressive, exclusive-or (XOR)

bidding language, which allows agents to bid for multiple bundles of items and specify

they want at most one bundle. Expressive languages, for example constraint-based and

307

functional-approximation languages, can reduce the informational and computational de-

mands on agents and lead to faster winner-determination algorithms.

One interesting approach to develop a mechanism for a new representation language

is to understand how to adjust prices via a transformation of the representation into

the iBundle XOR/bundles representation. It may be possible to derive tractable rules

for an allocatively-e�cient dynamic mechanism in the new representation. First convert

bids in the new language into the iBundle XOR/bundle representation, then determine

price-updates and the provisional allocation in the XOR/bundle representation, and then

understand the rules for price-updates and rules for winner-determination in the new rep-

resentation. Ideally we would like to exploit structure in agents' bids within the winner-

determination and price-update problems in the auction, and compile this transformation

procedure so that it is not necessary to work in the XOR/bundle representation when that

is not useful computationally.

Consider a transformation from exclusive-or (XOR) to additive-or (OR) bids, as a

simple example of this technique. Additive-or bids can be simulated in iBundle as bids

from separate agents. This illustrates that the iBundle auction rules with additive-or agent

bids (and without constructing explicit bid prices on bundles from agents' bids) are:

| increase prices on any single bundle in an OR bid for which an agent is unsuccessful

in the current round

| never introduce price-discrimination

| terminate when every agent receives all bundles in its bid in the provisional allocation

Automated compilation methods could also be introduced, to allow a user to de�ne

a language semantics from which optimal auction methods are generated on-the-y.

Application Study

One outstanding and important piece of experimental work is to perform a computational

comparison of agent valuation complexity in iBundle and the GVA in a combinatorial

allocation problem domain, with concrete models for local agent problems. Here are some

problems with desirable properties (hard agent valuation problems, well-formed central

optimization problems, natural decentralization, existing problem sets, etc.).

308

� Distributed traveling salesperson problem. Andersson & Sandholm [AS98, AS99,

AS00] de�ne a multiagent TSP in which agents have locations and jobs have lo-

cations. The goal is to allocate jobs to agents to maximize the social welfare, which

is measured as the total distance traveled by all agents. The authors report results

for a distributed task allocation method on 8x8 simulations, with random agent and

job locations selected on a simple grid.

� Multiple project resource management. Projects may involve dozens of �rms and

hundreds of people who need to be managed and coordinated. Examples include

large construction projects, opening a new store, performing major maintenance,

starting up a new manufacturing facility [SBG94]. One well-formulated multi-agent

problem is known as multiple-project resource-constrained optimization, in which

individual projects compete for the same constrained resources and must solve local

scheduling problems to minimize costs given allocations. The local problem is hard,

and as Shutb et al. [SBG94] note, it is not realistic to solve to optimality with several

hundred activities.

� Multi-agent scheduling problems. A classic example is the airport takeo� and landing

time-slot problem [RSB82, GIP89]. Airlines complete for takeo� and landing slots

at airports. For a particular allocation of slots the airline must solve its local crew

and airplane scheduling problem to compute the cost for using the slots.

Sequential Winner Determination

The winner-determination problem in iterative auctions presents an interesting dynamic

computational problem, because agents' bids change only gradually during the auction

as prices increase. In addition to simple caching across rounds, and hot-start techniques,

one might also look to compute and re-use solutions to subproblems. As an example,

with branch-and-cut optimization, in which new constraints are introduced during linear-

program based branch-and-bound search, one can re-use cuts to prune search in later

rounds. Another interesting approach is that of \continual computation", in which proba-

bilistic and game-theoretic methods are used to predict future winner-determination prob-

lems and to precompute solutions in the down time between rounds.

309

The Agent Metadeliberation Problem

Given that an agent has a hard valuation problem, limited computational resources, and

many possible bundles of items to value, how should an agent schedule deliberation across

di�erent bundles? This is an interesting domain for metadeliberation techniques, such as

those that have found application in other time critical domains, such as in medical [Hor87]

and robot path planning domains [BD89]. An iterative auction provides a dynamic and

time-critical environment, with prices increasing across rounds, and a �nite time delay

between rounds. Values for bundles are nested within an agent's algorithm to compute its

best response, and the expected utility of submitting a correct best-response in the current

round depends on beliefs about strategies of other agents and future prices in the auction.

An Asynchronous iBundle Auction

It would be useful to prove properties about iBundle when some agents do not submit a

bid in each round, or do not follow their complete myopic best-response in each round.

For example: can we characterize the problem sets in which iBundle remains allocatively-

e�cient despite the existence of some \slow" agents in addition to some \fast" agents; can

we describe an auction in which agents do not provide their complete exclusive-or bid set

in each round, but can provide bids on additional bundles as the auction progresses?

10.2.2 Electronic Commerce Foundations

Multiattribute auctions and combinatorial exchanges present just two new emerging areas

of computational mechanism design in electronic commerce.

Multiattribute Auctions

A multiattribute auction allows agents to negotiate over the attributes (size, terms-of-

payment, delivery schedule, speed, etc.) of an item in addition to the price. Multiattribute

auctions can lead to more e�cient outcomes than �xed attribute auctions, in which sellers

are restricted to price competition in an ex ante �xed space of attributes. Multiattribute

auctions promise to provide robust methods for e�cient automated negotiation between

multiple agents.

There are three central challenges in the design of multiattribute auctions: (1) tractable

310

winner-determination, which depends on an agent's preferences over the attributes of a

good in addition to price; (2) minimize the amount of information revelation required by

agents; (3) handle issues of strategic misrepresentation of preferences.

Informationally, it will be important to design iterative mechanisms that allow agents

to reveal incremental information about their preferences. Another method to reduce the

informational load on users is to position a semi-autonomous proxy bidding agent between

a user and the auctioneer that will accept many di�erent types of information, including

ordinal, cardinal, hard constraints, functional approximations, and then submit optimal

bids to the auctioneer based on this information.

It appears possible to reduce simple multiattribute allocation problems (for example

with one seller and multiple buyers) to a combinatorial allocation problem, at least if

attributes are discrete, and leverage the iBundle methodology. A bundle of attributes

becomes a bundle of items. The preferences of the seller can be introduced via an agent

that competes with buyers not to sell goods with particular attributes if the price is

too low, or if another set of attributes are more desirable at the current prices. The

Myerson-Satterthwaite impossibility theorem limits what can be achieved in a game-

theoretic sense. We cannot expect to implement an e�cient multiattribute auction that

is incentive-compatible for the buyer and the seller and budget-balanced, and we must

sacri�ce one of these conditions. New approaches will be required when the attributes are

continuous instead of discrete, and when the solution should allow aggregation across sell-

ers. Both of these changes take the problem further away from the combinatorial auction

problem.

Reverse auctions, such as procurement auctions, provide a similar opportunity for

iBundle-based methods. In a reverse combinatorial auction there is a single buyer and

multiple sellers, each able to provide bundles of items. The e�cient allocation will depend

on the value of the buyer for di�erent bundles of items and on the costs of each seller to

provide bundles. The optimal solution selects bundles of items from multiple sellers to

maximize the di�erence between the value of the buyer and the total cost over the sellers.

Again, I believe that it is possible to use a transformation approach, to a regular \forward"

combinatorial auction, and derive iBundle price update rules for the reverse auction.

311

Combinatorial Exchanges

A combinatorial exchange allows multiple buyers to trade with multiple sellers, with all

agents able to express logical conditions across bundles of items. Combinatorial exchanges

address an important weakness in combinatorial auctions, namely the assumption that

there a single seller is able to o�er bundles composed of many di�erent types of items.

On the contrary, we might expect that a more natural model would allow multiple buyers

to engage in combinatorial trades with multiple sellers. Interesting applications of such

exchanges include: a bandwidth exchange that aggregates supply from geographically

disparate sellers to match bids for \virtual networks", or a travel exchange, that aggregates

the supply of excess seats and hotel rooms, to match bids for bundles of rooms and ights.

The winner determination problem in a combinatorial exchange, to select bids to maximize

surplus, is a classic combinatorial optimization problem.

The pricing problem is interesting, in particular because of the Myerson-Satterthwaite

impossibility theorem that shows that it is not possible to achieve e�ciency, budget-

balance, and incentive-compatibility. We must sacri�ce one of these desirable properties.

One approach would �x strategy-proofness, and perhaps sacri�ce e�ciency in favor of

budget-balance. This is similar to an approach of McAfee [McA92] for double auctions on

homogeneous items. Another approach would �x budget-balance, and try to achieve as

much strategy-proofness and e�ciency as possible. Parkes, Kalagananam and Eso [PKE01]

take this approach, allocating surplus when an exchange is cleared to minimize the dis-

tance between agent payments and Vickrey payments. The choice of distance metric has

a distributional e�ect on surplus allocation and changes the incentive properties of the

exchange. A simple threshold rule appears to perform well, providing partial discounts to

agents that would receive a large discount in a Vickrey-Groves scheme.

It remains an open problem to identify special cases in which budget-balance is not

a problem in combinatorial exchanges, for example with restricted models of aggregation

and bidding languages.

10.2.3 Approximations, Intractability, and Bounded-Rationality

Recent algorithmic approaches to mechanism design consider the e�ect of approximation

and intractability on the economic properties of mechanisms. The goal is to understand

both what is possible and what is impossible when tractable computation is introduced as

312

an additional constraint.

In one sense, bounded-rationality and intractability can help; one might use NP-

hardness results to design \bounded strategy-proof" mechanisms that cannot be manipu-

lated without an agent solving a hard problem in polynomial time.

In another sense, bounded-rationality and intractability can be a problem; optimal

game-theoretic mechanisms can require that the network infrastructure solves multiple in-

tractable problems, and approximate solutions can quickly break incentive-compatibility

properties. In addition to proving worst-case manipulation results for approximation algo-

rithms, one might also use randomized mechanisms to expand the implementation space.

Another thread in this interface between intractability and mechanism design is the

e�ect of agent bounded-rationality on preference revelation. It is often impossible for an

agent to compute its complete preference set, i.e. its value for all possible outcomes. The

direction started on in this dissertation is to design mechanisms that can solve distributed

problems with approximate information revelation from agents, providing dynamic feed-

back to agents about information collected from other agents and about progress towards

a system-wide solution. My current research results suggest that primal-dual optimization

theory may provide a suitable set of mathematical tools to develop iterative strategy-proof

mechanisms, when used in combination with classic results from mechanism design.

313

Bibliography

[AS98] Martin Andersson and Tuomas W Sandholm. Leveled commitment con-

tracts with myopic and strategic agents. In Proc. 15th National Conference

on Arti�cial Intelligence (AAAI-98), pages 38{45, July 1998.

[AS99] Martin Andersson and Tuomas W Sandholm. Time-Quality tradeo�s in

reallocative negotiation with combinatorial contract types. In Proc. 16th

National Conference on Arti�cial Intelligence (AAAI-99), pages 3{10, July

1999.

[AS00] Martin Andersson and Tuomas W Sandholm. Contract type sequencing for

reallocative negotiation. In Proc. 17th National Conference on Arti�cial

Intelligence (AAAI-00), 2000.

[ATY00] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer program-

ming for auctions with bids for combinations. In Proc. 4th International

Conference on Multi-Agent Systems (ICMAS-00), 2000.

[Arr79] Kenneth J Arrow. The property rights doctrine and demand revelation

under incomplete information. In M Boskin, editor, Economics and Human

Welfare. Academic Press, New York, 1979.

[dG79] Claude d'Aspremont and Louis-Andr�e G�erard-Varet. Incentives and in-

complete information. J. of Public Economics, 11:25{45, 1979.

[Aus97] Lawrence M Ausubel. An e�cient ascending-bid auction for multiple ob-

jects. Technical report, Department of Economics, University of Maryland,

1997.

[AC98] Lawrence M Ausubel and Peter Cramton. The optimality of being e�cient.

Technical report, University of Maryland, 1998.

314

[Aus00] Lawrence M Ausubel. An e�cient dynamic auction for heterogeneous

commodities. Technical report, Department of Economics, University of

Maryland, 2000.

[BLP89] Je�rey S Banks, John O Ledyard, and David Porter. Allocating uncertain

and unresponsive resources: An experimental approach. The Rand Journal

of Economics, 20:1{25, 1989.

[BJ95] Salvador Barber�a and Matthew O Jackson. Strategy-proof exchange.

Econometrica, 63(1):51{87, 1995.

[Ber79] Dimitri P Bertsekas. A distributed algorithm for the assignment prob-

lem. Technical report, Lab. for Information and Decision Systems, M.I.T.,

Cambridge, MA, 1979.

[Ber81] Dimitri P Bertsekas. A new algorithm for the assignment problem. Math.

Progr., 21:152{171, 1981.

[Ber86] Dimitri P Bertsekas. Distributed relaxation methods for linear network

ow problems. In Proc. of 25th IEEE Conf. Dec. and Contr., pages 2101{

2106, 1986.

[Ber87] Dimitri P Bertsekas. Dynamic Programming: Deterministic and Stochastic

Models. Prentice-Hall, 1987.

[Ber88] Dimitri P Bertsekas. The auction algorithm: A distributed relaxation

method for the assignment problem. Annals of Operations Research,

14:105{123, 1988.

[BC89] Dimitri P Bertsekas and David A Castan~on. The auction algorithm for

transportation problems. Annals of Operations Research, 20:67{96, 1989.

[Ber90] Dimitri P Bertsekas. The auction algorithm for assignment and other

network ow problems: A tutorial. Interfaces, 20(4):133{149, 1990.

[Bet92] Dimitri P Betsekas. Auction algorithms for network ow problems: A

tutorial introduction. Computational Optimization and Applications, 1:7{

66, 1992.

315

[BO99] Sushil Bikchandani and Joseph M Ostroy. The package assignment model.

Technical report, Anderson Graduate School of Management and Depart-

ment of Economics, U.C.L.A., 1999.

[BO00] Sushil Bikchandani and Joseph M Ostroy. Ascending price Vickrey auc-

tions. Technical report, Anderson Graduate School of Management,

U.C.L.A., 2000.

[BdVSV01] Sushil Bikchandani, Sven de Vries, James Schummer, and Rakesh V Vohra.

Linear programming and Vickrey auctions. Technical report, Anderson

Graduate School of Management, U.C.L.A., 2001.

[BD89] Mark Boddy and Thomas Dean. Solving time-dependent planning prob-

lems. In Proc. 11th International Joint Conference on Arti�cial Intelli-

gence (IJCAI-89), pages 979{984, 1989.

[BGS99] Craig Boutilier, Moises Goldszmidt, and Bikash Sabata. Sequential auc-

tions for the allocation of resources with complementarities. In Proc. 16th

International Joint Conference on Arti�cial Intelligence (IJCAI-99), pages

527{534, 1999.

[BP96] Paul J Brewer and Charles R Plott. A binary conict ascending price

(BICAP) mechanism for the decentralized allocation of the right to use

railroad tracks. Int. Journal of Industrial Organization, 14:857{886, 1996.

[Bre99] Paul J Brewer. Decentralized computation procurement and computa-

tional robustness in a smart market. Economic Theory, 13:41{92, 1999.

[BCL00] Mark M Bykowsky, Robert J Cull, and John O Ledyard. Mutually de-

structive bidding: The FCC auction design problem. J. of Regulatory

Economics, 2000. To appear.

[CL82] Paul Champsaur and Guy Laroque. Strategic behavior in decentralized

planning procedures. Econometrica, 50:325{344, 1982.

[CR99b] Vijay Chandru and M R Rao. Linear programming. In M.J.Atallah, editor,

Handbook of Algorithms and Theory of Computing, chapter 31. CRC Press,

1999.

316

[CR99a] Vijay Chandru and M R Rao. Integer programming. In M.J.Atallah,

editor, Handbook of Algorithms and Theory of Computing, chapter 32.

CRC Press, 1999.

[Che00] Giorgos Cheliotis. Bandwidth trading in the real world: Findings and

implications for commodities brokerage. Technical Report RZ 3244, I.B.M.

Research Zurich Research Laboratory, 2000.

[Cla71] E H Clarke. Multipart pricing of public goods. Public Choice, 11:17{33,

1971.

[Cle96] Scott H Clearwater, editor. Market-Based Control: A Paradigm for Dis-

tributed Resource Allocation. World Scienti�c, 1996.

[CS00] Peter Cramton and Jesse Schwartz. Collusive bidding: Lessons from the

FCC spectrum auctions. Journal of Regulatory Economics, 17, 2000.

[CK81] Vincent P Crawford and E M Knoer. Job matching with heterogeneous

�rms and workers. Econometrica, 49:437{450, 1981.

[DS88] Randall Davis and Reid G Smith. Negotiation as a metaphor for dis-

tributed problem solving. In Alan H Bond and Les Gasser, editors, Read-

ings in Distributed Arti�cial Intelligence, pages 333{356. Morgan Kauf-

mann, CA, 1988.

[DGS86] Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auc-

tions. Journal of Political Economy, 94(4):863{872, 1986.

[DKLP98] Christine DeMartini, Anthony M Kwasnica, John O Ledyard, and

David Porter. A new and improved design for multi-object iterative auc-

tions. Technical Report SSWP 1054, California Institute of Technology,

1998. Revised March 1999.

[DdlVP71] J H Dr�eze and D de la Vall�ee Poussin. A tâtonnement process for public

goods. Review of Economic Studies, 37:133{150, 1971.

[EP94] Carl Ehrman and Michael Peters. Sequential selling mechanisms. Eco-

nomic Theory, 4:237{253, 1994.

317

[FPS00] Joan Feigenbaum, Christos H Papadimitriou, and Scott Shenker. Sharing

the cost of multicast transmissions. Journal of Computer and System

Sciences, Special Issue on Internet Algorithms, 2000. To appear. Earlier

version in Proc. STOC 2000.

[FNSY96] Donald F. Ferguson, Christos Nikolaou, Jakka Sairamesh, and Yechiam

Yemini. Economic models for allocating resources in computer systems.

In Clearwater [Cle96], chapter 7, pages 156{183, 1996.

[FT91] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[FLBS99] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the

computational complexity of combinatorial auctions: Optimal and ap-

proximate approaches. In Proc. 16th International Joint Conference on

Arti�cial Intelligence (IJCAI-99), pages 548{553, 1999.

[Gib73] Allan Gibbard. Manipulation of voting schemes: A general result. Econo-

metrica, 41:587{602, 1973.

[Goo71] Irving John Good. Twenty-seven principles of rationality. In V P Godambe

and D A Sprott, editors, Foundations of Statistical Inference. 1971.

[GSS93] Robert L Graves, Linus Schrage, and Jayaram Sankaran. An auction

method for course registration. Interfaces, 23(5):81{92, 1993.

[GJJ77] Jerry R Green and Jean-JacquesLa�ont. Characterization of satisfactory

mechanisms for the revelation of preferences for public goods. Economet-

rica, 45:427{438, 1977.

[GL79] Jerry R Green and Jean-Jacques La�ont. On coailtion incentive compati-

bility. Review of Economic Studies, 46:243{254, 1979.

[GL87] Jerry R Green and Jean-Jacques La�ont. Limited communication and

incentive compatibility. In Groves et al. [GRR87], pages 308{329, 1987.

[GIP89] David M Grether, Mark Isaac, and Charles R Plott. The Allocation of

Scarce Resources. Westview, San Francisco, 1989.

[Gro73] Theodore Groves. Incentives in teams. Econometrica, 41:617{631, 1973.

318

[GL77] Theodore Groves and John O Ledyard. Optimal allocation of public goods:

A solution to the `free rider' problem. Econometrica, 45:783{810, 1977.

[Gro79] Theodore Groves. E�cient collective choice when compensation is possible.

Review of Economic Studies, 46:227{241, 1979.

[GRR87] Theodore Groves, Roy Radner, and Stanley Reiter, editors. Information,

Incentives, and Economic Mechanisms. University of Minnesota Press,

1987.

[GS99] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substi-

tutes. Journal of Economic Theory, pages 95{124, 1999.

[GS00] Faruk Gul and Ennio Stacchetti. The English auction with di�erentiated

commodities. Journal of Economic Theory, pages 66{95, 2000.

[Hal93] Susan Fraley Hallowell. Optimal Dispatching Under Uncertainty: With

Application to Railroad Scheduling. PhD thesis, The Wharton School,

University of Pennsylvania, 1993. OPIM TR 93-12-02.

[HTK98] Michael Harkavy, J D Tygar, and Hiroaki Kikuchi. Electronic auctions

with private bids. In Proc. 3rd USENIX Workshop on Electronic Com-

merce, 1998.

[Has99] Johan H_astad. Clique is hard to approximate within n1��. Acta Mathe-

matica, pages 627{636, 1999.

[HB00] Holger H Hoos and Craig Boutilier. Solving combinatorial auctions with

stochastic local search. In Proc. 17th National Conference on Arti�cial

Intelligence (AAAI-00), pages 22{29, 2000.

[Hor87] Eric J Horvitz. Reasoning about beliefs and actions under computational

resource constraints. In Proc. 3rd AAAI Workshop on Uncertainty in

Arti�cial Intelligence, pages 429{444, July 1987.

[HC95] Bernardo A Huberman and Scott Clearwater. A multi-agent system for

controlling building environments. In Proc. 1st International Conference

on Multi-Agent Systems (ICMAS-95), pages 171{176, 1995.

319

[HG00] Luke Hunsberger and Barbara J Grosz. A combinatorial auction for col-

laborative planning. In Proc. 4th International Conference on Multi-Agent

Systems (ICMAS-00), pages 151{158, 2000.

[Hur72] Leonid Hurwicz. On informationally decentralized systems. In C. McGuire

and Roy Radner, editors, Decision and Organization: A Volume in Honor

of Jacob Marchak. North-Holland, 1972.

[Hur75] Leonid Hurwicz. On the existence of allocation systems whose manipula-

tive Nash equilibria are Pareto optimal. unpublished, 1975.

[HW90] Leonid Hurwicz and Mark Walker. On the generic nonoptimality of

dominant-strategy allocation mechanisms: A general theorem that in-

cludes pure exchange economices. Econometrica, 58:683{704, 1990.

[KL98] Ehud Kalai and John O Ledyard. Repeated implementation. Journal of

Economic Theory, 83(2):308{317, 1998.

[KC82] Alexander S Kelso and Vincent P Crawford. Job matching, coalition for-

mation, and gross substitutes. Econometrica, 50:1483{1504, 1982.

[KG99] Charles D Kolstad and Rolando M Guzman. Information and the diver-

gence between willingness-to-accept and willingness-to-pay. J Env. Econ.

& Manag., 38(1):66{80, 1999.

[KHC91] David R Kraay, Patrick T Harker, and B Chen. Optimal pacing of trains

in freight railroads: Model formulation and solution. Operations Research,

39:82{99, 1991.

[KH95] David R Kraay and Patrick T Harker. Real-time scheduling of freight

railroads. Transportation Research-B, 29B(3):213{229, 1995.

[KCO97] Per Kreuger, Mats Carlsson, and Jan Olsson. The TUFF train scheduler{

trip scheduling on single-track networks. In CP97 Workshop on Industrial

Constraint-Directed Scheduling, Linz, Austria, 1997.

[KP98] Vijay Krishna and Motty Perry. E�cient mechanism design. Technical

report, Pennsylvania State University, 1998.

320

[Kuh55] Harold W Kuhn. The Hungarian method for the assignment problem.

Naval Research Logistics Quarterly, 2:83{97, 1955.

[LM82] Jean-Jacques La�ont and Eric Maskin. The theory of incentives: An

overview. In W Hildenbrand, editor, Advances in Economic Theory, pages

31{94. Cambridge University Press, 1982.

[LS00] Kate Larson and Tuomas W Sandholm. Deliberation in equilibrium: Bar-

gaining in computationally complex problems. In Proc. 17th National Con-

ference on Arti�cial Intelligence (AAAI-00), pages 48{55, 2000.

[LS01] Kate Larson and Tuomas W Sandholm. Costly valuation computation in

auctions. In Proc. Theoretical Aspects of Rationality and Knowledge VII,

2001. To appear.

[Led89] John O Ledyard. Incentive compatibility. In John Eatwell, Murray Mil-

gate, and Peter Newman, editors, Allocation, Information and Markets,

pages 141{151. W. W. Norton, 1989.

[LOP+00] John O Ledyard, Mark Olson, David Porter, Joseph A Swanson, and

David P Torma. The �rst use of a combined value auction for trans-

portation services. Technical Report Social Science Working Paper 1093,

California Institute of Technology, 2000.

[LPR97] John O Ledyard, David Porter, and Antonio Rangel. Experiments testing

multiobject allocation mechanisms. Journal of Economic and Management

Strategy, 6(3):639{675, 1997.

[Lee85] Tom K Lee. Competition and information acquisition in �rst price auc-

tions. Economics Letters, 18:129{132, 1985.

[LOS99] Daniel Lehmann, Liadan O'Callaghan, and Yoav Shoham. Truth revelation

in rapid, approximately e�cient combinatorial auctions. In Proc. 1st ACM

Conf. on Electronic Commerce (EC-99), pages 96{102, 1999.

[Leo83] Herman B Leonard. Elicitation of honest preferences for the assignment of

individuals to positions. Journal of Political Economy, 91:461{479, 1983.

321

[LS94] Dan Levin and James L Smith. Equilibrium in auctions with entry. Amer-

ican Economic Review, 84:585{599, 1994.

[Mal72] E Malinvaud. Prices for individual consumption, quantity indicators for

collective consumption. Review of Economic Studies, 39:385{405, 1972.

[Mar87] Thomas Marschak. Private versus direct revelation: Informational judge-

ments for �nite mechanisms. In Groves et al. [GRR87], pages 132{, 1987.

[MR72] Jacob Marschak and Roy Radner. Economic theory of teams. Yale Uni-

versity Press, New Haven, 1972.

[MCWG95] Andreu Mas-Colell, Michael D Whinston, and Jerry R Green. Microeco-

nomic Theory. Oxford University Press, 1995.

[Mat84] Steven A Matthews. Information acquisition in discriminatory auctions. In

M Boyer and R Kihlstrom, editors, Bayesian Models in Economic Theory.

North Holland, 1984.

[PMM87] R Preston McAfee and John McMillan. Auctions and bidding. Journal of

Economic Literature, 25:699{738, June 1987.

[McA92] R Preston McAfee. A dominant strategy double auction. J. of Economic

Theory, 56:434{450, 1992.

[MM96] R Preston McAfee and John McMillan. Analyzing the airwaves auction.

J Econ Perspect, 10:159{175, 1996.

[McM94] JohnMcMillan. Selling spectrum rights. Journal of Economic Perspectives,

8:145{62, 1994.

[Mil00a] Paul Milgrom. Putting auction theory to work: Ascending auctions with

package bidding. Technical report, Stanford and MIT, 2000.

[Mil00b] Paul Milgrom. Putting auction theory to work: The simultaneous ascend-

ing auction. Journal of Political Economy, 108:245{272, 2000.

[MW82] Paul Milgrom and Robert Weber. A theory of auctions and competitive

bidding. Econometrica, 50:1089{1122, 1982.

322

[MR88] John Moore and Rafael Repullo. Subgame perfect implementation. Econo-

metrica, 56(5):1191{1220, September 1988.

[MR74] Kevin Mount and Stanley Reiter. The informational size of message spaces.

Journal of Economic Theory, 8:161{191, 1974.

[MS99] Piero La Mura and Yoav Shoham. Expected utility networks. In Proc.

15th Conference on Uncertainty in Arti�cial Intelligence, pages 366{373,

1999.

[Mye79] Roger B Myerson. Incentive compatibility and the bargaining problem.

Econometrica, 47:61{73, 1979.

[Mye81] Roger B Myerson. Optimal auction design. Mathematics of Operation

Research, 6:58{73, 1981.

[Mye83] Roger B Myerson. Mechanism design by an informed principal. Econo-

metrica, 51:1767{1797, 1983.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner Privacy preserving auc-

tions and mechanism design. In Proc. 1st ACM Conf. on Electronic Com-

merce (EC-99), pages 129{139, 1999.

[Nas50] John Nash. Equilibrium points in n-person games. In Proceedings of the

National Academy of Sciences, volume 36, pages 48{49, 1950.

[Nis00] Noam Nisan. Bidding and allocation in combinatorial auctions. In Proc.

2nd ACM Conf. on Electronic Commerce (EC-00), pages 1{12, 2000.

[NR00] Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms.

In Proc. 2nd ACM Conf. on Electronic Commerce (EC-00), pages 242{252,

2000.

[NR01] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and

Economic Behavior, 35:166{196, 2001.

[OR94] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT

Press, 1994.

323

[PS82] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimiza-

tion: Algorithms and Complexity. Prentice-Hall, 1982.

[PUF99] David C Parkes, Lyle H Ungar, and Dean P Foster. Accounting for cog-

nitive costs in on-line auction design. In Pablo Noriega and Carles Sierra,

editors, Agent Mediated Electronic Commerce (LNAI 1571), pages 25{40.

Springer-Verlag, 1999. Earlier version appeared at the Agents'98 Work-

shop on Agent Mediated Electronic Trading, 1998.

[Par99] David C Parkes. iBundle: An e�cient ascending price bundle auction. In

Proc. 1st ACM Conf. on Electronic Commerce (EC-99), pages 148{157,

1999.

[PU00a] David C Parkes and Lyle H Ungar. Iterative combinatorial auctions: The-

ory and practice. In Proc. 17th National Conference on Arti�cial Intelli-

gence (AAAI-00), pages 74{81, 2000.

[PU00b] David C Parkes and Lyle H Ungar. Preventing strategic manipulation

in iterative auctions: Proxy agents and price-adjustment. In Proc. 17th

National Conference on Arti�cial Intelligence (AAAI-00), pages 82{89,

2000.

[Par01] David C Parkes. An iterative generalized Vickrey auction: Strategy-

proofness without complete revelation. In Proc. AAAI Spring Symposium

on Game Theoretic and Decision Theoretic Agents. AAAI Press, March

2001.

[PU01] David C Parkes and Lyle H Ungar. An auction-based method for de-

centralized train scheduling. In Proc. 5th International Conference on

Autonomous Agents (AGENTS-01), 2001. To appear.

[PKE01] David C Parkes, Jayant Kalagnanam, and Marta Eso. Vickrey-based sur-

plus distribution in combinatorial exchanges. In Proc. 17th International

Joint Conference on Arti�cial Intelligence (IJCAI-01), 2001. To appear.

324

[Plo97] Charles R Plott. Laboratory experimental testbeds: Application to the

PCS auction. Journal of Economics and Management Strategy, 6(3):605{

638, 1997.

[Por99] David P Porter. The e�ect of bid withdrawal in a multi-object auction.

Review of Economic Design, pages 73{97, 1999.

[Rad87] Roy Radner. Decentralization and incentives. In Groves et al. [GRR87],

pages 3{47, 1987.

[Rad92] Roy Radner. Hierarchy: The economics of managing. Journal of Economic

Literature, 30:1382{1415, 1992.

[Rad93] Roy Radner. The organization of decentralized information processing.

Econometrica, 61:1109{1146, 1993.

[RSB82] Stephen J Rassenti, Vernon L Smith, and Robert L Bul�n. A combinatorial

mechanism for airport time slot allocation. Bell Journal of Economics,

13:402{417, 1982.

[Rei74] Stanley Reiter. Informational e�ciency of iterative processes and the size

of message spaces. Journal of economic theory, 8:389{396, 1974.

[Rob87] John Roberts. Incentives, information and iterative planning. In Groves

et al. [GRR87], chapter 13, pages 349{374, 1987.

[RP76] John Roberts and Andrew Postlewaite. The incentives for price-taking

behavior in large exchange economies. Econometrica, 44:115{128, 1976.

[Rob79] Kevin Roberts. The characterization of implementable rules. In Jean-

Jacques La�ont, editor, Aggregation and Revelation of Preferences, pages

321{348. North-Holland, Amsterdam, 1979.

[RZ94] Je�rey S Rosenschein and Gilad Zlotkin. Rules of Encounter. MIT Press,

1994.

[RPH98] Michael H Rothkopf, Aleksandar Peke�c, and Ronald M Harstad. Com-

putationally manageable combinatorial auctions. Management Science,

44(8):1131{1147, 1998.

325

[RSP93] Stuart Russell, Devika Subramanian, and Ronald Parr. Provably bounded

optimal agents. In Proc. 13th International Joint Conference on Arti�cial

Intelligence (IJCAI-93), pages 338{344, 1993.

[Rus95] Stuart Russell. Ratonality and intelligence. In Proc. 14th International

Joint Conference on Arti�cial Intelligence (IJCAI-95), pages 950{957, Au-

gust 1995.

[RW91] Stuart Russell and Eric Wefald. Principles of metareasoning. Arti�cial

Intelligence, 49:361{395, 1991.

[Sam85] William F Samuelson. Competitive bidding with entry costs. Economic

Letters, 17:53{57, 1985.

[San93] Tuomas W Sandholm. An implementation of the Contract Net Protocol

based on marginal-cost calculations. In Proc. 11th National Conference on

Arti�cial Intelligence (AAAI-93), pages 256{262, July 1993.

[SL95] Tuomas W Sandholm and Victor R Lesser. Issues in automated negotiation

and electronic commerce: Extending the Contract Net framework. In Proc.

1st International Conference on Multi-Agent Systems (ICMAS-95), pages

328{335, 1995.

[SL96] Tuomas W Sandholm and Victor R Lesser. Advantages of a leveled com-

mitment contracting protocol. In Proc. 13th National Conference on Ar-

ti�cial Intelligence (AAAI-96), pages 126{133, July 1996.

[San96] Tuomas W Sandholm. Limitations of the Vickrey auction in computational

multiagent systems. In Second International Conference on Multiagent

Systems (ICMAS-96), pages 299{306, 1996.

[SL97] Tuomas W Sandholm and Victor R Lesser. Coalitions among computa-

tionally bounded agents. Arti�cial Intelligence, 94(1{2):99{137, 1997.

[San99] Tuomas W Sandholm. An algorithm for optimal winner determination in

combinatorial auctions. In Proc. 16th International Joint Conference on

Arti�cial Intelligence (IJCAI-99), pages 542{547, 1999.

326

[San00] Tuomas W Sandholm. Issues in computational Vickrey auctions. Interna-

tional Journal of Electronic Commerce, 4:107{129, 2000.

[San94] Jayaram K Sankaran. On a dynamic auction mechanism for a bilateral

assignment problem. Mathematical Social Sciences, 28:143{150, 1994.

[Sat75] Mark A Satterthwaite. Strategy-proofness and Arrow's conditions: Exis-

tence and correspondence theorems for voting procedures and social wel-

fare functions. Journal of Economic Theory, 10:187{217, 1975.

[Sch97] James Schummer. Strategy-proofness vs. e�ciency on restricted domains

of exchange economies. Social Choice and Welfare, 14:47{56, 1997.

[ST01] Yoav Shoham and Moshe Tennenholtz. On rational computability and

communication complexity. Games and Economic Behavior, 35:197{211,

2001.

[SBG94] Avraham Shtub, Jonathan F Bard, and Shlomo Globerson. Project Man-

agement: Engineering, Technology and Implementation. Prentice-Hall,

Inc., 1994.

[Sim76] Herbert A Simon. From substantive to procedural rationality. In S J Latsis,

editor, Method and Appraisal in Economics, pages 129{148. Cambridge

University Press, 1976.

[Ste96] Mark Stegeman. Participation costs and e�cient auctions. Journal of

Economic Theory, 71:228{259, 1996.

[SDK+94] Michael Stonebraker, Robert Devine, Marcel Kornacker, Witold Litwin,

Avi Pfe�er, Adam Sah, and Carl Staelin. An economic paradigm for query

processing and data migration in Mariposa. In Proc. 3rd Int. Conf. on

Parallel and Distributed Information Systems, pages 58{67, 1994.

[TKDM00] Moshe Tennenholtz, Noa K�r-Dahav, and Dov Monderer. Mechanism de-

sign for resource bounded agents. In Proc. 4th International Conference

on Multi-Agent Systems (ICMAS-00), 2000.

327

[TW81] Jorgen Tind and Laurence A Wolsey. An elementary survey of general

duality theory in mathematical programming.Mathematical Programming,

21:241{261, 1981.

[Var95] Hal R Varian. Economic mechanism design for computerized agents. In

Proc. USENIX Workshop on Electronic Commerce, 1995. Minor update,

2000.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed

tenders. Journal of Finance, 16:8{37, 1961.

[vNM47] John von Neumann and Oskar Morgenstern. Theory of Games and Eco-

nomic Behavior. Princeton University Press, second edition, 1947.

[dVV00] Sven de Vries and Rakesh V Vohra. Combinatorial auctions: A brief

survey. Technical report, MEDS Department, Kellogg Graduate School of

Management, Northwestern University, 2000.

[WWY00] William E Walsh, Michael P Wellman, and Fredrik Ygge. Combinato-

rial auctions for supply chain formation. In Proc. ACM Conference on

Electronic Commerce, pages 260{269, 2000.

[Wel93] Michael P Wellman. A market-oriented programming environment and

its application to distributed multicommodity ow problems. Journal of

Arti�cial Intelligence Research, 1:1{23, 1993.

[Wel96] Michael P Wellman. Market-oriented programming: Some early lessons.

In Clearwater [Cle96], chapter 4, pages 74{95, 1996.

[WWWMM01] Michael P Wellman, William E Walsh, Peter R Wurman, and Je� K

MacKie-Mason. Auction protocols for decentralized scheduling. Games

and Economic Behavior, 35:271{303, 2001.

[WWO+01] Michael P Wellman, Peter R Wurman, Kevin O'Malley, Roshan Bangera,

Shou-de Lin, Daniel M Reeves, and William E Walsh. Designing the mar-

ket game for a trading agent competition. IEEE Internet Computing, pages

43{51, 2001.

328

[Wil99] Steven R Williams. A characterization of e�cient, Bayesian incentive-

compatible mechanisms. Economic Theory, 14:155{180, 1999.

[Wol81a] Laurence A Wolsey. Integer programming duality: Price functions and

sensitivity analysis. Mathematical Progamming, 20:173{195, 1981.

[Wol81b] Laurence A Wolsey. A resource decomposition algorithm for general math-

ematical programs. Mathematical Programming Study, 14:244{257, 1981.

[Wur99] Peter R Wurman. Market Structure and Multidimensional Auction Design

for Computational Economies. PhD thesis, University of Michigan, 1999.

[WW99] Peter R Wurman and Michael P Wellman. Equilibrium Prices in Bundle

Auctions. In AAAI-99 Workshop on Arti�cial Intelligence for Electronic

Commerce, pages 56{61, 1999.

[WWW00] Peter R Wurman and Michael P Wellman and William E Walsh. A param-

eterization of the auction design space. Games and Economic Behavior,

35:304{338, 2001.

[WW00] Peter R Wurman and Michael P Wellman. AkBA: A progressive,

anonymous-price combinatorial auction. In Second ACM Conference on

Electronic Commerce, pages 21{29, 2000.

329

