
c© Manuscript date August 25, 2010

The S-Cube Book

Springer

Preface

Many research organizations in Europe have developed research agendas on
services and service-based systems. However, until now there has not been a
concerted effort to address broader services research and technology require-
ments and associated barriers that cuts across multiple scientific disciplines.
Although cross-cutting research needs are frequently mentioned, the chal-
lenges they present are beyond the ability of any single group of researchers to
solve. S-Cube, the Software Services and Systems (Research) Network, aims
at bridging this gap by creating a unified, multidisciplinary, vibrant research
community and by defining a broader research vision and perspective, and
shape the future Internet of Services.

Based on a thorough analysis of the state of the art, this book elaborates
on the key research challenges that need to be faced when developing the
next generation of service-based systems and the research vision of S-Cube
that arise from these challenges. The book starts with an overview of the
Internet of Service initiative, a primary motivation for the work of S-Cube.
We then explore the cross-cutting research challenges inherent in the Internet
of Services before introducing the S-Cube research framework in the remainder
of the book. Separate chapters cover each S-Cube’s research areas:

• Service Technologies
– Chapter 2: Business Process Management,
– Chapter 3: Service Composition & Coordination,
– Chapter 4: Service Architectures & Infrastructures.

• Service Engineering Techniques & Methods
– Chapter 5: Modeling & Specification of Quality of Service,
– Chapter 6: Analytical Quality Assurance,
– Chapter 7: Service Engineering,
– Chapter 8: Adaptation of Service-Based Systems,
– Chapter 9: Service Automation Aspects.

Contents

Preface . V

1 The S-Cube Research Vision . 1
1.1 The Internet of Services . 1
1.2 Cross-Cutting Research Challenges . 3

1.2.1 Considering Contextual Information for Service-based
Systems . 3

1.2.2 Cross-Layer and Pro-Active Monitoring and Adaptation . 4
1.2.3 End-to-end Quality Provision . 6
1.2.4 Autonomic Service Infrastructure . 6
1.2.5 Concepts, Languages and Mechanisms for Agile Service

Networks . 7
1.2.6 Fragmentation of Service Compositions and their

Coordination . 8
1.2.7 Coherent Lifecycle for Adaptable and Evolvable

Service-based Systems . 9
1.3 The S-Cube Research Framework . 11
1.4 The Interaction View . 14

1.4.1 SED Interactions with Technology Layers 14
1.4.2 SED Interactions with Service Techniques & Methods

Planes . 16
1.4.3 SAM Interactions with Technology Layers 16
1.4.4 SAM Interactions with Service Techniques & Methods

Planes . 18
1.4.5 SQ Interactions with Technology Layers 19
1.4.6 SQ Interactions with Technology Planes 20

1.5 The Lifecycle & Runtime Views . 20
1.5.1 The Lifecycle View . 21
1.5.2 The Runtime View . 22

1.6 Adaptive services in context . 24
1.6.1 Case studies for SBA and their documentation process . . 24

VIII Contents

1.6.2 Validation methodology . 25
1.7 Chapter Conclusions . 25
References . 26

2 Business Process Management . 27
Francois Hantry, Mike Papazoglou, Willem-Jan van den Heuvel,
Rafique Haque, Eoin Whelan, Noel Carroll, Dimka Karastoyanova,
Frank Leymann, Christos Nikolaou, Winfried Lammersdorf,
Mohand-Said Hacid

2.1 Introduction: Towards Business Transaction Management 27
2.2 Essential Characteristics of Business Transactions 33

2.2.1 Business Transaction Overview . 34
2.3 Requirements of a Business Transaction Language 38
2.4 Illustrating Scenario . 43
2.5 Business Transaction Model . 45

2.5.1 High-Level Concepts of Business Transaction 46
2.5.2 Overview of Business Transaction Model 48

2.6 Initial Design of Business Transaction Language (BTL) 50
2.7 Summary and Outlook . 52
References . 54

3 Service Composition . 57
George Baryannis, Olha Danylevych, Dimka Karastoyanova, Kyriakos
Kritikos, Philipp Leitner, Florian Rosenberg, Branimir Wetzstein

3.1 Introduction . 57
3.2 Service Composition Models and Languages 59

3.2.1 Service Orchestration . 59
3.2.2 Service Choreography . 61
3.2.3 Service Coordination . 63
3.2.4 Service Assembly . 65
3.2.5 Semantic WS Composition . 66

3.3 Service Composition Synthesis Approaches 69
3.3.1 Model-Driven Service Composition 69
3.3.2 QoS-aware Service Composition . 72
3.3.3 Automated Service Composition . 77

3.4 Summary . 80
References . 81

4 Adaptation of Service-Based Systems . 89
Raman Kazhamiakin, Salima Benbernou, Luciano Baresi, Pierluigi
Plebani, Maike Uhlig, Olivier Barais

4.1 Introduction . 89
4.1.1 Aims and Focus of the Chapter . 91

4.2 Adaptation Taxonomy . 93
4.2.1 Conceptual Model . 93
4.2.2 Adaptation Taxonomy . 94

Contents IX

4.3 Survey Results . 100
4.3.1 Adaptation in Business Process Management 100
4.3.2 Adaptation in Service-Oriented Architectures 102
4.3.3 Comparison of the Adaptation Approaches 115

4.4 Related Works on Adaptation in Software Systems 121
4.4.1 Adaptation in Component-based Systems 121
4.4.2 Adaptation in Software Product Line Engineering 122

References . 125

5 Architectures & Infrastructure . 129
Françoise André, Ivona Brandic, Erwan Daubert, Guillaume Gauvrit,
Maurizio Giordano, Gabor Kecskemeti, Attila Kertész, Claudia Di
Napoli, Zsolt Nemeth, Jean-Louis Pazat, Harald Psaier, Wolfgang
Renz, Jan Sudeikat

5.1 Introduction . 129
5.2 Service infrastructures for Adaptation,

Monitoring & Management of Services . 131
5.2.1 Introduction . 131
5.2.2 Self-adaptation . 132
5.2.3 Self-management . 132
5.2.4 Monitoring Infrastructure . 133
5.2.5 Adaptation Infrastructure . 138
5.2.6 Management Infrastructure . 143

5.3 Future Challenges . 148
5.3.1 Self-* Properties: Main Research Directions 148
5.3.2 Bio-Inspired Decentralized Self-Organization in Service

Infrastructures . 149
5.3.3 Nature inspired models for service management 153

5.4 Chapter Summary . 156
References . 157

6 Modeling and Negotiating Service Quality 163
Salima Benbernou, Ivona Brandic, Cinzia Cappiello, Manuel Carro,
Marco Comuzzi, Attila Kertesz, Kyriakos Kritikos, Michael Parkin,
Barbara Pernici, Pierluigi Plebani

6.1 QoS Specification . 163
6.1.1 Main QoS Artifacts . 164
6.1.2 QoS Taxonomies . 166
6.1.3 Formalisms for Modeling and Specifying QoS

Characteristics . 169
6.1.4 Trust and Security QoS Models and Formalisms 183

6.2 QoS Negotiation . 184
6.2.1 QoS Negotiation in Web Services and Semantic Web

Services . 185
6.2.2 Negotiation Protocols in Grid Computing 190

X Contents

6.2.3 QoS Negotiation in Security . 196
6.3 General Observations . 205

6.3.1 QoS Specification Observations . 205
6.3.2 QoS Negotiation Observations . 206

References . 207

7 Analytical Quality Assurance . 217
Andreas Metzger, Salima Benbernou, Manuel Carro, Maha Driss,
Gabor Kecskemeti, Raman Kazhamiakin, Kyriakos Krytikos, Andrea
Mocci, Elisabetta Di Nitto, Branimir Wetzstein, Fabrizio Silvestri

7.1 Motivation . 217
7.2 Review Methodology . 219
7.3 Fundamentals . 220
7.4 Classification Framework . 223
7.5 Testing . 226

7.5.1 Test Case Generation . 226
7.5.2 Test Execution . 230
7.5.3 Testing Frameworks and Tools . 232
7.5.4 Online Testing . 236
7.5.5 Classification of Testing Techniques 236

7.6 Monitoring . 239
7.6.1 Web Service Monitoring . 239
7.6.2 Process Monitoring and Mining . 241
7.6.3 Grid Monitoring . 242
7.6.4 Classification of Monitoring Techniques 243

7.7 Analysis . 246
7.7.1 Modelling and Simulation . 246
7.7.2 Verification of Service Compositions 248
7.7.3 Classification of Analysis Techniques 258

7.8 Observations and Future Research Directions 258
References . 264

8 Service Engineering . 275
Vasilios Andrikopoulos, Antonio Bucchiarone, Elisabetta Di Nitto,
Raman Kazhamiakin, Stephen Lane, Valentina Mazza, Ita Richardson

8.1 Context . 275
8.2 Preliminary definitions . 276

8.2.1 Agents and Actors . 277
8.2.2 Service Based Applications . 278
8.2.3 Types of services . 278

8.3 Engineering Service Based Application . 279
8.3.1 SBA life cycles . 279
8.3.2 Life cycle Phases . 285

8.4 Software Engineering Practices relevant to Service Based
Applications . 312

Contents XI

8.4.1 Classical Software Engineering . 312
8.4.2 Business Process Methodologies . 327

8.5 Gaps . 331
8.6 Conclusion . 334
References . 334

9 Architecture Views illustrating the Service Automation
Aspect of SOA . 343

Qing Gu, Félix Cuadrado, Patricia Lago, Juan C. Duenãs
9.1 Introduction . 343
9.2 Background information . 345

9.2.1 Architecture views . 345
9.2.2 Management system for SBAs . 346

9.3 The requirements for illustrating the automation aspect of
SBAs . 347
9.3.1 The Service Deployment and Configuration Architecture 349
9.3.2 BankFutura: An application of the SDCA to an

enterprise domaina . 351
9.3.3 HomeFutura - An application of the SDCA to a

personal domain . 353
9.3.4 Summary. 356

9.4 The automation decision view . 357
9.4.1 The automation decision view for the SDCA 358
9.4.2 The automation decision view for BankFutura 359
9.4.3 The automation decision view for HomeFutura 360

9.5 The degree of service automation view . 361
9.5.1 The degree of service automation view for the SDCA . . . 362
9.5.2 The degree of automation view for BankFutura 362
9.5.3 The degree of automation view for HomeFutura 363

9.6 The automation-related data view . 363
9.6.1 The automation-related data view for the SDCA 364
9.6.2 The automation-related data view for BankFutura 364
9.6.3 The automation-related data view for HomeFutura 369

9.7 The power of visualization . 371
9.8 Observation . 372
9.9 Conclusion . 374
References . 375

1

The S-Cube Research Vision

Chapter Overview This chapter sets the scene and gives the background for S-
Cube’s research vision and activities described in the remainder of the book. It
does this by describing, in Section 1.1, how the anticipated growth in services and
service-based systems that together will help form the Internet of Services will have
a profound effect on business and society. Section 1.2 discusses in more detail some
selected, fundamental cross-cutting research challenges and how the cooperation of
different research disciplines plays an important role. In Section 1.3 we describe the
research framework S-Cube has adopted to assist in unifying research communities
and agendas across Europe to meet the challenges faced in realizing the Future
Internet.

1.1 The Internet of Services

The next decade holds the prospect of remarkable progress in a wide range
of pervasive technologies culminating in the introduction of the Future In-
ternet — a global, open platform with emphasis on mobility, massive scale
of connected devices, increased bandwidth and digital media. The goal is
the development of a converged information, communication and service in-
frastructure that gradually will replace the current Internet, mobile, fixed,
satellite and audiovisual networks. This infrastructure will not only be per-
vasive, ubiquitous, and highly dynamic, but will also offer almost unlimited
capacities to users, by supporting a wide variety of nomadic and mobile inter-
operable devices and services, a variety of content formats and a multiplicity
of delivery modes. Beyond technological aspects, the Future Internet is likely
to have a profound effect on our society, from a societal, organizational or
business perspective. Future Internet-based systems are set to revolutionize
the worlds of healthcare, agriculture, the environment, transport, telecommu-
nications, manufacturing, distribution, recycling, and retailing, to name just
a few application areas, so much that the Future Internet could be of huge
benefit to mankind.

2

Central to this vision is the availability of rich and flexible service capabil-
ities, where the Internet world comprises of cooperating services with appli-
cation components than can be combined dynamically with little effort into
globally value-added services that can be traded outside traditional owner-
ship and provisioning boundaries to yield higher levels of productivity. With
these technological changes on the horizon, there is enormous potential for
global availability software services that gravitate towards new kinds of high-
speed networks that employ a multiplicity of wired and wireless devices, sen-
sors (e.g., RFID) and other service delivery artifacts. With global availability
service-related functions are independent of the underlying devices, platform
characteristics, connectivity protocols and transport technologies. This not
only widens considerably the scope of systems but also provides the possibil-
ity of developing a new range of innovative systems, which can be provisioned
by widely distributed network infrastructures.

In this new environment, software services (or simply services) constitute
self-contained computational elements that support rapid and flexible com-
position of loosely coupled distributed software systems. The functionality
provided by a service can range from answering simple requests to executing
sophisticated processes requiring peer-to-peer relationships between a multi-
tude of service consumers and providers. Services are described, published,
discovered, and can be assembled to create complex service-based systems
and service-based systems, which are inherently distributed. For the service
consumer, a service represents functionality that can be invoked through the
service interface. The actual software or application logic that implements the
service composition is owned by the service provider. However, the composed
service itself as well as the services which are aggregated by the composed ser-
vice are often owned, executed and maintained by third parties. Thus, services
take the concept of ownership to the extreme: not only is the development,
quality assurance, and maintenance of the software under the control of third
parties, but the software can also be executed and managed by third parties.

Software services and service-based systems imply fundamental changes to
how software is developed, deployed, and maintained. More specifically, three
broad classes of challenges need to be addressed:

• Evolution and Adaptation: Service-based systems run in dynamic busi-
ness environments and address constantly evolving requirements. These
systems hence have to be able to adequately identify, and react to vari-
ous changes in the business requirements and application context. Besides
run-time mechanisms and strategies to support system adaptation, this
also requires novel engineering and design approaches that consider those
mechanisms and strategies during the construction of those systems.

• Dynamic Quality Assurance: To provide the desired end-to-end quality of
globally distributed service-based systems, the dynamic agreement and as-
surance of quality becomes a key issue. This requires that not only quality
aspects are negotiated and agreed, but also that those are checked during

3

run-time. Further, to address dynamic adaptations of service-based sys-
tems, a growing need for automating the negotiation of quality attributes
(e.g., stipulated by SLAs) can be observed. Finally, validation and verifi-
cation techniques that can be applied at run-time become essential.

• Interplay of Technology Layers: Currently, the common practice for de-
veloping service-based applications (SBAs) following the Service-Oriented
Architecture (SOA) paradigm considers three technology layers: service
infrastructure, service composition and coordination, and business process
management (BPM). When setting out to build innovative software ser-
vices and service-based systems of the future, relying on the current layers
of the SOA will not suffice. For example, the interplay of the layers must be
understood to avoid conflicting adaptations in different layers. Also, each
layer impacts on the end-to-end quality of a service-based system and thus
needs to be taken into account.

Having set the scene for the Internet of Services, the following section describes
in detail selected research challenges arising from it. As we will show, these
challenges cut-across many scientific disciplines, techniques and approaches,
demand a coordinated interplay between the building blocks of the S-Cube
research framework and together represent the focus of research in software
systems for the next decade.

1.2 Cross-Cutting Research Challenges

This section identifies typical research challenges arising from the Internet
of Services that have helped to form the S-Cube research framework. The
purpose of this section is not to be exhaustive but rather to highlight some of
the representative research challenges S-Cube will address.

1.2.1 Considering Contextual Information for Service-based
Systems

The information about the context in which service-based systems are exe-
cuted as well as their users impact on the expected behaviour and quality of
the systems. To consider contextual information for service-based systems we
face the following challenges:

1. Context modeling approaches are required to facilitate the description
of the context, in which the service-based application is embedded. This
requires understanding the different context facets, such as the business
context facet (e.g., stakeholders, regulations, business trends and business
objects), the user context facet (e.g., end-user preferences and settings,
as well as tasks and activities), the application operational context facet
(e.g., protocols and networks, devices, and their properties) and so forth.

4

The context description thereby needs to consider context facets rang-
ing from the business (i.e., business process management) layer to the
lower level operational context of service-based systems and the service
infrastructure.

2. Using and managing context information. The resulting context models
are key to support the selection, realisation and enactment of adaptation
actions through service engineering and design. As input for extending the
existing and for defining novel monitoring and adaptation approaches that
are capable of explicitly considering and reasoning upon such information
through service adaptation and monitoring techniques, context models
need to be exploited, collected, refined, and integrated.

3. Context issues in service discovery, selection, and negotiation. Another rel-
evant impact of context can be observed in service discovery and registries
which are devised by the service infrastructure layer and are exploited
by composition and coordination techniques and methods. Specifically,
feedback-based service discovery deals with finding the impact of human
activities and social relationships among service users on the evaluation
of the quality of experience in service consumption. Thus, concepts which
allow for gathering, storing, exchanging and evaluating quality of experi-
ence metrics (which are also relevant for service quality) are needed. To
address dynamic adaptation of service-based systems, a growing need for
automating the selection, negotiation and agreement of quality attributes
(e.g., as stipulated by SLAs) can be observed (also see Section 1.2.4 below).
This issue requires considering — in an explicit form — user interaction
and experience patterns developed for service engineering and design, as
these may impact on the negotiation itself.

4. Context-driven adaptation and monitoring. Service-based systems should
be equipped with the required mechanisms to adapt quickly to changes
in the systems context, particularly at run-time. This requires – besides
others – identifying and codifying the relevant context information such
that it can be monitored and exploited to trigger adaptations.

1.2.2 Cross-Layer and Pro-Active Monitoring and Adaptation

The existing adaptation and monitoring approaches are not adequate for the
purposes of future service-based systems. They are very fragmented and thus
only address specific problems, particular application domains or particular
types of systems. Often, the monitoring solutions are isolated from the adapta-
tion needs and approaches. What is ultimately needed is a holistic framework
for adaptation and monitoring, which leads to the below key research prob-
lems:

1. Cross-layer monitoring and adaptation. Integration of the monitoring ap-
proaches across the technology layers is crucial for future service-based
application provisioning, as it provides a way to properly locate, evaluate

5

and cross-correlate the source of the problem leading to an adaptation and
its impact. Together with cross-layer adaptation, this will allow properly
identifying and propagating the necessary adaptation activities in different
elements of the service-based application, while avoiding conflicting adap-
tations. Cross-layer monitoring and adaptation will require the integration
of currently isolated monitoring and adaptation mechanisms available at
different functional layers into the holistic cross layer approach. In addi-
tion, the cross-correlation of different quality levels monitored across the
different layers will become relevant (also see Section 1.2.3 below).

2. Cross-life-cycle integration of monitoring and adaptation. Cross-life-cycle
integration requires monitoring and adaptation techniques that exploit
synergies between the knowledge and mechanisms available at different
phases of the life-cycle of the service-based application. This allows de-
vising new monitoring approaches (e.g., exploiting post-mortem process
analysis for prediction) or adaptation decision mechanisms (e.g., explore
previous decisions and adaptation effects to select proper adaptation strat-
egy). This problem needs to be considered by research into service engi-
neering and design and service adaptation and monitoring — the latter
providing the reference points of the relevant principles and approaches
available at different phases of the service-based application life-cycle.

3. Proactive adaptation. In contrast to reactive adaptation (i.e., an adapta-
tion that is performed after a deviation or critical change has occurred),
proactive adaptation offers significant benefits, like not having to com-
pensate for deviation. Therefore, there is a need to perform adaptation
not only reactively, as it is done in existing approaches, but also proac-
tively. This will prevent negative and undesired situations by anticipating
the decisions and adaptation activities. Realizing techniques for proactive
adaptation will require consideration of the following issues:
• A cornerstone of a proactive adaptation technique is the ability to pre-

dict critical changes in service-based application functioning and its
delivered quality is needed. As an example, quality prediction can be
addressed through novel run-time quality assurance techniques. Lo-
cal quality assurance mechanisms and techniques of the technology
stack — from business process management to service coordination
and composition and service infrastructure — as well as techniques
from software engineering constitute important inputs for those novel
quality assurance techniques.

• Based on the predicted quality values, the service-based application
can be modified in advance. This would mean to adaptation techniques
and mechanisms that are based on the predicted knowledge. In contrast
to the existing approaches that select and realize adaptation strategies
based on current information, novel approaches should provide a way
to make those decisions and realization while relying upon predicted,
anticipated situations.

6

• To support pro-active adaptation, proactive negotiation and agreement
techniques are needed. Otherwise, effective run-time SLA negotiation
will not be feasible, since negotiation does imply significant computa-
tional costs.

1.2.3 End-to-end Quality Provision

Each functional layer and each service provider contributes to the end-to-
end quality of a service-based system. Thus, to assure end-to-end quality,
the different quality characteristics (like reliability or performance) and their
dependencies must be understood and the different quality levels as stipulated
in individual quality contracts (e.g., as part of SLAs) need to be aggregated.
For the establishment of end-to-end quality, we face the following research
problems:
1. End-to-end quality definition. To enable end-to-end quality definition, an

end-to-end quality reference model and an according quality definition
language is key. This requires understanding and aligning the quality at-
tributes relevant for to the technologies involved at the business process
management, service composition and coordination and service infrastruc-
ture levels as well as the quality attributes relevant for software engineer-
ing and design. Such a model and language will enable the definition of
end-to-end quality for service-based systems, which can be used as an re-
quirements engineering techniques developed for service engineering and
design and monitoring techniques and mechanisms developed through re-
search into service adaptation and monitoring.

2. Aggregating quality levels across layers. The challenge is to achieve an
understanding on how to aggregate quality levels stipulated in individual
quality contracts (e.g., as part of SLAs) across layers and across networks
of service providers and consumers. This will support assessing the end-to-
end quality of a service-based application and will, for example, be relevant
for cross-layer monitoring techniques. Starting point can be the quality
attributes and their relationships as provided by the quality reference
model.

1.2.4 Autonomic Service Infrastructure

To reduce the cost and improve the reliability of making changes to complex
service-based systems, new technologies are needed which support automated,
dynamic system adaptation via self-configuring architectural service models
and performance-oriented run-time gauges. Self-(re)-configuring service-based
systems can automatically leverage distributed service infrastructures and re-
sources to create an optimal architectural configuration according to the re-
quirements of the system characteristics. There are various adaptation mech-
anisms for bootstrapping and initial configuration of service infrastructures
but there are few solutions that solve run-time adaptation by reconfiguration.

7

At the service infrastructure layer one significant challenge is to provide
autonomic behavior for services, which would enable them to, for instance,
remain healthy, conform to SLAs and make the optimal use of resources.
In the general case, an autonomic infrastructure involves dealing with the
following open research problems jointly with the other framework building
blocks:

• Autonomic infrastructure support. High-level policies and objectives are
needed for establishing methods for decision making, realizing pro-active
and reactive adaptation and studying collaboration with middleware and
operating system level resource allocation. This involves, for instance, cre-
ating optimal infrastructures for service value networks at the business
process management level. Also, existing research results from the au-
tonomic/organic computing area need to be leveraged for service-based
systems.

• Automated quality support. Autonomic behavior of services and service-
based systems also implies a growing need for automating the selection,
negotiation and agreement of quality attributes and SLAs. Thus, novel au-
tomated quality negotiation and assurance techniques need to be devised.

1.2.5 Concepts, Languages and Mechanisms for Agile Service
Networks

The detailed literature survey in S-Cube revealed two key classes of broad
research challenges in business process management of service-based systems
that realize agile service networks (ASNs): (1) design-time and (2) run-time
challenges. We have identified a number of open problems for each of these
classes of challenges:

1. Design-time concepts, mechanisms and languages for specifying, analyz-
ing, and simulating end-to-end processes in agile service networks. This
challenge requires improving our understanding of service engineering and
design principles and methodologies, as well as quality definition and ne-
gotiation techniques. In addition, this challenge will be addressed in close
alignment with ongoing research in service composition and coordination
as well as the enabling service infrastructure. In particular, this issue in-
volves at least overcoming the following three impediments:
• Exploring, developing and validating effective techniques, concepts,

languages and mechanisms for analyzing, modelling and simulating
end-to-end business processes in ASNs. In particular, a deeper under-
standing of existing service engineering methodologies.

• Developing and validating approaches for analysis and formal verifica-
tion of business protocols involving bi-lateral and multi-lateral agree-
ments between network nodes. Solutions should be grounded on ex-
isting approaches and techniques in protocol engineering, as well as

8

devising quality of service schemes for service-based systems and Ser-
vice Level Agreements.

• Analysis and design techniques for business-aware transaction concepts
and mechanisms to support business protocols in ASNs are typically
very traditional in nature addressing traditional, short-running data-
base transactions and thereby ignore important business semantics in-
cluding multi-party agreements on QoS. This challenge is also related
to research into service quality and service engineering and design.

2. Concepts, mechanism and languages for run-time monitoring of business
transactions. To overcome this challenge will require a better understand-
ing of existing adaptation and monitoring approaches, techniques and so-
lutions. Some of these approaches are scrutinized in service adaptation and
monitoring approaches. This challenge requires addressing the following
open problems:
• Existing transaction monitors typically limit themselves to sniffing

and aggregating system-level events. An integrated approach includ-
ing mechanisms and concepts for monitoring and measuring business
events raised by business-aware transactions and related protocols and
processes is currently lacking. This will particularly benefit from on-
going research with regard to service adaptation and monitoring and
business activity monitors in particular.

• While existing business transaction monitors may be able to detect
and measure system-level errors and anomalies in service-based sys-
tems, mechanisms and concepts for adapting business-aware trans-
actions and related protocols and processes in ASNs are not yet ef-
fectively supported. In particular, the development of adaptation of
business-aware transactions can be grounded on existing adaptation
techniques and methods.

1.2.6 Fragmentation of Service Compositions and their
Coordination

Business processes and service compositions realizing those processes can be
created faster and at lower cost if process fragments are reused. This approach
requires the separation and unique identification of reusable (sub-objective)
content and their encapsulation in business process fragments (i.e. building
blocks such as service patterns or templates) to rapidly tailor service compo-
sitions as users or individual application needs demand. This challenge intro-
duces a number of open research problems:

1. Mechanisms for fragmentation. Reasons and criteria for the fragmentation
of service compositions need to be identified (e.g. outsourcing, resource
workload distribution and optimization, organizational (re-distribution)
and relevant mechanisms for process fragmentation need to be developed.
This topic requires service engineering and design principles and method-

9

ologies and is used for decomposition of complex service networks in busi-
ness process management.

2. Reusable process fragments. Mechanisms for creating parameterised frag-
ments from repeatable service compositions (and business sub-processes)
are required, which are based on best practices facilitating application
and systems delivery and development. Such reusable customized and/or
differentiated service patterns can be offered by service providers to their
customers. This topic requires service engineering and design principles
and methodologies.

3. Coordination of fragments. There is a lack of coordination protocols to
maintain the original composition logic of fragmented processes. Depend-
ing on the fragmentation reasons and criteria, as well as on the fragmen-
tation mechanisms, the coordination protocols may be different. These
protocols can be used for coordination of business transactions at the
business process management layer.

4. Cross-layer adaptation support. Fragmentation may lead to conflicts
across the layers during an adaptation of a service-based application.
Thus, a deep understanding of the fragmentation techniques and strate-
gies is needed to support devising the cross-layer adaptation strategies
(see Section 1.2.2 above).

1.2.7 Coherent Lifecycle for Adaptable and Evolvable
Service-based Systems

In Section 1.5.1, we have already highlighted the importance of a life cycle for
service-based systems and mentioned that the S-Cube life cycle model focuses
on all aspects concerned with adaptation of such systems. The life cycle mod-
els for SBAs that are currently presented in the literature are mainly focused
on the phases that precede the release of software and, even in the cases in
which they focus on the operation phases, they do not consider the possibil-
ity for SBAs to adapt dynamically to new situations, contexts, requirement
needs, service faults, and the like. Moreover, they do not seem to pay much
attention to the importance of humans both in the application development
and operation phases. There are some initiatives that aim at supporting so
called Human-Provided Services. However, to this day, there has been little in-
tersection between research in service-centric systems and Human-Computer
Interaction (HCI). Thus, many research issues need to be considered and ad-
dressed. The ones we consider most relevant are the following:

1. Requirements elicitation and design for adaptation. Adaptation can be
addressed both on the fly, while the SBA is being executed, or it can
require a new design and development cycle (in this case we talk about
evolution). The conception of the Agile Service Network (see Section 1.2.5
above) down to the implementation of the corresponding composition and
the infrastructure has to be designed and developed in such a way that

10

it is able to recognize an adaptation need and to act accordingly. This
means that not only the application logic needs to be analysed, designed,
and developed, but also the context in which the system is executed (see
Section 1.2.2 above) as well as the rules that will allow the identification
of the adaptation and evolution strategy to be chosen (see Section 1.2.4
above). The effects on these issues encompass also the requirements en-
gineering phase. If classical requirements elicitation can be simplified as
the system can work even in the presence of missing or misunderstood re-
quirements, new kinds of requirements, i.e., requirements for adaptation,
need to be identified and have to result in a corresponding implementa-
tion. In general, the affects of designing for adaptation on the system life
cycle are, if at all, partial understood.

2. Extended operation phase. The operation phase is not only reduced to
the simple execution and monitoring of the application, but it requires
also adaptation needs to be identified and the corresponding adaptation
strategies to be enacted (see Figure 1.3 and Section 1.2.2 above). The
way the operation and the adaptation cycle are managed depends also
on the autonomic features offered by the underlying infrastructure (see
Section 1.2.4 above) and on their programmability. In principle, this last
aspect can have an impact also on the way the application is designed,
deployed, and configured.

3. Incorporate end to end quality within the life cycle: Quality assurance has
an impact on all aspects of the life cycle. Therefore, the issues highlighted
in Section 1.2.3 above have to be properly incorporated into the various
phases of the SBA life cycle. Quality characteristics to be assessed and
ensured should be identified since the requirement analysis phases and
should concern not only functional but also extra-functional character-
istics. Moreover, similar to the application, these quality characteristics
change over time, and their changes have to be identified and assessed
over time.

4. Control and improve the life cycle. It is normal practice in software en-
gineering to apply approaches to improve development and operation
processes. In the area of service-based systems, little attention has been
paid so far to this aspect. However, we feel that, especially to foster the
adoption of the service-based approach in companies working in regula-
tory environments, we need to ensure that all development and operation
activities in the life cycle are somehow measured and kept under control,
and process improvement approaches are put in place. This may seem
contrasting with the adaptation aspect. Thus, understanding the inter-
play between life cycle control and improvement on the one hand, and
application adaptation on the other hand becomes a critical aspect.

5. Develop HCI knowledge for service engineering. Human specificities, di-
versity, and tasks characteristics need to be taken into account when engi-
neering service-based systems. This requires at least (1) the identification

11

of HCI knowledge that delivers enhanced or new capabilities for service-
based systems; (2) the codification of this knowledge for its application to
the development and use of service-based systems.

1.3 The S-Cube Research Framework

Having described the context for research into software services this section
describes the S-Cube research framework, which is organized around the six
building blocks depicted in Figure 1.1. These blocks are organized in two:
the service technology layers and the service techniques and methods planes.
The technology layers consist of Service Infrastructure (SI), Service Com-
position & Coordination (SCC) and Business Process Management (BPM),
whilst the service techniques and method planes contains Service Adapta-
tion & Monitoring (SAM), Service Engineering & Design (SED) and Service
Quality Definition, Negotiation & Assurance (SQ).

or
in

g

si
gn

&
 M

on
ito

A
M

)

Business
Process

Mgt. (BPM)

ng
 &

 D
es

ED
)

pt
at

io
n

&
(S

A Composition &
Coordination

(SCC)

gi
ne

er
in (S

E

A
da

p

Infra-
structure

(SI)

En
g

Q lit D fi iti N ti ti & AQuality Definition, Negotiation & Assurance
(SQ)

Fig. 1.1. Overview of the S-Cube Research Framework

The benefit of adopting such an approach is that the S-Cube research
framework provides a clear distinction between technology-focussed approaches
of the service technology layers and the cross-cutting principles, techniques
and methods provided by the techniques and method planes that together

12

exploit and integrate the capabilities of the technology layers. Each of the
elements in the framework is now briefly described with reference to where
the full description and treatment of each research area can be found in this
book.

Service Technologies

• Business Process Management (BPM): The BPM layer provides mech-
anisms for expressing, understanding, representing and managing enter-
prises that are organized in service networks, which may be loosely defined
as a large, geographically dispersed and complex networks of collaborating
and transacting value-adding services. Service networks furnish a collec-
tion of business processes built on top of composed services by the SCC
layer, and are responsive to the business environment of internal or exter-
nal events. Organizations that are organized in service networks use BPM
facilities to coordinate work between people and systems, with the ultimate
goal of improving organizational efficiency, responsiveness and reliability,
strategic measures (business performance management), and their correla-
tion as the basis for continuous process improvement and innovation. The
state of the art and future research directions for this aspect of service
technologies are described in Chapter 2.

• Service Composition & Coordination (SCC): The SCC layer encompasses
the functions required for the aggregation of multiple services into a single
composite service offering. The execution of the constituent services in a
composition is controlled through the SI layer. In addition to managing
the control flow, this layer also manages data flow between the services
in a composition, for example by specifying workflow models and using a
workflow engine for runtime control of service execution. SCC technologies
and research are set out in Chapter 3.

• Service Infrastructure (SI): The SI layer represents the most basic layer
of the S-Cube framework and supports services communication primitives
and utilizes service middleware and architectural constructs that connect
heterogeneous systems, provide multiple-channel access to services, and
introduces a runtime environment for the execution of services. The SI
layer provides infrastructure capabilities for defining basic communication
patterns and interactions involving the description, publishing, finding and
binding of services. It also provides facilities for analyzing and aggregat-
ing historical data to support, for example, predictive adaptation. A full
description of this research area and S-Cube’s activities in this domain is
given in Chapter 4.

Service Principles, Techniques & Methods

• Service quality definition, negotiation and assurance (SQ): This plane in-
volves principles, techniques and methods for defining, negotiating and

13

assuring end-to-end quality and conformance to SLAs. It provides novel
facilities to detect problems and deviations in systems before quality is
impacted and triggers the adaptations coordinated by the SAM plane to
pro-actively respond to these situations. To detect and resolve problems in
service-based systems, different quality attributes (aka. quality characteris-
tics) need to be measured for a service, including throughput, utilization,
service availability, response time, transaction rate, service throughput,
service idle time, service usability and so on. End-to-end quality provision
implies that those different quality attributes must be understood and cor-
related across the technology stack layers: service infrastructure, service
composition, and business process management. The modeling, specifica-
tion and analytical analysis of qualities of service in S-Cube are described
in Chapters 5 and 6.

• Service Engineering and Design (SED): The SED plane provides the princi-
ples, techniques and methods that interweave and exploit the mechanisms
provided by the technology stack with the aim of developing high-quality
service-based systems. The SED plane provides requirements engineering
and design principles and techniques, which – in conjunction with context,
HCI and quality knowledge – help to create high-quality service-based
systems. For example, the SED plane provides specifications that guide
the service composition and coordination layer in composing services in a
manner that guarantees that the composition does not produce spurious
results and that the overall system behaves in a correct and unambiguous
manner. Similarly, the SED plane provides specification to the BPM and
SAM layers. Moreover, the SED plane aims at establishing, understand-
ing and managing the entire service lifecycle, including identifying, finding,
designing, developing, deploying, evolving, quality assuring, and maintain-
ing services. Further details about how this area supports the technology
layers can be found in Chapter 7.

• Service Adaptation and Monitoring (SAM): Service-based systems should
possess the ability to continuously adapt themselves in reaction to context
changes such as evolving user or customer requirements or the appearance
of new services. In addition, service-based systems should also possess the
ability to predict problems, such as potential degradation scenarios and
erroneous behavior (e.g., exceptions/deviations from expected behavior)
and move toward resolving them. The SAM plane supports monitoring,
predicting and governing the activities of a distributed services-system
and performing control actions to adapt the entire services technology
stack, for example in cases where individual services need to evolve and
adapt their functionality and characteristics to be able to interoperate
with other services. S-Cube’s approach to the evolution and adaptation of
service-based systems is described in full in Chapter 8.

14

1.4 The Interaction View

The SED, SQ and SAM planes operate in close concert with the BPM, SCC
and SI layers to handle evolving and adaptable services and service-based
systems. Figure 1.2 depicts the interactions between the three planes and the
three technology layers. In the following sections we briefly characterize these
interactions between the building blocks of the S-Cube framework.

1

Business
Process

Management Design

Local Design
Capabilities

Local A&M
Capabilities

A&M

Adaptation and Monitoring Specifications

Integrated Adaptation and Monitoring Capabilities
Engineering

and
Design
(SED)

Adaptation
and

Monitoring
(SAM)

2

2

1

5
5

(BPM)

Service
Composition

& Coordination
(SCC)

Design
Specifications

Design
S ifi ti

Local Design
Capabilities

Local A&M
Capabilities

A&M
Specifications

A&M
S ifi ti

2

3

3

6

6

(SCC)

Service
Infrastructure

(SI)

Specifications

Design
Specifications

Local Design
Capabilities

Local A&M
Capabilities

Specifications

A&M
Specifications

4

47

7

Lo
ca

l Q
D

N
A

C
ap

ab
ili

tie
s

Q
D

N
A

Sp
ec

ifi
ca

tio
ns

nt
eg

ra
te

d
Q

D
N

A
C

ap
ab

ili
tie

s
Q

D
N

A
Sp

ec
ifi

ca
tio

ns

Q
D

N
A

C
ap

ab
.

Q
D

N
A

Sp
ec

.

10

10

8a

8a

9

9

M
on

it.
 C

ap
ab

.

M
on

it.
 S

pe
c.

8b

8b

Quality Definition, Negotiation & Assurance
(SQDNA)

I

Fig. 1.2. Interactions between the elements of the S-Cube Research Framework

1.4.1 SED Interactions with Technology Layers

The service engineering and design plane provides methodological guidance to
the three technology layers in order to help develop sound, complex, and con-
tinuously evolving service-based systems. Taking the capabilities and features
offered by the three technology layers into account, the integrated SED tech-
niques and methods specify a service-based application. Resulting restrictions
and constraints for the mechanism and capabilities provided by the technol-
ogy layers are passed to the corresponding layers which adjust their behavior
accordingly. An example for such a restriction is the disabling of a mechanism
provided by the SI plane (e.g., virtualization of the infrastructure) for a par-
ticular service-based application. In addition, if adaptations of the SAM plane

15

do not suffice, the SED plane also supports the evolution of a service-based
system (e.g., by means of re-design) based on evolution requests received, e.g.,
from the three technology layers.

SED & Business Process Management (BPM)

Approaches and mechanisms for Agile Service Networks (ASN) and business
process definition developed in the BPM layer are incorporated and used in
requirement engineering and high level design techniques of the SED plane.
In addition the BPM layer provides the techniques and methods of the SED
plane with knowledge on mechanisms for detecting the need for adaptation
at the business level (·). Further, the SED plane aims at aligning ASN and
SCC and provides guidelines as how to construct end-to-end service networks
supporting the business processes (). Such information describes all the re-
sources used to generate the process outcome, including people, technology,
procedures and any other resources linked together for the capabilitys specific
purpose. For example, it provides knowledge about transaction volumes, the
number and value of transactions per business process step, how long it takes
to deal with transactions between process steps, process cycle times, wait-time
between events, and so on.

SED & Service Composition and Coordination (SCC)

To allow creating meaningful service compositions for realizing business
processes, the SCC layer provides a service composition meta-model and ser-
vice composition techniques to the SED plane (¸). To assist in composing
services in a manner that guarantees consistency (i.e., that composite services
do not lead to spurious results and that the overall process behaves in a correct
and unambiguous manner) the SED plane specifies the use of the mechanisms
in the SCC layer (®). During the operation an evolution of the service-based
application might be required, for example, to adjust the application to con-
textual changes. Thereupon, (re-)design activities, which produce updated or
even new specifications for the SCC layer are initiated. (Also see the lifecycle
description in Section 1.5.1).

SED & Service Infrastructure (SI)

To run a service-based application in the most appropriate run-time environ-
ment, the main input from the SI layer to the SED plane is knowledge about
infrastructural services, e.g., service discovery or search facilities, which are
in turn used to guide the lifecycles design and runtime phases (¹). The SED
techniques and methods provide specifications to the SI layer which restrict
the SI mechanisms and capabilities for describing, publishing and discovering
services and on how to run that service-based application (¯). Thereby, the SI

16

layer, under consideration of the specifications from the SED plane, chooses
the most appropriate architecture and run-time environment for the service
application.

1.4.2 SED Interactions with Service Techniques & Methods Planes

To drive the continuous adaptation of a service-based application across all
three technology layers and to guarantee a constant quality of the application,
the interactions between the SED plane and the SAM and SQ planes are as
follows:

SED & Adaptation and Monitoring (SAM)

The Adaptation and Monitoring plane (see Section 1.5.1) provides monitoring
and adaptation principles, techniques and methods. It communicates their
capabilities to the SED plane. These capabilities are taken into account when
designing the service-based system (¶). In turn, the SED plane specifies which
monitoring and adaptation principles can be used for the service-based system
at hand (¬). Also, the SED plane provides the SAM plane with codified
knowledge about the application context and about user types, which will
be exploited for monitoring the context of the service-based application as
well as for pro-actively adapting the application. This means that the SED
plane is responsible for “design for adaptation”, while the SAM plane enacts
adaptation.

SED & Service Quality Definition, Negotiation and Assurance
(SQ)

The SQ plane provides techniques to ensure the quality of a service-based
application during its lifecycle. It communicates the capabilities of those tech-
niques to the SED plane ¿). The SED plane takes this knowledge into account
when designing the service-based application. It specifies which quality defin-
ition, negotiation and assurance techniques are used during the design of the
service-based application (µ). In addition, the SQ plane will offer a quality
reference model and an end-to-end quality modeling language together with
quality negotiation techniques, which are envisioned to be integrated in the
lifecycle of service-based systems (addressed in the SED plane). Further, the
SED plane provides HCI knowledge in the form of user and task models as well
as knowledge about potential systems contexts to the SQ plane which exploits
this knowledge, e.g., when devising automated negotiation techniques.

1.4.3 SAM Interactions with Technology Layers

The adaptation and monitoring plane describes interactions with the three
technology stack layers and what type of knowledge needs to be provided

17

to these three layers in order to control, to steer and to successfully adapt
complex service-based systems. The current convention is that each technology
layer focuses separately on providing local adaptation mechanisms. However,
in S-Cube the adaptation mechanisms employed by SAM adopt a holistic
view of all local perspectives and cross-correlate events and data to provide a
unified and more complete solution to service adaptation problems that span
more than one technology layer.

The SAM plane receives monitoring events and data gathered and pro-
duced by each of the three technology layers. The SAM plane analyses those
events and data and decides whether the service-based systems needs to be
adapted and if so, how the system should be adapted. In the case of an adap-
tation, the SAM plane steers the three technology layers by invoking the
adaptation mechanisms across the three layers needed to achieve the required
adaptations. In essence, the SAM plane takes a logically centralised decision
(involving human actors if needed) about the adaptation based on analysing
and cross-correlating technology layer-specific monitoring events and data. It
thereby rectifies partially overlapping and even conflicting adaptations intro-
duced by each of the local layers.

SAM & Business Process Management (BPM)

The efficient management of services entails new techniques and methods
in monitoring large networks. The SAM plane uses knowledge of business
events (º) that cause changes to processes in service networks to recognize
and respond to these events and manage process changes (°). The SAM
plane detects the event patterns that indicate potential process changes and
correlates the relationships between possibly independent or isolated events
and event-driven processes, such as causality, membership and timing.

SAM & Service Composition and Coordination (SCC)

Based on the monitoring events and data provided by the SCC layer (») as
well as other monitoring events and data obtained from the BPM and SI layers,
the SAM plane derives specifications to ensure that service compositions are
able to function in spite of changes of constituent services in the composition
and in spite of context changes (±). The intention is to catch and repair
faults and predict behavior (to the extent possible) so as to reduce as much as
possible the need of human intervention for adapting services to subsequent
changes, while guaranteeing QoS and SLA requirements. During the operation
of the service-based application, concrete monitoring events are provided by
the SCC layer. These are analyzed and cross-correlated by the inter-layer
adaptation techniques in the SAM plane taking into account monitoring events
from the other technology layers. If required, this leads to adaptation triggers
which are enacted by the SCC layer. Also see the lifecycle description in
Section 1.5.1.

18

SAM & Service Infrastructure

The SAM plane typically gathers information about the service platform,
managed resource status and performance (e.g., root cause analysis, SLA
monitoring and reporting, service deployment, and lifecycle management and
capacity planning) and communicates this information to the SAM layer
(¼).Vice versa, the SAM plane communicates adaptation request to the SI
layer (²). The SAM has the knowledge to detect system malfunctions and ini-
tiate policy-based corrective actions without disrupting the service infrastruc-
ture. Corrective actions could, for example, involve a server altering its state or
effecting changes in other components in the service infrastructure as a result
of a changing service composition that may create uncharacteristically high
processing loads. In this way, service-based solutions as a whole become
more resilient because day-to-day operations are less likely to fail. Further,
triggered by the SAM plane, the SI layer supports the automatic tuning of
service resources. For example, a tuning action could lead to the realloca-
tion of resources such as in response to dynamically changing workloads to
improve overall utilization, or ensuring that particular business processes or
transactions can be completed in a timely fashion.

1.4.4 SAM Interactions with Service Techniques & Methods
Planes

In addition, we envision interactions of the SAM plane with the SED and SQ
planes in order to control, steer and successfully adapt complex service-based
systems.

SAM & Service Engineering and Design (SED)

The SED and SAM planes work closely together to jointly handle adaptive
services and service-based systems by exchanging relevant information. To
achieve this synergy, the SAM plane contains knowledge required to predict,
sense and respond as required for service and process adaptability. In a sense,
SED designs for adaptation, while SAM provides techniques to enact adapta-
tion. These interactions are described in more detail from the perspective of
the SED plane in Section 1.4.2.

SAM & Service Quality (SQ)

These interactions are described in Section 1.4.6 from the perspective of the
SQ plane.

19

1.4.5 SQ Interactions with Technology Layers

The SQ plane focuses on achieving end-to-end service quality and SLA confor-
mance and thus complements the SED and SAM planes. It provides assurances
with respect to relevant quality attributes (e.g., KPIs) that drive an end-to-
end service composition. In general, the SQ plane integrates and correlates
the quality attributes, also known as quality characteristics, and the local
quality negotiation and assurance techniques provided by each of the three
technology layers (SI, SCC, BPM) (¾). This will result in the SCube quality
reference model and end-to-end quality definition language. Based on the ref-
erence model and language, novel quality assurance techniques and methods
of the SQ plane will provide guidance to all three technology layers to mea-
sure, negotiate and assure, among others, the quality of business processes,
the quality of service (QoS) and the quality of information (´).

SQ & Business Process Management (BPM)

The BPM layer provides knowledge on how quality characteristics of running
processes could be expressed in the form of real-time and historical reports
(¾). The techniques of the SQ plane, together with the mechanisms of the
BPM layer (´) enable the detection of deviations from KPI target values,
such as the percent of requests fulfilled within the limits specified by a SLA,
and might trigger an alert and an escalation procedure, or even might propose
changes to affected process models (i.e., trigger an adaptation in cooperation
with the SAM plane) thus enabling them to achieve their goals. The BPM layer
will provide mechanisms for keeping metrics aligned to corporate objectives in
order to help understand how to continually improve processes and underlying
IT resources to most effectively contribute to the organizations overall goals.

SQ & Service Composition and Coordination (SCC)

By exploiting the quality reference model, the SQ plane provides information
to help achieve QoS-aware service compositions (´). This requires under-
standing and respecting composed service policies, performance levels, secu-
rity requirements, SLA stipulations, and so forth. An illustrative example can
be provided when considering security as a quality attribute1. Here, knowing
that a new composed service adopts a Web services security standard such
as one from the stack of WS-Security specifications would not be enough in-
formation to enable successful composition. The client needs to know if the
services in the business process actually require WS-Security, what kind of
security tokens they are capable of processing, and which one they prefer.
Moreover, the client must determine if the service should communicate using
signed messages. If so, it must determine what token type must be used for
the digital signatures. Finally, the client must decide on when to encrypt the
messages, which algorithm to use, and how to exchange a shared key with

20

the service. For example, a purchase order service in an order management
process may indicate that it only accepts username tokens that are based
singed messaged using X.509 certificate that is cryptographically endorsed by
a third party (¾).

SQ & Service Infrastructure (SI)

It is envisioned that the SQ plane exploits service infrastructure data (like per-
formance statistics) (¾) to support the assessment of platform effectiveness,
permit complete visibility into individual service compositions, guarantee con-
sistency of service compositions, and ultimately assure end-to-end SLAs. This
might require a better visibility into individual service compositions, which in
turn might require new infrastructure capabilities, like dedicated test inter-
faces for services (´). To devise quality prediction techniques of the SQ plane,
it is envisioned that novel infrastructure technology, like reputation systems,
are exploited.

1.4.6 SQ Interactions with Technology Planes

SQ & Service Engineering and Design (SED)

The SQ plane complements the SED plane in developing complex and con-
tinuously evolving service-based systems. These interactions are described in
more detail from the perspective of the SED plane in Section 1.4.2.

Interactions with SAM

The SQ plane provides to the SAM plane quality prediction techniques ca-
pabilities that facilitate the development of integrated, proactive adaptation
techniques (½a). To support pro-active adaptation, the SQ plane further pro-
vides pro-active negotiation techniques and offers an end-to-end quality defi-
nition language used, among others, by the cross-layer monitoring techniques
devised by the SAM plane. Vice versa, the SAM plane stipulates specifica-
tions for the quality definition, prediction and negotiation techniques of the
SQ plane (³a). In the opposite direction, SAM provides to SQ integrated
monitoring capabilities for the purpose of checking at run-time that expected
quality is met (³b). Analogously, monitoring specifications are passed from
the SQ to SAM (½b). Synergies between monitoring and other quality assur-
ance techniques (like testing or model analysis) are envisioned to be jointly
explored between the SAM and the SQ planes.

1.5 The Lifecycle & Runtime Views

To elaborate further on the S-Cube research vision, this section describes two
further views of the research framework and activities of the network:

21

• In Section 1.5.1 we elaborate on the lifecycle view on our S-Cube research
framework which focuses on analyzing, identifying, designing, developing,
deploying, finding, provisioning, evolving, and maintaining service-based
systems.

• In Section 1.5.2 we sketch the run-time view of our research framework
which structures the implementation, deployment, and management of
distributed service-based systems with a focus on assembling, deploying,
and managing those systems.

1.5.1 The Lifecycle View

The S-Cube framework places emphasis on avoiding the pitfalls of deploying
an uncontrolled maze of services and therefore provides a holistic and solid
approach for service development in an orderly fashion so that services can be
efficiently combined into service-based systems. The SCube framework views
service-based systems as an orchestrated set of service interactions. It adopts
a broader view of its impact on how the service-based solutions are designed,
what it means to assemble them from disparate services, and how deployed
services-oriented systems can evolve and be managed. This requires addressing
common concerns such as the identification, specification and realization of
services, their flows and composition, as well as ensuring the required quality
levels.

In their early use of SOA, many enterprises assumed that they could port
existing components to act as Web services by merely creating wrappers and
leaving the underlying component untouched. Since component methodolo-
gies focus on the interface, many developers assume that these methodologies
apply equally well to service-oriented environments. As a consequence, imple-
menting a thin SOAP/WSDL/UDDI layer on top of existing systems or com-
ponents that realize the services is by now widely practiced by the software
industry. Yet, this is in no way sufficient to construct commercial strength
service-based systems. Unless the nature of the component makes it suitable
for use as a service, and most components are not suited to this, for instance,
because they are tightly coupled to other components, it takes serious thought
and redesign effort to properly deliver a components functionality through a
service. While relatively simple Web services may be effectively built that way,
a service-based development methodology is required to specify, construct, re-
fine and customize highly flexible service-based systems from internally and
externally available components and services. More importantly, older soft-
ware development paradigms for object-oriented and component-based devel-
opment cannot be blindly applied to SOA and services.

The service lifecycle model envisioned by the S-Cube framework relies on
a twin development and adaptation cycle. The development cycle addresses
the classical development and deployment lifecycle phases, while the second
cycle extends the classical lifecycle by explicitly defining phases for addressing

22

 Adaptation Evolution

Construction

Requirements
Engineering and

Design

Deployment &
Provisioning

Operation &
Management

Identify Adaptation
Needs

Identify Adaptation
Strategy

Enact Adaptation

Fig. 1.3. The S-Cube Lifecycle View

changes and adaptations (see Figure 1.3). The S-Cube service lifecycle model
builds on established practices from software engineering.

The service lifecycle model captures a highly iterative and continuous
method for developing, implementing, and maintaining services in which feed-
back is continuously cycled to and from phases in iterative steps of refinement
and adaptations of all three layers of the technology stack. To that effect the
method facilitates designing solutions as assemblies of services in which the as-
sembly description is a managed, first-class aspect of the solution, and hence,
amenable to analysis, change, and evolution. The method accommodates con-
tinuous modifications of service-based systems and its quality (e.g., QoS and
KPIs) at all layers. Continuous modifications (evolutions and adaptations)
are based on monitoring and measurement of service execution against SLAs
and quality goals. In this way, the S-Cube reference lifecycle is enabled to
continuously a) detect new problems, changes, and needs for adaptation, b)
identify possible adaptation strategies, and c) enact them. These three steps
are depicted on the left hand side of Figure 1.3. Once service-based systems (or
parts thereof) have been adapted, they will be re-deployed and re-provisoned
and put into operation.

More details on the S-Cube lifecycle can be found in S-Cube deliverable
CD-JRA-1.1.2 “Separate design knowledge models for software engineering
and service-based computing” [1]

1.5.2 The Runtime View

S-Cubes run-time view depicts a conceptual run-time architecture which
structures the implementation, deployment, and management of distributed
service-based systems with a focus on assembling, deploying, and managing
those systems. The run-time architecture supports service invocations, mes-
sage, and event-based interactions with appropriate service levels and manage-

23

ability (see Figure 1.4). In essence the S-Cube run-time architecture envisions
providing containers and engines for hosting and providing services that can
be assembled and orchestrated and are available for use by any other service
on the communication backbone. Once a service is deployed into a service
container it becomes an integral part of the S-Cube run-time architecture
and thus can be used by any application or service. The service container
hosts, manages, and dynamically deploys services and binds them to external
resources, e.g., data sources, enterprise and multi-platform systems. The dif-
ferent engines (e.g., composition, monitoring, adaptation, etc) are working in
tandem to execute a service-based application. These engines rely heavily on
techniques and methods provided by the SED, SAM and SQ planes.

ne
r

ne
r tio

n

y st
ry

ct

ur
e

ce er

Software
Service

Se
rv

ic
e

C
on

ta
in Human

Service

Se
rv

ic
e

C
on

ta
in

Se
rv

ic
e

C
om

po
si

En
gi

ne

D
is

co
ve

ry
an

d
re

gi
s

In
fr

as
tr

ucResource

R
es

ou
rc

C
on

ta
in

e

Communication backbone

in
g

io
n

tio
n

e
Q

A

Ad t ti N ti ti
Test cases,

M
on

ito
ri

En
gi

ne

A
da

pt
at

En
gi

ne

N
eg

ot
ia

t
En

gi
ne

R
un

tim
e

En
gi

ne

Monitoring
logic

Adaptation
logic

Negotiation
logic

,
runtime
models …

Fig. 1.4. The S-Cube Runtime View

The communication backbone facilitates the communication among any
kind of service, regardless of whether the service is a core service or an ap-
plication specific service. In particular, the communication backbone allows
access to both core services and application specific services which are de-
ployed within a container. An application specific service exposes a dedicated
interface to access the application specific functionalities provided by the ser-
vice. In contrast, a core service offers a management interface for controlling
the behavior of the container or, in particular, for the deployment and op-
eration of an application specific service. Examples for core services are an
engine for executing service compositions, a discovery service, or an engine
for monitoring the behavior of a service-based application. Exposing core ser-
vices and application services on the same communication backbone enables
interactions between the two logical levels and is one of the key elements of
the conceptual run-time architecture proposed.

More details on the S-Cube run-time view can be found in S-Cube deliv-
erable CD-IA-3.1.1 “Integration Framework Baseline” [2].

24

1.6 Adaptive services in context

The software services as studied in S-Cube pose research challenges in contexts
of applications characterized by high variability, dynamic service invocation,
quality of service requirements, and flexibility and evolution. One of the goals
of S-Cube is to analyze the research results within cases studies characterized
by the use of services in a flexible way, derived from an analysis of real case
studies n which the above mentioned needs are particularly relevant.

The case studies in S-Cube are derived from industrial experiences within
the NESSI platform 1 and from industrial experiences presented by the S-
Cube partners. However, within S-Cube the need is not only that of applying
research results within a real or realistic case study, but also to analyze the
characteristics of these case studies in order to compare the results obtained
from validation. Therefore, in order to make the research results comparable,
a methodology suited for the description of case studies in service-based ap-
plications has been developed, together with strategies to link the validation
of research results to the research challenges and research questions defined
within the S-Cube Integrated Research framework. This section briefly de-
scribes the case-studies developed for service-based applications in S-Cube,
with an introduction to the validation process.

1.6.1 Case studies for SBA and their documentation process

Five case studies have been studied, each focusing of different flexibility and
adaptation needs:

• vineyard management and wine production
• complex and geographically distributed supply chain in the automotive

sector
• E-Health and, in particular, the management of Complex Diagnostic Work-

flows
• E-Government

In the first case study, the focus is two aspects of wine production and dis-
tribution: harvesting of the grapes and the logistics to deliver the product to
retailers. Within harvesting of grapes, observation of the vineyard parameters
and reacting to critical conditions that may happen during the cultivation
phase are crucial, and supported by a service-based adaptive sensor network.
Critical conditions may be represented by overcoming the threshold for some
particular environmental parameter. In product delivery, a flexible distribu-
tion network is envisioned, supported by agile service networks, and with the
need of supporting business transactions.

In the automotive SBA, the focus a flexible approach which allows dif-
ferent distribution logistics providers to participate in the SBA to provide
1 http://www.nessi-europe.com/

25

the transportation of finished products from the manufacturing factory to the
warehouses, and from the warehouses to the retail customers. The providers
are dynamically selected according to the transportation routes and rules.
The evaluation of KPIs in processes and linking them to quality of service
in service compositions, when some tasks are outsourced, poses new research
challenges in the management of these SBAs.

The e-health case study seeks to provide new kind of services and a better
integration of new and existing ones, thus supporting the work of the overall
healthcare staff. In particular, this case study takes the viewpoint of medical
staff and the patient during a diagnostic workflow. The focus is on integra-
tion issues arising in dynamically evolving SBAs and in developing efficient
processes in a distributed users environment. In such a context also critical
issues concerning security aspects are considered.

In the e-government case study the goal is to improve the efficiency of
public sector, avoiding the time spent to reach different offices or waiting
in queue, resulting in an improvement of the offered services and a better
accessibility and transparency of the public services. Not only citizens may
be the users of the government application, but we can image that all the
government agencies of a city could share data about the citizens and have
the need to access to the services of the application, in order to make available,
at any time, all the needed information. The focus is on a seamless integration
of services provided within a given geographical area, with guaranteed service
and security levels.

1.6.2 Validation methodology

A validation methodology for the results of S-Cube has been developed based
on the above mentioned case studies.

For each case study, a description is provided in terms of business goals,
expressing the main purposes of some system in the terms of the business do-
main in which the system will live or currently lives; domain assumptions and
constraints, reporting properties of the domain or restrictions on the design
of the system architecture; domain description, phenomena occurring in the
world together with the laws that regulate such a world; abstract scenario de-
scription as a way to describe world phenomena, which correspond to concrete
detailed scenarios in the case study.

The definition of detailed scenarios is to validate research, relating each
scenario to specific research questions. Each scenario is described in terms of
involved actors, a detailed operational description, problems and challenges
posed by the scenario, non-functional requirements and constraints.

1.7 Chapter Conclusions

S-Cube sets out to address cross-cutting research challenges faced when en-
gineering, designing, adapting, operating and evolving the next generation

26

of services and service-based systems for the Internet of Services. The re-
search in S-Cube is guided by the S-Cube research framework, which clearly
distinguishes between principles and methods for engineering and adapting
service-based systems and the technology and mechanisms which are used
to realize those systems, while taking into account cross-cutting issues like
quality. By synthesizing and integrating diversified knowledge across different
research disciplines, S-Cube aims at delivering the novel principles, techniques
and methods for the service-based systems of the future.

The remainder of this book is structured as follows:

• Service Technologies
– Chapter 2: Business Process Management,
– Chapter 3: Service Composition & Coordination,
– Chapter 4: Service Architectures & Infrastructures.

• Service Engineering Techniques & Methods
– Chapter 5: Modeling & Specification of Quality of Service,
– Chapter 6: Analytical Quality Assurance,
– Chapter 7: Service Engineering,
– Chapter 8: Adaptation of Service-Based Systems,
– Chapter 9: Service Automation Aspects.

References

1. Vasilios Andrikopoulos (Editor). Separate Design Knowledge Models for Soft-
ware Engineering & Service-Based Computing. Contractual Deliverable CD-
JRA-1.1.2, S-Cube Network of Excellence, March 2009.

2. Marco Pistore (Editor). Integration Framework Baseline (including initial defin-
ition of interfaces among layers). Contractual Deliverable CD-IA-3.1.1, S-Cube
Network of Excellence, March 2009.

2

Business Process Management

Francois Hantry1, Mike Papazoglou2, Willem-Jan van den Heuvel2, Rafique
Haque2, Eoin Whelan3, Noel Carroll3, Dimka Karastoyanova4, Frank
Leymann4, Christos Nikolaou5, Winfried Lammersdorf6, and Mohand-Said
Hacid1

1 Université Claude Bernard Lyon 1, France
2 Tilburg University, The Netherlands
3 Lero — the Irish Software Engineering Research Centre, Ireland
4 University of Stuttgart, Germany
5 University of Crete, Greece
6 University of Hamburg, Germany

Chapter Overview Business process management is one of the core drivers of
business innovation and is based on strategic technology and capable of creating
and successfully executing end-to-end business processes. The trend will be to move
from relatively stable, organization-specific applications to more dynamic, high-value
ones where business process interactions and trends are examined closely to under-
stand more accurately an applications needs. Such collaborative, complex end-to-end
service interactions give rise to the concept of Service Networks (SNs).

This book chapter surveys business process management, concentrating on busi-
ness transactions, and introduces a business transaction language to realizes a novel
business transaction model that enables end-to-end service constellations to behave
according to agreed-upon transaction criteria. The objective of the BTL is to pro-
vide the environment to build robust and successful mission-critical SBAs, using
a fusion of concepts from application integration, transaction-based and business
process management technologies.

2.1 Introduction: Towards Business Transaction
Management

Over the past decade, Business Process Management (BPM) emerged as both
a management principle and a suite of software technologies focusing on bridg-
ing diverse systems, organizations, people, and business processes [7]. BPM is
an information technology-enabled management discipline that treats business
processes as assets to be valued, designed and enhanced in their own right.
BPM technologies support both human-centric processes (claims process-
ing, accounts payable or customer servicing) and system-intensive processes

28 Authors Suppressed Due to Excessive Length

(straight-through processing or trade settlement), as well as a mixture of both
(e.g., loan granting).

BPM is the capability to discover, design, deploy, execute, interact with,
operate, optimize and analyze end-to-end business processes, and to achieve
this at the level of business design (modeling, designing, simulating and re-
designing business processes) and not purely technical implementation. We
may therefore define BPM as: a strategy and associated technology for man-
aging and improving the performance of an enterprise or value-chain through
continuous monitoring and optimization of business processes in a closed-loop
cycle of modeling, execution, and measurement.

BPM tools are far less effective without a method and strategy for defining,
measuring, and improving processes [8]. BPM is a structured approach that
aims to improve agility and operational performance and under this light it
represents a fundamental change in how organizations manage and run their
operational business processes. It treats business processes as organizational
building blocks with its lying focus in managing the efficiency and effective-
ness of business processes throughout the organization or integrated supply
chains. It achieves this by modeling, automating, managing, monitoring and
optimizing any business process.

The ideas behind modern BPM are not new, though the term itself
was only introduced in the early 2000s. BPM follows initiatives established
throughout the 1980s and 1990s such as Total Quality Management (TQM),
Business Process Reengineering (BPR), Enterprise Resource Planning (ERP)
and Enterprise Application Integration (EAI). These methodologies all strove
to improve the performance of enterprises through measurement, restructur-
ing, automation, and business process integration techniques.

The trend in BPM will be to move from relatively stable, organization-
specific applications to more dynamic, high-value ones where business process
interactions and trends are examined closely to understand more accurately
application needs, most notably requirements with regard to business trans-
actions, and dynamics. Such collaborative, complex end-to-end service inter-
actions give rise to the concept of Service Networks, shortly SNs, in which
management of business processes will concentrate on analyzing, designing,
implementing, simulating and continuously improving business transactions
between network parties.

BPM is a natural complement to SOA [19], and a mechanism through
which an organization can apply SOA to high-value business challenges. The
objective is to effectively align technical initiatives with the strategic goals of
the business user at every level within service networks to achieve a compre-
hensive approach to real business transformation.

Currently, SOA-centric BPM solutions concentrate on service-enabled
processes and cannot explicitly correlate critical business activities and events,
QoS requirements, and application (business) data, such as delivery dates,
shipment deadlines and pricing, in one process with related activities, events,
QoS and business data in other processes in an end-to-end process constella-

2 Business Process Management 29

tion. This implies that application management information and procedures
are deeply buried in service-based application (SBA) code, which severely hin-
ders maintenance and adaptation, both of which are essential for SNs. Such
hardwiring means that any change or update to the application management
logic already fabricated within an application requires programmatic changes
to the SBA itself. This renders the potential reuse, customization, and moni-
toring of application management capabilities impossible. This also introduces
intrinsic discontinuities between end-to-end business processes as information
flows may be disrupted. For instance, a possible decoupling of payment in-
formation in payment and invoicing business processes from the ordering and
delivery information of goods and services in order management and shipment
business processes increases risks, could violate data integrity and contractual
agreements, and may introduce discrepancies between the various informa-
tion sources, which underlie these processes. Fixing this problem requires
expensive and time-consuming manual reconciliation. The principal activi-
ties required to sustain SBAs that collectively enact end-to-end processes, as
outlined by [24], include the “collection, management, analysis, and interpre-
tation of the various business activities and data to make more intelligent and
effective transaction-related decisions”.

SBAs that support end-to-end processes in SNs typically involve well-
defined processes such as payment processing, shipping and tracking, deter-
mining new product offerings, granting/extending credit, managing market
risk and so on. These reflect standard processes or process fragments that ap-
ply to a variety of application scenarios. Although such standard processes or
process fragments may drive transactional applications between SN partners,
they are completely external to current Web services transaction mechanisms
and are only expressed as part of application logic. Indeed, there is a need for
explicitly managing fine grained tenets of SBAs such as business data, events,
operations, process fragments, local and aggregated QoSs and associated Key
Performance Indicators (KPIs), and so on, to guarantee a continuous and
cohesive information flow, correlation of end-to-end process properties, and
termination and accuracy of interacting business processes that is driven by
application control (integration) logic.

The above considerations give rise to a multi-modal transaction process-
ing scheme by enabling reliable business transactions that span from front-end
SBAs to back-end system-level transaction support and beyond to organiza-
tions that are part of a SN. Thus, the need for application-level management
technologies that can ensure highly reliable application (not only system)-
level transactions and end-user performance via rapid problem diagnosis and
resolution - while at the same time support change and capacity planning -
is paramount. In particular, we argue in favour of the need to provide rich
features and QoS similar to that offered by transaction processing monitors
but at the level of application management and application control logic.

Clearly, Business Transaction Management (BTM) is the heart-and-soul
of the Business Process Management workpackage in S-Cube, viewing every-

30 Authors Suppressed Due to Excessive Length

thing from an application perspective. In the world of BTM, an application
is considered as a collection of business transactions and events, each trig-
gering actions on the application and corresponding on the infrastructure-
level, which is handled by transaction monitors using WS-standards such
as WS-Transaction and WS-Coordination. The goal is to track every busi-
ness transaction in an end-to-end process and correlate it to the information
collected from the infrastructure so that, solving problems and planning is
done efficiently and holistically. It should be possible to have the ability to
“stitch together” the individual business transaction data points into a map
of the transaction topology and to monitor the metrics of each transaction
for Service Level Agreement (SLA) compliance. Service analytics, e.g., simu-
lation scenarios, and monitoring can then be applied to the transaction data
to proactively manage services and accurately pinpoint problems. Such an
end-to-end view enables to quickly isolate and troubleshoot the root cause
of application bottlenecks, e.g., failure of an order due to the unavailability
of just-in time production alternatives, potential performance problems, and
tune proactively.

With the above backdrop in mind, there is a need for explicitly intro-
ducing fine grained application management techniques that can be applied
to various tenets (granules) of SNs ranging from business data, e.g., delivery
times, quantities, prices, discounts, etc, events, operations, local and aggre-
gated QoSs and associated KPIs, to business process of transactional nature,
e.g., payment, delivery, etc, to guarantee a continuous and cohesive infor-
mation flow and correlation of end-to-end process properties. This facilitates
potential reuse, customization, of application granules, expressed in terms of
processes and process fragments, as well as monitoring of applications. The
philosophy of this work package is that this information and integration logic
should be carved out, isolated and made visible to facilitate the design of
transactional processes or process fragments that could be used to compose
end-to-end processes in SNs (see Figure 2.1).

Loosely speaking, a transactional process fragment is a transactional sub-
process that is realized within an end-to-end process, while meeting granular
process properties (a list of granular process properties is shown in Figure 2.1).
Figure 2.1 shows that SBAs need to cross-correlate granular process properties
that span across processes in an end-to-end process constellation. Clearly,
granular process properties go far beyond conventional application properties
that are considered in traditional system transaction models, and include:
operational level agreements (SLA/SLO), underpinning contracts, policies,
rules and QoS thresholds for services at the application-level. Some of these
process properties may be designated as being transactional in nature as they
can be used to drive a service composition, e.g., end-to-end SLAs.

In this way, granular process criteria can be used to drive and manage
the composition of end-to-end processes at the application level. In partic-
ular, end-to-end processes exhibit transactional characteristics to deliver on
undertakings or commitments that govern their formation and execution at

2 Business Process Management 31

the SBA-level. In other words, an entire end-to-end process or parts of it may
fail if some transactional process properties, e.g., non-conformance to SLAs or
aggregate mean-value KPIs, are violated. End-to-end processes exhibit trans-
actional characteristics that can be supported by an appropriate transaction
infrastructure that employs Web services standards, such as Web Services
Atomic Transaction [4], Web ServicesBusiness Activity [5], Web Services-
Coordination [3], and Business Process Execution Language (BPEL) [17] (see
Figure 2.1). Currently, this quartet of Web services standards is used to im-
plement Web service transactions.

The transaction management infrastructure (see bottom layer in Fig-
ure 2.1) could for example be based on an open source implementation frame-
work provided by JBoss Transactions (http://www.jboss.org) which sup-
ports the latest Web services transactions standards, providing all of the com-
ponents necessary to build interoperable, reliable, multi-party, Web services-
based applications. In such environments there is a clear need for advanced
SBAs to coordinate multiple services and processes into a multi-step business
transaction.

Fig. 2.1. Business Transactions in Service Networks

The suggested approach requires that several service operations or processes
attain transactional process properties reflecting SBA semantics, which are to

32 Authors Suppressed Due to Excessive Length

be treated as a single logical (atomic) unit of work that can be performed
as part of a business transaction. For example, consider a SN populated by a
manufacturer and various suppliers; the manufacturer develops SBAs to auto-
mate the order and delivery business functions with its suppliers as part of a
business transaction (see Figure 2.1). The transaction between the manufac-
turer and its suppliers may only be considered as successful once all products
are available in stock, delivered to their final destination, which could take
days or even weeks after the placement of the order, and payment has ensued.

Some participating services in a SBA may be vital to a successful outcome
of an end-to-end process. For example, a successful order for goods is a prereq-
uisite i.e. a strong requirement, for the entire end-to-end process to succeed
followed by shipping and payment of goods. Given this vital precondition,
there are several viable (successful and useful) outcomes. One viable option
could be shipping and insurance. Within each viable combination, there may
be a further subdivision: competitive (alternative) selection. There might be
several prices and types of shipping insurance available from which a selection
must be made. These correspond to different instances of insurance services
and insurance prices offered by diverse service providers.

The above rationale directs towards a business transaction driven ser-
vice composition and eventual service selection. Such business transactions
differ from conventional atomic (database-like) transactions by the ability
to interact with a pool of potential composable services and participants
(providers) at run-time and ponder different outcomes, before making a
process-specific decision on a subset of those services and associated providers.
Such process-specific decisions are based on granular process constructs (e.g.,
SLA mandates, cross-correlated business operations and data, policies, mean-
time KPIs, and so on).

In a SN environment, transactions are complex involving multiple parties,
spanning many organisations, and can have a long duration. More specifi-
cally, they are automated long-running propositions involving negotiations,
commitments, contracts, shipping and logistics, tracking, varied payment in-
struments, and exception handling.

Business transactions are very dynamic in nature. Parts of a business trans-
action may be retracted, alternatives may be tried out and optional activities
may fail without influencing the transaction. Vital activities of a transaction
behave as conventional short-lived ACID transactions and need to commit
in order for the overall transaction to successfully commit its results. In ad-
dition, data - for example, a customer account number or invoice - must be
passed between the individual actions that make up the business transaction
and some application control logic is required, to “glue” the actions together
and make them succeed or fail (individually or collectively) depending on the
requirements of the SBA. For example, there must be logic to deal with the
conditional invocation of actions and with failures. Performance of all these
tasks requires the infusion of advanced and unconventional transactional prop-
erties onto the services paradigm.

2 Business Process Management 33

To achieve some of the above stated objectives business transactions rely
on and extend transactional workflow technology. Like a general workflow, a
transactional workflow consists of tasks that satisfy a set of coordination con-
straints but unlike a general workflow, a transactional workflow emphasizes
the transaction aspects that are poorly supported by general workflow, for
instance, to guarantee the correctness and reliability of an application in the
presence of concurrency and failure [14]. The term transactional workflow is
used to emphasize the relevance of the transactional properties for collabora-
tive workflows implementing public processes that transcend functional units
within an enterprise or across the organizational boundaries.

n this frame of mind, this book chapter sets out to review and redefine
the concept of business transaction and requirements as well as the high-
level design principles for a BTL (defined as an extended XML vocabulary)
whilst outlining the fundamental properties involved. As such it targets the
first research challenge of S-Cube’s Global Research Vision on Concepts, Lan-
guages and Mechanisms for Agile Service Networks (see Chapter 1). In partic-
ular, through integrative efforts, bringing knowledge from various disciplines
including SOC, CSCW, BPM and Software Engineering, this book chapter
defines how we should design a business transaction, which incorporates the
process-level approach with the more conventional applications-level view and
sketches the constructs for an initial transactional language.

The book chapter is organised as follows. We will firstly review the essen-
tial characteristics of business transactions, leading to our own definition of
the concept. Based on the essential characteristics of business transactions we
then define a list of requirements for defining a BTL. Subsequently, we will
introduce a detailed scenario that serves for further exploring and illustrat-
ing the various concepts. Following this we will then introduce the business
transaction model, which defines the essential business transaction properties
and constructs. The business transaction model is used as a basis to develop
and illustrate some initial core BTL elements. Lastly, we summarize the key
conclusions of this book chapter and outline directions for future work.

2.2 Essential Characteristics of Business Transactions

As organisations and technology continue to evolve, our understandings of the
concept of a “business transaction” also undertake a multitude of changes,
influenced from the classical schools of thought, which we argue now need
modifications due to continuous technological developments. Therefore, it is
critical that we formulate a deeper understanding to what a business trans-
action actually constitutes. Todays organisational structure is heavily influ-
enced by advanced SBAs, which execute well-defined business processes. [21]
explains that although service applications execute well-defined business func-
tions, which may drive transactional applications, they are normally external
to current Web service (WS) mechanisms. The unprecedented growth in SBAs

34 Authors Suppressed Due to Excessive Length

in a short period of time has emphasized the need to understand the mech-
anisms and underlying theorize related to the business transaction concept.
Understanding the logic of business processes requires us to re-examine what
is meant by a business transaction. In this vein, the goal of this section of
the book chapter is to help achieving an understanding of what is a business
transaction, what do business transactions achieve, and how do they compare
with conventional transaction procedures. As research works and technologi-
cal developments broaden the scope of transaction management, we will align
transactional developments with the developments to improve functionality
and performance within a SN environment.

2.2.1 Business Transaction Overview

Transactions are mainly associated with the business domain as they represent
both tangible and intangible items (goods, money, information, and service).
In recent years, the focus within computer science was on the automation
of business transactions (i.e. process, execute and coordinate). In addition,
the transaction model has undergone some significant changes through the
introduction of business and information technological influences.

Nowadays, most business-to-business (B2B) collaborative applications re-
quire transactional support, while presenting many difficulties incorporating
transactional properties such as Atomicity, Consistency, Isolation, and Dura-
bility (ACID). The ACID model is comprised of these four fundamental prop-
erties, which are considered the “building blocks” for transaction models.
Although extremely reliable, classic ACID transactions are not suitable for
loosely coupled environments such as Web service based systems and trans-
actions, which rely on long running processes. Strict atomicity and isolation
is not appropriate to a loosely coupled world of autonomous trading partners,
where security and inventory control may foster issues, in particular, flexible
atomicity and prevent hard locking of local databases. The major issue is the
isolation of a database transaction. This property requires resource locking
that is impractical in the services world. It would also preclude clients from
participating in a business process, which is a strong requirement for SBAs.
Sometimes, in a loosely coupled or long running activity, it may be desirable
to cancel a work unit without affecting the remainder. In such cases, the strict
atomicity property of transactions needs to be flexible. This is very similar
to the property of open nested transactions where the work performed within
the scope of a nested transaction is provisional and sub-transaction failure
does not affect the enclosing transaction.

The concept of the business transaction is heavily documented throughout
various bodies of literature, where many authors share similar meanings and
others argue its meaning within various contexts. The increase in organizations
adopting a service-networked approach challenges our traditional understand-
ings of the business transaction paradigm. In the following we summarize most
of the important works and definitions for reasons of completeness.

2 Business Process Management 35

The emergence of e-markets has created opportunities for organizations
to combine capabilities and configure business transactions to integrate roles
and relationships across partnering networks. The relationships of these net-
works play a fundamental role in the architecture of transactions. [2], capture
the essence of the change which business transactions experienced in recent
years due to “the unprecedented reach, connectivity, and low-cost information
processing power, open entirely new possibilities for value creation through
the structuring of transactions in novel ways”.

[13] also makes reference to the relationship factor within a transaction.
According to [13], a business relationship is “any distributed state maintained
by two or more parties, which is subject to some contractual constraints pre-
viously agreed to by those parties”. [13], then describes a business transaction
as “a consistent change in the state of a business relationship. Each party in
a business transaction holds its own application state corresponding to the
business relationship with other parties in that transaction”.

[11], also adopts an operational view and states that all business transac-
tions should present “significant information processing and communication
to reduce uncertainties for buyers and sellers”, i.e. quality, commitment, and
protocols in plane for resolution over conflicts. Reducing uncertainties within
a transaction heavily influences its outcomes.

[9] simply defines a transaction as a “sequence of messages” which suggests
that a transaction is triggered through the exchange of messages within a
business management system (i.e. the initiator).

[21] reports that a business transaction is defined as “a trading interac-
tion between possibly multiple parties that strives to accomplish an explicitly
shared business objective, which extends over a possibly long period of time
and which is terminated successfully only upon recognition of the agreed con-
clusions between the interacting parties”. This implies that there is an atomic
or all or nothing approach to meet defined objectives, and upon failure the
transaction is rolled back.

According to [6], a business transaction is a “set of business information
and business signal exchanges amongst two commercial partners that must oc-
cur in an agreed format, sequence and time period. If any of the agreements
are violated then the transaction is terminated and all business information
and business signal exchanges must be discarded”. Thus, the document flow
structure (time, format, and sequence) which exists between parties is impor-
tant. [12], states that a business transaction consists of “one or two prede-
fined business document flows and additional business signals”. [1] suggests
that document flow is important and defines a business transaction as “an
atomic unit of work between trading partners. Each business transaction has
one requesting (incoming) document and an optional responding (outgoing)
document”.

However, the flow of these documents often only indicates the pattern in
which a transaction relationship exists, for example [12] and [1] do not propose
that a transaction provides any business gain. [21], includes the business value

36 Authors Suppressed Due to Excessive Length

factors and states that business transactions are driven by “economic needs
and their objective is accomplished only when the agreed upon conclusion
among trading parties is reached, e.g., payment in exchange for goods or
services”.

One of the most important evolutionary factors of the traditional transac-
tion model has been the transition from the single level transaction structure
to the multi-level structures. Business processes now interact across and be-
tween organizations to create a SN. Therefore, within a typical business trans-
action there must be at least two parties involved, i.e. a supplier who has a
product or service to sell, and a customer who buys this product or service
in exchange at a cost. A business model should therefore explicitly describe
the collaborative interoperable business processes that are required to fulfill
a business transaction.

The formation of a business transaction evolves to encapsulate a more net-
worked and collective effort to reach predefined agreements, practices, proce-
dures and outcomes. To add to this effort, [20] introduces a business trans-
action model encompassing business principles and models transactions with
QoS characteristics, which highlights the need to describe the collaboration
aspects of business processes. Nonetheless, managing the complex transactions
is extremely difficult, and these services are managed through the negotiation
and enforcement of service level agreements [21].

As the definitions outline a number of key factors above, it may be useful
to summarize them in Table 2.1.

From the above it is evident that the concept of business transactions has
adopted several interpretations. It is therefore important to attempt to tie in
these meanings to develop a more holistic vision of what constitutes a business
transaction.

Within end-to-end processes in a SBA, complex information is exchanged
for example, expected service, financial and contractual. [15] draw our atten-
tion to the concept of scalability of transaction-based systems, which need to
grow to support the relationships within these transactions, especially in the
case where organizations are increasing the level of negotiating and interac-
tion in transactions with other organizations to provide some form of business
solution. This places greater emphasis on the choreography of business tran-
sitions (specifies business states and transitions between business states). [12]
explains that “the purpose of choreography is to order and sequence business
transaction activity and/or collaboration activity within a binary collabora-
tion, or across binary collaborations within a multiparty collaboration”. In
that respect, a business transaction describes the mission, behavior, action,
sequence, correlations of collaborative interactions with an objective of secur-
ing a business relationship to request or supply a product or service under
predefined conditions.

Now we have critically analyzed and assessed the previous business trans-
action definitions and can now define business transactions as follows: “A
series of collaborative activities that explicitly enforces the achievement of an

2 Business Process Management 37

Table 2.1. Summary of Business Transaction Definitions

Author Definition Key Words

Hofman
(1994) [9]

“sequence of messages” Message, sequence

Kambil
(1997) [11]

“significant information processing and
communication to reduce uncertainties
for buyers and sellers”

Information process-
ing, reduce uncertain-
ties

Clark
(2001) [6]

“set of business information and busi-
ness signal exchanges amongst two
commercial partners that must occur
in an agreed format, sequence and time
period. If any of the agreements are
violated then the transaction is termi-
nated and all business information and
business signal exchanges must be dis-
carded”

Information and busi-
ness signals, exchange,
format, sequence, vio-
lation, termination

Aissi
(2002) [1]

“an atomic unit of work between trad-
ing partners. Each business transaction
has one requesting (incoming) docu-
ment and an optional responding (out-
going) document”

Atomic unit, request,
respond

Kim
(2002) [12]

“one or two predefined business docu-
ment flows and additional business sig-
nals”

Predefines flows

Kratz
(2004) [13]

“a consistent change in the state of
a business relationship. Each party in
a business transaction holds its own
application state corresponding to the
business relationship with other parties
in that transaction”

Distributed rela-
tionship, change,
transaction state

Papazoglou
(2006) [21]

“a trading interaction between possi-
bly multiple parties that strives to ac-
complish an explicitly shared business
objective, which extends over a pos-
sibly long period of time and which
is terminated successfully only upon
recognition of the agreed conclusions
between the interacting parties”

Interaction, parties,
accomplish, objec-
tives, long periods,
negotiation, conclusion

38 Authors Suppressed Due to Excessive Length

agreed-upon business objective in end-to-end processes. This objective is sub-
ject to service-level agreements that govern the choreographed/orchestrated
behavior, non-functional and timing requirements, correlated exchange of in-
formation, and control flow of composed services”. Business transaction man-
agement [16] has evolved from her early roots in business process management
to a more comprehensive approach that offers concepts, mechanisms and tools
to manage the lifecycle of a business transaction starting from business goals
over transactions definition, through deployment, execution, measurement,
analysis, change, and redeployment.

A shared business objective extends over a possibly long period of time
and is terminated successfully only upon recognition of the agreed conclusions,
e.g., stipulated QoS, compliance to business and regulations, etc, between the
interacting parties. A transaction usually outlines the liabilities of each party
in the event where the intended actions are not carried out (e.g., promised
services not rendered, services rendered but payment not issued). If a busi-
ness transaction completes successfully then each participant will have made
consistent state changes, which, in aggregate, reflect the desired outcome of
the multi-party business interaction.

2.3 Requirements of a Business Transaction Language

Business Transaction Management (BTM) views everything from an applica-
tion perspective. In the world of business transaction management, an appli-
cation is considered as a collection of business transactions and events, each
triggering actions on the application and corresponding on the infrastructure-
level, which is handled by transaction monitors using WS-standards such as
WS-Transaction and WS-Coordination. The goal is to track every business
transaction in an end-to-end process and correlate to the information col-
lected from the infrastructure so that, solving problems and planning is done
efficiently and holistically. It should be possible to have the ability to “stitch
together” the individual business transaction data points into a map of the
transaction topology and to monitor the metrics of each transaction for SLA
compliance.

A BTL plays a pivotal role in BTM. The core requirement for a BTL is
the ability to describe the granular transactional process properties of end-to-
end processes, such as business commitments, mutual obligations and agreed
upon KPIs, in a standard form that can be consumed by tools for business
transaction implementation and monitoring. In this section, we will refine this
all-encompassing BTL requirement.

Table 2.2 summarizes the behavioral characteristics and key factors, which
differ within a transaction and need to be expressed as part of a BTL.

As summarised in Table 2.2 above, there are several characteristics and key
factors, which distinguish certain stages within a business transaction. These

2 Business Process Management 39

Table 2.2. Behavioural characteristics and key factors of transactions (Adapted
from [20]

Characteristics Key Factors

Generic

Who is involved
What is being transacted
Destination of payment and delivery
Transaction time frame
Permissible operations

Distinguishing
Links to other transactions
Receipt and acknowledgment

Advanced
Ability to support reversibility (compensatible) and
repaired (contingency) transactions
Ability to reconcile transactions with other transac-
tions
Ability to specify contractual agreements, liabilities,
and dispute solution policies

stages, including transaction activities, business service dimensions, and their
implications for SNs, are captured in Table 2.3.

As Table 2.3 (partly based on Open Electronic Data Interchange (Open
EDI) [10]) above outlines in order to deliver a business transaction, there are
business processes, transaction activities, dimensions, and behaviour which
need to be agreed upon, at various phases upon entering a transaction agree-
ment. The last column (far right) summarises the key tasks required at each
stage within a transaction occurring in a SN. While the information gathering
and negotiation stages fall outside the scope of this book chapter, we will con-
centrate in this book chapter on language requirements emerging from stages
3 and 4.

Based on an extensive literature survey and associated comparative analy-
sis of existing business transaction models notably Open EDI, the UN/CE-
FACT Modelling Methodology (UMM) [23] and electronic business using eX-
tensible Markup Language (ebXML) [6] in connection with the S-Cube ref-
erence architecture, we have distilled the following key transaction language
requirements for stages 3 and 4:

Req 1: Expressing collaborative activities that explicitly enforce the
achievement of an agreed-upon business objective in end-to-end processes:

The BTL is pervasive in that it will be defined over end-to-end processes
involving choreographed and/or orchestrated services that exhibit transac-
tional properties. Transactional properties may be expressed by combining
existing transactional services or process fragments and associating them with
application-level characteristics as well as contractual agreements in order to
develop SBAs for SNs.

40 Authors Suppressed Due to Excessive Length

Table 2.3. Business Transaction Stages & Dimensions [25]

!!

! " # $ % & # #'
()*%#*+,$-%

() * % # * + , $ - %'
.+,$/$,$&#

0*$%'!"#$%&##'1&)/$+&'
2$3&%#$-%#
0*$%'!"#$%&##'1&)/$+&'
2$3&%#$-%#

.445$+*,$-%#'$%'
1&)/$+&'%&,6-)7#

!"#$%&'(&
)*+,-.#"/,*&
0#"1%-/*$

!,2-3%&#*4&
5-,423"&
/4%*"/6/3#"/,*&7&
5,"%*"/#8&92558/%-&
8/9"%4

:#-;%"/*$
!%-</3%

)*+,-.#"/,*
!%-</3%

=-,423"&
/*+,-.#"/,*>&
-%95,*9%&",&
/*?2/-/%9

!"#$%&@(&
A%$,"/#"/,*

B<#82#"%&92558/%-&
7&#*#8CD%&92558/%-&
?2,"%

:#-;%"/*$
!%-</3%

E,..2*/3#"/,*9
!%-</3%

=-,423"&
/*+,-.#"/,*>&
-%95,*9%&",&
/*?2/-/%9

!"#$%&F(&E,*"-#3"&
G286/8.%*"

H-4%->&=#C.%*">&
I%8/<%-C>&
H5%-#"/,*9&
.#*#$%.%*"

J,$/9"/39
!%-</3%

H-4%-&#*4
=#C.%*"&!%-</3%

H-4%-&5-,3%99>&
/*<,/3%>&8%#4K"/.%&
"-#*95,-"#"/,*>&
"-#3;/*$&91/5.%*">&
#4<#*3%&91/5&*,"/3%>&
/*<%*",-C&
"-#*95#-%*3C>&
-%95,*9%&",&
/*<%*",-C&<#-/%"C

!"#$%&F(&E,*"-#3"&
G286/8.%*"

H-4%->&=#C.%*">&
I%8/<%-C>&
H5%-#"/,*9&
.#*#$%.%*"

J,$/9"/39
!%-</3%

I%8/<%-C
!%-</3%

H-4%-&5-,3%99>&
/*<,/3%>&8%#4K"/.%&
"-#*95,-"#"/,*>&
"-#3;/*$&91/5.%*">&
#4<#*3%&91/5&*,"/3%>&
/*<%*",-C&
"-#*95#-%*3C>&
-%95,*9%&",&
/*<%*",-C&<#-/%"C

!"#$%&F(&E,*"-#3"&
G286/8.%*"

H-4%->&=#C.%*">&
I%8/<%-C>&
H5%-#"/,*9&
.#*#$%.%*"

J,$/9"/39
!%-</3%

)*<%*",-C&
!%-</3%

H-4%-&5-,3%99>&
/*<,/3%>&8%#4K"/.%&
"-#*95,-"#"/,*>&
"-#3;/*$&91/5.%*">&
#4<#*3%&91/5&*,"/3%>&
/*<%*",-C&
"-#*95#-%*3C>&
-%95,*9%&",&
/*<%*",-C&<#-/%"C

!"#$%&F(&E,*"-#3"&
G286/8.%*"

H-4%->&=#C.%*">&
I%8/<%-C>&
H5%-#"/,*9&
.#*#$%.%*"

H5%-#"/,*9
!%-</3%

=-,423"
!%-</3%

=-,423"&?2#8/"C>&
+%#"2-%&,++%-/*$>&
3,9">&5-,423"/,*&
931%428/*$>&3C38%&
"/.%>&3#5#3/"C

!"#$%&F(&E,*"-#3"&
G286/8.%*"

H-4%->&=#C.%*">&
I%8/<%-C>&
H5%-#"/,*9&
.#*#$%.%*"

H5%-#"/,*9
!%-</3%

=-,423"/,*
!%-</3%

=-,423"&?2#8/"C>&
+%#"2-%&,++%-/*$>&
3,9">&5-,423"/,*&
931%428/*$>&3C38%&
"/.%>&3#5#3/"C

!"#$%&L(&
E,88#M,-#"/,*

E,88#M,-#"/,*&
58#**/*$>&
3,88#M,-#"/,*&
5-,423"&
4%<%8,5.%*">&3,K
8,3#"/,*

E,88#M,-#"/,*
!%-</3%

=-,423"
E,88#M,-#"/,*

=8#**/*$&
3,,-4/*#",->&
$%,$-#51/3#8&
8,3#"/,*>"%-*#"%&
4%8/<%-C&31#**%8

!"#$%&L(&
E,88#M,-#"/,*

E,88#M,-#"/,*&
58#**/*$>&
3,88#M,-#"/,*&
5-,423"&
4%<%8,5.%*">&3,K
8,3#"/,*

E,88#M,-#"/,*
!%-</3%

)*+,-.#"/,*
E,88#M,-#"/,*

N54#"%4&
/*+,-.#"/,*>&O,/*%4&
58#**/*$&#*4&
+,-%3#9"/*$

Req 2: Expressing an on-demand delivery model for SBAs:

Business transactions are required to furnish an “on-demand” delivery model
in which end-users may specify their preferences, e.g., desirable QoS, manda-
tory regulations, etc, as regards an end-to-end process. This implies that ser-
vices are tentatively (re-) selected from a pool of service providers on the fly.
Services and transactional process fragments can then be tailored, composed
and then deployed over a variety of platforms.

Req 3: Facilitating reusability and extensibility:

The BTL will impart constructs that define reusable and extensible transac-
tional process fragments.

2 Business Process Management 41

Req 4: Expressing conventional atomic actions:

The transaction language needs to cater for conventional atomicity, as in some
circumstances, service operations or transactional process fragments in an end-
to-end process have to be strictly atomic. Assuming, for instance, that a client
application decides to invoke one or more operations from a particular process
fragment such as order confirmation, or inventory check, it is highly likely for
the client application to expect these operations to succeed or fail as a unit.
We can thus view the set of operations used by the client in each process
fragment as constituting an atomic unit of work (viz. atomic action).

Req 5: Expressing application-level atomicity criteria:

In addition to req-4, the language should be able to express and associate
application-level atomicity (described in Section 2.5.1) criteria. For instance,
we may be able to express that a transaction is a payment-aware. This means
that if payment is not made within a pre-specified period then the transaction
fails. Similarly, transactions could be made QoS, or SLA-aware and succeed
or fail depending whether QoS criteria or SLA terms are met.

Req 6: Expressing long duration nested-activities:

Long-duration (business) activities could be expressed as aggregations of sev-
eral atomic actions and may exhibit the characteristics and behaviour of open
nested transactions and transactional workflows. The atomic actions forming
a particular long-duration business activity do not necessarily need to have a
common outcome. Under application control (business logic), some of these
may be performed (confirmed), while others may fail or raise exceptions such
as time outs or failure. To exemplify a long-duration business activity, consider
a slight variation of the order processing scenario where a manufacturer asks
one of its suppliers to provide it with valuable and fragile piece of equipment.

Now, consider that one atomic action arranges for the purchase of this
product, while a second arranges for its insurance, and a third one for its
transportation. If the client application is not risk-averse (due to excessive
costs), then even if the insurance operation (atomic action) votes to cancel, the
client might still confirm the transaction and get the item shipped uninsured.
Most likely, however, the client application would probably retry to obtain
insurance for the item. Once the client discovers a new insurer, it can try
again to complete the long-duration business activity with all the necessary
atomic actions voting to confirm on the basis of the particular coordination
protocol used.

Req 7: Expressing and enforcing policies:

This helps service networks achieve the global control of end-to-end processes
by enforcing policy consistently across the runtime environment, without re-
quiring applications to be recoded and deployed. This involves constructs to

42 Authors Suppressed Due to Excessive Length

define policies and SLA thresholds based for example on transaction averages.
It also involves constructs to define and enforce policies.

Req 8: Expressing and enforcing QoS and compliance criteria:

Activities in business transactions will be able to express compliance with
regulations, SLA terms and QoS characteristics in an end-to-end fashion. The
BTL will therefore be equipped with constructs to define controls and counter
measures.

Req 10: Incident management:

The language needs to be endowed with constructs to feed the transaction
management infrastructure with information on business transaction events
and SLA violations (in addition to current component based events) that is
useful for repairing a process anomaly or problem, thus reducing the mean
time to repair. This includes constructs to define stalled transactions, miss-
ing steps, faults, and application exceptions, as well as other issues such as
incorrect data values, boundary conditions, and so on.

Req 11: Business transaction monitoring:

Traditional transaction monitors are able to monitor only system-related ac-
tivities and performance. The capability of the BTM system (that is built
around the BTL) is the ability to compute and monitor KPIs using rules that
trigger automated alerts or process actions when they move outside their tar-
get range. Process owners can then respond instantly to events that affect the
bottom line. This thus implies that the BTL will contain constructs and op-
erators that will define exactly how processes and services will be monitored
(e.g., through logging or actively checking), and how process-level KPIs will
be mapped down to SBA-level SLAs and QoS.

Req-12: End-to-end visibility and optimization:

The purpose is to provide visibility into the service interactions within the
scope (“context”) of the business transaction and make process performance
visible to process owners and also to provide a platform for problem escalation
and remediation. BTM system should provide the ability to measure perfor-
mance across organizational and system boundaries and detect exceptions in
service interactions. As processes run, the BTM system should be able to con-
tinuously capture the snapshots of process instance data and aggregate them
in a meaningful manner.

The above list considers the most important requirements for a useful
BTL that offers a flexible and extendable structure. In the initial version of
the language we intend to address requirements 1 to 8.

The requirements described above are essential in determining the charac-
teristics and functionality of the BTL that is described in Section 2.6 of this
book chapter.

2 Business Process Management 43

2.4 Illustrating Scenario

The following scenario deals with an integrated logistics process involving a
customer, suppliers and a logistics service provider. This logistics model con-
sists of forecast notification, forecast acceptance, inventory reporting, ship-
ment receipt, request and fulfil demand, consumption and invoice notification
activities. In particular, this scenario is part of the automotive supply chain
case study proposed in the vision chapter, illustrating the use of simple busi-
ness transactions and associated event monitoring.

Figure 2.2 depicts the flow of information between the interacting nodes
(business partners) in a very simple SN involving three parties (car man-
ufacturers, part suppliers and logistics providers). Service interactions are
governed by a simplified SLA. This figure shows the sequential ordering of
the interaction events between the business partners in terms of message ex-
changes. The message “Notify of Forecast”, contains car part demand infor-
mation (planning demand), is sent by a forecast owner (the car manufacturer)
to a forecast recipient (the supplier).

Fig. 2.2. The Integrated Logistics Scenario

The message “Forecast Acceptance” sent back from the supplier acknowl-
edges that the demand forecast has been accepted. Next, the message “Dis-
tribute Inventory Report” is performed by an inventory information provider
to report the status of the inventory to an inventory user.

The inventory report can include any car parts held in inventory. The
message “Advance Shipment Notification” allows a shipper to notify a receiver

44 Authors Suppressed Due to Excessive Length

that a shipment has been assigned. This notification is often a part of the
shipment process. Message “Shipment Receipt” is performed by a consignee
to report the status of a received shipment to another interested party, such
as another consignee, a transport service provider, a third-party logistics firm,
or a shipper.

Receipt of a shipment is reported after it has been delivered by a carrier
and inspected by receiving personnel. The customer then issues an “Invoice
Notification” to communicate car parts consumption to the supplier, allow-
ing the supplier to trigger invoicing for the consumed material. The message
“Invoice Notification” enables a provider to invoice another party, such as a
buyer, for goods or services performed.

Finally, the message “Notify of Remittance Advice” enables a payer to
send remittance advice to a payee (in this case the supplier), which indicates
which payables are scheduled for payment.

Message exchanges are bundled together in three separate message ex-
changes (A, B and C). As shown in Figure 2.3, the message exchanges 1,2,6,7
and 8 (named A) can be bundled together in the form of a business-aware
transaction, which is governed by a simplified SLA between the two trading
partners, i.e. the car manufacturer and the supplier.

As a whole, our global business transaction scenario consists of three binary
business transactions, i.e. transaction A between the car manufacturer and the
supplier, B between the car manufacturer and the logistics service provider,
and C between the logistics service provider and the supplier. The SLA for
each transaction contains a set of policy constraints, such as temporal and
spatial constraints, penalties, some business regulatory rules, etc, that must
be fulfilled during the transaction execution. It also prescribes the recovery
strategies for the business transaction in case any of the message exchanges
fail, for instance, either this business transaction must be compensated by
some means, e.g., issuing another forecast or invoice, or the entire transaction
fails. Besides, the SLA also drives the business-aware transaction with other
agreements on the KPIs of the transaction, which enables the performance
monitoring and measurement of the execution. To sum up, a business trans-
action between two trading partners is driven by the conditions specified in
the agreed-upon SLA.

Some sample conditions in the SLA that should be monitored and enforced
by the transaction management system during the transaction execution are:

• Has the supplier acknowledged the order?
• Has the supplier and logistics service provider committed to a ship date?
• Will the supplier start manufacturing on-time?
• Will the order be shipped on-time?
• Does this order meet our on-time delivery goals and other KPIs?
• If the order shipped by the logistics provider does not arrive on-time, how

should we proceed?

2 Business Process Management 45

• Does it affect other partners if the logistics service provider cannot deliver
the order? How to compensate this problem?

A process activity can be vital or non-vital for its business transaction.
If the vital one fails, its transaction will fail, e.g. the activity “Prepare In-
voice” in transaction A is vital for its transaction, since without the invoice,
the payment between the trading partners in A cannot be conducted. Process
activities in the same or different business transactions can have weakly or
strongly consistent atomicity relationships. “Weakly” means that either both
the two activities succeed or if one of them fails and is compensated/recovered
then the other one will also fail or be compensated/recovered in the near fu-
ture. “Strongly consistent-atomic” enhances the “weakly consistent-atomic”
relationship by requiring that if both activities fail, they must result into a
consistent (predefined) state (see Section 2.5.1 which explains formalization of
consistent-atomicity). For instance, the activities “Send Invoice” in transac-
tion B and “Receive Invoice” in transaction C are strongly consistent-atomic.

Traditional transaction monitoring mechanisms are able to monitor only
system-related activities and performance. However, it is important to under-
stand that business-aware transactions correlate application-level events and
situations with the supporting infrastructure. For example if the manufacturer
requests a change in the order, can we accept the change in connection with
agreed-upon KPIs? Alternatively, if an infrastructure-level change has been
made, we can assess its impact on the application (SBA) level. More impor-
tantly, we can deduce if the processes are still working to plan, if there are
any bottlenecks and where they appear, if there was a process improvement or
worsening, and so on. Correlating lower level activities, e.g., from the service
composition or the infrastructure level, with higher level business events in the
form of transactions, provides opportunities to continuously monitor and mea-
sure the lifecycle of a transaction, while providing data and events to trigger
and populate controls, as well as time-based data for on-time measurement.

2.5 Business Transaction Model

From the definition of a business transaction, it has been shown that it is a
mission-critical task that spans across the organizational boundaries and en-
compasses different types of business concepts to achieve business awareness,
such as SLA awareness. To provide a more in-depth understanding of a busi-
ness transaction, this section first scrutinizes the business concepts that signif-
icantly pertain to a business transaction and proposes a business transaction
model on the basis of which the transaction language described in Section 2.6
can be developed. Section 2.5.1 describes high-level business transaction con-
cepts concentrating on rationalizing their indispensability in a BTL. Then,
an advanced model of business transaction is presented is Section 2.5.2 that
captures these business transaction concepts either explicitly or implicitly.

46 Authors Suppressed Due to Excessive Length

2.5.1 High-Level Concepts of Business Transaction

A collaborative business environment involves multiple partners (or organi-
zations) that foster the indispensability of mutual obligations. The mutual
obligations can be presented by an SLA that explicitly defines the common
requirements and policies that have to be satisfied by the committed trading
partners. Business transaction is deemed as one of the main drivers of an end-
to-end process that involves multiple trading partners. Hence, any transaction
mechanism that is used to enforce the business transaction in an end-to-end
process needs to be cognizant of SLA concepts. These SLA concepts are de-
scribed in this section including application-level atomicity that governs the
transaction process. Besides, the Business Collaboration concept is discussed
to present a brief overview of business transaction in a collaborative business
environment.

Business Collaborations and Business Transactions

One key requirement for enabling cross-enterprise business process automation
is the ability to describe the collaboration aspects of the business processes,
such as commitments and exchanges of monetary resources in a standard form
that can be used by applications and consumed by tools for business process
implementation and monitoring [18]. Business collaboration captures the in-
formation and message exchange requirements between trading partners. Ad-
ditionally, trading partners may have multiple interactions in an end-to-end
process. The sequence of these interactions is captured by a business protocol.
A business protocol identifies and captures all behavioural aspects that have
cross enterprise business significance [21]. Behavioural aspects may include
the messaging behaviours between trading partners, which help the partici-
pants understand and plan their interactions that conform to the agreed-upon
business protocol. We have incorporated a set of important business artefacts
(e.g., business protocol) in our business transaction model.

Application-Level Atomicity

The governing factors (e.g., SLAs) of a business transaction foster the atomic
behaviour. This type of atomicity is called application-level atomicity or non-
conventional atomicity [18] and consists of a set of application related atomic-
ity criteria. Each criterion is treated as a single individual logical unit of work
that determines a set of vital or viable outcomes for a business transaction.
The outcomes of a business transaction may involve non-critical partial failure,
or selection among contending service offerings rather than the conventional
strict atomicity (all or nothing).

Application-level atomicity can be deemed as the criteria for checking con-
sistency and correctness of a business transaction against predefined standard
operations. According to [18], there may be different types of application-level
atomicity that are discussed in the following:

2 Business Process Management 47

• Contractual Atomicity: Business transactions are generally governed by
contracts and update accounts. Contractual atomicity may include mes-
saging sequence (or interactions), QoS parameters (e.g., time to perform),
and security parameters (e.g., non-repudiation). Electronic contracts de-
fine both the legal terms and conditions and technical specification that a
trading partner must implement to put an electronic trading relationship
into effect. As an example, if a contract enforces an obligation to acknowl-
edge a purchase order within specified time frame, seller has to send an
acknowledgement to buyer. Otherwise, the transaction should be aborted
and failed. Consequently, the contract will be null and void. A business
transaction is completed successfully only when the contractual provisions
are satisfied.

• Operational Level Atomicity: Business transactions usually involve the ac-
tual delivery of purchased items (tangible and non-tangible) [18]. This type
of atomicity has been well defined by [22] and refined by [18]. The opera-
tional atomicity is decomposed into Payment Atomicity, Goods Atomicity,
and Delivery Atomicity. This research does not include Goods Atomicity
but emphasizes on payment atomicity and delivery atomicity since Goods
Atomicity can be realized by Delivery Atomicity.
– Payment Atomicity: Payment atomic protocol affects the monetary

transaction from one party to another. It is the basic level of atomicity
that each operation level business transaction should satisfy. This type
of atomicity has greater influence on the entire transaction process
because if the payment process fails, all the cohorts must have to be
failed. Notably, a payment atomic transaction can be contract atomic.

– Delivery Atomicity: Delivery is typically the last phase of an end-to-end
process chain. The purpose of this type of atomicity is to ensure that
the right goods are delivered to the buyer. The delivery atomic protocol
also guarantees the quality of the specified products is maintained and
they are delivered within the specified. A business transaction cannot
be completed successfully unless a Delivered notification arrives from
the buyer, since the failure of delivery may cause failure of all the (sub-)
transactions that participated in the transaction process.

Our business transaction model adapts the application-level atomic crite-
ria to achieve a consistent and business-aware transaction mechanism since
application-level atomicity contains higher business significance involving con-
tract, constraints, and also the operations. The association of business trans-
action with these business aspects is shown in the business transaction model
in the next section. Noticeably, these atomicity (contract and operational level
atomicity) are not shown explicitly in the business transaction model instead
they are represented by contractual primitive and operational primitive.

48 Authors Suppressed Due to Excessive Length

2.5.2 Overview of Business Transaction Model

An important requirement in making end-to-end process automation happen
is the ability to describe the collaboration aspects of the processes, such as
commitments and mutual obligations, in a standard form that can be con-
sumed by tools for business process implementation and monitoring. This
gives rise to the concept of a business transaction model that provides a com-
prehensive set of concepts and several standard primitives and conventions
that can be utilized to develop complex Service Based Applications (SBAs)
(see Section 2.1). Central to the business transaction model is the notion of
a business transaction (see Section 2.2.1 for the definition). Business trans-
actions cover many domains of activity that businesses engage in, such as
request for quote, supply chain execution, purchasing, manufacturing, and so
on. The purpose of a business transaction is to facilitate specifying common
(and standard) business activities and operations that allow expressing busi-
ness operational semantics and associated message exchanges as well as the
rules that govern them. The combination of all these primitives enforces SN
partners to achieve a common semantic understanding of the business trans-
action and the implications of all messages exchanged.

The business transaction is initiated by a service client and brings about a
consistent change in the state of a relationship between two or more network
parties. A business relationship is any distributed state held by the parties,
which is subject to contractual constraints agreed by those parties.

There are four key components in a business transaction model that help
differentiate it from (general) message exchange patterns. These are:

• Commitment exchange;
• The party (or parties) that has the ability to make commitments;
• Business constraints and invariants that apply to the message exchanged

between the interacting parties; and,
• Business objects (documents) that are operated upon by business activities

(transactional operations) or by processes.

We have developed a meta-model in UML that captures the key constructs
of the business transaction model and their interrelationships (see Figure 2.3).

Business transactions make up the core of the transaction model, and may
as such incorporate a blend of transactional and non-transactional process
fragments that are coordinated through business protocols and collectively
make up an end-to-end process.

Transactional process fragments are characterized by universally accept-
able system level primitives such as resume, cancel, commit and retry. There
are also referential primitives that correlate an activity with other activities
using control or data flow, e.g., payment refers to an associated order. Ap-
plication level primitives comprise of contractual primitives and operational
primitives. Contractual primitives define mutual agreements between network
parties relying on constructs such as authorizations, obligations and violations.

2 Business Process Management 49

Fig. 2.3. The business transaction model

Lastly, operational primitives help to enforce network partner commitments.
They introduce a mandatory set of three operational level atomicity criteria
that reflect the operational semantics of three standard business activities (or-
dering, payment, and delivery). For instance, payment atomicity affects the
transfer of funds from one party to another in the transaction. This means that
the transaction would fail if payment were not made within a pre-specified
time period that was agreed between a supplier and a customer. Delivery
atomicity, on the other hand, implies that the right goods will be delivered to
a customer at the time that has been agreed.

Transactional process fragments embody one or more activities that fall
apart in the following two mutually exclusive activity types: vital or non-vital.
Atomic activities are short-lived and atomic actions which in some cases may
be part of long-running business transactions, referred to as Business Activi-
ties (adopting the WS-Transaction terminology). Alternatives set is a group
of alternative atomic activities and can be vital or non-vital. Alternatives set
can contain only non-vital atomic activities since it is not pre-defined which
alternative is executed at run-time.

Business activities usually operate on business (document-based) objects.
These are traditionally associated with items such as purchase orders, cata-
logues (documents that describe products and service content to purchasing
organizations), inventory reports, ship notices, bids and proposals. Such ob-
jects may also be associated with agreements, contracts or bids. This allows
business transactions to interchange everything from product information and
pricing proposals to financial and legal statements.

50 Authors Suppressed Due to Excessive Length

Activities could also belong to the Exception Handler e.g. Compensation
Handler, Event Handler, and Fault Handler. They are special kinds of ac-
tivities that are performed in case of particular activity fails or repair the
transactions after they were disrupted.

An SLA is defined as a coherent set of explicitly stated policies that pre-
scribe, limits, or specifies any aspect of a business protocol that forms part
of the commitment(s) mutually agreed to among the interacting parties, and
stipulates agreed upon QoS constraints (some of which stem from business
rules). An SLA also outlines what each party can do in the event the intended
actions are not carried out (e.g., promised services not rendered, services ren-
dered but payment not issued).

Policies may encompass one or more constraints. Spatial constraints regu-
late the access to protocols based on criteria such as spatial point and route.
Temporal constraints stipulate timing restrictions such as time, date, duration
and interval. The business transaction model also furnishes some standard op-
erational constraints for governing message exchanges. The model could eas-
ily express sequencing semantics, which for instance require that “ordering”
occurs first and is followed by “transport” and “delivery”. “Payment” can
happen either before or after the “delivery” function.

2.6 Initial Design of Business Transaction Language
(BTL)

Firmly grounded on the business transaction model, we can now develop the
BTL, that is, to transform our transaction model into language constructs.
This section presents some initial and elementary constructs that we have de-
veloped and captured in a transaction language named as BTL. The BTL is a
declarative transaction language and its constructs are XML-based represent-
ing the transactional elements specified at design time. BTL is also planned to
facilitate annotating the granular process properties for each of the activities
in the process fragments that compose end-to-end processes. Noticeably, a
detailed description of the run-time environment as well as run-time transfor-
mation between the BTL and equivalent executable constructs is not within
the scope of this book chapter. The mapping mechanism will be developed
in the upcoming book chapters. Potential mapping will most likely be from
BTL to an execution language, e.g. an extended transactional BPEL. Hence,
the purpose of this section is confined only to our elementary work on BTL
constructs.

The business transaction model in the previous section consists of various
domains (e.g. SLA, Constraints, Primitives, etc) that are related to business
transactions, their elements and associations between the elements as well as
domains. In the section, we codify the model considering all these elements
and relations. In the below, we present a simple example of BTL code snippet
in Listing 2.1 for illustrating purposes only.

2 Business Process Management 51

Listing 2.1. Sample code snippet of Business Transaction Language

<BTL>
<Transact ionalProcessFragment name=’ Payment Proce s s ing ’>

<Bus ine s sProtoco l>
<Sequence>

<Act iv i ty v i t a l=’ f a l s e ’>Receive Invo i c e</ Act i v i ty>
<Act iv i ty v i t a l=’ t rue ’>Process Payment</ Act i v i ty>
<Act iv i ty v i t a l=’ f a l s e ’>Send Remittance Advice</ Act i v i ty>

</ Sequence>
</ Bus ine s sProtoco l>
<LanguagePrimit ives>

<a p p l i c a t i o n L e v e l P r i m i t i v e>
<o p e r a t i o n a l P r i m i t i v e>

<Act iv i ty v i t a l=’ t rue ’>Process Payment</ Act i v i ty>
<extend>Payment</ extend>

</ o p e r a t i o n a l Pr imi t ive>
<Contrac tua lPr imi t ive>

<SLA>
<Pol i cy>

<timeToComplete>1 month</timeToComplete>
<creditMaximumAllowance>

\$1000
</creditMaximumAllowance>

</ Po l i cy>
</SLA>

</ Contrac tua lPr imi t ive>
</ a p p l i c a t i o n L e v e l P r i m i t i v e>

</ LanguagePrimit ives>
</ Transact ionalProcessFragment>
</BTL>

This above XML snippet is an example of using the business transaction
language constructs defined in Section 2.5.2 to describe part of the Integrated
Logistics Scenario in Figure 2.2. In particular, we focus on the process frag-
ment “Payment Processing” at the car manufacturer, which is in fact a trans-
actional process fragment. First, the fragment uses a Business Protocol, which
prescribes the sequence order of activities and interactions performed by the
car manufacturer that must be visible for other participants. An activity can
be vital or non-vital. For instance, “Process Payment” is considered to be vi-
tal since it actually executes the payment, while “Receive Invoice” and “Send
Remittance Advice” are non-vital since it may be no problem at all for the
supplier to resend an invoice a few times more and to check the payment
without the remittance advice.

Second, the transactional process fragment may be driven by many Lan-
guage Primitives, which are in this case the operational primitives and con-
tractual primitives that are the subsets of application-level primitive.

52 Authors Suppressed Due to Excessive Length

The operational primitive indicates that in order to realize the vital ac-
tivity “Process Payment”, we will extend the existing predefined operational
primitive “payment”. The contractual primitive prescribes the agreed-upon
SLA between the participants, which comprises of a number of constraints
embedded in a policy definition.

In this case there are two policy constraints, one prescribes that the com-
pletion time for this fragment must be within a month, and the other one
allows the payment using credit card only up to $1000.

2.7 Summary and Outlook

The discipline of Business Process Management emerged as both a manage-
ment principle and a suite of software technologies focusing on bridging di-
verse systems, organizations, people, and business processes. Its objective is
to manage the lifecycle of a process starting from business goals over process
definition, through deployment, execution, measurement, analysis, change and
redeployment.

In the context of S-Cube’s research vision, and particularly the ongoing re-
search efforts on the first research challenge dealing with languages and mech-
anisms for Agile Service Networks agile service networks (see Section 1.2.5 of
Chapter 1), this chapter has considered the management of business processes
that are increasingly complex and integrated both within internal corporate
business functions (e.g., manufacturing, design engineering, sales and mar-
keting, and enterprise services) and across end-to-end processes. Particularly,
the trend will be to move from relatively stable, organization-specific appli-
cations to more dynamic, high-value ones where business process interactions
and trends are examined closely to understand more accurately application
needs and dynamics. In such environments there is a clear need for advanced
business process management concepts and mechanisms to coordinate multi-
ple services into a multi-step business transaction. This requires that several
service operations or processes attain transactional properties reflecting busi-
ness semantics, which are to be treated as a single logical (atomic) unit of
work that can be performed as part of a business transaction.

The recent advent of Web service technologies and open standards such as
WSDL, BPEL, and WS-Policy has helped to evolve our thinking about how
distributed applications can connect and work together. However, none of
these core Web service specifications were designed to provide mechanisms by
themselves for describing how individual services can be connected to create
dependable business critical solutions with the appropriate level of complexity
that can guarantee absolute completion and accuracy of interacting business
processes.

Indeed, there is a need for explicitly managing fine grained tenets of SBAs
such as business data, events, operations, process fragments, local and ag-
gregated QoS and associated KPIs, and so on, to guarantee a continuous

2 Business Process Management 53

and cohesive information flow, correlation of end-to-end process properties,
termination and accuracy of interacting business processes that is driven by
application control(-integration) logic.

The above considerations give rise to a multi-modal transaction process-
ing scheme by enabling reliable business transactions that span from front-end
SBAs to back-end system-level transaction support and beyond to organiza-
tions that are part of a SN. Thus, the need for application-level management
technologies that can ensure highly reliable application (not only system)-
level transactions and end-user performance via rapid problem diagnosis and
resolution - while at the same time support change and capacity planning - is
paramount. In particular, we argue in favour of the need to provide rich fea-
tures and QoS similar to that offered by transaction processing monitors but
at the level of application management and application control logic, giving
rise to the concept of a business transaction.

The business transaction then becomes the framework for expressing de-
tailed operational business semantics. Conventional approaches to business
transactions, such as Open EDI, UMM and ebXML, focus only on the doc-
uments exchanged between partners, rather than coupling their application
interfaces, which inevitably differ.

This book chapter targeted the concept of a business transaction and ex-
plored how process fragments, and particularly transactional process frag-
ments, fit in the context of a running scenario that possesses transaction prop-
erties. Conventional (ACID) and unconventional (application-based) types of
atomicity were introduced, including contract and delivery atomicity, in the
frame of a business transaction model. The transaction model provides a com-
prehensive set of concepts and several standard primitives and conventions
that can be utilized to develop complex SBAs involving transactional process
fragments.

This main goal of this book chapter was to survey the field of business
process management concentrating on business-aware transactions, and intro-
ducing an initial version of a language (BTL) to represent and develop them.
In particular, the initial BTL specification presented in this book chapter de-
fines a transaction model and mechanisms for transactional interoperability
between end-to-end service constellations in SNs and provides a means to
define and enforce transactional QoSs into SBAs. Both the model and lan-
guage are firmly grounded on a requirements analysis, involving an in-depth
literature survey while taking into account requirements stemming from other
work packages in the S-Cube research framework. The approach taken mimics
business operational semantics and does not depend upon underlying tech-
nical protocols and implementations. Mission-critical composite applications
will differ from the smaller-scale composite applications built using BPEL
extensions. The mission-critical composite applications will be built on the
established foundation of service networks, enterprise systems, Web service
standards and platform.

54 Authors Suppressed Due to Excessive Length

References

1. S. Aissi, P. Malu, and K. Srinivasan. E-Business Process Modelling: the next
big step. IEEE Computer, 35(5):55–62, 2002.

2. R. Amit and C. Zott. Value Creation in eBusiness. Strategic Management
Journal, 22:493–520, 2001.

3. L.F. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T. Freund, J. Johnson,
S. Joyce, C. Kaler, J. Klein, D. Langworthy, M. Little, A. Nadalin, E. New-
comer, D. Orchard, I. Robinson, J. Shewchuk, and T. Storey. Web Services
Atomic-Transaction Specification, Version 1.0. IBM Web Service Transactions
Specifications, 2005.

4. L.F. Cabrera, G. Copeland, M. Feingold, R.W. Freund, T. Freund, J. Johnson,
S. Joyce, C. Kaler, J. Klein, D. Langworthy, M. Little, A. Nadalin, E. New-
comer, D. Orchard, I. Robinson, T. Storey, and S. Thatte. Web Services Atomic-
Transaction Specification. IBM Web Service Transactions Specifications, 2005.

5. Cabrera, L.F. and Copeland, G. and Feingold, M. and Freund, R.W. and Freund,
T. and Joyce, S. and Klein, J. and Langworthy, D. and Little, M. and Leymann,
F. and Newcomer, E. and Orchard, D. and Robinson, I. and Storey, T. and
Thatte, S. Web Services Business Activity Framework (WS-BusinessActivity).
IBM Web Service Transactions Specifications, 2005.

6. J. Clark, C. Casanave, K. Kanaskie, B. Harvey, N. Smith, J. Yunker, and
K. Riemer. ebXML Business Process Specification Schema, Version 1.01.
UN/CEFACT and OASIS Specification, 2001.

7. D.F. Ferguson and M.L. Stockton. Enterprise Business Process Management
- Architecture, Technology and Standards. In 4th International Conference in
Business Process Management, LNCS 4102, 2006.

8. P. Harmon. Business Process Change. Morgan Kaufmann, 2007.
9. W.J.A. Hofman. Conceptual Model of a Business Transaction Management

System. PhD thesis, Uitgeverij Tutein Nolthenius, 1994.
10. International Organization for Standardisation (ISO). ISO/IEC JTC1/SC30:

The Open-EDI Reference Model. Committee Draft 14662, 1995.
11. A. Kambil and E. van Heck. Reengineering the Dutch Flower Auctions: A

Framework for Analyzing Exchange Organizations. Information Systems Re-
search, 9(1):1–19, 1997.

12. H Kim. Conceptual Modelling and Specification Generation for B2B Business
Process based on ebXML. ACM SIGMOD Record Archive, 31(1):37–42, 2002.

13. B. Kratz. Protocols for Long Running Business Transactions. Technical Re-
port 17, Infolab, Tilburg University, 2004.

14. C. Liu, D. Kuo, M. Lawley, M.E. Orlowska, and Gehrmann Laboratories. Mod-
eling and Scheduling of Transactional Workflow. 1996.

15. B. Medjahed, B. Benatallah, A. Bouguettaya, A. Ngu, and A. Elmagarmid.
Business-to-Business Interactions: Issues and Enabling Technologies. VLDB,
12(1):59–85, 2003.

16. M. Moeller, S. Ceylan, M. Bhuiyan, V. Graziani, Henley S., and Z. Veress. End-
to-End e-business Transaction Management Made Easy. IBM Redbooks, 2004.

17. OASIS Web Services Business Process Execution Language (WSBPEL) TC.
Business Process Execution Language Specification, Version 2.0. Oasis specifi-
cation, OASIS, April 2007.

18. M.P. Papazoglou. Web Services and Business Transactions. World Wide Web:
Internet and Web Information Systems, 6(1):49–91, 2003.

2 Business Process Management 55

19. M.P. Papazoglou. Web Services: Principles and Technology. Prentice-Hall, 2007.
20. M.P. Papazoglou and D. Georgeakopoulos. Service Oriented Computing. Com-

munications of the ACM, 46(10):25–28, 2003.
21. M.P. Papazoglou and B. Kratz. A Business-Aware Web Services Transaction

Model. In Proceedings of the 4th international conference on service oriented
Computing (ICSOC 2006), LNCS 4294, pages 352–364, 2006.

22. J.D. Tygar. Atomicity in Electronic Commerce. In Proceedings of the 15th
annual ACM symposium on Principles of distributed computing, pages 8–26,
1996.

23. UN/CEFACT. UMM Meta Model – Foundation Module Candidate for 2.0. Part
of UN/CEFACT’s Modeling Methodology (UMM), 2009.

24. J. Yang and M.P. Papazoglou. Interoperation Support for Electronic Business.
Communications of the ACM, 43(6):39–47, 2000.

25. Y. Yang, P. Humphreys, and R. McIvor. Business Service Quality in an E-
commerce Environment. Supply Chain Management: An International Journal,
11(3):195–201, 2006.

3

Service Composition

George Baryannis1, Olha Danylevych2, Dimka Karastoyanova2, Kyriakos
Kritikos1, Philipp Leitner3, Florian Rosenberg3, and Branimir Wetzstein2

1 University of Crete, Greece
2 University of Stuttgart, Germany
3 Technische Universität Wien, Vienna, Austria

Chapter Overview In the S-Cube research framework, the Service Composition
and Co-ordination (SCC) layer encompasses the functions required for the aggrega-
tion of multiple services into a single composite service offering, with the execution of
the constituent services in a composition controlled through the Service Infrastruc-
ture (SI) layer. The SCC layer manages the control and data flow between the
services in a service-based application by, for example, specifying workflow models
and using a workflow engine for runtime control of service execution.

This chapter presents an overview of the state-of-the-art in service composition
modeling and covers two main areas: service composition models and languages and
approaches to the synthesis of service compositions including model-driven, auto-
mated, and QoS-aware service composition. The contents of this chapter can be seen
as a basis for aligning and improving existing approaches and solutions for service
composition and provide directions for future S-Cube research.

3.1 Introduction

Service oriented computing (SOC) [34] is a paradigm that uses services as
building blocks to create loosely coupled software solutions. In this context,
services are provided by software components that are described, discovered
and composed in an interoperable way. They implement functionality ranging
from low-level technical aspects to whole business processes [63]. Service-based
applications (SBAs) are built based on a service oriented architecture (SOA).
Web services [18] including standards such as WSDL, SOAP, and WS-BPEL
is, currently, the most popular realization of a SOA.

An important property of services taking part in a SOA is their com-
posability [18]. A service composition combines several services together to
achieve a certain goal. There are several different usages for service com-
position which also result in different languages and technologies. Business
processes can be implemented by orchestrating existing business functions
implemented as services. Such a service orchestration implements a part of a

58 Authors Suppressed Due to Excessive Length

business process and is again exposed as a service that can be used in other
business processes. Service coordination is needed when services need to follow
a coordination protocol driven by a central coordinator in order to perform
a distributed activity. Consider, for example, an auction scenario, where the
actions of sellers and bidders and the outcome of the auction are driven by
a auctioneer. Service choreography models are used for describing service in-
teractions from a global point of view. They are often used to describe the
public processes of different business partners, in contrast to service orches-
trations which describe the executable private process of each single partner.
Finally, service assembly models define how different services should be pack-
aged together into a deployable software solution. Some of these composition
model types can often be combined together. For example, after creating a
service choreography model, it can be refined to service orchestrations for each
partner.

Considering the lifecycle of service compositions, we can distinguish be-
tween four phases: synthesis, execution, monitoring, and adaptation. In the
synthesis phase, service compositions are created in either a top-down or a
bottom-up fashion. A model-driven service composition approach involves cre-
ating more abstract models, such as business process models, and then gen-
erating the service composition or parts of it automatically. Bottom-up ap-
proaches involve automated service composition and QoS-aware service com-
position. In automated service composition, existing services are composed
automatically based on a predefined abstract goal, e.g. by using AI planning
techniques. QoS-aware service composition ensures that the overall composi-
tion achieves certain QoS targets when services are selected. In the second
phase of the lifecycle, after the composition is created, it can be deployed and
executed on the corresponding service infrastructure. For example, a service
orchestration engine is used for execution of service orchestration models. At
process runtime, the service composition is monitored and based on monitor-
ing results can be adapted, thus closing the lifecycle. In this chapter we focus
on the synthesis phase while other phases are dealt with in other chapters of
this book as described further below.

The goal of this chapter is to present an overview of the state-of-the-art
in service composition modeling. It is structured into two main sections. In
Section 3.2 we describe and compare different service composition models and
languages. In Section 3.3 we then present approaches to synthesis of service
compositions including model-driven, automated, and QoS-aware service com-
position. In each subsection we present and classify research directions and
approaches and elaborate on the most important papers in each category.
Please note that this is not meant to be a complete report on all existing
publications in the area. Often only a single and more prominent approach
has been included in the survey.

3 Service Composition 59

3.2 Service Composition Models and Languages

In a broader sense, service composition can be seen as a combination of a set
of services for achieving a certain purpose. Interchangeably, the term service
aggregation can be used in this context [39]. In a narrower sense, the term
service composition is typically used alternatively for service orchestration, as
discussed below.

We will use the term in its broader sense and thus can consider four types
of service composition models:

• Service Orchestration: In service orchestration, a new service is created
by combining several existing services in a process flow. The standard
language for orchestrating Web services is WS-BPEL.

• Service Choreography: A service choreography defines the interaction
protocol between services. Service choreographies are specified by means
of languages such as WS-CDL or BPEL4Chor.

• Service Coordination: Service coordination models are needed when
several services have to agree on the outcome of a distributed process
by using a central coordinator and a coordination protocol. Service co-
ordination models in the context of Web services can be defined using
WS-Coordination.

• Service Assembly: Service assembly is performed during deployment
of service based applications. A service assembly is a deployable artifact,
which is deployed to an enterprise service bus. Service Component Archi-
tecture implements the service assembly model.

In addition to the four listed composition types, we will also present Se-
mantic Web Service Composition in this section. It is not a separate compo-
sition type, but extends existing models and languages, in particular service
orchestration, by use of semantic technologies in the context of Semantic Web
services.

In the following subsections we will describe each composition type in
detail by describing its concepts, and presenting and comparing the main
languages and approaches.

3.2.1 Service Orchestration

A service orchestration composes a new service by reusing existing services.
Service orchestration is a recursive model. Services which are orchestrated can
be atomic services, i.e. services which do not use any other services, or again
service orchestrations.

A service orchestration can be seen as a proactive composition that drives
the interactions with the services it orchestrates. It defines execution seman-
tics on a set of activities that perform these interactions. These execution
semantics can be defined in different ways, e.g., calculus-based (XLANG),
statechart-based [11], or graph-based (WSFL).

60 Authors Suppressed Due to Excessive Length

Service orchestrations can be created using a multi-purpose 3GL program-
ming language, such as Java, but more typically a special language is used
which deals with services as first-class citizens. In the context of Web services,
there have been several efforts related to Web service orchestration using work-
flow languages, e.g. WSFL [46], XLANG [73], BPML [7], BPEL [60]. In the
context of Web services, these service orchestrations are called WS-flows. Be-
sides WS-Flow languages, there are other approaches to service orchestration,
such as JOpera [64] which is a visual service composition approach, not con-
strained to orchestration of (WSDL-based) Web services.

WS-Flow Languages

Web service flow languages enable construction of service orchestration using
workflow like constructs whereby the invoked applicaions out of the workflow
are Web services. There have been several efforts related to the creation of
WS-Flow languages, in particular, WSFL [46], XLANG [73], BPML [7]. WS-
BPEL [60] (BPEL) has superseded these languages and has emerged as a
standard in the Web services community. It can be seen as the successor of
WSFL from IBM and XLANG from Microsoft and it combines concepts and
constructs from both languages. In the following, we will focus on WS-BPEL.

WS-Flows can be thought of having two dimensions: the “what?” dimen-
sion, and the “what with?” dimension. The “what?” dimension is represented
by the control flow and the data flow, and is also referred as business logic.
The control flow models alternative paths of execution, defines how excep-
tional situations are handled (fault handling and compensation handling) and
how the process reacts to events signalled by the environment (event han-
dling). The control flow of a BPEL process is specified using a combination
of graph-based (WSFL) and calculus-based (XLANG) approaches. Another
aspect of the “what?” dimension is the data flow which defines how data is ex-
changed among activities and between the workflow and its participants. The
data flow is explicitly present in only some of the existing WS-Flow languages,
such as WSFL, and XLANG. In BPEL, however, data flow is implicit. Ac-
tivities can access data variables, which can be defined either globally for the
whole process or for specific (nested) scopes (which restrict their visibility).

The second dimension of WS-flows, the “what with?” dimension, is the one
assigning to each interacting activity a participant, namely a Web service.
Interacting activities are those tasks in the model of a WS-flow that stand
for interaction with a partner Web service. The definitions of these activities
specify the participating Web services only on the abstract level, namely only
their portTypes and operations are to be supplied, and refer to no actual
endpoints that implement these portTypes. Mechanisms for binding service
instances to a process are intentionally left up to the runtime and therefore
out of the process definition. This is where service assembly mechanisms come
into play (Section 3.2.4).

3 Service Composition 61

BPEL supports only orchestration of Web services described in WSDL.
There are, however, extensions to BPEL which relax this restriction. BPEL4
People enables incorporating human tasks into a BPEL process. BPEL-
light [58] removes the dependency on WSDL altogether, and describes just
conversations as message exchanges with partner services.

BPEL process models can be defined as abstract or executable. An exe-
cutable process model specifies a service orchestration which can be executed
by a BPEL engine. In contrast, an abstract process model hides some activities
(a part of the process model) by defining them as “opaque”. Abstract process
models can be used to define process templates or behavioral interfaces. A
behavioral interface contains mostly messaging activities which denote how
the service requester should communicate with the process thus specifying its
public process which can be seen by external requesters. Private information
(process logic) is replaced by opaque activities.

3.2.2 Service Choreography

Service choreography provides the global point of view on existing and future
multi-party collaborations, as opposed to the local perspective provided by
service orchestration. Each participant in a service choreography can be mod-
eled as a service orchestration, called participant implementations. The chore-
ography “ties” the participant implementations in a global collaboration by
specifying the one-to-one and one-to-many message-based interactions among
them. The internal structure of each participant implementation is outside the
focus of choreography, and it is interesting only insofar it affects the partici-
pant’s behavior as perceived from the outside. In fact, a participant of chore-
ography is described only in terms of its messaging behavior. The messaging
behavior (also known as business protocol) can be represented for example
as an abstract process whose actions are the consumption and production of
messages.

The goal of choreography notations is to support the description of
message-based interactions among their participants. The expressiveness of
a choreography notation can be estimated by its ability to express (describe)
different types of message-based interactions. The Service Interaction Pat-
terns [10, 78] describe the recurring interaction scenarios among services in
SOA. They outline the different ways of realizing interactions, e.g. bilateral,
multilateral, competing, atomic and causally related. Since participants in a
choreography are usually implemented as (web) services, the Service Interac-
tion Patterns have been used to evaluate the expressiveness of some choreog-
raphy notations. Examples of such classifications can be found in [23, 21].

Alternatively to the support of Service Interaction Patterns, choreography
notations can be categorized on the basis of the following two dimensions:
(1) Interaction modeling paradigm: how the notation describes the interac-
tions among the participants; (2) Level of abstraction: to which extent the
choreography notation is tied to a particular set of technologies.

62 Authors Suppressed Due to Excessive Length

The main interaction modeling paradigms are Interaction and Intercon-
nected Interface see [41]. The Interaction paradigm describes the conversa-
tions by combining elementary interaction blocks (e.g. request-response and
one-way) into more complex interactions that define the dependencies among
them. The data and control flow are defined globally instead of being assigned
to the single roles. The advantage of interaction paradigm is that it supports
the early stages of service development lifecycle by capturing the overview of
interactions between the identified potential services. However, the drawback
is that, since the interactions are defined globally, “outside” the participants,
it is possible to define interactions that are not realizable by the choreography
participants (e.g. [28, 20]).

The Interconnected Interface paradigm takes an opposite approach with
respect to the Interaction one. The logic of the interactions is not defined
globally, but spread across the participants. In fact, the Interconnected Inter-
face paradigm specifies each participant’ logic separately. The overall logic is
(implicitly) given by the data and control flow dependencies defined between
the send and receive activities inside each participant’s logic. Because of its
focus on each participant separately, the Interconnected Interface paradigm is
well suited for both adapting existing collaboration-enabled processes and cre-
ating new ones. Moreover, since each participant’s logic is defined separately,
this paradigm is not concerned with the problem of realizability. However,
the interfaces of participants may be incompatible, e.g. resulting in deadlocks
during the enactment [52].

Regarding the level of abstraction, the various choreography notations can
be classified as either implementation specific or implementation independent.
On one hand, implementation specific choreography notations cover techni-
cal aspects of the interactions such as communication protocol, security is-
sues and exception handling. Implementation specific choreography notations
usually assume participant implementations to be Web Services, and spec-
ify the technical details using the related technologies (SOAP, WS-Security,
WS-ReliableMessaging, WS-Policy, etc.). On the other hand, implementation-
independent notations do not encompass technical details. Their goal is gen-
erally to support the Business Process Management community in making
decisions about the collaborations on the basis of provided overview of inter-
actions from business processes.

Table 3.1 presents the classification of the main choreography languages
in terms of the “Interaction modeling paradigm” and “Level of abstraction”
criteria. In Table 3.1 we classify two types of notations:

Industrial: WS-CDL [80], Let’s Dance [86], BPMN [59] and BPEL4Chor [22].
These languages are focused on usability for the end user, and generally
result from industrial efforts (e.g. consortia) or collaborations between
industry and academy. Unfortunately, they often lack a formal underpin-
ning (e.g. a formal semantics), which is often added a posteriori instead
of being an integral part of the specifications [9].

3 Service Composition 63

Table 3.1. A categorization of choreography notations

Implementation
independent

Implementation spe-
cific

Interaction Let’s Dance, automata-
based notations, Process
Algebras

WS-CDL

Interconnected In-
terface

BPMN, Petri Net-based
notations

BPEL4Chor

Formal: these notations are usually developed in academic approaches. They
can be split into three categories:
• Automata-based, e.g. timed automata [51], conversation protocols [28]

and Mealy services [13];
• Petri Net-based, e.g. [24, 33];
• Process algebras, e.g. [14, 56, 84, 69].

The formal notations are specifically useful because they enable the analy-
sis and verification of different properties of the choreographies built on the
wide spectrum of available verification methods for their underpinning for-
malisms. The verification of choreographies covers many different properties.
Some examples are: Conformance, i.e., whether a participant implementa-
tion behaves in terms of message exchanges as mandated by the choreogra-
phy; Realizability, i.e., whether it is possible to create the implementations of
participants that conform to the given choreography (already covered when
addressing the Interaction paradigm); Deadlock freeness, i.e., whether the en-
actments of the choreography can deadlock; Synchronizability, i.e., whether
the enactments of the choreography can execute the same traces assuming
both synchronous and asynchronous messaging among the participants. The
various verifications methods for choreographies have been investigated in
an extremely broad and increasing body of research. For a more complete
overview of the verification of choreographies, the interested reader is referred
to overviews like [76].

3.2.3 Service Coordination

Service coordination denotes a model in which a set of participating service
instances perform a distributed activity by following a coordination protocol.
A coordinator decides on the outcome of the protocol (e.g, success or failure)
and informs the participants of the result.

Service choreography is similar to service coordination in that it also mod-
els the interactions between services, however service coordination is much
more loosely constrained as the participants do not have to communicate
with each other, but communicate with the coordinator who drives the coor-
dination protocol. One could use service choeography languages to model the

64 Authors Suppressed Due to Excessive Length

interactions between the participant and the coordinator and also the protocol
logic in the coordinator.

The typical usage of coorditnation is the implementation of transactional
processing. For example, as described further below, there are existing coor-
dination protocols for implementing ACID transactions ot long-running busi-
ness transactions, which can be used between services to agree on the outcome.
There are also non-transactional use cases, such as the already mentuioned
auction scenario, which can leverage coordination frameworks [47].

Web Service Coordination

In the context of Web services, there are two competing specifications, WS-
Coordination [4] and Web Services Composite Application Framework (WS-
CAF) [83]. As they are relatively similar in their approaches, we will in the
following present only WS-Coordination.

WS-Coordination [4] defines a framework for coordinating interactions be-
tween Web services. It enables participting Web services to reach agreement on
the outcome of activities using a coordinator based on a coordination protocol.
WS-Coordination is extensible in respect to coordination protocols. Two such
protocol specifications already exist specifying transaction protocols, namely
the WS-AtomicTransaction [82] for atomic (2PC) transactions and the WS-
BusinessActivity [3] specification for long-running business transactions.

In WS-Coordination, coordinated interactions are called activities. An ac-
tivity ties together several participants into a (distributed) application. A
participant is a Web service that contributes to an activity. A coordinator
uses the coordination protocol to mediate between participants on the out-
come of the activity. Therefore, participants and the coordinator exchange
messages specified in a coordination protocol in order to agree on an outcome
of the activity. A coordination protocol consists of a set of messages and a
specification of how these messages are to be exchanged.

The coordinator provides three services needed for using the framework:
(1) Activation service: The coordinated activity is started when a service in its
role as an initiator requests a coordination context from the activation service.
The coordination context consists of an activity identifier, the coordination
type (e.g. atomic transaction), and the endpoint reference of the registration
service. The initiator distributes the coordination context to the participant
Web services. (2) Registration service: Before starting its work, the participant
registers at the registration service of the coordinator. (3) Protocol service: At
some later point the protocol service is started which coordinates the outcome
according to the specific protocol of the coordination type. The first two are
needed to initialize the distributed activity, the latter is used for running the
coordination protocol resulting in an outcome.

3 Service Composition 65

3.2.4 Service Assembly

A service-based application typically consists of several services which interact
with each other. Each service thereby provides an interface to other services,
but also defines requested interfaces of other services which it uses. Services
specify provided and requested interfaces in form of operations with inputs
and outputs, e.g. BPEL orchestrations use partnerlink types in order to specify
provided and requested service interfaces.

In order to create an executable service based application, requested and
provided service interfaces have to be wired together, thus creating a so called
service assembly. A service assembly is a deployable artefact which is installed
in an enterprise service bus. It is exposed to the outside as a service over a
certain protocol such as SOAP/HTTP, namely by using the provided inter-
face of the first service in the wiring chain. A service assembly can again be
recursively wired to other service assemblies.

Service Component Architecture

Service Component Architecture (SCA) [19] is a set of specifications that
provide an assembly model for building composite applications based on a
SOA. It is based on the idea that a service-based application consists of sev-
eral services, which are wired together to create solutions for implementing a
particular business function. SCA provides a model for both the creation of
service components and assembly of these components into composite appli-
cations. It supports a wide range of technologies for the implementation of
service components and for the communication mechanisms which are used
to connect them.

The SCA Assembly Model is the main specification which defines the con-
figuration of an SCA System. The SCA Assembly Model consists of a series of
artifacts. The main artifact is the Composite, which is the unit of deployment
and which can be accessed remotely. A Composite contains one or more Service
Components. Components offer their function as Services, which can either be
used by other Service Components within the same Composite or which can
be made available for use outside the module. Service Components may also
depend on Services provided by other Components. These dependencies are
called References. References can either be wired to services provided by other
components in the same module, or References can be linked to Services pro-
vided outside the Composite, which can be provided by other Composites
or arbitrary external services. All Service Components in the Composite are
linked together, by connecting References with corresponding Services using
Wires. A Component consists of an implementation, where an implementa-
tion is the piece of program code implementing a business function (e.g., in
Java or BPEL). The configuration of an SCA system has a standardized XML
representation. That configuration can be seen as a deployment descriptor for

66 Authors Suppressed Due to Excessive Length

the SCA System. The SCA System is deployed to an SCA Runtime which is
part of an Enterprise Service Bus.

Finally, for supporting non-functional properties such as security, SCA pro-
vides a Policy Framework to support specification of constraints, capabilities
and Quality of Service (QoS) expectations, from component design through
to concrete deployment.

3.2.5 Semantic WS Composition

Whilst promising to revolutionize e-Commerce and enterprise-wide integra-
tion, current standard technologies for Web Services (WSs) (e.g. WSDL) pro-
vide only syntactic-level descriptions of their functionalities, without any for-
mal definition to what the syntactic definitions might mean. This lack of
machine readable semantics necessitates human intervention for automated
service discovery and composition within open systems, thus hampering their
usage in complex business contexts.

Semantic Web Services (SWSs) relax this restriction by augmenting WSs
with rich formal descriptions of their capabilities, thus facilitating automated
composition, discovery, dynamic binding, and invocation of services within
an open environment. A prerequisite to this, however, is the emergence and
evolution of the Semantic Web (SW), which provides the infrastructure for
the semantic interoperability of WSs. WSs will be augmented with rich formal
descriptions of their capabilities, such that they can be utilized by applications
or other services without human assistance or highly constrained agreements
on interfaces or protocols.

Semantic annotation of WSs description has been the issue of many ini-
tiatives, projects and languages introduced, where the most significant among
them are: the OWL-S Semantic Markup for Web Services [77] and the Web
Service Modeling Ontology (WSMO) [43]. We also analyze an effort to extend
the BPEL standard with ontological annotations. Finally, we compare all of
these languages based on their WS composition capabilities.

OWL-S

OWL-S consists of a set of ontologies designed for describing and reasoning
over service descriptions. It consists of three main upper ontologies: the Profile,
Process Model and Grounding. The Profile contains a description of service
properties for the purposes of service discovery. These properties include both
functional (i.e., inputs, outputs, preconditions, and effects – IOPEs) and non-
functional (e.g. QoS) ones.

OWL-S process models describe the behavioral interface of a service and
are not executable, similarly to an abstract BPEL process. They are used
both for reasoning about possible compositions (validation, verification, etc.)
and for controlling the invocation of a service. The atomic process is a sin-
gle, black-box process description with exposed IOPEs. Composite processes

3 Service Composition 67

are hierarchically defined workflows, consisting of atomic, simple, and other
composite processes, constructed using a number of different composition con-
structs.

The profile and process models provide semantic frameworks whereby ser-
vices can be discovered and invoked, based upon conceptual descriptions de-
fined within OWL ontologies. The grounding provides a pragmatic binding
between this concept space and the physical data/machine/port space, thus
facilitating service execution. The process model is mapped to a WSDL de-
scription of the service. Each atomic process is mapped to a WSDL operation,
and the OWL-S properties used to represent inputs and outputs are grounded
in terms of XML data types.

WSMO

WSMO (Web Service Modeling Ontology) is a conceptual model for describ-
ing semantically-enhanced WSs. The WSMO framework consists of four main
modeling elements: Ontologies, Web Services, Goals and Mediators. Ontolo-
gies provide terminologies for defining the formal semantics of information
resources. WSMO ontologies are classic ontologies with classes, relations, in-
stances and axioms, plus functions (n-ary relations) and some additional in-
formation coded as non-functional properties (QoS and Dublic-Core-based).

WSMO Web Services descriptions consist of functional, non-functional
and behavioral aspects, of a WS. The functional aspect of a WSMO WS is
described through one capability using similar concepts with OWL-S IOPEs. A
capability is linked to several goals via mediators. An interface (behavioral as-
pect) describes how the functionality of the WS can be achieved by providing
a twofold view on the operational competence of the WS: a) a choreography
and b) an orchestration. A WSMO choreography specifies a behavioral in-
terface of the service, and not a complete choreography model. Both WSMO
choreography and WSMO orchestration are based on Abstract State Machines
(ASMs) [12].

Goals are limited descriptions of WSs (a capability and an interface) that
would potentially satisfy the user desires. WSMO model definition follows
a goal-driven approach, which means that requests and services are strongly
decoupled. Finally, Mediators connect heterogeneous components of a WSMO
description which have structural, semantic or conceptual incompatibilities.
Mismatches can arise at the data or process level. There exist four types of
mediators: ontology, goals, WS-to-goal and WS-to-WS mediators.

BPEL4SWS

The WS stack of standards currently relies on BPEL for executing orchestra-
tions of WSs. BPEL is using WSDL descriptions to identify partner/compo-
nent services in the process models. Unfortunately, effective dynamic service
binding cannot be performed by solely matching WSDL messaging interfaces.

68 Authors Suppressed Due to Excessive Length

Restricting service descriptions to the expressivity of strictly syntactic WSDL
interfaces limits the integration of service partners that operate on messages
that have different syntax but are semantically compatible. The solution to
the dynamic selection of WSs comes with SWSs. SWSs describe services not
in terms of an interface but rather describe their functionality and capability
semantically and in a machine processable manner.

Based on the above analysis, a new language called BPEL4SWS [1] was
introduced that extends BPEL. This language uses BPELlight [58] as basis
and allows to attach SWS descriptions to BPELlight such that SWS frame-
works like OWL-S and WSMO and corresponding implementations can be
used to discover and select SWSs that implement the functionality required
for an activity. As WSMO distinguishes between a service provider (Web Ser-
vice) and a service consumer (Goal) and thus enables asynchronous commu-
nication between WSs, it is preferred to OWL-S. Both, the SWS description
and the process itself are partly grounded to WSDL to facilitate WS-* based
communication. BPEL4SWS processes are able to use both SWSs as well as
conventional WSs intermixed within a single process. Moreover, BPEL4SWS
processes themselves can be exposed both as SWSs and conventional WSs.
Current SWS frameworks use ontologies as data model to facilitate seman-
tic discovery. For that reason, SAWSDL [27] is used to enable a seamless
mapping of data between its XML representation and its ontological repre-
sentation. This is needed because in BPEL4SWS WSs and SWSs can be used
intermixed.

Comparison

From all SWSs languages, OWL-S is the most mature one and has been used in
many WS discovery research approaches that include both functional and non-
functional characteristics of WSs. However, it has been proven that OWL-S
presents some drawbacks [8] that prevent it from being used in practical real-
world scenarios. Concerning composition synthesis, OWL-S has been success-
fully used in AI planning [53] for automatically producing and executing WS
composition plans. Moreover, it can be used for the analysis and validation
of WS compositions as it can be mapped to (colored) Petri-nets [53, 49]. Un-
fortunately, as far as orchestration is concerned, OWL-S presents two major
drawbacks. First of all, its process model is neither an orchestration model
(although it resembles one) nor a conversation model but it just describes the
behavioral interface of the service. Secondly, OWL-S describes the execution
of a Web service as a collection of remote procedure calls. Unfortunately, this
is only correct for a small percentage of the cases in business processes [1]
since typically the communication is asynchronous.

WSMO has the same discovery capabilities as OWL-S and has also been
used in many WS discovery research approaches. It is starting to attract many
SWS researchers as there exist a lot of SW tools that support it. Concerning
WS composition, WSMO contains a choreography model that can be easily

3 Service Composition 69

mapped to ASMs. In this way, WSMO inherits the core principles of ASMs
which include the modelling of state changes by guarded transition rules. How-
ever, the current transition rules in WSMO Choreography can only represent
local constraints. In addition, WSMO Choreography needs to be formalized in
order to allow reasoning and verification about it. Moreover, WSMO contains
an orchestration model which is quite primitive. So, WSMO can only be used
in a limited way to orchestrate the interactions of WS-based processes.

BPEL’s lack of dynamic service binding and choreography model led to the
synergy with WSMO and SAWSDL with BPEL4SWS as the result. Through
this synergy, the goal of dynamic service binding has been achieved. Now,
BPEL4SWS is better in comparison to OWL-S concerning orchestration.
Concerning the composition synthesis capability, there are many research ap-
proaches that have been applied to BPEL. So BPEL4SWS seems to be the
right language for the WS composition process.

3.3 Service Composition Synthesis Approaches

The lifecycle of service compositions consists of four phases: synthesis, exe-
cution, monitoring and adaptation. In this Section we will focus on the first
phase, as the other phases are described in other chapters of this book (see
Section 1).

When creating service compositions, we can distinguish between top-down
and bottom-up approaches. In a top-down approach, the composition logic is
first created on a higher abstraction level, e.g. as a business process model, and
then this abstract model is refined to a service composition model by selecting
appropriate services. In model-driven service composition, the composition
model is automatically generated from a more abstract process model. In QoS-
aware service composition, services are selected based on local and global QoS
constraints. A bottom-up approach tries to come up with the composition logic
by combining existing services in order to achieve a certain abstract goal. In
automated service composition, the services are combined automatically, e.g.
based on their pre- and postconditions using AI planning techniques.

In the following subsections, we will discuss these three main synthesis
approaches, namely model-driven, QoS-aware, and automated composition,
in detail.

3.3.1 Model-Driven Service Composition

Model-Driven Service Composition is the application of model-driven devel-
opment (MDD) ideas, such as the Model-Driven Architecture (MDA), to the
problem of service composition. MDA has been put forward by the Object
Management Group (OMG) in 2001, and is currently the de facto standard
for MDD. In MDA, all software functionality is specified using platform-
independent models (PIMs). Platform definition models (PDMs) are used to

70 Authors Suppressed Due to Excessive Length

translate PIMs to various platform-specific models (PSMs), which can either
be compiled into executable code or run directly. Many authors have presented
approaches to service composition, which exhibit similar characteristics [66].

One very important high-level language to model orchestrations is the
UML [74]. Here, UML Activity Diagrams are used to define the orchestra-
tion, which are then transformed into executable representations. The initial
prototype in [74] supports both WS-BPEL and WorkSCo 4. One advantage
of this approach is the endorsement of a complete roundtrip model, where
existing WSDL contracts can be refactored into UML models, which are in
turn arranged into orchestrations; these can then be transformed to executable
code as discussed above, and deployed on a composition engine. Since both
WS-BPEL and WorkSCo are XML-based languages the actual transformation
process is implemented using XSLT.

This work has later been extended to also consider semantic Web service
composition and QoS attributes [31] (see Section 3.3.2 below for more de-
tails on QoS-aware composition). This extension considerably improved on
the support for run-time discovery of services and run-time service binding:
in [74] the service bindings are statically defined at design-time, while [31]
considers abstract bindings to specific functionality defined using semantic
annotations; concrete services implementing this functionality are discovered
at run-time using semantic discovery and matchmaking technologies. Addi-
tionally, services are ranked based on QoS properties, i.e., if more than one
service instance is discovered during run-time the one exhibiting the best QoS
properties is selected. However, the work is based on a set of assumptions
(e.g., the existence of a semantic matchmaking and service discovery entity),
which are not fulfilled even today.

Already in 2003, Koehler et al. have presented an approach that is more
clearly aligned to the ideas of MDA [40] and Business Driven Development
(BDD) [55]. Their work presents the transformation of business models (rep-
resented in ADF and again in the UML) to technology-level WS-BPEL code.
Unlike other approaches, their work considers not only the top-down trans-
formation from high-level models to code, but also the other direction, i.e.,
the bottom-up re-engineering of existing WS-BPEL compositions into busi-
ness processes. This is different to the round-trip model of [74] in that it
also allows for bottom-up construction of high-level composition models. The
transformation architecture consists of four levels: business models are firstly
transformed to process graphs, which are in turn refined to flow graphs; sub-
flows can then be compiled to solution components using platform-specific
transformation. Bottom-up, solution components are combined to create flow
graphs, which are merged to process graphs, and finally the business model
can be restored. Later on, these ideas have been refined in [32]. In this paper
the authors detail how graph-based process models can be transformed into
executable code using graph transformation and compiler theory.
4 http://www.esw.inesc-id.pt/worksco/

3 Service Composition 71

Ouyang et al. use a different language, OMGs Business Process Modeling
Notation (BPMN), to represent business models [62]. They argue that BPMN
is more common in the business world than the more software-centric UML.
Additionally, BPMN is well supported by business analyst tools. However, the
transformation from BPMN to WS-BPEL is rather complex, since BPMN is
(as a graph-oriented language) fundamentally different than the block-oriented
WS-BPEL. However, the authors have still presented a complete and fully
automated transformation approach, which produces WS-BPEL code that is
also comprehensible for humans and well-structured.

In [61], Orriens et al. have presented a model-based composition ap-
proach based on composition rules. These rules are expressed in OCL (the
Object Constraint Language, which is part of the UML), and are used
to model constraints on possible compositions. Examples of such rules are
activity.function = ‘‘FlightBooking’’ (i.e., the function of the activity
always has to be “FlightBooking”) or activity.input - > notEmpty (i.e.,
there always has to be an input message for this activity). Generally, they
distinguish between rules which are used to structure activities within the
composition (structural rules), rules that relate messages to each other (data
rules), rules that protect the integrity of the composition, by enforcing pre-
conditions, postconditions and invariants (behavioral rules), rules concerning
the usage of resources (resource rules) and rules that specify the behavior of
the composition in case of errors or unexpected behavior (exception rules).
An automated dynamic service composition engine is used to create an or-
chestration from a set of input rules. However, of course this approach implies
that the composition has to be fully specified using business rules, which is
not always easy in practice.

Another form of model-driven service composition is mapping service or-
chestrations specified in WS-CDL to WS-BPEL. This approach is discussed
e.g. by Mendling and Hafner [54]. WS-CDL defines the externally visible be-
havior of business entities, i.e., which messages are transferred to which busi-
ness partner at which point in the interaction, and what options are available.
Additionally, WS-CDL relates operations to concrete states in the business
processes. Mendling and Hafner propose to use the inter-business WS-CDL
model as basis to generate WS-BPEL code for each specific participating part-
ner. They show that many WS-CDL constructs can be mapped directly (such
as cdl:sequence, cdl:parallel, cdl:assign, and some others), but other
constructs are more complex to map. For example, it is not easy to identically
map the semantics of a cdl:workunit construct, since no similar construct is
available in WS-BPEL. In this case, the authors propose to map the construct
to a bpel:scope, but a human BPEL engineer is required to eventually add
additional information that cannot be deduced from the choreography auto-
matically. Therefore, this approach can be considered only semi-automated
- a fully autonomous mapping from WS-CDL to WS-BPEL without human
interaction is currently not possible.

72 Authors Suppressed Due to Excessive Length

The most important presented approaches are summarized in Table 1. In
the table, “Not Explained” represents properties which are not mentioned
in the concerning paper. UML Activity Diagrams are abbreviated as “UML
AD”.

Table 3.2. Comparison of Model-Driven Composition Approaches

Business
Model

Composition
Model

Top-
Down?

Bottom-
Up?

QoS Semantics

[74] UML AD WS-
BPEL and
WorkSCo

+ - - -

[31] UML AD Not Ex-
plained

+ - + +

[40] ADF and
UML AD

WS-BPEL + + - -

[62] BPMN WS-BPEL + - - -
[54] WS-CDL WS-BPEL + - - -

As can be seen from the table and the discussion above, many approaches
exist which map widely used higher-level languages such as the UML to service
compositions (mostly WS-BPEL, since WS-BPEL is the de facto standard
for specifying compositions nowadays). However, current research issues such
as the inclusion of QoS or service semantics are rarely taken into account.
Additionally, little work exists in the area of Bottom-Up model-driven service
composition, i.e., the extraction of higher-level models from existing service
compositions.

3.3.2 QoS-aware Service Composition

Service-oriented systems in general and service compositions in particular are
often required to adapt themselves to different situations. For example, a
service in a composition might yield intermittent or even permanent fail-
ures, therefore, exchanging such a service by an equivalent service automat-
ically is necessary to meet certain service level agreements. A key enabler
for realizing such adaptive behavior is Quality of Service (QoS) as a means
to describe all non-functional attributes of a service. QoS attributes can be
grouped into deterministic and non-deterministic attributes [72]. These in-
clude performance-specific aspects such as response time or throughput of
a service, dependability-specific aspects such as availability or cost-related
data [48]. Deterministic QoS attributes, on the one hand, indicate that their
value is known before a service is invoked, including price or the supported
security protocols. On the other hand, their non-deterministic counterpart

3 Service Composition 73

includes all attributes that are uncertain at service invocation time, for ex-
ample the service response time. Therefore, the availability of accurate non-
deterministic information QoS (through QoS monitoring) plays a crucial role
during development and execution of a composite application.

Firstly, QoS enables a QoS-aware dynamic binding to concrete services
that are available in registries known at runtime. Secondly, QoS enables an
optimization of composite services in terms of its overall QoS and adaptation
of services whenever QoS changes. We denote a composite service leveraging
QoS to enable adaptive behavior as QoS-aware composite service and the
engineering process as QoS-aware service composition.

Over the last years a number of approaches have been introduced to deal
with the problem of how to compose service to build QoS-optimized com-
positions using a variety of approaches and algorithms. In the following, we
describe selected composition and optimization approaches.

Combinatorial Approaches

Zeng et al. [87, 88] present a QoS optimization approach by splitting a compo-
sition into multiple execution paths based on their notation that a composition
is specified using a state chart diagram. Each execution path is considered to
be a directed acyclic graph (DAG) given the assumption that the state chart
has no cycles. Additionally, the authors define an execution plan which is basi-
cally a set of pairs expressing that for every task in the composition, a service
exists that implements the operations required for that task. For the local
optimization, the system tries to find all candidate Web services that imple-
ment the given task. Each service is assigned a quality vector and user defined
scores for the different quality constraints. These constraints are then used to
compute a score for each candidate service. Based on Multiple Criteria Deci-
sion Making (MCDM), a service is chosen which fulfills all requirements and
has the highest score. In order to find a global optimum, the authors propose
an optimization approach based on Integer Programming (IP). To achieve a
QoS-aware optimization of the composition, global and local QoS constraints
can be specified. In addition, an objective function has to be maximized. The
optimization problem is then solved using an IP solver. In addition to opti-
mizing a composition, the authors also describe an approach to re-plan and
re-optimize a composition based on the fact that QoS can change over time.

Yu et al. [85] discuss algorithms for Web services selection with end-to-end
QoS constraints. Their approach is based on different composition patterns
similar to [36] and they group their algorithms according to flows that have
a sequential structure and ones that solve the composition problem for gen-
eral flows (i.e., flow that can have splits, loops etc). Based on this distinc-
tion, two models are devised to solve the service selection problem: a com-
binatorial model that defines the problem as multidimensional multi-choice
knapsack problem (MMKP) and the graph model that defines the problem
as a multi-constrained optimal path (MCOP) problem. These models allow

74 Authors Suppressed Due to Excessive Length

the specification of user-defined utility functions that allow to optimize some
application-specific parameters and the specification of multiple QoS criteria
taking global QoS into account. In the case of the combinatorial model, the
authors use an MMKP algorithm, that is known to be NP-complete. There-
fore the authors apply different heuristics to solve it in polynomial time. For
the general flow structure the authors use an IP programming solution (also
NP complete), thus they again apply different heuristics to reduce the time
complexity.

Jaeger et al. [36, 35] present a different approach of deriving QoS of a
composite services by following an aggregation approach that is based on the
well-known workflow patterns by Wil van der Aalst et al. [79]. The authors
analyze all workflow patterns for their suitability and applicability to com-
position and then derive a set of seven abstractions that are well suited for
compositions, called composition patterns. Additionally, the authors define
a simple QoS model consisting of execution time, cost, encryption, through-
put, and uptime probability and QoS aggregation formulas for each pattern.
The computation of the overall QoS of a composition is then realized by per-
forming a stepwise graph transformation, that identifies a pattern in a graph,
calculates its QoS according to the aggregation functions and the replaces the
calculated pattern with a single node in the graph. The process is repeated un-
til the graph is completely processes and only one single node remains (which
is itself a sequence according to their composition pattern). For optimizing a
composition, the authors analyze two classes of algorithms, namely the 0/1-
Knapsack problem and the Resource Constrained Project Scheduling Problem
(RCSP). For both algorithms a number of heuristics are defined to solve the
problems more efficiently.

Evolutionary Approaches

Canfora et al. [29] propose an approach that tries to solve the QoS-aware
composition problem by applying genetic algorithms. Firstly, the authors de-
scribe an approach to compute the QoS of an aggregated service, similar
to [16, 36, 37]. Secondly, the main issue of their approach, namely the encod-
ing of QoS-aware service composition problem as genome, is presented. The
genome is represented by an integer array with the number items equals to
the number of distinct abstract services composing our service. Each item, in
turn, contains an index to the array of the concrete services matching that
abstract service. The crossover operator is a standard two-point crossover,
while the mutation operator randomly selects an abstract service (position in
the genome) and randomly replaces the corresponding concrete service with
another one from the pool of available concrete service. The selection problem
is modeled as a dynamic fitness function with the goal to maximize some QoS
attributes (e.g., response time) while minimizing others (e.g., costs). Addition-
ally, the fitness function must penalize individuals that do not meet the QoS
constraints. The authors evaluate their approach by comparing it to well-

3 Service Composition 75

known integer programming techniques. In another paper, the authors also
describe an approach that allows re-planning of existing service compositions
based on slicing [15].

Stochastic Approaches

Mukhija et al. [57] present the Dino framework that is targeted for the use
in open dynamic environments. Their main idea is that no global view on a
service composition is available and thus each service specifies which services
it requires for its own execution. The service composition is formed at runtime
by the infrastructure. A key aspect is the fact that service requirements can
change dynamically (triggered for example by changing application context).
Dino also supports QoS-aware service composition by describing it formally
using an ontology. QoS is computed by using the actual and estimated QoS
values that are monitored by the Dino broker. QoS computation is modeled
by using a continuous-time Markov chain that enables the association of a
probability value that expresses the confidence of the QoS specification.

Wiesemann et al. [81] present a QoS-aware composition model that is
based on stochastic programming techniques. Their model takes QoS-related
uncertainty into account that minimized the average-value-at-risk (AVaR) -
a particular quantile-based risk measure - from the stochastic programming
domain. The trade-off between different QoS criteria is modeled by a combi-
nation of goal weighting and satisficing two prominent techniques in multi-
criteria optimization with the goal to minimize the AVaR.

Combined Approaches

The aforementioned approaches focus very specifically on the optimization
part of QoS-aware compositions and do not address, for example, other con-
cerns such as the specification of QoS-aware composition or runtime-specific
issues. Rosenberg et al. [71] provide a holistic, end-to-end environment for a
constraint-based specification and generation of QoS-aware compositions us-
ing a domain-specific language (DSL) called VCL (Vienna Composition Lan-
guage). VCL allows to specify microflow compositions using global and local
constraints by providing Composition as a Service (CaaS). These constraints
can be separated in soft- and hard-constraints. The former specify QoS con-
straints that are nice to have and are associated with a strength value to
express their importance that is desired by the user whereas the latter specify
constraints that need to be fulfilled. One the composition runtime has satis-
fied all the constraints and optimized the composition w.r.t. its QoS properties
and executable and adaptive composition is generated.

Comparison

Table 1 summarizes the approaches according to key aspects of QoS-aware
composition.

76 Authors Suppressed Due to Excessive Length

T
a
b
le

3
.3

.
C

o
m

p
a
ri

so
n

o
f

A
p
p
ro

a
ch

es

P
ap

er
C

om
p

os
it

io
n

R
eo

p
ti

m
iz

at
io

n
C

om
p

os
it

io
n

C
on

st
ru

ct
s

C
on

st
ra

in
t

T
y
p

es
O

p
ti

m
iz

at
io

n
T

ec
h

n
iq

u
e

C
om

p
le

x
it

y

Z
en

g
et

al
.

(2
00

4)
Si

m
pl

e
an

d
co

m
pl

ex
st

ru
ct

ur
es

L
oc

al
an

d
gl

ob
al

(h
ar

d)
IP

N
P

-c
om

pl
et

e
R

eg
io

n-
ba

se
d

Y
u

et
al

.
(2

00
7)

Si
m

pl
e

an
d

co
m

pl
ex

st
ru

ct
ur

es
L

oc
al

an
d

gl
ob

al
(h

ar
d)

M
M

K
P,

M
C

SP
-K

,
IP

N
P

-c
om

pl
et

e
n/

a

Ja
eg

er
et

al
(2

00
5)

C
om

pl
ex

st
ru

ct
ur

es
L

oc
al

an
d

gl
ob

al
(h

ar
d)

0/
1

K
na

ps
ac

k
an

d
R

C
SP

N
P

-c
om

pl
et

e
n/

a

M
uk

hi
ja

et
al

.
(2

00
7)

Si
m

pl
e

st
ru

ct
ur

es
L

oc
al

(h
ar

d)
N

ot
sp

ec
ifi

ed
U

nk
no

w
n

n/
a

W
ie

se
m

an
n

et
al

.
(2

00
7)

C
om

pl
ex

st
ru

ct
ur

es
P

ro
ba

bi
lis

ti
c

lo
-

ca
l

an
d

gl
ob

al
co

ns
tr

ai
nt

s

St
oc

ha
st

ic
P

ro
-

gr
am

m
in

g
U

nk
no

w
n

n/
a

R
os

en
be

rg
et

al
.

(2
00

9)
Si

m
pl

e
an

d
co

m
pl

ex
st

ru
ct

ur
es

L
oc

al
an

d
gl

ob
al

(s
of

t
an

d
ha

rd
)

IP
,

SA
,

G
A

,
T

S
N

P
-c

om
pl

et
e

O
n

In
vo

ca
ti

on
,

P
er

io
di

c
R

e-
op

ti
m

iz
at

io
n

3 Service Composition 77

As it can be seen from Table 3.3, most approaches support simple and
complex composition structures (such as sequences, loops, conditionals and
parallel execution). Moreover, various constraint types can be specified, in
particular local and global constraints, however, mostly only hard constraints
are allowed. Rosenberg et al. provides the only approach also allowing to
specify soft constraints. With regards to the optimization approach, integer
programming (IP) is the predominant approach, however, other approaches
such as genetic algorithms (GA), simulated annealing (SA) and tabu search
(TS) are also popular. Runtime re-composition of existing compositions is only
supported by Zeng et al. and Rosenberg et al. (which use a re-composition
mechanism every time a request is sent to the composite service and addition-
ally also provide a periodic rebinding running in the background).

3.3.3 Automated Service Composition

A major family of approaches to Web service composition aim to fully or par-
tially automate the process of composition in order to deal with its high level
of complexity. Manual implementation of a composition schema is a time-
consuming, error-prone and generally hard procedure and is most certainly
not scalable. Therefore, the need for automation in Web service composition
should be apparent. In [70], the authors propose a general framework for auto-
matic Web service composition. Through this framework, one can extract five
distinct phases that constitute a complete automatic composition approach.

Atomic services description

The first phase deals with the description and advertisement of atomic services
that will be used as building blocks for the composition. Service advertisement
can be achieved using UDDI or using the Service Profile class of OWL-S [77],
which provides semantically annotated descriptions for Web services.

Internal processes description

The second phase focuses on service specifications that describe the internal
processes of the service, essentially specifying how the service works. Formal
and precise languages such as logic programming are required in this case
in order to effectively capture the constraints describing the internals of a
service.

Generation of composition process model

This phase is the heart of the composition process, as it involves generating the
composition process based on the requester’s requirements. The result should
be one or more process models that describe which services participate in the
composition as well as the control and data flow among the participants.

78 Authors Suppressed Due to Excessive Length

Composition evaluation and execution

The final two phases involve the evaluation of the composition process models
produced in the previous phase, the selection of the optimal one based on a
set of non-functional attributes such as QoS aspects and the execution of the
composite service according to the selected process model.

Automatic service composition approaches can be grouped into two dis-
tinct categories: workflow-related approaches and AI planning approaches.
The first group draws mainly from the fact that a composite service is con-
ceptually similar to a workflow, making it possible to exploit the accumulated
knowledge in the workflow community in order to facilitate Web service com-
position. On the other hand, AI planning techniques involve generating a
plan containing the series of actions required to reach the goal state set by
the service requester, beginning from an initial state.

Workflow-based Approaches

Composition frameworks based on workflow techniques were one of the initial
solutions proposed for automatic Web service composition. In [42], the authors
define the Transactional WorkFlow Ontology (TWFO), an ontology used to
describe workflows. A registry containing OWL-S service descriptions is used
to find services corresponding to the tasks in the composite workflow. In
contrast to the previous work, where concrete workflows associated to services
are combined to a master workflow, [5] and [50] deal with abstract workflows.
[5] argues that business process flow specifications should be abstractly defined
and only bound to concrete services at runtime. The authors present a BPEL
engine that is able to take an abstract workflow specification and dynamically
bind Web services in the flow taking into consideration any relations and
dependencies between services as well as domain constraints. [50] advances one
step further by allowing for the automatic generation of an abstract workflow
based on a high-level goal.

More recent work seems to focus on bridging the gap between traditional
workflow composition methods and techniques based on AI planning that
will be presented in the next sections. For instance, [75] presents a workflow
framework that contains a Planning Module and a Constraint Solving Problem
Module. The first one produces candidate composite plans based only on
functional requirements while the second one takes the resulting plans of the
first module and selects the most appropriate service based on non-functional
attributes.

AI Planning Approaches

AI research has extensively covered a complex problem known as planning,
where an agent uses its beliefs about available actions and their consequences,
in order to identify a solution over an abstract set of possible plans. An AI

3 Service Composition 79

planning problem can be described as a quintuple {S, s0, G,A, Γ} [17], where
S is the set of all possible world states, including initial state s0 and goal
states G, A is the set of actions that can be performed in order to reach a
goal state and Γ ⊆ S×A×S is a transition relation from one state to another
when a particular action is executed. This problem definition can be applied
to the case of Web service composition if we consider A to be the available
services, G to be the goal set by the requester, and S, s0 and Γ to refer to a
state model of the available services. It should be noted that this correlation
is not followed by all approaches in this category.

Logic-based Planning

A large number of AI planning techniques involves expressing a domain theory
in classical logic. A set of rules is defined and plans are derived based on these
rules. In [6], the authors extend composition rules to include new constraints
known as invariants, in order to capture the knowledge that a property must
not change from a state to another. The extended composition rules are used in
a backward planning approach that can reason about service compositionality.

Another AI planning technique in the field of logic is planning with sit-
uation calculus. The situation calculus represents the world and its change
as a sequence of situations, where each situation is a term that represents a
state and is obtained by executing an action. McIlraith and Son [53] adapt
and extend Golog, a logic programming language built on top of the situation
calculus in order to allow for customizable user constraints, nondeterminis-
tic choices and other extensions to better satisfy the requirements of service
composition. In [67], the authors present a set of methods written in the logic
programming language Prolog, for translating OWL-S service descriptions
into Golog programs.

Other Planning Techniques

Despite the advantages of the aforementioned logic-based approaches, such
as precise semantics and the ability to prove properties of domain theories,
the AI planning community developed several formalisms to express planning
domains. Planning Domain Definition Language (PDDL) [30] is widely recog-
nized as a standardized input for state-of-the-art planners. In [65], WSDL de-
scriptions along with service-annotation elements are transformed to PDDL
documents. The framework allows for replanning when additional knowledge
has been acquired.

Graph-based planners have also been used in Web service composition ap-
proaches such as the one presented by Lecue et al. [44]. Their framework in-
cludes an Automatic Composition Engine that can take as input both natural
language and formalized requests. The suggested framework uses the Causal
Link Matrix (CLM) formalism [45], extended to support non-functional prop-
erties, in order to facilitate the computation of the final service composition
as a semantic graph.

80 Authors Suppressed Due to Excessive Length

Hierarchical Task Network (HTN) planning [25, 26], which provides hierar-
chical abstraction to deal with the complexity of real-world planning domains
has also been exploited to facilitate Web service composition [38]. Finally,
some planning techniques are based on model checking, a formal verification
technique which allows determining whether a property holds in a certain
system formalized as a finite state model, i.e. using a Finite State Machine
(FSM). Pistore et al. [68] present such a composition framework that covers
both cases of extended goals and cases of partial observability.

Comparison

The research approaches presented in this section are summarized and com-
pared in Table 3.4. The table examines if there are approaches in each category
that support the the following criteria:

• Domain independence: The method is not exclusive to a specific domain
(e.g. travelling, automotive) but can be applied to any, allowing for the
solution of a broad range of problems.

• Partial observability: The method is able to reason on incomplete infor-
mation.

• Non-determinism: The method deals with actions that may lead to dif-
ferent states depending on the values of some parameters (e.g. an if-else
construct).

• Scalability: The method is able to solve real-world composition problems
which often deal with a large number of services. High scalability ensures
that there is support for large numbers of services and/or high levels of
complexity.

• Applicability: The method uses well-known and widely used standards
(mentioned in the table).

3.4 Summary

Service compositions are the middle layer in the layered structure of service-
based applications and have a crucial importance in developing and executing
such applications. In this chapter we have presented the state-of-the-art in the
field of service compositions in a structured manner, although the classification
of approaches and related solutions may not give the full overview of existing
research results. We presented solutions to three different approaches to de-
veloping service compositions, namely the model-driven, QoS-aware and auto-
mated service composition. In addition, we presented existing well-established
languages for service orchestration, choreography, coordination and assembly.
The material in this book chapter can serve as a basis for homogenizing the
existing approaches for service composition and improving the existing solu-
tions.

3 Service Composition 81

Table 3.4. Comparison of Automated Service Composition Methods

Automated Domain Partial Non- Scalability Applicability
Composition Independence Observability Determinism

Method

Workflow Yes No Yes Average BPEL

Logic-based pl/ng Yes No No Varies OWL-S
Rule-based

Logic-based pl/ng Yes Yes Yes Average OWL-S
Situation calculus PDDL

Logic-based pl/ng Yes No No Low OWL-S
Event calculus

PDDL No Yes No Good PDDL
planning

Graph-based No Yes Yes Average BPEL
planning

HTN Varies Yes Yes Good OWLS
planning PDDL

Model-checking Yes Yes Yes Varies BPEL
and FSM OWL-S

References

1. BPEL for Semantic Web Services (BPEL4SWS). In Springer, editor, On the
Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, volume
4805/2007 of LNCS, pages 179–188, 2007.

2. Business Process Management, 5th International Conference, BPM 2007, Bris-
bane, Australia, September 24-28, 2007, Proceedings, volume 4714 of Lecture
Notes in Computer Science. Springer, 2007.

3. Web Services Business Activity Framework (WS-BusinessActivity). Version 1.1,
April 2007. http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.

pdf.
4. Web Services Coordination (WS-Coordination) Version 1.1, April 2007. http:

//docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf.
5. R. Akkiraju, K. Verma, R. Goodwin, P. Doshi, and J. Lee. Executing Abstract

Web Process Flows. In Proceedings of the Workshop on Planning and Schedul-
ing for Web and Grid Services of the ICAPS ’04 Conference, Whistler, British
Columbia, Canada, 2004.

6. Vassiliki Alevizou and Dimitris Plexousakis. Enhanced Specifications for Web
Service Composition. In ECOWS ’06: Proceedings of the European Conference
on Web Services, pages 223–232, Zurich, Switzerland, 2006. IEEE Computer
Society.

7. A. Arkin. Business Process Modeling Language (BPML), November 2002.
8. Steffen Balzer, Thorsten Liebig, and Matthias Wagner. Pitfalls of OWL-S –

A Practical Semantic Web Use Case. In ICSOC’ 04: Proceedings of the 2nd
International Conference on Service Oriented Computing, pages 289–298, New
York, NY, USA, November 2004.

82 Authors Suppressed Due to Excessive Length

9. Alistair P. Barros, Marlon Dumas, and Phillipa Oaks. Standards for web service
choreography and orchestration: Status and perspectives. In Christoph Bussler
and Armin Haller, editors, Business Process Management Workshops, volume
3812, pages 61–74, 2005.

10. Alistair P. Barros, Marlon Dumas, and Arthur H. M. ter Hofstede. Service
interaction patterns. In Wil M. P. van der Aalst, Boualem Benatallah, Fabio
Casati, and Francisco Curbera, editors, Business Process Management, volume
3649, pages 302–318, 2005.

11. Boualem Benatallah, Marlon Dumas, and Zakaria Maamar. Definition and Ex-
ecution of Composite Web Services: The SELF-SERV Project. IEEE Data Eng.
Bull., 25(4):47–52, 2002.

12. Egon Börger. High Level System Design and Analysis Using Abstract State
Machines. In FM-Trends 98: Proceedings of the International Workshop on Cur-
rent Trends in Applied Formal Method, pages 1–43, Boppard, Germany, 1998.
Springer-Verlag.

13. Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation specifica-
tion: a new approach to design and analysis of e-service composition. In WWW,
pages 403–410, 2003.

14. Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro. Towards a formal framework for choreography. In WETICE, pages
107–112. IEEE Computer Society, 2005.

15. Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa
Villani. QoS-Aware Replanning of Composite Web Services. In Proceedings of
the IEEE International Conference on Web Services (ICWS’05), Orlando, FL,
USA, pages 121–129, 2005.

16. Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut.
Quality of Service for Workflows and Web Service Processes. Journal of Web
Semantics, 1(3):281–308, 2004.

17. Mark Carman, Luciano Serafini, and Paolo Traverso. Web Service Composition
as Planning. In Workshop on Planning for Web Services in ICAPS’03, Trento,
Italy, 2003. AAAI.

18. Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Unraveling the Web Services Web: An Intro-
duction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2):86–93,
2002.

19. Francisco Curbera, Donald F. Ferguson, Martin Nally, and Marcia L. Stockton.
Toward a programming model for service-oriented computing. In ICSOC, pages
33–47, 2005.

20. Gero Decker. Realizability of interaction models. In ZEUS, volume 438 of CEUR
Workshop Proceedings, pages 55–60. CEUR-WS.org, 2009.

21. Gero Decker and Alistair P. Barros. Interaction modeling using bpmn. In
Business Process Management Workshops [2], pages 208–219.

22. Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. BPEL4Chor:
Extending BPEL for modeling choreographies. In ICWS, pages 296–303. IEEE
Computer Society, 2007.

23. Gero Decker, Hagen Overdick, and Johannes Maria Zaha. On the suitability
of ws-cdl for choreography modeling. In Mathias Weske and Markus Nüttgens,
editors, EMISA, volume 95 of LNI, pages 21–33. GI, 2006.

24. Gero Decker and Mathias Weske. Local enforceability in interaction petri nets.
In BPM [2], pages 305–319.

3 Service Composition 83

25. Kutluhan Erol, James Hendler, and Dana S. Nau. Semantics for HTN Planning.
Technical Report CS-TR-3239, UM Computer Science Department, 1994.

26. Kutluhan Erol, James A. Hendler, and Dana S. Nau. UMCP: A Sound and
Complete Procedure for Hierarchical Task-network Planning. In AIPS’ 94: 2nd
International Conference on AI Planning Systems, pages 249–254, Chicago, IL,
USA, 1994. Morgan Kaufman.

27. J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema,
2007. W3C Member Submission.

28. Xiang Fu, Tevfik Bultan, and Jianwen Su. Realizability of conversation protocols
with message contents. Int. J. Web Service Res., 2(4):68–93, 2005.

29. G.Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An Approach for QoS-
aware Service Composition based on Genetic Algorithms. In Proceedings of
the Genetic and Computation Conference (GECCO’05), Washington DC, USA.
ACM Press, 2005.

30. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL – The Planning Domain Definition Language. Technical
Report CVC TR–98–003/DCS TR–1165, Yale Center for Computational Vision
and Control, 1998. Version 1.2.

31. Roy Gronmo and Michael C. Jaeger. Model-Driven Semantic Web Service Com-
position. In APSEC ’05: Proceedings of the 12th Asia-Pacific Software Engi-
neering Conference, pages 79–86, Washington, DC, USA, 2005. IEEE Computer
Society.

32. Rainer Hauser and Jana Koehler. Compiling Process Graphs into Executable
Code. In GPCE, pages 317–336, 2004.

33. Yu Huang and Hanpin Wang. A petri net semantics for web service choreogra-
phy. In SAC, pages 1689–1690. ACM, 2007.

34. Michael N. Huhns and Munindar P. Singh. Service-Oriented Computing: Key
Concepts and Principles. IEEE Internet Computing, 9(1):75–81, 2005.

35. Michael C. Jaeger, Gero Mühl, and Sebastian Golze. QoS-aware Composition
of Web Services: An Evaluation of Selection Algorithms. In Proceedings of
the Confederated International Conferences CoopIS, DOA, and ODBASE 2005
(OTM’05), Agia Napa, Cyprus, volume 3760 of Lecture Notes in Computer Sci-
ence (LNCS), pages 646–661. Springer, November 2005.

36. Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. QoS Aggregation
for Service Composition using Workflow Patterns. In Proceedings of the 8th
International Enterprise Distributed Object Computing Conference (EDOC’04),
pages 149–159, Monterey, California, USA, September 2004. IEEE CS Press.

37. Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. QoS Aggregation
in Web Service Compositions. In Proceedings of the IEEE International Confer-
ence on e-Technology, e-Commerce and e-Service (EEE’05), Hong Kong, China,
March 2005. IEEE Press.

38. Zhang Jianhong, Zhang Shensheng, Cao Jian, and Mou Yujie. Improved HTN
Planning Approach for Service Composition. In SCC ’04: Proceedings of the
2004 IEEE International Conference on Services Computing, pages 609–612,
Shanghai, China, 2004. IEEE Computer Society.

39. Rania Khalaf and Frank Leymann. On Web Services Aggregation. In Boualem
Benatallah and Ming-Chien Shan, editors, TES, volume 2819 of Lecture Notes
in Computer Science, pages 1–13, Berlin, Germany, 2003. Springer.

40. Jana Koehler, Rainer Hauser, Rainer Hauser, Shubir Kapoor, Fred Y. Wu, and
Santhosh Kumaran. A Model-Driven Transformation Method. In EDOC ’03:

84 Authors Suppressed Due to Excessive Length

Proceedings of the 7th International Conference on Enterprise Distributed Object
Computing, page 186, Washington, DC, USA, 2003. IEEE Computer Society.

41. Oliver Kopp and Frank Leymann. Choreography design using WS-BPEL. IEEE
Data Eng. Bull., 31(3):31–34, 2008.

42. Jarmo Korhonen, Lasse Pajunen, and Juha Puustjärvi. Automatic Composition
of Web Service Workflows Using a Semantic Agent. In WI ’03: Proceedings of
the 2003 IEEE/WIC International Conference on Web Intelligence, page 566,
Halifax, Canada, 2003. IEEE Computer Society.

43. H. Lausen, A. Polleres, and D. Roman. Web Service Modelling Ontology
(WSMO), 2005. W3C Member Submission.

44. F. Lécué, E. Silva, and L. F. Pires. A Framework for Dynamic Web Services
Composition. In Cecare Pautasso and Thomas Gschwind, editors, WEWST07:
Proceedings of the 2nd ECOWS Workshop on Emerging Web Services Technol-
ogy, volume 313, Halle, Germany, 2007. CEUR.

45. Freddy Lécué and Alain Léger. A Formal Model for Semantic Web Service Com-
position. In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, International
Semantic Web Conference, volume 4273 of Lecture Notes in Computer Science,
pages 385–398. Springer, 2006.

46. Frank Leymann. Web services flow language (wsfl 1.0). Technical report, IBM
Corporation, May 2001 2001.

47. Frank Leymann and Stefan Pottinger. Rethinking the Coordination Models of
WS-Coordination and WS-CF. In Third IEEE European Conference on Web
Services (ECOWS 2005), pages 160–169. IEEE Computer Society, November
2005.

48. Yutu Liu, Anne H.H. Ngu, and Liangzhal Zeng. QoS Computation and Policing
in Dynamic Web Service Selection. In Proceedings of the 13th International
Conference on World Wide Web (WWW’04), 2004.

49. Nan Luo, Junwei Yan, and Min Liu. Towards efficient verification for process
composition of semantic web services. In Proceedings of the 2007 IEEE Inter-
national Conference on Services Computing (SCC 2007), 9-13 July 2007, Salt
Lake City, Utah, USA, pages 220–227, 2007.

50. S. Majithia, D. W. Walker, and W. A. Gray. A Framework for Automated
Service Composition in Service-Oriented Architectures. In ESWS 2004: 1st
European Semantic Web Symposium, volume 3053 of Lecture Notes in Computer
Science, pages 269–283, Heraklion, Greece, 2004. Springer.

51. Michele Mancioppi, Manuel Carro, Willem-Jan van den Heuvel, and Mike P.
Papazoglou. Sound multi-party business protocols for service networks. In
ICSOC, volume 5364 of Lecture Notes in Computer Science, pages 302–316,
2008.

52. Axel Martens, Simon Moser, Achim Gerhardt, and Karoline Funk. Analyzing
compatibility of bpel processes. In AICT/ICIW, page 147. IEEE Computer
Society, 2006.

53. Sheila A. McIlraith and Tran Cao Son. Adapting Golog for Composition of Se-
mantic Web Services. In Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuin-
ness, and Mary-Anne Williams, editors, KR, pages 482–496. Morgan Kaufmann,
2002.

54. Jan Mendling and M. Hafner. From Inter-Organizational Workflows to Process
Execution: Generating BPEL from WS-CDL. In R. Meersman, Z. Tari, and

3 Service Composition 85

P. Herrero et al., editors, Proceedings of OTM 2005 Workshops. Lecture Notes
in Computer Science 3762, pages 506–515. Springer Verlag, October 2005.

55. Tilak Mitra. Business-driven Development. http://www-
128.ibm.com/developerworks/
webservices/library/ws-bdd/index.html, 2005.

56. Carlo Montangero and Laura Semini. A logical view of choreography. In COOR-
DINATION, volume 4038 of Lecture Notes in Computer Science, pages 179–193.
Springer, 2006.

57. Arun Mukhija, Andrew Dingwall-Smith, and David S. Rosenblum. QoS-Aware
Service Composition in Dino. In Proceedings of the Fifth European Conference
on Web Services (ECOWS’05), Halle (Saale), Germany, pages 3–12, November
2007.

58. Jorg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, and Frank Leymann.
BPELlight. In Alonso et al. [2], pages 214–229.

59. OMG. Business Process Modeling Notation Version 1.1. OMG Recommenda-
tion, OMG, February 2008. http://www.bpmn.org/Documents/BPMN%201-
1%20Specification.pdf.

60. Web Services Business Process Execution Language Version 2.0 – OASIS Stan-
dard. Technical report, Organization for the Advancement of Structured Infor-
mation Standards (OASIS), Mar 2007.

61. Bart Orriens, Jian Yang, and Mike P. Papazoglou. Model Driven Service Com-
position. In ICSOC: Proceedings of the International Conference on Service-
Oriented Computing, 2003.

62. Chun Ouyang, Wil M.P. van der Aalst, Marlon Dumas, and Arthur H.M. ter
Hofstede. Translating BPMN to BPEL. Technical Report BPM-06-02, BPM
Center Report, 2006.

63. Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-Oriented Computing: State of the Art and Research Challenges.
Computer, 40(11):38–45, 2007.

64. Cesare Pautasso and Gustavo Alonso. The jopera visual composition language.
Journal of Visual Languages and Computing (JVLC), 16:119–152, 2005.

65. Joachim Peer. A PDDL Based Tool for Automatic Web Service Composition.
In PPSWR 2004: Second International Workshop on Principles and Practice of
Semantic Web Reasoning, volume 3208/2004 of LNCS, pages 149–163, St. Malo,
France, 2004. Springer Berlin / Heidelberg.

66. Konrad Pfadenhauer, Burkhard Kittl, and Schahram Dustdar. Challenges and
Solutions for Model Driven Web Service Composition. In WETICE ’05: Pro-
ceedings of the 14th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise, pages 126–134, Washington, DC,
USA, 2005. IEEE Computer Society.

67. Minh Phan and Fumio Hattori. Automatic Web Service Composition Using
ConGolog. In ICDCS Workshops, page 17. IEEE Computer Society, 2006.

68. Marco Pistore, Fabio Barbon, Piergiorgio Bertoli, Dzmitry Shaparau, and Paolo
Traverso. Planning and Monitoring Web Service Composition. In AIMSA
’04: Proceedings of the 11th International Conference on Artificial Intelligence,
Methodology, Systems, Applications, volume 3192/2004 of LNCS, pages 106–115,
Varna, Bulgaria, 2004. Springer Berlin / Heidelberg.

69. Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the the-
oretical foundation of choreography. In WWW, pages 973–982. ACM, 2007.

86 Authors Suppressed Due to Excessive Length

70. Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Com-
position Methods. In SWSWPC 2004: Proceedings of the First International
Workshop on Semantic Web Services and Web Process Composition, pages 43–
54, San Diego, CA, USA, 2004. Springer.

71. Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, and
Schahram Dustdar. Towards composition as a service - a quality of service
driven approach. In Proceedings of the 25th International Conference on Data
Engineering (ICDE2010), pages 1733–1740, March 2009.

72. Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping
Performance and Dependability Attributes of Web Services. In Proceedings of
the IEEE International Conference on Web Services (ICWS’06), Chicago, USA.
IEEE Computer Society, 2006.

73. Satish Thatte. XLANG - Web Services for Business Process Design. Microsoft
Corporation, 2001.

74. David Skogan, Roy Gronmo, and Ida Solheim. Web Service Composition in
UML. In EDOC ’04: Proceedings of the Enterprise Distributed Object Computing
Conference, Eighth IEEE International, pages 47–57, Washington, DC, USA,
2004. IEEE Computer Society.

75. Xudong Song, Wanchun Dou, and Wei Song. A workflow framework for intel-
ligent service composition. Grid and Pervasive Computing Conference, Work-
shops at the, 0:11–18, 2009.

76. Jianwen Su, Tevfik Bultan, Xiang Fu, and Xiangpeng Zhao. Towards a theory
of web service choreographies. In WS-FM, pages 1–16, 2007.

77. K. Sycara et al. OWL-S 1.0 Release. OWL-S Coalition,
http://www.daml.org/services/owl-s/1.0/, 2003.

78. Wil M. P. van der Aalst, Arjan J. Mooij, Christian Stahl, and Karsten Wolf.
Service interaction: Patterns, formalization, and analysis. In Marco Bernardo,
Luca Padovani, and Gianluigi Zavattaro, editors, SFM, volume 5569 of Lecture
Notes in Computer Science, pages 42–88. Springer, 2009.

79. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

80. W3C. Web Services Choreography Description Language Version 1.0. Candidate
Recommendation, W3C, November 2005. http://www.w3.org/TR/2005/CR-
ws-cdl-10-20051109/.

81. Wolfram Wiesemann, Ronald Hochreiter, and Daniel Kuhn. A Stochastic Pro-
gramming Approach for QoS-Aware Service Composition. In Proceedings of the
8th IEEE International Symposium on Cluster Computing and the Grid (CC-
Grid’08), Lyon, France, May 2008.

82. WS-AtomicTransaction Working Committee. Web Services Atomic Transaction
(WS-AtomicTransaction). Version 1.1. OASIS Specification, April 2007.

83. WS-CF Working Comittee. Web Services Coordination Framework Specification
(WS-CF) Version 1.0. OASIS Specification, December 2004.

84. Hongli Yang, Xiangpeng Zhao, Zongyan Qiu, Geguang Pu, and Shuling Wang.
A formal model for web service choreography description language. In ICWS,
pages 893–894. IEEE Computer Society, 2006.

85. Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient Algorithms for Web Services
Selection with End-to-End QoS Constraints. ACM Trans. Web, 1(1):6, 2007.

86. Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and Arthur H. M. ter
Hofstede. Let’s Dance: A language for service behavior modeling. In Robert

3 Service Composition 87

Meersman and Zahir Tari, editors, OTM Conferences (1), volume 4275 of Lec-
ture Notes in Computer Science, pages 145–162. Springer, 2006.

87. Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality Driven Web Services Composition. In Proceedings of the
12th International Conference on World Wide Web (WWW’03), pages 411–421,
New York, NY, USA, 2003. ACM Press.

88. Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web Services Com-
position. IEEE Transactions on Software Engineering, 30(5):311–327, May 2004.

4

Adaptation of Service-Based Systems

Raman Kazhamiakin1, Salima Benbernou2, Luciano Baresi3, Pierluigi
Plebani3, Maike Uhlig4, and Olivier Barais5

1 Fondazione Bruno Kessler (FBK), Trento, Italy
2 Université Claude Bernard Lyon 1, France
3 Politecnico di Milano, Italy
4 Universität Duisburg-Essen, Germany
5 Institut National de Recherche en Informatique et Automatique (INRIA), France

Chapter Overview The advances in modern technology development and future
technology changes dictate new challenges and requirements to the engineering and
provision of services and service-based systems (SBS). These services and systems
should become drastically more flexible; they should be able to operate and evolve
in highly dynamic environments and to adequately react to various changes in these
environments. In these settings, adaptability becomes a key feature of services as it
provides a way for an application to continuously change itself in order to satisfy
new contextual requirements.

Events and conditions triggering application adaptation include: changes in the in-
frastructural layer of the application due to quality of service changes; changes of
the (hybrid) application context and location; changes of the user types, prefer-
ences, and constraints that require application customization and personalization
as a means to adapt the application behavior to a particular user; changes in the
functionalities provided by the component services that requires modifying the way
in which services are composed and coordinated; and changes in the way the service
is being used and managed by its consumers, which in turn leads to changes in the
application requirements.

4.1 Introduction

In the following we will exploit the vision of the adaptation and monitoring
of services and service-based system continuously developed within the scope
of the S-Cube project. At the high level of abstraction, the adaptation and
monitoring framework can be described by the concepts represented in Figure
4.1. This figure identifies Monitoring Mechanisms, Monitored Events, Adap-
tation Requirements, Adaptation Strategies, Adaptation Mechanisms, and the
relations between these concepts, as the key elements of the adaptation and
monitoring framework. It is important to remark that the significance of this

90 Authors Suppressed Due to Excessive Length

Monitoring
mechanisms

Adaptation
mechanisms

Monitored
events

Adaptation
requirements

Adaptation
strategies

detect

trigger

achieve

realize

Fig. 4.1. Adaptation and Monitoring

conceptual framework is not in the figure itself – it describes a standard sens-
ing/planning/actuating control chain. The significance is in the very broad
meaning that we give to the different concepts, and to the capability of the
chain to allow for a very general integration of a wide range of mechanisms,
techniques and methodologies for monitoring and adaptation.

• With Monitoring Mechanism we mean any mechanism that can be used
to check whether the actual situation corresponds to the expected one.
The meaning we give to the monitoring mechanisms is very broad; in this
way, we refer not only to “classical” run-time monitoring facilities, but also
to techniques such as post-mortem log analysis techniques, data mining,
online and offline testing and even verification/validation, etc. Realization
of monitoring mechanisms is provided by the corresponding monitoring
engines built on top of the monitoring infrastructures.

• Monitoring mechanisms are used to detect Monitored Events, i.e., the
events that deliver the relevant information about the application exe-
cution, evolution, and context. These events represent the fact that there
is critical difference with respect to the expected SBS state, functionality,
and environment. The monitored events result from observing monitoring
properties, derived from the adaptation requirements as a specification of
the expected state and functionality of the SBS and its environment. The
notion of monitored events may be very broad ranging from basic failures,
deviation of QoS parameters, to complex properties over many executions
of SBS, certain trends in the SBS environment, changes in business rules,
etc.

• Monitored events in turn trigger Adaptation Requirements, which repre-
sent the necessity to change the underlying service or SBS in order to
remove the difference between the actual (or predicted) situation and the
expected one. They may include dependability and functional correctness
requirements, optimality, interoperability, usability, etc.

• In order to satisfy adaptation requirements, it is necessary to define Adap-
tation Strategies, which define the possible ways to achieve those require-
ments given the current situation. Note that it is possible to have a set

4 Adaptation of Service-Based Systems 91

of different adaptation strategies applicable in the same situation. In this
case the process requires certain decision mechanisms that operate au-
tonomously or involve humans.

• Finally, the adaptation strategies are realized by the Adaptation Mecha-
nisms – the techniques and facilities provided by the underlying SBS or by
the operation and management platform in different functional layers that
enable corresponding strategies. The adaptation may be also done “man-
ually”, i.e., by re-designing/re-engineering the application. In this case we
should speak about application evolution as the permanent service or SBS
changes are required that should be done via SBS re-design.

An important aspect of these conceptual elements is the necessity to define
and implement the corresponding decision mechanisms, which correspond to
the four arrows in the picture in Figure 4.1 and coordinate the work of the
framework and realize the relations among them. In particular,
• Monitoring properties allow us to analyze the variety of SBS information

observed during its execution and evolution, and to extract and report
those events and situations that are critical from the point of view of the
monitoring.

• Adaptation decision mechanisms relate the monitoring activities with the
adaptation activities: they regulate when a particular monitored event
corresponds to a situation in which the system should be changed.

• Strategy decision mechanisms define the way a particular adaptation strat-
egy is chosen based on the adaptation needs, SBS state, history of previous
adaptations, etc. In particular, these mechanisms will provide a way to re-
solve conflicts among different adaptation requirements.

• Realization mechanisms define how a particular strategy is realized, when
there is a wide range of available options (e.g., many services to bind in
place of failed one).
Note that the realization of these decision mechanisms may be done auto-

matically or may require user involvement. In the latter case we speak about
the human-in-the-loop adaptation: the users (with different roles) may de-
cide whether the adaptation is needed, which strategy to choose, and even
participate to its realization (e.g., manual ad-hoc service adaptation through
re-design).

4.1.1 Aims and Focus of the Chapter

While the problem of monitoring and adaptation of various types of soft-
ware system has gained a lot of interest in the recent years, the results and
directions are still insufficient. First, the proposed approaches are very frag-
mented; they address only specific problems, particular application domains,
and particular types of applications and systems; the monitoring solutions
are often isolated from the adaptation needs and approaches. Second, most of
the approaches dealing with adaptation address the problem reactively: the

92 Authors Suppressed Due to Excessive Length

solutions aim to define a way to recovery from the problem when it is already
happened rather than to prevent it to happen. This is, indeed, insufficient
in certain applications and domains. Third, as the applications, their users,
and the settings where they operate become more and more dynamic, open,
and unpredictable, the role of the application context (being a physical, busi-
ness, or user-specific) becomes much more critical. In these settings also very
relevant is the role and participation of various types of users in the moni-
toring and adaptation process. The service-based systems are often designed
to target final users, and, therefore, should be able to collect and properly
exploit the information about the user in order to customize and personalize
those applications as well as to let the users participate to the corresponding
activities.

All these issues are often omitted by the state-of-the-art solutions both for
monitoring and adaptation. In terms of the cross-cutting research challenges
represented in Chapter 1 and constituting the core of the S-Cube project
research agenda, the most relevant problems that the novel research results
should address are
• Cross-layer and proactive monitoring and adaptation, as the different

adaptation aspects can not be considered in isolation along the SBS life-
cycle or across different functional SBS layers as it happens in most of the
state of art approaches. Moreover, as we will see in the following sections,
the existing adaptation approaches are mostly reactive; they aim to “re-
cover” from the problem or to adapt to the change when it has already take
place. In many settings, such a behavior may not be possible as the service
invocations, process activities and executions go beyond simple software
call and have certain, sometimes very critical, business value that is not
always possible to revert. Proactive adaptation is the key mechanism in
these settings.

• considering contextual information for service-based systems, since the con-
text, and more specifically the user context, often becomes a key driver of
the adaptation activities in the modern Internet of Service applications.
To understand better these phenomena, in this survey we will study and

review the relevant monitoring and adaptation approaches. We will provide
a comprehensive classification of the corresponding concepts, principles, tech-
niques, and methodologies; we will identify the overlaps between various re-
search activities and reveal the gaps and problems that the research com-
munity should address in this area. We remark that the state of art survey
activities presented in this chapter as well as the adaptation taxonomy have
been elaborated and developed in the scope of the S-Cube project.

The structure of the survey is organized as follows. Section 4.2 will provide
a classification of the principles and concepts related to the problem of the
service adaptation. Section 4.3 will provide a review of the existing works
in the area. Finally, Section 4.3.3 identifies gaps and overlaps in the current
research contributions on the basis of the results of the survey. Finally, Section

4 Adaptation of Service-Based Systems 93

4.4 makes a review of the adaptation approaches in other types of information
systems.

4.2 Adaptation Taxonomy

In order to provide a holistic, comprehensive, and integrated vision on the
monitoring and adaptation across various research disciplines, in we will try
to present a generalized and universal yet practical definition of the adapta-
tion problem. We will present a generic conceptual model for the adaptation.
Based on the conceptual model, this section will provide a classification of
the adaptation concepts structured such as to answer the following questions
about the corresponding concepts: “Why?”, “What?” and “How?”. In partic-
ular,
• the “Why?” dimension provides a description of the motivation for moni-

toring respectively adaptation;
• the “What?” dimension is used to classify the subject of monitoring re-

spectively adaptation and the way it is described;
• the “How?” dimension describes the way the monitoring approach respec-

tively adaptation approach is delivered.

4.2.1 Conceptual Model

Adaptation can be defined as a process of modifying Service-Based Applica-
tion in order to satisfy new requirements and to fit new situations dictated
by the environment on the basis of Adaptation Strategies designed by the
system integrator. An Adaptable Service-Based Application is a service-based
application augmented with the corresponding control loop that monitors and
modifies itself on the basis of these strategies. Notice that adaptations can be
performed either because monitoring has revealed a problem or because the
application identifies possible optimizations or because its execution context
has changed. The context here may be defined by the set of services available
to compose SBSs, the computational resources available, the parameters and
protocols being in place, user preferences, environment characteristics.

High-level conceptual model of the adaptation concepts is represented in
Figure 4.2.

The Adaptation Requirements identify the aspects of the SBS model that
are subject to change, and what the expected outcome of the adaptation
process is. Adaptation Strategies are the ways through which the adaptation
requirements are satisfied. Examples of adaptation strategies are re-configure
(i.e., modify the current configuration parameters of the SBS), substitute (re-
place one constituent service with another), compensate (remove the negative
effect of the previously executed action by performing new actions), re-plan
(modify the structure and the model of the application, which is more suitable

94 Authors Suppressed Due to Excessive Length

Fig. 4.2. High-level adaptation model

for the current situation), re-compose (modify the way the services are com-
posed), and re-negotiate (modify the service-level agreement with the service
provider).

Adaptation Strategies are realized using the available Adaptation Mecha-
nisms. These mechanisms include the tools for performing actual adaptation
actions, i.e., Realization Mechanisms, and the tools for making important de-
cisions about the adaptation, i.e., Decision Mechanisms. The latter include
the mechanisms for selecting adaptation strategies among possible alternatives
given the current situations, histories of previous adaptations, user decisions
or preferences, etc.

The adaptation procedure may modify various elements of the SBS, i.e.,
may have different Adaptation Subjects. The adaptation process involves dif-
ferent kinds of Adaptation Actors covering various roles with which the users
may be involved in the process. When these roles are performed by the corre-
sponding software components, we speak about self-adaptation approaches.

Below we will provide a classification of the adaptation problem and iden-
tified adaptatio concepts.

4.2.2 Adaptation Taxonomy

In this chapter, we describe a graphical representation of the adaptation tax-
onomy (depicted in Figure 4.3) that distinguishes approaches by Why, Who,
What, and How software adaptation takes place.

Taxonomy Dimension: Why?

The first dimension of our taxonomy define the usage of the adaptation
process, i.e., why adaptation is needed. Indeed, the “why” dimension provides
a description of the motivation for the adaptation.

Depending on the goal of the adaptation process, one can distinguish be-
tween
• Perfective Adaptation, which aims to improve the application even it runs

correctly, e.g., to optimize its quality characteristics.

4 Adaptation of Service-Based Systems 95

!"#$%#%&'()

%#*'('+,

-.#/0)'1)

#"#$%#%&'(

234506%)'1)

#"#$%#%&'(

!"#$%#%&'()

#.$06%

!"#$%#%&'()

.6'$0

!"#$%#%&'()

.%7#%0/,

!"#$%#%&'()

&+$80+0(%#%&'(

90+$'7#7,

:07+#(0(%

;,(#+&6&%,)'1)

"06&.&'(

26'$0)'1)01106%

<3(6%&'(#8)8#,07

9&+&(/

=0>08)'1)#3%'('+,

Why?

What?

How?

!3%'+#%&'()'1)

"06&.&'(

?'%#%&'(

2$06&1&6#%&'(

!6%&'(.

='6#%&'(

@0%A'"'8'/,

;&706%&'(

;&.%7&43%&'(

B(>#.&>0(0..

C0#8&D#%&'()

+06A#(&.+.

!"#$%#%&'()

6A#7#6%07&.%&6.

E'7706%&>0)!"#$%#%&'(

!"#$%&>0)!"#$%#%&'(

:07106%&>0)!"#$%#%&'(

F*%0("&(/)!"#$%#%&'(

:70>0(%&>0)!"#$%#%&'(

E'(%0*%G#H#70)!"#$%#%&'(

@0"&#%&'(

E3.%'+&D#%&'(I:07.'(#8&D#%&'(

2J!)B(.%#(60

2J!)E'(%0*%

2J!)@06A#(&.+.

2J!)E8#..

;06&.&'()

@06A#(&.+.

Fig. 4.3. Adaptation taxonomy

• Corrective Adaptation, which aims to remove the faulty behavior of a SBS
by replacing it by a new version that provides the same functionality.
Various faults can occur relatively often and unexpectedly in distributed
systems. It is therefore necessary to handle failures reported during execu-
tion of the SBS in order to recover from undesired behavior, or to change
the application logic in order to remove the possible fault.

• Adaptive Adaptation, which modifies the application in response to changes
affecting its environment. The need for this kind of adaptation in SBAs is
dictated by (i) the necessity to accommodate to the changes in the SBS
context (execution context, user context, or physical context); (ii) the need
to ensure interoperability between interacting parties by providing appro-
priate adapters or mediators; (iii) the necessity to customize or personalize

96 Authors Suppressed Due to Excessive Length

the application according to the needs and requirements of particular user
or customers.

• Preventive Adaptation, which aims to prevent future faults or extra-
functional issues before they occur.

• Extending Adaptation, which extends the application by adding new
needed functionalities.

These classes may be further decomposed given particular problems in mind.
For example, adaptive class may be divised into context-aware adaptation,
mediation, and customization/personalization.

Taxonomy Dimension: What?

The “what” dimension is used to classify the adaptation target and the ex-
pected result. In this way, we consider the following elements of the taxonomy:
Subject of Adaptation, Adaptation Aspect, and Adaptation Scope.

With the Subject of Adaptation we mean an entity that should be modified
by the adaptation process. At the highest level of abstraction we distinguish
• SBS Instance, i.e., business process instance, an application customized to

a particular user according to her user profile, a particular configuration
of a service;

• SBS Class, which defines the whole application model, including its busi-
ness process model, business requirements and KPIs;

• SBS Context, which may encompass various aspects, i.e., user/physical/-
computing environment in which the application is performed;

• Adaptation and Monitoring Mechanisms themselves, changing the way the
system is changed and managed.
Finer granularity may be thought of, such as services, compositions, rules

and policies, SLAs, etc.
With the Adaptation Aspect we refer to a particular concern of the adap-

tation process: different dimensions of the SBS quality model (e.g., security,
dependability, usability), functionality, HCI aspects, etc.

With the Adaptation Scope we refer to the effect of the adaptation process,
i.e., whether it is expected to be temporary (i.e., hold only to a particular SBS
instance or in a particular context) or permanent adaptation (i.e., modify
the whole application model that will be applicable to other instances and
situations).

Taxonomy Dimension: How?

The third dimension of our taxonomy is “how” adaptation can be achieved and
implemented, that is, what the specific strategies are exploited and what the
specific mechanisms are used to implement the,. This dimension includes the
characteristics of the relations established between the monitoring artifacts

4 Adaptation of Service-Based Systems 97

and the changes of SBS addressed by the approaches; e.g., models, types,
granularity,etc.

Adaptation Strategies are the means through which adaptation is accom-
plished. Examples of adaptation strategies are re-configuration, re-binding,
re-execution, re-planning, etc. Adaptation Strategies define the possible ways
to achieve Adaptation Requirements and Objectives given the available Adap-
tation Mechanisms. They may be classified according to a set of character-
istics, including the location of changes, the used methodology, and the way
the strategy is specified.

Location determines the placement of the changes in the SBS architecture
and environment:
• Scope of adaptation effect (“horizontal” placement) says whether the

changes are local (shallow), i.e., the small-scale incremental changes local-
ized to a service or are restricted to the clients of that service, or whether
they are global (deep), i.e., large-scale transformational changes cascading
beyond the clients of a service possibly to entire value-chain (end-to-end
processes) - clients of affected services e.g., outsourcers or suppliers.

• Affected Functional SBS Layer (“vertical” placement), where one can dis-
tinguish between infrastructural changes that affect service signatures,
protocols, and the run-time execution environment; changes at service
composition level, when the behavioral protocols and/or operational se-
mantics of SBS are affected; level of business process management, when
the change involve business rules and requirements, organizational mod-
els, clients, and even entire value chain. Finally, cross-layer changes affect
different functional layers.

Adaptation Methodology characterizes the time, distribution, and direction of
the adaptation.
• Timing defines the moment of time when the adaptation is performed.

Reactive adaptation refers to the modification in reaction to the changes
already occurred; proactive adaptation aims to modify SBS before a devi-
ation will occur during the actual operation and before such a deviation
can lead to problems; post-mortem adaptation is characterized by a sig-
nificant gap between the triggering event is detected and the modification
performed. Typically, the post-mortem adaptation is accomplished by re-
designing/re-engineering the application.

• Direction of the adaptation distinguishes between forward adaptation,
where the adaptation strategy that directs the system to a new state, where
the adaptation requirements are met, and backward adaptation, where the
adaptation strategy reverts the system to a state, previously known to
meet the adaptation requirements.

• Distribution of the adaptation distinguishes between centralized adapta-
tion, where the actions are defined and executed on all the affected com-
ponents in the controlled and integrated way, and distributed adaptation
performed locally and then propagated among components.

98 Authors Suppressed Due to Excessive Length

Adaptation Specification represents the notations needed to specify the strate-
gies and the particular actions representing those strategies. It can range from
procedural approach (concrete actions to be performed), over declarative (the
description of the goals to be achieve), to hybrid. The notation may be im-
plicit : in this case the adaptation strategies and actions are hard-coded within
the system according to some predefined schemata and can not be changed,
without modification of the adaptation mechanism. On the contrary, explicit
adaptation specification allows the designer to guide or influence the adapta-
tion process by explicitly stating the adaptation requirements or instructions.
The following forms of explicit adaptation specification may be considered:
• action-based specification consists of situation-action rules which specify

exactly what to do in certain situations or upon occurrence of a certain
event. The situation part corresponds to the specification of variation,
while the second part prescribes concrete adaptation actions to be per-
formed. The action-based approaches differ in the way the instructions
and the primitive actions are defined and structured.

• goal-based specification is a higher-level form of behavioural specification
that establishes performance objectives, leaving the system or the middle-
ware to determine the actions required to achieve those objectives;

• utility function-based specification exploits utility functions to qualify and
quantify the desirability of different adaptation alternatives, and, there-
fore, permit, on the fly, determination of a “best” feasible state;

• explicit variability approach associate the situations, where the adaptation
should take place (adaptation points), with a set of alternatives (variants)
that define different possible implementations of the corresponding appli-
cation part.

Adaptation Action is an action performed over an adapted system with the
purpose of changing it according to the adaptation requirements. Adaptation
action defines an operation semantics of the adaptation strategy. Different
approaches define various adaptation actions. Those actions may be further
classified according to the subject of the adaptation and the scope: for ex-
ample, service instance adaptation actions (retry, negotiate SLA, duplicate
service, substitute service), flow instance adaptation actions (substitute flow,
redo, choose alternative behavior, undo, skip / skip to, compensate), service
class actions (change SLA, and suggestion for service re-design), flow class ac-
tions (re-design/re-plan, change service selection logic, change service registry,
change platform).

Decision Mechanisms are the means through which adaptation approach
may make a decision on the strategy to be performed in a given situation
in order to better satisfy the adaptation requirements. The mechanisms are
characterized by
• Dynamicity of decision refers to the flexibility, with which the adaptation

approach may decide on the strategy to be applied. One can distinguish:

4 Adaptation of Service-Based Systems 99

static selection, when the adaptation strategy is predefined and explic-
itly associated with the given adaptation requirement, situation or event;
dynamic selection, when the adaptation strategy is selected at run-time
based on a concrete situation, information, and context properties; and
evolution-based selection, when the adaptation strategy is chosen taking
into account not only the current situation, but also the history of previ-
ous decisions, adaptations, and their results.

• Automation of decision characterizes the degree of the human involve-
ment in the decision process. The degree can range from totally automatic
(no user intervention is needed), to interactive (where the user makes the
choice).

Adaptation Implementation defines the way the adaptation methodology and
architecture are realized. It is characterized by the autonomy of the execu-
tion, invasiveness of the framework, realization mechanisms, and by specific
characteristics of the approach that allow one to “measure” the approach:
• Autonomy characterizes the involvement of the human in the adaptation

execution. It can be done in a autonomous way (self-adapt), manually, or
in an interactive form, where the execution of adaptation actions requires
human involvement.

• Invasiveness characterizes the adaptation framework from the perspective
of how tightly it is integrated with the subject of adaptation and the exe-
cution framework. We distinguish between the cases, when the adaptation
facilities are integrated with the subject, the cases, when the adaptation
facilities are integrated with the platform, where the subject operates, and
the cases, when the adaptation facilities are completely separated and in-
dependent from the subject of adaptation.

• Realization mechanisms define the tools and facilities, necessary to en-
able a given adaptation methodology, to implement the adaptation strate-
gies, and to build the corresponding adaptation architecture. Realization
mechanisms strongly depend on a given adaptation problem and on the
approach used for that. Typical examples include, in particular, reflection
wich refers to the ability of a program to reason about, and possibly al-
ter, its own behavior; automated composition that provides a support for
the automated service composition in order to accomplish composition (or
adaptation) goals; service discovery / binding that allows to find, select,
and exploit a new service as a replacement of the incorrect one; SLA ne-
gotiation that allows to dynamically agree on the service quality, aspect
weaving techniques to inject the adaptation facilities into the SBS code,
design facilities and tools supporting manual adaptation of SBS, etc.

• Adaptation characteristics address some important challenges that adap-
tation process should satisfy, such as safety, security, optimality, cost, per-
formance of the adaptation process.

100 Authors Suppressed Due to Excessive Length

4.3 Survey Results

In this section we present a survey of the adaptation approaches for Service-
Based Applications. We start from the adaptation approaches in business
processes and workflow systems as they usually are typical applications based
on top of service-oriented architectures. The adaptation solutions, however,
in those approaches are different from those in service compositions. First,
different levels of abstraction are applied in those adaptations. Second, the
degree of automation is radically different in business process and in service
composition management. Below we consider both layers.

4.3.1 Adaptation in Business Process Management

Adaptation of business processes may deal with permanent modification of
the whole model or only a modification of a particular instance. In the former
case, one can speak of evolution, as all the new instances of the process will
follow the new model. This type of adaptation is usually achieved by re-
designing/re-engineering the business processes.

Consequently, the term “adaptation” in the workflow and business process
management systems refers to the run-time modification and/or extension
of the running process instances in order to react to various problems and
to accommodate different changes in their environment. These changes may
be dynamics of organizational models, upcoming of better services, and new
business rules and regulations.

The goal is to change the process while it is running, without having to
re-model and re-deploy the process, which is in general very time-consuming.
Run-time modification of the business process instances normally assumes a
strategy, which is predefined at design-time and which targets the modification
of the structure of the process instance control flow or data flow.

Business Process Adaptation by Process Variants

Many approaches in the business process adaptation deal with the problem
of defining and dynamically managing process variants. The need to deal
with various versions of the process models is motivated by the necessity to
accomodate to specific business context, customers, and situations. As the
management of variants becomes a complex and error-prone procedure, when
the complexity of process models and the number of variants grows, specific
approaches are proposed in the literature.

In [28] the PROVOP (PROcess Variants by OPtions) approach for manag-
ing large collections of process variants. The basic idea is to keep the variants
in the one model. For this purpose, the basic (or the most common case)
process is defined, and its variants are represented by the set of change oper-
ations that allow the migration of the basic case model into a specific variant
model. The transformation operations are defined as action templates, where

4 Adaptation of Service-Based Systems 101

actions are insert, delete or move process fragment, and modify process at-
tributes. Additionally to the option definition, the PROVOP approach allows
for specifying constraints on their usage. The constraints include dependency,
mutual exclusion, execution order constraints, and hierarchy. In order to asso-
ciate the process variants to the process context, the latter is defined explicitly
using special context variables and the rules that define their relations and
evolution. At run-time the relevant variants are selected and filtered according
to the contextual information and the selected options are applied and exe-
cuted in a process engine. As the context variables may change dynamically,
the platform also aims at providing support for run-time migration from one
option to another.

Relatively different solution is presented in [24, 45]. While the works ad-
dress the variability of the business process models, the main focus of the ap-
proach is on the problems related to dynamic transformation of one process
to another. On the one side, this requires specific approaches for the defi-
nition of the process transformation actions and instructions. On the other
side, in many cases the transformation should be applied to the already run-
ning process instances, potentially leading to unpredictable problems and
situations. Apart from modeling process variants, the approaches presented
in [24, 45] define the notations and formalisms for describing and implement-
ing transformation actions. These actions define the instructions for changing
both control flow and data flow model. In [24] the list of possible actions
includes add/remove variable, insert task, add/remove successor of a task,
change connection type, or change transition condition. In [45] the actions
also include changes in the order of the operations, serialization, task deletion,
etc. The presented works also propose solutions for dynamic transformation of
already running process instances. The solutions are based on the Petri Net-
based formalization of the transformation activities and the transformation
correctness conditions.

Semantic Correctness of Process Adaptation

An important mechanism for the process instance adaptation refers to ensur-
ing correctness of the adaptation activities in order to avoid so called instance
migration bug. This problem refers to the fact that the changes performed
on the partially executed process instance may lead to the situation, which
violates certain predefined correctness requirements. In order to accomplish
this, special mechanisms are introduced to validate the applicability of the
adaptation actions with respect to a current instance.

Dynamic transformation of enterprise process models is also addressed
in [47, 38]. Both approaches propose a formal framework for representing
both the underlying dynamic models and changes in them. Differently to
other approaches, these works also come up with semantic constraints on
the changes in these models, and with notion of correctness and consistency
of the changes with respect to those constraints. The underlying adaptation

102 Authors Suppressed Due to Excessive Length

frameworks take into account verification and enforcement of the constraints
when the changes are performed. Specifically, in [47] the underlying models
correspond to organization models, where one models the structure of the
organizations in terms of roles, persons and their relations, as well as the
access rules and privileges of these roles. Semantic constraints have a form of
correctness conditions of these rules with respect to the mode. The authors
provided a way to perform the semi-automated adaptation of access rules in
response to changes made on the organizational model. In [38] business process
modeling is addressed. Similar to the approach of [24], the authors formally
define the language and semantics of changes over business process model.
Additionally, semantic constraints are introduces in the form of dependency
and mutual exclusion of applicable changes. Using these models, a framework
for automated verification of process changes with respect to the constraints
is proposed.

Recovery in Workflow Systems

Focusing on the corrective adaptation, recovery actions have been widely used
in workflow systems. The workflows models of [12, 22, 46] provide specific ca-
pabilities for recovery actions. The approach in [27] focuses on the handling
of expected exceptions and the integration of exception handling in the work-
flow management systems. In [2] the authors propose the use of “worklets”,
a repertoire of self-contained subprocesses and associated selection and ex-
ception handling rules to support the modelling, analysis and enactment of
business processes. In [30] the authors consider a set of recovery policies both
on tasks and regions of a workflow. They use an extended Petri Net approach
to change the normal behavior when an expected but unusual situation or
failure occurs. The recovery policies are set at design time.

4.3.2 Adaptation in Service-Oriented Architectures

To this end, a variety of methods for adaptation in Service-Based Applications
has been proposed. Given high dynamism of such applications, the adapta-
tion has become an important mechanism for managing continuous changes
in the constituent services and their quality, in the context, and in the exe-
cution process. Accordingly, the adaptation approaches in service computing
range from the self-healing functionalities to recover from application faults
to quality degrade, to the customization of the application for the needs of
the specific user, context, or even usage scenario of the services. Due to this
diversity, the proposed solutions and their complexity differs substantially.
Here we consider those approaches starting from simpler forms of adaptation,
where the substitution of constituent services is exploited as the only adap-
tation mean, and moving to much more sophisticated types of adaptation,
where the adaptation strategies and actions are reacher and where they are
modelled and specified explicitly.

4 Adaptation of Service-Based Systems 103

Adaptation by Dynamic Service Binding

A wide range of adaptation approaches relies on the ability to select and
dynamically substitute services at run-time or at deployment time. In these
approaches, the SBS model, i.e., service composition is defined in abstract
way, while the candidate services are bind or re-bind when necessary. Service
discovery is particularly relevant in this context, since the services are selected
in such a way that the adaptation requirements are satisfied in the best possi-
ble way. In many cases the selection is driven not only by the categorization of
the replaced service and/or by the necessity to optimize the quality-of-service
characteristics of a system, but additional requirements that the replaced ser-
vice has failed to satisfy. The adaptation goal is, therefore, to bind to a new
service that is compliant with these additional requirements.

In [53, 52, 55] the authors present a framework, METEOR-S, for dynam-
ically configuring and executing abstract workflows with a set of available
services. The way the processes and requirements are specified relies on a
set of specifications defining functional and non-functional constraints on the
processes and involved services. In the presented approach the abstract work-
flow models are defined by the designer and represented in BPEL. Additionally
to the workflow specification, the designer provides a set of specific require-
ments that constrain the functional and non-functional properties of the target
process instance and the involved component services. In order to specify this
information, the process model is equipped with the semantic specifications
in OWL (OWL-S for service descriptions) that describe the domain specific
knowledge, the functional and non-functional characteristics of the relevant
aspects of the process model. The non-functional constraints refer to QoS
properties, security or transactional aspects, and are transformed into integer
linear programming constraints. Functional constraints define the statements
over the data compatibility or control flow, and are represented in [52] us-
ing Semantic Web Rule Language (SWRL). At deployment-time, as well as
at run-time when the service failures are detected and the reconfiguration
is required, the proposed platform performs service discovery based on the
requested service templates and their semantic descriptions, performs quanti-
tative analysis over non-functional properties using linear programming solver,
and qualitative analysis over functional properties using a dedicated SWRL
reasoner. The run-time execution platform supports also data mediation, and
run-time reconfiguration in case of service execution failure. The implementa-
tion adopted in [55] relies on a specific algorithm based on Markov Decision
Process, which enables coordinated management of adaptation activities in
case of distributed service and process constraints.

The approach presented in [9] targets the problem of maintaining dynamic
service compositions, when the component services fail or become defective.
As in previous approach, the composition is designed as a BPEL process. How-
ever, the run-time criterion for selecting the best possible service is different.
First, the decision is made for each invocation of the component services.

104 Authors Suppressed Due to Excessive Length

Second, the decision is driven by the only factor, which is service reputa-
tion. However, the approach adopts a proactive approach, where the processes
proactively provide the reputation information about the usage of a service. If
the service invocation was successful, the reputation is positive, while in case
of failure the value degrades. This approach allows to improve the quality of
selection. However, the system integrator has no way to control or alter such
selection and adaptation process. Interestingly, this technique does not re-
quire extra description of the component services needed to drive adaptation
strategy.

SCENE framework [17] offers a language for composition design that ex-
tends the standard BPEL language with rules used to guide the execution of
binding and re-binding self-reconfiguration operations. A SCENE composition
is enacted by a runtime platform composed by a BPEL engine executing the
composition logic, an open source rule engine, Drools, responsible for running
the rules associated to the composition, WS-Binder [43] that is in charge of
executing dynamic binding and re-binding, and by a Negotiation component
that can be used to automatically negotiate SLAs with component services
when needed [42]. In a later work (see [13]), the SCENE framework has been
extended through the integration of a module enabling the resolution of mis-
matches between the interfaces and protocols of invoked services. In the pa-
per a set of possible mismatches is defined, together with a list of available
adaptation strategies, that can be combined in scripts through a language.
The adaptation script specifies the differences between the primary concrete
service selected for binding, which is defined at design time, and the other
available concrete services that can be candidate for dynamic binding.

The PAWS framework [4] proposes an interplay between design-time and
run-time activities. Starting from an abstract process definition, in the design
time a selection of candidate services is performed using a semantically en-
hanced registry, defining mapping information to be used for mediation at run
time, and negotiating QoS levels with potentially participating services. At
run time, concrete services are selected, based on QoS global constraints and
QoS optimization techniques, and services are invoked through a mediation
engine to semantically transform input and output messages. The run-time
activities are managed by three modules: a Process Optimizer, a Self-healing
module and a Mediation engine. The Process Optimizer is in charge of guaran-
teeing both local and global QoS, according to the constraints required by the
user. The Self-healing module enables adaptation, performing semi-automatic
actions in reaction to failures. The recovery could imply service reinvocation or
substitution. If the recovery requires to substitute the running service, a new
service is selected, among the candidates. Finally, the mediation engine, which
is set up at design-time, redirects the invocations of the deployed process to
the selected services.

Relatively different approach is proposed in [50]. The problem amounts
to dynamic substitution of services that fail certain behavioral requirements
and constraints. In this approach, the composite application is monitored at

4 Adaptation of Service-Based Systems 105

run-time, and if the violation of requirements is identified, the platform au-
tomatically extracts the additional constraints to the replacing services, and
performs service discovery and selection based on those constraints. The re-
quirements to be monitored are related to the behavior of the system or QoS
parameters over a service or a composition, and are defined in event calculus
in terms of event and fluents. The former correspond to operations performed
by the application logic (message reception or emission, assignments, etc),
while the latter characterize the state of the application (conditions that hold
in some interval). At run-time these requirements are checked by the monitor
against the actual executions of the system. When the violation is detected
and the platform decides to replace the failed service, new services are discov-
ered and the candidate is selected. The selection is based on the additional
adaptation requirements extracted from the diagnostic information provided
by the monitor. This information comprises the structural part regarding the
categorization and functionality of the failed service and the behavioral part
that defines the set of paths that the execution of the target service should re-
spect. The behavioral part is obtained from the violated requirement and the
violation synopsis generated by the monitor using predefined transformation
rules. The discovery tool checks the behavioral specification of the candidate
services expressed as state machines against the behavioral part of the query
and selects the corresponding candidate.

QoS-driven Adaptation of Service Compositions

In case of Web service based processes, the quality of the overall process
strictly depends on the quality provided by Web services tied to the task.
In this scenario, as defined in the perfective adaptation, it might happen
that even if the process runs properly, the adaptation is required because
of insufficient quality. As a consequence, the SBS should react in order to
improve the quality of the service process. The goal is to select the best set of
services available at run-time, taking into consideration process constraints,
but also end-user preferences and the execution context. Normally, service
selection and binding are used as a key mechanisms for the adaptation in
these approaches.

As a consequence, Web service selection results in an optimization prob-
lem. The literature has provided two generations of solutions. First generation
solutions implemented local approaches, which select Web services one at the
time by associating the running abstract activity to the best candidate service
which supports its execution. Local approaches can guarantee only local QoS
constraints, i.e., candidate Web services are selected according to a desired
characteristic, e.g., the price of a single Web service invocation is lower than
a given threshold.

Second generation solutions proposed global approaches. The set of ser-
vices that satisfy the process constraints and user preferences for the whole

106 Authors Suppressed Due to Excessive Length

application are identified before executing the process. In this way, QoS con-
straints can predicate at a global level, i.e., constraints posing restrictions
over the whole composed service execution can be introduced. The main issue
for the fulfillment of global constraints is Web service performance variabil-
ity. Indeed, the QoS of a Web Service may evolve relatively frequently. If a
business process has a long duration, the set of services identified by the op-
timization may change their QoS properties during the process execution or
some services can become unavailable or others may emerge. In order to guar-
antee global constraints Web service selection and execution are interleaved:
optimization is performed when the business process is instantiated and iter-
ated during the process execution performing re-optimization at run-time. To
reduce optimization/re-optimization complexity, a number of solution have
been proposed that guarantee global constraints only for the critical path [57]
(i.e., the path which corresponds to the highest execution time), or reduce
loops to a single task [11], satisfying global constraints only statistically.

In WSCE framework [14] the authors address the problem of adaptive ser-
vice composition states as follows: “given the specifications of a new service,
create and execute a workflow that satisfies the functional and non-functional
requirements of the service, while being able to continually adapt to dynamic
changes in the environment”. This problem requires not only to compose and
to bind the services in a composition that satisfies the given requirements,
but also to continuously monitor the execution and the environment and to
dynamically modify the composition when the critical changes occur. The
authors propose the two-staged approach, where first the abstract service
composition (template) is defined based on the functional user requirements,
and then the abstract composition is instantiated with the dynamic services
based on the optimization of QoS metrics. The first stage relies on the com-
position goal specifications from the Semantics Web services domain, and the
second stage relies on optimization of global QoS constraints. Furthermore,
at run-time the two approaches may be interleaved. This happens when the
platform cannot find a suitable instantiation of currently selected abstract
process templates, and the templates should be regenerated from the same
user requirements.

In [5], a new modeling approach to the Web service selection problem is in-
troduced. This approach is particularly effective for large processes and when
QoS constraints are severe. In the model, the Web service selection problem
is formalized as a mixed integer linear programming problem, loops peeling
is adopted in the optimization, and constraints posed by stateful Web ser-
vices are considered. Moreover, negotiation techniques are exploited to iden-
tify a feasible solution of the problem, if one does not exist. Experimental
results compare our method with other solutions proposed in the literature
and demonstrate the effectiveness of our approach toward the identification
of an optimal solution to the QoS constrained Web service selection problem.

In [11] the authors propose an implicit approach towards dynamic ser-
vice composition based on multi-dimensional optimization of quality of service

4 Adaptation of Service-Based Systems 107

metrics. In the approach the composed process is designed as a workflow com-
posing elementary tasks. At run-time a concrete elementary service is selected
to perform a particular task from a community of services that provides the
same functionality, but have different quality characteristics. The description
of the services, therefore, should include not only functional aspect, but also
non-functional properties that are required in the selection process. The au-
thors identify different sets of the relevant quality properties, such as price,
duration, reputation, reliability, availability, and define the corresponding ag-
gregation functions for each of them. The predefined goal of the approach is,
therefore, at run-time optimize the values of these functions. Since this model
is multi-dimensional, the weights should be provided in order to define the
global criteria. This weights may be predefined, or set by the end user (as a
set of preferences).

The approach of [25] particularly focuses on developing methods to provide
the highest QoS. The authors use an extension of WSDL to express properties
about the QoS behaviour of a system. The focus is on obtaining an adapta-
tion of the system configuration through and adaptation of the observed QoS
behaviour. The information gathered about the QoS behaviour provided is
used to compare the different candidate configurations, using genetic algo-
rithm to find the best one. Choosing the configuration with the highest QoS
using genetic algorithms: genes are represented by variables concerning service
selection and resource allocation. The QoS of each configuration is evaluated,
and then a new configuration is generated through mutation.

Another example of run-time management of a SOA configuration can be
found in [56]. The approach is based on representing a service configuration
through a model, and then modifying this model as needed to adapt the
configuration to changes in the environment and in the requirements of the
users. This approach addresses the web service context, particularly the case of
highly dynamical environments. The system is described through a Petri Net,
which represents the dependencies among the services in the configuration.
In other words, the Petri Net represents the places where the services are
mapped, and the arcs in the graph model the relationships among the places.
This model can dynamically evolve, according to changes in the environment.
In [56] the authors describe an algorithm which modifies the configuration
(and its model) with the aim to provide the highest QoS. Many different
parameters are used to evaluate the QoS, and many metrics are considered
to measure each parameter. The QoS provided by a service is defined as a
function of place and time, and the described algorithm looks for the best
configuration.

While both local and global approaches have been applied, the need for
further research toward more advanced optimization techniques, in particular
for cycli processes is necessary. In addition, none of the previous approaches
considers in the optimization the case of processes composed by stateful Web
services, where more than one task must be performed by the same Web
service.

108 Authors Suppressed Due to Excessive Length

Adaptation of Service Interfaces and Protocols

While standardization in Web services makes interoperability easier, adap-
tation still remains necessary. Adaptation, or in this case we speak about
mediation, is an important functionality that should be offered to enable inte-
gration inside and across enterprise boundaries. We need to generate a service
that mediates the interactions among two services with different signatures,
interfaces. and protocols so that interoperability can be made effective. The
need for adapters in Web services comes from two sources: (1) the heterogene-
ity at the higher levels of the interoperability stack (e.g., at business-level vs.
infrastructural protocols), and (2) the high number and diversity of clients,
each of which can support different interfaces and protocols. Such a mediation
may be automatic or semi-automatic. Depending on the level of the service
specification, this may amount to signature-based adaptation (syntactic prop-
erties of the exchanged messages), ontology-based adaptation (exchanged data
represent different concepts), or behavior-based adaptation (differences in be-
havioral specification). In order to perform all these kinds of adaptation, the
service descriptions should provide the corresponding models at the different
levels of Web service stack.

Generation of adapters for behavioral mismatches is addresed in [10, 8, 21].
The approach requires that the participating service descriptions are equipped
with the interaction protocol the service implements. Such a protocol may
be defined, for instance, as an abstract BPEL process. While the approach
presented in [10] aims at automated generation of an adapter that guarantees
the non-locking interaction of the services, the approaches of [8, 21] transfer
the problem to the system integrator. In [8] the authors propose taxonomy of
different behavioral mismatches and a set of parametric behavioral patterns
that may resolve the mismatch. The corresponding pattern is instantiated
when the mismatch is detected and proposes it to the application integrator
as a possible adaptation strategy. In [21] the authors propose an algebraic
model of six transformation operators and the corresponding visual notation
that permits, given a pair of required and provided interfaces, construct the
necessary adaptation. Based on this construction, a mediation engine performs
the necessary run-time actions for processing and managing the messages and
service invocations.

An approach presented in [41] addresses wider range of mismatches (signa-
ture, merge/split, extra/missing message) providing, however, semi-automated
support for adapter generation. By leveraging XML schema matching ap-
proaches, the proposed framework allows one to identify the inputs needed to
cover the mismatches. For the behavioral mismatches the framework provides
an automated generation of mismatch tree that show the possible deadlocks
entailed by the mismatch. Based on these two components, the framework
and the implementing tool provide the decision support for the engineers that
allow for managing mismatches and defining the appropriate adapters.

4 Adaptation of Service-Based Systems 109

The work in [37] address the problem of mediation in a different way. In-
stead of generating external adapters, the authors propose an aspect-oriented
framework for aligning internal service implementation to a standardized ex-
ternal specification. In particular, the framework consists of a taxonomy of the
different possible types of mismatch between external specification and service
implementation (i.e., signature mismatch, ordering mismatch, etc.). The rea-
soning behind having a taxonomy of mismatches is because the authors argue
that similar mismatches can be addressed with similar modifications to the
service implementation. Then, for each mismatch, a template that embodies
the AOP approach to adaptation is provided. Specifically, the template con-
tains a set of pointcut-advice pairs that define where the adaptation logic is to
be applied, and what this actions are. The approach relies on the assumption
that the services are realized as BPEL processes, so also the templates are.
Finally, the authors present a tool to support template instantiation and their
execution together with the service implementation.

Work in [54] focus on Semantic Web services protocol mediation by pro-
viding a framework that allows interaction between two services despite the
difference of the protocols they rely on. Mediation allows automatic adapta-
tion of a service requester behavior while meeting the interface constraints of
the service provider. This is done by abstracting from the existing interface
descriptions before services interact and instantiating the right actions when
contracting a service. To be possible, a framework managing these levels of
abstraction was provided. It consists of defining abstract primitives used by
services during their interaction that will be mapped to concrete primitives
that represent the real actions in terms of messages exchange between the
two communicating parties. Monitoring is however necessary for ensuring the
correct use of the abstract primitives that must follow the constraints defined
for the service in a low level description language. It could be stated in a state
chart expression. An ontology of shared concepts (of the business domain for
example) where each concept used in the protocols is defined is also necessary
for understanding the semantics of the domain actions which in addition have
to exploitable by machine.

Explicit Adaptation Specification Languages

The approaches to adaptation in services and service compositions consid-
ered in previous section define the adaptation activities implicitly. That is,
the way the system is adapted is somehow predefined and is hard-coded in
the managing infrastructure, being service selection and binidng or genera-
tion of adapters. As described in the taxonomy, a wide range of approaches
comes with the capability to explicitly choose and describe the adaptation
specification. Here we present such approaches for the adaptation in service
compositions.

In SH-BPEL approach [40] the problem of providing self-healing capa-
bilities to the service compositions in BPEL is presented. The authors aim

110 Authors Suppressed Due to Excessive Length

at extending the standard failure recovery and management capabilities of
BPEL with additional functionalities that are crucial in open and dynamic
settings. Apart from service-level recovery strategies, such as retry or rebind,
the authors identify and describe a wide range of process-specific activities,
such as modifying the values of process variables, redoing a process task or
an entire part of a process (scope), specifying and executing alternative paths
in the process, going back to a “safe point” in the process execution, etc.
The proposed solution defines the extension of the standard BPEL execu-
tion environment, namely SH-BPEL, which integrates and supports the nec-
essary recovery facilities. In this solution, the original process specification
is pre-processed and extended with the additional instructions and control
points, which allow for performing the above actions. These additional recov-
ery actions constitute the management API and can be invoked through a
special process management interface that is made available at deployment-
time. The underlying architecture provides the necessary tools for detecting
critical events and engaging recovery actions invoked through this manage-
ment interface. The existence of a well-defined management and recovery API
and interface enables various ways to control and define the recovery strate-
gies. First, these strategies and decisions may be pre-defined in the underlying
process manager and customized through a corresponding programming in-
terface. Second, the architecture allows for a collaborative environment, where
a set of engines running different composed services participating to chore-
ography perform coordinated recovery activities through the corresponding
management interfaces. Finally, the platform allows for recovery both at the
instance level, when only current process instance is adapted, and class level,
when the whole process model is changed.

In [44] the SH-BPEL framework is extended with the methodology and a
tool for learning the repair strategies of Web Services to automatically select
repair actions are proposed. The methodology is able to incrementally learn
its knowledge of repairs, as faults are repaired. This learning technique and the
strategy selection are based on a Bayesian classification of faults in permanent,
intermittent and transient, followed by a comparative analysis between current
fault features and previously classified faults features which suggests which
repair strategy has to be applied. Therefore, this methodology includes the
ability to learn autonomously both model parameters, which are useful to
determine the fault type, and repair strategies, which are successful and proper
for a particular fault.

In [7, 6] the authors address similar problem, that is, how to recover the ap-
plication execution in case of unpredictable service failures in highly dynamic
execution environments. The authors exploit run-time monitoring for timely
detection of problematic situations. The monitoring instructions are defined as
functional and non-functional assertions on the BPEL composition activities.
In order to react to the detected violations, the authors propose three kinds
of recovery strategies, namely retry, rebind, and restructure. The correspond-
ing instructions for the retry and rebind actions are introduced directly in the

4 Adaptation of Service-Based Systems 111

composition specification, while the restructure instructions, defined as rewrit-
ing rules on the process flow graphs, are defined separately. In [6] the proposed
approach is further refined and extended. In particular, the monitoring spec-
ification is defined using specific notation, Web Service Constraint Language
(WSCoL), which provides expressive and extendable facilities for monitoring
composition assertions over functional and non-functional properties of the
system. In order to define recovery specifications, Web Service Recovery Lan-
guage (WSReL) is proposed. The main ingredients of the language are the
atomic recovery actions and the recovery specifications that declaratively join
atomic actions in two complex procedures (steps) and alternatives. The set of
actions include actions at service level (retry, rebind, ignore), at process level
(substitute, halt, call), and management actions (notify, log). The supporting
platform relies on a specific rule engine that manages recovery specifications
and activates recovery, and on aspect-oriented techniques to introduce the
recovery implementation at the level of the process engine.

In MASC approach [23] the authors propose policy-driven middleware for
self-adaptation to accommodate to various business exceptions and faults. In
particular, the policies define the customization actions that should be per-
formed in order to react to certain exceptional situation or a fault. The policies
are defined in the form of ECA-rules (Event-Condition-Action) that describe
the triggering event (application fault, interaction operations, start/end of an
application instance), the condition, under which the rule applies (restriction
on the application state or history), and the actions to be applied. The poli-
cies are represented in a specific language that extends WS-Policy standard in
order to deal with monitoring and adaptation activities. The language allows
for defining not only adaptation but also monitoring rules and directives. The
monitoring rules define the (relevant) information to be observed and map
the undesirable situation or condition to a meaningful failure event that will
be processed by the adaptation rules. The approach allows for the specifica-
tion of two kinds of adaptation action: process-level actions and message-level
actions. The former are used to alter business logic of a particular instance,
while the latter are mainly used to deal with various low-level faults, such
as invocation failure, SLA violation, etc. The possible process-level actions
are add, remove, replace, change order of activities, suspend, delay, resume
business process. Message-level actions include invocation retries, service sub-
stitution, concurrent invocation of several similar services, etc. The adaptation
rules may be also assigned priorities to define the order of executions when
several rules apply to an event. The adaptation process is supported by the
specific platform that allows for monitoring relevant policy information and
events and performs the necessary actions both at message-level (intercepting
the messages) and process-level (altering the process engine).

A similar problem is addressed in the context of WS-Diamond project
[18]. The project focuses on problem diagnosis in service compositions, as
well as on the recovery actions for those problems.The service execution envi-
ronments are extended to include the features to support the diagnostic/fault

112 Authors Suppressed Due to Excessive Length

recovery process. Different types of repair strategies and implementic mech-
anisms are systematically studied through the project. They include, in par-
ticular, instance- and class-level actions, actions refering to the single service
or composition-related actions, etc.

In mobile applications pervasiveness and ubiquitous availability are essen-
tial features; they exploit a wide range of diverse mobile services provided
and advertised locally, making the user and application contexts a central
concept in the development and provision of mobile service-based systems. In
[48] the authors propose an approach that defines a simple policy-based frame-
work and architecture for designing and providing mobile service-based and
context-aware applications. In this approach, the context is represented using
Resource Description Framework, and then reflected in definition of policies
using the concepts of template (generic contextual aspect) and facts (concrete
contextual situation). The context in these settings refers to the properties
of the device, possible services and their characteristics, user preferences and
settings, etc. The policies define the adaptation actions that should be fired
when the system occurs in a certain context. Based on these concepts, the work
also defines an iterative methodology for defining contextual information and
adaptation policies. Starting from initially collected contextual knowledge,
the designer specifies the adaptation policies and extracts intermediate con-
textual information. The process is iteratively repeated until no new rules can
be identified or new contextual specifications can be obtained. The context
models and policies are separated into modules and the module pipelines are
identified. The process is supported with a visual notation, which shows the
initial and intermediate contexts, the final result and the policy processing
flow between context modules. The proposed methodology is supported with
the agent-based run-time platform that incorporates the monitoring facilities
for observing various contextual properties, the communication middleware
for interacting with the services, the policy decision maker that filters the
policies to be applied, and the policy enforcement point, where the adapta-
tion actions are defined.

Model-based approaches, which are often used at design-time, can also be
exploited to obtain automatic run-time adaptation of a system configuration.
An example of this approach is presented in [31]. It is based on building a
model of the system at design time, together with an initial configuration of
its services. The model is object-oriented, and it includes high level policies
that specify the desired behaviour of the system. They are composed by a left-
hand-side and a right-and-side, which both are graphs of the same kind of the
one representing the model. When a part of the system model meeting the left-
hand-side of a rule is met, then it is substituted with the corresponding right-
hand-side. These simple rules can be easily modify by users as needed, with
the same tool allowing for the building of a model of the system. Moreover, the
policies described at design-time are deployed on a structure made of services
which enables the run-time adaptation of the system.

4 Adaptation of Service-Based Systems 113

Adaptation by Explicit Variability Modeling

Explicit variability approaches allow one to define relevant application changes
and the way the system should react to it, but to precisely identify a particu-
lar moment in the execution, where the change happens, and to represent all
the relevant variants of behavior, applicable in such cases. In order to provide
explicit definition of the execution location (variation point), where the vari-
ation takes place, the behavioral specification of the application is used. The
variation point is equipped with a set of alternative behaviors (variants) that
may be applied under certain conditions and in particular cases. The explicit
variability approaches are widely used in business process modeling and soft-
ware product line engineering, where variability models provide the basis for
application customization, flexibility and re-use. In business processes varia-
tion often refers to the single tasks or sub-processes, while in SPL this may
also correspond to components, their interfaces and implementations.

In the DySOA approach [49] the problem of reconfiguring the application
in order to react to the critical changes in QoS metrics is addressed. As in
many approaches, the adaptation actions correspond to selection and bind-
ing to a new service or to changes in the composition specification structure.
The approach adopted in this work, however, relies on a completely different
design method. The relevant adaptation concepts become first-class entities,
and the variation of the application is modeled and represented explicitly.
The approach is based on explicit modeling of different variants correspond-
ing to the variation points, and on defining various constraints that drive the
selection of one alternative or another. Variant defines the behavioral or func-
tional alternative to be applied in the variation point (e.g., process fragment
or a concrete component service). The actual code/specification of the variant
is defined in its realization definition. The variation model may contain in-
trinsic variation constraints that restrict the selection of a particular variant,
or extrinsic variation constraints define mutual dependencies between various
choices potentially at different variation points. The proposed DySOA archi-
tecture provides run-time support for the application adaptation. The QoS
metrics of the application are continuously monitored and evaluated. When
the certain violations are detected, the reconfiguration unit takes care of an-
alyzing and selecting possible variants in the corresponding points, such that
all the variation constraints are met and, moreover, the QoS optimality is
ensured.

The work in [29] contribution proposed to model the variability of a service-
based system using principles and methods from the field of software product
line engineering. These include the explicit modeling of commonalities and the
variability of a software product line. The variability of a software product line
is modeled explicitly by variation points and variants. The authors observe
that an adaptive service-based system can have different types of variability,
which can be found at the following layers of a service-based system:

114 Authors Suppressed Due to Excessive Length

• Business Process Layer: This layer includes the definition of business
processes from the customer’s perspective. The authors use BPMN (the
Business Process Modeling Notation) to model the business processes. The
required flexibility in the sequence of activities of a business process is
called Workflow Variability by the authors.

• Unit Service Layer: This layer includes the definition of service units from
an architect’s perspective, which are necessary for handling a business
process. The dynamic composition of services is called Composition Vari-
ability and it is modeled using BPEL (The Business Process Execution
Language).

• Service Interface Layer: This layer includes the definition of service inter-
faces which reflect the requirements of the service units. The interfaces are
described by WSDL (The Web Service Description Language). If alterna-
tive interfaces are defined this is called Interface Variability.

For a description of web services and their composition, the authors use
WSDL and BPEL. The respective XML schemas thus are expanded to de-
scribe additional properties and composition possibilities of services. By de-
termining the variability types and simple XML-based description of vari-
ability, the variability of an adaptive service-based system can be explicitly
documented.

In the work of [16] the authors state that dealing with changes in service-
oriented systems requires the following information: knowledge about the ra-
tionales for decisions; understanding the alternatives; traceability between
stakeholders’ goals and technical realization elements. In addition, they ob-
serve that very flexible and adaptable systems cannot be fully specified in
advance and thus postulate that design methods and modeling techniques are
needed in order to describe flexible and evolvable systems as far as possible in
a declarative way. The approach proposes integrating goal modeling and vari-
ability modeling techniques. This is done by identifying variability aspects
in i* goal models and by proposing an approach for mapping i* models to
variability models. Those variability models in turn are then refined and em-
ployed to support monitoring and adaptation of service-oriented systems. The
proposed approach focuses on the following two “directions” of changes:

1. Top-down stakeholder-driven changes: A new requirement affects existing
services or service architecture. Maybe negotiations with 3rd-party service
providers are needed and new SLAs are “signed”. The new decisions have
to be considered within the service architecture through reconfiguration.

2. Bottom-up monitoring-driven changes: Monitoring results demand changes
within the current service configuration to fulfill SLA directives.

In order to deal with both kinds of changes, the authors state that the
following facts need to be considered:

• common and specific (individual) goals of different stakeholders;
• knowledge about the current service configuration;

4 Adaptation of Service-Based Systems 115

• information about alternative service configurations;
• traceability information to handle dependencies between goals, service

types, services and service instances (see definitions below);
• kind of representation of the system at different levels to understand the

assignment of stakeholders’ needs down to the current and alternative
system configurations.

The proposed approach allows modeling these different facts together with
traceability and variability information to support system adaptation. In order
to map between these facts, the authors propose integrating the meta-models
of i* and the variability modeling language used. To map concrete i* models to
variability models, the authors have identified six different types of variability
(e.g., softgoal and instance variability) and show how these can be speci-
fied with the different i* modeling constructs and map to variability models.
The mapping between i* models and variability models is supported by the
DOPLER tool suite [1]. The Variability management engine (VME) of this
tool is used to manage the variability model of available service instances,
services, and goals together with the relevant traceability information. The
Adaptor component of the tool ultimately performs the requested updates of
the service-oriented system. The approach presents how a variability model
can be derived from an i* goal model and how this variability - derived from
the goal model - can be employed to support the monitoring as well as adap-
tation of service-based applications.

4.3.3 Comparison of the Adaptation Approaches

The synthetic summary of the adaptation approaches considered in this sec-
tion is presented in Table 4.1 and 4.3. For the summary the following elements
of the adaptation taxonomy are considered: usage of adaptation, subject and
aspect of adaptation, location and methodology of the adaptation approach,
the specification, the characterization of human involvement (realization of
decision mechanisms and level of autonomy), and the specific features of the
realization. Note that the approaches we consider here (as well as most of the
adaptation approach) deal with temporal modifications with local effect, and
therefore these dimensions are not considered here.

While the presented adaptation framework demonstrate good coverage and
diversity of the adaptation problems and proposed solutions, there are several
important considerations we would like to focus on.

Usage of adaptation.

Different approaches use adaptation for the purpose of recovery (correction),
optimization (mainly of QoS properties), and customization. The customiza-
tion, however, may be caused by different factors. This includes, in particular,
contextual properties (i.e., business context or specific customers in BPM
systems, operational context or specific application users), or the use of the

116 Authors Suppressed Due to Excessive Length

services in different applications that entails mediation of service interactions
and messages. However, the use of contextual factors is currently limited;
existing approaches do not focus on the specific role of various contextual fac-
tors in the adaptation process. Another important consideration is the lack
of preventive adaptation approaches. Most of the solutions are reactive. those
marked as pro-active (i.e., for QoS optimization or mediation) do not aim to
prevent some problem, but construct the solution given the current situation
without “looking ahead”.

Subject of adaptation.

Most of the existing approaches focus on the adaptation of the application in-
stance (i.e., composition or process instance) or even its part (i.e., constituent
service). There are few approaches targeting adaptation of the SBS class or
the adaptation mechanisms themselves. This makes the adaptation weaker
and less flexible in the face of unexpected changes and failures.

Adaptation strategy.

As we already mentioned, there is a lack of pro-active approaches that try to
predict and prevent future failures, QoS degrades, trends, etc. Another critical
consideration is that the adaptation is usually forward. While such adapta-
tion is easier to implement, it leads to accumulation of problems as the new
problems may occur when adaptation is executed. Furthermore, the problem
of distribution and coordination of adaptation activities is not considered in
the existing frameworks.

Adaptation specification.

While several approaches that provide rich and expressive notations for the
adaptation specification, most of the approaches hard code the adaptation
activities, providing few or no freedom to its configuration. This is another
factor that makes the adaptation framework not flexible and static. Note also
that the explicit adaptation languages codify adaptation strategies usually
at design time. Consequently, only a subset of possible situation is consid-
ered, which may lead to a situation, where the adaptation is harmful for the
application [33].

Decision and autonomy.

The adaptation decision in different approaches made either statically (i.e.,
predefined at design time) or dynamically. The adaptation process in sev-
eral cases involves also human actors. This latter factor is usually entailed
by the inability of the framework to identify appropriate adaptation action
(i.e., appropriate mediation protocol), and in some cases is motivated by the
necessity to make a critical decision (i.e., which process activity to perform
to customize a process, or to recover from the fault). Human involvement,
however, should be further studied in order to enhance the capabilities of the
adaptation solutions.

4 Adaptation of Service-Based Systems 117

T
a
b
le

4
.1

.
C

la
ss

ifi
ca

ti
o
n

o
f

A
d
a
p
ta

ti
o
n

A
p
p
ro

a
ch

es
:

p
a
rt

1

U
sa

g
e

S
u
b

je
c
t

A
sp

e
c
t

L
o
c
.

M
e
th

o
d
o
lo

g
yS
p

e
c
ifi

c
a
ti

o
nD

e
c
is

io
n

A
u
to

n
o
m

y
R

e
a
li
z
a
ti

o
n

P
R

O
V

O
P

[2
8
]

cu
st

o
m

iz
e

p
ro

ce
ss

in
st

a
n
ce

w
o
rk

fl
ow

B
P

M
re

a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

ex
p
li
ci

t
va

ri
-

a
b
il
it

y,
fl
ow

in
st

a
n
ce

a
c-

ti
o
n
s

va
ri

a
n
ts

a
re

d
efi

n
ed

a
t

d
es

ig
n

ti
m

e

a
u
to

n
o
m

o
u
s

in
te

g
ra

te
d

in
to

w
o
rk

fl
ow

sy
s-

te
m

,
a
u
to

m
a
ti

c
g
en

er
a
ti

o
n

o
f

B
P

E
L

A
D

E
P

T
fl
ex

[4
5
]

cu
st

o
m

iz
e

p
ro

ce
ss

in
st

a
n
ce

w
o
rk

fl
ow

B
P

M
re

a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
d
-h

o
c

sp
ec

-
ifi

ca
ti

o
n

o
f

fl
ow

in
st

a
n
ce

a
ct

io
n
s

d
y
n
a
m

ic
,

in
-

te
ra

ct
iv

e
m

a
n
u
a
l

su
p
p

o
rt

fo
r

ch
a
n
g
e

m
a
n
a
g
e-

m
en

t

P
ro

ce
ss

a
d
a
p
ta

ti
o
n

co
rr

ec
t-

n
es

s
[2

4
,

4
7
,

3
8
]

cu
st

o
m

iz
e

p
ro

ce
ss

in
st

a
n
ce

w
o
rk

fl
ow

B
P

M
re

a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
d
-h

o
c

sp
ec

-
ifi

ca
ti

o
n

o
f

fl
ow

in
st

a
n
ce

a
ct

io
n
s

d
y
n
a
m

ic
,

in
-

te
ra

ct
iv

e
m

a
n
u
a
l

co
rr

ec
tn

es
s

a
n
a
ly

si
s

o
f

ch
a
n
g
es

P
ro

ce
ss

R
ec

ov
er

y
[2

7
,

3
0
,

2
]

co
rr

ec
t

p
ro

ce
ss

in
st

a
n
ce

fa
u
lt

h
a
n
-

d
li
n
g

B
P

M
re

a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
ct

io
n
-

b
a
se

d
,

fl
ow

in
st

a
n
ce

a
ct

io
n
s

st
a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

in
te

g
ra

te
d

in
to

w
o
rk

fl
ow

sy
st

em

M
E

T
E

O
R

-S
[5

2
,

5
3
]

cu
st

o
m

iz
e/

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
fu

n
ct

io
n
a
l

co
n
st

ra
in

ts
,

Q
o
S
,

se
cu

-
ri

ty

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

im
p
li
ci

t
+

d
ec

la
ra

ti
v
e

co
n
st

ra
in

ts

d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

In
te

g
ra

te
d

in
to

ex
ec

u
ti

o
n

fr
a
m

e-
w

o
rk

,
S
W

R
L

re
a
so

n
er

fo
r

co
n
st

ra
in

ts

R
ep

u
ta

ti
o
n
-

b
a
se

d
m

a
in

-
te

n
a
n
ce

[9
]

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
re

p
u
ta

ti
o
n

S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

im
p
li
ci

t
d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

in
te

g
ra

te
d

in
to

B
P

E
L

en
g
in

e,
re

p
u
ta

ti
o
n

m
a
n
-

a
g
em

en
t

S
C

E
N

E
[1

7
,

4
2
,

1
3
]

cu
st

o
m

iz
e/

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
fu

n
ct

io
n
a
l

co
n
st

ra
in

ts
,

Q
o
S

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

im
p
li
ci

t
+

b
in

d
in

g
p

o
li
ci

es
a
n
d

sc
ri

p
ts

st
a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

E
x
te

n
si

o
n

o
f

B
P

E
L

en
g
in

e,
su

p
p

o
rt

fo
r

n
e-

g
o
ti

a
ti

o
n

a
n
d

in
te

rf
a
ce

m
ed

ia
-

ti
o
n

118 Authors Suppressed Due to Excessive Length

T
a
b
le

4
.2

.
C

la
ss

ifi
ca

ti
o
n

o
f

A
d
a
p
ta

ti
o
n

A
p
p
ro

a
ch

es
:

p
a
rt

1
a

P
A

W
S

[4
]

o
p
ti

m
iz

e/
co

rr
ec

t
co

n
st

.
se

r-
v
ic

es
Q

o
S

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

im
p
li
ci

t
+

Q
o
S

co
n
st

ra
in

ts

d
y
n
a
m

ic
,

a
u
to

m
a
t-

ic
/

se
m

i-
a
u
to

m
a
ti

c
(r

ec
ov

er
y
)

in
te

ra
ct

iv
e

ru
n
-t

im
e

m
ed

ia
-

ti
o
n

o
f

m
es

sa
g
es

,
se

lf
-h

ea
li
n
g

ca
p
a
-

b
il
it

ie
s

D
is

co
v
er

y
fr

a
m

e-
w

o
rk

[5
0
]

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
Q

o
S

o
r

b
e-

h
av

io
ra

l
co

r-
re

ct
n
es

s

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

im
p
li
ci

t
+

b
eh

av
io

ra
l

co
n
st

ra
in

ts

d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

se
le

ct
io

n
b
a
se

d
o
n

ru
n
-t

im
e

b
eh

av
-

io
ra

l
d
ia

g
n
o
si

s
in

-
fo

rm
a
ti

o
n

W
S
C

E
[1

4
]

o
p
ti

m
iz

e
co

n
st

.
se

r-
v
ic

es
/

co
m

p
o
si

ti
o
n

te
m

p
la

te

fu
n
ct

io
n
a
l

re
q
u
ir

e-
m

en
ts

,
Q

o
S

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

u
ti

li
ty

fu
n
ct

io
n
,

fu
n
ct

io
n
a
l

co
n
st

ra
in

ts
(f

o
r

co
m

-
p

o
si

ti
o
n

te
m

p
la

te
)

a
n
d

Q
o
S

co
n
st

ra
in

ts

d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

ru
n
-t

im
e

in
te

rl
-

le
av

in
g

o
f

S
em

a
n
-

ti
c

W
eb

-b
a
se

d
co

m
p

o
si

ti
o
n

a
n
d

Q
o
S

o
p
ti

m
iz

a
ti

o
n

F
le

x
ib

le
p
ro

ce
ss

es
[5

]
o
p
ti

m
iz

e
co

n
st

.
se

r-
v
ic

es
Q

o
S

S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

u
ti

li
ty

fu
n
c-

ti
o
n
,

Q
o
S

co
n
st

ra
in

ts

d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

su
p
p

o
rt

fo
r

Q
o
S

n
eg

o
ti

a
ti

o
n

C
o
m

p
o
si

ti
o
n

re
p
la

n
-

n
in

g
[1

1
]

o
p
ti

m
iz

e
co

n
st

.
se

r-
v
ic

es
Q

o
S

S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

m
u
lt

i-
d
im

en
si

o
n
a
l

u
ti

li
ty

fu
n
c-

ti
o
n

d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

m
u
lt

i-
d
im

en
si

o
n
a
l

Q
o
S

o
p
ti

m
iz

a
ti

o
n

w
it

h
cu

st
o
m

iz
-

a
b
le

w
ei

g
h
ts

Q
o
S

m
a
x
i-

m
iz

a
ti

o
n

[2
5
]

o
p
ti

m
iz

e
co

n
st

.
se

r-
v
ic

es
Q

o
S

S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

g
o
a
l-

b
a
se

d
d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

g
en

et
ic

a
lg

o
-

ri
th

m
s

fo
r

se
le

c-
ti

o
n

P
et

ri
n
et

-
b
a
se

d
co

n
fi
g
-

u
ra

ti
o
n

[5
6
]

cu
st

o
m

iz
e/

o
p
ti

m
iz

e
co

n
st

.
se

r-
v
ic

es
Q

o
S

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

g
o
a
l-

b
a
se

d
d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

P
et

ri
-n

et
b
a
se

d
co

m
p

o
si

ti
o
n

m
o
d
el

4 Adaptation of Service-Based Systems 119

T
a
b
le

4
.3

.
C

la
ss

ifi
ca

ti
o
n

o
f

A
d
a
p
ta

ti
o
n

A
p
p
ro

a
ch

es
:

p
a
rt

2

U
sa

g
e

S
u
b

je
c
t

A
sp

e
c
t

L
o
c
.

M
e
th

o
d
o
lo

g
yS
p

e
c
ifi

c
a
ti

o
nD

e
c
is

io
n

A
u
to

n
o
m

y
R

e
a
li
z
a
ti

o
n

B
P

E
L

a
d
a
p
te

rs
[1

0
,

8
,

2
1
]

cu
st

o
m

iz
e

se
rv

ic
e

in
te

r-
a
ct

io
n

p
ro

to
-

co
l

co
m

p
a
ti

b
il
it

y
S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

im
p
li
ci

t
d
y
n
a
m

ic
,

a
u
to

m
a
t-

ic
/

se
m

i-
a
u
to

m
a
ti

c

a
u
to

n
o
m

o
u
s/

in
te

ra
ct

iv
e

ru
n
-t

im
e

en
g
in

e
fo

r
m

ed
ia

ti
o
n

o
f

m
es

sa
g
e

ex
-

ch
a
n
g
es

S
em

i-
a
u
to

m
a
te

d
m

ed
ia

-
ti

o
n

[4
1
]

cu
st

o
m

iz
e

in
te

rf
a
ce

,
d
a
ta

,
p
ro

to
-

co
l

co
m

p
a
ti

b
il
it

y
S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

im
p
li
ci

t
d
y
n
a
m

ic
,

se
m

i-
a
u
to

m
a
ti

c

in
te

ra
ct

iv
e

g
en

er
a
ti

o
n

o
f
m

is
-

m
a
tc

h
tr

ee
fo

r
d
e-

ci
si

o
n

su
p
p

o
rt

A
sp

ec
t-

o
ri

en
te

d
m

ed
ia

-
ti

o
n

[3
7
]

cu
st

o
m

iz
e

in
te

ra
ct

io
n

p
ro

to
co

l
co

m
p
a
ti

b
il
it

y
S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

a
ct

io
n
-

b
a
se

d
,

a
sp

ec
t-

o
ri

en
te

d

st
a
ti

c,
se

m
i-

a
u
to

m
a
ti

c
in

te
ra

ct
iv

e
A

O
P

a
p
p
ro

a
ch

fo
r

te
m

p
la

te
in

st
a
n
ti

a
ti

o
n

a
n
d

ex
ec

u
ti

o
n

M
ed

ia
ti

o
n

in
S
em

a
n
ti

c
W

eb
[5

4
]

cu
st

o
m

iz
e

in
te

ra
ct

io
n

p
ro

to
co

l
co

m
p
a
ti

b
il
it

y
S
C

p
ro

-a
ct

iv
e,

fo
rw

a
rd

im
p
li
ci

t
d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

O
n
o
to

lo
g
y
-b

a
se

d
re

a
so

n
in

g
fo

r
id

en
ti

fy
in

g
m

ed
i-

a
ti

o
n

a
ct

io
n
s

S
H

-
B

P
E

L
[4

0
,

4
4
]

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
,

co
m

-
p

o
si

ti
o
n

in
st

a
n
ce

fa
il
u
re

re
-

co
v
er

y
S
C

re
a
ct

iv
e,

fo
rw

a
rd

/
b
a
ck

w
a
rd

,
ce

n
tr

a
li
ze

d
/

d
is

tr
ib

u
te

d

a
ct

io
n
-

b
a
se

d
,

se
rv

ic
e

a
n
d

fl
ow

in
-

st
a
n
ce

a
n
d

cl
a
ss

a
ct

io
n
s

st
a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

h
ig

h
ly

in
te

g
ra

te
d

w
it

h
B

P
E

L
en

-
g
in

e
a
n
d

B
P

E
L

p
ro

ce
ss

es
,

le
a
rn

-
in

g
o
f

re
co

v
er

y
st

ra
te

g
ie

s
[4

4
]

R
u
le

-b
a
se

d
a
d
a
p
ta

-
ti

o
n

[7
,

6
]

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
,

co
m

-
p

o
si

ti
o
n

in
st

a
n
ce

fa
il
u
re

re
-

co
v
er

y
S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
ct

io
n
-

b
a
se

d
,

se
rv

ic
e

a
n
d

fl
ow

in
st

a
n
ce

a
ct

io
n
s

st
a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

in
st

ru
m

en
ta

ti
o
n

o
f

B
P

E
L

co
d
e,

ru
le

en
g
in

e
[6

]

M
A

S
C

[2
3
]

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
,

co
m

-
p

o
si

ti
o
n

in
st

a
n
ce

fa
il
u
re

re
-

co
v
er

y
S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
ct

io
n
-

b
a
se

d
,

se
rv

ic
e

a
n
d

fl
ow

in
st

a
n
ce

a
ct

io
n
s

st
a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

p
o
li
cy

-b
a
se

d
m

id
-

d
le

w
a
re

b
a
se

d
o
n

W
S
-P

o
li
cy

st
a
n
-

d
a
rd

120 Authors Suppressed Due to Excessive Length

T
a
b
le

4
.4

.
C

la
ss

ifi
ca

ti
o
n

o
f

A
d
a
p
ta

ti
o
n

A
p
p
ro

a
ch

es
:

p
a
rt

2
a

U
sa

g
e

S
u
b

je
c
t

A
sp

e
c
t

L
o
c
.

M
e
th

o
d
o
lo

g
yS
p

e
c
ifi

c
a
ti

o
nD

e
c
is

io
n

A
u
to

n
o
m

y
R

e
a
li
z
a
ti

o
n

W
S
-

D
ia

m
o
n
d

[1
8
]

co
rr

ec
t

co
n
st

.
se

r-
v
ic

es
,

co
m

-
p

o
si

ti
o
n

in
st

a
n
ce

fa
il
u
re

re
-

co
v
er

y
S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
ct

io
n
-

b
a
se

d
,

se
rv

ic
e

a
n
d

fl
ow

in
st

a
n
ce

a
ct

io
n
s

d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

fa
il
u
re

d
ia

g
n
o
si

s
to

d
ri

v
e

a
d
a
p
ta

-
ti

o
n

P
o
li
cy

-b
a
se

d
a
d
a
p
ta

-
ti

o
n

[4
8
]

cu
st

o
m

iz
e

m
o
b
il
e

a
p
-

p
li
ca

ti
o
n

in
st

a
n
ce

co
n
te

x
tu

a
l

ch
a
n
g
es

S
C

/
S
Ir

ea
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
ct

io
n
-b

a
se

d
(d

o
m

a
in

-
sp

ec
ifi

c
p

o
li
ci

es
)

st
a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

d
es

ig
n
-t

im
e

fr
a
m

ew
o
rk

fo
r

co
n
te

x
t

p
o
li
cy

m
o
d
el

in
g
,

ru
n
-

ti
m

e
m

id
d
le

w
a
re

M
o
d
el

-b
a
se

d
a
d
a
p
ta

-
ti

o
n

[3
1
]

cu
st

o
m

iz
e

se
rv

ic
e

co
m

-
p

o
si

ti
o
n

b
eh

av
io

ra
l

re
co

n
fi
g
u
ra

-
ti

o
n

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

a
ct

io
n
-b

a
se

d
st

a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

u
se

o
f

g
ra

p
h

re
w

ri
ti

n
g

p
o
li
ci

es

D
y
S
O

A
[4

9
]

co
rr

ec
t

co
m

p
o
si

ti
o
n

in
st

a
n
ce

Q
o
S

d
eg

ra
d
e

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

ex
p
li
ci

t
va

ri
-

a
b
il
it

y,
fl
ow

a
ct

io
n
s

st
a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

in
te

g
ra

te
d

in
to

ex
ec

u
ti

o
n

p
la

t-
fo

rm

S
P

L
E

-b
a
se

d
a
d
a
p
ta

-
ti

o
n

[2
9
]

cu
st

o
m

iz
e

co
m

p
o
si

ti
o
n

in
st

a
n
ce

w
o
rk

fl
ow

S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

ex
p
li
ci

t
va

ri
-

a
b
il
it

y
st

a
ti

c,
a
u
to

-
m

a
ti

c
a
u
to

n
o
m

o
u
s

ex
te

n
si

o
n

o
f

B
P

E
L

/
W

S
D

L
fo

r
va

ri
a
b
il
it

y

G
o
a
l/

V
a
ri

a
b
il
it

y
m

o
d
el

-
in

g
[1

6
]

cu
st

o
m

iz
e

co
m

p
o
si

ti
o
n

in
st

a
n
ce

ch
a
n
g
in

g
re

-
q
u
ir

em
en

ts
S
C

re
a
ct

iv
e,

fo
rw

a
rd

,
ce

n
tr

a
li
ze

d

ex
p
li
ci

t
va

ri
-

a
b
il
it

y,
i*

-
b
a
se

d
g
o
a
l/

va
ri

a
b
il
it

y
m

o
d
el

in
g

d
y
n
a
m

ic
,

a
u
to

m
a
ti

c
a
u
to

n
o
m

o
u
s

in
te

g
ra

te
d

in
to

ex
ec

u
ti

o
n

p
la

t-
fo

rm

4 Adaptation of Service-Based Systems 121

4.4 Related Works on Adaptation in Software Systems

Due to the constant changes in information systems, the adaptability has been
considered an important challenge in different types of information system dis-
ciplines. Here we discuss and demonstrate some of the most active research
areas in this line, namely the adaptation in component based software engi-
neering and in software product line engineering.

4.4.1 Adaptation in Component-based Systems

The problem of building adaptive computing systems has gained dramatically
more interest over recent years. The emergence of ubiquitous computing and
the growing demand for autonomic computing are the main factors entailing
this interest [39]. Ubiquitous computing aims to remove traditional bound-
aries for how, when, and where humans and computers interact. To do this,
computer systems must adapt to its environment of computing platforms and
communication networks. Autonomic computing refers to the ability of a sys-
tem to manage and protect their own resources. Such systems require run-time
adaptation in order to survive failures, network outages, and security attacks.

In [34] the authors identify the following groups of reasons for software
system adaptation: corrective (remove faulty behavior), adaptive (response to
changes affecting the context), extending (extend the system with new func-
tionalities), and perfective (improve characteristics of an application). The
authors also classify the adaptation into the following classes: architectural
adaptation (affect the structure of the system), implementation adaptation
(affect implementation of the components without changing the interface), in-
terface adaptation (affect the interfaces of the components), geography adap-
tation (affect distribution of the components over the network). Orthogonally
to this, adaptation approaches in [39] are classified into parameter adaptation,
where the variables that determine the system behavior are affected, and the
composition adaptation, where the structural parts of the system are changed.

The rapid growth in the area of adaptation in software engineering is ex-
plained by a set of technological reasons [39]. Separation of concerns, compu-
tational reflection, and component-based design provided programmers with
the tools to construct adaptable system in a systematic way, while widespread
use of middleware provided a place to locate and enable adaptive behavior.
These technologies, combined in different ways, lead to the development of a
wide range of application adaptation approaches and principles [39, 3].

Separation of concerns provides a way to separate development of the
functionality and the crosscutting concerns (e.g., quality of service, security).
This principle has become one of the cornerstone principle in software en-
gineering, and has lead to a wide spread od aspect-oriented programming
(AOP) approach [35]. AOP supports adaptation in several ways. First, many
adaptations are relative to some crosscutting concern (e.g., quality-of-service)

122 Authors Suppressed Due to Excessive Length

and therefore AOP may be used to define and implement this concern. Sec-
ond, it permits delaying the modification of the system to run-time, making
adaptation more flexible and dynamic.

Computational reflection refers to the ability of a program to reason about,
and possibly alter, its own behavior. Reflection enables a system to reveal
(selected) details of its implementation without compromising portability. It
comprises two activities: introspection (enables an application to observe its
own behavior) and intercession (enables a system or application to act on
the observations and modify its own behavior). Together with AOP, it allows
for observing and reasoning on the system behavior, enabling its run-time
modification.

Component-based design comes with well-defined interfaces, providing a
way to develop separately providers and consumers independently, and, there-
fore, promoting component re-use. We remark that this technology was fur-
ther advanced by the service-oriented architecture providing even better de-
coupling, interoperability and re-use of the underlying services (components).

Middleware is a set of services that separate applications from operating
systems and protocols. These services include high-level programming abstrac-
tions, different aspects (QoS, security, fault tolerance, persistence, transaction-
ality), and specific functionalities. Since middleware provides an abstraction
of many adaptation-related concerns, it serves as good place for implementing
adaptation mechanisms.

The above technologies and principles has many similarities with the
service-oriented architectures and technologies for the SBS development. Not
surprisingly, a wide range of adaptation approaches for SBSs adopt similar
concepts as the ones for component-based software systems, such as aspect-
oriented approaches, use of middleware for realizing adaptation, etc.

4.4.2 Adaptation in Software Product Line Engineering

Software product line engineering (SPLE [15, 36]) has proven to be the para-
digmfor developing a diversity of similar software applications and software-
intensivesystems at low costs, in short time, and with high quality. Numerous
reports document thesignificant achievements of introducing software product
lines in industry [36].Key to SPLE is to define and realize the commonality
and the variability of the productline and its applications. The commonalities
comprise the artifacts and the propertiesthat are shared by all product line
applications. The variability defines how the variousapplications derived from
the product line can vary. A prerequisite for managing softwareproduct line
variability is the explicit documentation of the variability.

A Framework for Software Product Line Engineering

The SPLE framework depicted in Figure4.4 illustrates the two product line
engineering processes: domain engineering and application engineering. The

4 Adaptation of Service-Based Systems 123

Fig. 4.4. SPLE Framework (simplified version of the one in [36])

framework has been developed in the context of European SPLE research
projects ESAPS, CAFE, and FAMILIES [51]. The domain engineering process
is responsible for defining the commonality and the variability of the applica-
tions of the product line [19]. Furthermore, the do-main artifacts are realized
which implement the commonalities and provide the variability required to
derive the set of intended applications. The domain artifacts constitute the
product line platform and include, among others, requirements models (e.g.,
use case diagrams), architectural models (e.g., component or class diagrams)
and test models. The application engineering process is responsible for deriv-
ing applications from the domain artifacts. Application engineering exploits
the variability of the domain artifacts by binding (resolving) variability ac-
cording to the requirements defined for the particular application.

By splitting the overall development process into do-main engineering and
application engineering a separation of the two concerns building a robust

124 Authors Suppressed Due to Excessive Length

Fig. 4.5. Variability Model and relationship to existing conceptual models

product line platform and creating individual, customer or market specific
applications is established.

Two Approaches for Modelling Variability

To model the variability of a product line, two principle types of approaches
are proposed in the literature. One type of approaches proposes to integrate
variability information into existing models. For example, extensions for UML
models by defining stereotypes for product line variability are proposed (e.g.,
see [26]), or feature models are extended to facilitate the documentation of
variability information (e.g., FORM [32], CBFM [20]). The other type of
approaches proposes employing a dedicated variability model, i.e. those ap-
proaches argue that variability should not be integrated into existing mod-
els, but defined separately. Among, others, the Orthogonal Variability Model
(OVM, [36]) has been proposed for documenting software product line vari-
ability in a dedicated model. In a dedicated variability model only the vari-
ability of the product line is documented (independent of its realization in
the various product line artifacts). The variability elements (Figure4.5)in a
dedicated variability model are, in addition, related to the elements in the
traditional conceptual models which “realize” the variability defined by the
variability model.

In a dedicated variability model, at least the following information is doc-
umented:
• Variation Point (“what does vary?”): This documents a variable item or

a variable property of an item.
• Variant (“how does it vary?”): This documents the possible instances of a

variation point.
• Variability Constraints: There can be constraints on variability, because

product management decided, e.g., not to offer certain combinations of

4 Adaptation of Service-Based Systems 125

variants in an application or because the realization of one variant requires
another variant to be present.

References

1. DOPLER: An Adaptable Tool Suite for Product Line Engineering, volume 2.
IEEE Computer Society, 2007.

2. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facili-
tating flexibility and dynamic exception handling in workflows through worklets.
In Short Paper Proceedings at (CAiSE), volume 161 of CEUR Workshop Proc.,
Porto, Portugal, 2005.

3. Mehmet Aksit and Zièd Choukair. Dynamic, Adaptive and Reconfigurable Sys-
tems Overview and Prospective Vision. In ICDCS Workshops, pages 84–, 2003.

4. D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani. PAWS: A
Framework for Executing Adaptive Web-Service Processes. IEEE Software,
24(6):39–46, 2007.

5. D. Ardagna and B. Pernici. Adaptive Service Composition in Flexible Processes.
IEEE Trans. Software Eng., 33(6):369–384, 2007.

6. L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL processes with Dy-
namo and the JBoss rule engine. In ESSPE ’07: International workshop on
Engineering of software services for pervasive environments, pages 11–20, 2007.

7. Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Towards Self-healing Service
Compositions. In First Conference on the PRInciples of Software Engineering
(PRISE’04), pages 11–20, 2004.

8. B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. Devel-
oping Adapters for Web Services Integration. In Advanced Information Systems
Engineering, 17th International Conference, CAiSE 2005, Porto, Portugal, June
13-17, 2005, Proceedings, pages 415–429, 2005.

9. Domenico Bianculli, Radu Jurca, Walter Binder, Carlo Ghezzi, and Boi Falt-
ings. Automated Dynamic Maintenance of Composite Services based on Service
Reputation. In Service-Oriented Computing - ICSOC 2007, Fifth International
Conference, 2007.

10. Antonio Brogi and Razvan Popescu. Automated Generation of BPEL Adapters.
In International Conference on Service Oriented Computing, 2006.

11. G. Canfora, M.di Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning
of Composite Web Services. In ICWS 2005 Proc., 2005. Orlando.

12. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data Knowl.
Eng., 24(3):211–238, 1998.

13. L. Cavallaro and E. Di Nitto. An Approach to Adapt Service Requests to
Actual Service Interfaces. In SEAMS ’08: Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems, pages
129–136, New York, NY, USA, 2008. ACM.

14. Girish Chafle, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, and Biplav Sri-
vastava. Adaptation in Web Service Composition and Execution. In Interna-
tional Conference on Web Services - ICWS, pages 549–557, 2006.

15. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001.

126 Authors Suppressed Due to Excessive Length

16. R. Clotet, D. Dhungana, X. Franch, P. Grnbacher, L. LÛpez, J. Marco, and
N. Seyff. Dealing with Changes in Service-Oriented Computing Through Inte-
grated Goal and Variability Modelling. In Proceedings 2nd International Work-
shop on VaMoS, 2008, 2008.

17. M. Colombo, E. Di Nitto, and M. Mauri. SCENE: A Service Composition Exe-
cution Environment Supporting Dynamic Changes Disciplined Through Rules.
In Service-Oriented Computing - ICSOC 2006, 4th International Conference,
Chicago, IL, USA, December 4-7, 2006, pages 191–202. Springer, 2006.

18. L. Console and M.G. Fugini. The WS-Diamond Team :WS-DIAMOND: an
approach to Web Services - DIAgnosability, MONitoring and Diagnosis. In
e-Challenges Conf. 2007, The Hague, Oct. 2007, 2007.

19. J. Coplien, D. Hoffman, and D. Weiss. Commonality and Variability in Software
Engineering. IEEE Software, 15(6):37–45, 1998.

20. K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-based Fea-
ture Models and Their Specialization. Software Process: Improvement and Prac-
tice, 10(1):7–29, 2005.

21. Marlon Dumas, Murray Spork, and Kenneth Wang. Adapt or Perish: Algebra
and Visual Notation for Service Interface Adaptation. In International Confer-
ence on Business Process Management, page 65ñ80. Springer-Verlag, September
2006.

22. J. Eder and W. Liebhart. Workflow recovery. In Proc. of IFCIS Int. Conf. on
Cooperative Information Systems (CoopIS), pages 124 – 134, Brussels, Belgium,
1996. IEEE.

23. Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Policy-driven mid-
dleware for self-adaptation of web services compositions. In Middleware ’06:
Proceedings of the ACM/IFIP/USENIX 2006 International Conference on Mid-
dleware, pages 62–80, New York, NY, USA, 2006. Springer-Verlag New York,
Inc.

24. F.Casati, S.Ceri, B.Pernici, and G.Pozzi. Workflow Evolution. In Int’l Confer-
ence on Conceptual Modeling (ER), 1996.

25. Tong Gao, Hui Ma, I-Ling Yen, Farokh Bastani, and Wei ek Tsai. Toward QoS
analysis of adaptive service-oriented architecture. In Service-Oriented System
Engineering (SOSE), pages 219–226, 2005.

26. H. Gomaa and M. Barber. Designing Software Product Lines With UML: From
Use Cases to Pattern-Based Software Architectures. Addison-Wesley, Reading,
Mass., 2004.

27. C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Trans. Software Eng., 26(10):943–958, 2000.

28. A. Hallerbach, T. Bauer, and M. Reichert. Managing Process Variants in the
Process Lifecycle. In 10th Int’l Conf. on Enterprise Information Systems, 2008.

29. Svein O. Hallsteinsen, Erlend Stav, Arnor Solberg, and Jacqueline Floch. Using
Product Line Techniques to Build Adaptive Systems. In SPLC, pages 141–150,
2006.

30. R. Hamadi and B. Benatallah. Recovery nets: Towards self-adaptive work-
flow systems. In Proc. of Int. Conf. on Web Information Systems Engineering
(WISE), volume 3306 of Lecture Notes in Computer Science, pages 439–453,
Brisbane, Australia, 2004. Springer.

31. S. Illner, A. Pohl, H. Krumm, I. Luck, D. Manka, and T. Sparenberg. Auto-
mated runtime management of embedded service systems based on design-time

4 Adaptation of Service-Based Systems 127

modeling and model transformation. In 3rd IEEE International Conference on
Industrial Informatics, pages 134–139, 2005.

32. K.C. Kang, S. Kim, J. Lee, and al. FORM: A Feature-oriented Reuse Method
with Domain-specific Reference Architectures. Annals of Software Engineering,
5:143–168, 1998.

33. Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. Towards correct-
ness assurance in adaptive service-based applications. In ServiceWave 2008,
number 5377 in LNCS. Springer, 10-13 December 2008.

34. Abdelmadjid Ketfi, Noureddine Belkhatir, and Pierre-Yves Cunin. Dynamic
Updating of Component-based Applications. In SERP, 2002.

35. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In ECOOP, pages 220–242, 1997.

36. Gunnter Bockle Klaus Pohl and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

37. Woralak Kongdenfha, Regis Saint-Paul, Boualem Benatallah, and Fabio Casati.
An Aspect-Oriented Framework for Service Adaptation. In International Con-
ference on Service Oriented Computing. Springer-Verlag, December 2006.

38. Linh Thao Ly, Stefanie Rinderle, and Peter Dadam. Integration and Verifica-
tion of Semantic Constraints in Adaptive Process Management Systems. Data
Knowl. Eng., 64(1):3–23, 2008.

39. Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C.
Cheng. A Taxonomy of Compositional Adaptation. Technical report, Depart-
ment of Computer Science and Engineering, Michigan State University, 2004.

40. Stefano Modafferi, Enrico Mussi, and Barbara Pernici. Sh-bpel: a self-healing
plug-in for ws-bpel engines. In Proceedings of the 1st Workshop on Middle-
ware for Service Oriented Computing, MW4SOC 2006, Melbourne, Australia,
November 27 - December 01, 2006, pages 48–53, 2006.

41. Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Francisco
Curbera, and Fabio Casati. Semi-automated adaptation of service interactions.
In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, page 993ñ1002, New York, NY, USA, 2007. ACM.

42. E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and M. Luisa Villani. Negotiation
of Service Level Agreements: An Architecture and a Search-Based Approach.
In Service-Oriented Computing - ICSOC 2007, Fifth International Conference,
Vienna, Austria, September 17-20, 2007, pages 295–306. Springer, 2007.

43. M. Di Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo, and E. Di
Nitto. WS Binder: a Framework to Enable Dynamic Binding of Composite
Web Services. In SOSE ’06: Proceedings of the 2006 international workshop on
Service-oriented software engineering, pages 74–80, New York, NY, USA, 2006.
ACM.

44. B. Pernici and A. M. Rosati. Automatic Learning of Repair Strategies for Web
Services. In In Proceedings of the Fifth European Conference on Web Services
(ECOWS 2007) (November 26 - 28, 2007), pages 119–128, 2007.

45. M. Reichert and P. Dadam. ADEPTflex ñ Supporting Dynamic Changes of
Workflows Without Loosing Control. JIIS, pages 93 – 129, 1998.

46. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process manage-
ment with ADEPT2. In Proc. of Int. Conf. on Data Engineering ICDE, pages
1113–1114, Tokyo, Japan, 2005.

128 Authors Suppressed Due to Excessive Length

47. Stefanie Rinderle and Manfred Reichert. A formal framework for adaptive access
control models. J. Data Semantics, 9:82–112, 2007.

48. Enrico Rukzio, Sven Siorpaes, Oliver Falke, and Heinrich Hussmann. Policy
based adaptive services for mobile commerce. In WMCS ’05: Proceedings of the
Second IEEE International Workshop on Mobile Commerce and Services, pages
183–192, Washington, DC, USA, 2005. IEEE Computer Society.

49. Johanneke Siljee, Ivor Bosloper, Jos Nijhuis, and Dieter Hammer. DySOA:
Making Service Systems Self-adaptive. In ICSOC, pages 255–268, 2005.

50. G. Spanoudakis, A. Zisman, and A. Kozlenkov. A Service Discovery Framework
for Service Centric Systems. In Proceedings of Service Computing Conference
(SCC), 2005.

51. F. van der Linden. Software Product Families in Europe: The Esaps & Café
Projects. IEEE Software, 19(4):41–49, 2002.

52. K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, and J. Lee. On accommodating
inter service dependencies in web process flow composition. In Proc. of Int.
Semantic Web Services Symposium, AAAI spring symposium series, Palo Alto,
(CA) USA, 2004.

53. K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu. The METEOR-S
Approach for Configuring and Executing Dynamic Web Processes. In Technical
report, 2005.

54. Stuart K. Williams, Steven A. Battle, and Javier Esplugas Cuadrado. Protocol
Mediation for Adaptation in Semantic Web Services. In 2nd European Semantic
Web Conference, pages 635–649, 2006.

55. Y. Wu and P. Doshi. Regret-Based Decentralized Adaptation of Web Processes
with Coordination Constraint. In Proceedings of Service Computing Conference
(SCC), 2007.

56. Peng Cheng Xiong, Yu Shun Fan, and Meng Chu Zhou. Petri net-based Ap-
proach to QoS-aware Configuration for WS. In IEEE International Conference
on Systems, Man and Cybernetics, pages 1286–1291, 2007.

57. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE Trans. on Software Engineer-
ing, 30(5), May 2004.

5

Architectures & Infrastructure

Françoise André1, Ivona Brandic2, Erwan Daubert1, Guillaume Gauvrit1,
Maurizio Giordano3, Gabor Kecskemeti4, Attila Kertész4, Claudia Di
Napoli3, Zsolt Nemeth4, Jean-Louis Pazat1, Harald Psaier2, Wolfgang
Renz5, and Jan Sudeikat5,6

1 Institut National de Recherche en Informatique et Automatique (INRIA), France
2 Technische Universität Wien, Vienna, Austria
3 Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
4 MTA Computer & Automation Research Institute (MTA-SZTAKI), Budapest,

Hungary
5 Multimedia Systems Lab. (MMLab), Hamburg University of Applied Sciences,

Germany
6 Department of Informatics, University of Hamburg, Germany

Chapter Overview The third of the S-Cube technology layers provides infrastruc-
ture capabilities for defining basic communication patterns and interactions involv-
ing as well as providing facilities for providing, for example, contextual and qualita-
tive information about a service’s and their client’s environments and performance.
Providing these capabilities to other layers allows service developers to use con-
textual information when building service based systems and provide cross layer
and pro-active monitoring and adaptation of services (see research challenges). This
chapter provides an overview of service infrastructures for the adaptation, monitor-
ing and management of services which will provide these functions and concludes
with a discussion of more detailed research challenges in the context of service in-
frastructures and their management.

5.1 Introduction

A high-level view of an infrastructure is given in Figure 5.1. This picture
illustrates all the relevant concepts of the architecture for the execution of
service oriented applications. We think that, in most cases, this run-time ar-
chitecture should be service-oriented itself and should assume that all the
run-time mechanisms and components are realized as services and are ex-
posed on a communication backbone. This view guarantees that the run-time
mechanisms can be integrated and exploited in a synergistic way, at least at
the conceptual level.

In Figure 5.1, we distinguish between core services and application-specific
services.

130 Authors Suppressed Due to Excessive Length

Fig. 5.1. Logical Infrastructure view

The core services are middleware services that the run-time architecture
provides to all SBA in order to support the different aspects of the SBA
execution. Examples of such core services are a discovery service, an engine
for executing service compositions, or an engine for monitoring the behavior
of a SBA or the performance of a business network. Some of these core services
act as containers for application-specific services, i.e., services that are specific
of the SBA in execution, and that encapsulate part of the application-specific
logic. This is the case of the engine for executing service compositions. The
core services that act as containers for application-specific services are also
referred to as service containers.

Other core services contain other parts of the application-specific logics,
which are however not exposed as services. This is the case, for instance, of
the monitoring engine, which will contain the application-specific properties
to be monitored. For lack of a more precise name, these core services will
also be referred to as engines. Finally, there are core services that have no
application-specific contents. This is the case, for instance, of discovery ser-
vices. When a SBA is deployed, specific pieces of the application logics will
hence be deployed in the service containers and in the engines — depending
on whether these pieces of application logics are themselves services or not
— but no application-specific pieces are deployed in this third kind of core
services.

The communication backbone supports the communication among any
kind of services, regardless of whether they are core services or application-
specific services. In particular, in the case of service containers, the commu-
nication backbone allows accessing both the core service and the application-
specific services deployed within the container. The core service will offer a
management interface for control- ling the behavior of the container and in
particular the deployment and operation of application-specific services. The

5 Architectures & Infrastructure 131

application-specific services will expose application-specific interfaces which
allow for accessing the specific functionalities of these services.

5.2 Service infrastructures for Adaptation,
Monitoring & Management of Services

5.2.1 Introduction

Recent computing infrastructures have grown in size and manage multiple in-
terconnections to cover all requirements of functionality, coordination, and co-
operation. An example are cooperate infrastructures which provide all means
to use, combine, and exploit the various functions of communication, collab-
oration, production tools, etc. The situation becomes the more complex the
larger the infrastructure grows and the more user and applications need to be
served. IBM describes the dilemma in [35] and identifies the reasons:

• The huge amount of budget spent on preventing or recovering from system
crashes.

• The effort spent in keeping a deployed system running.
• About 40% of the system outages are caused by an operator error.
• The costs provoked by long system downtimes.
• The complexity of todays applications and the related extended require-

ments on testing.

The current situation in providing such a multipurpose infrastructure is
that a multitude of users wants to use the infrastructure according to their
individual ideas and requirements. Some of the resulting requests are difficult
to fulfill because of the involved dependencies between, e.g., applications and
hardware resources. This becomes especially challenging if these dependencies
interfere with the requirements of other users of the same infrastructure. As
an example users could lock each-others requests when accessing the same
infrastructure resources. It could also occur that users request the same re-
sources even if there is enough alternative resources but they are not aware
of the fact. As one realizes, there is a need of monitoring, adaptation, and
management in the infrastructure which balances loads and hides the details
from the users by giving sound and in time responses to their requests.

The describe issues are the challenges for substantial research. As previ-
ously mentioned, the result of this complexity in infrastructure’s components
dependencies and applications causes as a consequence unreliable and unpre-
dictable behavior in the system. But the problem cannot be solved by human
support alone. Meanwhile human administrators are overwhelmed with the
task of maintaining such a complex system on their own. Even highly so-
phisticated on-line monitoring and analysis instruments cannot assure that
humans react in time and correctly to malfunctions in the infrastructure. In-
stead, because humans tend to make mistakes, an inconsiderate change by a

132 Authors Suppressed Due to Excessive Length

human administrator might even worsen the situation. Thus, the main con-
sensus of the research is that current and future infrastructures require some
means of self-management.

The challenges of the research are manifold. It is not only difficult to
design and implement self-management designs, but also demanding to explore
and find possibilities of integration with the considered system. The guarded
system is usually already build and running, possibly designed to function
as a unit with few interfaces of adaptation. However, integration interfaces of
observation and adaptation are crucial for the success of any self-management
technique.

5.2.2 Self-adaptation

Self-adaptation can be made in several parts of the system: at the operating
system level, at application level, at library level or in a middleware layer.
The operating system adaptation is application-transparent. Generic adap-
tation mechanisms are included into the operating system. So applications
developers don’t need to rewrite their applications to cope with the variations
of the environment but the adaptation is not very accurate. The direct ap-
plication adaptation is a more specialized adaptation. It puts the adaptation
mechanisms inside each application. The pros are that the adaptation is aware
of the specificities of the application, which makes it more reactive and effi-
cient, but in counterpart, it is much more difficult for applications developers
because it is necessary to modify all applications. Moreover, it is impossible to
coherently manage multiple applications. The adaptation by middleware, also
called Applications-aware adaptation is a compromise between the two other
solutions. This adaptation can use the specific aspect of each application and
manage multiple simultaneous executions of different applications.

5.2.3 Self-management

Self-management refers to a system part which is closely aligned or integrated
into the system. This binding must allow self-management applications to
observe the system timely and careful through the interfaces. The observa-
tions are analyzed and possible needs of adaptations discovered in the current
system. Needs are motivated by different criteria. The most common are sys-
tem degradations, optimizations, new configurations, security threats, etc. An
analysis the results in a need for adaptations triggers a self-managing imple-
mentation to take decisions on which changes are deployed in respect of the
current system configuration. Finally, self-management plans and times the
order of the deployed adaptations.

The preconditions for a self-managing component include the knowledge
of itself. The component is aware of all its functionality, the resulting capa-
bilities, and possible combinations for composed new capabilities. The last

5 Architectures & Infrastructure 133

mentioned ability already hints that a self-managing design needs to be ex-
tensible and self-adaptable. Arriving conditions might require the design to
reconfigure its internals on the fly. For example, acceptable threshold values
can vary related to daytime. In other cases such a threshold value could rep-
resent the result of monitoring data and fluctuate constantly. Actions depend
on the observed and, thus, a range of possible combinations must be per-
mitted to the self-management component. Apart from the knowledge of its
own capabilities self-management must also maintain a clear picture of the
surroundings. Once the interfaces with the observed system are identified,
the self-management component learns and adopts the system’s capabilities
of adaptation. It is essential to furnish the self-management with all the de-
tails about the correct operation modes. This gives the component a model to
relate the current observed data and detect extraordinary events indicating
deviations from normal. However, together with new requirements the system
changes over time. Therefore, self-management’s view on the system must also
adapt along with the development of the system.

To describe the outline of an infrastructure with monitoring, adaptation,
and management capabilities Figure 5.2 provides a layered overview of the
main parts and dependencies. Although infrastructures are multipurpose an
the details of the layer combinations differ from operation and purpose, the
illustrated assembly is considered general.

On top, the management layer provides configuration, observation, and
control facilities. Once new requirements derive from adapted process models
in the BPM, polished composition, advanced coordination, and updated de-
sign, the layer provides a control interface for human operators. This supports
system management by a simple interface to apply the requirements and a off-
line analysis of the running system’s status and properties. It empowers the
human administrator to define high level requirements at the management
console and deploy them to the system. Thereby, the administrator is relieved
from the deployment details. Generally, the management layer is supported
by monitoring and adaptation layers. These two and their internal functions
enhance the infrastructure with self-management. They assure that manage-
ment can provide a comprehensible and reliable representation of the system’s
state. It is essential for the design of a self property enhanced infrastructure
that the capabilities of self-management are understood and do not interfere
with management decisions.

5.2.4 Monitoring Infrastructure

Monitoring (lat. monere: to remind, to warn) refers to the continuous process
of observing and recording the behavior of an environment affected by dy-
namic influences. The monitoring process is responsible for collecting and
correlating data from sensors and converting them to behavioral patterns and
symptoms. The process can be realized through event correlation, or simply
threshold checking, as well as other methods.

134 Authors Suppressed Due to Excessive Length

Fig. 5.2. Overview

In general monitoring is motivated by the unpredictable behaviors ex-
posed by system’s parts. As a result prior to the deployment of a monitoring
infrastructure it is necessary to assess the relevant intersections with the sys-
tem for a precise positioning of the sensors. These are usually identified by
experience gathered from historical observations that identify typical locations
of unpredictable behavior in the system. An example are all kind of sensors
that observe a service environment behavior. These could include hardware
sensors, such as sensors for temperature, hardware load, etc., sensors for appli-
cations, e.g., aspect-oriented implementations, and communication channels
sensors. The result of a deployed monitoring infrastructure is timely event in-
formation about status changes in the critical locations of the system. In the
final step it lies in the responsibility of the monitoring component to decide
which events to filter and provide to management and analysis. There might
be different representations of the event expected by the two other compo-
nents. Furthermore, monitoring is also expected to run its own analysis on the
received events. Current events are then compared with and related to past
events.

A combination of the new and related events can result in a composite
event with information which allows for a better conclusion on the current

5 Architectures & Infrastructure 135

Fig. 5.3. Monitoring an Infrastructure

system states. Figure 5.3 illustrates the interfaces and data-flow of a monitor-
ing component in an infrastructure.

The figure shows at the bottom the infrastructure with some common
resources available in a system. An essential prerequisite for monitoring is
a reliable interface to sensing facilities. Sensors are placed at important in-
frastructure building blocks such as hosts, applications, communication chan-
nels, etc., that can provide reliable environment status information.

Sensor interface:

Sensor management is established by the sensor interface. This provides con-
trol over the functionality and fine-tuning of the sensors. As the system runs
through changes during the course of time and the environment changes its
characteristics it might be necessary to also adapt the sensors to the new
conditions. Sensors might react sensitive to the changes and a calibration is
necessary to avoid false alarms. Most of the time, however, the sensor inter-
face’s function is to provide the sensor data for processing by the monitoring
process.

Monitor:

The central process of the monitoring component gathers all the sensor data
and turns it into an event. Thereby, it usually extends the event with account-
ing data, such as, time-stamp of arrival. The event is logged and forwarded
to the analysis process. The monitoring process also provides the means of

136 Authors Suppressed Due to Excessive Length

adapting the sensors through the sensor interface. On a recommendation by
analysis, the system knowledge, or the management layer, monitoring cali-
brates the sensors to the new requirements.

Log:

The logging process comprises the list of historical events gathered by the
system. This event log is essential in estimating the root cause for any incident
in the system. A interface to the monitoring process adds the new events to
the database. Another interface to the analysis must provide a convenient
access to the historical data.

Analysis:

The analysis process is split between monitoring and adaptation component.
The configuration of the analysis adjusts the monitoring intentions. The main
function of analysis in monitoring is to filter the events according to the pro-
vided configuration and adjust their presentation to match the expectations
from adaptation and management. At the more analysis uses event logs to
create high level composite events. These are events only observed and mea-
sured over a time interval. Finally, analysis shares the collected experience to
the knowledge component of the system. These allows the processes in the
other components to decide also on the knowledge gathered in the monitoring
process. This is especially important for self-managing infrastructures that
need to learn from past events to adapt to a changing situation.

Summarizing, monitoring reduces and transforms the “shower” of sensor
data to essential and better processable information. This process is crucial
for an adequate reaction estimation. Furthermore, the quality of the event
composition and thresholds (filters) define the detection capabilities of the
monitoring process. An accurate filter must be reconfigurable by the manage-
ment interface but also itself adapt to the eventually changing environment
conditions. Next a list of the most common monitoring techniques is pro-
vided [56]:

Log sensors:

Logging states from all parts is one of the main techniques available in many
of today’s systems. The challenge in monitoring logs is that logs usually don’t
provide a common format. Thus, a log monitor needs to implement individual
sensors able to process the syntax used by the different log formats. Log sensor
data arrives from different sources. Therefore, monitoring is required to filter
and analyze the sensor data. There are generally two possibilities. The data
can be matched against admissible thresholds, or more sophisticated, data
from different sources can be combined for analysis. This particular analysis
allows to detect state changes that affect composed parts of the system and
gives a clearer view on the overall system state7.
7 c.f., IBM: Generic Log Adapter (GLA), Log Trace Analyzer (LTA)

5 Architectures & Infrastructure 137

Event sensors:

A event sensor provides monitoring already with an event in a certain format.
Usually the monitoring process subscribes to the event or waits for an event
to happen. The advantage compared to log sensors is that the event format
and contained status data is in a predefined format and, thus, easily processed
by the monitoring process8.

Protocol & standard sensors:

The sensors of established protocols and standards generate event data from
data channels that transmit information in a certain standard. Similar to the
log sensors, these sensors require a configuration that matches the protocol
subtleties of the observed data. The most prominent examples are IP networks
transmitting various protocols9.

Signal sensors:

These sensors transmit data to the monitoring process in regular intervals. The
absence of a signal indicates a predefined event has occurred in the sensors
place. According to the meaning, a event is reported by the monitoring process
to the neighbor processes. Examples are heartbeat and pulse messages from
system resources.

Profiling sensors:

This type of sensor operates on the application layer and observes the execu-
tion behavior of an application. Similar to other sensors information this data
has first to be gathered and analyzed over time intervals to detect possible
incidents. A composite event is the result of analysis10 .

Aspect-oriented programming:

Aspect-oriented programming is a possibility to monitor application’s behav-
ior very precisely. However, this method is most intrusive because the sensors
are aligned to the application codes as joinpoints.
8 c.f., DMTF: Common Information Model (CIM), IBM: Common Base Events

(CBE)
9 c.f., Simple Network Management Protocol (SNMP), Web-Based Enterprise Man-

agement (WBEM)
10 c.f., JVM Tool Interface (JVMTI)

138 Authors Suppressed Due to Excessive Length

Management frameworks:

There exist already some complete management frameworks which comprise
all parts of the monitoring, adaptation, and management components. One
of the best known to-date is the Java Management eXtension (JMX). It pro-
vides interfaces for all kinds of sensors, sensor data formats, extensions for
monitoring, management, and adaptation logics. The package also includes a
management interface that provides an overview of all monitoring data and
allows to configure the attached sensors and effectors.

5.2.5 Adaptation Infrastructure

Types of adaptation

Dynamic adaptation actions can be classified according to several criteria.
First if one considers what can be changed in a service or in a composition of
services, one can distinguish five different possible changes:

1. Parameter adaptation: The simplest “parameter adaptation” consists in
changing the value of an interface parameter, for example to modify the
frame-rate on a video.

2. Functional adaptation: At the level of one service, there is also “func-
tional adaptation” that consists in changing the code that realizes the
service, without visible logical consequences for the outside (the users) of
the service. For instance, one can change the bytecode of a Java service
to improve its performance.

3. Behavioral adaptation: Always considering one single service, “behavioral
adaptation” consists in changing the algorithm of a service, having some
visible effect for the outside.

4. Environmental adaptation: This adaptation allows to modify the execu-
tion environment where the service is executed. For example, service mi-
gration is an environmental adaptation, because after this adaptation,
the service will not run in the same context, so its performance, its se-
curity level, its available resources can be different. This migration may
be useful when a node is overloaded by too many services. If a service
A is migrated from an overloaded node X towards a node Y, resources
allocated to this service on the node X are released and can reallocated
to the others services, improving their Quality of Service (QoS). The QoS
of service A is also improved as it is moved on a node that is not over-
loaded. Migration could be useful in other cases, for example to bring a
service closer from his users. There are several approaches to performing
service migration. The simplest do not consider the state of a service and
consist in installing and starting the service on the new location. In this
case, the “binary representation” (or in some cases, the executable file)
which represents the service is migrated. After that it just needed to start
the service at the new place. It is convenient for stateless services and if

5 Architectures & Infrastructure 139

the service can be stopped before migration. In the other approaches, the
migration consists also in the migration of the execution context of the
service. This execution context is represented by data stored in memory.
In that case, the service execution can be resumed on the new node in a
transparent way for the users of the service. This type of migration needs
to take care of threads that have been created by the service which is a
complex task [31, 62, 3].

5. Structural adaptation: Then, “structural adaptation” concerns the mod-
ification of a composition of services, by changing one or several links
between the services of the composition. For example, the service S using
S1 could be linked with another service S2 to replace S1.

Location of adaptation

In addition to this distinction between adaptation actions, one can also con-
sider the criteria of the location where the actions are performed. Execution
may be done ‘locally’, that is when all actions composing a strategy of adap-
tation are executed on the same platform, the same node of an architecture.
Distributed execution occurs when the different actions composing an adap-
tation strategy are executed on many services platforms, on several nodes on
the network. For example considering the structural adaptation which con-
sists in adding a new service SNEW between two already composed services
S1 and S2, if all these services reside on the same platform, this is a ‘local’
adaptation, but if S1 is located on a node N1, S2 on a different node N2 and
SNEW on a third one N3, the adaptation will be distributed on these 3 nodes,
needing some cooperation and synchronization between them.

From all these possibilities, one can see that adaptation strategy can be
applied to one service or to many services, to an application, to a complete
environment, composed by a node, a set of nodes such as a cluster, a grid or
a dynamic cloud.

Analysis

The purpose of analyzing the adaptation infrastructure is to react to mon-
itored changes in the system to adapt by deciding when and how to adapt
services, compositions and service infrastructure. Therefore, this part lies at
the interface between the monitoring and adaptation infrastructures. Its de-
cisions are reified in strategies and are sent to the planning part in order to
plan their execution.

Decision guides and strategies:

A strategy is a reification of a chosen configuration to apply. This configuration
can equally be represented by the complete configuration to adopt or by the
difference between the current configuration and the one to adopt. The latter

140 Authors Suppressed Due to Excessive Length

might be seen as a high-level view of a collection of actions. However, those
actions might not be directly executable.

The use of two different terms for the configuration and its reification is
used to make a clear distinction between the concept and the entity. Since a
configuration can be represented in multiple ways, such as by a graph repre-
senting a network configuration or by a list of parameters, multiple languages
can be used to represent a configuration and thus a strategy. Which language
is used is dependent from the adaptation infrastructure and might vary from
one to another. A strategy represents a goal to reach and multiple means
might be available to reach it, and different ways might exist to execute the
strategy. The task of planning a particular strategy in executable actions is
done by the planning part of the adaptation infrastructure.

To create a strategy, the analysis function uses a reasoner that follows
an algorithm. Various generic algorithms are available, each with different
advantages and disadvantages for different purposes. For instance, some are
fast to compute a strategy but grow easily in complexity and can become
hard to maintain while others are slower but can efficiently model complex
systems.

Using generic algorithms enables to use the same component or code in
different applications. However the adaptation goals and means vary between
applications. For instance, some can seek performance while other the econ-
omy of energy. Thus, the generic algorithms have to be specialized to each
application. This is done using decision guides.

A decision guide is a document where is expressed a logic to follow using
an algorithm to make decisions of adaptation when appropriate, producing
strategies. A guide is followed each time — and only when — the inner repre-
sentation of the system by the analysis function is changed, since there might
be a need for adaptation only when changes occur. Following a guide usually
can, depending on the algorithm, change the representation of the system
used by the algorithm, thus making the algorithm recursive. Changing the
inner representation enables to make intermediate states, states or values to
compute a strategy.

Among the different algorithms or mechanisms used by reasoners are event-
condition-action rules (ECA), expert systems, utility functions and learning
mechanisms. Multiple reasoners—frameworks or libraries—can be found for
each of those methods, generally using different languages to express their
guides.

Behavior modeling

A self-* service is a service able to react to changes in its environment by
adapting itself. To do so, a self adaptable service has to be able to decide if a
change is needed and how to achieve it. A behavioral model of the service and
its environment can be used to compare different configurations by estimating
how they would perform relatively to the current one.

5 Architectures & Infrastructure 141

As an example to illustrate the modeling of the behavior of a system, we
take an component-based application running on a computing grid. One of
the components in this application is used to assign requests sent by a master
component to worker components. That is, this broker component implements
a master-worker pattern. A self-optimization in this application is to switch
between implementations of the pattern, in order for the application to make
a better use of the grid according to a high-level objective.

The objective used in this example is to maximize the execution speed of
the application. It is measured by the average number of executed requests by
seconds. This objective is a performance oriented one, but price or consump-
tion oriented ones can be considered.

We consider in this example three master-workers patterns. The round-
robin one distributes request to workers in circular order. This pattern is
fast but doesn’t take into account the dynamism of the workload on the grid.
Another pattern is the load-balancing one, as implemented by NetSolve, which
use a queue to ensure that every worker gets the same load to process, as long
as there are more requests than workers at any time. The DIET pattern uses
a modified version of the DIET framework, which uses a request sequencing
policy, a distributed architecture with many agents and has probes to its
disposal to estimate the workerss processing speed. It differs from the original
by using a scheduler which sorts the requests by the estimated time to process
the requests, when possible.

Planning

The planning step specifies the actions that can implement the adaptation
strategy and schedule them. A planning algorithm is used for that purpose. It
takes as input a source configuration and a target configuration that are the
result of the decision step and represent the strategy. It also use a domain of
actions that defines the set of all possible actions to implement the strategies.
For the planning step, the actions need not be defined with too much details
of implementation. One may prefer to use “abstract actions” that will only be
converted as concrete ones at the execution step. For instance the planning
may use the abstract action “start service” without needing to know if the
service is an OSGi service or a Web service. At execution time the abstract
“start service” will be converted either in “register the service on the OSGi
platform” or in “register the service in the Web repository”.

Preconditions and postconditions are associated with actions : they help in
choosing the actions which could lead from the source configuration to the tar-
get configuration. Sometimes choices are possible between two or more actions
or subset of actions to achieve the goal. Some planning algorithms are able
to take into account constraints associated to actions in order to choose the
actions that will the best achieve the objectives. For example constants may
express the time to execute an action or the resource consumption. The objec-
tives of the planning algorithm could be to minimize the total execution time

142 Authors Suppressed Due to Excessive Length

to perform the adaptation or to minimize the resource consumption. For in-
stance the planning language PDDL (Planning Domain Definition Language),
first introduced in 1998 [36], allows to describe such constraints. Indeed since
1998 the PDDL language has evolved to take into account new constraints,
for instance on time duration for actions or on resource consumption. Current
version of PDDL is constituted by a basic kernel and a set of extensions for
each added feature. The user of PDDL needs to choose among the extensions,
those that he needs depending on the planning algorithm used.

The planning step has also to schedule the selected actions. Indeed some
actions may be dependent of some others. For example, it is not possible to
start a bundle on an OSGi platform if the bundle is not already installed and
its dependencies resolved. At the opposite, some actions can be independent
of some others, leading to a partial order between them. For example, two
bundles can be started on two distinct OSGi platforms at the same time. So,
if the applications that are subject for adaptation are running on a distributed
architecture, it could be useful to exhibit the potential parallelism between
the adaptation actions. On distributed platforms, for the actions that have to
be executed in a predefined order, explicit synchronization operations have to
be added.

Within a distributed architecture, the designer of the adaptation system
can choose to instantiate several planners in order to distribute the planning
step. This could be of interest either to achieve fault tolerance in case of a node
where the planner is located breaks down, or to decompose the planning opera-
tions into parallel tasks. In that case a distributed parallel planning algorithm
should be designed which probably will need some cooperation mechanisms
in order to achieve a common goal without inconsistency.

Execution

If one considers that the planning phase produces a set of abstract actions,
they should be first translated into concrete ones, before to be executed (con-
crete actions are also called effectors). Some adaptation designers may prefer
not to use abstract actions as a result of the planning, in that case this step
is not necessary. Abstract actions are used to hide the concrete SOA imple-
mentation. More than facilitating the task of planning, it is also particularly
useful if several different SOA such as SCA, OSGi, may be used to build the
adaptable applications. Each specific platform can then choose the best pos-
sible concrete actions to implement an abstract one (see Figure 5.2.5). In
the following we will consider that the actions specified by the planner are
abstract ones. The set of actions produced by the planning phase respects the
schedule computed by the planning algorithm. This means that the actions
are ordered by steps. A step regroups actions that could be done simultane-
ously. But the actions included in a step N can not be started before all the
actions in step N-1 are not finished.

5 Architectures & Infrastructure 143

Fig. 5.4. Abstract and concrete actions

5.2.6 Management Infrastructure

In Figure 5.2 we can see a layered overview of the main parts of a service in-
frastructure. The management layer provides configuration, observation, and
control facilities supported by monitoring and adaptation layers. Their main
task is to reduce the complexity, since modern infrastructures tend to become
incomprehensible and unreliable, therefore there is an emerging need for self-*
properties.

The Management layer is best exemplified with an overview and insight of
an existing solution. Therefore in this subsection we introduce, how the man-
agement layer appears and operates in an autonomic Service-level Agreement-
based Service Virtualization architecture (SSV). SSV provides a way to ease
service executions in a diverse, heterogeneous, distributed and virtualized
world of services. The architecture consists of the combination of negotia-
tion, brokering and deployment using SLA-aware extensions implementing
autonomic computing principles for achieving reliable service operations.

Agreement negotiation, brokering and service deployment are closely re-
lated and each of them requires extended capabilities in order to interoperate
smoothly. In the following we focus on illustrating how autonomic manage-
ment operations appear in the components of SSV the architecture. Figure 5.5
shows the management interfaces and connections of the three main compo-
nents: agreement negotiation, brokering and service deployment.

We distinguish three types of interfaces in this architecture: the job man-
agement interface, the negotiation interface and the self-management inter-
face. Negotiation interfaces are typically used by the monitoring processes of
brokers and meta-brokers during the negotiation phases of the service deploy-

144 Authors Suppressed Due to Excessive Length

Fig. 5.5. Management interfaces in the SSV architecture.

ment process. Self-management is needed to re-negotiate established SLAs
during service execution. The negotiation interface implements negotiation
protocols, SLA specification languages, and security standards as stated in
the meta-negotiation document.

Job management interfaces are necessary for the manipulation of services
during execution, for example for the upload of input data, or for the download
of output data, and for starting or canceling job executions. Job management
interfaces are provided by the service infrastructure and are automatically uti-
lized during the service deployment and execution processes. In the following
we focus on the management interface. The Autonomic manager in the SSV
architecture is an abstract component, that specifies how self-management
is carried out. All components of the architecture is notified about the sys-
tem malfunction through appropriate sensors (see Figure 5.5). This interface
specifies operations for sensing changes of the desired state and for reacting
to that changes. Sensors can be activated using some notification approach
(e.g., implemented by the WS-Notification standard). Sensors may subscribe
for specific topic, e.g., violation of the execution time. Based on the measured
values (provided by the monitoring infrastructure) notifications are obtained,
if execution time is violated or seems to be violated very soon. After the ac-
tivation of the control loop, i.e., propagation of the sensed changes to the
appropriate component, the service actuator reacts and invokes proper oper-
ations, e.g., migration of resources.

Based on various malfunction cases, the autonomic manager propagates
the reactions to the Meta negotiatiator, Meta-broker or Automatic Service
Deployer. Before service executions, the user and the provider may enter into
negotiations that determine the definition and measurement of user QoS para-

5 Architectures & Infrastructure 145

meters, and the rewards and penalties for meeting and violating them respec-
tively. The term negotiation strategy represents the logic used by a partner
to decide which provider or consumer satisfies his needs best. A negotiation
protocol represents the exchange of messages during the negotiation process.
Many researchers have proposed different protocols and strategies for SLA ne-
gotiation, however, these not only assume that the parties to the negotiation
understand a common protocol but also assume that they share a common
perception about the goods or services under negotiation. In reality however,
a participant may prefer to negotiate using certain protocols for which it has
developed better strategies, over others. Thus, the parties to a negotiation
may not share the same understanding that is assumed by the earlier publi-
cations in this space. In order to bridge the gap between different negotiation
protocols and scenarios, SSV uses a so-called meta-negotiation architecture.
Meta-negotiation is needed by means of a meta-negotiation document where
participating parties may express: the pre-requisites to be satisfied for a nego-
tiation, for example a specific authentication method required or terms they
want to negotiate on (e.g., time, price, reliability); the negotiation protocols
and document languages for the specification of SLAs that they support; and
conditions for the establishment of an agreement, for example, a required
third-party arbitrator. These documents are published into a searchable reg-
istry through which participants can discover suitable partners for conducting
negotiations.

Management includes brokering-related aspects of the SSV architecture.
Brokers are the basic components that are responsible for finding the re-
quired services with the help of an Automatic Service Deployer (ASD). This
task requires various activities, such as service discovery, matchmaking and
interactions with information systems, service registries, repositories. In this
architecture brokers need to interact with ASDs and use adaptive mechanisms
in order to fulfill agreements. A higher-level component is also responsible for
management in SSV: the Meta-Broker. Meta-brokering means a higher level
service management that utilizes existing resource or service brokers to access
various services. In a more generalized way, it acts as a mediator between users
or higher level tools (e.g., negotiators or workflow managers) and environment-
specific resource managers. The main tasks of this component are: to gather
static and dynamic broker properties (availability, performance, provided and
deployable services, resources, and dynamic QoS properties related to ser-
vice execution), to interact with MN to create agreements for service calls,
and to schedule these service calls to lower level brokers, i.e., match service
descriptions to broker properties (which includes broker provided services).
Finally the service call needs to be forwarded to the selected broker. Three
main tasks need to be done by the Meta-Broker: the first, namely the infor-
mation gathering (which relies on the monitoring infrastructure), the second
one is negotiation handling and the third one is service selection (which re-
lies on the Adaptation infrastructure). They need the following steps: During
the negotiation process the Meta-Broker interacts with the Meta-Negotiator:

146 Authors Suppressed Due to Excessive Length

it receives a service request with the service description and SLA terms and
looks for a deployed service reachable by some broker that is able to fulfill
the specified terms. If a service is found, the SLA will be accepted and the
and meta-negotiator is notified, otherwise the SLA will be rejected. If the ser-
vice requirements are matched and only the terms cannot be fulfilled, it could
continue the negotiation by modifying the terms and wait for user approval
or further modifications. Autonomic behavior is needed by brokers basically
in two cases: the first one is to survive failures of lower level components,
the second is to regain healthy state after local failures. To overcome these
difficulties brokers in SSV use the help of the ASD component to re-deploy
some services.

Further on we discuss deployment, which is also part of management
processes, and refer to low-level services as the ones which are used during
the automation of the service deployment process. A low-level service could
operate on the service instances residing on the same node where the low-level
service is running. Typical low-level services are including the management,
adaptation, configuration and installation services. Adaptation, configuration
and installation services are offering the functionality of a given deployment
step discussed in the previous paragraphs. Management services however, are
usually composite of the adaptation, configuration, and installation triplet.
As a bare minimum installation services should be available on each node of
the service infrastructure because they let other service instances to be in-
stalled locally. It would be beneficial that all the other previously mentioned
services are available on the nodes, however using the installation service it is
possible to install and activate the other low-level services on-demand. Using
the autonomic manager self-healing services use local adaptation strategies
that are based on the management, configuration and adaptation services.
For example they might use management services to suspend under-utilized
service instances on a node where there is a highly demanded service. As an
exception, installation services are usually not useful for self-healing. Because
installations can further degrade the health state of the already deployed parts
of the service, which is the situation self-healing tries to avoid. In the scope of
deployment local adaptation is a simple extension of self-healing by extend-
ing the decision making policies with conditions about the service instance’s
context. As an example the decision making process should take into consid-
eration the health state of the surrounding service instances that offer the
same functionality. Local adaptation might exist without self-healing services,
however it is useful to have self-healing services on the lowest level. Then one
can build local adaptation on top of the self-healing capabilities. In case the
local adaptation is not using self-healing capable services, then at least the
service instance level monitoring facilities should be implemented before do-
ing local adaptation. Service instances should offer interfaces to share their
health status independently from an information service. The health status
of a service instance does not need to be externally understood, the only re-
quirement that other service instances, which offer the same interface should

5 Architectures & Infrastructure 147

understand them. A monitoring infrastructure should be built similarly to the
self-healing monitoring solutions, however the events and adaptation strate-
gies should take into consideration the health state of the connected service
instances. For example the service instance now can make decisions whether
it has to prepare for an increased amount of requests. As a result it should use
its management interfaces to reconfigure itself to make sure it will bear the
future load. In case the local adaptation is offered without self healing capa-
bilities, then the management interfaces will not be available for the service
instance, therefore the locally adaptable services should decide together to
use the automatic service deployment system to deploy a new instance which
can cope with the increased needs and it could also decide to request the
decommission of a underperforming service instance from the group.

Service instances should not build on centralized discovery mechanisms to
find other instances offering the same service interface in the SBA. Service
instances should have embedded discovery mechanisms and they should use
it as a failsafe solution. For example by using peer-to-peer mechanisms the
service instances can decide to locally increase the processing power of a given
service by deploying new instances in the neighborhood without even affecting
the entire SBA. This could be useful when the SBA becomes partitioned or
the service instances further away cannot feasibly serve the locally increased
service requests. The packages should be stored in a repository as part of
the automatic service deployment (ASD) system. This repository is a package
repository, and it is not a single entity in the infrastructure but replicated.
Packages should be replicated among them this is one of the reason why the
automatic service deployment system should be aware of the repositories. In
case of new deployments, frequently used components can be replicated and
also merged when the package retrieval patterns suggest – e.g., two pack-
ages are frequently downloaded together. Packages should also be stored with
their configuration options, because healing strategies are usually simple maps
between different situations and configuration options. Automatic service de-
ployment (ASD) is a higher-level service management concept, which provides
the dynamics to SBAs — e.g., during the SBA’s lifecycle services can appear
and disappear without the disruption of their overall behavior. To interface
with a broker the ASD should be built on a repository. All the master copies
of all the deployable services should be stored in the repository. In this con-
text the master copy means everything what is needed in order to deploy a
service on a selected site – which we call the virtual appliance (VA). The
virtual appliance could be either defined by an external entity or the ASD
solution should be capable of acquiring it from an already running system.
The repository allows the broker to determine which services are available for
deployment and which are the static ones. Thus the repository would help to
define a schedule to execute a service request taking into consideration those
sites where the service has been deployed and where it could be executed but
has not yet been installed. If the deployed services are not available, it checks
whether any of the latter resources can deliver the service taking into account

148 Authors Suppressed Due to Excessive Length

the deployment cost. Regarding component interactions, the ASD needs to be
extended with the following in order to communicate with brokers: Requested
service constraints have to be forced independently from what Virtual Ma-
chine Monitor is used. To help the brokers making their decisions about which
site should be used the ASD has to offer deployment cost metrics which can
even be incorporated on higher level SLAs. The ASD might initiate service
deployment/decommission on its own when it can prevent service usage peak-
s/lows, to do so it should be aware of the agreements made on higher levels.

In the management infrastructure of SSV, there is a bidirectional connec-
tion between the ASD and the service brokers. First the service brokers could
instruct ASD to deploy a new service. However, deployments could also oc-
cur independently from the brokers as explained in the following. After these
deployments the ASD has to notify the corresponding service brokers about
the infrastructure changes. This notification is required, because information
systems cache the state of the SBA for scalability. Thus even though a ser-
vice has just been deployed on a new site, the broker will not direct service
requests to the new site. This is especially needed when the deployment was
initiated to avoid an SLA violation.

5.3 Future Challenges

5.3.1 Self-* Properties: Main Research Directions

The most cited cornerstone of the research on self-* properties is probably
the autonomic computing initiative by IBM currently comprising several pa-
pers and research directions. One of their initial works [35] introduces the
most prominent self-* properties comprised by their self-managing idea. Self-
management is integrated into existing or novel complex system to mask the
complexity. The goal and result is a system which becomes manageable again.
According to their vision the following four self properties are required to
gather a self-managing system:

• Self-configuring: This reflects the ability to readjust itself “on-the fly”.
The necessity for configuration emerges usually as a response to changes
by installing, updating, integrating, and composing/decomposing entities.

• Self-healing: A system with this property can discover, diagnose, and react
to its disruptions It can also anticipate potential problems, and accordingly
take proper actions to prevent a failure.

• Self-optimizing: This property tries to maximize resource utilization to
meet end-user needs. Examples of important optimization concerns are
response time, throughput, utilization, and workload.

• Self-protection: A self-protecting implementation can anticipate, detect,
identify, and protect itself from attacks. It has two aspects, namely de-
fending the system against malicious attacks, and anticipating problems
and taking actions to avoid them or to mitigate their effects.

5 Architectures & Infrastructure 149

Early research directions that support the research on self-* properties in-
clude fault-tolerant and self-stabilizing systems. Fault-tolerant systems handle
transient and mask permanent failures in order to return to a valid state [52].
Self-stabilizing systems [26] are considered a non fault masking approach for
fault-tolerant systems. These systems have two distinct properties. These are
(i) the system is guaranteed to return to a legal state in a finite amount of
time regardless of interferences (convergence) and (ii) once in legal state it
tries to remain in the same (closure).

With overlapping intentions to the autonomic computing research the re-
search on self-adaptive systems has evolved. According to [56] the four main
self-* properties are the same for both directions. One distinction is the fact
that self-adaptive systems try to state their challenges at a more general level.
Most of their contributions cover higher level functionality such as the au-
tonomous management, control, evaluation, maintenance, and organization of
a whole systems. Autonomic computing also includes this areas, but extends
their research also to sublayers of middleware.

Over the years the list of self-* properties, also known as self-X properties,
has grown substantially [63]. Example are self-governing, self-regulation, self-
correction, self-organization, self-scheduling, self-planning, self-management,
self-administration, self-optimization, self-monitoring, self-adjustment, self-
tuning, self-configuration, self-diagnosis of faults, self-protection, self-healing,
self-recovery, self-learning, self-knowledge (awareness), self-modeling/repre-
sentation, self-evolution, self-assessment of risks, etc. Most of them relate to
each-other such as the original four properties and have been picked up by
researchers to motivate and explain parts of their works.

As an example the research on self-healing properties for systems includes
surveys [37, 54], but also various specific research works and applications.
These include higher layers such as models and systems’ architecture [24,
17], application layer, and large-scale agent-based systems [8, 71, 18], Web
services [39] and their orchestration [7]. In the middle, self-healing ideas can
be found for middleware [9], and at a lower layer self-healing designs include
operating systems [61], embedded systems, networks, and hardware [38].

5.3.2 Bio-Inspired Decentralized Self-Organization in Service
Infrastructures

The self-organization of the configurations of system entities is typically re-
garded as an alternative approach to the construction of self-adaptive sys-
tems [56, pp. 5–23]. The self-organization concept, as known from biologi-
cal, physical and social systems, describes dynamic adaptive processes among
autonomous entities that give rise to structures at the macroscopic system
level [53]. The integrations of these processes is an attractive design approach
to distributed systems in dynamic environments, since the established struc-
tures are continuously maintained and adapted. The systematic handling of

150 Authors Suppressed Due to Excessive Length

these collective processes is an active research area [53, 59] that enables sys-
tem self-adaptivity by designing the collective, concurrent adjustments of sys-
tem elements. In addition, this development stance inherently supports non-
functional system properties, e.g., the scalability and robustness. Adaptive
features do not depend on dedicated system entities, but emerge from entity
interactions [53].

Challenges of Decentralized Software Management:

The embedding of self-organizing process requires two foundational design ef-
forts. First, system entities are required to be locally adaptable, i.e., these are
able to reason about their local configuration and adjust themselves. In [56],
internal and external approaches for the construction of self-adaptive software
components are distinguished. Internal approach refers to intertwining ele-
ment functionality and their adaptation logic. An alternative approach is the
encapsulation of the adaptation logic on external computational elements. Ap-
proaches to the construction of adaptation logic are discussed in Section 5.2.5.

The second foundational design effort is to establish information flows
among system elements. These perceptions are inputs to the localized adap-
tation and follow a locality principle. Adaptation elements are enabled to
perceive changes in their immediate context and perceptions diminish with
the logical or spatial distance between elements and/or the age of the con-
tained information. Dedicated interaction mechanisms [59] are available to the
control of the dynamics of the information transport and the attenuation of
aging information.

A prominent technological foundation for the conception of self-organizing
applications [59] is agent technology [43]. This research area provides tools and
concepts to design applications by concerting the interplay of autonomous,
pro-active actors that are situated in an environment. The local reasoning
inside agents decides the local activities and/or changes of agent configura-
tions. In addition, communication models and infrastructures are available to
decouple agents and realize differing communication modes. These range from
message-based communication to environment-mediated interactions [74].

Self-organization in Self-Adaptive Application:

Besides the recognition as an alternative development approach, the integra-
tion of concerted decentralized coordination techniques is relevant for self-
adaptive software architectures [44], as it enables developers to relate entity
adaptation to high level properties, which are established by multitudes of
system elements. Development efforts benefit from top-down architectural
principles, but it is necessary to plan for the collective effects among sys-
tem entities [42]. Collectives of sub-systems may not per se behave effectively,
when they are arbitrarily combined [55]. Unexpected self-organizing effects can
arise [49], which may diminish performance and/or work against the manage-
ment of superordinates. Consequently, the ability to plan for the dynamics

5 Architectures & Infrastructure 151

that arise in managed collectives, e.g., managed system elements and sub-
systems, has been identified as a research challenge [42, 44].

Designing self-organizing dynamics addresses these challenges by provid-
ing a conceptual framework plan for the decentralized concerting of element
activities. If the dynamics of information flows and local adaptation policies
are well matched, the collective interplay of system elements enables the rise of
self-organizing structures. These structures can be used to control the spatial
or temporal correlation of the local adaptations of system entities. Two basic
construction approaches exist. First, system designs can be gradually evolved
to exhibit the intended collective dynamics, e.g., by using evolutionary algo-
rithms or training neural systems [32]. Secondly, decentralized coordination
can be built-in by resembling the dynamics of natural systems. In the follow-
ing, we focus on the latter approach.

Implementing Self-Organization:

Architectural guidelines for the construction of self-organizing applications ac-
knowledge the significance of situating inter-operating agents, e.g., [75]. The
elaboration of foundational design principles for these systems (e.g., [12]) pre-
pares the software-technological utilization of self-organizing processes. A key
challenge is the provision of architectural models that separate the applica-
tion logic within agents from the coordination logic, i.e., when and how to
engage in activities that are conceptually related to the coordination. Recent
research explores the utilization of software engineering techniques to realize
this structuring. Examples are the utilizations of software services [60], OSGi
components [25], and aspect-orientation [58].

An attractive development approach is to supplement coordination to ex-
isting applications. Dedicated frameworks (e.g., [64]) provide means to ex-
ternalize prescriptions of coordinating processes as well as run-time environ-
ments to their enactment. This approach allows to equip applications with
self-organizing features. Consequently, the presence of a self-organizing fea-
ture is not necessarily an initial design objective in a software project, but it
can be supplemented to existing applications when system tests/simulations
reveal the need for decentralized, adaptive features.

In [64], a corresponding reference architecture for the concerting of agent
activities via self-organization is discussed. The operating principle of this ar-
chitecture is illustrated in figure 5.6 (I). On the top-layer, distributed system
elements provide application functionality (Application Layer). The applica-
tion in conceived as a Multiagent System (MAS), thus a subset of system
elements is realized as autonomous, pro-active agents [43]. A subjacent Co-
ordination Layer provides the Mechanisms to enact Coordination Strategies
within the agent population. Information Exchange Mechanisms are encapsu-
lated in Coordination Media, i.e., virtual coordination spaces. Media control
the dynamics of information exchanges among agents and different mecha-
nisms are encapsulated in a generic usage interface. Media are accessed by

152 Authors Suppressed Due to Excessive Length

Coordination Endpoints, i.e., agent modules that control the engagement and
responses to information exchanges.

These modules (c.f., Figure 5.6, II) separate the activities that are con-
ceptually related to coordination, including the local adaptation of entities,
from the agent model. These activities are enacted transparently as a back-
ground process within agents, as the endpoints are enabled to observe and
manipulate the agent execution (1). Endpoint modules exchange Coordina-
tion Information (2) to inform each other about individual behavior adjust-
ments via Coordination Media. The activities of the endpoints are prescribed
by the coordination process (3). Underlying layers, which are omitted in Fig-
ure 5.6 provide the middleware services and execution environment for the
coordinated MAS.

A recent application case study is the decentralized management of appli-
cation servers. The challenge is to balance the deployments of services and the
utilization of servers with fluctuating user demands. The supplementation of
honey-bee foraging-inspired coordination model is demonstrated in [65] and
in [67] the management of J2EE application servers is discussed. In the lat-
ter case, software agents use the SUN Appserver Management EXtensions11

(AMX) to control the deployment of web services.

Fig. 5.6. The enactment of externalized, decentralized coordination strategy defin-
itions, following [66].

11 https://glassfish.dev.java.net/javaee5/amx/index.html

5 Architectures & Infrastructure 153

5.3.3 Nature inspired models for service management

Service management involves the ideal cooperation of a large number of en-
tities including service selection, scheduling, deployment, enactment, coordi-
nation, (re-)configuration and many others in such a way that the operation
fulfills the requirements and it is optimal according to some criteria. Needless
to say, controlling a system of such complexity is far beyond the capabilities
of humans, so automated machinery is necessary for ensuring most of these
functionalities. Furthermore, the complexity of such control is increasing so
that even machines cannot cope with all possible or potential cases based on
predefined conditions and algorithms. This is why service management sys-
tems must exhibit some degree of autonomy, they should be able to adapt to
changes and they should provide some self-* properties. Self-* can be trans-
lated to self-configuration, (and/or) self-optimisation, (and/or) self-healing,
(and/or) self-protection in most cases [45] but there are various further self-
* properties like self-adjusting, self-adapting, self-organizing, self-recovering,
just to mention a few.

Metaphors from nature were used as inspiration some decades ago when
certain problems reached a complexity that could not be tackled with con-
ventional and exact solutions. Most notable problems came from the distrib-
uted computing area, process control and artificial intelligence applications.
A recent survey of nature inspired models and approaches [50] listed neural
networks, ant colonies, cells, swarms, genetic algorithms, and many of their
subtypes and combinations, whereas the targeted application fields range from
medical imaging to wireless networks, grid, routing, data mining, mobile com-
puting, electrical design and many others for solving scheduling, optimization,
diagnosis, adaptation and security problems.

The motivation for seeking models inspired by nature to computational
problems may be twofold:

• In cases where problems like coordinating a large-scale distributed sys-
tem (or even a part of the whole problem) could be formalized in a much
easier and more efficient way. Most of our algorithms nowadays are sequen-
tial, expressed in imperative programmimg languages built on the notion
of the von Neumann computing model so making the description of al-
gorithms very complex and potentially incomplete. Often nature-inspired
formalisms offer a well defined mechanism to specify the goal of the com-
putation and not the detailed steps of the computation.

• In many cases where an exact algorithm is difficult to formalize, nature
metaphors may help by providing some heuristic approaches. In these
cases certain nature phenomena, e.g., physical processes, chemical reac-
tions, cells, tissues, various biological interactions, colonies, etc. are mod-
eled and certain parameters are observed. These nature phenomena follow
the laws of nature, e.g., minimum of energy, equilibrium, lower entropy,
equal distribution, ideal shape, and evolve into some well defined states.

154 Authors Suppressed Due to Excessive Length

By establishing an adequate relationship between the modeled nature phe-
nomenon and the process to be controlled, certain parameters can emulate
the laws of nature and converge towards a known state.

A survey of nature inspired approaches.

One of the earliest nature based algorithm was simulated annealing (SA) [46]
where the crystal structure of a cooling metal is simulated and its observed en-
ergy level is tied to certain parameters to be optimized. Simulated annealing is
still a current method, e.g., in mobile networks [70] and routing problems [57].

Particle swarms are on the boundary of physical and biological systems.
They model flowing particles whose position represents a solution and their
velocity changes partly randomly partly depending on their position with
respect to the best position so far [40]. Recent works focus on using Particle
Swarm Optimization to tackle aspects of scheduling, like metaheuristics [2] or
workflow scheduling [51].

Ant colonies realize probabilistic optimization by mimicking ants as find-
ing optimal routes between their colonies and food. Individuals in the colony
are extremely simple yet they are organized in a structured way that enable to
accomplish complex tasks. Stigmergy (self-coordination) is achieved by mark-
ing their ways with pheromone trails and its strength signals other ants to
optimize their ways [29]. The behavior of ant colonies provides models of dis-
tributed organization, optimization and routing, most notably able to solve
the traveling salesman problem known to be NP-hard [28].

Artificial immune systems (AIS) exhibit self-organizing properties. The
biological immunity is a reaction to foreign intrusions whereas the immunity
system is a distributed adaptive system with decentralized control and us-
ing feature extraction, signaling, learning, associative retrieval. Learning and
recalling self and foreign entities is adaptive so that the reaction speed and
accuracy improves. Intrusion detection, anomaly and misbehavior characteri-
zation of systems are obvious candidates for applying AIS [23]. Since immune
systems are especially good at classifying certain objects, application scenarios
involve various image analysis, fault detection and other recognition tasks [22].

Genetic algorithms (GA) resemble natural evolution. Chromosomes, (bi-
nary strings) representing certain solutions of an optimization or search prob-
lem, reproduce and by crossover, mutation and selection better chromosomes
(solutions) remain alive in each turn. Genetic algorithms are able to evolve
complex structures. The most common application field of genetic algorithms
is multiparameter optimization [33].

Complex biological symbiotic systems emulate the collective actions and
interactions of multiple living entities. Such systems are aimed at a high level
of self-organization by defining various potential behavior like reproduction,
death, migration and attributes like health and energy. For instance, social
insect behavior inspired methods for designing distributed control and opti-
mization algorithms that are being applied successfully to a variety of scientific

5 Architectures & Infrastructure 155

and engineering problems. Such techniques tend to exhibit a high degree of
flexibility and robustness in a dynamic environment [10]. An example for such
symbiotic system is SymbioticSphere [14] [16].

Different aspects of chemical reactions can be taken from precise simu-
lation of interacting atoms to the abstract mathematical notion of chemical
modeling. Their notion is representing the computation as reactions, i.e. data
and procedures are molecules that react and yield new molecules. The cen-
tral idea of chemical system is adaptation to unpredictable situations as they
always take place according to actual conditions.

Outlook: service management and nature metaphors.

It is anticipated that future service infrastructures will be more autonomous
and possess self-* capabilities. Both the utilization of these infrastructures
and their internal behavior involve many issues of optimization, coordination,
adaptation that, according to the discussion and the survey above, nature
inspired approaches may help to tackle. For instance, the rationale for (self-
)adaptive service selection and composition is summarized as: the evolving
behavior of a service (mobility, quality, faults, etc.), uninformed evolution
of external services, inadequacy of pre-deployment information [48], extreme
dynamicity, unreliability, and large scale [4], and a highly complex task, al-
ready beyond the human capability to deal with [27]. Also, it has been argued
and generally accepted, that such self-adaptable, evolvable and context-aware
systems require innovative and fundamentally novel approaches that take in-
spiration from nature. These approaches consider devices, data, and services
uniformly as entities interacting in the same way as individuals of an ecosys-
tem [73] and can effectively organize large numbers of unreliable and dynami-
cally changing components (cells, molecules, individuals, etc.) into robust and
adaptive structures [4].

Applying nature inspired models to service oriented systems is a quite
new research area. Viroli et al. [73] designed a conceptual architecture for
clarifying the concepts expressed and framing the several possible nature-
inspired metaphors that could be adopted. They follow a biochemical ap-
proach where above a common environmental substrate (defining the basic
“laws of nature”), individuals of different kinds interact, compete, and com-
bine with each other, so as to serve their own individual needs as well as
the sustainability and the evolvability of the overall service ecosystem. Ding
et al. [27], Sun et al. [68] take the neuroendocrine-immune (NEI) system as
a metaphor and create a decentralized, evolutionary, scalable, and adaptive
system for Web service composition and management. Here, Web services are
represented by bio-entities that are able to obtain the desirable characteristics
by self-organizing, cooperating, and composing. Banâtre et al. [5], [6] use the
Higher Order Chemical Language (HOCL) to model and express various is-
sues related to services and service invocations. HOCL tries to grab the notion
of chemical reactions as a computing paradigm. The aim is to realize a system

156 Authors Suppressed Due to Excessive Length

that is self-organizing, i.e. able to react autonomously to changes in the envi-
ronment. Csorba et al. tackle the problem of service deployment in a cloud, a
notable example of service infrastructure management task. They investigate
how virtual machine images can be mapped onto physical machines in a self-
organizing way so that the reconfiguration improves the system performance.
They apply a variation of ant colony optimization to achieve this goal [20], and
an earlier version in [21]. The same problem of efficient service deployment
has been addressed by swarm intelligence heuristics (ant colony optimization)
where services are provided by collaborating components [19]. Canfora et al.
apply genetic algorithms to assist QoS aware service composition [13]. The
composition takes into consideration non-functional features, cost and time
constraints and is traced back to an optimization problem where application
of genetic algorithms is widespread. An adaptation framework for mobile ser-
vices based on genetic algorithm is proposed by Vanrompay et al. [72]. Services
must adapt (composition and deployment) to changes in the environment in
a self-organizing and scalable way, the use of genetic algorithms provides an
appropriate heuristic solution. Another scenario for service composition based
on ant colony optimization is presented in [41]. They take into consideration
composite multimedia services where quality issues are obviously strict. En-
suring such quality criteria is especially challenging due to the continuous
flow, synchronization issues, dynamic characteristics and rich semantics.

The survey of existing literature and current trends show in this section
that nature inspired solutions are good candidates for some challenges in
(autonomous) service infrastructure management, like self-configuration, self-
optimization, self-healing, self-protection and many others. Scheduling ap-
proaches, for instance, based on nature metaphors are being investigated in
several scenarios as discussed above, e.g., scheduling workflow applications
in clouds [51] and in grids [1] or artificial immune system based scheduling
in multiprocessor systems [69]. It is anticipated that these solutions will find
their ways to service based applications, too, where scheduling is a crucial
issue in service composition. Data mining techniques, are well supported by
nature based heuristics, e.g., artificial immune systems [34] and they will play
an important role in future service discovery mechanisms. Many approaches
address the issue of (re)configuration either as an adaptation, optimization or
protection means [47] [15]. The vast majority of nature inspired approaches are
focusing of optimizations, e.g., particle swarm optimization [11], ant colony op-
timization [30], multi-objective optimization using simulated annealing, par-
ticle swarms and ant colonies [1] that are likely to be adopted by virtually
any aspect of service related settings in the future.

5.4 Chapter Summary

This chapter has provided a review of service infrastructures for adaptation,
monitoring and management of services. Providing these capabilities is essen-

5 Architectures & Infrastructure 157

tial in meeting several of the S-Cube research challenges described in Chap-
ter 1, such as proactive monitoring and adaptation and allowing end-to-end
quality provision for service-based systems. Future research challenges in this
area have been presented that seek to achieve the optimal self-organization of
services through self-configuration, healing, optimization and protection.

References

1. Ajith Abraham, Hongbo Liu, Crina Grosan, , and Fatos Xhafa. Nature inspired
meta-heuristics for grid scheduling: Single and multi-objective optimization ap-
proaches. In F. Xhafa, A. Abraham (Eds.): Metaheuristics for Scheduling in
Distributed Computing Environments, pages 247 – 272. Springer, 2008.

2. Ajith Abraham, Hongbo Liu, and Mingyan Zhao. Particle swarm scheduling
for work-flow applications in distributed computing environments. In Meta-
heuristics for Scheduling in Industrial and Manufacturing Applications, pages
327–342. 2008.

3. Y. Artsy and R. Finkel. Designing a process migration facility: the charlotte
experience. Computer, 22(9):47–56, Sep 1989.

4. Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch, Gianni A. Di Caro, Fred-
erick Ducatelle, Luca M. Gambardella, Niloy Ganguly, Mark Jelasity, Roberto
Montemanni, Alberto Montresor, and Tore Urnes. Design patterns from biol-
ogy for distributed computing. ACM Transactions on Autonomous and Adaptive
Systems, 1(1):26–66, 2006.

5. Jean-Pierre Banâtre and Thierry Priol. Chemical programming of future service-
oriented architectures. JSW, 4(7):738–746, 2009.

6. Jean-Pierre Banâtre, Thierry Priol, and Yann Radenac. Service orchestration
using the chemical metaphor. In SEUS, pages 79–89, 2008.

7. Luciano Baresi, Sam Guinea, and Liliana Pasquale. Self-healing bpel processes
with dynamo and the jboss rule engine. In ESSPE, pages 11–20, 2007.

8. J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, Iii W. N. Mills, and Y. Diao. Able:
A toolkit for building multiagent autonomic systems. IBM Systems Journal,
41(3):350–371, 2002.

9. Gordon S. Blair, Geoff Coulson, Lynne Blair, Hector Duran-Limon, Paul Grace,
Rui Moreira, and Nikos Parlavantzas. Reflection, self-awareness and self-healing
in openorb. In WOSS, pages 9–14, 2002.

10. E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from
social insect behaviour. (406):39–42, 2000.

11. R. Brits, A.P. Engelbrecht, and F. van den Bergh. Locating multiple optima
using particle swarm optimization. Applied Mathematics and Computation,
189(2):1859 – 1883, 2007.

12. Sven Brueckner and Hans Czap. Organization, self-organization, autonomy and
emergence: Status and challenges. International Transactions on Systems Sci-
ence and Applications, 2(1):1–9, 2006.

13. Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa
Villani. An approach for qos-aware service composition based on genetic al-
gorithms. In GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1069–1075, New York, NY, USA, 2005. ACM.

158 Authors Suppressed Due to Excessive Length

14. Paskorn Champrasert, Chonho Lee, and Junichi Suzuki. Symbioticsphere: To-
wards an autonomic grid network system. In CLUSTER, pages 1–2, 2005.

15. Paskorn Champrasert and Junichi Suzuki. A biologically-inspired autonomic
architecture for self-healing data centers. In COMPSAC (1), pages 103–112,
2006.

16. Paskorn Champrasert and Junichi Suzuki. Symbioticsphere: A biologically-
inspired autonomic architecture for self-managing network systems. In COMP-
SAC (2), pages 350–352, 2006.

17. Shang-Wen Cheng, David Garlan, Bradley R. Schmerl, Jo’ao Pedro Sousa, Brid-
get Spitnagel, and Peter Steenkiste. Using architectural style as a basis for
system self-repair. In WICSA, pages 45–59, 2002.

18. Sophia Corsava and Vladimir Getov. Intelligent architecture for automatic re-
source allocation in computer clusters. In IPDPS, page 201.1, 2003.

19. Máté J. Csorba and Poul E. Heegaard. Swarm intelligence heuristics for com-
ponent deployment. In EUNICE, pages 51–64. Springer, 2010.

20. Mate J. Csorba, Hein Meling, and Poul E. Heegaard. Ant system for service
deployment in private and public clouds. In BADS ’10: Proceeding of the 2nd
workshop on Bio-inspired algorithms for distributed systems, pages 19–28, New
York, NY, USA, 2010. ACM.

21. Máté J. Csorba, Hein Meling, Poul E. Heegaard, and Peter Herrmann. For-
aging for better deployment of replicated service components. In DAIS ’09:
Proceedings of the 9th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems, pages 87–101, Berlin, Heidelberg, 2009.
Springer-Verlag.

22. Dipankar Dasgupta. Advances in artificial immune systems. IEEE Computa-
tional Intelligence Magazine, pages 40–49, November 2006.

23. Dipankar Dasgupta and Fabio A. González. An immunity-based technique to
characterize intrusions in computer networks. IEEE Trans. Evolutionary Com-
putation, 6(3):281–291, 2002.

24. Eric M. Dashofy, Andr’e van der Hoek, and Richard N. Taylor. Towards
architecture-based self-healing systems. In WOSS, pages 21–26, 2002.

25. Davide Devescovi, Elisabetta Di Nitto, Daniel Dubois, and Raffaela Mirandola.
Self-organization algorithms for autonomic systems in the selflet approach. In
Autonomics ’07: Proceedings of the 1st international conference on Autonomic
computing and communication systems, pages 1–10, ICST, Brussels, Belgium,
Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

26. Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. ACM, 17(11):643–644, November 1974.

27. Yongsheng Ding, Hongbin Sun, and Kuangrong Hao. A bio-inspired emergent
system for intelligent web service composition and management. Knowledge-
Based Systems, 20:457–465, 2007.

28. Marco Dorigo. Ant algorithms solve difficult optimization problems. 2159:11–22,
2001.

29. Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Ant algorithms and stig-
mergy. Future Gener. Comput. Syst., 16(9):851–871, 2000.

30. Marco Dorigo, Gianni Di Caro, and Luca Maria Gambardella. Ant algorithms
for discrete optimization. Artificial Life, 5(2):137–172, 1999.

5 Architectures & Infrastructure 159

31. Fred Douglis and John Ousterhout. Transparent process migration: Design
alternatives and the sprite implementation. Software - Practice and Experience,
21:757–785, 1991.

32. Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence The-
ories, Methods, and Technologies. MIT Press, Sept. 2008.

33. Stephanie Forrest. Genetic algorithms. ACM Comput. Surv., 28(1):77–80, 1996.
34. Alex Alves Freitas and Jonathan Timmis. Revisiting the foundations of artifi-

cial immune systems for data mining. IEEE Trans. Evolutionary Computation,
11(4):521–540, 2007.

35. A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era.
IBM Syst. J., 42(1):5–18, 2003.

36. Malik Ghallab, Ecole Nationale, Constructions Aeronautiques, Craig Knoblock
Isi, Scott Penberthy, David E Smith, Ying Sun, and Daniel Weld. Pddl - the
planning domain definition language. Technical report, 1998.

37. Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-
healing systems - survey and synthesis. Decission Support Systems, 42(4):2164–
2185, 2007.

38. Michael Glass, Martin Lukasiewycz, Felix Reimann, Christian Haubelt, and
Jürgen Teich. Symbolic reliability analysis of self-healing networked embedded
systems. In SAFECOMP, pages 139–152, 2008.

39. R.B. Halima, K. Drira, and M. Jmaiel. A QoS-Oriented Reconfigurable Mid-
dleware for Self-Healing Web Services. In ICWS, pages 104–111, 2008.

40. Michael G. Hinchey, Roy Sterritt, and Christopher A. Rouff. Swarms and swarm
intelligence. IEEE Computer, 40(4):111–113, 2007.

41. M. Shamim Hossain, Atif Alamri, and Abdulmotaleb El-Saddik. A biologically
inspired framework for multimedia service management in a ubiquitous environ-
ment. Concurrency and Computation: Practice and Experience, 21(11):1450–
1466, 2009.

42. Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing—
degrees, models, and applications. ACM Comput. Surv., 40(3):1–28, 2008.

43. N. R. Jennings. Building complex, distributed systems: the case for an agent-
based approach. Comms. of the ACM, 44 (4):35–41, 2001.

44. Jeffrey O. Kephart. Research challenges of autonomic computing. In ICSE ’05:
Proceedings of the 27th international conference on Software engineering, pages
15–22, New York, NY, USA, 2005. ACM Press.

45. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

46. Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by simmu-
lated annealing. Science, 220(4598):671–680, 1983.

47. Chonho Lee and Junichi Suzuki. An immunologically-inspired autonomic frame-
work for self-organizing and evolvable network applications. TAAS, 4(4), 2009.

48. Lijun Mei, W.K. Chan, and T.H. Tse. An adaptive service selection approach
to service composition. In Proceedings of the IEEE International Conference on
Web Services (ICWS 2008). IEEE Computer Society Press, 2008.

49. Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems. Tech-
nical Report HPL-2006-2, HP Laboratories Palo Alto, 2005.

50. Stephan Olariu and Albert Y. Zomaya, editors. Handbook of Bioinspired Algo-
rithms and Applications. CRC Press, 2005.

160 Authors Suppressed Due to Excessive Length

51. Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya. A
particle swarm optimization-based heuristic for scheduling workflow applications
in cloud computing environments. In AINA, pages 400–407, 2010.

52. W.H. Pierce. Failure-tolerant Computer Design. Academic Press, 1965.
53. Mikhail Prokopenko. Advances in Applied Self-organizing Systems, chapter De-

sign vs. Self-organization, pages 3–17. Springer London, 2008.
54. H. Psaier and S. Dustdar. A survey on self-healing systems - approaches and

systems. Computing, 87(1), 2010.
55. F. Saffre, J. Halloy, M. Shackleton, and J. L. Deneubourg. Self-organized service

orchestration through collective differentiation. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 36(6):1237–1246, Dec. 2006.

56. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.

57. Shaharuddin Salleh, Bahrom Sanugi, Hishamuddin Jamaluddin, Stephan Olariu,
and Albert Y. Zomaya. Enhanced simulated annealing technique for the single-
row routing problem. The Journal of Supercomputing, 21(3):285–302, 2002.

58. Linda M. Seiter, Daniel W. Palmer, and Marc Kirschenbaum. An aspect-
oriented approach for modeling self-organizing emergent structures. In SELMAS
’06: Proceedings of the 2006 international workshop on Software engineering for
large-scale multi-agent systems, pages 59–66, New York, NY, USA, 2006. ACM
Press.

59. G. D. M. Serugendo, M. P. Gleizes, and A. Karageorgos. Self-organisation and
emergence in mas: An overview. In Informatica, volume 30, pages 45–54, 2006.

60. G. Di Marzo Serugendo and J. Fitzgerald. Designing and controlling trustworthy
self-organising systems. Perada Magazine, 2009.

61. Michael W. Shapiro. Self-healing in modern operating systems. ACM Queue,
2(9):66–75, 2005.

62. G. Stellner. Cocheck: checkpointing and process migration for mpi. In Parallel
Processing Symposium, 1996., Proceedings of IPPS ’96, The 10th International,
pages 526–531, Apr 1996.

63. Roy Sterritt. Autonomic computing. Innovations in Systems and Software
Engineering, 1(1):79–88, April 2005.

64. Jan Sudeikat, Lars Braubach, Alexander Pokahr, Wolfgang Renz, and Winfried
Lamersdorf. Systematically engineering selforganizing systems: The sodekovs
approach. Electronic Communications of the EASST, 17, 2009. ISSN 1863-
2122.

65. Jan Sudeikat and Wolfgang Renz. MASDynamics: Toward systemic modeling
of decentralized agent coordination. In K. David and K. Geihs, editors, Kom-
munikation in Verteilten Systemen, Informatik aktuell, pages 79–90, 2009.

66. Jan Sudeikat and Wolfgang Renz. Programming adaptivity by complementing
agent function with agent coordination: A systemic programming model and
development methodology integration. Communications of SIWN, 7:91–102,
may 2009. ISSN 1757-4439.

67. Jan Sudeikat and Wolfgang Renz. Shoaling glassfishes: Enabling decentralized
web service management. In 3rd International Conference in Sef-Adaptive and
Self-Organizing Systems, pages 291–292, Los Alamitos, CA, USA, 2009. IEEE.
(short paper).

68. Hongbin Sun and Yongsheng Ding. A scalable method of e-service workflow
emergence based on the bio-network. In Fourth International Conference on
Natural Computation.

5 Architectures & Infrastructure 161

69. Anna Swiecicka, Franciszek Seredynski, and Albert Y. Zomaya. Multiprocessor
scheduling and rescheduling with use of cellular automata and artificial immune
system support. IEEE Trans. Parallel Distrib. Syst., 17(3):253–262, 2006.

70. Javid Taheri and Albert Y. Zomaya. A simulated annealing approach for mobile
location management. Computer Communications, 30(4):714–730, 2007.

71. Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal,
Ian Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent systems
approach to autonomic computing. In AAMAS, pages 464–471, 2004.

72. Yves Vanrompay, Peter Rigole, and Yolande Berbers. Genetic algorithm-based
optimization of service composition and deployment. In SIPE ’08: Proceedings
of the 3rd international workshop on Services integration in pervasive environ-
ments, pages 13–18, New York, NY, USA, 2008. ACM.

73. M. Viroli and F. Zambonelli. A biochemical approach to adaptive service ecosys-
tems. Inform. Sci., 2009.

74. Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and Franco
Zambonelli. Infrastructures for the environment of multiagent systems. Au-
tonomous Agents and Multi-Agent Systems, 14(1):49–60, 2007.

75. Danny Weyns and Tom Holvoet. An architectural strategy for self-adapting sys-
tems. In SEAMS ’07: Proceedings of the 2007 International Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems, Washington, DC,
USA, 2007. IEEE Computer Society.

6

Modeling and Negotiating Service Quality

Salima Benbernou1, Ivona Brandic2, Cinzia Cappiello3, Manuel Carro4,
Marco Comuzzi3, Attila Kertesz5, Kyriakos Kritikos3, Michael Parkin6,
Barbara Pernici6, and Pierluigi Plebani3

1 Université Claude Bernard Lyon 1, France
2 Technische Universität Wien, Vienna, Austria
3 Politecnico di Milano, Italy
4 Universidad Politécnica de Madrid, Spain
5 MTA Computer & Automation Research Institute (MTA-SZTAKI), Budapest,

Hungary
6 Tilburg University, The Netherlands

Chapter Overview In this chapter the research problems of specifying and nego-
tiating QoS and its corresponding quality documents are going to be analyzed. For
this reason, this chapter is separated into two main sections, Section 6.1 and 6.2,
each one dedicated to one of the two problems, i.e, QoS specification and negotiation,
respectively. Each main section has a similar structure. It first introduces the prob-
lem and then in the remaining set of subsections reviews related work. Finally, the
chapter ends with Section 6.3 dedicated in identifying gaps and presenting potential
research challenges for each problem.

6.1 QoS Specification

QoS of a service is a set of quality attributes that bear on the services ability
to satisfy stated or implied needs in an end-to-end fashion [55]. This set of
quality attributes does not characterize only the service but any entity used
in the path between the service and its client. Such an entity may exist in any
of the three possible service levels. Thus, different QoS attributes may be used
to define the QoS of a service in the application, service, and infrastructure
levels. In the literature two main research approaches can be identified for
specifying QoS attributes: a) QoS models, and b) Quality Specification For-
malisms (QSFs). Section 6.1.1 analyzes which are the main QoS artifacts for
services which include the QoS models and the QSFs.

Several QoS models and QSFs have been proposed in the research liter-
ature and by standardization groups. Section 6.1.2 analyzes the content of a
QoS model and reviews the most representative QoS models that have been
proposed. Section 6.1.3 revises proposals, both from academia and industry,
in the form of QSFs used for expressing service QoS.

164 Authors Suppressed Due to Excessive Length

Fig. 6.1. QoS artifacts

6.1.1 Main QoS Artifacts

In a Service Oriented Architecture (SOA), service providers need to charac-
terize their services defining both the offered functionalities and the offered
quality. At the same time, users not only express their requirements by listing
the desired functionalities, but also define a minimum level of quality that the
service must ensure. The main issue is due to the subjectiveness of the quality:
the quality of a service from a provider standpoint might be different than the
quality from the user standpoint. At the same time, the same quality level
might be sufficient for a given user and not enough for another one. Thus,
an effective quality of service definition must mediate between the intrinsic
subjectiveness of quality definition and the objectiveness required whenever
we have to compare different standpoints. Relying on the taxonomy proposed
by Sabata et al. [88], Figure 6.1 shows all the artifacts that are needed in
order to define and manage the QoS for services. These artifacts are distin-
guished between Quality Documents, Quality Specification Formalisms, and
QoS management. In the following, we analyze the content and purpose of
these artifacts.

QoS models, Quality-Based Service Descriptions (QSDs) [10], and Ser-
vice Level Agreements (SLAs) are classified under the term quality document.
Each of these documents focuses on a different aspect of QoS expression usu-
ally with a different granularity of information. A QoS model is a taxonomy
or categorization of QoS attributes. QSDs express service quality capabilities
or requirements in the form of a set of quality constraints that involve QoS
attribute and metrics. QSDs are used during service advertisement and dis-
covery, SLAs are produced after service negotiation and express the agreed
service quality level between the service provider and requester defined again
as a set of quality constraints. Moreover, they contain other information that
is used for supporting the service quality assurance activity.

Both QSDs and SLAs use or reference QoS models in order to select those
QoS attributes and metrics that will be used in their quality constraints. In
other words, QoS models provide the concrete semantics of the quality terms
that may be used in QSDs and SLAs [10]. Thus, QoS models constitute the

6 Modeling and Negotiating Service Quality 165

basis for expressing QoS. For this reason, we regard them as one of the most
significant quality artifacts. Indeed, many QoS models have been proposed in
the literature and the most representative ones are reviewed in Section 6.1.2.
However, as QoS models are usually tailored for specific scenarios or appli-
cation domains, their usage is quite limited. Indeed, no standard QoS model
has been yet identified for services. Moreover, the mechanisms used for service
discovery, selection, and negotiation and designed based on a specific service
QoS model are not extensible and have to be re-designed and implemented
each time this QoS model is changed or extended with new QoS aspects.

Possession of knowledge of QoS offered by some service, in combination
with ability to request a certain level of QoS for a particular service, implies
an unavoidable need for QoS expression. However, widely adopted service
description languages (in particular WSDL) do not include expression of QoS
properties along with other properties of a service. Before service providers
and clients can make any decision based on quality of a service, both sides have
to agree on a common Quality Specification Formalism, which can be used not
only to describe basic QoS parameters and their possible combinations but
also the provider or requested or finally agreed service quality level. For this
reason, many research works have defined a QSF for specifying QoS attributes
and other QoS concepts and their inter-relationships, stating the necessity to
have a common way for expressing service QoS models. Apart from their
ability to specify QoS models, all QSFs are also able to specify either QSDs
or SLAs or both types of quality documents. By adopting a specific QSF,
mechanisms for service discovery, selection, and negotiation can become more
generic as they can be designed and implemented independently of a particular
set of quality attributes.

Finally, QoS management includes all the mechanisms needed for support-
ing users during those service management activities which are encompassed
under the term service provisioning, i.e., service discovery (matchmaking and
selection), service negotiation, and service quality assurance. These mecha-
nisms actually manage the quality documents exchanged by the service users,
i.e., service providers and requesters, and thus support the life-cycle of those
documents. However, as the quality documents themselves existentially de-
pend on the service that they describe, their management mechanisms are
tightly coupled with those of the described service [10]. Indeed, as it is ana-
lyzed in [10], QSDs are used and managed during service advertisement and
discovery, while SLAs and their respective templates are used also during
service quality assurance.

In the remaining part of this chapter, we will restrain ourselves to reviewing
the ability of the QoS models and QSFs to define QoS for a service, under of
course a different perspective for each of the two quality artifacts. In addition,
we will review the ability of the QSFs to support a subset of the service
provisioning activities, i.e., those of service discovery and negotiation. The
interested reader is encouraged to read [10] for a more detailed review of the
related work in service quality definition that spans across all the activities of

166 Authors Suppressed Due to Excessive Length

service provisioning and Chapter 7 for a thorough analysis of related work in
service quality assurance.

6.1.2 QoS Taxonomies

In a QoS model, each QoS attribute (a.k.a. quality characteristic) may be-
long to one or more QoS groups (a.k.a. quality dimensions). For example,
response time belongs to the performance QoS group. Apart from the cat-
egorization of QoS attributes, the structure of QoS models may encompass
some other information. Most QoS models describe technical QoS attributes,
i.e., QoS attributes that characterize the service provisioning and are relevant
regardless of the kind of service and its application domain. For instance, the
service availability is considered an important quality aspect even if we are
considering a travel-reservation service, rather than a bank account service.
Less QoS models also describe QoS attributes that are applicable to a par-
ticular application domain, i.e., domain-dependent QoS attributes. As it is
impossible to enumerate all QoS attributes of all application domains, QoS
models are usually extensible to further domain-dependent categorizations of
QoS attributes.

Some QoS models describe if QoS attributes are atomic or composite.
Composite QoS attributes can be computed by evaluating the values of other
attributes. For instance, response time can be computed in terms of execution
time and latency. QoS attributes may also be measurable or unmeasurable. Un-
measurable quality attributes represent static information which is qualitative
in nature. For instance, the flexibility QoS attribute can take the following
values {inflexible; flexible; very flexible} which denote the degree to which a
specific service functions correctly in the presence of invalid, incomplete or
conflicting inputs. Measurable QoS attributes are measured with the use of
one or more QoS metrics. The latter are concepts which encompass all mea-
surement details of a QoS attribute, such as measurement units, schedules,
directives, formulas, and values. Very few QoS models are able to also describe
dependencies between QoS attributes. An example of such dependency which
is qualitative in nature is that availability and reliability have “a positive cor-
relation”, i.e, an increase of the one’s value causes an increase to the other’s
value.

In the literature, several research approaches propose a list of quality at-
tributes classified in different ways. For instance, similarly to the ISO 9126
standard which provides a QoS model for software product quality, Som-
merville [96] identifies three main categories of non-functional requirements
(i.e., process requirement, product requirements and external requirements)
that cover the whole software life-cycle.

The majority of the proposed QoS models for services describes only tech-
nical quality attributes and has been proposed by the Web service community.
In the following paragraphs, the most representative QoS models are reviewed

6 Modeling and Negotiating Service Quality 167

based on their extensiveness, level of detail, and number of referenced service
levels.

Liu et. al. [63]

The research work described in [63] discusses the need for an extensible QoS
model that not only contains general but also domain-specific QoS criteria. It
sustains that QoS must be represented to users according to user preferences
and users should express accurately their preferences with this QoS model
without resorting to complex coding of user-profiles. It also suggests that
QoS computation must be fair and open for providers and requesters. Then
it proposes a QoS model which is not very extensive as it contains a small
number of QoS groups or categories.

Ran [83]

The QoS model in [83] identifies a set of technical quality attributes, grouped
in four main categories (runtime, transaction, configuration management, and
security), that are considered relevant for describing a Web service: i.e, scala-
bility, capacity, performance, reliability, availability, flexibility, exception han-
dling, integrity, regulatory, supported standard, stability, cost, completeness.
This QoS model is very extensive but it defines only QoS attributes that are
relevant at the service level.

Chung et al. [25]

The QoS model proposed in [25] contains 161 attributes, where some of them
are deeply introduced according to the NFR (Non-Functional Requirements)
Framework proposed by the same authors. These attributes refer to the accu-
racy, security, and performance requirement categories. Thus, this QoS model
is not very extensive but it has a great level of detail.

Oasis WSQM [100]

Oasis proposes in its Web Service Quality Model (WSQM) [100] a QoS model
in which three components interplay:

• Quality Factor: the different attributes, dimensions, and measures of the
quality.

• Quality Associates: the organizations or people related to inspection, load-
ing, provision, and use of web services. These associates may be providers,
developers, stakeholders, etc.

• Quality Activity: all the actions which can be taken by the Quality asso-
ciates related to ensuring the stability of the web service, such as (out-
standingly) contracting, but also search, delegation, monitoring, etc.

168 Authors Suppressed Due to Excessive Length

The overall WSQM is defined (but not formally) through the conglomerate
of several quality dimensions, namely the business value quality, the service
level measurement quality, the interoperability quality, the business process-
ing quality, the manageability quality, and the security quality. Each quality
dimension is decomposed into a set of quality sub-factors, while also associ-
ated quality contracts, quality associates, and (in some cases) standards are
identified.

Factor Definition

Availability 1− Down time
Unit time

Successability Number of response messages
Number of request messages

Accessability Number of acknowledgements received
Number of request messages

Max. Throughput max Completed requests
Unit time

Table 6.1. Some Service Level Measurement Quality factors for WSQM.

Business Value Quality This measures the value that a web service usage
brings to the business itself. It is dependent on the type of business, and
is decomposed into the following sub-factors: business suitability, business
effect, and business recognition level. Hints to calculate these sub-factors,
and how to compose them together, are given.

Service Level Measurement Quality This deals with the user perception
of the web service, and is divided into performance (i.e., response time,
maximum throughput) and stability (i.e., availability, successability, and
accessibility). Numerical formulas are given to calculate these indicators
(see Table 6.1).

Interoperability Quality This measures the degree of compatibility of a
web service with established standards, such as SOAP, WSDL, and UDDI.

Business Processing Quality This factor is a measure of the swiftness and
accuracy with which the business process is actually being executed. It
is divided into three sub-factors: reliability of messaging (it identifies
when unreliable communications happen, and when certain properties
of the messaging system have to be guaranteed), transactionality (i.e.,
A.C.I.D. properties), and collaborability (i.e., the ability to include execu-
tion of distributed web services within a business process).

Manageability Quality This factor measures the quality of the web service
from the viewpoint of the maintainer or developer. It includes subfactors
such as introspectability, controlability, and notifiability of the web service
and of the platform, measured by both taking into account the possibil-
ity that these sub-factors can be achieved and whether they are actually

6 Modeling and Negotiating Service Quality 169

achieved. These sub-factors are, clearly, more closely related with other
classic notions of software quality.

Security Quality This last factor deals with the ability to fend off or avoid
altogether unauthorized access to the system and to provide integrity of
the data. Security is subclassified into several sub-factors (data confiden-
tiality, data integrity, authentication, access control, non-repudiation, ac-
cessibility, audit trail, and privacy), while it can be defined at two different
levels: the transport and the message level. For ensuring some sub-factors
at a particular level a large series of components, together with the tech-
nologies enabling them, are identified (e.g., use of TLS or IPSEC to ensure
user authentication at the transport level, or SOAP messages signed with
XML-DISG at the message level). Several security profiles are defined
depending on which quality factors are guaranteed by a web service.

WSQM is a quite wide model, tackling QoS from the point of view of
several parties. In addition, it defines QoS attributes in all possible service
levels. However, as a result of the breadth of the approach, the lack of well
defined indicators for objective comparison of quality levels for some factors
can be identified.

Data Quality

In case the final product of a service is data, information quality literature
has a rich set of approaches for identifying and then classifying the quality
attributes. Data quality can be measured along the following dimensions that
contain various QoS attributes [85, 98]:

• for data views: Relevance, granularity and level of detail ;
• for data values: Accuracy, consistency, currency and completeness;
• for data presentation: Format and ease of interpretation;
• general dimensions: Privacy, security, trust, and ownership

6.1.3 Formalisms for Modeling and Specifying QoS Characteristics

In the presence of multiple services with overlapping or identical functionality,
service requesters need objective QoS criteria to distinguish one service from
another. It is argued in [63] that it is not practical to come up with a standard
QoS model that can be used for all services in all domains. This is because
QoS is a broad concept that can encompass a number of context-dependent
non-functional properties such as privacy, reputation and usability. Moreover,
when evaluating QoS of web services, domain specific criteria must be taken
into consideration. For example, in the domain of phone service provisioning,
the penalty rate for early termination of a contract and compensation for
non-service, offered in the service level agreement are important QoS criteria
in that domain. Therefore, an extensible QoS model must be proposed that

170 Authors Suppressed Due to Excessive Length

includes both the generic and domain specific criteria. In addition, new do-
main specific criteria should be added and used to evaluate the QoS of web
services without changing the underlying computation (i.e., matchmaking and
ranking) model.

Last but not least, the semantics of QoS attributes/concepts must be de-
scribed in order to ensure that both WS provider and consumer talk about
the same QoS attribute/concept. Sometimes, generic QoS attributes with the
same name like “application availability” may have different meanings to the
parties that describe them (network level of the hosting system, application
that implements the service) or they may be computed differently. Other
times, domain-dependent QoS attributes may have the same name but obvi-
ously different meaning. So it is important to describe QoS attributes/con-
cepts not only syntactically, but also semantically in order to have a better
discovery (matchmaking) process with high precision and recall.

The above problems are solved with the introduction of QSFs which can
be used for specifying formal and extensible QoS models. The specified QoS
models would be able to provide the concrete semantics of all quality terms, i.e.
quality attributes and metrics, that are used to specify the quality constraints
in QSDs and SLAs. Moreover, the majority of QSFs define all appropriate
concepts that are needed in order to fully construct QSDs, SLAs, or both
types of quality documents. Thus, QSFs constitute the cornerstone of quality
documents and QoS specifications.

The main approaches that have been proposed in the literature can be
distinguished between: a) pure QoS meta-models, b) QoS Languages, and c)
QoS ontologies. Pure QoS meta-models use a model-based approach to repre-
sent the characteristics of quality attributes or dimensions and to relate them
to services and to their use by interested parties. Several models have been
proposed as a basis for QoS metamodeling, including UML and Object-Role
Model (ORM). The characteristic of these approaches is that they provide
a high level, semi-formal description of quality, focusing on syntactic aspects
and leaving the semantic aspects informally defined.

QoS languages are either text-based or use the XML model in order to
describe QoS models, QSDs, or SLAs. In the second case, the XML Schema
is used to provide rules on how the language constructs are going to be com-
bined and structured. QoS languages are usually designed based on a specific
QoS meta-model which is either abstract or is specified informally in the
XML Schema. The characteristic of the QoS languages is that they provide a
high-level, semi-formal (XML-based) or informal (text-based) description of
quality, focusing more on syntactic aspects.

Ontologies provide a formal, syntactic, and semantic description model of
concepts, properties and relationships between concepts. They give meaning
to concepts like QoS attributes, QoS offers, domains, services so that they
are human-understandable and machine-interpretable while they provide the
means for interoperability. Moreover, they are extensible as new concepts,
properties or relationships can be added to an ontology. In addition, Seman-

6 Modeling and Negotiating Service Quality 171

tic Web techniques can be used for reasoning about concepts or for resolving
or mapping between ontologies. These techniques can lead to syntactic and
semantic matching of ontological concepts and enforcement of class and prop-
erty constraints (e.g. type checking, cardinality constraints, e.t.c.). Therefore,
by providing semantic description of concepts and by supporting reasoning
mechanisms, ontologies cater for better discovery process with high precision
and recall. Last but not least, ontologies can help specialized agents/brokers in
performing very complex reasoning tasks like WS discovery or mediation. For
the above reasons, many ontology-based approaches have been proposed and
implemented for specifying QoS. In fact, there is a trend in using ontologies
for specifying QoS in the recent years. Most of the ontology-based approaches
focus only on the support of QSDs, while only one [74] goes one step further
producing a semantic language for WS agreements.

Based on the above categorization of QSFs, the following subsections re-
view the related work in each category according to the criteria defined in [55].
These criteria include:

• An extensible and formal semantic QoS model
• Standards compliance
• Syntactical separation of QoS-based and functional parts of service speci-

fication
• Support refinement of QoS specifications and their constructs
• Allow both provider and requester QoS specification
• Allow fine-grained QoS specification
• Extensible and formal QoS metrics model
• Allow classes of service specification
• Usage in frameworks or tools

Pure QoS meta-models

Non-functional service properties based on the Object-Role Modeling
(ORM) [80]

O’Sullivan et al. [80] proposes a formal description of non-functional service
properties based on the Object-Role Modeling (ORM). Using this approach,
the authors define foundational concepts as: service provider, temporal model,
locative model, service availability, obligations, price, payments, discounts,
penalties, rights, language, trust, quality, security. Concerning service quality,
Figure 6.2 shows the definition of a QoS dimension and the relationships with
the other concepts introduced in the paper.

QoS Modeling Language [40]

QML (QoS Modeling Language) [40] is another research effort for the specifi-
cation of a QoS meta-model. It was designed according to some basic principles
for the support of QoS specification. It contains the following constructs:

172 Authors Suppressed Due to Excessive Length

Figure 76: Service quality.

Figure 77: Provider quality.

4 Model example

This section provides a detailed outline of the service example that was presented in section 1.2.1. We present
it in the form of a verbalisation of the ORM schemas that apply to the example.

! Service provider verbalisations:

– ‘S1’ (Service) provides capability of (Capability) ‘C1’.

– ‘S1’ is referred to by ‘Swan Lake’.

– ‘S1’ is offered by (Provider) ‘P1’.

– ‘P1’ has provider name ‘Unnamed Ballet Company’.

– ‘P’ (ServicePartyType) is service party type of ‘P1’.

– ‘P1’ operates in industry ‘90150000’.

– ‘P2’ has provider name ‘American Express’. (see payment obligation verbalisations).

– ‘P’ (ServicePartyType) is service party type of ‘P2’.

– ‘P3’ has provider name ‘Diners’. (see payment obligation verbalisations).

– ‘P’ (ServicePartyType) is service party type of ‘P3’.

! Temporal verbalisations are defined here for later use with respect to availability:

– ‘A’ is temporal entity type for (AnchoredPointInTime) ‘T1’.

– ‘T1’ has hours of ‘19’.

– ‘T1’ has minutes of ‘30’.

64

Fig. 6.2. Service quality

• contract type: Definition of a QoS dimension that includes definitions for
the metrics of this QoS dimension;

• contract : Gives particular values/constraints to the fields of a contract
type. This is where the idea of contract inheritance is implemented;

• profile: One service is associated with many (QoS) profiles. Each profile
consists of one list of contracts/requirements.

Each contract may describe constraints for a QoS dimension either for the
whole service or just for one service operation. But for every QoS dimension, at
most one constraint will be valid for one operation of the functional interface
of the service. One (QoS) Service Profile P is matched with one client profile
Q if all contracts of P conform to all the contracts of Q. Contract confor-
mance is translated into constraint conformance. Considering its expressivity,
QML conforms to many of the requirements set in [55] that were previously
referenced in this section. While it was initially designed based on an abstract
meta-model, later on its meta-model was specified in UML. However, its major
drawback is that there is no implemented framework supporting it.

OMG metamodel to define quality of web services [101]

In [101] the OMG group proposes a UML profile (i.e., a definition of entities
and their relations) encompassing generic QoS concepts, which reflect non-
functional characteristics that can be uniformly represented. This model is
intended to represent the concepts contained in a metamodel (an abstract
description) that defines what QoS is and how it can be used. This metamodel
(which is in itself described using UML) is decomposed into:

QoS characteristics This sub-metamodel includes the names (construc-
tors) of the non-functional characteristics/attributes in the QoS model
(e.g., latency, throughput); the dimensions in which each characteristic is

6 Modeling and Negotiating Service Quality 173

measured (e.g.: reliability can be measured in MTBF, time to repair, etc),
as well as the direction of order in the domain, its units, associated statis-
tics, etc.; the possibility of grouping several characteristics (e.g., the per-
formance category); the description of the values that quantifiable/mea-
surable QoS characteristics can take, and others.

QoS constraints This makes it possible to express the limits the values that
some QoS characteristics can take, and also to specify whether these limits
are offered (guaranteed by a provider) or requested (needed by a client).
UML classes make it possible to represent a QoS contract which links
offered and requested QoS levels between two participants, including the
degree to which the constraints are to be satisfied (e.g., Guarantee, Best-
Effort, . . .) and their extent (e.g., end-to-end). Constraints can be com-
posed of other constraints.

QoS Level This defines the different modes in which a service can function.
Depending on, e.g., available resources, a different execution level can be
jumped to if continuing the execution in the current one is not possible.
This part of the meta-model defines the abstract classes to represent levels,
transitions between them, and when those transitions have to take place.

The metamodel is complemented with a profile that extends it in a con-
strained way, with a catalog (i.e. a QoS model) of some categories which group
characteristics/attributes (e.g., performance characteristics, security charac-
teristics), expressed through UML models. This proposal does not provide any
hint on how to calculate QoS for a given service. However, it does provide a
structured representation of the different traits than can be needed to state
/ calculate the QoS of a service, and also on the relationship between these
traits.

QoS Languages

UDDI approaches [84]

The UDDI (http://www.uddi.org/pubs/uddi_v3.htm) WS standard is ded-
icated to the description and discovery of Web Services. However, it is based
on the tModel concept which leads to purely syntactic queries. In addition,
there is no QoS description of offers or demands in the UDDI description
model.

In [84], an extension to UDDI is proposed. A new data structure type
- called qualityInformation - is added to the UDDI model that represents
description of QoS information about a particular WS. This proposed data
structure is under the businessService data structure type, in addition to
bindingTemplate data structure type, which provides binding information for
a particular service. The qualityInformation data structure type also refers
to tModels as references to QoS taxonomies which also need to be defined in
the extended UDDI registry. These taxonomies define the new terminologies

174 Authors Suppressed Due to Excessive Length

or concepts about the proposed QoS information, which do not exist in the
existing UDDI registries.

The main disadvantage of this approach is that there is no actual descrip-
tion about the contents of the qualityInformation data structure type and its
referenced tModels. In addition, it relies on the UDDI technology and UDDI’s
tModel, so it can be used only for syntactic matchmaking of QoS terms and
specifications.

Modeling WS reputation [67]

In [67], an architecture and model of Web Service reputation (QoS) is pre-
sented. It is proposed that for successful description of QoS, three challenges
must be dealt with: a) definition of a QoS conceptual model for WS attribute;
b) semantics to QoS service attributes must be added; c) reputations should
consider time and history of endorsements and ratings.

Based on the above requirements/challenges, a conceptual model of WS
reputation is proposed which is used for the calculation of a WS reputation and
is influenced on the following factors: a) relative weights given to QoS service
attributes by the requesting user; b) QoS attribute aggregation algorithm for
each QoS attribute; c) the set of endorsers of the service and the list of trusted
endorsers of the user; d) the history of the service; e) damping for the rating
such as older ratings matter less than newer ratings.

The suggested conceptual model includes a model of QoS attributes. In
this model, for each attribute the following aspects are defined: a) its type
and allowed values; b) the domains it belongs to, along with a weight of this
attribute in relation to the enclosing domain and user preferences; c) the char-
acteristic function from attribute values to ratings; d) the time characteristics
of the values of this attribute.

The main disadvantages of this work are the following. First of all, the
reputation of a WS is calculated and not it’s QoS. Reputation should be
considered as one QoS attribute. Another disadvantage is that there is no
explicit clarification of how the reputation of a WS is calculated. In addition,
concepts like QoS constraints, QoS offers, and demands are not modeled. Last
but not least, the QoS metrics conceptual model is limited([103]).

WSDL extension for constraint specification [29]

In [29], there is an extension to WSDL in order to include constructs for con-
straint specification of WSs. By using these constructs, a service provider can
specify meaningful attributes for characterizing a WS and its operations. At-
tribute and inter-attribute constraints can be explicitly defined. In addition,
a Constraint Satisfaction Processor was developed for matching the require-
ments given in a service request against the constraints of registered services
in the service discovery process. This processor and some additional compo-
nents are integrated with the IBM’s UDDI registry to form a Constraint-based
Broker. The drawbacks of this approach are the following: a) The QoS-related

6 Modeling and Negotiating Service Quality 175

language constructs/concepts used are not rich enough as they do not cover
every possible aspect. b) The semantics of QoS metrics and of other entities
is missing. c) The constraint specification language is not rich enough as it
only allows unary attribute constraints and simple inter-attribute constraints
of the form “if A then B”. This language does not also include linear and
non-linear attribute functions.

QRL[27]

QRL [27] is a simple but powerful text-based language used mostly to describe
complex constraints on QoS metrics and to analyze how the assessment of QoS
metrics will take place based on their values or range of values. Its main high-
lights are: a) Both QoS offers and demands contain not only constraints about
their capabilities but also requirement constraints on the capabilities of the
other party. So it follows a symmetric approach of QoS-based WS description
for both providers and requesters; b) The QoS demand has a specific part that
realizes the specification of the utility function of a QoS metric. So the selec-
tion part of the WS discovery process becomes more easier to implement; c) It
relies on the powerful OPL (http://www.ilog.com/products/oplstudio/)
language for describing Mathematical or Constraint Programming Problems.

Its main drawbacks are: a) the language is not XML based, and its full
specification is not given; b) it is not quite expressive; c) QoS parameters and
their metrics are described in a single common text-based catalog which is of
course not easily maintained; d) it is transformed to OPL so it relies on this
language and its specific capabilities.

HP language to specify service level agreements [89]

HP Labs have devised a language to specify SLAs in a flexible and extensible
way [89]. Their proposal focuses on the ability to express QoS constraints
taking into account that they may be seen from several points of view:

• When should a service check for SLA conformance (e.g., right after every
invocation, as average of n invocations, . . .)?

• Which inputs are necessary for checking SLA conformance?
• Where is the conformance monitored (e.g., by the provider, by the client)?
• What are the factors monitored and how are they actually measured?

Within all these points of view, this proposal is somewhat better suited
for time-related constraints, than for other interesting kinds of constraints.
Table 6.2 shows an abstract syntax for this SLA language. Clause contains the
exact information regarding the expected performance. measuredItem defines
what is being measured (e.g., messages, operations, ports, etc.); evalWhen
specifies when it has to be measured; evalOn specifies the range of data on
which the evaluation takes place (e.g., delivery time of a message, or average
over some time span); evalFunc is the function which is applied to the data

176 Authors Suppressed Due to Excessive Length

to obtain the final QoS evaluation; finally, evalAction is the operation to
be executed upon measurement (which could take, for example, corrective
actions).

SLA = Dateconstraint Parties SLO*
Dateconstraint = Startdate Enddate Nextevaldate
SLO = Daytimeconstraint Clause*
Dateconstraint = Day* Time*
Clause = MeasuredItem EvalWhen EvalOn EvalFunc EvalAction
MeasuredItem = Item*
Item = MeasuredAt ConstructType ConstructRef

Table 6.2. Abstract Scheme of the SLA Specification proposed by HP Labs.

The concrete syntax used in the specification is specified through an XML
schema.

IBM WSLA [51]

IBM aims at providing a generic SLA framework [51] on top of which different
specific QoS models and SLAs can be built. As such, this framework is rich,
trying to provide basic blocks to specify metrics, constraints, SLA parame-
ters, etc. The framework also makes it possible to delegate part of the SLA
enforcement to third parties and aims at achieving seamless integration with
state-of-the-technique E-Commerce systems. Similarly to [89], specifications
following the corresponding language of the WSLA framework try to state
what are the SLA parameters, to which service they are related, how they are
computed, and which metrics they are using. Unlike other proposals, the aim
of the framework is to make this as flexible and customizable as possible.

The SLA definitions are contained in a document which extends the WSDL
document(s) corresponding to the service(s) being monitored. These SLA de-
finitions can be applied either to separate operations, or refer to the web
service as a whole – even to compositions of web services, and cover negotia-
tion, deployment, SLA measurement and reporting, corrective actions (when
necessary), and termination.

IBM’s WSLA framework [51] has an associated language, WSLA, exten-
sively specified both in syntax and runtime semantics in [64]. WSLA docu-
ments have three main sections: the Parties section, identifying all the parties
taking part in a SLA; the Service Description, which specifies the charac-
teristics of the service and its observable parameters; and the Obligations,
which defines guarantees and constraints on SLA parameters.

The language itself is XML-based and covers all the concepts in the frame-
work, including, for example, the possibility of defining metrics, where the
party containing the source of the data for the metric can be expressed, the

6 Modeling and Negotiating Service Quality 177

function to be applied to give the final result (and its units) can be written,
and the metric can be composed of other metrics.

The WSLA monitoring services are automatically configured to enforce an
SLA upon receipt. The SLA management life-cycle of WSLA consists of five
stages:

• Negotiation/Establishment: In this stage an agreement between the provider
and the consumer of a service is arranged and signed. An SLA document
is generated.

• SLA Deployment: The SLA document of the previous stage is validated
and distributed to the involved components and parties.

• Measurement and Reporting: In this stage the SLA parameters are com-
puted by retrieving resource metrics from the managed resources and the
measured SLA parameters are compared against the guarantees defined in
the SLA.

• Corrective Management Actions: If an SLO has been violated, corrective
actions are carried out. These actions can be the opening of a trouble ticket
or the automatic communication with the management system to solve
potential performance problems. Before all actions regarding the managed
system are executed, the Business Entity of the service provider is con-
sulted to verify if the proposed actions are allowable.

• SLA Termination: The parties of an SLA can negotiate the termination
the same way the establishment is done. Alternatively, an expiration date
can be specified in the SLA.

WS-Policy [8]

IBM’s WS-Policy [8] XML-based language is a W3C recommendation which
aims at describing models by expressing different types of policies (policy as-
sertions) and their composition. The language design is not made concrete
at the level of individual policy assertions, but it focuses more on the combi-
nation of several (maybe nested) policies to generate more complex policies.
Among the combination patterns in the language we can cite:

• Policy intersection,
• Requirement that a least one out of a non-empty collection of policies is

enforced,
• Requirement that all policies in a non-empty collection of policies are

enforced.

This language permits referring to policies using an URI, and has also the
notion of “normal form” of policies (since, due to the combination patters
above, several ways of writing the same combination are possible). In order
to have shorter policy expressions, additional attributes are also defined (for
example, to express that a policy is optional). A series of XML transformation
operators are defined so that compactly expressed policies can be transformed

178 Authors Suppressed Due to Excessive Length

into a normal form, which can then be used to, for example, compare different
policies.

WS-Agreement [112]

Many approaches use the WS-Agreement for SLA representation. The work
carried out by the Grid Resource Allocation Agreement Protocol (GRAAP)
Working Group of the Open Grid Forum [2] has led to the development of
WS-Agreement [112], a specification for a simple generic language and proto-
col to establish agreements between two parties. It defines a language and a
protocol to represent the services of providers, create agreements based on of-
fers and monitor agreement compliance at runtime. The agreement structure
is composed of several distinct parts: Name, Context and Terms of Agreement.
The latter is also divided in service description terms and guarantee terms.
Service descriptions terms mainly describe the functionality to be delivered
under the agreement. The guarantee terms denote the assurance on service
quality for each item mentioned in the service description terms section of the
WS-Agreement. In grid resource management such assurances may be denoted
as a parameter (constant) or bounds (min/max) on the availability of part or
the whole of the resource. In the WS-Agreement, such assurances are referred
to as Service Level Objectives (SLOs); in a domain specific to computation
services provision, they are usually expressed as values. Each SLO may refer
to one or more business values, called Business Value Lists (BVLs). This list
expresses different value aspects of an SLO: importance (relative importance
of meeting an objective), reward (reward to be assessed for meeting an objec-
tive), penalty (the penalty to be assessed for not meeting an objective), and
preference (a list of fine-granularity business values for different alternatives,
where each alternative refers to a Service Description Term and its associated
utility). An SLO can also have a Qualifying Condition, which is an optional
condition that must be met (when specified) for a guarantee to be enforced
(e.g. on external factors such as time of the day or defining conditions to be
met by service consumers).

Web Service Offerings Language (WSOL) [104, 105]

WSOL [104, 105] (Web Service Offerings Language) is a WSDL-compatible
language to express the QoS that a given service can offer as well as QoS
constraints. Functional, non-functional constraints, access rights, as well as
management statements (management responsibility, prices, monetary penal-
ties) and different reusability constructs can be expressed within WSOL in a
homogenous way that is non-intrusive to the WSLD description, using QoS
constraints. A QoS constraint contains the specification of what QoS metrics
are monitored, as well as when and by what entity, and usually describes QoS
guarantees.

QoS constraints can be grouped in classes of services, termed service of-
ferings (also possible within the meta-model of [101]) which bundle together

6 Modeling and Negotiating Service Quality 179

related QoS constraints; different classes of QoS can be separately applied
to a single web service. One advantage in doing that is that changes in the
environment conditions (due to, e.g., network problems or mobility) can be
worked around by renegotiating the QoS with the same service which was be-
ing accessed, without the need to start another search and composition phase
– unless, of course, the alternative service offering is not satisfactory.

The available types of constraints are defined in an XML schema, and these
may usually refer to arithmetic and boolean operations. However, metrics and
measurement units are assumed to be defined in an external ontology. Inter-
estingly enough, WSOL makes it possible to define, besides post-conditions
of the web service operations, constraints that have to be checked some time
(to be defined) after an operation takes place, periodically, etc.

The (dynamic) relationship between service offerings is not represented in
WSOL. It is, rather, represented in a specific XML format as triplets

〈ServOff1, ContrState, ServOff2〉

where ServOff1 and ServOff2 are the initial and replacement service of-
ferings and ContrState are the constraint and statements which were not
satisfied by ServOff1.

Among the shortcomings of this proposal we can cite the integration of con-
straint dimensions and the need to improve the specification of relationships
between service offerings to support both easier and more flexible specifica-
tion and dynamic adaptation. Additionally, there is no specification of the
QoS demand of the consumer and the ontologies for metrics are, to the best
of our knowledge, not yet developed.

QoS Ontologies

Ontologies for QoS [103]

[103] describe that for the specification of constraints for QoS metrics, five
ontologies must be developed from which the most important (the top one)
is the metrics ontology. They describe the structure and involved elements in
four out of the five ontologies. However, they just stayed on the requirements
for the specification of the metrics ontologies. They did not develop any on-
tology. In addition, the requirements specified are incomplete according to
the requirements posed in [55]. For example, the ‘metric’ class consists only
of five attributes while other important attributes/properties are missing. As
another example, they imagine that metrics should be related to each other.
However, they do not describe all the types of relationships that can appear
between QoS metrics.

OWL-S [99]

The OWL-S [99] ontology is a semantic approach for the description of Web
Services. It has many advantages in respect with the other WS description

180 Authors Suppressed Due to Excessive Length

standards but it does not describe QoS offers or demands. It only contains an
attribute used for rating a WS. However, as it is an ontological approach, it
can be extended in order to describe QoS offers or demands.

In [117], the DAML-S (OWL-S) Web Service description language is ex-
tended to include a QoS specification ontology called DAML-QoS. This is
achieved by the following: a) A ServiceProfile element is associated to many
QoS profiles (service offerings); b) External ontologies in DAML for metrics
and units are referenced or developed; c) Existence of a BasicQoSProfile con-
taining all the basic metrics and ability to inherit/extend this type of profile
to provide constraints and/or include custom-made metrics. DAML-QoS is
supported by an implemented QoS-based WS discovery framework.

The deficiencies of this research effort are the following: a) the proposed
ontology is quite limited, not capturing the various aspects of QoS descrip-
tion, and it is not accompanied with any QoS model (e.g. describing domain-
independent QoS attributes and metrics); b) The QoS metrics values are re-
stricted to have the set of natural numbers as their range for better reasoning
support. However, this leads to imprecision and errors up to one half of mea-
surement unit. Moreover, this flaw is actually the result of a misuse of the
ontology language’s (i.e. of OWL’s) cardinality constraints.

Relations among QoS attributes [67, 68]

Work analyzed in [68] is actually a continuation of the work in [67]. The
requirements of the work in [67] have been translated to a quite expressive
ontology language. Its main highlight is the formalization of relationships
between QoS attributes. When a QoS attribute depends on another one, then
either its values influence the values of the other with a specific impact or
the values of these attributes change in a parallel or in inverse parallel way.
A framework using the ontology to support dynamic web services selection is
also outlined.

The main drawback of the proposed ontology is the lack of a metric de-
scription model. In addition, this ontology lacks both an openly available
implementation and links to a semantic description WS language like OWL-
S.

Mapping requirements from higher layers onto the underlying network [102]

The research effort described in [102] analyzes what must be enclosed into
the QoS information for a WS request or advertisement with the help of a
QoS ontology. Important elements of this ontology are QoSInfo and QoSDe-
finition. QoSInfo describes standard or user-defined serverQoSMetrics and
transportQoSPriorities and the values they will take. It also references proto-
cols used by a WS for security and transaction support. The QoSDefinition
element describes QoS information (QoSInfo) either for the whole service
or for a particular operation of the service. Additionally, it includes infor-
mation about protocols supporting service management and QoS monitoring

6 Modeling and Negotiating Service Quality 181

and about the trusted third-parties that will participate in these protocols. It
ends with the price for the usage of this service supporting the QoS offer. One
WS advertisement is related to many service offers (QoSDefinition) while one
service request enquires one particular service offer. One important feature of
this research effort is that it supports the mapping of QoS requirements from
higher layers onto the underlying network in terms of the Internet model. This
mapping is achieved by the help of proxies (residing at the provider and con-
sumer) and by the existence of a QoS-aware network. QoS network parameters
are given as guidelines to QoS-aware routers while the client proxy calculates
the network performance by taking into account the server performance in-
formation provided by the server proxy. This research work comes with three
main deficiencies. First of all, there is not a complete and accurate description
of QoS constraints as QoS constraints are just equality constraints. Secondly,
metrics ontologies are not developed, but are just referenced. Finally, this
work is not supported by WS discovery framework.

QoSOnt and upper level ontologies [31, 106, 53]

QoSOnt [31] is another carefully designed ontology for semantic QoS-based
WS description. Its main features are: a) ability to measure QoS attributes by
many metrics; b) application of a QoS metric to either whole WS or a single
operation; c) approach to unit conversion using SWRL rules; and d) direct
connection to OWL-S. This is a very good approach but not a complete one.
In addition, it is not accompanied by a formal WS discovery framework.

The work in [106] proposes an upper-level ontology that uses the main
features of the ontologies produced by the work of [68, 31]. In addition, a
mid-level ontology has been designed for domain-independent QoS properties
(i.e. a QoS model). The proposed ontology is rich and is also connected to
OWL-S. However, it lacks information on how QoS constraints are specified
and it is not publicly available. In addition, it is not supported by a WS
discovery framework.

OWL-Q [53] is an upper ontology carefully designed based on specific
requirements [55]. It is composed on many facets, each capturing a particular
aspect of QoS-based WS description. It is also directly connected to OWL-
S and is supported by a QoS-based WS discovery framework. This ontology
is publicly available in: http://www.csd.uoc.gr/~kritikos/OWL-Q.zip. A
mid-level ontology has also been designed for domain-dependent QoS metrics.
In addition, this ontology is now enriched [54] with SWRL rules in order
to support unit transformation, statistical metric value derivation, semantic
property inference and matching of QoS metrics.

Enriched WS-Agreement [74]

The work in [74] semantically enriches the WS-Agreement language in or-
der to develop a semantic framework for matching agreement specifications

182 Authors Suppressed Due to Excessive Length

of providers and requester automatically. The WS-Agreement language is ex-
tended in important areas such as the SLO and QualifyingCondition with
the addition of the expression, predicate, parameter, and value tags as defined
in the WSLA specification [51]. In addition, four ontologies are used to pro-
vide a commonality of terms between agreement parties and to provide rich
domain knowledge to the search engine so that it may achieve the best pos-
sible match results: 1) an OWL ontology for representing the WS-Agreement
schema; 2) a OWL-based QoS ontology encompassing QoS concepts used in
guarantees; 3) a third OWL ontology representing domain knowledge; 4) the
OWL Time ontology [47] for representing temporal constructs such as end-
Time, interval, dayOfWeek, and seconds. Moreover, this approach uses SWRL
rules in order to: a) transform one SLO to another one that is semantically
similar but syntactically heterogeneous with respect to the first one; b) to
compare SLOs according to the semantics of a domain specific predicate; c)
to derive new domain knowledge by e.g. producing a new SLO from one or
more other SLOs; d) to enable user assertions over subjective personal pref-
erences. Last but not least, it must be stated that this extended language is
connected to WSDL-S (www.w3.org/Submission/WSDL-S/) and is supported
by a complete semantic QoS-based WS discovery framework. This work has
the following deficiencies: a) QoS metrics are not modeled at all; b) SLOs of
guarantees are expressed in terms on unary constraints (i.e., containing just
one QoS concept); c) Although timing conditions are expressed in guarantees,
this does not happen with the whole alternative.

WSMO-QoS [108]

WSMO-QoS [108] is an upper level ontology complementary to the WSMO
(www.wsmo.org) semantic language for functional WS description. It is also
directly connected to WSMO. Besides this upper-level ontology, a vocabulary
(i.e. a QoS model) of general domain-independent QoS attributes has also
been developed. WSMO-QoS is a very rich ontology capturing many aspects
of QoS metric description. It includes and allows many metric value types
(linguistic, numeric, boolean), dynamic calculation of metrics values, the at-
tachment of units to metrics, unit transformation functions, the expression of
the tendency of the metric’s value from the user’s perspective and grouping of
QoS attributes. This ontology is supported by a QoS-aware selection frame-
work of WSs. The main deficiencies of this ontology are the following: a) there
is a one-to-one mapping of QoS attributes and metrics, which is incorrect; b)
no measurement modeling (functions and measurement directives of metrics
are not expressed); c) only equality constraints on metrics are allowed, which
is quite restrictive; d) not publicly available yet.

onQoS-QL [43]

The onQoS-QL [43] ontology is very rich encompassing all appropriate as-
pects of QoS-based WS description in almost the same way as OWL-Q. It is

6 Modeling and Negotiating Service Quality 183

also supported by a semantic QoS-based WS discovery framework. Its main
highlights are: a) the use of scales for restricting the metric value types; b)
the use of unary and binary predicates for constructing metric constraints; c)
metric constraints have both retrieval and ranking semantics; d) many impor-
tant types of measurement processes are supported. The main drawbacks of
this work are: a) no connection to a functional WS description language; b)
measurement process is external and not specifically defined with the use of
metric functions and measurement directives; c) only unary and binary metric
comparison predicates are used for expressing QoS constraints.

6.1.4 Trust and Security QoS Models and Formalisms

The growing number of accessible services in open distributed systems, calls
for security enforcement. Examples of such systems include the World Wide
Web, grid computing systems, and distributed intelligent systems, and ad-hoc
networks used by joint military task forces [45] [86]. The security needs can
potentially include guarantees of confidentiality, integrity, authentication, au-
thorization, availability, auditing and accountability [79, 7]. A significant issue
for service-based applications is that if they are publicly accessible, such as
over the Internet, there is no way of knowing in advance all the users that
will be accessing the service. To ensure that users of a Web service gain ap-
propriate access when no relationship exists between the user and the service
provider is a challenging task which requires a flexible approach to access
control which is called trust mechanism.

Some surveys have been provided regarding trust; [45] provides an overview
of trust in Internet, [7] discusses trust in computer science and semantic web,
[86] examines trust management. [7] organizes trust research in four areas:
(1) policy-based trust, using policies to establish trust, focused on managing
and exchanging credentials and enforcing access polices; (2) using reputation
to establish trust where past interactions or performance for an entity are
combined to assess its future behaviour; (3) general models of trust, where
trust models are useful for analyzing human and agentized trust decision; (4)
trust in information resources which is related whether the web resources and
web sites are reliable.

Our study is focusing on the first area. Traditional access control models
rely on knowing requester identities in advance [36]. Service-based applica-
tions typically have large and dynamic requester populations. This means
that requesters’ identities are seldom known in advance. Most existing Web
applications deal with strangers by requiring them to first register an identity
at the Web site. Such approaches do not fit into the Web service philosophy
of dynamically choosing services at run-time. So traditional assumptions for
establishing and enforcing access control regulations no longer hold. Trust
negotiation is an access control model that addresses this issue by avoiding
the use of requester identities in access control policies [114, 14]. Instead, ac-
cess is granted based on trust established in a negotiation between the service

184 Authors Suppressed Due to Excessive Length

requester and the provider. In this negotiation - called a trust negotiation -
the requester and the provider exchange credentials. Credentials are signed
assertions describing attributes of the owner. Examples of credentials include
membership documents, credit cards, and passports. The attributes of these
credentials are then used to determine access. For instance, a requester may
be given access to resources of a company by disclosing a credential proving
she is an employee of that company. This example shows that the requester
identity is not always needed to determine access. Credentials are typically
implemented as certificates.

To summarize, the goal of a trust negotiation is to find a sequence of
credentials (C1, ..., Ck,R), where R is the resource to which access was origi-
nally requested, such that when credential Ci is disclosed, its policy has been
satisfied by credentials disclosed earlier in the sequence or to determine that
no such credential disclosure sequence exists (more details about trust nego-
tiation will be discussed in section 6.2.3). In recent years, trust negotiation
has been proposed as a novel authorization solution and as an automated
technique for the establishment of trust and the enforcement of need-to-know
between entities in open-system environments, in which resources are shared
across organizational boundaries.

6.2 QoS Negotiation

Relevant research concerning automated negotiation of services’ QoS is re-
viewed in this section. We tailor the discussion of QoS negotiation in SBAs
around (i) application level quality negotiation, (ii) QoS negotiation in grid
services, and (iii) mechanisms for trust and security negotiation.

In current practice the QoS of a Web service is usually statically defined.
Policies or, more generally, quality documents are attached to Web services
at publication time. Such documents are then retrieved and analyzed once a
service is requested. In Web service selection, quality documents are matched
against the quality requirements expressed by applications or users requesting
a service, whereas, in service composition, information about quality of a Web
service can be used to make a decision on whether to consider or not a Web
service for executing a process task. Such an evaluation is made on the ability
of a service offer to satisfy local and global quality constraints that users can
express on tasks or the whole process, respectively.

In theory, the above mentioned approach represents a take-it-or-leave-it
or one-shot negotiation of Web service QoS. In other words, the service re-
questor is forced to accept the QoS offer made by the provider and there is no
opportunity for setting the QoS profile of a service at runtime, on the basis
of providers and requestors preferences, costs model, or willingness to pay.
However, Web services are usually provided in a loosely coupled and highly
variable environment. On one hand, Web services can be offered with multiple
QoS profiles and, on the other hand, the offered QoS may vary according to

6 Modeling and Negotiating Service Quality 185

variable conditions, such as network load or the number of requests served in
a given time instant. The interests of both service providers and requestors
on the QoS of a Web service may also be different. For instance, the costs
sustained by a Web service provider to increase the availability of its services
may not be balanced by a comparable increase of the service requestors’ ben-
efits in obtaining a service with higher availability. The on-the-fly setting of
QoS profiles on the basis of the service oriented architecture users’ needs can
be instantiated through the adoption of automated negotiation frameworks in
the context of SBAs.

This section reviews relevant literature in the field of QoS negotiation in
SBAs and is structured as follows. Section 6.2.1 revises research on applica-
tion level Web service QoS negotiation, classifying contributions on the basis
of the QoS model adopted for negotiation, the supported negotiation proto-
cols, and the chosen architectural style adopted for the implementation of
the negotiation infrastructure. Adopting similar classification criteria, Section
6.2.2 discusses the issue of service QoS negotiation in Grid computing, where
negotiation is mostly employed as an admission control mechanism for re-
source reservation. In a loosely coupled environment, service requestors and
providers are not likely to know each other in advanced, since business rela-
tionships can be flexibly implemented on-the-fly. This is why we consider the
establishment of trust as a paramount issue in SBAs and we review relevant
work in the field of trust and security negotiation in Section 6.2.3.

6.2.1 QoS Negotiation in Web Services and Semantic Web Services

The objective of this section is to revise relevant literature on QoS negotiation
in the Web service context. In particular, the literature on Web service QoS
negotiation is constituted by several isolated contributions. The heterogene-
ity of contributions in this field can be ascribed to different motives. First,
negotiation is not a native research issue of Web services, since it has been
studied since 50 years by microeconomics and, more recently, by the liter-
ature on multi-agent systems. Moreover, QoS negotiation represents a tool
for improving the management aspects of Web service-Based architectures. In
particular, typical issues in loosely coupled environments management, such
as service discovery and selection, composition, and monitoring, raise differ-
ent issues concerning the negotiation of QoS. Finally, QoS negotiation can
be implemented according to different paradigms, such as broker-based archi-
tectures and multi-agent systems. Each implementation paradigm introduces
specific issues that must be dealt with while tackling the Web service QoS
negotiation problem.

In order to provide a common background for classifying research on Web
service QoS negotiation, we start from understanding the nature of the ne-
gotiation problem in the Web service context. As underlined in the previous
sections, QoS of a Web service is usually defined by multiple attributes, which
span from performance related to domain specific QoS dimensions. Hence, the

186 Authors Suppressed Due to Excessive Length

negotiation of Web service QoS can be usually intended as a multi-attribute
negotiation problem [50]. For what concerns negotiation participants, negoti-
ation can be either one-to-one or multiparty. Specifically, the participants in-
volved in Web service QoS negotiation are the service requestor, who requires
a service with a certain level of quality, and one or more service providers,
which provide services with variable quality.

More specifically, our literature classification is grounded on the three basic
elements that define an automated negotiation problem [50, 34], that is:

• Negotiation Object. It defines the features of the object that is under
negotiation. While, for instance, in a planning problem agents may negoti-
ate which actions need to be taken in the future, in the Web service context
the object of negotiation is always QoS. Therefore, as already underlined,
negotiation is always multi-attribute because of the multi-attribute nature
of Web service QoS;

• Negotiation Protocol. It is constituted by the set of rules that define
what is allowed in a negotiation and how negotiation participants can
exchange messages;

• Negotiation Strategy. It defines the decision models of negotiation par-
ticipants. A decision model defines how negotiators generate new offers,
when they accept offers, or when to withdraw from negotiation.

Starting from the above mentioned framework, we propose three dimen-
sions for classifying the research contributions in the field of Web service QoS
negotiation research. First, we classify research contributions according to the
features of the quality description on which negotiation is performed. Secondly,
we focus on the negotiation protocols that can be instantiated by the proposed
solutions. Finally, we classify contributions according to the architectural par-
adigm chosen for their implementation. A summary of the classification made
in this section is reported in Table 6.5.

The first classification is based on the nature of the negotiation object,
i.e., how to define the QoS dimensions on which negotiation is performed. In
particular, we make a distinction between approaches to negotiation that rely
on a fixed set of QoS dimensions and other approaches that adopt extensible
ways to define QoS. When QoS dimensions are fixed, their number, types,
and metrics cannot be modified according to the domain in which QoS nego-
tiation occurs. QoS dimensions, in this case, are usually performance-related,
since they are usually independent from the application domain. Conversely,
extensible QoS usually rely on the definition of a model, either declarative or
ontological, which can be used to define and use ad-hoc QoS dimensions.

The research in [22, 113], for instance, presents an architecture for execut-
ing QoS negotiations between service requestors and providers in an Internet
applications outsourcing scenario. The negotiation considers a fixed set of QoS
dimensions, i.e., the throughput, the availability, and the latency of service
provisioning.

6 Modeling and Negotiating Service Quality 187

Table 6.3. Fixed vs. extensible negotiable QoS definition: advantages and draw-
backs.

Fixed set of QoS dimensions Extensible QoS model

Advantages
Real world use cases specification;
Rigorous definition of QoS metrics
and evaluation methods.

Easiness in including domain specific
QoS;
Facilitated QoS lifecycle manage-
ment;
In tune with the open world perspec-
tive of the SOA.

Drawbacks
Domain specific QoS constrained to
the chosen use case;
No QoS lifecycle management.

Lack of real world use cases.

Declarative extensible QoS models are considered in [26, 30, 44]. QoS di-
mensions can be defined in terms of name, metric, unit of measure, and eval-
uation method. An ontological model for QoS description is proposed in [57],
where a QoS ontology is required to validate the content of policies that define
Web service SLAs.

Most of the approaches presented in the literature rely on extensible QoS
models, that can be either declarative or ontological. In particular, declarative
QoS models [44, 71] include QoS definitions into policies that are usually
attached to published services. Ontological models [57] organize the elements
that define a negotiable QoS dimension, such as name, metric, and monitoring
methods, in an ontology, usually expressed in OWL-S.

It should be noticed that the extensible QoS models reviewed so far do not
allow the dynamic definition of QoS dimensions while negotiation is executing.
In other words, relevant QoS dimensions for a given domain should be defined
prior to the negotiation architecture deployment, since it is not possible for
negotiating participants to on-the-fly define new QoS dimensions.

Table 6.3 summarizes the principal benefits and drawbacks of the two
alternatives concerning QoS models. The main benefit of considering fixed QoS
sets is the opportunity to adopt real world use cases with a rigorous definition
of relevant QoS characteristics. Conversely, extensible QoS models trade off
the adoption of real world use cases in favor of flexible and generalizable QoS
descriptions that are easier to be managed, i.e., updated, modified, or revised,
over time.

For what concerns the negotiation protocol, we discern approaches that
support 1:1 negotiation, between the service requestor and a single service
provider, or 1:N negotiation, between the service requestor and N service
providers.

On the one hand, 1:1 negotiation applies to the case of automated SLA
establishment [26, 44]. In this case, the service requestor has already chosen a
service but, since such service can be provided with variable quality, the QoS
of the Web service can be automatically negotiated at runtime.

188 Authors Suppressed Due to Excessive Length

On the other hand, 1:N negotiation applies to the issues of Web service
discovery and selection [41], when the service requestor must choose among a
set of functionally equivalent Web services that can be distinguished only by
their variable QoS profile. A utility-based approach to QoS-based Web service
selection is proposed in [70]. In particular, although no actual negotiation
algorithms are provided, the authors propose a service selection method which
maximizes the utility of the Web service consumer while guaranteeing costs
constraints.

In case of service compositions, current solutions for Web service QoS au-
tomated negotiation rely on the coordination of a set of bilateral negotiations
between the service requestor and the services involved in the composition
[30, 22]. In particular, [22] proposes two different methods for dealing with
such a coordination. The negotiate-all-then-enact approach involves a round
of bilateral negotiation before enacting the service compositions. The objec-
tive is for the service requestor to obtain agreements on QoS that satisfy
his or her global QoS requirements. The second approach is the step-by-step-
negotiate-and-enact, in which the QoS of a service is negotiated right before its
individual enactment. This second case increases the complexity of obtaining
QoS agreements which satisfy the service requestor global QoS requirements.

Semantic-based negotiation mechanisms and protocols have been often in-
spired by the agent community literature. In [56] a survey on approaches for
multi-attribute negotiation in Artificial Intelligence is introduced. In this field,
the goal is to design appropriate models with automated and tractable nego-
tiation mechanisms such that autonomous agents can deal with. For instance,
Faratin et al. [35] presents a formal account of a negotiating agent’s reasoning
component to generate the initial offer, to evaluate the incoming proposal, and
to generate the counter proposal. About the protocols, the FIPA Communica-
tive Act Library Specification [38] is considered as a foundational approach
for defining specialized negotiation protocols. An example architecture based
on this specification is discussed by Chhetri et al. [23].

Focusing on the semantic Web community, in [24] Chiu et al. discuss how
ontology can be helpful for supporting the negotiation. In particular, the au-
thors highlight how shared and agreed ontologies provide common definitions
of the terms to be used in the subsequent negotiation process. In addition, they
propose a methodology to enhance the completeness of issues in requirements
elicitation. Lamparter et al. [58] introduce a model for specifying policies for
automatic negotiation of Web services. In this case, the starting point is the
upper ontology DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) [66]. On this basis, this work proposed a policy ontology that
also includes the user preferences specifications and an additional ontology for
expressing the contracts.

About the use of ontology for specifying the agreement among parties,
Oldham et al. [75] present reasoning methods for the components of an agree-
ment which must be compatible for quality matches. This approach is based
on WS-Agreement and takes advantage of Semantic Web methods to achieve

6 Modeling and Negotiating Service Quality 189

rich and accurate matches. With the same goal Uszok et al. [107] have de-
veloped KAoS policy ontology that allows for the specification, management,
conflict resolution, and enforcement of policies within the specific contexts
established by complex organizational structures.

We argue that providing a review of negotiation strategies proposed in the
literature is out of scope in this paper, since the analysis of negotiation strate-
gies belongs to different fields of inquiry, such as agent-based computing and
microeconomics. Moreover, we want to stress that the reviewed approaches
to Web service QoS negotiation are not innovative from the point of view
of negotiation strategies, since they rely on well known families of strategies,
such as concession-based [26], learning-based [22], or search-based strategies
[30].

We end our discussion with a classification based on the architectural style
adopted for the implementation of the architecture that supports the design
and the execution of negotiations. In particular, we have identified two main
approaches for implementing QoS negotiations, i.e., broker-based and multi-
agent architectures.

Broker-based architectures imply the existence of a third party, i.e., a
broker, which executes QoS negotiation on behalf of service requestors and
providers [26, 70]. The negotiation strategy of the participants is made known
to the broker by means of policies. Once having read the policies, the broker
is able to simulate the whole negotiation process. The need for including a
broker to execute the negotiation has been initially introduced in [65]. The
architecture of a broker for supporting Web service QoS negotiation is de-
scribed in [26]. On the requestor side, negotiation can be either automated,
by means of policies, or manually executed by human actors. [44] and [71]
propose frameworks for QoS negotiation based on policy matching. Although
the description of an architecture is out of scope in the policy framework def-
inition, the authors hypothesize the existence of a broker which execute QoS
negotiation and policy matching.

Multi-agent architectures exploit Multi-Agent Systems (MAS) to execute
Web service QoS negotiations. Specifically, negotiation is executed by agents
that negotiate on behalf of external actors, that is, web service providers and
requestors. The underlying multi-agent system is usually built according to the
FIPA specification [37]. Negotiation agreements are then translated into XML
documents which can be easily managed by the Web service architecture.

[22, 113] propose a multi-agent based negotiation system for coordinated
negotiations in service compositions. A coordinator manages the message ex-
change among service providers and requestors’ negotiating agents built from
service offers and requirements, respectively. A multi-agent negotiation system
that supports multiple protocols is proposed in [30]. A rule-based system im-
plements different negotiation protocols, such as auctions and 1:1 negotiations,
while message exchange is managed with an event-based approach. Negotiat-
ing agents implement strategies for generating or accepting offer and with-
drawing from negotiation on the behalf of their owners, i.e., service requestors

190 Authors Suppressed Due to Excessive Length

Table 6.4. Broker-based vs. multi-agent QoS negotiation architectures: advantages
and drawbacks.

Broker-based Multi-agent

Advantages

Reduced negotiation communication
overhead;
No need to create new agents/ser-
vices for negotiating.

Customizable negotiation strategies
embedded in agents;
Increased flexibility in implementing
complex negotiation protocols;
Strategies not disclosed to third par-
ties.

Drawbacks

Trust and security (information dis-
closure to third party);
Need for complex policy model defi-
nitions;
Lack of scalability (the broker may
become a bottleneck).

Communication overhead (message
exchange among agents);
Need to integrate agent-based plat-
forms into Web service architectures;
Often a coordinator of negotiating
agents is required;
Effort required for building and man-
aging negotiating agents.

and providers. Finally, the Collaborative Agreement for Automatic Trading
(CAAT) is a multi-agent negotiation system built on top of the FIPA speci-
fication for managing negotiations in Web service choreography [73]. CAAT
is described in terms of the agents’ interaction protocol, which is based on
an ontology of concepts, and supports bilateral negotiation and moderated
negotiations, i.e., bilateral negotiation moderated by an external third party.

Table 6.4 summarizes the principal benefits and drawbacks of the two alter-
natives for Web service QoS negotiation implementation. The main benefit of
broker-based solutions is to reduce the negotiation communication overhead,
since negotiation strategies and offers can be automatically generated by the
broker. At the same time, the need to declare strategies, e.g., behavioral and
pricing models, to a third party introduces issues of privacy and security that
will be further analyzed in the sections to come. Agent-based solutions have
higher communication overhead and need to rely on an underlying multi-agent
platform in order to be implemented. The main advantages of agent-based so-
lutions are customization and flexibility, since service requestors and providers
can create ad hoc agents that reflect their personal negotiation strategies.

6.2.2 Negotiation Protocols in Grid Computing

The shifting emphasis of the Grid towards a service-oriented paradigm, as well
as trends in application service delivery to move away from tightly coupled
systems towards structures of loosely coupled, dynamically bound systems
has led to the adoption of Service Level Agreements as a standard concept
by which work on the Grid can allocate resources and enable coordinated
resource management. In the context of Grid and Web services, the current
understanding of the community is that such an SLA is essentially an elec-
tronic contract, which is expected to be negotiated almost fully automatically
by different processes and, as such, much be machine readable and under-

6 Modeling and Negotiating Service Quality 191

Table 6.5. Comparison of approaches to Web service QoS negotiation.

QoS Model Neg. protocols Architecture
Fixed
QoS

Ext.
QoS 1:1 1:N others Broker-

based
Agent-
Based

Chhetri
et al.
[22]

√

√

(WS
composi-
tion)

√

Yan et
al. [113]

√

√

(WS
composi-
tion)

√

Comuzzi
and
Pernici
[26]

√ √ √

Di
Nitto
et al.
[30]

√ √ √ √

Gimpel
et al.
[30]

√ Not specified

√

policy
matching

Lamparter
et al.
[57]

√

ontology Not specified

√

policy
matching

Mukhi
and
Plebani
[71]

√ Not specified

√

policy
matching

Menasce
and
Dubi
[70]

√

√

WS selection
and composition

√

standable. As a result, there has been a significant amount of research, in
recent years, on various topics related to SLAs.

Service Negotiation and Acquisition Protocol (SNAP) [28]

The first promising negotiation protocol in the field of Grid Computing was
the Service Negotiation and Acquisition Protocol (SNAP) [28]. The negotia-
tion objects are tasks (QoS user requests) and resources (its characteristics).
This work proposes three different types of SLAs:

192 Authors Suppressed Due to Excessive Length

1. Task service level agreements (TSLAs) in which one negotiates for the
performance of an activity or task. It characterizes a task in terms of its
service steps and resource requirements.

2. Resource service level agreements (RSLAs) in which one negotiates for
the right to consume a resource. An RSLA can be negotiated without
specifying for which activity the resource will be used. These two SLAs
can be regarded as negotiation protocols.

3. Binding service level agreements (BSLAs) in which one negotiates for the
application of a resource to a task. The BSLA associates a task, defined
either by its TSLA or some other unique identifier, with the RSLA.

By combining these agreements in different ways, a high variety of resource
management approaches can be represented including: batch submission, re-
source brokering, co-allocation and co-scheduling. These variations define the
negotiation strategies. The authors have also shown an SLA usage scenario for
resource brokering, which they called Community Scheduler Scenario. They
defined a community scheduler as an entity that acts as a mediator between
the user community and the grid resources: activities are submitted to the
scheduler rather than to the end resource, and the activities are scheduled
onto resources in such a way as to optimize the communitys use of its re-
source set. A Grid environment may contain many resources, all presenting a
RSLA interface as well as a TSLA interface. Optimizing the use of resources
across the community served by the scheduler is only possible if the sched-
uler has some control over the resources used by the community. Hence the
scheduler negotiates capacity guarantees via RSLAs with a pool of under-
lying resources, and exploits those capabilities via TSLAs and BSLAs. This
set of agreements abstracts away the impact of other community schedulers
as well as any local workloads, assuming the resource managers enforce SLA
guarantees at the resources. Community scheduler services present a TSLA
interface to users. Thus a user can submit a task to the scheduler by nego-
tiating a TSLA, and the scheduler then turns to a resource by binding this
TSLA against one of the existing RSLAs. The scheduler may also offer an
RSLA interface. This would allow applications to co-schedule activities across
communities, or combine scheduled resources with additional non-community
resources. The various SLAs offered by the community scheduler result in a
very flexible resource management environment. Users in this environment
can interact with community and resource-level schedulers as appropriate for
their goals and privileges.

In the area of Grid Computing SLA usage is of outmost importance in the
field of Resource Management. The following use cases gathered in a technical
report [93] describe the need for agreements:

• Agreement on resource usage: For a presentation with live demonstration
of an application the necessary compute resources to run the application
have to be available at the time of the presentation. In a normal cluster
environment where the nodes of the cluster are used under a space-sharing

6 Modeling and Negotiating Service Quality 193

policy, the probability of finding a free slot that matches the requirements
of a user immediately is low, thus his job usually will be queued and
executed later. In order to have the resources required at the time of the
presentation the presenter needs to reserve the resources in advance to be
sure that they can be used for the demonstration at the time foreseen.
This reservation can be expressed as a Quality of Service and an SLA may
be issued where the reservation is fixed.

• Agreement on multiple QoS parameters: In an environment consisting of
several clusters operated in different administrative domains, SLAs might
be used for co-allocation or workflow-based resource allocation. A typical
use-case is the co-allocation of multiple compute resources along with the
network links between these resources with a dedicated QoS to run a dis-
tributed parallel application. The user specifies his request and a resource
broker starts the negotiation with the local scheduling systems of the com-
pute resources and with the network resource management system in order
to find a suitable time-slot, where all required resources are available at
the same time. Once a common time-slot is identified, the broker requires
the reservation of the individual resources. This reservation can also be
expressed as a Quality of Service and an SLA may be issued where the
reservation is fixed. Another use-case is a workflow spanning across sev-
eral resources. The only difference to the use-case described before is the
type of temporal dependencies: While for the distributed parallel applica-
tion the resources must be reserved for the same time, for the workflow
use-case the resources are needed in a given sequence. Thus, a scheduler
needs to negotiate the reservations such that one workflow component can
be executed on the required resource after the preceding component is
completed.

• Grid Scheduler interoperation: As there is no single orchestrating service
or grid scheduler in a grid spanning across countries and administrative
domains yet, we have to deal with multiple instances of independent grid
schedulers. Using resources from different domains requires co-ordination
across multiple sites. Two approaches can support such co-ordination: a)
either directly trying to negotiate with respective local scheduling systems
or b) negotiation with the respective local broker. The former solution
requires local policies allowing a remote broker to negotiate with local
schedulers, which is in general not realistic. In the second case, there is
one access point to the local resources, which then negotiates on behalf of
the initiation broker. As the second approach also has a better scalability
than the first one, the OGF Grid Scheduling Architecture Research Group
(GSA-RG) [3] decided to consider this approach for the definition of a Grid
Scheduling Architecture. For the communication between the different grid
schedulers a language and a protocol to create SLAs was selected to achieve
the necessary interoperability, while at the same time resulting in SLAs at
the end of the negotiation process that can be combined by the initiating
scheduler into one single agreement with his client.

194 Authors Suppressed Due to Excessive Length

The work presented in [91] provides a deeper investigation of SLA usage
for job scheduling in Grids. Jobs, submitted for execution to high-performance
computing resources, are associated with an SLA. This SLA is negotiated be-
tween a client (e.g., a user or a resource broker) and a provider (the owner of
a resource with its own local scheduler) and contains information about the
level of service agreed between the two parties, such as acceptable job start
and end times. Users negotiate and agree an SLA with a resource broker.
Brokers negotiate and agree an SLA with users; these SLAs may be mapped
to one or more SLAs, which are negotiated and agreed with local resources
and their schedulers. Finally, local schedulers need to schedule the work that
is associated with an SLA which they agreed to (the constraints associated
with such an SLA, agreed by a resource, may be stored locally in the resource,
in some kind of a resource record). It is also noted that a single SLA agreed
between a user and a broker may translate to multiple SLAs between the bro-
ker and different local resources to serve the user’s request (for example, this
could be the case when the SLA between a user and a broker refers to a work-
flow application with several tasks that are executed on different resources).
In such case, the user may want to set constraints for the workflow as a whole
and the broker may have to translate it to specific SLAs for individual tasks;
to indicate the possible differences between these two types of SLA, the terms
meta-SLA and sub-SLA are used. Furthermore, this SLA-based view for job
submission, may still allow the submission of jobs that are not associated with
an SLA; however, no guarantees about their completion time would be offered
in this case.

To introduce SLA usage to job scheduling the following challenges need to
be solved:

• SLA vocabulary: The vision of SLA based scheduling assumes that the
SLAs themselves are machine readable and understandable. This implies
that any agreement, between the parties concerned, for a particular level
of service needs to be expressed in a commonly understood (and legally
binding) language.

• SLA negotiation: It is envisaged that SLAs may be negotiated between
machines and users or only between machines. In this negotiation some
commonly agreed protocol needs to be followed. This protocol needs to
take into account both the nature of the distributed systems and networks
which are used for the negotiation (for example, what if an offer from
one party is not received by the other party due to a network failure),
and should abide by appropriate legal requirements. In addition, during
negotiation, machines should be able to reason about whether an offer is
acceptable and possibly they should be able to make counter-offers.

• Scheduling: Given that, currently, scheduling of jobs on high-performance
compute resources is mostly based on priority queues (with the possible
addition of backfilling techniques), the use of SLAs would require the de-
velopment of a new set of algorithms for efficient scheduling, which would

6 Modeling and Negotiating Service Quality 195

be based on satisfying the terms agreed in the SLA. The existence of effi-
cient scheduling algorithms would be of paramount importance to estimate
capacity and reason on the possible acceptance (by a local resource) of a
new request to make an SLA.

• Constitutional Aspects: In the context of any SLA based provision, sooner
or later, the need for dispute resolution may arise. In addition, users may
also be interested in the reliability of specific brokers; for example, how
likely is that a broker will honour an SLA (even if breaking the SLA would
require the broker to pay a penalty). This issue of modeling reputation may
also be related to the approaches followed for pricing and/or penalties
when agreeing SLAs.

These requirements and the previously introduced use cases reveal the rel-
evant properties of SLA usage in Grids. The negotiation objects are the static
resource characteristics (eg. CPU, memory, disk), the resource capabilities
(eg. licenses, reservation, price, software) and the user requirement proper-
ties (eg. time, cost constraints). The negotiation protocol and implementation
depend on the actual solution, such as the WS-Agreement and the WSLA
languages. The negotiation strategies usually depend on the actual protocol,
but this is the point, where solutions using the same protocols may differ.
SLA-based grid resource management relies heavily on the renegotiation of
the agreement (which can also regarded as a negotiation strategy). It gen-
erally means reconsideration of the quality and the level of service, such as
processor, memory or bandwidth requirements, resource reservations, and so
on. Renegotiation requires user involvement during the job execution. There-
fore, the most important issue is to reduce the amount of user interaction. In
[90] researchers provided an interesting solution to achieve this goal within
the WS-Agreement framework. The basic idea is to regard guarantee terms as
functions to increase the flexibility of the agreement. They introduced a list
of universal variables (i.e., current wall clock time, network bandwidth) and
a list of predefined functions (i.e., min/max bound, list average, Gaussian
function). As a result the Service Level Indicatiors/Objectives in the SLAs
are described not as constants but as functions of universal variables. In this
way, the terms of the WS-Agreement are no longer constants or independent
range-values. Such an agreement has an infinitely large number of outcomes,
therefore it is able to describe the entire guarantee terms of an SLA. This way
of SLA usage provides a richer term set for grid applications and reduces the
need for renegotiation.

QoWL [20]

[20] presents an approach for high level Grid workflow specification that con-
siders a comprehensive set of QoS requirements. Besides performance related
QoS, it includes economical, legal and security aspects. For instance, for secu-
rity or legal reasons the user may express the location affinity regarding Grid
resources on which certain workflow tasks may be executed. The QoS-aware

196 Authors Suppressed Due to Excessive Length

workflow system provides support for the whole workflow life cycle from speci-
fication to execution. Workflow is specified graphically, in an intuitive manner,
based on a standard visual modeling language. A set of QoS-aware service-
oriented components is provided for workflow planning to support automatic
constraint-based service negotiation and workflow optimization. For reducing
the complexity of workflow planning, a QoS-aware workflow reduction tech-
nique is introduced.

Amadeus [21]

In [21] the Amadeus framework is presented, which is a holistic service-
oriented environment for QoS-aware Grid workflows. Amadeus considers user
requirements, in terms of QoS constraints, during workflow specification, plan-
ning, and execution. Within the Amadeus environment workflows and the as-
sociated QoS constraints are specified at a high level using an intuitive graph-
ical notation. A set of QoS-aware service-oriented components is provided
for workflow planning to support automatic constraint-based service negotia-
tion and workflow optimization. Amadeus framework uses static and dynamic
planning strategies for workflow execution in accordance with user-specified
requirements.

End-to-end QoS for compute-intensive medical simulation services [12]

In [12] a Grid infrastructure is presented addressing the issue of offering end-
to-end QoS in the form of explicit timeliness guarantees for compute-intensive
medical simulation services. Within the GEMSS project [1], parallel applica-
tions installed on clusters or other HPC hardware may be exposed as QoS-
aware Grid services for which clients may dynamically negotiate QoS con-
straints with respect to response time and price using Service Level Agree-
ments. The used infrastructure is based on standard Web services technology
and relies on a reservation based approach to QoS coupled with application
specific performance models.

6.2.3 QoS Negotiation in Security

In this section, two specific aspects of QoS negotiation in security are dis-
cussed: (1) trust negotiation and (2) privacy negotiation.

Features of trust negotiation system

The goal of trust negotiation is to enable strangers to access sensitive data in
open environments without violating the data’s access policy. In trust nego-
tiation, two parties establish trust through iterative disclosure of credentials
and requests for credentials to verify properties of the negotiating parties. To
carry out a trust negotiation, parties usually use strategies implemented by an

6 Modeling and Negotiating Service Quality 197

algorithm. Most of the research in this area focuses on protecting resources
and credentials and assumes that policies can be freely disclosed. Research
in trust negotiation has focused on a number of important issues, including
languages for expressing resource access policies such as Trust-X, X-TNL,
Trustbuilder, Cassandra (e.g., [9, 13, 16, 62]), protocols and strategies for
conducting trust negotiations (e.g., [115, 4, 52, 46]), and logics for reasoning
about the outcomes of these negotiations (e.g., [81, 111]). The foundational
results presented in these papers have also been shown to be viable access
control solutions for real world systems through a series of implementations
(such as those presented in [15, 4, 110]) which demonstrate the utility and
practicality of these theoretical advances.

Based on the current work, we can state that a trust negotiation system
may include four components:

• Trust negotiation policy module
• Credential manager module
• Strategies negotiation module
• Trust negotiation policy management module

Let us define, now, the requirements needed for each components. We pro-
pose some dimensions to evaluate the current relevant negotiation models.
However, these dimensions are not limited and can be augmented due to the
increasing requirements in this area.

Trust negotiation policy language requirements
A trust negotiation policy language is a set of syntactic constructs, including
credentials and policies and the way they encode access control needs [15, 14].
Here we discuss the characteristics that may have a policy language.

Policy specification. Trust negotiation policies specify which credentials
and other resources to disclose at a given state of the trust negotiation, and
the conditions to disclose them. The specification can be formal (using logic,
algebra, etc.) or semi-formal.

Specification of the combination. The language may be expressive enough
to contain operators combining credentials characterizing a given subject.

Authentication of multiple identities. Under this approach to automate
trust establishment, each party can have many identities, each identifying
what a particular credential issuer uses to designate that individual. For in-
stance, my purse today includes my driver’s license number, my credit card
number, my library card number, etc. I may be asked to prove that I possess
several of these identities during runtime (trust establishment).

Sensitive Policy protection. The protection can be handled at the policy
level or system level in the sense that by analyzing policies’ content, outsiders
might infer sensitive information about parties.

Trust negotiation policy lifecycle management. The characteristics that
must be considered, is the trust negotiation policy life-cycle management. It
might include how to update trust negotiation policies in a consistent manner

198 Authors Suppressed Due to Excessive Length

and how to cope with dynamic policy evolution, that is, the change to a policy
while there are active negotiations based on the policy being modified.

Credential manager requirements
Type of disclosure. The context aware applications will reveal credentials

in the correct context.The disclosure needs some actions to be specified that
will satisfy conditions.

Automation. The credential exchange can range from automatic (no user
intervention is needed), over semi-automated (some aspects use tools, and
others need user intervention), to manually.

Credential chain discovery. The credentials used in a negotiation can be
available locally or discovered at run time.

Ownership. Some systems use various security protocols(outside) during
negotiation, when a remote credential is received asking for verification to
prove the ownership. Some other systems integrate negotiation frameworks
with the existing tools and systems.

Strategies negotiation requirements
Dynamicity. In some domains such as e-Health, not all entities are willing to
negotiate credentials or disclose access policies directly to strangers regardless
of negotiation strategies and instead prefer to negotiate and disclose sensitive
information only to strangers within what we refer to as a circle of trust.
The need is to describe how locally trusted intermediary parties can provide
multiple negotiation and delegations hops to protect credentials and access
policies [5].

Privacy protection mechanisms. Privacy is one of the major concerns of
users when exchanging information through the Web and thus we believe that
trust negotiation systems must effectively address privacy issues in order to be
widely applicable. Some research papers investigate privacy in the context of
trust negotiations. [39, 17, 97, 78] propose a set of privacy-preserving features
for inclusion in any trust negotiation system. [92] proposes the identification
of privacy vulnerabilities in trust negotiation.

Automation. Exchange of attribute credentials is a means to establish mu-
tual trust between strangers wishing to share resources or conduct business
transactions. Automating trust negotiation to regulate the exchange of sensi-
tive information during this process is important [49, 109].

Bilateral trust establishment. It is important not only for a service provider
to trust the clients requesting its services, but for clients to trust the services
that they choose to interact with.

Scalability. How much trust establishment can be automated in a highly
scalable manner? Can it be made ubiquitous?

6 Modeling and Negotiating Service Quality 199

Analyzing existing trust negotiation work for web services and
grid computing

We surveyed and analyzed several approaches based on the requirements pre-
sented earlier.

Web services
Existing efforts in the area of trust negotiation have not been standardized
and do not fit into any authorization standard such as the eXtensible Access
Control Markup Language (XACML). In [69], it is investigated how XACML
can fit into trust authorization management systems by exploring existing
concepts, and where necessary, extending them to accomplish the goal. The
authors propose the XACML Trust Authorization Framework (XTAF), which
is a loosely coupled architecture with a trust component that protects autho-
rization information (policies and credentials) layered in such way that it
integrates seamlessly into any XACML compliant authorization engine with
minimal effort. They show how the XACML policy language can be used to
support bilateral exchange of policies and credentials, and protect unautho-
rized access to services. They also introduce a Trust Authorization Service
Handler (TASH) to handle trust and privacy of authorization information.
This supports runtime bilateral authorization operations between two or more
parties.
In [95], authors propose a model-driven approach to trust negotiation in Web
services. The framework, called Trust-Serv, features a trust negotiation policy
model based on state machines. More importantly, this model is supported by
both abstractions and tools that permit life cycle management of trust nego-
tiation policies, an important trait in the dynamic environments that charac-
terize Web services. In particular, they provide a set of change operations to
modify policies, and migration strategies that permit ongoing negotiations to
be migrated to new policies without being disrupted.
In [94] the WS-ABAC model is proposed to use attributes associated with
subject, object and environment, and service parameters for access control
measures in Web services environment. The WS-ABAC model extends the
traditional RBAC model to gain many advantages from its attributes-based
capability. In this model, authorization decisions are based on the attributes
of the related entities. The ATN mechanism is used to provide the needed
attributes and addresses the disclosure issue of the sensitive attributes when
the attribute conditions are not satisfied. So it can protect users privacy. Only
when the user does not give the needed attributes for authorization decision,
the access request is rejected.
Re-designing and re-standardizing existing protocols to make authorization
decisions meet the needs of large-scale open systems is time consuming. To
address this problem, in [59, 79, 60], authors propose a system called Traust,
a stand-alone authorization service that allows for the adoption of trust ne-
gotiation in a modular, incremental, and grassroots manner, providing access
to a wide range of resources without requiring widespread software or proto-

200 Authors Suppressed Due to Excessive Length

col upgrades. It uses the current prototypes Trust-X or TrustBuilder to allow
clients to establish bilateral trust.
In [77], the authors investigate the problem of trust in Semantic Web Services.
They include trust policies in WSMO, together with the information disclosure
policies of the requester, using the Peertrust language [42]. Peertrust provides
the means to perform trust negotiation and delegation. As the matchmaker
needs to have access to the requester and provider policies, in order to match
not only the requester functional requirements but also trust information, the
authors proposed a distributed registry and matchmaker architecture that al-
lows the service providers to keep their policies private, thus not forcing them
to disclose sensitive information.
In [32], a security-by contract is proposed as a novel negotiation framework
where services, needed credentials, and behavioral constraints on the disclo-
sure of privileges are bundled together, and clients and servers have a hierarchy
of preferences among the different bundles. While the protocol supports ar-
bitrary negotiation strategies, two concrete strategies (one for the client and
one for the service provider) make it possible to successfully complete a ne-
gotiation when dealing with a co-operative partner and to resist attacks by
malicious agents to ”vacuum-clean” the preference policy of the honest par-
ticipant.
The Web Services Trust Language (WS-Trust) uses the secure messaging
mechanisms of WS-Security to define additional primitives and extensions
for the issuance, exchange, and validation of security tokens. WS-Trust also
enables the issuance and dissemination of credentials within different trust
domains.

The goal of WS-Trust [72] is to enable applications to construct trusted
[SOAP] message exchanges. In order to secure a communication between two
parties, the two parties must exchange security credentials (either directly or
indirectly). However, each party needs to determine if they can “trust” the
asserted credentials of the other party. This specification defines extensions
to WS-Security for issuing and exchanging security tokens and ways to es-
tablish and access the presence of trust relationships. Using these extensions,
applications can engage in secure communication designed to work with the
general Web Services framework, including WSDL service descriptions, UDDI
businessServices and bindingTemplates, and SOAP messages.

Grid computing
In [61], a novel trust negotiation framework is proposed, TOWER, which in-
tegrates distributed trust chain construction of trust management and aims
to enhance the grid security infrastructure. The approach leverages attribute-
based credentials to support flexible delegation, and dynamically constructs
trust chains. A novel TRust chAin based Negotiation Strategy (TRANS) is
proposed to establish trust relationships on the fly by gradually disclosing
credentials according to various access control policies. It is implemented in
the CROWN grid. In [48], ROST is presented, an original scheme of Remote

6 Modeling and Negotiating Service Quality 201

and hOt Service deployment with Trustworthiness. By dynamically updating
runtime environment configurations, ROST avoids restarting the runtime sys-
tem during deployment. In addition, trust negotiation is included in ROST,
which greatly increases the flexibility and security of the CROWN Grid.
In [6], several classes of trust and their use in Grids are analyzed: service
provision, resource access, delegation, certification and context trust. Current
technologies for managing trust have been also discussed. The concept of Vir-
tual Organizations is central to Grids. The authors have enriched the classical
VO life-cycle with trust management activities. Trust values and trust policies
are created before starting the VO identification phase. In the VO Identifica-
tion phase, trust information such as reputation could be taken into account
when selecting potential VO candidates. The VO formation phase includes
all activities related to trust negotiation. During VO operation, trust values
are computed and distributed among the VO participants. In VO dissolution,
trust information such as credentials and access rights are revoked to avoid
misuse of the information.
An efficient method of hidden credentials by reusing randomness in a way
that does not compromise the security of the system is proposed in [19]. The
number of elliptic curve operations required depends only on the number of
credentials relevant to a transaction and is constant over a change in pol-
icy size or complexity. A monotonic secret splitting scheme is also proposed,
where the relevant shares and the corresponding boolean expression are only
revealed when relevant pairs of shares are discovered. Reducing prefix length
in the secret splitting scheme increases anonymity but also increases overhead
and the probability of a runaway table.
The work in [87] discusses the adaptive trust negotiation and access control
(ATNAC) framework. It addresses the problem of access control in open sys-
tems by protecting itself from adversaries who may want to misuse, exhaust
or deny service to resources. A federated security context allows Grid partici-
pants to communicate their security appraisal and make judgments based on
collective wisdom and the level of trust among them.

Comparing the approaches

To better assess the current state of the art, in this section the requirements
introduced in section 6.2.3 are mapped into three tables that provide a higher-
level view of the detailed discussions provided in Section 6.2.3 on the basis of
the requirements we listed earlier. All the approaches have their own draw-
backs and advantages. None of the proposals are complete, even though cur-
rent approaches address significant subsets of relevant requirements.

Comparing policy languages
Figure 6.6 describes the comparison of the presented approaches with re-

spect to the policy language requirements. The comparison is based on the

202 Authors Suppressed Due to Excessive Length

following dimensions: the nature of the policy specification, whether the com-
bination on credentials can be supported by the policy language or not, the
existence of multiple authentication, if the protection of sensitive data is pro-
vided in the policy level, and finally if the management of the policy life cycle
is supported.

The combination of credentials is considered very important and there
is a way to express it in the specification language in almost all existing
frameworks. The authentication of multiple identities is almost missing.

Moreover, life cycle management of policies that is, the creation, evolution,
and management of policies is an often overlooked part of policy model design.
Policies are rarely set in stone when first defined. Such aspect is totally absent
in the current framework except in Trust-Serv.

Furthermore, there are no existing approaches addressing the trust nego-
tiation cross all the layers of the service based systems with respect to the
variety of information discussed earlier. The proposed approaches address the
trust negotiation in web service.

Comparing credential management
Figure 6.7 describes the comparison of the presented approaches with re-

spect to the credential management requirements. The comparison is based
on the following dimensions: the types of disclosure, the automation when
tackling the credentials, the discovery of the credential chain, and finally the
ownership of the credential.

The table shows that in the trust negotiation research for services, the
trend is towards performing actions while disclosing credentials in an auto-
matic way.

The mechanism of the credentials’ discovery during the negotiation is more
or less seldom. In fact, during run time systems should include tools for chain
discovery to retrieve at run time credentials that are not locally cached.

Most of current systems try to integrate the negotiation framework with
the exiting tools and systems in order to maximize the control of the security
while the data are exchanged.

No existing system addresses how to obtain credentials, assuming that
the entity disclosing credentials has its own method to obtain and cache the
credentials locally.

Comparing systems and strategies
Figure 6.8 describes the comparison of the presented approaches with re-

spect to the strategy of negotiation requirements. The comparison is based on
the following dimensions: the dynamicity of the negotiation, the automation,
the presence of the mechanism of privacy protection during the negotiation,
the scalability, and finally the existence of bilateral trust establishment.

This table shows that there is a trend in the strategies for supporting
dynamic and automatic negotiations. The credentials are not locally disclosed
during run time but can be found dynamically or by combining credentials.

The current systems are increasingly aware of protecting sensitive data
exchanged during the negotiation with the integrated mechanism taking care

6 Modeling and Negotiating Service Quality 203

T
a
b
le

6
.6

.
C

o
m

p
a
ri

n
g

p
o
li
cy

sp
ec

ifi
ca

ti
o
n

la
n
g
u
a
g
e

A
p
p
ro

a
ch

es
T

ru
st

-S
er

v
T

ra
u
st

W
S
-A

B
A

C
X

T
A

F
P

ee
rT

ru
st

W
S
-T

ru
st

S
p

ec
ifi

ca
ti

o
n

F
o
rm

a
l

S
em

i
F

o
rm

a
l

se
m

i-
fo

rm
a
l

S
em

i
S
y
n
ta

ct
ic

C
o
m

b
in

a
ti

o
n

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

M
u
lt

ip
le

-a
u
th

en
ti

ca
ti

o
n

N
o

N
o

N
o

N
o

N
o

Y
es

S
en

si
ti

v
e-

p
o
li
cy

-p
ro

te
ct

io
n

N
o

Y
es

N
o

Y
es

Y
es

Y
es

M
a
n
a
g
em

en
t-

ev
o
lu

ti
o
n

Y
es

N
o

N
o

N
O

N
o

N
o

T
a
b
le

6
.7

.
C

o
m

p
a
ri

n
g

cr
ed

en
ti

a
l

m
a
n
a
g
er

A
p
p
ro

a
ch

es
T

ru
st

-S
er

v
T

ra
u
st

W
S
-A

B
A

C
X

T
A

F
P

ee
rT

ru
st

W
S
-T

ru
st

T
y
p

e-
d
is

cl
o
su

re
a
ct

io
n
s

A
ct

io
n
s

A
ct

io
n
s

co
n
te

x
t+

a
ct

io
n
s

A
ct

io
n
s

A
ct

io
n
s

A
u
to

m
a
ti

o
n

A
u
to

A
u
to

S
em

i
se

m
i

A
u
to

S
em

i
C

h
a
in

d
is

co
v
er

y
Y

es
N

o
N

o
N

o
Y

es
Y

es
O

w
n
er

sh
ip

N
o

In
te

g
(T

o
k
en

s)
In

te
g
(R

B
A

C
)

In
te

g
(X

A
C

M
L

)
N

o
IN

te
(T

o
k
en

s)

T
a
b
le

6
.8

.
C

o
m

p
a
ri

n
g

st
ra

te
g
ie

s

A
p
p
ro

a
ch

es
T

ru
st

-S
er

v
T

ra
u
st

W
S
-A

B
A

C
X

T
A

F
P

ee
rT

ru
st

W
S
-T

ru
st

D
yn

a
m

ic
it

y
D

y
n
a
m

ic
R

u
n
-t

im
e

N
o

N
o

Y
es

N
o

A
u

to
m

a
ti

c
A

u
to

S
em

i
se

m
i-

a
u
to

A
u
to

se
m

i
P

ri
va

cy
p

ro
te

ct
io

n
m

ec
h

a
n

is
m

N
o

Y
es

N
o

Y
es

Y
es

Y
es

sc
a

la
bi

li
ty

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

bi
la

te
ra

l
N

o
Y

es
N

o
N

o
Y

es
Y

es

204 Authors Suppressed Due to Excessive Length

of this. Furthermore, also the bilateral trust establishment is considered in the
current systems because it is important to let a service provider and customer
trust mutually each other and not only have the provider trusting the client
while purchasing online and providing a credit card number.

The scalability is an important criterion in distributed systems like service-
based applications (SBAs). However, in the presented approaches, the com-
plexity and the consistency of the credential discovery mechanisms are not
discussed, which are very important factors in distributed systems. Moreover,
the existing approaches are only research paradigms, no standardization is
pointed out.

Privacy negotiation in SBAs

Privacy violation is a serious and pressing problem for Internet users that
requires immediate solution. Negotiation records are usually confidential and
private, and owners may not want to reveal the details of these records. In
[116], a privacy preserving negotiation learning scheme is introduced, which
incorporates secure multiparty computation techniques into negotiation learn-
ing algorithms to allow negotiation parties to securely complete the learning
process on a union of distributed data sets.
[33] identifies the risks of privacy invasion during the setup of interactive mul-
timedia applications, and introduce three schemes to solve the problem of
protecting the users privacy, with varying degree of complexities. The first
approach is based on the use of a trusted third party; this has been a common
approach for the Public Switched Telephony Network (PSTN). The second
approach is based on the trust relationship between the communicating par-
ties, and the third approach is based on primitives from the field of secure
distributed computation.
[82] has presented the necessity of negotiation about privacy principles in the
relationship between a service provider and customer. Modeling the users in-
dividual utility maximization can take into account the multi-dimensionality
of privacy; the service provider may wish to reduce the negotiation space in a
way that suits the given business scenario. Two new elements were proposed
that follow the structure of the current P3P 1.1 grouping mechanisms and
allow software-supported negotiations in E-Commerce.
E-commerce systems are increasingly concerned with data protection. They
follow a property-based approach to privacy which leads to privacy negotiation
and bargaining upon the base of the data subjects consent. After consider-
ing the technological and regulative strategies of protecting consumer privacy,
[76] discusses the shortcomings of that approach and claims that, as long as
a general privacy culture has not yet evolved in the (web) society, it might
collide with the notion of data protection as a fundamental right.
Due to the automation of infrastructures, both users and services have many
agents acting on their behalf. Respectively, in pervasive systems one of the
most problematic concerns arises on the user right to maintain privacy. [18]

6 Modeling and Negotiating Service Quality 205

is focused on instruments to enable and maintain privacy through a subtle
fusion of different privacy enabling techniques. The authors present a con-
ceptual privacy enabling architecture of infrastructural pervasive middleware
that uses trust management, privacy negotiation, and identity management
during the inter-entity communication life cycle.

In order to take into account the privacy concerns of the individuals, orga-
nizations (e.g., Web services) provide privacy policies as promises describing
how they will handle the personal data of the individual. However, privacy
policies do not convince potential individuals to disclose their personal data,
do not guarantee the protection of personal information, and do not specify
the way to handle the dynamic environment of the policies. [11] introduces a
framework based on an agreement as a solution to these problems. It proposes
a privacy agreement model that spells out a set of requirements related to the
requestor’s privacy rights in terms of how the service provider must handle
privacy information. It defines two levels in the agreement: (1) policy level and
(2) negotiation level. A formal privacy model is described in the policy level
to provide upon it a reasoning mechanism for the evolution. The framework
supports a life cycle management in the negotiation level of the agreement,
hence, the privacy evolution is handled in this level.

6.3 General Observations

6.3.1 QoS Specification Observations

Our survey has uncovered the lack of a well established and standard QoS
model for services. In addition, most of the approaches do not offer a rich,
extensible, and formal QoS model that includes an extensive categorization of
QoS attributes in all service levels. As a result, QSDs and SLAs are populated
using many different QoS models which are incompatible between them and
which lack the richness needed in specifying the QoS of many types of services.

Apart from the lack of a standard service QoS model, there is also a lack
of a well established and standard QoS meta-model or language that could be
used to specify QSDs and SLAs. All the proposed QoS meta-models either do
not have the appropriate formality or richness or both in specifying quality
documents. As a result, QSDs and SLAs are described by many different
formalisms of languages or meta-models which are not rich enough.

The above inefficiencies in specifying quality documents limit the fulfill-
ment of the vision of automated and precise QoS-based service matchmaking
and selection and QoS-aware service composition and the automation and
support of all other activities related to service provisioning.

Hence, we argue that a first research direction concerns the development
of a standard and rich QoS model that provides an extensive categorization
of QoS attributes in all service levels. Moreover, this QoS model should be
extensible so as to allow the addition of new quality dimensions when it is

206 Authors Suppressed Due to Excessive Length

needed (e.g. for a new application domain). Last but not least, this stan-
dard QoS model should be semantically enriched (i.e., formal) in order to be
machine-processable and machine-interpretable.

Such a comprehensive QoS model for services requires a suitable formal
QoS language or meta-model to be used in complex service-based applications,
in which services can be invoked and composed with variable QoS profiles/-
classes of service. Such a rich language should be capable of expressing QoS
capabilities and SLAs by using functions, operators and comparison predi-
cates on QoS metrics and attributes. It should also allow the description of
composition rules for every possible combination of composition constructs
and QoS metrics. Moreover, it should allow the description of different QoS
offerings for the same functional offering of a service; i.e. it should be able to
describe classes of service.

6.3.2 QoS Negotiation Observations

We identify two main streams for short-term research on service QoS negotia-
tion. First, we underline the issue of automated SLA establishment in service
compositions. The review shows that most of the current work in this field
concerns the negotiation between a service consumer and a service provider or
the set of providers of functionally equivalent services. Proposals for managing
complex 1-to-N negotiation with services involved in the same service compo-
sition are still at their infancy and need further development. Second, research
efforts should be devoted to the analysis of innovative negotiation strategies
explicitly tailored to the requirements of service-based applications. As of now,
the participants to the QoS negotiation in service-based applications adopt
state-of-the-art strategies, drawn from research on agent-based computing.
We argue that more efficient and flexible solutions to the negotiation problem
become feasible when negotiation strategies take into account the features of
negotiation objects and protocols in service-based applications.

QoS negotiation can also be used to extend the capabilities of service com-
position tools. QoS agreement gives of course best results when global optima
have been achieved. This is in general difficult, especially because complex
QoS expressions can give rise to optimization functions which are difficult or
impossible to treat mathematically. Approximations, such as the ones achieved
with genetic algorithms, simulated annealing, or planning strategies, appear
to be the only feasible resort at this moment. Ensuring that the optimum
found is global (or, at least, not too far from the global one) is an issue to be
dealt with. Additionally, if the architecture allows for dynamic re-negotiation
(within the same service, for which services should offer different QoS classes,
or selecting another service), the cost of negotiation, e.g., planning, equation
solving, etc., should be gauged against the expected gain achieved with the
new service.

In Grid computing SLA management, we have observed that QoS models
and SLA usage for resource provisioning in current Grids is quite similar to

6 Modeling and Negotiating Service Quality 207

the approaches used for service-based applications. Some of the models and
implemented tools are even used in both fields (an example is WS-Agreement).
Concerning the solutions available for Grid computing, we can state that the
adopted and proof-of-concept implementations are still premature. We found
promising theoretical approaches that fit SLA usage to current Grid systems,
but there is no common mechanism for SLA advertisement and discovery. WS-
Agreement seems to be a good candidate, but existing solutions using this
form still cannot interoperate. Regarding SLA negotiation, WS-Agreement
still cannot deliver the solution: in most cases it can only be used for a simple
offer-accept interaction. The future directions should identify a commonly
accepted approach for service advertisement and discovery. Recent experiences
both in the Service and Grid fields should be taken into account in order to
arrive at a widely accepted and interoperable solution.

References

1. The GEMSS project: Grid-enabled medical simulation services, EU IST
project, ist-2001-37153. http://www.gemss.de/.

2. OGF grid resource allocation agreement protocol working group website:.
https://forge.gridforum.org/sf/projects/graap-wg.

3. OGF grid scheduling architecture research group website. https://forge.

gridforum.org/sf/projects/gsa-rg.
4. Interactive Access Control for Web Services. Kluwer, 2004.
5. O. Ajayi, R. Sinnott, and A. Stell. Dynamic trust negotiation for flexible e-

health collaborations. In Proceedings of the 15th ACM Mardi Gras conference
(MG), pages 1–7, New York, NY, USA, 2008. ACM.

6. A. Arenas, M. Wilson, and B. Matthews. On trust management in grids. In
Proceedings of the 1st international conference on Autonomic computing and
communication systems (Autonomics’07), pages 1–7, ICST, Brussels, Belgium,
Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

7. Donovan Artz and Yolanda Gil. A survey of trust in computer science and the
semantic web. Web Semant., 5(2):58–71, 2007.

8. Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, Glen Daniels,
Phillip Hallam-Baker, Maryann Hondo, Chris Kaler, Dave Langworthy, An-
thony Nadalin, Nataraj Nagaratnam, Hemma Prafullchandra, Claus von
Riegen, Daniel Roth, Jeffrey Schlimmer, Chris Sharp, John Shewchuk, Asir
Vedamuthu, cınalp Ümit Yal and David Orchard. Web Services Policy Frame-
work (WS-Policy). IBM, March 2006.

9. M. Becker and P. Sewell. Cassandra: Distributed access control policies with
tunable expressiveness. In POLICY ’04: Proceedings of the Fifth IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks, page
159, Washington, DC, USA, 2004. IEEE Computer Society.

10. Salima Benbernou, Ivona Brandic, Cinzia Cappiello, Manuel Carro, Marco Co-
muzzi, Attila Kertész, Kyriakos Kritikos, Michael Parkin, Barbara Pernici, and
Pierluigi Plebani. A Survey on Service Quality Description. ACM Computing
Surveys, 2009. submitted.

208 Authors Suppressed Due to Excessive Length

11. Salima Benbernou, Hassina Meziane, Yin Hua Li, and Mohand-Said Hacid. A
privacy agreement model for web services. In IEEE SCC, pages 196–203. IEEE
Computer Society, 2007.

12. S. Benkner, G. Engelbrecht, S.E. Middleton, I. Brandic, and R. Schmidt. End-
to-End QoS support for a medical grid service infrastructure. New Generation
Computing, Special Issue on Life Science Grid Computing, 2007.

13. E. Bertino, E. Ferrari, and A. Squicciarini. X-TNL: An XML-based language
for trust negotiations. In POLICY ’03: Proceedings of the 4th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks, page 81,
Washington, DC, USA, 2003. IEEE Computer Society.

14. E. Bertino, E. Ferrari, and A. Squicciarini. Trust negotiations: concepts, sys-
tems, and languages. Computing in Science and Engineering, 6(4):27–34, 2004.

15. E. Bertino, E. Ferrari, and A. Squicciarini. Trust negotiations: Concepts, sys-
tems, and languages. Computing in Science and Engineering, 06(4):27–34,
2004.

16. E. Bertino, E. Ferrari, and A.C. Squicciarini. Trust-X: A peer-to-peer frame-
work for trust establishment. IEEE Transactions on Knowledge and Data
Engineering, TKDE, 16(7):827 – 842, 2004.

17. A. Bhargav-Spantzel, A. C. Squicciarini, and E. Bertino. Trust negotiation in
identity management. IEEE Security and Privacy, 5(2):55–63, 2007.

18. A. J. Blazic, K. Dolinar, and J. Porekar. Enabling privacy in pervasive comput-
ing using fusion of privacy negotiation, identity management and trust man-
agement techniques. In First International Conference on the Digital Soci-
ety (ICDS 2007), 2-6 January 2007, Guadeloupe, French Caribbean, page 30.
Springer, 2007.

19. R. W. Bradshaw, J. E. Holt, and K. E. Seamons. Concealing complex policies
with hidden credentials. In Proceedings of the 11th ACM conference on Com-
puter and communications security CCS ’04, pages 146–157, Washingtion, DC,
USA, 2004. ACM.

20. I. Brandic, S. Pllana, and S. Benkner. An approach for the high-level spec-
ification of QoS-aware grid workflows considering location affinity. Scientific
Programming Journal, 14(3-4):231–250, 2006.

21. I. Brandic, S. Pllana, and S. Benkner. Specification, planning, and execution
of QoS-aware grid workflows within the Amadeus environment. Concurrency
and Computation: Practice and Experience, 20(4):331–345, 2008.

22. M.B. Chhetri, J. Lin, S. Goh, J. Yan, J. Y. Zhang, and R. Kowalczyk. A coor-
dinated architecture for the Agent-based Service Level agreement Negotiation
of Web service composition. In In Proc. 2006 Australian Software Engineering
Conference, ASWEC’06, 2006.

23. Mohan Baruwal Chhetri, Jian Lin, SukKeong Goh, Jian Ying Zhang, Ryszard
Kowalczyk, and Jun Yan. A coordinated architecture for the agent-based ser-
vice level agreement negotiation ofweb service composition. In ASWEC ’06:
Proceedings of the Australian Software Engineering Conference, pages 90–99,
Washington, DC, USA, 2006. IEEE Computer Society.

24. D.K.W. Chiu, S.C. Cheung, Patrick C.K. Hung, and Ho fung Leung. Facili-
tating e-negotiation processes with semantic web technologies. In HICSS ’05:
Proceedings of the Proceedings of the 38th Annual Hawaii International Con-
ference on System Sciences (HICSS’05) - Track 1, page 36.1, Washington, DC,
USA, 2005. IEEE Computer Society.

6 Modeling and Negotiating Service Quality 209

25. L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements
in Software Engineering. Kluwer Academic, 2000.

26. M. Comuzzi and B. Pernici. An architecture for flexible Web service QoS
negotiation. In Proceedings of the 9th IEEE Enterprise Computing Conference,
Enschede, The Netherlands, 2005.

27. Antonio Ruiz Cortés, Octavio Mart́ın-Dı́az, Amador Durán Toro, and Miguel
Toro. Improving the Automatic Procurement of Web Services Using Constraint
Programming. Int. J. Cooperative Inf. Syst., 14(4):439–468, 2005.

28. K. Czajkowski, I.T. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP:
A protocol for negotiating service level agreements and coordinating resource
management in distributed systems. In In 8th International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP 2002), volume LNCS
2537, pages 153–183, 2002.

29. Seema Degwekar, Stanley Y. W. Su, and Herman Lam. Constraint specification
and processing in web services publication and discovery. In ICWS, pages 210–
217. IEEE Computer Society, 2004.

30. E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and M.L. Villani. Negotiation
of Service Level Agreements: An architecture and a search-based approach. In
Proc. ICSOC’07, pages 295–306, 2007.

31. Glen Dobson, Russell Lock, and Ian Sommerville. QoSOnt: a QoS ontology
for service-centric systems. In EUROMICRO ’05: Proceedings of the 31st EU-
ROMICRO Conference on Software Engineering and Advanced Applications,
pages 80–87, Porto, Portugal, 2005. IEEE Computer Society.

32. N. Dragoni and F. Massacci. Security-by-contract for web services. In Pro-
ceedings of the 2007 ACM workshop on Secure web services (SWS ’07), pages
90–98, New York, NY, USA, 2007. ACM.

33. K. El-Khatib and G. v. Bochmann. Protecting the privacy of user’s qos pref-
erences for multimedia applications. In Proceedings of the 2nd ACM interna-
tional workshop on Wireless multimedia networking and performance modeling
(WMuNeP ’06), pages 35–42, New York, NY, USA, 2006. ACM.

34. P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision functions for
autonomous agents. Int. Journal of Robotics and Autonomous Systems, 23(3-
4):159–182, 1998.

35. P. Faratin, C. Sierra, and N.R. Jennings. Negotiation decision functions for
autonomous agents. Int. Journal of Robotics and Autonomous Systems, 24(3-
4):159–182, 1998.

36. David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed nist standard for role-based access control.
ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

37. FIPA. FIPA standard status specifications. http://www.fipa.org/

repository/standardspecs.html.
38. Document Title Fipa. FIPA Communicative Act Library Specification, 2003.
39. K. Frikken, M. Atallah, and J. Li. Hidden access control policies with hid-

den credentials. In Proceedings of the 2004 ACM workshop on Privacy in the
electronic society (WPES ’04), pages 27–28, New York, NY, USA, 2004. ACM.

40. Svend Frølund and Jari Koistinen. Quality of services specification in distrib-
uted object systems design. COOTS’98: Proceedings of the 4th conference on
USENIX Conference on Object-Oriented Technologies and Systems (COOTS),
5(4):179–202, 1998.

210 Authors Suppressed Due to Excessive Length

41. J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis. Contemporary
Web Service Discovery Mechanisms. Journal of Web Engineering, 5(3):265–
290, 2006.

42. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No
registration needed: How to use declarative policies and negotiation to access
sensitive resources on the semantic web, 2004.

43. Ester Giallonardo and Eugenio Zimeo. More semantics in QoS matching. In In-
ternational Conference on Service-Oriented Computing and Applications, pages
163–171, Newport Beach, CA, USA, 2007. IEEE Computer Society.

44. H. Gimpel, H. Ludwig, A. Dan, and R. Kearney. PANDA: Specifying poli-
cies for automated negotiations of service contracts. In Proceedings of the 1st
International Conference on Service Oriented Computing, Trento, Italy, 2003.

45. Tyrone Grandison and Morris Sloman. A Survey of Trust in Internet Appli-
cations. IEEE Communications Surveys and Tutorials, 3(4), September 2000.
http://www.comsoc.org/livepubs/surveys/public/2000/dec/index.html.

46. Y. He and M. Zhu. A complete and efficient strategy based on Petri Nets
in automated trust negotiation. In Proceedings of the 2nd international con-
ference on Scalable information systems (InfoScale), pages 1–7, ICST, Brus-
sels, Belgium, Belgium, 2007. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

47. Jerry R. Hobbs and Feng Pan. An ontology of time for the semantic web. ACM
Trans. Asian Lang. Inf. Process., 3(1):66–85, 2004.

48. J. Huai, H. Sun, C. Hu, Y. Zhu, Y. Liu, and J. Li. Rost: Remote and hot service
deployment with trustworthiness in crown grid. Future Generation Computer
Systems, 23(6):825–835, 2007.

49. K. Irwin and T. Yu. Preventing attribute information leakage in automated
trust negotiation. In Proceedings of the 12th ACM conference on Computer
and communications security (CCS ’05), pages 36–45, New York, NY, USA,
2005. ACM.

50. N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, M.J. Wooldridge, and
C. Sierra. Automated negotiation: Prospects, methods and challenges. Group
Decision and Negotiation, 10(2):199–215, 2001.

51. Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and
monitoring service level agreements for web services. Journal of Network and
Systems Management, 11(1):57–81, 2003.

52. Hristo Koshutanski and Fabio Massacci. Interactive credential negotiation for
stateful business processes. In iTrust, pages 256–272, 2005.

53. Kyriakos Kritikos and Dimitris Plexousakis. Semantic qos metric matching. In
ECOWS ’06: Proceedings of the European Conference on Web Services, pages
265–274, Zurich, Switzerland, 2006. IEEE Computer Society.

54. Kyriakos Kritikos and Dimitris Plexousakis. Semantic QoS-based web service
discovery algorithms. In ECOWS ’07: Proceedings of the Fifth European Con-
ference on Web Services, pages 181–190, Halle, Germany, 2007. IEEE Com-
puter Society.

55. Kyriakos Kritikos and Dimitris Plexousakis. Requirements for QoS-based Web
Service Description and Discovery. IEEE Transactions on Services Computing,
2009. accepted.

56. Guoming Lai, Cuihong Li, Katia Sycara, and Joseph Andrew Giampapa. Lit-
erature review on multi-attribute negotiations. Technical Report CMU-RI-TR-

6 Modeling and Negotiating Service Quality 211

04-66, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Decem-
ber 2004.

57. S. Lamparter, S. Luckner, and S. Mutschelr. Formal specification of Web
service contracts for automated contracting and monitoring. In Proceedings
of the 40th Hawaii International Conference on System Sciences, pages 63–73,
Honolulu, Hawaii, 2007.

58. Steffen Lamparter, Stefan Luckner, and Sybille Mutschler. Formal specification
of web service contracts for automated contracting and monitoring. In HICSS
’07: Proceedings of the 40th Annual Hawaii International Conference on System
Sciences, page 63, Washington, DC, USA, 2007. IEEE Computer Society.

59. A. Lee, M. Winslett, J. Basney, and V. Welch. Traust: a trust negotiation-
based authorization service for open systems. In in SACMAT ’06: Proceedings
of the eleventh ACM symposium on Access control models and technologies.
New York. ACM, 2006.

60. A. J. Lee, M. Winslett, J. Basney, and V. Welch. The Traust authorization
service. ACM Trans. Inf. Syst. Secur., 11(1):1–33, 2008.

61. J. Li, J. Huai, J. Xu, Y. Zhu, and W. Xue. Tower: Practical trust negotiation
framework for grids. Second IEEE International Conference on e-Science and
Grid Computing (e-Science’06), 0:26, 2006.

62. N. Li and J. Mitchell. Rt: A role-based trust-management framework. In The
Third DARPA Information Survivability Conference and Exposition (DISCEX
III), April 2003., 2003.

63. Yutu Liu, Anne H. H. Ngu, and Liangzhao Zeng. QoS computation and polic-
ing in dynamic web service selection. In Stuart I. Feldman, Mike Uretsky,
Marc Najork, and Craig E. Wills, editors, WWW (Alternate Track Papers &
Posters), pages 66–73, New York, NY, USA, 2004. ACM.

64. Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard
Franck. Web Service Level Agreement (WSLA) Language Specification. Tech-
nical report, IBM Corporation, 2003.

65. A. Mani and A. Nagarajan. Understanding quality of service for web
services. http://www-128.ibm.com/developerworks/library/ws-quality.

html, 2002.
66. Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, Alessandro

Oltramari, and Luc Schneider. Wonderweb deliverable d17. the wonderweb
library of foundational ontologies and the dolce ontology.

67. E. Michael Maximilien and Munindar P. Singh. Conceptual model of web
service reputation. SIGMOD Rec., 31(4):36–41, 2002.

68. E. Michael Maximilien and Munindar P. Singh. A framework and ontology for
dynamic web services selection. IEEE Internet Computing, 8(5):84–93, 2004.

69. U.M. Mbanaso, G.S. Cooper, D.W. Chadwick, and Seth Proctor. Privacy
preserving trust authorization framework using XACML. In 2006 Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Net-
works(WoWMoM’06), pages 673–678. IEEE, 2006.

70. D. Menascé and V. Dubey. Utility-based QoS brokering in service oriented
architectures. In Proceedings of the 2007 International Conference on Web
services, 2007.

71. N. K. Mukhi and P. Plebani. Supporting policy-driven behaviors in Web ser-
vices: experiences and issues. In Proceedings of the 2nd International Confer-
ence on Service Oriented Computing, New York, NY, 2004.

212 Authors Suppressed Due to Excessive Length

72. Anthony Nadalin, Marc Goodner, Martin Gudgin, Ab-
bie Barbir, and Hans Granqvist. WS-Trust specification,
http://www.ibm.com/developerworks/webservices/library/specification/ws-
trust/. In Technical report. OASIS Working Draft, 2007.

73. A. Ncho and E. Aimeur. Building a multi-agent system for automated negoti-
ation in Web service applications. In In. Proc. of AAMAS’04, 2004.

74. N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic WS-agreement
partner selection. In WWW ’06: Proceedings of the 15th International confer-
ence on World Wide Web, pages 697–706, Edinburgh, Scotland, 2006. ACM
Press.

75. Nicole Oldham, Kunal Verma, Amit Sheth, and Farshad Hakimpour. Seman-
tic WS-agreement partner selection. In WWW ’06: Proceedings of the 15th
international conference on World Wide Web, pages 697–706, New York, NY,
USA, 2006. ACM.

76. A. D. Oliver-Lalana. Consent as a threat. A critical approach to privacy ne-
gotiation in e-commerce practices. In Trust and Privacy in Digital Business,
First International Conference, TrustBus 2004, pages 110–119. Springer, 2004.

77. D. Olmedilla, R. Lara, Axel Polleres, and H. Lausen. Trust negotiation for se-
mantic web services. In Semantic Web Services and Web Process Composition,
First International Workshop, (SWSWPC), pages 81–95. Springer, 2004.

78. L. E. Olson, M. J. Rosulek, and M. Winslett. Harvesting credentials in trust
negotiation as an honest-but-curious adversary. In Proceedings of the 2007
ACM workshop on Privacy in electronic society (WPES ’07), pages 64–67,
New York, NY, USA, 2007. ACM.

79. Lars Olson, Marianne Winslett, Gianluca Tonti, Nathan Seeley, Andrzej Uszok,
and Jeffrey Bradshaw. Trust negotiation as an authorization service forweb
services. In ICDEW ’06: Proceedings of the 22nd International Conference
on Data Engineering Workshops, page 21, Washington, DC, USA, 2006. IEEE
Computer Society.

80. J. O’Sullivan, D. Edmond, and A.H.M. ter Hofstede. Formal description of
non-functional service properties. Technical report, Queensland University of
Technology, 2005.

81. P.Bonatti and P.Samarati. Regulating service access and information release on
the web. In CCS ’00: Proceedings of the 7th ACM conference on Computer and
communications security, pages 134–143, New York, NY, USA, 2000. ACM.

82. S. Preibusch. Implementing privacy negotiations in e-commerce. In Frontiers
of WWW Research and Development - APWeb 2006, pages 604–615. Springer,
2006.

83. S. Ran. A model for web services discovery with QoS. SIGecom Exch., 4(1):1–
10, 2003.

84. Shuping Ran. A model for web services discovery with qos. SIGecom Exch.,
4(1):1–10, 2003.

85. Thomas C. Redman. Data Quality for the Information Age. Artech House,
Inc., Norwood, MA, USA, 1997. Foreword By-A. Blanton Godfrey.

86. Sini Ruohomaa and Lea Kutvonen. Trust management survey. In Proceedings
of the iTrust 3rd International Conference on Trust Management. LNCS 3477,
23-26may 2005.

87. T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and K. E. Seamons. Adap-
tive trust negotiation and access control. In Proceedings of the tenth ACM

6 Modeling and Negotiating Service Quality 213

symposium on Access control models and technologies (SACMAT ’05), pages
139–146, New York, NY, USA, 2005. ACM.

88. B. Sabata, S. Chatterjee, M. Davis, J.J. Sydir, and T.F. Lawrence. Taxonomy
for QoS Specifications. In Object-Oriented Real-Time Dependable Systems,
1997. Proceedings., Third International Workshop on, pages 100–107, 5-7 Feb.
1997.

89. Akhil Sahai, Anna Durante, and Vijay Machiraju. Towards Automated SLA
Management for Web Services. Technical Report HPL-2001-310, HP Labora-
tories, Palo Alto, CA, July 2002.

90. Rizos Sakellariou and Viktor Yarmolenko. On the flexibility of WS-Agreement
for job submission. In Proceedings of the 3rd International Workshop on Mid-
dleware for Grid Computing (MGC’05), 2005.

91. Rizos Sakellariou and Viktor Yarmolenko. High Performance Computing and
Grids in Action, chapter Job Scheduling on the Grid: Towards SLA-Based
Scheduling. March 2008.

92. K. E. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Protecting privacy
during on-line trust negotiation. In Privacy Enhancing Technologies, Second
International Workshop (PET’ 2002), pages 129–143, 2002.

93. Jan Seidel, Oliver Wäldrich, Wolfgang Ziegler, Philipp Wieder, and
Ramin Yahyapour. a survey. Using SLA for resource management and schedul-
ing. Technical report, TR-0096, Institute on Resource Management and
Scheduling, CoreGRID - Network of Excellence, August 2007.

94. H. Shen and F.Hong. An attribute-based access control model for web services.
In Seventh International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2006), pages 74–79, 2006.

95. H. Skogsrud, B. Benatallah, and F. Casati. Trust-Serv: Model-driven lifecycle
management of trust negotiation policies for web services. In Proc. 13th World
Wide Web Conf., May 2004.

96. I. Sommerville. Software Engineering. 4th edition. Addison Wesley, 1992.
97. A. Squicciarini, E. Bertino, E. Ferrari, F. Paci, and B. Thuraisingham. PP-

trust-X: A system for privacy preserving trust negotiations. ACM Transactions
on Information and System Security (TISSEC), 10(3):12, 2007.

98. Diane M. Strong, Yang W. Lee, and Richard Y. Wang. 10 potholes in the road
to information quality. Computer, 30(8):38–46, 1997.

99. K. Sycara et al. OWL-S 1.0 Release. OWL-S Coalition,
http://www.daml.org/services/owl-s/1.0/, 2003.

100. The OASIS Group. Quality model for web services. Technical report, The
Oasis Group, September 2005.

101. The OMG Group. UMLTM Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. Technical Report ptc/2005-05-02,
The OMG Group, May 2005.

102. M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller, and T. Voigt. Qos
integration in web services. Gesellschaft fur Informatik DWS 2003, Doktoran-
denworkshop Technologien und Anwendungen von XML, October 2003.

103. Vladimir Tosic, Babak Esfandiari, Bernard Pagurek, and Kruti Patel. On
requirements for ontologies in management of web services. In CAiSE ’02/
WES ’02: Revised Papers from the International Workshop on Web Services,
E-Business, and the Semantic Web, pages 237–247, Toronto, Ontario, Canada,
2002. Springer-Verlag.

214 Authors Suppressed Due to Excessive Length

104. Vladimir Tosic, Bernard Pagurek, and Kruti Patel. WSOL - A language for the
formal specification of classes of service for web services. In Liang-Jie Zhang,
editor, ICWS, pages 375–381. CSREA Press, June 2003.

105. Vladimir Tosic, Kruti Patel, and Bernard Pagurek. WSOL - Web Service Offer-
ings Language. In CAiSE ’02/ WES ’02: Revised Papers from the International
Workshop on Web Services, E-Business, and the Semantic Web, pages 57–67,
London, UK, 2002. Springer-Verlag.

106. Dimitrios T. Tsesmetzis, Ioanna G. Roussaki, Ioannis V. Papaioannou, and
Miltiades E. Anagnostou. Qos awareness support in web-service semantics. In
AICT-ICIW ’06: Proceedings of the Advanced Int’l Conference on Telecommu-
nications and Int’l Conference on Internet and Web Applications and Services,
pages 128–134, Guadeloupe, French Caribbean, 2006. IEEE Computer Society.

107. A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch,
M. Johnson, S. Kulkarni, and J. Lott. Kaos policy and domain services: To-
ward a description-logic approach to policy representation, deconfliction, and
enforcement. In POLICY ’03: Proceedings of the 4th IEEE International Work-
shop on Policies for Distributed Systems and Networks, page 93, Washington,
DC, USA, 2003. IEEE Computer Society.

108. Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A qos-aware selection
model for semantic web services. In Asit Dan and Winfried Lamersdorf, editors,
ICSOC, volume 4294 of Lecture Notes in Computer Science, pages 390–401.
Springer, 2006.

109. W.H. Winsborough and N. Li. Safety in automated trust negotiation. ACM
Transactions on Information and System Security (TISSEC), 9(3):352–390,
2006.

110. M. Winslett, T. Yu, K.E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith,
and L. Yu. The TrustBuilder architecture for trust negotiation. IEEE Internet
Computing, 6(6):30–37, 2002.

111. Marianne Winslett, Charles C. Zhang, and Piero A. Bonatti. Peeraccess: a
logic for distributed authorization. In CCS ’05: Proceedings of the 12th ACM
conference on Computer and communications security, pages 168–179, New
York, NY, USA, 2005. ACM.

112. WS-AGREEMENT. WS-Agreement Framework. https://forge.gridforum.
org/projects/graap-wg, September 2003.

113. J. Yan, J. Y. Zhang, M.B. Chhetri, J. Lin, S. Goh, and R. Kowalczyk. Towards
autonomous service level agreement negotiation for adaptvive service compo-
sition. In In Proc. 10th Int. Conf. on Computer Supported Cooperative Work
in Design, 2006.

114. T. Yu and M. Winslett. Policy migration for sensitive credentials in trust
negotiation. In Proceedings of the 2003 ACM workshop on Privacy in the
electronic society (WPES ’03), pages 9–20, New York, NY, USA, 2003. ACM.

115. Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured cre-
dentials and sensitive policies through interoperable strategies for automated
trust negotiation. ACM Trans. Inf. Syst. Secur., 6(1):1–42, 2003.

116. S. Zhang and F. Makedon. Privacy preserving learning in negotiation. In
Proceedings of the 2005 ACM symposium on Applied computing (SAC ’05),
pages 821–825, New York, NY, USA, 2005. ACM.

117. Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee. Daml-qos ontology for web
services. In ICWS ’04: Proceedings of the IEEE International Conference on

6 Modeling and Negotiating Service Quality 215

Web Services (ICWS’04), pages 472–479, San Diego, CA, USA, 2004. IEEE
Computer Society.

7

Analytical Quality Assurance

Andreas Metzger1, Salima Benbernou2, Manuel Carro3, Maha Driss4, Gabor
Kecskemeti5, Raman Kazhamiakin6, Kyriakos Krytikos7, Andrea Mocci8,
Elisabetta Di Nitto8, Branimir Wetzstein9, and Fabrizio Silvestri10

1 Universität Duisburg-Essen, Germany
2 Université Claude Bernard Lyon 1, France
3 Universidad Politécnica de Madrid, Spain
4 Institut National de Recherche en Informatique et Automatique (INRIA)

MTA Computer & Automation Research Institute (MTA-SZTAKI), Budapest,
Hungary

5 Fondazione Bruno Kessler (FBK), Trento, Italy
6 University of Crete, Greece
7 Politecnico di Milano, Italy
8 University of Stuttgart, Germany
9 Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

Chapter Overview As we described in Chapter 1, Services are often provisioned
within short-term, volatile and highly dynamic (business) processes. These processes
are designed in an abstract manner and when instantiated can involve service
providers not known of during the design time of the service-based application.
Thus, different from traditional software systems, service-based applications require
the composition and coordination of services within highly distributed environments,
cutting across the administrative boundaries of various organizations.

This chapter provides a review of quality contracts, or more generally, those parts
of Service Level Agreements (SLAs) which deal with statements about the services
quality levels on which the service requestor and the providers have reached an agree-
ment. Aspects of the contracts, such as the identification of parties, legal obligations
and penalties for contract violation, are not covered by this chapter.

7.1 Motivation

To guarantee the desired end-to-end quality of those service-based applica-
tions, contracts between the service providers and the service requestors (also
known as service consumers) on quality aspects of services must be estab-
lished [30]. In general, a contract is a formal agreement between two or more
parties to create mutual business relations or legal obligations. Contracts can
have different parts, such as the definition of business partners, the specifica-

218 Authors Suppressed Due to Excessive Length

tion of functional obligations, and quality, price, and penalties related with
the object of the agreement.

Based on the general life-cycle of electronic contracts [109] [151], three
main activities relevant for quality contracts within service-based applications
can be identified:

• Quality definition: In electronic contracting, the contract definition activ-
ity concerns the establishment of a model or language for the definition
of contract terms, which is understood and shared by the contracting par-
ties. This model or language then is used to instantiate an actual contract
(e.g., a SLA) that reflects the domain dependent interests of providers and
consumers.

• Quality negotiation: Establishment of an electronic contract concerns the
set of tasks required for defining an actual contract (e.g., SLA) based on the
model or language for the definition of contract terms (see above). This
may involve the selection of the service provider (the contract partner)
among a set of potential providers, the negotiation of the contract terms
between the selected provider and the service consumer, and the agreement
to the contract terms.

• Quality assurance: Contract enactment in electronic contracting concerns
tasks for assuring the satisfaction of the contracts. In the case of qual-
ity contracts, this implies assuring that the quality levels negotiated and
agreed between the service provider and the service requestor are met. In
the dynamic setting of service-based applications, quality assurance can
reveal that there is a deviation from the expected quality, thus necessi-
tating an adaptation of the application. How such an adaptation can be
achieved is described in Chapter 4.

This chapter addresses the final activity in electronic quality contracting,
namely quality assurance (the first two activitues are addressed in Chapter
6). To achieve the desired quality of a service-based application (i.e, for con-
tract enactment), two complementary kinds of techniques and methods can be
employed: constructive and analytical quality assurance techniques and meth-
ods. The goal of constructive quality assurance techniques and methods is to
prevent the introduction of faults (or defects) while the artifacts are created.
Examples for such techniques include code generation (model-driven develop-
ment), development guidelines, as well as templates. The goal of analytical
quality assurance techniques and methods is to uncover faults in the artifacts
after they have been created. Examples for analytical quality assurance tech-
niques are reviews and inspections, formal correctness proofs, testing, as well
as monitoring.

This chapter will cover the state of the art in analytical quality assurance
techniques and methods for service-based applications by providing a com-
prehensive literature review in analytical quality assurance for service-based
applications. Furthermore, this chapter will identify gaps in the state of the

7 Analytical Quality Assurance 219

art in order to identify open research issues that should be addressed in future
research.

The literature review covers three major classes of approaches for ana-
lytical quality assurance in service-based applications: (i) Testing, the goal
of which is to (systematically) execute services or service-based applications
with predefined inputs in order to uncover failures, (ii) Monitoring, which
observes services or service-based applications as well as their context during
their current execution, (iii) Static Analysis, the aim of which is to system-
atically examine (without execution) an artifact (e.g., a service specification)
in order to determine certain properties or to ascertain that some predefined
properties are met.

The literature review has been carried out by members of the S-Cube
network of excellence, to whom we extend our gratitude.

7.2 Review Methodology

The review of relevant research in the fields of quality asurance in service-
based applications has followed a systematic approach. Both general confer-
ence and journals on services and software engineering have been covered,
and in addition, special research area publication sites have also been cov-
ered. Specifically, we reviewed work, starting from year 2000, in the following
publication forums:
• Conference Proceedings: Int. Conf. on Software Engineering (ICSE),

Int. Conf. on Web Services (ICWS), Int. Services Computing Conf. (SCC),
European Conf. on Web Services (ECOWS), Int. Enterprise Distributed
Object Computing Conf. (EDOC), World Wide Web Conf. (WWW), Int.
Conf. on Service Oriented Computing (ICSOC), Int. Conf. on Business
Process Management (BPM), Int. Conference on Software Engineering
(ICSE), International Symposium on Software Testing and Analysis (IS-
STA), International Symposium on Software Testing and Analysis (ISSTA)

• Academic Journals and Magazines: IEEE TSE, ACM TOSEM
• Digital libraries: ACM Digital library on a keyword basis (e.g., SOA,

SBS, SOA and monitoring, verification, analysis), SCOPUS, INSPEC
With respect to monitoring in SOA, the presented survey is based on and

extends a previous work in [56]. In that survey the authors concentrated on
run-time monitoring of Web services and service compositions. The reviewed
work presents both the research approaches towards monitoring of Web ser-
vices and Web service-based compositions. The presented survey follows this
approach and extends the list of relevant work with recent advances in this
area.

Given the very wide field of analysis, we have chosen to narrow the selection
of the survey in this chapter to these papers which are more related with non-
functional properties such as performance prediction, structural complexity
of service compositions, etc.

220 Authors Suppressed Due to Excessive Length

Other contributions for the literature review have been derived from the
expertise of the different partners that contributed to this chapter. These
include relevant work published in domain specific conferences and workshops
proceedings or in specialized academic journals, all of which fall outside the
aforementioned list of academic publications systematically reviewed.

7.3 Fundamentals

In order to structure the survey results, we sub-divide the analytical quality
assurance techniques and methods into the three major classes: testing, mon-
itoring and static analysis. These classes have been proposed in the software
quality assurance literature (e.g., see [97, 93, 103, 55]) and have been used in a
recent overview of quality assurance approaches for service-based applications
(cf. [12]).

Figure 7.1 provides an overview of these classes and their sub-classes which
are explained in the following sub-sections.

Quality Assurance

Constructive Quality
Assurance

Analytical
Quality Assurance

Dynamic Checks

Testing

Monitoring

Static Analysis

Profiling

Monitoring to
uncover failures

Monitoring to support optimization,
context adaptation, …

“Synthesizing”
Approaches

Verifying
Approaches

Fig. 7.1. Overview of quality assurance approaches

Testing

The goal of testing is to (systematically) execute services or service-based
applications10 in order to uncover failures (cf. [97, 93, 103, 55]).

During testing, the service or service-based application which is tested is
fed with concrete inputs and the produced outputs are observed. The observed
10 In the remainder of this part of the chapter, we use the term service-based appli-

cation as a synonym for service composition.

7 Analytical Quality Assurance 221

outputs can deviate from the expected outputs with respect to functionality
as well as quality of service (e.g., performance or availability). When the
observed outputs deviate from the expected outputs, a failure of the service
or the service-based application is uncovered.

Failures can be caused by faults (or defects) of the test object. Examples
for faults are a wrong exit condition for a loop in the software code that
implements a service, or a wrong order of the service invocations in a BPEL
specification. Finding such faults typically is not part of the testing activities
but is the aim of debugging (e.g., cf. [93, 55]).

A special case of testing is profiling. During profiling, a service or a service-
based application can be systematically executed in order to determine specific
properties. As an example, during profiling the execution times of individual
services in a service composition could be measured for ‘typical’ or ‘extreme’
inputs in order to identify optimization potentials.

Testing cannot guarantee the absence of faults, because it is infeasible
(except for trivial cases) to test all potential concrete inputs of a service or
service-based application. As a consequence, a sub-set of all potential inputs
has to be determined for testing (e.g., cf. [103]). The quality of the tests
strongly depends on how well this sub-set has been chosen. Ideally this sub-
set should include concrete inputs that are representative for all potential
inputs (even those which are not tested) and it should include inputs that
– with high probability – uncover failures. However, in cases where choosing
such an ideal sub-set typically is infeasible, it is important to employ other
quality assurance techniques and methods which complement testing.

Monitoring

Monitoring observes services or service-based applications during their current
execution, i.e. during their actual use or operation (cf., [37]). In addition, the
context of a service or a service-based application can be monitored. This con-
text can include other systems, the execution platform (hardware, operating
systems, etc.) and the physical environment (e.g., sensors or actuators).

Monitoring can address different goals. As an example, monitoring tech-
niques can be employed to support the optimization of a service-based applica-
tion during run-time. Further, monitoring can be used to enable the context-
driven run-time adaptation of a service-based application. Also, monitoring
may be used to uncover failures during the current execution of a service or
service-based application.

In contrast to testing and static analysis, which aim at providing more
or less general statements about services or service-based applications, mon-
itoring always provides statements about their current execution (i.e., about
current execution traces). Thereby, monitoring can uncover failures which
have escaped testing, because the concrete input that lead to the current ex-
ecution trace might have never been tested.11 Also, monitoring can uncover
11 As explained above, only a sub-set of all potential inputs can be tested.

222 Authors Suppressed Due to Excessive Length

faults which have escaped static analysis, because static analysis might have
abstracted from a concrete aspect which was relevant during the current ex-
ecution. Monitoring therefore provides a complementary measure to ensure
the quality of a service-based application and thus “can be used to provide
additional defense against catastrophic failure” [37].

Static Analysis

The aim of static analysis (e.g., see [44, 55]) is to systematically examine an
artifact in order to determine certain properties or to ascertain whether some
predefined properties are met. In the remainder of this chapter, we refer to
the first kind of approaches as synthesis approaches and to the latter kind
of approaches as verification approaches. Analysis can be applied at several
stages in the development cycle, and therefore examples for artifacts which can
be subject to analysis include requirement documents, design specifications,
interface descriptions, and code.

Examples of static analysis include formal techniques and methods, such
as data flow analysis, model checking, execution in abstract domains, sym-
bolic execution, type checking, and correctness proofs, which are all usually
characterized because they compute properties that are in many cases approx-
imations of the more concrete properties, but which, in this case, are safe, in
the sense that the lack of accuracy must not lead to an error for the intended
use of the analysis. Informal approaches, such as reviews, walkthroughs, and
inspections, are as well examples of static analysis.

In contrast to testing (or monitoring), where individual executions of the
services or service-based applications are examined, analysis can examine
classes of executions [55]. Thus, analysis can lead to more universal state-
ments about the properties of the artifacts than testing (or monitoring).

In order to achieve these more universal statements, static analysis – un-
like testing or monitoring – does not execute the artifacts which are being
examined, since termination (which is theoretically ensured when the system
has a finite state space) is usually a necessary condition for a successful analy-
sis. However, systems may have a state space so large (or infinite) as to make
traversing it unfeasible. In those cases static analysis resorts to working with
safe approximations of the actual system semantics, which makes the system
actually under analysis effectively finite, but different from the initial one.

Those approximations can be very sophisticated and take the form of, e.g.,
relations between inputs and outputs which approximate the system behavior
in the domain of the analysis. When these approximations capture the prop-
erties of interest faithfully enough, then the results, even if not as accurate as
they could be, are useful – and correct. Yet, as approximations might abstract
away from some relevant concrete details, aspects might be overlooked [55] or
simply not be captured faithfully enough. Thus static analysis can complement
the other classes of quality assurance techniques and methods but typically

7 Analytical Quality Assurance 223

will not be enough, if used in isolation, in order to give a complete picture of
the whereabouts of the execution of a computational system.

7.4 Classification Framework

The papers which are surveyed in this section are categorized in order to
understand common concepts and thus identify potential gaps and overlaps
(see Section 7.7.3). A number of “dimensions” are used for this categorization
and constitute our classification framework.

During the process of surveying the papers and based on discussions
amongst S-Cube reseaechers, this framework has been continuously evolved
in order to cover all relevant dimensions.

The “dimensions” of this classification framework are described in the
following sub-sections.

Major Class of Quality Assurance Technique or Method (Class)

As has been described in Section 7.3, we will distinguish between three major
classes of quality assurance techniques and methods for service-based appli-
cations: testing, monitoring and static analysis. For an individual technique
it can well be possible that it will be classified to fall into more than one of
these major classes.

Quality Characteristics which are Addressed (Quality)

Different kinds of quality characteristics – also known as QoS dimensions,
quality attributes or quality parameters – can be addressed by the quality
assurance techniques and methods.

An important quality characteristics is functional correctness, i.e. assuring
that the functionality expected from the service or service-based application
is met.12

Other quality characteristics that are relevant for service-based applica-
tions include performance, privacy, security or availability.

Moment During the Life-Cycle (Life-Cycle)

This dimension classifies the techniques and methods according to the moment
during the life-cycle at which they can be / should be employed. For the

12 Often, a distinction between functional and non-functional (quality) characteris-
tics is made. Following the ISO/IEC 9126 standard, we subsume “functionality”
under “quality”.

224 Authors Suppressed Due to Excessive Length

purpose of this chapter, we distinguish between two major phases in the life-
cycle: design (before the application is being deployed) and operation (while
and after the system has been deployed).

More detailed software life-cycle models for service-based applications are
discussed in Section NNN.

Research Discipline (Discipline)

This dimensions states which research disciplines has proposed the discussed
solution (this can typically be identified by the affiliation of the authors or
the conference / journal in which the paper has been published).

Those disciplines include (but are not limited to) Business Process Man-
agement (BPM), Service-oriented Computing (SOC), Software Engineering
(SE) and Grid Computing (Grid).

Relevant Layer of the Service-based Application (Layer)

A check can involve artifacts on different layers of a service-based application.
These layers are Business Process Management (BPM), Service Composition
and Coordination (SCC) and Service Infrastructure (SI).

Artifact that is Checked (Artifact)

This dimension classifies the technique or method according to the artifact
that is checked (i.e., analyzed, tested or monitored).

The entity which is checked, can include – besides others – an atomic
service (which does not invoke other services), a composed/aggregated service
(or a service-based application), a service registry, or the context of a service
or a service-based application. As an example, many monitoring approaches
(see Section 7.6) observe changes in the context of the system in order to
produce monitoring results and to enable the adaptation of the service-based
application.

Artifact Against which the Entity is Checked (Reference)

In order to check an entity, a reference artifact is needed against which the
check is performed. As an example, when performing the test of an atomic
service, the service implementation could be tested against the service inter-
face.

Examples for such reference artifacts are service interfaces, service speci-
fications, or Service-level Agreements (SLAs).

7 Analytical Quality Assurance 225

Level of Formalization (Formality)

The following levels of formalization of a quality assurance technique and
method can be distinguished: formal, semi-formal, or non-formal techniques
and methods.

The results of a formal techniques or methods are achieved by means of
mathematical methods. This requires that the input artifacts to such formal
techniques or methods have a formal representation. Examples for formal
techniques include model checking, correctness proofs or symbolic execution.

A semi-formal technique or method rests on a language that contain formal
as well as informal elements. Thus those artifacts are not completely amenable
to mathematical methods.

Examples for non-formal techniques are reviews or inspections. Although
the process for inspections is rigorously defined, the steps during inspection
do not rely on mathematical precision.

Degree of Automation (Automation)

Quality assurance techniques and methods can consist of individual steps. An
individual step can be amenable to automation (i.e., it can be executed by
a software tool) or it cannot be automated, because it requires a human to
perform a creative task.

The degree of automation of a technique or method can thus range from
fully automated, over partially automated to not automated.

In a fully automated technique or method no manual steps have to be per-
formed. During the application of a partially automated technique or method,
not all the steps are performed by tools and thus some steps require “user”
intervention.

Means of Validation (Validation)

This dimension aims at classifying how the proposed technique or method has
been (empirically) validated.

The following “levels” of empirical evaluation, taken from [156], are used
for that purpose:

• Controlled Experiment: All of the following exist: Random assignment of
treatments to subjects. Large sample size. Hypotheses formulated. Inde-
pendent variable selected. Random sampling.

• Quasi Experiment: One or more of points in Controlled Experiment are
missing.

• Case Study: All of the following exist: Research question stated. Proposi-
tions stated. Unit(s) of analysis stated. Logic linking the data to proposi-
tions stated. Criteria for interpreting the findings provided. Performed in
a real world situation.

226 Authors Suppressed Due to Excessive Length

• Exploratory Case Study: One or more of points in Case Study are missing.
• Experience Report: All of the following exist: Retrospective. No proposi-

tions (generally). Does not necessarily answer how or why. Often includes
lessons learned.

• Meta-Analysis: Study incorporates results from previous similar studies in
the analysis.

• Example Application: Authors describing an application and provide an
example to assist in the description, but the example is “used to validate”
or “evaluate” as far as the authors suggest.

• Survey: Structured or unstructured questions given to participants.
• Discussion: Provided some qualitative, textual, opinion-oriented evalua-

tion. E.g. compare and contrast, oral discussion of advantages and disad-
vantages.

∗∗

The following sections 7.5 - 7.7 comprise the results of the literature survey
for the three major classes of analytical quality assurance techniques and
methods for service-based applications. At the end of the description of the
survyed quality assurance techniques, the classsification results (see Section
7.4) are summarized and compared in two tables. The first table (Table-A)
contains the Class, Quality, Life-Cycle, Discipline and Layer dimension of
the classification framework. The second table (Table-B) shows the Artifact,
Reference, Formality, Automation and Validation dimension.

7.5 Testing

7.5.1 Test Case Generation

An Approach for Specification-based Test Case Generation for Web Services
[60]

Specification-based testing of web services is important for consumers and
brokers, because the web services’ source code is usually unavailable to them
and those stakeholders only have access to the descriptions or specifications
of the web services. Hanna and Munro in [60] thus describe a method for
specification-based testing of web services. Their approach is built on WSDL
and XML Schema data types.

Extending WSDL to Facilitate Web Services Testing [139]

WSDL files can be seen as a specification for testing web services. A WSDL
specification contains the number of inputs and outputs, the type and order

7 Analytical Quality Assurance 227

of inputs and outputs and how web services should be invoked. However, this
information is not sufficient for testing. Thus, in [139] Tsai et al. propose
four kinds of extensions for WSDL files: (1) input-output dependency, which
can be generated by dependence analysis inside a web service; (2) invoca-
tion sequence, which provides tracing information among web services; (3)
hierarchical functional description, which can improve functional and regres-
sion testing and enable automation; (4) concurrent sequence specifications, to
capture Calling sequences, concurrent behaviors and timing aspects.

Coyote: An XML-Based Framework for Web Services Testing [143]

Web services are distributed and often only WSDL specifications are avail-
able. The authors of [143] thus propose an XML-based object-oriented testing
framework called Coyote. The framework is composed of test master and test
engine. The test master specifies test scenarios and test cases, performs the
analysis and converts WSDL specifications into test scenarios. The test engine
interacts with the web service under test and provides tracing information.

WSDL-Based Automatic Test Case Generation for Web Services Testing [8]

Services are published, bound, invoked and integrated at runtime and only
have a programmable interface. So automation of the testing process without
user interaction is essential. In [8] Bai et al. thus propose a technique for gen-
eration test cases automatically based on WSDL specifications. They present
their technique for individual and combination operations of atomic services.
The technique consists of four steps: First the test data is generated from
WSDL message definitions. Then test operations are generated based on the
analysis of the parameters in the WSDL file. The third step is the generation
of operation flows to test a sequence of operations by operation dependency
analysis. At the end the test specification is build as test cases encoded in
XML files.

Swiss Cheese Test Case Generation for Web Services Testing [136, 140]

Web services are based on UDDI which is not responsible for the quality of
services. So the trustworthiness or vulnerability of web services is a problem
for the users of those services. Traditional dependability techniques must be
redesigned to handle the dynamic features of web services. To this end, in
[136] the authors present the ’Swiss Cheese’ test case generation approach.
The OWL-S specification of a web service is converted to scenarios. After
that boolean expressions are extracted. With this boolean expressions a K-
map is formed and Hamming distances and boundary counts are computed.
Finally a Swiss Cheese map is created in which each cell at least belongs to a
test case. Positive and negative test cases are generated. At the end the test
cases can be ranked.

228 Authors Suppressed Due to Excessive Length

Ontology-Based Test Case Generation for Testing Web Services [152]

To test automatically constructed web services, Wang et al present a model-
based approach with automatically generated test cases based on the OWL-S
web services process specification. The OWL-S description is first transformed
to a Petri-Net model to provide a formal representation of the structure and
behavior of the service under test. Then, test cases are generated based on the
Petri-Net model. A prototype implementation, called TCGen4WS, has been
implemented.

Automated Functional Conformance Test Generation for Semantic Web
Services [106]

In [106], the authors introduce an approach to generate functional confor-
mance tests for semantic web services which are defined using the Inputs,
Outputs, Preconditions, Effects (IOPEs) paradigm. For each web service, the
approach produces testing goals which are refinements of the web service pre-
conditions using a set of fault models. A planner component accepts these
testing goals, along with an initial state of the world and the web service
definitions to generate a sequence of web service invocations as a test case.

Generating test cases for web services using extended finite state machine
[78]

As observed in [78], Web services are distributed applications with numerous
aspects of runtime behavior that are different from typical applications. To
this end, the authors introduce a new approach to testing web services based
on EFSM (extended finite state machine). A WSDL (web services description
language) file alone does not provide dynamic behavior information. Thus,
the authors propose augmented it with a behavior specification, in the form
of a formal EFSM model.

Contract-based Testing for Web Services [33]

In [33] Dai et al. describe that the problems of testing services derive from
the fact that services are invoked instead of integrated and thus providers can
evolve a service without the knowledge of the users. This lack of notification on
changes are a problem for users of a service because they want to be sure that
the service functions as stipulated when first using the service. The authors
conclude that the system “has to be tested dynamically and automatically
at runtime without human interaction” and they present an approach which
uses contracts as formal agreements between users and providers containing
rights and obligations for both sides. The contracts are described using the
OWL-S process model. For generating test cases two parts are suggested: the
generation of valid test data and the generation of the test process. Both
generation processes are based on contracts. In addition, contracts contain
enough information on the expected output for using them as test oracles.

7 Analytical Quality Assurance 229

Towards Contract-based Testing of Web Services [61]

In [61], the authors state that due to the loose coupling and the distribution of
services, service requestors often bind to services at run-time. In the authors’
point of view this prevents integration testing of a service-based application.
Thus, the authors propose using ’Design by Contract’ for web services. For
the interoperability of service providers and requesters the concept of Design
by Contract, which comes from component-based systems, should be comple-
mented by the use of required and provided contracts. A provided contract
specifies pre- and post-conditions of the service. A required contract speci-
fies the information the requester is willing to provide and the situation he
wants to achieve at the end. For the representation of the contracts Heckel
and Lohmann propose the use of graph transformation rules.

Testing BPEL-based Web Service Composition Using High-level Petri Nets
[41]

As observed in [41], BPEL-based web service composition essential has dy-
namic aspect such as recomposition, re-configuration, and dynamic binding
during execution, which makes behavior analysis and testing of BPEL-based
web service composition software significantly complicated. To this end, the
authors propose a technique for analysis and testing BPEL-based Web ser-
vice composition using high-level Petri nets (HPN). To illustrate how these
compositions are verified, the relationships between BPEL-based Web service
composition and high-level Petri nets is constructed. By analyzing the struc-
ture of Web service composition based on BPEL, the corresponding HPN is
constructed. After translation, the equivalent HPN of the Web service compo-
sition based on BPEL can be verified on existing mature tool, and the related
researches on HPN, e.g., testing coverage and reduction techniques that have
been studied deeply, can be employed in testing of Web service composition
based on BPEL.

On Combining Multi-formalism Knowledge to Select Test Models for Model
Transformation Testing [124]

In [124] the authors present a method to automatically select test models
given any meta-model as input. The selected models are used to test model
transformations. Model transformations are ubiquitous in Model-driven Engi-
neering as they automate important software development steps. Testing and
validating them is thus a crucial activity for successful MDE. These test mod-
els serve as input for black-box testing of a model transformation. The papers
outlines a black-box testing tool Cartier that uses Alloy as the relational logic
language to represent combined knowledge.

Probabilistic QoS and Soft Contracts for Transaction based Web Services
[111]

230 Authors Suppressed Due to Excessive Length

To test web services, one needs test oracles that states whether a contract
was satisfied by the input test case. In [111] the authors present probability
distributions of QoS properties such as response time as soft contracts that
can act as test oracles. In particular they present the idea of obtaining a QoS
contract for a web service orchestrations and choreographies leading to com-
posed services. These soft contracts are better suited to incremental testing
compared hard contracts (e.g., response time always less than 5 msec).

Model-based functional conformance testing of web services operating on
persistent data [127]

The WSDL standard does not allow behavioral specification (such as pre-
and postconditions) of web services in the presence of persistent data. Thus,
the authors in [127] propose the use of existing test generation techniques
based on Extended Finite State Machine (EFSM) specifications to address
the generation of functional conformance tests for web services which operate
on persistent data. Key contribution is an algorithm to translate a WSDL-
S behavioral specification of operations of a web service into an equivalent
EFSM representation which can be exploited to generate an effective set of
test cases.

Generation of Conformance Test Suites for Compositions of Web Services
Using Model Checking [54]

The complexity of testing compositions of web services relies on their distrib-
uted nature and asynchronous behaviour. To consider this challenge, a new
testing method for compositions of web services is proposed in [54]. Specifi-
cally, a formal verification tool (SPIN model checker) is used to automatically
generate test suites for compositions specified in BPEL.

7.5.2 Test Execution

Scenario-Based Web Service Testing with Distributed Agents [138]

Tsai et al. in [138] motivate that testing Web services is difficult, because they
are loosely coupled, have a dynamic behavior, are invoked by unknown parties,
can have concurrent threads and object sharing and different parties (client,
broker and provider) are involved in testing. To address those challenges,
the authors propose a web service testing framework (WSTF). The proposed
WSTF includes the following features: (1) enhanced WSDL, which includes
four kinds of extensions as described in [139]; (2) scenario-based testing as
a specification-based testing technique which can be applied to WSDL files;
(3) automated test script generation based on the scenario specification; (4)
automated distributed test execution including test monitors and distributed
agents.

7 Analytical Quality Assurance 231

Group testing for web services [137, 145, 135, 144, 5, 142]

A large number of web services is expected to become available on the In-
ternet. In particular, this means that for the same specification different im-
plementations (services) will possibly exist. To test all those services (which
satisfy a specification), huge effort for testing needs to be invested. To this
end, in [137, 145] suggest progressive group testing as a solution to be applied
for unit and integration testing. Two phases are proposed: (1) prescreening,
during which ’unlikely-to-win’ web services are eliminated as far as possible;
(2) runtime group testing, during which the best candidates identified in the
prescreening phase are integrated in the live system and tested. Given a set
of functionally equivalent web services, the input for one of these services is
forwarded to all of them. The results from all services are voted (by a voting
service). By comparing the output of one service with the weighted majority
output (as oracle) faults can be detected.

In [135] the authors integrate their group testing technique into a frame-
work called ASTRAR (Adaptive Service Testing and Ranking with Auto-
mated oracle generation and test case Ranking). In [5] group testing is further
extended with an adaptive mechanism. This adaptive mechanism provides the
possibility to adapt test cases to the continuously changing services (in case of
updates or redeployment). Finally, in [142] the authors introduce a stochastic
voting for group testing.

Perturbation-based testing for Web Services [102, 35, 154]

Web services can be located on different servers belonging to different compa-
nies. The web services interact by passing messages and data (through XML,
SOAP). In [102] the authors propose to exploit data perturbation as a means
to test the interaction of web services. Request messages are modified. With
the resending of the modified request the messages are used as test cases. The
analysis of the response messages reveals uncorrect behavior. In [154] further
perturbation operators for XML schema are described. [35] builds upon the
work of Offutt and Xu. They introduce new perturbation operators for the
modification of SOAP messages.

A test bed for web services protocols [110]

Transactions involving more than one web service can become non-trivial
and thus require the use of some pre-agreed or standard protocols. A proper
specification and implementation of these transaction protocols this becomes
critical for the correct execution and termination of transactions.. To address
this problem, the authors of [110] propose a test bed based on conformance
checking for automatically testing a given web service protocol implementa-
tion.

232 Authors Suppressed Due to Excessive Length

Regression testing approach of Ruth and Tu [118, 117, 119]

Similar to the modification of traditional software systems, for each modifica-
tion of a web service two aspects have to be examined: (1) Do the modified
parts function correctly? (2) Does the modification have effects on the unmod-
ified functions? For the second aspect it is common practice to use regression
testing and to run previously generated test cases again. In [118] the authors
propose to apply safe regression test selection (RTS) to web services. The
approach is based on the safe RTS algorithm by Rothermel and Harrold for
monolithic applications and builds on control-flow graphs.

In [117] that approach is extended so that the safe RTS technique can be
automated. Another extension is the handling of multiple concurrent modifi-
cations which is described in [119].

Quality analysis of composed services through fault injection [53]

The authors in [53] present a systematic testing method for service-based,
cooperative information system (CIS). The method is based on fault injection
during process execution. Two types of testing are supported: (1) black-box
testing, when the service implementation code is not accessible; (2) white-box
testing, when service code is accessible, and in particular when information
on used data sources used by the service is also visible. Two types of faults
are considered: data faults and time delays.

7.5.3 Testing Frameworks and Tools

BPEL Unit Testing [92, 84]

One problem with testing BPEL compositions, as observed by the authors,
are the numerous external dependencies. These dependencies are based on
the web services that are accessed by the BPEL composition. To systemati-
cally consider those dependencies, the authors present an approach for unit
testing BPEL processes. The framework supports the following steps: (1) test
specification, where the WSDL specification is used to generate test cases; (2)
test organization, where test cases are grouped into test suites with links to
external artifacts; (3) test execution, where the BPEL process can be tested
by simulation or by real-life deployment; (4) test results, where a report of
successful test cases, failures and errors is generated.

Biased covering arrays for progressive ranking and composition of Web
Services [23]

When building a composed service, a choice between several services that
provide the same functionality must be taken. The authors of [23] build upon
the group testing techniques of Tsai et al. [137, 145, 135, 144, 5]. They apply
Group Testing to narrow down the number of prospective candidates for each

7 Analytical Quality Assurance 233

web service. As a subsequent step, they propose to use interaction testing
techniques, specifically biased covering arrays, to generate economically sized
test suites that further evaluate the candidate Web services.

Testing of service-oriented architectures - a practical approach [43]

The authors identify two key issues for testing: (1) whenever a change in one
of the source code parts arises, a new test has to be done; (2) very often
there is no stable test environment, which leads to the problem of setting up
the whole test environment for every single change. Thus, the investment for
testing can explode in such a setting. To address these issues, the authors
suggest to exploit the automation of the test process, which promises to lead
to a decrease of costs and time for testing. In [43] an approach for automated
testing of services is presented including a Meta language in XML for the
definition of test cases. The authors focus on the presentation of a prototype
implementation called SITT (Service Integration Test Tool).

An abstract workflow-based framework for testing composed web services [68]

As has been discussed above, testing composed web services imposes many
challenges to existing testing methods, techniques, and tools. To address
some of those challenges, the authors in [68] introduce a formal model for
an abstract-based workflow framework that can be used to capture a com-
posed web service under test. The structural-based workflow framework uses
workflow graphs for simple composed and complex composed web services.
Additionally a set of applicable structural-based testing criteria to the frame-
work is defined.

WSDLTest - A Tool for Testing Web Services [128]

The authors observe that in general, one cannot guarantee that web services
will work as one might expect, which could lead to serious interaction er-
rors. As a solution, the authors propose to simulate the usage of the services,
where both requests are automatically generated and responses are automat-
ically validated. In [128], a tool that accomplishes this goal is introduced.
The tool generates Web service requests from the WSDL schemas and adjusts
them in accordance with the pre-condition assertions written by the tester. It
dispatches the requests and captures the responses. After testing it then ver-
ifying the response contents against the post-condition assertions composed
by the tester.

Automatic Conformance Testing of Web Services [62]

In [62] Heckel and Mariani present how service descriptions can be supple-
mented by adding a behavioral specification of the service consisting of graph
transformation rules. Still, it remains open whether the actual service im-
plementation is correct with respect to this model, and thus whether such a

234 Authors Suppressed Due to Excessive Length

model is a valid representation of the service. To overcome this problem, the
authors introduce high-quality service discovery which adds automatic testing
to the approach of behavioural matching with graph transformation rules. In
this setting, a service can be entered into the registry only, if it has succesfully
passed testing.

WebSob: Automated Robustness Testing of Web Services [88, 89, 90]

In [88, 89] and [90] Martin, Basu and Xie look at web service testing from
the consumer point of view. Consumers mostly don’t have the possibility to
get implementation details of the used web services. Thus consumers can only
perform black-box testing. Moreover robustness of the web service is a prob-
lem for the consumer. The web service has to handle input parameters which
contain consumer specific information. If the web service is not robust enough
to handle these inputs it is possible that unauthorized instances retrieve con-
sumer specific information. To address those issues, the authors propose the
framework “WebSob” for automated robustness testing of web services.

Distributed functional and load tests for Web services [122]

The authors introduce a flexible test framework that allows executing func-
tional, service interaction and load tests. The framework is presented as being
generic in terms of being largely independent of the system to be tested. The
paper discusses the automation capabilites of the test framework that rely on
the Testing and Test Control Notation (TTCN-3).

A multi-agent based framework for collaborative testing on Web services [7]

The auhtors start from the observation that testing is a challenge due the
dynamic and collaborative nature of web services. To address these issues
they introduce a multi-agent based framework to coordinate distributed test
agents to generate, plan, execute, monitor and communicate tests on Web
services.

The audition framework for testing Web services interoperability [18]

To consider the SOA propoerties such as loose coupling, distribution and
dynamism of ’components’, the authors propose a framework that extends
UDDI registry role from the current one of a ’passive’ service directory, to
become an accredited testing ’organism’, which validates service behaviour
before actually registering it. This specific form of testing, called audition,
mainly focuses on interoperability issues, such as to facilitate the coordination
among services registered at the same UDDI.

7 Analytical Quality Assurance 235

A Framework for Testing Web Services and Its Supporting Tool [95]

In their paper, the authors focus on facilitating the testing of Web services.
In particular, they propose a framework for testing Web services, which can
help a tester of Web services in two ways: (1) it can help the tester to acquire
effective test data; (2) it can help the tester to execute the test cases (that
include that data).

Testing Web services [126]

Im their paper, the authors introduce a technique for testing Web services us-
ing mutation analysis. The technique is based on applying mutation operators
to the WSDL document in order to generate mutated Web service interfaces
that are used to test the Web service. For this purpose, the authors define
mutant operators that are specific to WSDL descriptions.

A Model-Driven Approach to Discovery, Testing and Monitoring of Web
Services [82]

The authors observe that established technology for providing, querying and
binding services is largely based on syntactic information. As a consequence
of the lack of semantic information in service descriptions, the reliable, auto-
matic integration of services is hindered. To address this problem, the authors
introduce a framework which enforces that only tested web services are par-
ticipating in (as a consquence) high-quality service-based applications. To
achieve this, only successfully tested services are stored in registries (cf. [62]).

A simple approach for testing web service based applications [132]

In their paper, the authors introduce a technique for suporting the construc-
tion of reliable Web applications composed of Web services. All relevant Web
services are linked to the component under test at the testing time; thus,
the availability of suitable Web services is guaranteed at invocation time. The
Web application and its composed components are specified by a two-level ab-
stract model: (1) the Web application itself is represented as task precedence
graph (TPG); (2) the behavior of the individual components is represented
as a timed labeled transition system (TLTS). Three sets of test sequences are
generated and executed automatically using a test execution algorithm and a
test framework.

Search-based Testing of Service Level Agreements [40]

In [40], the authors deal with the problem on how to detect the violation of
a Service Level Agreement (SLA), negotiated between service provider and
service consumer. As the violation of an SLA is undesirable for both the
provider and the consumer, the authors suggest that the SLA should be tested
before the service is offered, as this can reduce the probability that the SLA
will be violated during the service usage. The presented solution builds on
Genetic Algorithms (GAs) for the generation of test data.

236 Authors Suppressed Due to Excessive Length

Using Test Cases as Contract to Ensure Service Compliance across Releases
[22, 107]

In [22], the authors address the issue that services are used but not owned.
This means that services are out of the users’ control, leading to the problems
that the users thus cannot decide on migrating to a new version of the service,
or that the users are not always aware of changes the service provider makes
to the service implementation. To address those problems, the authors present
an approach appropriate for regression testing by users. The approach has its
roots in component-based software testing and uses test cases as a contract
between the user and the provider of the service. The basic idea of the ap-
proach is to bind test cases and a set of QoS assertions to a service and to
test after a certain time if the test cases and assertions still hold.

7.5.4 Online Testing

A metamorphic testing approach for online testing of service-oriented
software applications [28]

As the authors observe, a service-based application may bind dynamically
to its constituent services. This means that for the same service interface,
the actual services that are invoked may behave differently. To address this
issue, the authors propose a metamorphic approach for online services testing.
During off-line testing first a set of successful test cases is constructed and
corresponding follow-up test cases for online testing are determined.

Dynamic Reconfigurable Testing of Service-Oriented Architecture [6]

The authors point out that one problem imposed by the dynamic reconfig-
uration of service-based applications is that testing needs to adapt to the
changes of the service-based applications at runtime. As a solution, the paper
presents a testing approach enabling the run-time change of test organization,
test scheduling, test deployment, test case binding, and service binding. The
approach is based on previous research on the MAST (Multi-Agents-based
Service Testing) framework [7]. It extends MAST with a new test broker archi-
tecture, configuration management and event-based subscription/notification
mechanism.

7.5.5 Classification of Testing Techniques

The various approaches that have been discussed above are classified and
summarized (according to the classification scheme introduced in Section 7.4)
in tables 7.1 and 7.2.

7 Analytical Quality Assurance 237

Table 7.1. Table-A for Testing

Contribution Class Quality Life-Cycle Discipline Layer

[60] testing correctness design SE, SOC SCC

[139] testing functionality design SOC SI

[143] testing functionality design SOC SCC

[8] testing functionality design SOC SCC

[136, 140] testing trustworthiness,
robustness

design SOC, SE SCC

[152] testing functionality design SOC, SE SCC

[106] testing functionality,
conformance

design SE, SOC SCC

[78] testing functionality design SE, SOC SCC

[33] testing, moni-
toring

functionality operation SOC SI

[61] testing functionality,
interoperabil-
ity

design SE SI

[41] testing functionality design SOC SCC, BPM

[124] testing functionality operation SE SCC

[111] testing several quality
characteristics

operation SE SCC

[127] testing functionality,
conformance

design SE, SOC SCC

[138] testing, moni-
toring

functionality whole life-
cycle

SOC, SE SCC, SI

[137, 145, 135,
144, 5, 142]

testing, moni-
toring

functionality design and op-
eration

SOC SCC

[102, 35] testing functionality design SE SI

[92, 84] testing functionality design SOC SCC, BPM

[23] testing functionality design SE SCC

[43] testing, moni-
toring

functionality design SOC SCC

[68] testing functionality design SOC SCC

[110] testing conformance design SOC SCC

[128] testing functionality design SE SCC

[62] testing conformance registration SE SI

[88, 89, 90] testing robustness design SOC, SE SCC

[118, 117, 119] testing functionality execution SOC, SE SCC

[122] testing functionality
and perfor-
mance load

design SE SCC

[7] testing, moni-
toring

functionality design SOC, SE SCC

[18] testing interoperability registration SE SCC

[95] testing functionality design SE SCC

[126] testing functionality design SE SCC

[82] testing, moni-
toring

reliability, con-
formance

whole life-
cycle

SE SCC

[54] testing functionality design SE, SOC SCC

[132] testing correctness, re-
liability, avail-
ability

design SOC SCC

[40] testing all QoS charac-
teristics

operation SE, SOC SCC

[22, 107] testing, moni-
toring

arbitrary QoS
characteristics

operation SOC, SE SCC

[28] testing functionality operation SOC SCC

[6] testing functionality operation SOC, SE SCC

[53] testing functionality design SOC, IS BPM

238 Authors Suppressed Due to Excessive Length

Table 7.2. Table-B for Testing

Contribution Artifact Reference Formality Automation Evaluation

[60] service, service
composition

WSDL de-
scription

semi-formal automated discussion

[139] service WSDL spec. - - -

[143] service, service
composition

WSDL spec. semi-formal automated -

[8] (atomic) ser-
vice

WSDL spec. formal automated experience re-
port

[136, 140] web service OWL-S spec. formal non-
automated

example appl.

[152] web service OWL-S spec. formal automated example appl.

[106] semantic web
services

inputs, out-
puts, precon-
ditions, effects
(IOPEs)

semi-formal automated experience re-
port

[78] web service EFSM based
on WSDL
spec.

formal non-
automated

example appl.

[33] services,
service compo-
sitions

OWL-S
process model

semi-formal automated discussion

[61] (atomic) ser-
vice

provided
and required
contracts

formal automated discussion

[41] web service
composition

BPEL spec. semi-formal automated discussion

[124] service, service
composition

provided
and required
contracts

formal automated discussion

[111] service compo-
sition

probability
distribution
functions

formal automated discussion

[127] web services
which operate
in the presence
of persistent
data

EFSM based
on WSDL-S
specification

formal automated discussion

[138] service compo-
sition

WSDL de-
scription

semi-formal automated example appl.

[137, 145, 135,
144, 5, 142]

group of ser-
vices

majority out-
put

semi-formal automated example

[102, 35] test of inter-
action between
two web ser-
vices

XML and
SOAP mes-
sages

semi-formal automated example appl.

[92, 84] BPEL process WSDL spec. semi-formal automated example appl.

[23] composed web
service

other web ser-
vices

formal non-
automated

example appl.

[43] service and
service work-
flow

XML test de-
scription

semi-formal automated example appl.

[68] composed ser-
vice and work-
flow

- formal non-
automated

example

[110] web service
protocol

formal model
of the web ser-
vice protocol

formal automated example appl.

[128] web service WSDL spec. non-formal automated experience re-
port

[62] (atomic) ser-
vice

specification
(as graph-
transformation
rules)

formal automated experience re-
port

[88, 89, 90] service, service
composition

WSDL spec. semi-formal automated explor. case
study

[118, 117, 119] service, service
composition

control-flow
graph

formal automated example appl.

[122] service-based
application

XML descrip-
tion

non-formal automated discussion

[7] atomic and
composed
services

service spec. semi-formal automated discussion

[18] web service protocl state
machine spec.

semi-formal automated discussion

[95] composed web
service

WSDL spec. semi-formal automated example appl.

[126] web service WSDL spec. semi-formal automated example

[82] service-based
application

UML models
and graph
transformation
rules

formal automated discussion

[54] compositions
of web services

BPEL spec. formal automated discussion

[132] web service
based applica-
tion

WSDL spec.,
TLTS, TPG

formal automated discussion

[40] service compo-
sition

SLA semi-formal automated case study

[22, 107] services,
service compo-
sitions

WSDL de-
scription

semi-formal automated example appl.

[28] service-based
application

oracle from of-
fline test

formal automated experience re-
port

[6] service-
oriented
application

- semi-formal automated example

[53] service, service
composition

WSDL, BPEL semi-formal automated discussion

7 Analytical Quality Assurance 239

7.6 Monitoring

7.6.1 Web Service Monitoring

Assumption-based monitoring of service compositions [108, 10]

The papers [108, 10] focus on run-time checking of the behavioral require-
ments (expressed in a special temporal logic-based notation) on the services
participating to the composition, and collecting certain statistical and non-
functional information over their execution.

Monitoring Conversational Web Services [20]

The work presents an approach for checking at run-time that the actual be-
havior of the conversational service complies with the expected behavior rep-
resented in a special algebraic notation that expresses functional constraints
on the service evolution.

Smart Monitors for Composed Services [13]

A technique for monitoring functional and non-functional assertions over
BPEL process activities is presented. Assertions may be specified either in
programming language directly, or using special assertion language. The mon-
itored process is modified in a way to interact with a dedicated monitoring
service to provide the relevant data.

Dynamo [14, 15, 11]

Dynamo framework proposes an expressive monitoring language WSCoL for
expressing functional and non-functional requirements (assertions and invari-
ants) on the BPEL processes. The framework allows for collecting information
from external sources (services). In [11] the language is extended with the pos-
sibilities to express more complex (temporal) properties over the executions
of underlying processes.

Monitoring for diagnosis [4]

Monitoring approach in this work has a goal of collecting and reporting a fault
diagnosis information, rather than simply detecting property violation. The
approach is based on a distributed framework that extends the functionality
of the services with the diagnosis evaluation and management facilities.

Monitoring privacy-agreement compliance [17]

The work addresses run-time monitoring of compliance of the privacy agree-
ment defining the users privacy rights and their possible handling by the
service provider. The privacy properties (obligations and data rights) are for-
mally in temporal logic specifications and the corresponding state machines,
and then monitored at run-time using the events reported in the system log.

240 Authors Suppressed Due to Excessive Length

Requirements monitoring based on event calculus [130, 86, 87]

The authors approach the problem of monitoring service-based applications
for conformance to a set behavioral requirements expressed in a rich event
calculus-based specification language, and deals with service events, quality
metrics, temporal constraints, etc. A run-time logic inference engine is used
to detect violations of the properties.

Monitoring security patterns [129, 79]

The problem of monitoring security properties is addressed. The security prop-
erties are specified as patterns and formally represented in event calculus-
based notation. The run-time checking of the properties relies on the approach
defined above.

Performance Monitoring for utility computing [46]

The work deals with monitoring of SLA. The contract patterns are formally
represented in event calculus and monitored using a specific framework.

Planning and monitoring execution with business assertions [81]

In the work monitoring is used to detect failures in the execution of customized
business process in order to dynamically re-plan and adapt the process exe-
cution to the user requirements.

Automated SLA Monitoring [120]

The work proposes an approach for monitoring compliance of the service exe-
cution to the predefined contract information (SLA). The formalized contract
statements are monitored by intercepting service interactions and process logs.
The management of the monitored information and the analysis of compliance
is performed by a dedicated platform.

WSLA [77]

An industrial approach proposed by IBM for monitoring SLA information
is presented. The framework relies on a comprehensive model of contracts,
QoS metrics and their aggregation, and on a sophisticated, multi-functional
run-time environment.

Cremona [83]

Cremona is an industrial run-time platform for negotiating, managing, and
monitoring SLA agreements. The agreements are defined using WS-Agreement
notation. Multi-layered and extensible execution platform and API support
the monitoring and management actions.

7 Analytical Quality Assurance 241

Colombo [31]

Colombo is an industrial platform for the development and enactment of ser-
vices and service-based applications. Apart from many other facilities, it pro-
vides a way to check and enforce service policies expressed in WS-Policy no-
tations. The policies may be attached to services, service operations, and even
exchanged message types.

7.6.2 Process Monitoring and Mining

Query-based business process monitoring [16]

The approach targets the problem of monitoring BPEL processes. The moni-
toring queries are defined using visual pattern-based notations compliant with
BPEL to define when the report should be provided, and using report specifi-
cations defining the information to be reported. For monitoring the queries are
transformed into BPEL processes that collect information on the monitored
processes from a low-level observer.

Model-driven development of monitored process [96]

The work proposes a way to develop SOA-based business processes with inte-
grated monitoring information utilizing a model-driven approach. The authors
have created a metamodel for modeling of process performance metrics (PPIs)
based on BPMN process elements. The process augmented with monitoring
primitives is automatically generated.

Model-driven development for BPM [29]

The work focuses on efficient development and deployment of monitoring in-
formation in BPM. The proposal relies on a meta-model extended with the
concepts of metrics, business actions and events. The model is transformed
into observer specification (for monitoring and evaluating the metrics) and a
and data warehouse (to query and visualize information).

Probing and monitoring WS-BPEL processes [112]

The work deals with the problem on how to extract events from a BPEL
process in order to enable auditing in an interoperable way. The authors pro-
pose a way to augment the BPEL processes with auditing activities, and
present a set of strategies and mechanisms for collecting the relevant probes
at different functional layers.

iBOM [27]

in this work the authors deal with the problem on how to create a monitoring
solution, which not only enables to measure KPIs, but also to understand the
causes of undesired KPI values, and prediction of future values. The approach
is based on the combination of business activity monitoring with data mining
to explain the monitored results.

242 Authors Suppressed Due to Excessive Length

An Agent-based Architecture for BAM [66]

The work present a multi-layered agent-based architecture for providing con-
tinuous, real-time analytics for business processes.

Fuzzy mining [59]

The work proposes an approach for automated extraction of the behavioral
specification of the business process from the actual execution logs of the
system. The approach relies data mining techniques for the log analysis.

Conformance checking with ProM [115, 149]

The presented approach allows for checking (at run-time or posteriori) the
conformance of the observed business process execution with respect to the
actual process specification and characteristics. The monitoring is based on
mining and analyzing information from process logs.

Process mining for security [147]

The approach allows for auditing security-critical properties of the process
executions. First, the correct model of process is extracted using logs without
security violations. Second, the actual executions are verified for conformance
to that model using process mining techniques.

Deriving protocol models from logs [101]

The approach to extraction of service interaction protocol models based on
monitoring interaction logs is proposed. The approach is semi-automated and
provides a way to interact with the designer in order to refine and correct the
extracted model.

Timed transition discovery from Web service conversations [39]

The approach targets extraction of behavior model of the service in terms of
temporal constraints (timed transitions) between relevant service interactions
and events.

7.6.3 Grid Monitoring

Grid Monitoring Architecture (GMA) [133]

GMA is an abstraction of the essential characteristics needed for scalable
high performance monitoring on a large distributed computational Grid. It
provides the standard specification of the grid monitoring architecture, the
components and their roles, the communication models, without, however,
defining the implementation.

7 Analytical Quality Assurance 243

SCALEA-G [134]

A unified monitoring and performance analysis tool for the grid is presented.
The tool provides flexible facilities for the definition and instrumentation of
sensors, access to previously monitored information. The information may be
collected both at the system (middleware) level and at the application level.

Globus MDS-2, MDS-4 [32, 51]

In Metacomputing Directory Service (MDS) architecture the monitoring infor-
mation collected by distributed information providers is collected and stored
in a dedicated aggregate directory services. The proposed architecture allows
for distributed, standardized and easily extendable implementation of grid
monitoring, while suffering from serious performance problems. These prob-
lems were taken into account and partially resolved in version MDS-4, where
the corresponding directory services are re-implemented using Web service
standards and solutions.

R-GMA [48]

R-GMA is a relational database implementation of GMA that can be used not
only as a monitoring solution, but as a generic information source. It allows
for managing monitoring information providers defined as database providers,
stream data providers, or providers of historical data. The information queries
are expressed in SQL-like notation and collect the historical data, ongoing
events, or latest events of certain type.

MonALISA [100]

MonALISA is a monitoring solution based on peer-to-peer Jini platform. The
platform is used for dynamic discovery, loading and replication of relevant
common information. The data collection is performed by a special engine,
which dynamically loads and controls the monitoring modules. The engine
allows also for aggregating the previous information and is equipped with a
powerful management user interface.

GridICE [1]

GridICE is a multi-layer centralized grid monitoring platform that is capable
of observing simple and composite resource metrics. The collected data is
made available for consumers by the publisher service, while the notifications,
statistics and periodic reports are provided by the notification service.

7.6.4 Classification of Monitoring Techniques

The various approaches that have been discussed above are classified and
summarized (according to the classification scheme introduced in Section 7.4)
in tables 7.3 and 7.4.

244 Authors Suppressed Due to Excessive Length

Table 7.3. Table-A for Monitoring

Contribution Class Quality Life-Cycle Discipline Layer

[108, 10] monitoring behavior run-time (op-
eration)

SOC SCC

[20] monitoring behavioral
conformance

run-time (op-
eration)

SOC SCC

[13] monitoring functional cor-
rectness

run-time (op-
eration)

SOC SCC

[14, 15, 11] monitoring behavioral cor-
rectness

run-time (op-
eration)

SOC SCC

[4] monitoring behavioral cor-
rectness

run-time (op-
eration)

SOC SCC

[17] monitoring privacy agree-
ments

run-time (op-
eration)

SOC SI

[130, 86, 87] monitoring behavioral
correctness,
QoS (e.g.,
perfomance)

run-time (op-
eration)

SOC SCC

[129, 79] monitoring compliance
to security
requirements

run-time (op-
eration)

SOC SI, SCC

[46] monitoring correctness
with respect to
SLA properties

run-time (op-
eration)

SOC, Grid SI

[81] monitoring behavioral cor-
rectness

run-time (op-
eration)

SOC, BPM SCC, BPM

[120] monitoring SLA, QoS
(security,
performance,
reliability,
cost)

run-time (op-
eration)

SOC SI

[77] monitoring SLA, QoS
(performance,
reliabiltiy)

run-time (op-
eration)

SOC SI

[83] monitoring SLA, various
observable
QoS

run-time (op-
eration)

SOC SI

[31] monitoring functional cor-
rectness

run-time (op-
eration)

SOC SI

[16] monitoring relatively any
characteristic
of a process

run-time (op-
eration)

BPM BPM

[96] monitoring performance,
KPI

run-rime (op-
eration)

BPM SCC

[29] monitoring business met-
rics, KPIs

run-time (op-
eration), post-
mortem

BPM BPM

[112] monitoring relatively any
characteristic
of a process

run-time (op-
eration)

BPM SCC

[27] monitoring business para-
meters

run-time (op-
eration)

BPM BPM

[66] monitoring business prop-
erties and met-
rics

run-time (op-
eration)

BPM BPM

[59] monitoring behavior post-mortem BPM BPM

[115, 149] monitoring behavioral cor-
rectness

run-time (op-
eration), post-
mortem

BPM BPM

[147] monitoring security
(security-
critical behav-
ior)

run-time (op-
eration), post-
mortem

BPM BPM

[101] monitoring behavior post-mortem SOC SCC

[39] monitoring behavioral
properties

post-mortem SOC SCC

[133] monitoring Performance run-time Grid SI

[134] monitoring Performance run-time Grid SI

[32, 51] monitoring Various
domain-
specific in-
formation
(QoS, resource
properties,
available
services)

run-time, post-
mortem

Grid SI

[48] monitoring Domain-
specific infor-
mation

run-time, post-
mortem

Grid SI

[100] monitoring Domain-
specific in-
formation,
performance

run-time, post-
mortem

Grid SI

[1] monitoring Domain-
specific in-
formation,
performance

run-time, post-
mortem

Grid SI

7 Analytical Quality Assurance 245

Table 7.4. Table-B for Monitoring

Contribution Artifact Reference Formality Automation Evaluation

[108, 10] composition
of BPEL
processes

behavioral
composition
requirements

formal automated explor. case
study

[20] composition
of BPEL
processes

conversation
constraints

formal automated explor. case
study

[13] BPEL process func. asser-
tions on BPEL
activities

formal automated explor. case
study

[14, 15, 11] BPEL process func. and
non-func.
assertions,
temporal
requirements

formal automated explor. case
studies

[4] global behav-
ior of service
composition

compliance
with local ser-
vice execution
models

formal automated explor. case
study

[17] use of privacy
information
by service
provider

privacy agree-
ment proper-
ties (rights and
obligations)

formal automated discussion

[130, 86, 87] BPEL process,
service compo-
sition execu-
tion

func. and
non-func.
assertions,
temporal
requirements

formal automated explor. case
study, experi-
ments

[129, 79] service compo-
sition execu-
tion

security prop-
erties (pat-
terns)

formal automated explor. case
study

[46] BPEL process func. and
non-func.
assertions,
temporal
requirements

formal automated discussion

[81] business
process

func. require-
ments and as-
sertions

formal automated explor. case
study

[120] service execu-
tion

proprietary
SLA prop-
erties and
assertions

- automated discussion

[77] service execu-
tion

proprietary
SLA prop-
erties and
assertions

- automated discussion

[83] service execu-
tion

WS-
Agreement
properties and
assertions

- automated discussion

[31] services and
message ex-
changes

WS-Policy
spec.

- automated discussion

[16] BPEL process visual behav-
ioral queries
and report
spec.

formal automated explor. case
study

[96] BPEL process process perfor-
mance indica-
tors

- automated explor. case
study

[29] business
process

business met-
rics

- automated discussion

[112] BPEL process process audit
spec.

- automated discussion

[27] business
process

metrics, KPIs - automated discussion

[66] business
process

metrics, KPIs - automated discussion

[59] process execu-
tion logs

- formal automated explor. case
study

[115, 149] business
process execu-
tion logs

process spec. formal automated explor. case
study, experi-
ments

[147] business
process execu-
tion logs

security-
correct process
spec.

formal automated explor. case
study

[101] service interac-
tions

- formal semi-
automated

experiments

[39] service interac-
tions

- formal automated discussion, ex-
periments

[133] service mes-
sages

Domain-
specific met-
rics

- automated discussion

[134] TCP streams XPath queries
over monitor-
ing data

- automated TBD

[32, 51] specific data
providers

specific infor-
mation queries

- automated discussion,
case studies

[48] data streams,
specific
providers

SQL-like
queries

- automated discussion

[100] specific data
providers

regular expres-
sion predicates

- automated discussion

[1] specific data
providers

domain-
specific met-
rics

- automated TBD

246 Authors Suppressed Due to Excessive Length

7.7 Analysis

7.7.1 Modelling and Simulation

QoS Analysis with PEPA models [57, 58]

Service-based applications in general must be developed by taking into ac-
count both the problem of scalability and security. The solution proposed by
the authors uses UML diagrams, such as state diagrams and sequence dia-
grams, which are suitable for model-driven development. Those diagrams are
colored with performance-related characteristics of modeled systems, and they
are automatically translated to PEPA, a common used stochastic process al-
gebra. In [58], authors propose the analysis of retrieved PEPA models with the
multi-terminal binary decision diagram (MTBDD)-based PRISM stochastic
model checker.

Complexity analysis of BPEL Web Processes [26]

The complexity of BPEL descriptions, when used for describing WS Processes,
can interfere with maintenance, understandability and effectiveness of both
the WS-based application and development. Thus, it can be useful to mea-
sure the complexity of such descriptions in term of metrics derived by static
analysis of the BPEL descriptions. The proposed approach uses three differ-
ent static-analysis derived metrics to predict and measure the complexity of
a BPEL description.

Performance Modeling of WS-BPEL-Based Web Service Compositions [116]

Classic QoS analysis of service-based applications is applied in the context of
this paper in order to select an optimal set of services to orchestrate a WS
composition by filling a WS-BPEL description of the process, which is the
aim of the service integrator. The non-functional contract between the inte-
grator and the third party service providers is composed of a set of Service
Level Agreements (SLAs). The overall problem is the development of a per-
formance analysis and a model for the evaluation of the quality of processes
created by using WS-BPEL. To address this problem, the approach by the au-
thors introduces a mathematical model, based on operational research, which
describes the performance of composed web service processes written in the
WS-BPEL language. The authors also introduce a distributed infrastructure
which is able to detect if the introduction of a new instance affects (and how)
the performance of the web service provider nodes, and detect if SLAs are
violated or fulfilled.

7 Analytical Quality Assurance 247

Performance Prediction of Web Service workflows [91]

Web Service based application play a very important role in the general
service-based architecture. Moreover, they can be selected and composed in
order to create highly complex applications. In this case, the Business Process
Execution language (BPEL) can be used to express such compositions and in-
teractions. Although, a very important factor to decide how composition can
be instantiated, that is, which actual services must be selected, is the whole
performance of the BPEL description. The prediction of the BPEL workflow
performance can be also useful to detect if a given composition is able to pro-
vide the requirements about the quality of service. To this end, the authors
propose an integrated framework to resolve the issue of performance prediction
and assessment of workflows expressed in the BPEL language. The starting
point for the prediction is composed of annotated BPEL and WSDL spec-
ifications, from which authors derive performance bounds on response time
and throughput. Thus, users are able to assess the efficiency of the BPEL
workflow, and service providers can, for example, adapt their compositions by
estimating performance gains of different upgrades to existing systems.

A Logic-Based Verification of Contracts in Semantic Web Services[34]

Service contracts describe mutual expectations and commitments of the inter-
acting participants. The dynamic aspect of contracts amounts to the workflow
models of the interaction protocols seen from the point of view of each par-
ticipant. The problem of automated contracting deals with the analysis of
compliance between the expectations and commitments between the partners
and therefore the verification of the compatibility of the workflow models. In
order to capture the dynamic aspects of contracting, the authors in [34] pro-
pose a logic called CTR-S. The logic permits representation of the composition
participants in terms of workflow, while the desired properties (expectations)
are represented as constraints. The automated contracting is therefore a prob-
lem of verifying that the expectation is enforceable by the workflow model. A
corresponding model and proof theories for capturing the workflow constructs
(sequence, concurrent execution, external/internal choices, etc.) and execution
constraints (single or serial occurrence of events, their arbitrary nested logical
combinations) are developed and represented. Finally, the authors present the
reasoning algorithms for the automated verification of the workflows against
expectation constraints.

Web Service Interfaces [19]

A Web service often depends on other Web services, which have been im-
plemented by different vendors, and their correct usage is governed by rules.
Such rules may constrain data types and service signatures, but they may
also express temporal constraints on the service invocations. In order to veri-
fy/enforce these rules, specific forms of analysis are necessary. To this end, the

248 Authors Suppressed Due to Excessive Length

authors propose an approach to verify that within a composition one service
can correctly collaborate with another or may be substituted by another ser-
vice according to the predefined set of rules. In order to specify these rules, a
special formalism, Web service interface language, is presented. The interface
defines three kinds of rules on the Web service use: (i) it specifies the service
signature rules (methods and their types of input / output parameters); (ii)
consistency rules, i.e., propositional constraints on method calls and output
values that may occur in a Web service conversation; and (iii) protocol rules,
i.e., temporal constraints on the ordering of method calls. For each kind of
rules a specific logic-based notation is presented and formalized.

Transforming BPEL into annotated Deterministic Finite State Automata for
Service Discovery [153]

Web services advocate loosely coupled systems, although current loosely cou-
pled applications are limited to stateless services. The reason for this limi-
tation is the lack of a method supporting matchmaking of state dependent
services exemplarily specified in BPEL. In particular, the sender’s requirement
that the receiver must support all possible messages sent at a certain state are
not captured by models currently used for service discovery. To this end, the
authors in [153] present the concept of matching business processes in loosely
coupled architectures. It proposes a transformation from BPEL to annotated
Deterministic Finite State Automata aDFA. The transformation represents
messages that might be sent by a party at a particular state as messages that
must be supported by the corresponding receiving party. This explicit model-
ing of mandatory transitions of a sender and optional transitions of a receiver
is the main contribution of this approach.

Specification and Validation of the Business Process Execution Language for
Web Services [45]

The authors approach the problem of enriching business process models spec-
ified with BPEL4WS specification with operational semantics. Specifically, an
abstract operational semantics for BPEL4WS in terms of a real-time distrib-
uted abstract state machine DASM is proposed in [45]. The BPEL abstract
machine is organized into three basic layers reflecting different levels of ab-
straction. The top layer, called abstract model, provides an overview and
defines the modeling framework comprehensively. The second layer, called in-
termediate model, specifies the relevant technical details and provides the full
DASM model of the core constructs of the language. Finally, the third layer,
called execution model, provides an abstract executable semantics of BPEL.

7.7.2 Verification of Service Compositions

Adaptive Service Composition in Flexible Processes [3]

The problem of service selection arises whenever complex applications, de-
scribed as processes invoking services, need to select their composing elements

7 Analytical Quality Assurance 249

from a set of functionally equivalent services which differ for nonfunctional
characteristics (QoS parameters). The problem can be defined as the selec-
tion of the best set of available services at runtime. Constraints are both
process-related ones, and end-user preferences. To this end, the authors in-
troduce a modeling and analysis technique for the WS selection problem at
runtime based on integer linear programming. (optimization problem). The
new modeling approach to the service selection problem is based on diverse
contributions:

Analysis of Interacting BPEL Web Services [52]

The analysis illustrated in the paper considers interactions of composite web
services as conversations, that is, the sequence of messages which have been
exchanged by the services. Compositions are described, as usual, with the
BPEL language, against which some behavioral properties must be model-
checked. The proposed solution translates BPEL specifications of composite
web services to an intermediate representation, and then to the target verifi-
cation language Promela, which can be used, together with a LTL property,
as input to the SPIN model checker.

A model checking approach to verify BPEL4WS workflows [21]

As in many fields of Software Engineering, the problem of practical formal
verification by using model checking can be also used to verify functional
properties in service-based applications. As one possible solution, the authors
propose to translate WS compositions described in BPEL4WS to BIR, the
source language of Bogor, a state-of-the-art extensible model checker. First,
the methodology can be used to verify deadlock freedom from WS composi-
tions. Moreover, additional properties to be verified can be specified by using
WS-CoL and LTL. In the first case, WS-CoL allows the predication on vari-
ables containing data both inside and outside the process; they can be verified
by using assert statements in the BIR language. LTL properties can be verified
by using two ad-hoc Bogor extensions.

Modeling Web Service Orchestration [94]

Current network technologies allow the development of new interaction busi-
ness paradigms, such as virtual enterprises: different companies pool together
their services to offer more complex, added-value products and services. Sys-
tems supporting such models are commonly referred to as Cooperative Infor-
mation Systems (CIS). By using a service-based approach, the cooperative sys-
tem consists of different distributed applications which integrate the E-services
offered by different organizations. Such integration raises issues regarding ser-
vice composability, correctness, synchronization and coordination. To address
those issues, the authors in [94] propose the PARIDE framework (Process-
based framework for oRchestratIon of Dynamic E-services) to define a com-
mon conceptual component model (and the related description language) for

250 Authors Suppressed Due to Excessive Length

E-services, and the notions of compatibility and dynamic substitution of E-
services based on the concept of cooperative process. PARIDE adopts a Petri
Net-based model to ensure the description of the orchestration of E-services,
and the related design of distributed orchestration engines. Besides, it pro-
vides analysis techniques based on the Petri Nets in order to address specific
issues such as deadlocks, possible timeouts, configuration reachability, etc.

Workflow Verification [146, 148, 114]

In their papers Aalst et al. address the problem of the verification and the
analysis of service-based workflows. Based on a Petri-net-based representation
of workflows, Aalst in [146] provides techniques to verify soundness property,
e.g., a workflow is sound if and only if, for any case, the process terminates
properly, i.e., termination is guaranteed, there are no dangling references,
and deadlock and livelock are absent. The correctness of a process can be
decided by partitioning the workflow into sound subprocesses. A Petri-net-
based workflow analyzer called Woflan is proposed to support the application
of the approach. In [114], Aalst et al. are interested in providing answers to
conformance problem due to the coexistence of event logs and process models
of business workflows. They use Petri nets to model processes; this is argued
by the fact that Petri nets are formal and have associated analysis techniques
to easily parse any event log. [114] shows that conformance has two dimen-
sions: fitness (the event log may be the result of the process modeled) and
appropriateness (the model is a candidate from a structural and behavioral
point of view). Metrics measuring fitness and appropriateness are supported
by the Conformance Checker, a tool which has been implemented by the ProM
Framework.

Modeling and Model Checking Web Services [123]

Schlingloff et al. in [123] address the problem of checking correctness of com-
posite web service processes. The original goal of modeling BPEL processes
with Petri nets is to give the language BPEL4WS a formal semantic, and
to compare the applicability of several formalisms for this task (e.g.,Abstract
State Machines). The work described in [123] shows how to build Petri net
models of web services formulated in the BPEL4WS specification language.
The main goal is to define an abstract correctness criterion, called usability
and to study the automated verification according to this criterion. This work
relates correctness of web service models to the model checking problem for
alternating temporal logics.

Model-Checking Verification for Reliable Web Service [98]

Model checking is a technique for the verification of software systems. In this
paper, the author attempts to assess model checking techniques in the case
of distributed service-based applications. The SPIN model-checker is used

7 Analytical Quality Assurance 251

in [98] to verify a set of properties related to business flows, described by the
WSFL workflow. SPIN provides a specification language Promela that de-
scribes the target system to be a collection of Promela processes (automata)
with channel communications. The flow description written in WSFL is trans-
lated into Promela, the input specification language of SPIN. The properties to
be checked are reachability, deadlock-freedom, or application specific progress
properties. The application specific properties are expressed as formulas of
LTL (Linear Temporal Logic), which are also fed into SPIN.

Modeling and Verifying Web Service Orchestration by means of the
Concurrency Workbench [80]

In their work, the authors address the problem of how to exploit verification
techniques like model checking, preorder checking and equivalence checking to
model and verify web service orchestrations. They propose the Concurrency
Workbench (CWB) as a generic and customizable verification tool. The CWB
supports model checking, preorder checking and equivalence checking. In the
work presented in [80], authors show how the CWB and the Process Algebra
Compiler (PAC) can be exploited to model and verify web service orchestra-
tion. To this end, a new calculus for formalizing web service orchestration is
introduced. The operational semantics of BPE-calculus is used as input of the
PAC to produce modules for the CWB.

Model Checking with Abstraction for Web Services [125]

In their paper, the authors address the problem of verifying the applications
that implement the web services. Particularly, the authors address the state
explosion problem of model checking techniques. They propose to use abstrac-
tion data techniques to face this problem. They apply this solution in the case
of distributed service-based applications. They introduce the SatAbs tool [125]
that allows for the analysis of service-based applications. It relies on model
checking techniques to identify eventual flaws in such concurrent systems.
[125] formalizes the semantics of a PHP-like language and enables modeling
of both synchronous and asynchronous communication between services. The
resulting models are amenable to verification using model checking.

Compatibility Verification for Web Service Choreography [49]

In [49], the authors address the problem of verifying process interactions for
coordinated web services composition. Web Service workflow languages aim
to fulfil the requirement of a coordinated and collaborative service invocation
specification to support long running and multi-service transactions. Amongst
the key issues in the design and implementation of components in this archi-
tecture style for critical business applications, is the formation of compositions
as a series of interacting workflows and how transactions of activities inter-
act to support the underlying business requirements. The authors proposes to

252 Authors Suppressed Due to Excessive Length

use finite state machine representations of web service orchestrations to ana-
lyze process interactions of web service compositions. The aim of this analysis
concentrates on the compatibility of processes that take part in the complete
composition environment.

Modeling Component Connectors in Reo by Constraint Automata [9]

Coordination models and languages close the conceptual gap between the
cooperation model used by the constituent parts of an application and the
lower-level communication model used in its implementation. In [9], the au-
thors introduce constraint automata as a formalism to describe the behav-
ior and possible data flow in coordination models that connect anonymous
components to enable their coordinated interaction. Constraint automata are
used as an operational model for Reo, an exogenous coordination language for
compositional construction of component connectors based on a calculus of
channels. Constraint automata make modeling subtle timing and input/out-
put constraints of Reo connectors possible, specifically their combined mix of
synchronous and asynchronous transitions.

A Model-Checking Verification Environment for Mobile Processes [47]

A global computing system is a network of stationary and mobile components.
The primary features of a global computing system are that its components are
autonomous, software versioning is highly dynamic, the network’s coverage is
variable and often its components reside over the nodes of the network (WEB
services), membership is dynamic and often ad hoc, without a centralized
authority. Global computing systems must be made very robust since they
are intended to operate in potentially hostile dynamic environments. The
authors in [47] exploit History Dependent automata HD-automata as a basis
for the design and development of verification toolkits for reasoning about the
behavior of mobile systems. A verification environment, called HD-Automata
Laboratory HAL, is used to exploits HD-automata of systems specified in the
π-calculus. The HAL environment includes modules that implement decision
procedures to calculate behavioral equivalences.

Describing and Reasoning on Web Services using Process Algebra [121]

Web services are an emerging and promising area involving important techno-
logical challenges. Some of the main challenges are to correctly describe web
services, to compose them adequately and/or automatically, and to discover
suitable services working out a given problem. In their work, the authors pro-
pose a framework to that uses Process Algebra called CCS as an abstract
representation means to describe, compose and reason (simulation, property
verification, correctness of composition) on service-based applications. The
techniques, used to check whether a service-based application described in
process-algebraic notations respects temporal logic properties (e.g., safety and
liveness properties), are referred to as model checking methods.

7 Analytical Quality Assurance 253

LTSA-WS: A Tool for Model-Based Verification of Web Service
Compositions and Choreography [50]

Web service composition languages such as the BPEL4WS aim to fulfill the
requirement of a coordinated and collaborative service invocation specifica-
tion to support running transactions and multi-service scenarios. However, a
composition alone does not fulfill the requirement of an assured collabora-
tion in cross-enterprise service domains. Participating services must adhere
to policies set out to support these collaborative roles with permissions and
obligations constraining the interactions between services. The authors intro-
duce LTSA-WS, as a tool implementing a model-based approach to verifying
service-based applications. This tool supports verification of global proper-
ties (e.g., absence of deadlock and liveness) created from design specifications
and implementation models to confirm expected results from the viewpoints
of both the designer and implementer. Scenarios are modeled in UML, in
the form of Message Sequence Charts, and then compiled into the Finite
State Process FSP process algebra to concisely model the required behavior.
BPEL4WS implementations are mechanically translated to FSP to allow an
equivalence trace verification process to be performed.

Formal Verification of Web Service Composition [113]

Current Web services composition proposals, such as BPML, BPEL4WS,
WSCI, and OWL-S, provide solutions for describing the control and data
flows in Web service composition. However, such proposals remain at the de-
scriptive level, without providing any kind of mechanisms or tool support
for analysis and verification. The work presented in [113] proposes an event-
based approach for checking both functional and non-functional requirements
of web service compositions. The properties to be monitored are specified using
the Event Calculus formalism. Functional requirements are initially extracted
from the specification of the composition process that is expressed in WS-
BPEL. This ensures that they can be expressed in terms of events occurring
during the interaction between the composition process and the constituent
services that can be detected from the execution log. Non-functional require-
ments (e.g., such as security policies) to be checked are subsequently defined
in terms of the identified detectable events by service providers.

Execution Semantics for Service Choreographies [36]

A service choreography is a model of interactions in which a set of services
engage to achieve a goal. Choreographies have been put forward as a starting
point for building service-oriented systems since they provide a global pic-
ture of the system’s behavior. In [36], the authors present a new approach
that proposes to define a service interaction modeling language as well as
techniques for analyzing and relating global and local models of service in-
teractions. This work introduced a formal semantics for a service interaction

254 Authors Suppressed Due to Excessive Length

modeling language, namely Let’s Dance, which supports the high-level cap-
ture of both global models (i.e. choreographies) and local models of service
interactions. The semantics is defined by translation to π-calculus.

Integrating Business Requirements and Business Processes [74, 73]

In order to support continuous changes and adaptation of business process
models to business goals and requirements it is necessary to explicitly relate
the strategic goals and requirements to the business process models. The abil-
ity to formally analyze how the changes in the requirements affect the process
models enables the requirements traceability and improves the reliability of
the system through its continuous evolution. The authors propose to explicitly
associate the strategic models representing business requirements and goals
to the business process models and then provide a formal analysis support
for the verification of their compliance. In order to perform formal analysis
of these models, the requirements specifications and the annotated process
models are translated into an internal unified representation, and then the
analysis is performed using model checking techniques.

WS-VERIFY: Formal Analysis of WS Compositions [76, 75, 72, 69]

The necessity to detect requirements violations and problems in the specifica-
tions of the composition behavior is an important issue in the service-oriented
design and requires high level of formalisation and automation support. Such
analysis, however, has to tackle several problems specific to service composi-
tion behavior. First, the service communications are essentially asynchronous
and rely on complex message management systems. Second, the service spec-
ifications extensively use complex data structures and operations. Third, the
correctness of a wide class of systems strongly relies on a compliance of the
time-related composition requirements. In [76] a unified framework for the
formal verification of Web service compositions is introduced. The framework
integrates the methods and techniques for modeling and analyzing specific
aspects, such as asynchronous interactions [75], data-flow properties [72] and
qualitative/quantitative time characteristics [69].

Choreography Analysis [70, 71]

Service choreographies aim at representing global observable behavior of the
collaborating services. The realizability problem addresses the possibility to
“project” the choreography on the participants so that the behavior of the pro-
jection composition is guaranteed to correspond to the original choreography.
The conformance analysis instead aims at checking whether the observable
behavior generated by the service implementations corresponds to the chore-
ography specification. These complementary forms of analysis are equally nec-
essary for the correct implementation of the Web service collaborations. The
authors present an approach that relies on a formal model that allows for

7 Analytical Quality Assurance 255

defining both the prescribed choreography behavior and the behavior of the
composition of the implementing services. The formalism is given in terms of
state transition systems communicating through a certain model of message
queues. In order to address the realizability problem, the authors present a
hierarchy of realizability notions that allow one to efficiently analyze whether
the given choreography can be implemented and under which conditions. In
order to address the problem of conformance, the authors formally define the
notion of conformance relation between the choreography and the composi-
tion implementation, extended with a set of constraints on the information
alignment between partners.

Petri Net-based Analysis of WS-BPEL processes [105, 104, 150]

BPEL language is de-facto standard for implementing executable business
processes on top of Web services. The necessity to carry out verification ac-
tivities before the process deployment requires (i) correct and unambiguous
language formalization and (ii) the techniques for the efficient and automated
checking of relevant correctness properties.

The authors present a rigorous and detailed scheme for the formalization of
BPEL structures. For this purpose a special class of Petri nets, called workflow
nets, is adopted. In this way the formal semantics of BPEL is defined. Based
on this formalism, the authors define two tools that in combination allow
for the automated verification of BPEL. The BPEL2PNML tool translates
the BPEL process into the Petri Net Modeling Language (PNML), and the
resulting model is analyzed with the WofBPEL tool. Within the approach
the following forms of analysis have been defined: detection of unreachable
BPEL activities, detection of multiple concurrently enabled activities that
may consume the same type of message, and determining for every reachable
state of the process, which message types may be consumed in the rest of the
execution.

Verification of WS Compositions with Service/Resource Nets [131]

In [131] Tang et al. target the analysis of the Web service composition work-
flows. In particular, the concurrent resource access and linear time analysis
problems are studied. They introduce a special Petri Net-based formalism,
called Service/Resource Net (SRN) that is able to capture not only the control
flow of the composition workflow, but also other relevant aspects of the com-
position, such as time bounds of activities, resources (different data variables
or services), and conditions. The authors show how the service composition
may be represented in this formalism. When the composition is translated
into the SRN model, and the target net is simplified it is possible to perform
traditional analysis methods applicable to Petri Nets. Beyond these methods,
it is possible to perform certain specific analysis techniques, namely resource
matching and linear temporal inference.

256 Authors Suppressed Due to Excessive Length

CP-Net Based Verification for WS Compositions [155]

In Web service composition the integration of different services should be
done efficiently and correctly. One of the key issues here is to provide a pre-
cise and reliable way of integrating conversation partner into the composition
specification. Accordingly, the composition design framework should provide
the means for the correctness analysis of such integration. To this end, the
authors in [155] present a design and verification framework for service com-
positions based on the Coloured Petri Nets (CP-Nets) formalism. Given its
expresiveness, the formalism allows for the representation of data types and
data manipulations, as well as the concurrency issues and interprocess syn-
chronization. The proposed formal model enables specification of both the
complex conversation protocols of single partners and the overall composition
model.

Semantic Based Verification of BPEL4WS Abstract Processes[42]

Abstract processes represent the behavioral interface of a composition compo-
nent and therefore defines the restrictions on the component use. The abstract
process corresponds to a workflow, where elementary tasks correspond to the
basic Web service calls. When the preconditions and effects of the elementary
tasks are known it is possible to check whether the whole process is compatible
with this information, and, moreover, construct from elementary tasks new
abstract workflows satisfying the required properties. In [42], the authors’ so-
lution relies on a logical model, which allows for associating preconditions
and effects with the atomic service calls and with the complex control flow
constructs. The preconditions and effects are given as boolean expressions
over state propositions that hold in source and target states of the process
respectively. Given a process model and a set of semantic annotations of the
elementary tasks, it is possible to infer the precondition and effect of the whole
process.

Verification of Data-Driven Web Services[38]

The behavioral verification of service composition problem is a complex analy-
sis problem due to various features of the underlying service models, such as
asynchronous and lossy interactions, data, object cardinality. These features
may seriously restrict the applicability of any analysis techniques and should
be carefully studied. In [38], the authors present a formalism for specifying
compositions as a set of asynchronously interacting Web service peers. Each
peer is represented with a local database, a control flow model, input out-
put queues, and reaction rules. The composition The reaction is described
by queries over the database, internal state, user input and received mes-
sages. The composition model is parametric with respect the queue bounds,
message loss, openness, etc. The correctness properties of the composition
have the form either of temporal first order logic sentences (e.g., ordering

7 Analytical Quality Assurance 257

constraints on the action execution) or Büchi automata representing the ex-
pected conversation protocol. The authors discuss modular verification, where
the correctness is checked when the complete specification of other peers is
not available or partial. Modular verification is useful when some peers are
provided by autonomous parties unwilling to disclose implementation details,
or when verification of a partially specified composition is desired.

Automated Model Checking and Testing for Composite Web Services [65]

The process-oriented models of model checking approaches successfully cap-
ture the temporal properties among atomic WSs. However, if the internal
structure of each atomic WS is blank in the model specification, then it is
inherently hard to describe and check more delicate properties involving the
effect and output of each atomic WS. In [65], the solution consists of the fol-
lowing steps: a) use OWL-S to bound the behavior of atomic WSs; b) convert
OWL-S to the C-like language of BLAST [63]; c) enhance BLAST for checking
concurrency in OWL-S; d) embed data-bound and safety temporal properties
in the C-like code; e) use BLAST for model-checking and positive test case
generation; f) use of the typological algorithm of [141] and the positive test
cases as input for the generation of the corresponding negative test cases.

Simulation, Verification and Automated Composition of Web Services[99]

The success of the WS paradigm has led to a proliferation of available WSs.
These WSs can be combined in a composition in order to perform a complex
task. The big challenge is to describe and prove properties of these WSs in
order to: a) test the composed system by simulating its execution under dif-
ferent input conditions; b) to logically verify certain maintenance and safety
conditions associated with the composed WS; c) to automatically compose
WSs. The authors take the DAML-S ontology for describing the capabilities
of WSs and define the semantics for a relevant subset of DAML-S in terms of
a first-order logical language. The basic idea for composing and verifying is
to first map salient aspects of the DAML-S model into a situation calculus,
and from there into the Petri net domain. Then, they relate the complexity
of various WS tasks (simulation, verification, performance analysis) to the
expressiveness of DAML-S by providing proofs for their claims. Most impor-
tantly, they show that the complexity of the reachability problem for DAML-S
Process Models is PSPACE-complete.

Towards a formal verification of OWL-S process models[2]

Verification of the interaction protocol of WSs can be used to prove that the
protocol to be advertised is indeed correct (e.g., does not contain deadlocks)
and to guarantee additional properties, e.g., purchased goods are not delivered
if a payment is not received. In [2], the authors work extends the work analyzed
in [99] in three directions. First, a model of WS data flow is provided in

258 Authors Suppressed Due to Excessive Length

addition to control flow. Second, an OWL-S process model is translated into
a simpler model of the PROMELA specification language [64] that preserves
all the essential behavior to be verified. Third, the PROMELA specifications
are fed into the SPIN [64] model checking tool for automatically verifying that
the interaction protocol satisfies the claims.

Towards efficient verification for process composition of semantic web
services[85]

OWL-S provides no way to validate a WS composition. In practice, WS com-
position is usually a complex and error-prone process whether happening at
design time or at runtime. Moreover, if an erroneous composition plan is ex-
ecuted without being previously verified, deployment of the WS composition
process often results in runtime errors, which need to be repaired on-the-fly at
high costs. The authors propose an analysis and verification technique based
on Colored Petri Nets (CPNets) [67].The main idea is to define a compos-
ite process in a three-level specification: interface net, orchestration net and
composition net, and to specify the control and data flow by mapping control
constructs of OWL-S into the CPNet representation. Then the constructed
CPNet model is simulated and validated to detect the composition errors,
such as deadlocks, and to verify whether the composition process does have
certain expected dynamic properties.

7.7.3 Classification of Analysis Techniques

The various approaches that have been discussed above are classified and
summarized (according to the classification scheme introduced in Section 7.4)
in tables 7.5 and 7.6.

7.8 Observations and Future Research Directions

Based on the results of the literature review, this section discusses key research
challenges in quality assurance for services and service-based applications and
how they have been addressed in the literature thus far.

Concerning testing, the reviewed papers and their classification show sev-
eral areas of interest in the testing community. The majority of the approaches
that has been reviewed addresses the problem of generating test cases for test-
ing services and service-based applications. This includes deriving test cases
from service descriptions (“black box”), based on WSDL for instance, and de-
riving test cases from service compositions (“white box”), based on BPEL for
example. Approaches are presented for deriving (or generating) test inputs, as
well for determining the expected outputs (test oracles). In addition, several
of these approaches include techniques for executing the test cases, once these
have been defined.

7 Analytical Quality Assurance 259

Table 7.5. Table-A for Analysis

Contribution Class Quality Life-Cycle Discipline Layer

[57, 58] analysis (veri-
fication)

QoS (scalabil-
ity, security)

design SE, SOC SCC

[26] analysis (syn-
thesis)

code complex-
ity

design SE, SOC SCC

[116] analysis (syn-
thesis)

QoS (many) design SE, SOC SCC

[91] analysis (syn-
thesis)

QoS (many) design, execu-
tion

SE, SOC SCC

[3] analysis (syn-
thesis)

QoS (many) design, execu-
tion

SOC, SE SCC

[52] analysis (veri-
fication)

functional be-
havior

design SE, SOC SCC

[21] analysis (veri-
fication)

behavior design SE, SOC SCC

[94] analysis (veri-
fication)

Deadlock,
Timeouts,
Reachability

Execution SOC and BPM SCC

[146, 148, 114] analysis (veri-
fication)

Correctness,
Conformance

Design, Execu-
tion

BPM SCC

[123] analysis (syn-
thesis)

Usabiliy Design SOC SCC

[98] analysis (veri-
fication)

Dataflows
properties
(e.g., dead-
locks, reacha-
bility)

Design SE, SOC SCC

[80] analysis (veri-
fication)

Deadlocks Execution BPM, SOC SCC

Verification
and Validation

SE, SOC SCC

[125] analysis (verfi-
cation)

Safety proper-
ties

Execution SOC SCC

[153] analysis (syn-
thesis)

Exchanged
message prop-
erties

Design BPM, SOC SCC

[45] analysis (veri-
fication)

Correlation
and syn-
chronous
receive/reply
messages

Execution BPM, SOC SCC

[49] analysis (veri-
fication)

Interface
Compatibil-
ity, Safety
Compatibil-
ity, Liveness
Compatibility

Design BPM, SOC SCC

[9] analysis (veri-
fication)

Synchronous
and asynchro-
nous transition
properties

Design SE, SOC SCC

[47] analysis (veri-
fication)

Behavioral and
safety proper-
ties

Design SE, SOC SCC

[121] analysis (veri-
fication)

Safety and
liveness prop-
erties

Design SE, SOC SCC

[50] analysis (veri-
fication)

Deadlock, live-
ness

Design, execu-
tion

SOC SCC

[113] analysis (veri-
fication)

Security poli-
cies

Execution SOC SCC

[36] analysis (syn-
thesis)

Reachability Design, execu-
tion

SOC SCC

[74, 73] analysis (veri-
fication)

behavioral cor-
rectness

design BPM, RE BPM, SCC

[76, 75, 72, 69] analysis (veri-
fication)

behavioral cor-
rectness

design BPM, SOC SCC

[70, 71] analysis (veri-
fication)

behavioral cor-
rectness

design SOC SCC

[105, 104, 150] analysis (veri-
fication)

behavioral cor-
rectness

design BPM SCC, BPM

[131] analysis (veri-
fication)

behavioral cor-
rectness

design SOC SCC

[155] analysis (veri-
fication)

protocol con-
formance

design SOC SCC

[19] analysis (veri-
fication)

behavioral cor-
rectness

design, execu-
tion

SOC SCC, SI

[42] analysis (veri-
fication)

behavioral cor-
rectness

design SOC SCC

[38] analysis (veri-
fication)

behavioral cor-
rectness

design SOC SCC

[34] analysis (veri-
fication)

behavioral cor-
rectness

design SE, SOC SCC

[65] analysis (veri-
fication)

behavioral cor-
rectness

design SE, SOC SCC

[99] analysis (veri-
fication), simu-
lation

behavioral cor-
rectness

design SE, SOC SCC

[2] analysis (veri-
fication)

behavioral cor-
rectness

design SE, SOC SCC

[85] analysis (veri-
fication), simu-
lation

behavioral cor-
rectness

design SOC SCC

260 Authors Suppressed Due to Excessive Length

Table 7.6. Table-B for Analysis

Contribution Artifact Reference Formality Automation Evaluation

[57, 58] colored UML
statecharts,
sequence
diagrams

QoS require-
ments

formal automated explor. case
studies

[26] WS-BPEL de-
scriptions

developer in-
terpretation,
complexity
standards

formal automated explor. case
study

[116] WS-BPEL de-
scriptions

SLAs formal automated not evaluated

[91] BPEL, WSDL
descritions

QoS require-
ments

formal automated explor. case
study

[3] BPEL descrip-
tions

QoS parame-
ters

formal automated test cases

[52] BPEL descrip-
tions

LTL properties formal automated explor. case
study

[21] BPEL4WS
compositions

LTL proper-
ties, WS-CoL,
deadlock
freedom

formal automated explor. case
studies

[94] Petri nets Orchestration
schemas

formal automated explor. case
study

[146, 148, 114] Petri nets Workflow
models

formal automated explor. case
study

[123] Petri nets BPEL4WS
specifications

formal not automated -

[98] Promela
processes, LTL
formula

WSFL specifi-
cations

formal automated explor. case
study

[80] BPE-calculus BPEL4WS
specifications

formal automated empirical eval-
uations

[125] PHP Safety proper-
ties

formal automated -

[153] aDFA BPEL4WS
specifications

formal automated explor. case
study

[45] DASM BPEL4WS
specifications

formal automated explor. case
study

[49] LTS BPEL4WS
specifications

formal automated explor. case
study

[9] Constraint au-
tomata

Graphs formal automated theoretical
proves

[47] HD-automata π-calculus
processes

formal automated explor. case
studies

[121] CCS BPEL4WS
specifications

formal automated explor. case
studies

[50] FSP BPEL4WS
specifications

formal automated empirical case
studies

[113] Event Calculus BPEL4WS
specifications

formal not automated empirical case
studies

[36] π-calculus Let’s Dance formal not automated Theoretical
proves

[74, 73] business
process spec-
ification in
BPEL

formal Tropos
requirements
specifications

formal automated explor. Case
Study

[76, 75, 72, 69] BPEL descrip-
tions

behavioral
composition
requirements

formal automated explor. case
studies

[70, 71] composition
of stateful
services

choreography
specification

formal automated Simple Scenar-
ios

[105, 104, 150] BPEL descrip-
tions

predefined exe-
cution proper-
ties

formal automated explor. Case
Study

[131] formal model
of the compo-
sition specifi-
cation

predefined exe-
cution proper-
ties

formal automated explor. case
study

[155] formal model
of the service
composition

generic cor-
rectness prop-
erties, and
conversation
protocol of a
participant

formal automated explor. case
study

[19] WS interface
models

other Web ser-
vice interface
models

formal automated Simple Sce-
nario, Theo-
retical proves

[42] abstract
process models

elementary
service pre-
conditions
and process
postconditions
(goals)

formal automated not evaluated

[38] WS composi-
tion model

temporal prop-
erties (LTL),
conversation
protocols

formal not automated not Evaluated

[34] protocols of
the composi-
tion partici-
pants

dynamic prop-
erties of ser-
vice contracts

formal automated explor. case
Study

[65] OWL-S Com-
posite WS De-
scriptions

temporal prop-
erties

formal automated explor. case
study

[99] AML-S Com-
posite WS De-
scriptions

safety condi-
tions

formal automated explor. case
study

[2] OWL-S Com-
posite WS De-
scriptions

temporal prop-
erties

formal automated explor. case
study

[85] OWL-S Com-
posite WS De-
scriptions

reachability,
liveness, fair-
ness properties

formal automated Explor. case
study

7 Analytical Quality Assurance 261

Concerning monitoring, the reviewed papers provide very rich and com-
prehensive set of approaches that cover wide range of goals, problem aspects,
and information types, as well as the different components of the SBA ar-
chitecture. The monitoring problem is considered from various stakeholder
perspectives and it addresses functional and also QoS aspects.

Concerning analysis, the literature review results show that a lot of re-
search effort has been spent by the community to build the current state
of the art in analysis of service-based applications from a quality assurance
point of view. Different formal approaches, ranging from Petri nets to process
algebras, and different quality characteristics, ranging from non-functional
to functional properties, and for different forms of service-based applications
specifications, have been proposed and analyzed by the research community.

Run-time Quality Assurance

Services are often provisioned in the context of short-term, volatile and
thus highly dynamic business relationships between service providers and re-
questors which are not known at design time. Thus, services will have to be
enabled to collaborate in highly distributed environments, cutting across the
boundaries of various organizations (including enterprises, governmental and
non-profit organizations). The aggregation of services to build service-based
applications is very likely to happen mostly at run-time in the near future.
Which means that the actual functional behavior and quality aspects of the
service-based application will have to be determined during its actual opera-
tion. Moreover, determining the relevant aspects of the context in which the
service-based application is executed becomes a run-time issue. As an exam-
ple, the types of users which interact with the service-based application, or
the actual situation or location in which the application is operated is only
determined at run-time.

There is thus a strong need for quality assurance techniques that can be
applied while the service-based application is in operation. The review has
uncovered, that currently typically monitoring techniques are proposed for
assuring the quality of an application during its operation. The problem with
monitoring is that it only checks the current (actual) execution. It does not
allow to pro-actively uncover faults which are introduced, e.g. due to a change
in the application, if they are not leading to a failure in the current execution.
Other techniques, such as testing or static analysis, examine sets of classes
of executions and thus would allow to pro-actively uncover such faults before
they lead to an actual failure during the operation of the system. Therefore,
standard and consolidated “off-line” software quality assurance techniques
(like testing and analysis) should be extended such that they are applicable
while the application operates (“on-line” techniques).

There are some contributions on regression testing for service-based ap-
plications. A regression test, i.e., re-testing the application, is essential due

262 Authors Suppressed Due to Excessive Length

to its dynamic nature (the service composition can change due to the evo-
lution of the services or other changes in the context of the service-based
application). Interestingly, although dynamics as an important characteristic
of service-based applications is acknowledged and many of the testing tech-
niques support the automatic generation and execution of test cases, there
are but a few contributions that propose performing tests during the actual
operation of the system (’on-line’ testing).

One important requirement of those “on-line” techniques, however, is that
their overhead and costs should not be an overkill to the point that they
become unpractical for this reason. Overheads and costs that incur under
any execution environment typically include time, computational resources
(e.g., processing power and memory) as well as communication resources (e.g.,
network bandwidth). Therefore, work on making the “on-line” techniques as
light-weight as possible is needed.

Finally, as (self-)adaptation of service-based applications becomes an es-
sential characteristic, there is a strong need to assure that the adaptation of
a service-based application behaves as expected. This requires specific test-
ing and analysis techniques to verify the adaptation behavior; e.g. this could
include checking whether the behavior after the adaptation conforms to the
expected behavior before the adaptation took place (in order to keep back-
wards compatibility). Those techniques and methods to assure the correctness
of adaptations are badly lacking at the moment.

Assuring End-to-end Quality

In a dynamic business scenario, the contract life-cycle should be automated
as much as possible, in order to allow organizations to dynamically change
service providers (business partners) or to re-negotiate SLAs (see above). That
requires that QoS aspects need to be checked during the operation, e.g. by
monitoring the QoS characteristics, in order to determine whether the new
service provider meets the desired QoS or whether there is a need for re-
negotiating the SLAs. As this literature review has revealed, there are only few
and isolated research contributions on assuring QoS aspects. There is thus a
strong need for novel techniques and methods that address QoS characteristics
in a comprehensive and end-to-end fashion across all layers of a service-based
application. In addition, approaches that consider the context of a service-
based application and its impact on QoS are needed in order to pave the way
towards context-aware service-based application.

Due to the dynamic world in which service-based applications operate,
techniques are needed to aggregate individual QoS levels of the services in-
volved in a service composition in order to determine and thus check the
end-to-end QoS during run-time. This aggregation will typically span differ-
ent layers of a service-based application and thus a common understanding of
what the different QoS characteristics mean within and across these layers is
needed (also see above). In fact, the definition of a QoS taxonomy is addressed

7 Analytical Quality Assurance 263

within S-Cube by defining a “Quality reference model for service-based appli-
cations” (see Chapter 6).

Another important trend is to consider more and more aspects during
the monitoring task, such as different types of information, sources, types of
event, their distribution. However, only few approaches go beyond a partic-
ular monitoring problem or provide a wider perspective on the application
execution. Furthermore, there are no existing approaches that cross all the
functional layers of a service-based application, consider evolutionary aspects
of executions with respect to a variety of information, etc.

Only very few isolated testing approaches provide solutions for considering
specific QoS characteristics. However, as it has been motivated in the intro-
duction to this chapter, QoS is an important aspect of the contracts between
service providers and consumers. Thus, assuring whether the services conform
with the agreed levels of quality is an essential activity.

Despite the great effort in the area of analysis, an evident problem can be
found in the lack of integrated methods for the overall analysis of functional
and quality properties of service-based applications. In other words, a set of
comprehensive, integrated techniques and methods able to incorporate differ-
ent aspects of quality analysis at different levels of abstraction are needed.
Such techniques should take into account the specific layers of a service-based
application, and face coherence issues among different models and aspects of
the same application.

Synergies between Approaches

The literature review results have shown that first attempts are made to ex-
ploit potential synergies between the different classes of analytical quality
assurance techniques. As an example, testing can be used as preventive mech-
anism for finding faults while monitoring is used during the operation of the
service-based application. A combination of both techniques can compensate
the weaknesses of the single approaches [25, 24]. Further examples are the use
of dedicated tests during the operation of the service-based applications in
order to determine the conformance to SLAs, the use of static analysis tools
(like model checkers) to derive test cases, or the analysis of monitoring logs
(“post-mortem” analysis or audit).

Despite these initial attempts, synergies that can be achieved by joining
and integrating different kinds of techniques have not been fully exploited.
For example, research can be directed at facilitating the use of monitoring
results as input for run-time verification. Or, testing could be combined with
monitoring in such a way that when a deviation is observed during monitoring,
dedicated test cases are executed in order to pinpoint the issues that lead to
the deviation (also see next sub-section).

264 Authors Suppressed Due to Excessive Length

Debugging and Diagnosis

In this chapter, the focus has been on dynamic techniques and methods for
uncovering failures and on static techniques for uncovering faults. Obviously,
once a failure has been identified, the cause for this failure, i.e. the fault in the
artifact, needs to be uncovered. This is the realm of debugging and diagnosis.
In this area, we see many open issues in the context of quality assurance.
Specifically, this leads to issues on how one can interact with services for the
purpose of debugging without this interaction having side-effects on the cur-
rent execution (actual operation) of the service-based application. This also
means that current service interfaces must be enhanced for testability, diag-
nosis and debuggability, which however must be well balanced with desired
characteristics such as information hiding, encapsulation and loose coupling.

∗ ∗ ∗

This chapter gave an overview of this broad field of “service quality assur-
ance” and identified the key areas where research contributions are currently
available. Based on this review of the state of the art, important and emerg-
ing research challenges were highlighted. In S-Cube, the research challenges
“run-time quality assurance”, “end-to-end quality” and “synergies between
approaches” are addressed.

References

1. Sergio Andreozzi, Natascia De Bortoli, Sergio Fantinel, Antonia Ghiselli,
Gian Luca Rubini, Gennaro Tortone, and Maria Cristina Vistoli. GridICE:
a monitoring service for grid systems. Future Generation Computer Systems,
21(4):559–571, April 2005.

2. Anupriya Ankolekar, Massimo Paolucci, and Katia P. Sycara. Towards a
formal verification of owl-s process models. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, International Semantic
Web Conference, volume 3729 of Lecture Notes in Computer Science, pages
37–51. Springer, 2005.

3. Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible
processes. IEEE Transactions on Software Engineering, 33(6):369–384, 2007.

4. Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino
Segnan. Fault Tolerant Web Service Orchestration by Means of Diagnosis. In
Software Architecture, Third European Workshop, EWSA 2006, pages 2–16,
2006.

5. X. Bai, Y. Chen, and Z. Shao. Adaptive web services testing. In 31st Annual
International Computer Software and Applications Conference (COMPSAC),
volume 2, pages 233–236, 2007.

7 Analytical Quality Assurance 265

6. X. Bai, D. Xu, G. Dai, W. . Tsai, and Y. Chen. Dynamic reconfigurable test-
ing of service-oriented architecture. In Proceedings of the 31st Annual Inter-
national Computer Software and Applications Conference (COMPSAC), vol-
ume 1, pages 368–375, 2007.

7. Xiaoying Bai, Guilan Dai, Dezheng Xu, and Wei-Tek Tsai. A multi-agent
based framework for collaborative testing on Web services. In The Fourth
IEEE Workshop on Software Technologies for Future Embedded and Ubiqui-
tous Systems, 2006 and the 2006 Second International Workshop on Collabora-
tive Computing, Integration, and Assurance.SEUS 2006/WCCIA 2006, page 6,
2006.

8. Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen. WSDL-Based
Automatic Test Case Generation for Web Services Testing. In Proceedings
of the IEEE International Workshop on Service-Oriented System Engineering
(SOSE), pages 215 – 220. IEEE Computer Society, 2005.

9. Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling com-
ponent connectors in reo by constraint automata. Sci. Comput. Program.,
61(2):75–113, 2006.

10. Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-
Time Monitoring of Instances and Classes of Web Service Compositions. In
IEEE International Conference on Web Services (ICWS 2006), pages 63–71,
2006.

11. Luciano Baresi, Domenico Bianculli, Carlo Ghezzi, Sam Guinea, and Paola
Spoletini. A Timed Extension of WSCoL. In 2007 IEEE International Con-
ference on Web Services (ICWS 2007), pages 663–670, 2007.

12. Luciano Baresi and Elisabetta DiNitto. Test and Analysis of Web Services.
Springer-Verlag GmbH, 2007.

13. Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart Monitors for Composed
Services. In Service-Oriented Computing - ICSOC 2004, Second International
Conference, pages 193–202, 2004.

14. Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-BPEL
Processes. In Service-Oriented Computing - ICSOC 2005, Third International
Conference, pages 269–282, 2005.

15. Luciano Baresi, Sam Guinea, and Pierluigi Plebani. WS-Policy for Service
Monitoring. In Technologies for E-Services, 6th International Workshop, TES
2005, pages 72–83, 2005.

16. Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Monitoring Business
Processes with Queries. In Proceedings of the 33rd International Conference
on Very Large Data Bases, pages 603–614, 2007.

17. Salima Benbernou, Hassina Meziane, and Mohand-Said Hacid. Run-Time Mon-
itoring for Privacy-Agreement Compliance. In Service-Oriented Computing -
ICSOC 2007, Fifth International Conference, pages 353–364, 2007.

18. A. Bertolino and A. Polini. The audition framework for testing Web services
interoperability. In Proceedings. 31st Euromicro Conference on Software En-
gineering and Advanced Applications, pages p. 134–42, 2005.

19. D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web Service Interfaces. In Pro-
ceeding of the International Conference on World Wide Web (WWW), 2005.

20. Domenico Bianculli and Carlo Ghezzi. Monitoring Conversational Web Ser-
vices. In IW-SOSWE’07, 2007.

266 Authors Suppressed Due to Excessive Length

21. Domenico Bianculli, Carlo Ghezzi, and Paola Spoletini. A model checking ap-
proach to verify BPEL4WS workflows. In Proceedings of the 2007 IEEE Inter-
national Conference on Service-Oriented Computing and Applications (IEEE
SOCA 2007), Newport Beach, USA, pages 13–20. IEEE Computer Society
Press, June 2007.

22. M. Bruno, G. Canfora, M. Di Penta, G. Esposito, and V. Mazza. Using Test
Cases as Contract to Ensure Service Compliance Across Releases. In Pro-
ceedings of the 3rd International Conference on Service-Oriented Computing
(ICSOC), page pp. 87 100. Springer, 2005.

23. R. C. Bryce, Y. Chen, and C. J. Colbourn. Biased covering arrays for pro-
gressive ranking and composition of Web Services. International Journal of
Simulation and Process Modelling, 3(1-2):80–87, 2007.

24. Gerardo Canfora and Massimiliano di Penta. SOA: Testing and Self-checking.
In Proceedings of International Workshop on Web Services - Modeling and
Testing - WS-MaTE, pages 3 – 12, 2006.

25. Gerardo Canfora and Massimiliano di Penta. Testing Services and Service-
Centric Systems: Challenges and Opportunities. IT Professional, 8(2):10 – 17,
2006.

26. J. Cardoso. Complexity analysis of BPEL web processes. Software Process:
Improvement and Practice, 12(1):35–49, 2007.

27. Malu Castellanos, Fabio Casati, Ming-Chien Shan, and Umesh Dayal. iBOM:
A Platform for Intelligent Business Operation Management. In ICDE ’05:
Proceedings of the 21st International Conference on Data Engineering, pages
1084–1095, 2005.

28. W.K. Chan, S.C. Cheung, and K.R.P.H. Leung. A metamorphic testing ap-
proach for online testing of service-oriented software applications. International
Journal of Web Services Research, 4(2):61–81, 2007.

29. P. Chowdhary, K. Bhaskaran, N. S. Caswell, H. Chang, T. Chao, S.-K. Chen,
M. Dikun, H. Lei, J.-J. Jeng, S. Kapoor, C. A. Lang, G. Mihaila, I. Stanoi, and
L. Zeng. Model Driven Development for Business Performance Management.
IBM Syst. J., 45(3):587–605, 2006.

30. F. Curbera. Components contracts in Service-Oriented architectures. IEEE
Computer, 11:74–80, 2007.

31. Francisco Curbera, Matthew J. Duftler, Rania Khalaf, William Nagy, Nir-
mal Mukhi, and Sanjiva Weerawarana. Colombo: Lightweight Middleware for
Service-Oriented Computing. IBM Systems Journal, 44(4):799–820, 2005.

32. Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid
Information Services for Distributed Resource Sharing. In 10th IEEE Inter-
national Symposium on High Performance Distributed Computing (HPDC-10
2001), pages 181–194, 2001.

33. G. Dai, X. Bai, Y. Wang, and F. Dai. Contract-based testing for web services.
In 31st Annual International Computer Software and Applications Conference
(COMPSAC 2007), volume 1, pages 517–524, 2007.

34. H. Davulcu, M. Kifer, and I. V. Ramakrishnan. CTR-S: A Logic for Speci-
fying Contracts in Semantic Web Services. In Proceeding of the International
Conference on World Wide Web (WWW), pages 144–153, 2004.

35. Lourival F. Júnior de Almeida and Silvia Regina Vergilio. Exploring Pertur-
bation Based Testing for Web Services. In IEEE International Conference on
Web Services (ICWS), pages 717 – 726, 2006.

7 Analytical Quality Assurance 267

36. Gero Decker, Johannes Maria Zaha, and Marlon Dumas. Execution semantics
for service choreographies. In WS-FM, pages 163–177, 2006.

37. Nelly Delgado, Ann Q. Gates, and Steve Roach. A taxonomy and cata-
log of runtime software-fault monitoring tools. IEEE Trans. Software Eng.,
30(12):859–872, 2004.

38. A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of Communicating
Data-driven Web Services. In Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), pages 90–99,
2006.

39. Didier Devaurs, Kreshnik Musaraj, Fabien De Marchi, and Mohand-Said
Hacid. Timed Transition Discovery from Web Service conversation Logs. In
20th International Conference on Advanced Information Systems Engineering
(CAISE’08), 2008.

40. Massimiliano Di Penta, Gerardo Canfora, Gianpiero Esposito, Valentina
Mazza, and Marcello Bruno. Search-based Testing of Service Level Agree-
ments. In Proceedings of the Conference on Genetic and Evolutionary Compu-
tation GECCO, pages 1090 – 1097. ACM Press, 2007.

41. Wen-Li Dong, Hang Yu, and Yu-Bing Zhang. Testing BPEL-based Web Service
Composition Using High-level Petri Nets. In EDOC ’06: Proceedings of the
10th IEEE International Enterprise Distributed Object Computing Conference,
pages 441–444. IEEE Computer Society, 2006.

42. Z. Duan, A. J. Bernstein, P. M. Lewis, and S. Lu. Semantics Based Verifi-
cation and Synthesis of BPEL4WS Abstract Processes. In Proceeding of the
International Conference on Web Services (ICWS), pages 734–737, 2004.

43. S. Dustdar and S. Haslinger. Testing of service-oriented architectures - a prac-
tical approach. In 5th Annual International Conference on Object-Oriented
and Internet-Based Technologies, Concepts, and Applications for a Networked
World, volume 3263 of Lecture Notes in Comput. Sci., pages 97–109, 2004.

44. C. Hankin F. Nielson, H. R. Nielson. Principles of Program Analysis. Springer,
2005. Second Ed.

45. Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi. Specification and
validation of the business process execution language for web services. In
Abstract State Machines, pages 78–94, 2004.

46. A. Farrell, M. Sergot, C. Bartolini, M. Salle, D. Trastour, and A. Christodoulou.
Using the Event Calculus for the Performance Monitoring of Service-Level
Agreements for Utility Computing. In Proceedings of First IEEE International
Workshop on Electronic Contracting (WEC 2004), 2004.

47. Gian-Luigi Ferrari, Stefania Gnesi, Ugo Montanari, and Marco Pistore. A
model-checking verification environment for mobile processes. ACM Trans.
Softw. Eng. Methodol., 12(4):440–473, 2003.

48. Steve Fisher. Relational Model for Information and Monitoring. Technical
Report GWD-GP-7-1, Global Grid Forum, 2001.

49. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Compatibility
verification for web service choreography. In ICWS ’04: Proceedings of the
IEEE International Conference on Web Services, page 738, Washington, DC,
USA, 2004. IEEE Computer Society.

50. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. LTSA-WS: a
tool for model-based verification of web service compositions and choreogra-
phy. In ICSE ’06: Proceedings of the 28th international conference on Software
engineering, pages 771–774, New York, NY, USA, 2006. ACM.

268 Authors Suppressed Due to Excessive Length

51. Ian Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. von
Reich. The Open Grid Services Architecture, Version 1.0. Technical Report
GFD-I.030, Global Grid Forum, January 2005.

52. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Pro-
ceedings of the 13th International World Wide Web Conference (WWW’04),
2004.

53. M.G. Fugini, B. Pernici, and F. Ramoni. Quality analysis of composed ser-
vices through fault injection. Information System Frontiers, Special Issue on
Collaborative Business Processes, in press.

54. Jose Garcia-Fanjul, Claudio de la Riva, and Javier Tuya. Generation of Con-
formance Test Suites for Compositions of Web Services Using Model Checking.
In TAIC-PART ’06: Proceedings of the Testing: Academic & Industrial Con-
ference on Practice And Research Techniques, pages 127–130. IEEE Computer
Society, 2006.

55. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engi-
neering. Prentice Hall, 1991.

56. Carlo Ghezzi and Sam Guinea. Run-Time Monitoring in Service-Oriented
Architectures. In Luciano Baresi and Elisabetta Di Nitto, editors, Test and
Analysis of Web Services, pages 237–264. Springer, 2007.

57. S. Gilmore, V. Haenel, L. Kloul, and M. Maidl. Choreographing security and
performance analysis for web services. In EPEW/WS-FM, volume 3670 of
Lecture Notes in Computer Science, pages 200–214. Springer, 2005.

58. S. Gilmore and L. Kloul. A unified tool for performance modelling and predic-
tion. Reliability Engineering and System Safety, 89:17–32, 2005.

59. Christian W. Günther and Wil M. P. van der Aalst. Fuzzy Mining - Adaptive
Process Simplification Based on Multi-perspective Metrics. In Business Process
Management, 5th International Conference, BPM, pages 328–343, 2007.

60. S. Hanna and M. Munro. An approach for specification-based test case gener-
ation for Web services. In IEEE/ACS International Conference on Computer
Systems and Applications, AICCSA 2007, pages 16–23, 2007.

61. Reiko Heckel and Marc Lohmann. Towards Contract-based Testing of Web
Services. In Proceedings of the International Workshop on Test and Analysis
of Component Based Systems (TACoS 2004), volume 116 of Electronic Notes
in Theoretical Computer Science, pages 145 – 156. Elsevier B.V., 2005.

62. Reiko Heckel and Leonardo Mariani. Automatic conformance testing of web
services. In In Proceedings Fundamental Approaches to Software Engineering
(FASE 05), LNCS, pages 34 – 48, 2005.

63. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT Annual Symposium on Principles of Programming Languages, pages
58–70, Portland, Oregon, USA, 2002. ACM.

64. Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Man-
ual. Addison-Wesley Professional, September 2003.

65. Hai Huang, Wei-Tek Tsai, Raymond Paul, and Yinong Chen. Automated
Model Checking and Testing for Composite Web Services. In 8th IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2005), pages 300–307. IEEE Computer Society, 2005.

66. Jun-Jang Jeng, Josef Schiefer, and Henry Chang. An Agent-based Architec-
ture for Analyzing Business Processes of Real-Time Enterprises. In EDOC

7 Analytical Quality Assurance 269

’03: Proceedings of the 7th International Conference on Enterprise Distributed
Object Computing, page 86, 2003.

67. Kurt Jensen. Coloured Petri Nets – Basic concepts, analysis methods and
practical use. In Monographs in Theoretical Computer Science (2nd Edition),
volume 1: Basic Concepts. Springer-Verlag, 1997.

68. M. Karam, H. Safa, and H. Artail. An abstract workflow-based framework
for testing composed web services. In International Conference on Computer
Systems and Applications (AICCSA), pages 901–908, 2007.

69. R. Kazhamiakin, P. K. Pandya, and M. Pistore. Representation, Verifica-
tion, and Computation of Timed Properties in Web Service Compositions. In
Proceeding of the International Conference on Web Services (ICWS), pages
497–504, 2006.

70. R. Kazhamiakin and M. Pistore. Analysis of Realizability Conditions for Web
Service Choreographies. In Proceedings Formal Techniques for Networked and
Distributed Systems (FORTE), pages 61–76, 2006.

71. R. Kazhamiakin and M. Pistore. Choreography Conformance Analysis: Asyn-
chronous Communications and Information Alignment. In Proceedings of
the International Workshon on Web Services and Formal Methods (WS-FM),
pages 227–241, 2006.

72. R. Kazhamiakin and M. Pistore. Static Verification of Control and Data in
Web Service Compositions. In Proceeding of the International Conference on
Web Services (ICWS), 2006.

73. R. Kazhamiakin, M. Pistore, and M. Roveri. Formal Verification of Require-
ments using SPIN: A Case Study on Web Services. In Proceedings of the In-
ternational Conference on Software Engineering and Formal Methods (SEFM),
pages 406–415, 2004.

74. R. Kazhamiakin, M. Pistore, and M. Roveri. A Framework for Integrating
Business Processes and Business Requirements. In Proceedings of the Inter-
national Enterprise Distributed Object Computing Conference (EDOC), pages
9–20, 2004.

75. R. Kazhamiakin, M. Pistore, and L. Santuari. Analysis of Communication
Models in Web Service Compositions. In Proceeding of the International Con-
ference on World Wide Web (WWW), 2006.

76. Raman Kazhamiakin. Formal Analysis of Web Service Compositions. PhD
thesis, University of Trento, 2007.

77. Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and
monitoring service level agreements for web services. Journal of Network and
Systems Management, 11(1):57–81, 2003.

78. ChangSup Keum, Sungwon Kang, In-Young Ko, Jongmoon Baik, and Young-Il
Choi. Generating test cases for Web services using extended finite state ma-
chine. In Proceedings of Testing of Communicating Systems. 18th IFIP/WG6.1
International Conference, TestCom 2006, Lecture Notes in Computer Science
Vol. 3964, pages 103–117, 2006.

79. Christos Kloukinas and George Spanoudakis. A Pattern-Driven Framework
for Monitoring Security and Dependability. In Trust, Privacy and Security
in Digital Business, 4th International Conference, TrustBus, pages 210–218,
2007.

80. Mariya Koshkina and Franck van Breugel. Modelling and verifying web service
orchestration by means of the concurrency workbench. SIGSOFT Softw. Eng.
Notes, 29(5):1–10, 2004.

270 Authors Suppressed Due to Excessive Length

81. Alexander Lazovik, Marco Aiello, and Mike P. Papazoglou. Associating Ssser-
tions with Business Processes and Monitoring their Execution. In Service-
Oriented Computing - ICSOC 2004, Second International Conference, pages
94–104, 2004.

82. Marc Lohmann, Leonardo Mariani, and Reiko Heckel. A Model-Driven Ap-
proach to Discovery, Testing and Monitoring of Web Services, pages 173 –
204. Springer, 2007.

83. Heiko Ludwig, Asit Dan, and Robert Kearney. Cremona: An Architecture and
Library for Creation and Monitoring of WS-Agreements. In Service-Oriented
Computing - ICSOC 2004, Second International Conference, pages 65–74, 2004.

84. Daniel Luebke. Unit Testing BPEL Compositions, pages 149 – 171. Springer,
2007.

85. Nan Luo, Junwei Yan, and Min Liu. Towards efficient verification for process
composition of semantic web services. In IEEE SCC, pages 220–227. IEEE
Computer Society, 2007.

86. Khaled Mahbub and George Spanoudakis. Run-time Monitoring of Require-
ments for Systems Composed of Web Services: Initial Implementation and
Evaluation Experience. In 2005 IEEE International Conference on Web Ser-
vices (ICWS 2005), pages 257–265, 2005.

87. Khaled Mahbub and George Spanoudakis. Monitoring WS-Agreements: An
Event Calculus-Based Approach. In Luciano Baresi and Elisabetta Di Nitto,
editors, Test and Analysis of Web Services, pages 265–306. Springer, 2007.

88. Evan Martin, Suranjana Basu, and Tao Xie. Automated Robustness Testing of
Web Services. In Proc. 4th International Workshop on SOA And Web Services
Best Practices (SOAWS 2006), 2006.

89. Evan Martin, Suranjana Basu, and Tao Xie. Automated Testing and Response
Analysis of Web Services. In IEEE International Conference on Web Services
(ICWS), pages 647 – 654, 2007.

90. Evan Martin, Suranjana Basu, and Tao Xie. WebSob: A tool for robustness
testing of web services. In Companion to the proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE), pages 65–66, 2007.

91. M. Marzolla and R. Mirandola. Performance prediction of web service work-
flows. In QoSA, volume 4880 of Lecture Notes in Computer Science, pages
127–144. Springer, 2007.

92. P. Mayer and D. Luebke. Towards a BPEL unit testing framework. In Pro-
ceedings of the 2006 Workshop on Testing, Analysis, and Verification of Web
Services and Applications, TAV WEB’06, volume 2006, pages 33–42, 2006.

93. J.D. McGregor and D.A. Sykes. A Practical Guide to Testing Object-oriented
Software. Addison-Wesley Professional, 2001.

94. Massimo Mecella, Francesco Parisi-Presicce, and Barbara Pernici. Modeling e-
service orchestration through Petri Nets. In TES ’02: Proceedings of the Third
International Workshop on Technologies for E-Services, pages 38–47, London,
UK, 2002. Springer-Verlag.

95. Hong Mei and Lu Zhang. A Framework for Testing Web Services and Its Sup-
porting Tool. In SOSE ’05: Proceedings of the IEEE International Workshop,
pages 207–214. IEEE Computer Society, 2005.

96. Christof Momm, Robert Malec, and Sebastian Abeck. Towards a Model-driven
Development of Monitored Processes. Wirtschaftsinformatik, 2, 2007.

97. G.J. Myers. The Art of Software Testing. Wiley, 2004.

7 Analytical Quality Assurance 271

98. S. Nakajima. Model-checking verification for reliable web service. In OOPSLA
Workshop on Object-Oriented Web Services, 2002.

99. Srini Narayanan and Sheila A. McIlraith. Simulation, verification and auto-
mated composition of web services. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, pages 77–88, Honolulu, Hawaii,
USA, 2002. ACM.

100. Harvey B. Newman, I.C. Legrand, Philippe Galvez, and R. Voicu. MonALISA:
A Distributed Monitoring Service Architecture. In International Conference
on Computing in High Energy Physics (CHEP2003), 2003.

101. Hamid R. Motahari Nezhad, Regis Saint-Paul, Boualem Benatallah, and Fabio
Casati. Deriving Protocol Models from Imperfect Service Conversation Logs.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2008. to
appear.

102. Jeff Offutt and Wuzhi Xu. Generating Test Cases for Web Services Using
Data Perturbation. In Workshop on Testing, Analysis and Verification of Web
Services, 2004.

103. Leon J. Osterweil. Strategic directions in software quality. ACM Comput.
Surv., 28(4):738–750, 1996.

104. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede,
and H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-
BPEL. Technical report, BPMcenter.org, 2005. BPM Center Report BPM-05-
15.

105. C. Ouyang, H.M.W. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas,
and A.H.M ter Hofstede. WofBPEL: A Tool for Automated Analysis of BPEL
Pprocesses. In Proceeding of the International Conference on Service-Oriented
Computing (ICSOC), 2005.

106. A.M. Paradkar, A. Sinha, C. Williams, R.D. Johnson, S. Outterson, C. Shriver,
and C Liang. Automated Functional Conformance Test Generation for Se-
mantic Web Services. In Web Services, 2007. ICWS 2007. IEEE International
Conference on, pages 110–117, 2007.

107. M. Di Penta, M. Bruno, G. Esposito, V. Mazza, and G. Canfora. Web Services
Regression Testing, pages 205 – 234. Springer, 2007.

108. Marco Pistore and Paolo Traverso. Assumption-Based Composition and Mon-
itoring of Web Services. In Luciano Baresi and Elisabetta Di Nitto, editors,
Test and Analysis of Web Services, pages 307–335. Springer, 2007.

109. P. Radha Krishna, K. Karlapalem, and D.K.W. Chiu. An EREC framework for
e-contract modeling, enactment, and monitoring. Data Knowl. Eng., 51:31–58,
2004.

110. P. Ramsokul, A. Sowmya, and S. Ramesh. A test bed for web services protocols.
In Second International Conference on Internet and Web Applications and
Services (ICIW), 2007.

111. Sidney Rosario, Albert Beneveniste, S. Haar, and Claude Jard. Probablistic
QoS and soft contracts for transaction based web services. In IEEE ICWS,
pages 126–133, 2007.

112. Heinz Roth, Josef Schiefer, and Alexander Schatten. Probing and Monitoring
of WSBPEL Processes with Web Services. In CEC-EEE ’06: Proceedings of the
The 8th IEEE International Conference on E-Commerce Technology and The
3rd IEEE International Conference on Enterprise Computing, E-Commerce,
and E-Services, page 30, 2006.

272 Authors Suppressed Due to Excessive Length

113. Mohsen Rouached, Olivier Perrin, and Claude Godart. Towards formal veri-
fication of web service composition. In Business Process Management, pages
257–273, 2006.

114. A. Rozinat and Wil M. P. van der Aalst. Conformance testing: Measuring the
fit and appropriateness of event logs and process models. In Christoph Bussler
and Armin Haller, editors, Business Process Management Workshops, pages
163–176, 2006.

115. Anne Rozinat and Wil M. P. van der Aalst. Conformance Checking of Processes
Based on Monitoring Real Behavior. Inf. Syst., 33(1):64–95, 2008.

116. D. Rud, A. Schmietendorf, and R. Dumke. Performance modeling of WS-
BPEL-based web service compositions. scw, 0:140–147, 2006.

117. M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet, M. Mata, and S. Tu. To-
wards automatic regression test selection for web services. In Proceedings of
the 31st Annual International Computer Software and Applications Conference
(COMPSAC 2007), volume 2, pages 729–734, 2007.

118. M. Ruth and Shengru Tu. A safe regression test selection technique for Web
services. In Second International Conference on Internet and Web Applications
and Services (ICIW), 2007.

119. Michael E. Ruth. Concurrency in a decentralized automatic regression test
selection framework for web services. In MG ’08: Proceedings of the 15th ACM
Mardi Gras conference, pages 1–8. ACM, 2008.

120. Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad P. A. van Moorsel, and Fabio
Casati. Automated SLA Monitoring for Web Services. In 13th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management,
DSOM 2002, pages 28–41, 2002.

121. Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning
on web services using process algebra. In ICWS ’04: Proceedings of the IEEE
International Conference on Web Services, page 43, Washington, DC, USA,
2004. IEEE Computer Society.

122. I. Schieferdecker, G. Din, and D. Apostolidis. Distributed functional and load
tests for Web services. International Journal on Software Tools for Technology
Transfer, 7(4):351–360, 2005.

123. Bernd-Holger Schlingloff, Axel Martens, and Karsten Schmidt. Modeling and
model checking web services. In Proceedings of the 2nd International Workshop
on Logic and Communication in Multi-Agent Systems, volume 126. Elsevier,
2005.

124. Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On combining mullti-
formalism knowledge to select test models for model transformaion testing.
In ACM/IEEE International Conference on Software Testing, Lillehammer,
Norway, April 2008.

125. Natasha Sharygina and Daniel Krning. Model checking with abstraction for
web services. In Test and Analysis of Web Services, pages 121–145, 2007.

126. R. Siblini and N. Mansour. Testing Web services. In ACS/IEEE 2005 Inter-
national Conference on Computer Systems and Applications (AICCSA), page
135. IEEE Computer Society, 2005.

127. A. Sinha and A. Paradkar. Model-based functional conformance testing of Web
services operating on persistent data. In Proceedings of the 2006 workshop on
Testing, analysis, and verification of web services and applications, volume
2006, pages 17–22, 2006.

7 Analytical Quality Assurance 273

128. H. M. Sneed and S. Huang. WSDLTest - A tool for testing web services. In Pro-
ceedings of the Eighth IEEE International Symposium on Web Site Evolution
(WSE’06), pages 14–21, 2006.

129. George Spanoudakis, Christos Kloukinas, and Kelly Androutsopoulos. Towards
security monitoring patterns. In Proceedings of the 2007 ACM Symposium on
Applied Computing (SAC), pages 1518–1525, 2007.

130. George Spanoudakis and Khaled Mahbub. Requirements Monitoring for
Service-Based Systems: Towards a framework based on Event Calculus. In
19th IEEE International Conference on Automated Software Engineering (ASE
2004), 20-25 September 2004, Linz, Austria, pages 379–384, 2004.

131. Y. Tang, L. Chen, K. T. He, and N. Jing. SRN: An Extended Petri-Net-
Based Workflow Model for Web Service Composition. In Proceeding of the
International Conference on Web Services (ICWS), pages 591–599, 2004.

132. A. Tarhini, H. Fouchal, and N. Mansour. A simple approach for testing Web
service based applications. In Innovative Internet Community Systems. 5th
International Workshop, Lecture Notes in Computer Science Vol.3908, pages
p. 134–146, 2006.

133. Brian Tierney, Ruth A. Aydt, Dan Gunter, W. Smith, V. Taylor, R. Wolski,
and M. Swany. A Grid Monitoring Architecture. Informational Document
GFD-I.7, Global Grid Forum, January 2002.

134. Hong-Linh Truong and Thomas Fahringer. SCALEA-G: a Unified Monitor-
ing and Performance Analysis System for the Grid. Scientific Programming,
12(4):225–237, November 2004. AxGrids 2004 Special Issue.

135. W. . Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, and X. Wei. Adaptive testing,
oracle generation, and test case ranking for web services. In 29th Annual
International Computer Software and Applications Conference (COMPSAC),
volume 1, pages 101–106, 2005.

136. W. Tsai, X. Wei, Y. Chen, R. Paul, and B. Xiao. Swiss cheese test case
generation for web services testing. IEICE Transactions on Information and
Systems, E88-D(12):2691–2698, 2005.

137. W. T. Tsai, Y. Chen, Z. Cao, X. Bai, H. Huang, and R. Paul. Testing Web
Services Using Progressive Group Testing. In Advanced Workshop on Content
Computing, pages 314–322, 2004.

138. W. T. Tsai, R. Paul, L. Yu, A. Saimi, and Z. Cao. Scenario-Based Web Ser-
vices Testing with Distributed Agents. IEICE Transaction on Information and
System, E86-D(10):2130 – 2144, 2003.

139. W. T. Tsai, Ray Paul, Yamin Wang, Chun Fan, and Dong Wang. Extending
WSDL to Facilitate Web Services Testing. In 7th IEEE International Sym-
posium on High Assurance Systems Engineering (HASE’02), volume 00, page
171. IEEE Computer Society, 2002.

140. W. T. Tsai, X. Wei, Y. Chen, and R. Paul. A Robust Testing Framework for
Verifying Web Services by Completeness and Consistency Analysis. In SOSE
’05: Proceedings of the IEEE International Workshop, pages 159–166. IEEE
Computer Society, 2005.

141. W. T. Tsai, X. Wei, Y. Chen, B. Xiao, R. Paul, and H. Huang. Developing
and assuring trustworthy web services. In ISADS 2005: Proceedings of the 7th
International Symposium on Autonomous Decentralized Systems, pages 43–50,
Chengdu, China, 2005. IEEE Computer Society.

142. W. T. Tsai, Dawei Zhang, Raymond Paul, and Yinong Chen. Stochastic Voting
Algorithms for Web Services Group Testing. In QSIC ’05: Proceedings of

274 Authors Suppressed Due to Excessive Length

the Fifth International Conference on Quality Software, pages 99–108. IEEE
Computer Society, 2005.

143. Wei-Tek Tsai, Raymond A. Paul, Weiwei Song, and Zhibin Cao. Coyote:
An XML-Based Framework for Web Services Testing. In Proceedings of the
7th IEEE International Symposium on High Assurance Systems Engineering
(HASE), pages 173 – 176, 2002.

144. W.T. Tsai, X. Bai, Y. Chen, and X. Zhou. Web Service Group Testing with
Windowing Mechanisms. In IEEE International Workshop on Service-Oriented
System Engineering (SOSE), pages 213 – 218, 2005.

145. W.T. Tsai, Y. Chen, R. Paul, N. Liao, and H. Huang. Cooperative and Group
Testing in Verification of Dynamic Composite Web Services. In Workshop on
Quality Assurance and Testing of Web-Based Applications, in conjunction with
COMPSAC, pages 170 – 173, 2004.

146. Wil M. P. van der Aalst. Workflow verification: Finding control-flow errors
using petri-net-based techniques. In Business Process Management, pages 161–
183, 2000.

147. Wil M. P. van der Aalst and Ana Karla A. de Medeiros. Process Mining
and Security: Detecting Anomalous Process Executions and Checking Process
Conformance. Electr. Notes Theor. Comput. Sci., 121:3–21, 2005.

148. Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske, ed-
itors. Proceedings of the International Conference on Business Process Man-
agement, BPM, volume 2678 of Lecture Notes in Computer Science. Springer,
2003.

149. Boudewijn F. van Dongen, Ana Karla A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, and Wil M. P. van der Aalst. The ProM Framework: A New
Era in Process Mining Tool Support. In Applications and Theory of Petri Nets
2005, 26th International Conference, ICATPN, pages 444–454, 2005.

150. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using
Petri Nets. In Proceedings of the 2nd International Workshop on Applications
of Petri Nets to Coordination, Workflow and Business Process Management,
pages 59–78, 2005.

151. J. Vonk and P. Grefen. Cross-organizational transaction support for E-services
in virtual enterprises. Distrib. Parallel. Dat., 14:137–172, 2003.

152. Y. Wang, X. Bai, J. Li, and R. Huang. Ontology-based test case generation
for testing web services. In Proceedings of the Eighth International Symposium
on Autonomous Decentralized Systems, pages 43–50, 2007.

153. Andreas Wombacher, Peter Fankhauser, and Erich Neuhold. Transforming
BPEL into annotated deterministic finite state automata for service discov-
ery. In ICWS ’04: Proceedings of the IEEE International Conference on Web
Services, page 316, Washington, DC, USA, 2004. IEEE Computer Society.

154. Wuzhi Xu, J. Offutt, and Juan Luo. Testing Web services by XML perturba-
tion. In Proceedings. 16th IEEE International Symposium on Software Relia-
bility Engineering, page 10, 2006.

155. X. Yi and K. J. Kochut. A CP-nets-based Design and Verification Framework
for Web Services Composition. In Proceeding of the International Conference
on Web Services (ICWS), page 756, 2004.

156. Carmen Zannier, Grigori Melnik, and Frank Maurer. On the success of empir-
ical studies in the international conference on software engineering. In ICSE
’06: Proceedings of the 28th international conference on Software engineering,
pages 341–350, New York, NY, USA, 2006. ACM.

8

Service Engineering

Vasilios Andrikopoulos1, Antonio Bucchiarone2, Elisabetta Di Nitto3,
Raman Kazhamiakin2, Stephen Lane4, Valentina Mazza3, and Ita
Richardson4

1 Tilburg University, The Netherlands
2 Fondazione Bruno Kessler (FBK), Trento, Italy
3 Politecnico di Milano, Italy
4 Lero — the Irish Software Engineering Research Centre, Ireland

Chapter Overview Service Engineering and Design (SED) aims at establishing,
understanding and managing the entire service lifecycle, including identifying, find-
ing, designing, developing, deploying, evolving, quality assuring, and maintaining
services. SED principles, techniques and methods interweave and exploit the mech-
anisms provided by the S-Cube technology stack with the aim of developing high-
quality service-based systems. For example, the SED plane provides specifications
to the BPM and SAM layers that can guide the service composition and coordina-
tion layer in composing services in a manner that guarantees that the composition
behaves as expected.

This chapter focuses on the analysis of existing life cycle approaches for adaptable
and evolvable service-based applications with an emphasis on how the lack of a life
cycle that can handle adaptation lead to the definition of a reference service life
cycle for the development of adaptable service based applications. This chapter also
identifies the main concepts, issues, and challenges concerning the various phases of
our reference life cycle as they have been identified in the literature.

8.1 Context

The evolution of software methodologies and technologies can be seen as a
progressive journey from rigid to flexible, static to dynamic, centralized to
distributed solutions. The history of software engineering shows a progressive
departure from the strict boundaries of the closed-world assumption [14] to-
ward more flexibility to support continuous evolution. Methods, techniques,
and tools were developed to support the need for change without compromis-
ing product quality and cost-efficient developments. The demand for software
to live in an open world and to evolve continuously as the world evolves
(the open world assumption), however, is now reaching unprecedented levels
of dynamism. Over the past years a major step of evolution toward this di-
rection has been made possible by the birth of the concepts of services and

276 Authors Suppressed Due to Excessive Length

service-based applications (more often called service-oriented architectures -
SOAs in the literature), and by the development of technologies and proposed
standards to support them.

Such evolution needs now to be fully conceptualized and understood in
order to identify those methodological and formal means that allow us to
build service-based applications with the required level of quality. A detailed
discussion on the open issues and research areas can be found in [34].

In this chapter the focus is on the analysis of the existing life cycles for
adaptable and evolvable service-based applications. In particular, the lack of
a life cycle taking explicitly adaptation into account led to the definition of
a reference service life cycle for the development of adaptable service based
applications. Moreover through the chapter are identified the main concepts,
issues, and challenges concerning the various phases of our reference life cycle
as they have been identified in the literature. Finally are analyzed the areas
of software engineering and business methodologies that can be relevant to
service-based applications with the objective of identifying experiences and
approaches that can be useful for service-based applications.

Consistently with its objectives, the chapter is structured as follows. Sec-
tion 8.2 introduces some basic definitions relevant for the content of the chap-
ter. Section 8.3 presents the life cycles for service-based applications and de-
tails the various activities in the life cycle. Section 8.4 summarizes the knowl-
edge acquired from the fields of software engineering and business processes
and discusses on how it can be exploited in the engineering of service-based
applications. Finally, Section 8.5 draws the identified gaps and the Section 8.6
draws the conclusions.

8.2 Preliminary definitions

The goal of this section is to give a short overview of the main basic concepts
that are relevant for the content of the chapter. In particular, we identify the
main actors that have a role in the context of service based applications, the
main concepts concerned with the definition of service-based application, and
the various kinds of services that have been identified in the literature so far.
The terms and the relationships among them will be described using UML
(Unified Modeling Language) diagrams. The UML was intended as a language
that is used to specify, visualize, construct and document the artifacts of a
software system (see [94, p. 3]) and not as a language for describing such
concepts. In the diagrams reported in the following sections, some of the
UML constructs are used to identify the main concepts of the conceptual
model and the relationships among them. Such diagrams are an extension
and clarification of some of those belonging to the conceptual model proposed
in the SeCSE project [2]. As an extension of such model, moreover, we have
introduced the concepts of Service-Based Application and Adaptable Service-

8 Service Engineering 277

Based Application showing the relationships between them and the other
concepts.

8.2.1 Agents and Actors

The model of Figure 8.1 [2] identifies a set of Agents and Actors and the rela-
tionships between them. The model exploits the UML2.0 features that allow
for the development of orthogonal inheritance hierarchies. In particular, it ex-
presses the fact that Agents are entities of the real world and Actors are the
roles the Agents may play. Agents in the diagram are Person, Organization and
Systems (that may be Legacy Systems and Software Systems). They can act
as Providers, Service Developers, Service Integrators, Consumers, Monitors,
and Negotiation Agents. Providers can offer any kind of resource (including
a whole application). Service Providers are those that specifically offer one
or more services. Similarly, a Consumer can consume or exploit any kind of
resource while Service Consumers consume, in particular, services.

The classification of Actors is overlapping, this means that, for instance, a
Person, an Organization, or a System can act both as a Service Consumer and
a Service Integrator. On the contrary, the classification of Agents is disjoint.
This means that, for instance, a Service Consumer can be either a Person, an
Organization, or a System. In the diagram, the human characters represent
those Agents that are human beings and all Actors as all of them represent
roles that can be potentially taken by human Agents.

Fig. 8.1. The Agent-Actor diagram.

278 Authors Suppressed Due to Excessive Length

8.2.2 Service Based Applications

A service-based application is obtained by composing various Services in order
to satisfy the desired functionality. It is an Adaptable Service Based Appli-
cation when it is able to react autonomously to changes and to self-adapt to
them. Service-based applications are often implemented in terms of an or-
chestration, that is, a centralized logic that describes the order in which the
various services are called and the way their parameters are formed and used
for further calls. This orchestration is also called Service Process. The Ser-
vice Integrator (see Figure 8.1) is the actor that is in charge of developing a
service-based application, while the Provider is the one that offers (provides)
it and the Consumer is the one that exploits it. Figure 8.2 shows the defined
terms and highlights the relationships among them.

Fig. 8.2. The Service Based Application diagram

8.2.3 Types of services

Services exploited in a service-based application can be offered by various
different agents, as highlighted in Section 8.2.1 (for instance, they can be of-
fered by Persons or by Organizations), or they can simply be software services
exploiting some specific technology, e.g., web services.

Besides for the agent that is providing them, services may also differ for
their nature. They can be abstract when they do not have a concrete im-
plementation but only represent an idea that could correspond, possibly in
the future, to various implementations. Of course, they are concrete when
they are actually provided by some actor. This distinction is quite relevant
when developing adaptable service-based applications as a Service Integrator
at design time may reason even in the absence of Concrete Services simply
by exploiting Abstract Services. Clearly, in this case, the resulting application

8 Service Engineering 279

will be executable only in those cases when at runtime some Concrete Service
implementing the abstract ones exists and these services are selected in some
adaptation step.

Orthogonally to this classification, Services can also be distinguished in
Simple and Composite. Composite Services are service-based applications be-
ing accessible as services. The current technology for building service-based
applications, BPEL, actually, only supports the development of Composite
Services.

The last orthogonal classification refers to the statefulness of services. A
special kind of Stateful Services are the Conversational Services. These store
the state of the conversation with a single specific stakeholder, but keep the
states of different conversations separate from each other.

The three classifications are shown in Figure 8.3. Given their orthogonal-
ity, they lead to the definition of eight possible types of services, all considered
relevant and worth of being supported by proper service engineering technolo-
gies.

Fig. 8.3. The service type diagram.

8.3 Engineering Service Based Application

The purpose of this section is the analysis of the state of the art of the service
life cycles that can be found in literature. Moreover a reference life cycle is
proposed in order to provide a service life cycle taking explicitly adaptation
into account. Then, each phase of the life cycle is analysed.

8.3.1 SBA life cycles

Existing life cycles

The distinguishing feature of the adaptable applications, in contrast to clas-
sical SBAs, is the ability to accommodate and manage various changes at

280 Authors Suppressed Due to Excessive Length

runtime. This, in turn, requires the capability to observe the changes relevant
to the application execution, to the application context, and the capability to
enact the corresponding adaptation strategy. In this section, a description of
the existing SBA life-cycle methodologies is reported.

The Web Services Development Lifecycle (SLDC)

The Web Services Development Lifecycle (SLDC) [85] is a continuous and it-
erative approach to the development, implementation, deployment and main-
tenance of software services.

Nevertheless, [86] discusses the way that SLDC has to be extended to
manage the evolution of services by supporting a change-oriented life cycle
that allows for re-configuration, alignment, and control of cascading through
the service network changes in an orderly fashion.

Rational Unified Process (RUP) for SOA

The Rational Unified Process (RUP) is a framework that aims to support the
analysis and design of iterative software systems. It was created with com-
ponent based development (CBD) and object oriented analysis and design
(OOAD) in mind [121], so it is not easily transferable to serviced-based ap-
plications. With some adjustments however, several of its milestones can be
adjusted to fit in SOA solutions [26, 43].

RUP for SOA is covering the same aspects of service lifecycle management
as SLDC does, but instead of not dealing directly with adaptation issues, it
depends on project and change management capabilities to allow for flexibility.

Service Oriented Modeling and Architecture (SOMA)

Service oriented modeling is a service oriented analysis and design (SOAD)
process for modeling, analysing, designing and producing a SOA that aligns
with business goals [12]. The SOMA method of analysis and design attempts
to make practitioners think about business goals in a top-down manner from
the beginning of the project, and then develop the services from a bottom-up
perspective once high level business goals have been satisfied. At a high level,
SOMA consists of three primary activities (inter-related phases): identifica-
tion, specification and realization. These primary activities correspond to the
requirements engineering and construction aspects of the reference lifecycle.
In addition to the three primary activities, SOMA also provides activities
for business modeling and transformation, existing solution management, im-
plementation by building or assembling and testing of services, deployment,
monitoring and management of services, and governance to support SOA [13].

Service Oriented Analysis and Design/Decision Modeling (SOAD)

Service oriented analysis and design (SOAD) is a structured approach to the
analysis, design and realisation of quality SOAs [121]. While SOAD process

8 Service Engineering 281

and notation have yet to be defined in detail [121], key elements such as
conceptualization (or identification), service categorization and aggregation,
policies and aspects, meet-in-the-middle process, semantic brokering and ser-
vice harvesting (for reuse) can already be identified. SOAD, like SOMA, fo-
cuses primarily on the analysis, design and architecture of SBAs and does not
include provisions for service adaptation.

ASTRO

ASTRO is a methodology that is focused primarily on service composition or
service orchestration. It covers all the life cycle of service-based systems, in
addition, it supports the evolution and adaptation of SBAs by allowing the
design of service compositions directly from requirements and by enforcing
an incremental development approach that iteratively refines the behavioral
requirements.

BEA Services Lifecycle

The BEA Service lifecycles specifies the stakeholders, the tools, the deliv-
erables, the processes and the best practices for each stage of the services
lifecycle [36], covering all the phases of service development and maintenance
lifecycle. The entire lifecycle is underpinned by a governance process which
promotes the interoperability, discoverability and standardisation of services
and leverages the adaptation of services to new requirements. In that sense
the BEA Service lifecycles indirectly handle the left-hand cycle in Figure 8.4.

The reference service life cycle

As seen in the descriptions before, almost all life-cycles in the literature do not
address explicitly the possibility of a service-based application to be adaptable.
There is a need for introducing a life-cycle for SBAs that takes adaptation into
explicit account. The life-cycle (proposed in S-Cube network of Excellence in
order to address this issue) shown in Figure 8.4 aims at filling this gap. Not
only applications can undergo the transition between the runtime operation
and the analysis and design phases in order to be continuously improved and
updated (we call the right hand side of our life cycle the evolution cycle), but
they also have intrinsic mechanisms that, during runtime, continuously and
automatically a) detect new problems, changes, and requirements for adap-
tation, b) identify possible adaptation strategies, and c) enact them. These
three steps are shown in the left hand side of the figure and define what we
call the adaptation cycle. The observation of the changes in the environment is
obtained through monitoring which is part of the management activities typi-
cally performed during execution. This is one of the trigger for the iteration of
the adaptation cycle, whose effect is to inject changes directly into the appli-
cation being operated and managed. The two cycles are not conflicting with
each other; instead, they cohexist and support each other during the lifetime

282 Authors Suppressed Due to Excessive Length

of the application. We say, in particular, that design time activities allow for
evolution of the application, that is, for the introduction of permanent and,
usually, important changes, while the runtime activities allow for temporary
adaptation of the application to the specific circumstances that are occurring
at a certain time.

 Adaptation Evolution

Construction

Requirements
Engineering and

Design

Deployment &
Provisioning

Operation &
Management

Identify Adaptation
Needs

Identify Adaptation
Strategy

Enact Adaptation

Fig. 8.4. The lifecycle for evolvable and adaptable service-based applications.

In particular, similarly to what happens in the development of other kinds
of systems, there is the need to understand how the life cycle and all the
related processes can be measured, controlled, evaluated and improved.

At the requirements engineering and design phase the adaptation and mon-
itoring requirements are used to perform the design for adaptation and moni-
toring. During SBA construction, together with the construction of the SBA,
the corresponding monitors and the adaptation mechanisms are being real-
ized. The deployment phase also involves the activities related to adaptation
and monitoring: deployment of the adaptation and monitoring mechanisms
and deployment time adaptation actions (e.g., binding). During the operation
and management phase, the run-time monitoring is executed, using some de-
signed properties, and help the SBA to detect relevant context and system
changes. After this phase the left-side of the life-cycle is executed. Here, we
can proceed in two different directions; executing evolution or adaptation of
the SBA. In the first case we re-start the right-side of the cycle with the re-
quirements engineering and design phase while in the second case we proceed
identifying adaptation needs that can be triggered from monitored events,
adaptation requirements or context conditions. For each adaptation need it
is possible to define a set of suitable strategies. Each adaptation strategy
can be characterized by its complexity and its functional and non functional
properties. The identification of the most suitable strategy is supported by a
reasoner that also bases its decisions on multiple criteria extracted from the

8 Service Engineering 283

current situation and from the knowledge obtained from previous adaptations
and executions. After this selection, the enactment of the adaptation strategy
is performed. The execution of all activities and phases in all runtime phases
may be performed autonomously by SBAs or may involve active participation
of the various human actors.

As said, adaptation and evolution are triggered by the occurrence of some
events that result in the emergence of some requirements for adaptation/evo-
lution. These requirements can either be raised, more or less directly, by the
human beings involved in the execution of service-based applications or they
can be generated by the technological environment in which the system is
running. In general, the context in which the system and its actors are im-
mersed has an important impact on the emergence of requirements for adapta-
tion/evolution. The context has been characterized in the literature in various
ways, depending on the application domains in which it has been studied. An
important issue is to characterize the context of service-based applications and
to ensure that these applications are able to use it to identify the adaptation
requirements.

Assuming that adaptable service-based applications are able to identify
adaptation requirements, they should also be able to decide if and when to
take them into consideration. There could be application states in which some
adaptation requirements could not been used as they would lead the appli-
cation into an inconsistent and unrecoverable case. Also, some requirements
could be conflicting with each other and could require some reconciliation to
take place before one of them is selected. The literature so far has addressed
these issues only partially and with ad hoc solutions. The main challenge is to
identify proper modeling means that enable the automatic identification and
analysis of adaptation requirements and the solution of the potential incon-
sistencies that can arise.

While the software engineering literature has provided through the last
fifthy years proper approaches to design evolvable systems, a consolidated
understanding on what to do to design adaptable systems is still to come.
In the SOA literature some approaches have been identified to perform some
limited adaptation, often on the basis of a hard-coded logic.

As humans have a very important role in the open world either as users
of service-based systems or as service providers themselves, the aspects con-
cerned with the so called Human-Computing Interaction (HCI) have to be
considered with particular attention. In particular, it’s important to select
and codify human-computer interaction knowledge that delivers new capabil-
ities to the development and use of service-centric systems. Examples of that
knowledge include user knowledge, user task knowledge, accessibility knowl-
edge, and organizational culture knowledge.

While in the past relatively complex computations running on things were
not possible, now these are being experimented in research. This, of course,
opens up a huge number of new possibilities in terms of systems that perva-
sively influence the life of people and help them in several tasks and situations.

284 Authors Suppressed Due to Excessive Length

For instance, through these devices we can imagine users access complex infor-
mation systems, but also, in the opposite direction, information systems could
access software services available on these devices to actuate local-scope op-
erations such as the execution of a temperature monitoring function on some
critical patient or the invocation of a ”turn red for 5 min” service on all the
semaphores on some critical paths. We could even imagine some systems where
the computation is entirely in charge of devices that cooperate to achieve a
common goal without a direct control of any centralized complex system. The
literature of service-based applications so far has been mainly focusing (with
some exceptions in the OSGI domain) on more traditional settings where de-
vices (e.g., the car system) were used as a mechanism for the user to interact
with services and, in limited cases, as data sources (this is the case of the GPS
that provides the position of the car to the service). Now, the challenge would
be to understand how to have services living within devices and be accessed
by other consumers running anywhere else, how to be aware and control the
execution context of these services, how to handle the intrinsic limitations and
peculiarities of devices that, being quite limited in terms of resources, surely
require a high level of adaptability.

Comparison

Figure 8.5 shows how each of the discussed lifecycles compare to the reference
lifecycle introduced in Figure 8.4. It is evident that the ASTRO and BEA
lifecycles (to a lesser extent) are the ones which bear closest resemblance to
the reference lifecycle. The reference life cycle of Figure 8.4 is based on SLDC;
for that reason SLDC covers all the phases of the right side of the life cycle
in a more fine-grained way, but does not discuss the adaptation phases. The
following sections investigate each phase in more depth.

Fig. 8.5. Lifecycles vs. Reference Lifecycle

8 Service Engineering 285

8.3.2 Life cycle Phases

Requirement Engineering and Design

In this section we address the phase of Requirement Engineering and Design.
In particular will be explained, first, the phase of Requirement Engineering,
and then the phase of Design focusing on adaptation and monitoring.

Requirement Engineering

Before developing any system, the developers must understand what the sys-
tem is supposed to do and how its use can support the goals of the individuals
or business that will pay for that system.

This means understanding the application domain and the specific func-
tionality required by the stakeholders. Requirements Engineering (RE) is the
name given to a structured set of activities that help developing this under-
standing.

Requirements are derived from documents, people, and the observation
of the social context of people expressing them. In fact, requirements are
expressed by the stakeholders using concepts strictly related to their social
world. Stakeholders may be different and numerous; they include paying cus-
tomer, users, indirect beneficiaries, and developers. Their social worlds may
be distinct and they may express goals, often conflicting, depending on the
different perspectives of the environment in which they work. This, together
with the fact that often stakeholders are not able to make explicit their tacit
knowledge, makes the elicitation of requirements a very critical and difficult
to accomplish activity.

Not only requirements have to be elicited, but they have also to be docu-
mented, possibly in a formal way. Also, their evolution needs to be managed
and kept under control in order to guarantee that the implemented system
can evolve with them.

In general, the activities that belong to the RE process varies depending
on the complexity of the application being developed, the size and culture of
the companies involved. Large systems require a formal RE stage to produce a
well documented set of software requirements. For small companies developing
innovative software products, usually the RE process might consist of brain-
storming sessions leading to a short vision statement of what the software is
expected to do.

Regardless of the process used, some activities are fundamental to all RE
processes [102]:

Elicitation Identify sources of information about the system and discover the
requirements from these.

Analysis Understand the requirements, their overlaps, and their conflicts.
Validation Check if the requirements are what the stakeholders really need.

286 Authors Suppressed Due to Excessive Length

Negotiation Try to reconcile conflicting views and generate a consistent set
of requirements.

Documentation Write down the requirements in a way that stakeholders and
software developers can understand.

Management Control the requirements changes that will inevitably arise.

These activities constitute a cyclic process performed during the system lifecy-
cle. Such activities are not always executed in a fixed sequence: if needed some
activity can be re-executed. This is mainly due to the fact that requirements
change is inevitable, because the business environment where the software
is executing is highly dynamic: new products emerge, businesses reorganize,
restructure, and react to new opportunities.

Fig. 8.6. Requirement Engineering Process

The industry increasingly recognizes the importance of using good RE
processes and appropriate RE techniques when developing software systems
to achieve high software quality. Researchers emphasize the necessity of adopt-
ing proper requirements engineering techniques in order to derive high quality
specification. Davis [32] states that knowing which technique to apply to a
given problem is necessary for effective requirements analysis. Requirements
are often written in natural language and are often vague descriptions of what
is wanted rather than detailed specifications: this could be the best choice in
domains where requirements change quickly. The actions of the process are
sketched in Figure 8.6. The action of Requirement Elicitation consists of gath-
ering and clarifying the needs of the purchaser and the business goals. Several
techniques may be used for Requirement Elicitation, such as focus group run-

8 Service Engineering 287

Fig. 8.7. Requirement Engineering Diagram

ning, interviews to the stakeholders, questionnaires, contextual observation
and others approaches. In the Requirement Analysis the goals are decomposed
in sub-goals and the best strategies to satisfy each goal are individuated; this
action produces a set of functional requirements that will be validated to check
potential conflicts among the requirements (Requirement Validation). If con-
flicts are detected, a negotiation action (Requirement Negotiation) is required
to obtain a set of consistent requirements then formalized in a Requirement
Documentation. Obviously the a continuous management requirement (Re-
quirement Management) is performed to manage changes. Figure 8.7 high-
lights that the main outcome of the RE process is a requirements document
that defines what is to be implemented. The association between the Service
Integrator and the Requirement Document implies the actions shown in the
diagram of Figure 8.6. The Requirement Document contains a formalization
of the collected Requirements. A Requirement could have different nature:
it could be a Quality of Service Requirement or a Functional Requirement.
When adaptation is needed, Adaptation Requirements must be defined and
consequently Monitoring Requirements.

Boehm [21] argues that in order to deliver systems rapidly that meet cus-
tomer needs, a key challenge is to reconcile customer expectations with de-
veloper capabilities. He developed an approach to RE called the WinWin
approach, in which negotiation between customers and software suppliers is
central.

Service Oriented Requirement Engineering

Service-Oriented Requirements Engineering (SORE) specializes RE for service-
based applications. SORE is an important topic in Service-Oriented System
Engineering (SOSE) and an emerging research area; it assumes applications
developed in an SOA framework running in an SOA infrastructure. SORE
shares with traditional requirement engineering the same activities. However,
some of them are conducted in a different way. The most remarkable difference

288 Authors Suppressed Due to Excessive Length

is that service and workflow discovery has a very significant role in SORE as
part of the requirement elicitation and analysis activities. While, usually, tra-
ditional RE activities do not deal with pre-existing software, the availability
of services and of service descriptions in registries allow System Integrator to
exploit this knowledge to enable reuse [108].

Maiden [74] focuses on the availability of services in registries during
SORE, and suggests that existing services guide requirement elicitation; more-
over results and information of the queries in the registries can be reused in
the forthcoming searches.

In recent years, researchers have begun to develop techniques that could
be employed by requirements engineers to identify service requirements spec-
ified in SLAs. For example Bohmann et al. [22] argue that one of the key
features of applications hosting services is the heterogeneity in customer re-
quirements. Their aim is to assist service providers to address heterogeneity in
customer requirements through matching and mapping required service fea-
tures and factors during RE and design phases. In traditional RE Macaulay
[71] identified poor communication between stakeholders as the key factor of
limiting or enabling effective RE. As technology and systems are embedded
within socio-organizational contexts and processes, strong socio-technical ap-
proaches to RE are required. Lichtenstein et al. [68] suggest that in the new
IT services era new techniques and approaches are needed for eliciting and
determining provider and customer requirements; moreover it is required to
involve key stakeholder groups to negotiate the sometimes-conflicting provider
and customer service needs.

Among SBAs, Adaptable SBAs play a significant role. In such applications
the phase of RE must take in account the mechanisms of reaction to critical
conditions or changes in the environment or in the user needs. One of the main
challenges in the RE for Adaptable SBAs is the difficulty to know in advance
all the possible adaptations since it is unfeasible to anticipate requirements for
all the possible critical conditions that may happen. While RE for traditional
systems reports what the system “shall do”, RE for adaptable systems reports
what the system “can do if something happens”. RE for adaptive systems is
an open research area, offering a limited number of approaches. Some research
was conducted to use a goal models approach in describing the requirements
of an adaptable system. Goldsby et al. [44] proposed an approach to modeling
the requirements of an adaptable system using i∗ goal models. In particular,
using i∗ goal models, they represent the stakeholder objectives, the business
logic, the adaptive behavior, and the adaptive mechanism needs.

Design for Monitoring and Adaptation

An Adaptable Service-Based Application is a service-based application aug-
mented with a control loop that aims to continuously monitor the execution
and evolution of the application and its environment and to modify it on the
basis of application-dependent strategies designed by system integrators. In

8 Service Engineering 289

general, the adaptation may be caused by different reasons: it may be a nec-
essary tool for the application to recover from unexpected problem or failure;
to customize the application in order to better fit the current execution con-
text or to better satisfy the needs of a particular application user; it may be
required in order to improve the application performance or to optimize the
way the application resources are managed.

Design for Monitoring and Adaptation is a design process specifically de-
fined to take the necessity for the SBA adaptation into account. It extends the
design phases of the ”classical” SBAs with all the activities that aim to incor-
porate into the application or into the underlying execution platform the fa-
cilities and mechanisms necessary for the adaptation and monitoring process.
While concrete mechanisms and activities necessary to enable SBA adapta-
tion vary depending on a particular form of adaptation (such as context-
aware adaptation, customization, optimization, recovery) and the realization
of a particular approach (e.g., autonomous vs. human-in-the-loop adaptation,
run-time vs. design-time), general design steps specific to the adaptable SBA
may be defined as follows:

• Define adaptation and monitoring requirements. Based on the application
requirements and key quality properties, it is necessary to define the re-
quirements and objectives that should be satisfied when certain discrep-
ancy with respect to the expected SBA state, functionality or environ-
ment is detected. More precisely, the monitoring requirements specify what
should be continuously observed, and when the discrepancy becomes crit-
ical for the SBA. The adaptation requirements describe the desired situa-
tion, state, or functionality, to which the SBA should be brought to. Typ-
ically, the adaptation and monitoring requirements correspond to various
SBA quality characteristics that range from dependability, to functional
and behavioral correctness, and to usability. In many cases monitoring
requirements are derived directly from the adaptation requirements: the
monitoring is often performed with the goal to identify the need for adap-
tation and to trigger it.
Definition of adaptation and monitoring requirements is not explicitly ad-
dressed by the existing requirements engineering approaches; these require-
ments are implicitly identified and mapped to the corresponding capabili-
ties in ad-hoc manner.

• Identify appropriate adaptation and monitoring capabilities. When the
adaptation and monitoring requirements are defined, there is a need to
identify the possible candidates for their implementation. These refer to
the existing adaptation and monitoring frameworks and tools provided at
different functional SBA layers and to various mechanisms enabled at dif-
ferent layers for more general purposes, such as online testing [48], data
and process mining for monitoring purposes, and service discovery, binding
and automated composition [92] for adaptation purposes.

290 Authors Suppressed Due to Excessive Length

• Define monitoring properties and adaptation strategies. Requirements and
capabilities identified in previous steps are used to provide concrete mon-
itoring and adaptation specification for a given SBA. These specifications
may be given implicitly when they are hard-coded within the given ap-
proach or explicitly. For instance, when one deals with the recovery prob-
lem, a typical implicit monitored property refers to the failures and ex-
ceptions not managed by the application code [8]. Accordingly, the self-
optimization approaches often rely on the predefined threshold for certain
quality of service properties for triggering adaptation need; the correspond-
ing adaptation strategy (e.g., re-composition) is also often predefined [47].

• Incorporate adaptation and monitoring mechanisms. Based on the above
specifications, the adaptable SBA is extended with the corresponding mon-
itors and adaptation mechanisms. Depending on the mechanisms, this ex-
tension may require integrating the monitoring and/or adaptation func-
tionalities into the SBA code or into the underlying execution platform. A
typical example of the former approach is presented in [16]: the underly-
ing BPEL process is augmented with the calls to the a special proxy that
evaluates the monitored properties. In [118] analogous code modification is
applied in order to inject the necessary adaptation actions. On the other
side, monitoring approaches presented in, e.g., [92, 72], as well most of
approaches to Business Activity Monitoring, rely on the mechanisms for
generating monitors independent from the application and on the specific
tools respectively.

Conceptual Model

Fig. 8.8. The design for adaptation diagram

The presented design for adaptation and monitoring concepts are repre-
sented in Figure 8.8. The Adaptable Service-Based Application is associated

8 Service Engineering 291

with the Monitoring Requirements and Adaptation Requirements, which define
when the changes in the application functionality or environment become crit-
ical and what we should achieve in that case respectively. From these require-
ments one should derive the Monitored Properties and Adaptation Strategies
achieving them. In order to be monitored, the application is associated with
the Monitors that continuously observes the monitored properties represent-
ing critical changes in the SBA functionality or environment. The Adaptation
Mechanisms are identified and incorporated in order to achieve the defined
strategies.

There exists a wide range of adaptation strategies to be used by different
approaches. In a simple case, adaptation targets modification of the appli-
cation parameters (e.g., re-configuration, re-negotiation of the SLAs, substi-
tution of one failed or underperforming service with another one) without
changing its structure. In more complex cases, the adaptation involves also
modification of the application structure (e.g., re-compose the services, re-
plan the underlying process, or introduce specific activities that compensate
the incorrect results achieved by the faulty execution).

Below, some aspects relevant for the specification of the adaptation strate-
gies and monitoring properties are presented.

Adaptation and Monitoring Specification

As already mentioned, the monitoring specification defines the moment and
conditions “when” adaptation activities should be triggered, while the adapta-
tion specification prescribes “how” the adaptation should be performed. Both
these specification may be given either explicitly, or implicitly.

Explicit monitoring specification is defined using standard notations (such
as WS-Agreement or WS-Policy) or specific languages (such as RTML [92],
WS-CoL [16]). In the first case the specification is first translated into some
internal representation specific monitoring framework, and then is given as
input to the corresponding monitoring tool.

Explicit adaptation specification may have different forms:

• goal-based specification, where the adaptation activities are described in a
higher-level form that contains only objectives to be reached, leaving the
system or the middleware to determine the concrete actions required to
achieve those objectives. This goals may have the form of certain utility
function to be maximized [47], declarative functional goal specification
[63], etc.

• action-based specification, where the activities are defined explicitly. In
the corresponding languages the strategies are specified using high-level
action specification, where actions correspond to re-binding, terminating,
selection of alternative behavior, rolling back to some previous stable state,
etc [118, 15].

• approaches based on explicit variability modeling. In such approaches the
identified variation point is associated with a set of alternatives (variants)

292 Authors Suppressed Due to Excessive Length

that define different possible implementations of the corresponding ap-
plication part. In business processes this corresponds, for example, to a
nominal sub-process, and a set of potential customized flows [93].

With implicit adaptation specifications the decisions when the system has
to be changed and which actions to perform are predefined by the adaptation
framework. This is a typical situation for dynamic service compositions, where
the services are selected and composed dynamically upon, e.g., unavailability
of some of them. This is also the case for many self-healing systems, where the
recovery activities are somehow hard-coded. The role of the design activities
in case of implicit adaptation is to provide possibly richer and more complete
descriptions of the services and compositions in order to support and simplify
the decisions made at run-time automatically. In case of dynamic composition,
for example, these decisions correspond to the discovery and selection of the
candidate services. Implicit adaptation specification may have different forms
shortly introduced in the following:

• Quality driven specification that supports dynamic composition of services
with the goal of optimal valuation of service qualities. In this way the
composed process (e.g., in BPEL) is designed as a workflow composing
elementary tasks. At run-time a concrete elementary service is selected
to perform a particular task from a community of services that provide
the same functionality, but have different quality characteristics. The de-
scription of the services, therefore, should include not only functional as-
pect, but also non-functional properties that are required in the selection
process. The predefined goal of this kind of specification is, therefore, at
run-time optimize the values of characteristics;

• Reputation-based specification approaches that target the problem of
maintaining dynamic service compositions, when the component services
fail or become defective. If the service invocation was successful, the repu-
tation is positive, while in case of failure the value degrades. They allows
improving the quality of selection;

• P2P self-healing approaches support the dynamic look-up and replacement
of elementary services that failed during the execution of the process. The
key idea is that they use peer-to-peer resource management for publishing
and discovery and binding of the necessary services.

• Adapters-based approaches have the objective to automatic generate me-
diators based on predefined requirements (e.g., deadlock freeness) or semi-
automated methodologies for identifying and modelling instructions and
procedures for adapting the specification (transformation templates or
commands);

• Local knowledge-based approaches allow run-time adaptation of the sys-
tem configuration according to changes in the context. The key idea is to
define properties of a system starting from the local knowledge, defined as
the knowledge about its immediate structure. Local knowledge is used to

8 Service Engineering 293

reconfigure the structure of the system when a change in the context is
found, and is propagated upward when needed.

• Semantic Web-based approaches specify protocol mediation allowing for
the automatic adaptation of the service requester behaviour meeting the
constraints of the providers interface, by abstracting from the existing in-
terface description. A shared ontology is used to understand the semantics
of the domain actions.

Construction

The construction of SBAs is based on top of the design phase, where the model
of the future SBA is defined and described. The construction of SBA assumes
the definition and specification of the executable code of the corresponding
Service-based Application on top of the existing services or service templates.
In the latter case, the abstract service definitions are used, which are bound
to concrete services at deployment/provisioning time.

The construction of an SBA as an executable service composition may
be achieved in several ways (Figure 8.9). Note that since a Service Based
Application isn’t always exposed as a service, we could have a Provider (at
not necessarily a Service Provider). At the highest level of abstraction we
distinguish between:

• Manual construction of a service composition. In this case the goal of the
service integrator is to define an executable process composed of concrete
or abstract services using an appropriate service composition specification
language. In literature a variety of languages for the construction of SBA
are presented. Among them Business Process Execution Language (BPEL
for short, [83]) is one of the prominent standard languages supported by
industry and accepted by the community. It supports loosely coupled com-
position of Web services described in a standard WSDL notation. Besides
BPEL, there exists a variety of notations for the construction of composed
service compositions and service-based business processes such as JOpera
[87], jPDL [1], etc.

• Model-driven service composition, which copes with generating service
orchestration models from more abstract models, which are often ab-
stract business process models created by business analysts. Notations
like BPMN [80] or WS-CDL [115] may be used for these purposes.

• Automated service composition. Here the goal is to automatically generate
the executable SBA using available service models (abstract and concrete,
stateful and stateless) and predefined composition goals that restrict the
behavior, functionality, and QoS parameters of the future SBAs. The com-
position goals are usually defined during the SBA design phase, and are
specified in high-level notations (see, e.g., [91, 90]).

Another important activity that should be accomplished during the con-
struction phase as well as in other phases of the development and operation

294 Authors Suppressed Due to Excessive Length

Fig. 8.9. The construction diagram

process is the verification and validation of the SBA against various require-
ments and constraints. Section 8.3.2 provides a summary of this issue.

Deployment and Provisioning

The phase ”Deployment and Provisioning” of the lifecycle in Figure 8.4 com-
prises all the activities related to the publication and deployment of a Service
Based Application; this section discusses the major concepts related to this
phase.

Service Description

A Service Description allows the users to access a service regardless of where
and whom it is actually offered. It specifies all the information needed to the
potential consumers to access and use the service. Web services transform
the Web from a distributed source of passive information into a distributed
source of active services. When a consumer decides to acquire the use of
a service, he would be sure the service fulfills his/her expectations both in
terms of offered functionality and of non functional characteristics. Thus, it
is important to have an expressive service description that does not only
report the syntactical aspects of the service, but also describes its meaning
in a human readable format, describes its QoS, the way its operations should
be used, and the like. The description is provided by the service provider
during the service publication (see next section), and it is used by the service
consumer to choose the correct service during the service discovery.

The standard description for Web service is provided by the Web Service
Description Language (WSDL) [30]: it is an XML language describing the

8 Service Engineering 295

public interface of the service. It offers a syntactical description of the service
permitting the consumer to interact with it; WSDL, among the other things,
gives information about the location, and the types of input/output messages
of the service. Such information, though essential, is not often enough to
provide the full understanding of the service.

Hence, the need for more expressive service descriptions arises: such an at-
tempt was carried out by the Semantic Web initiative. The Semantic Web has
added machine-interpretable information to Web content in order to provide
intelligent access to heterogeneous and distributed information. In a similar
fashion, Semantic Web concepts are used to define intelligent Web services,
i.e., services supporting automatic discovery, composition, invocation and in-
teroperation. This joint application of Semantic Web concepts and Web ser-
vices in order to realize intelligent Web services is usually referred as Semantic
Web Services. A lot of proposals addressing the semantic Web services try to
improve the current technologies such as SOAP, WSDL and UDDI because
they provide very limited support in mechanizing service recognition, service
configuration and combination, service comparison and automated negotia-
tion. Among them, an important solution is represented by OWL-S [105] that
enriches the service descriptions with rich semantic annotations facilitating
automatic service discovery, invocation and composition.

An important framework for service description is the Web Service Model-
ing Framework (WSMF) [40] whose aim is to provide an appropriate concep-
tual model for developing and describing services and their composition. The
WSMF consists of four different main elements: ontologies that provide the
terminology used by other elements, goal repositories that define the prob-
lems the Web services should solve, Web services descriptions that define var-
ious aspects of a Web service and mediators to bypass interoperability limits.
WSMF’s aim is to enable fully flexible and scalable e-commerce based on Web
services providing an architecture characterized by:

• Strong de-coupling of the various components that realize an e-commerce
application.

• Strong mediation service enabling anybody to speak with everybody in a
scalable manner.

Among other proposed approaches we can include BPEL4WS [6] and BPML
[9] /WSCI [10]: they offer similar functionalities; in fact they define a lan-
guage to describe process models, offer support for service choreography and
provide conversational and interoperation means for Web services. They focus
on the composition of services, permitting the description of services interac-
tions. The need to have an exhaustive service description is examined, among
the others, by the SeCSE project. The view in Figure 8.10 [2] focuses on
the way SeCSE views Service Description. A Service Description comprises a
Service Specification and, if available, some Service Additional Information.
A Service Specification is usually defined by the Service Developer and may
include both functional and non-functional information such as information

296 Authors Suppressed Due to Excessive Length

on the service interface, the service behavior, service exceptions, test suites,
commercial conditions applying to the service (pricing, policies, and SLA ne-
gotiation parameters) and communication mechanisms. Service Additional In-
formation may include information such as user ratings, service certificates,
measured QoS and usage history. Both Service Specification and Service Ad-
ditional Information could be specified by means of different Facets. Each
Facet is the expression of one or more Service Properties in some specification
language. A Facet represents a property of a service such as, for example,
binding, operational semantics, exception behavior. Within a facet, the prop-
erty can be encoded in a range of appropriate notations. So each service in
the SeCSE environment is described by an undefined set of Facet permitting
to the consumer to gain understanding of the service.

Fig. 8.10. The SeCSE Service Description diagram

Service Publication

Service providers can make their services accessible via Web service interfaces.
In order to make a Web service usable by other parties, a provider will pub-
lish the Web service description at some network location reachable by target
users. It is a common practice to publish syntactic WSDL descriptions of
Web services at UDDI (Universal Description, Discovery, and Integration) [3]
repositories, which act as a common entry point for the location of Web ser-
vices and provide keyword-based search facilities, as well as searching based on
categories in taxonomies such as UNSPSC (Universal Standard Products and
Services Classification) [4]. A UDDI registry is similar to a CORBA trader, or
it can be thought as a DNS service for business applications. A UDDI registry
has two kinds of users: businesses that want to publish a service description
(and its usage interfaces), and clients who want to obtain services descriptions
of a certain kind and bind to them. The UDDI entry contains the following
elements:

8 Service Engineering 297

• The Business entity, which provides general data about a company such
as its address, a short description, contact information and other general
identifiers. This information can be seen as the white pages of UDDI.

• A list of Business services. These contain a description of the service and a
list of categories that describe the service, e.g. purchasing, weather forecast
etc. These can be considered as the yellow pages of UDDI.

• One or more binding templates define the green pages: they provide the
more technical information about a Web service [114].

The main goal of UDDI was to speed interoperability and adoption for Web
services through the creation of standards-based specifications for service de-
scription and discovery, and the shared operation of a business registry on the
Web.

Another solution addressing the service repository is provided by ebXML
[31]. Like its predecessor, UDDI, ebXML Registry also facilitates seamless and
automatic inter-enterprise collaborations. This feature enables integration be-
tween trading partners permitting the communication and functionality shar-
ing among SOA applications without human interaction. An ebXML registry
can have a persistence mechanism for enterprises, allowing to share and store
information as registered content: XML artifacts can be stored, maintained,
and automatically discovered, increasing efficiency in XML-related develop-
ment efforts. There are two general ways in which an e-business registry may
be used: for discovery and for collaboration: while, UDDI is focused exclusively
on this discovery aspect, ebXML Registry is focused on both discovery and
collaboration. Due to its focus on storing and maintaining XML artifacts,
an ebXML registry can used for a collaborative development of XML arti-
facts within an organization and for a run-time collaboration between trading
partners. Note that there is the possibility of run-time interoperability be-
tween UDDI and an ebXML registry. For example, it is possible to discover
an ebXML registry from UDDI, and vice versa.

The publication of WSDL descriptions at UDDI repositories is character-
ized by two limitations: a) manual assignment of Web services to categories,
and b) the use of syntactic descriptions does not allow for advanced search
based on formal semantics. An evaluation and comparison of the Web services
registry was led in 2005 by Dustdar et al [37]. Actually, UDDI specification
has not received a lot of support from industry and many products implement.
In literature, a lot of proposals to enable the retrieval of Web services based
on the semantic description can be found [60]. The METEOR-S project [113]
proposes an environment for federated Web services publication and discov-
ery among multiple registries: it uses an ontology-based approach to organize
registries, enabling semantic classification based on domains. Each registry
supports semantic publication of the service, used during discovery process.
Several works exist in the literature that extend UDDI or ebXML and propose
federated architectures usually based on the P2P paradigm (for example [89],
[101]).

298 Authors Suppressed Due to Excessive Length

Deployment of Service-Based Applications

The term Deployment is used to refer to the process of concretely associating
services to devices in the real world system, and all the activities that must
be executed to achieve it.

Dynamic deployment, in particular, is related to the body of techniques
that are needed to apply such a process in a dynamic context, where changing
conditions in the environment must be taken into consideration, together with
changes in the requirement, QoS, and other aspects. Dynamic deployment is
particularly important in a service-based context where new services or new
versions of the same services need to be deployed without stopping or inter-
fering with the normal execution of the others. Some of them, concentrating
on the possibility of dynamically deploying services, are also dealing with the
degree of reusability of services, and how flexibly they can be configured. The
main goals of these approaches are indeed both to provide a high level of QoS
and to enable dynamic deployment. A deployment infrastructure for service-
based applications should offer the following elements: ways to describe the
services that are required for the execution (if any) and ways to describe
the software components to deploy (both of the two above aspects belong to
“the what” cathegory); where to deploy these services/components, a strategy
for deployment, and an infrastructure for executing the deployment strategy.
Tawlar et al. [106] have classified the approaches for describing deployment
strategies in four main classes: manual, script-, language-, and model-based
approaches. Among the others, model-based approaches have gained a lot of
interest because they are able to control and evolve an SBA while it is running.
Notable is the work of Arnold et al [11] suggesting an approach for Pattern
Based deployment. On demand deployment requires the search of application
in centralized or distributed repositories, and the installation and the config-
uration before the operation. A view of the service deployment is shown in
the Figure 8.11.

Not only all software components that are part of services have to be in-
stalled. Their deployment also requires the associated description to be pub-
lished on some registries. Thus, deployment is strictly connected to Service
Description, Service Publication and Service Operation.

Operation and Management

In this section the issues related to the phase of Operation and Management
will be discussed. More specifically, in the world of Web services, distrib-
uted management becomes a clear requirement because the growing complex-
ity of global Web services brings together large numbers of services, suppli-
ers and technologies, all with potentially different performance requirements.
However, many existing system management infrastructures do not support
service-level agreement reporting or collect specific service information from

8 Service Engineering 299

Fig. 8.11. The service publication/deployment diagram

SBAs for troubleshooting purposes. Furthermore, existing management stan-
dards primarily focus on data collection and not on supporting rich manage-
ment applications for the adaptive infrastructure required by Web services
[85].

Web services and SBAs management provides the necessary infrastructure
to help enterprises monitor, optimize, and control the Web services infrastruc-
ture. A services management system provides visibility into the services run-
time environment to enable: monitoring of availability, accessibility, perfor-
mance of services SLA-compliance tracking and error detection, resolution,
and auditing.

OASIS Web Services Distributed Management [5] is a key standard for ser-
vices management. It allows exposing management functionality in a reusable
way through two specifications: one for Management Using Web Services
(MUWS) and the other for Management Of Web Services (MOWS). The
MUWS specification provides a framework that defines how to represent and
access the manageability interfaces of resources as Web services. MOWS builds
on MUWS to define how to manage a Web service as a resource. It defines
WSDL interfaces, which allows management events and metrics to be exposed,
queried, and controlled by a broad range of management tools.

During the operation phase and the execution of its functionalities, the sys-
tem’s behavior must be compliant to the QoS stated in the SLA. An important
aspect to guarantee the respect of the SLA is the monitoring of the service
state during its execution. Service operation requires a service governance (see
section 8.3.2) ensuring that the architecture is operating as expected main-
taining a certain QoS level (Figure 8.12). Of particular interest for the service

300 Authors Suppressed Due to Excessive Length

operation is the service fault, since the identification of service faults permits
the triggering of adaptation mechanisms needed to adapt SBAs.

Fig. 8.12. The operation and management diagram

Fault Detection

Internet services represent an important class of systems requiring 24x7 avail-
ability. Moreover they must guarantee the QoS levels stated in the SLA con-
tract between consumer and provider. Oppenheimer et al. [81] analyzed fail-
ure reports from large-scale Internet services in order to identify the major
factors contributing to user-visible failures, evaluate the (potential) effective-
ness of various techniques for preventing and mitigating service failure, and
build a fault model for service-level dependability. Their results indicate that
the main contributors to user-visible failures are operator error and network
problems, and that online testing and more thoroughly exposing and handling
component failures would reduce failure rates in some cases. Referring to the
IEEE standard terminology for definitions of failures and faults [38] we find
that a failure is the inability of a system or component to perform its required
functions within specified performance requirements. Moreover a fault is (1)
a defect in a hardware device or component; (2) an incorrect step, process,
or data definition in a computer program. Figure 8.13 represents the service
fault diagram. A service can produce, during execution, a fault. The nature
of the fault may be different depending on a wide variety of causes. A fault
is an observable event in the service execution that can lead to an erroneous
state, and, as consequence, a failure. By observing the system it is possible
to discover the occurrence of a fault (Fault Detection activity). The output of

8 Service Engineering 301

this activity are alarms; such events signal the occurrence of a failure, i.e., of
a discrepancy between the delivered service and the correct one. Alarms are
generally implemented in software using Exceptions. Detecting a fault means
only discovering the occurrence of a fault; to know the nature and the cause
of the fault its identification is needed; such activity requires a process of
diagnosis.

Fig. 8.13. The service fault diagram

The aim is to achieve the fault tolerance for the architecture: fault toler-
ance is the ability of an application to provide valid operation after a fault. The
application is returned to a consistent state, for example using a checkpoint-
ing mechanism. Fault tolerance is considerably more difficult for distributed
applications, composed by several process communicating among themselves.
Moreover in SBA a single process may be part of multiple applications. Di-
alani et al. [35] proposed a framework able to offer a method of decoupling
the local and global fault recovery mechanisms. In a different way, to achieve
fault tolerance in SOA, Santos et al. proposed an approach for deployment of
the active replication technique; they presented an engine able to detect and
recovery fault and invoke concurrently service replicas [97].

Since the nature of a fault depends on a lot of causes, some authors [7] pro-
posed a classification of the Web service faults distinguishing them in three
levels: infrastructural and middleware, Web service and Web application
level faults. Infrastructure middleware level faults are caused by failure in the
underlying hardware or network: this type of fault makes it impossible to use
the Web service or provide the expected QoS. Among Web Service faults they
proposed the classification into Web Service execution faults (raising during

302 Authors Suppressed Due to Excessive Length

invocation or execution of Web service) and coordination faults (resulting
by the composition of Web Services). Finally the application level faults are
related to the Web applications based on Web services. The same authors pro-
posed some mechanism of recovery action at Web service and Web application
level in order to guarantee self-healing properties of Web Services. In partic-
ular, after diagnosing a fault, adaptable Web Services are able to perform
recovery actions and restore the correct state: recovery actions may be reac-
tive (recovery of the running service) and proactive (data mining techniques
executed in an off-line mode). Substitution of unavailable services, comple-
tion of missing parameters in the input message causing a fault and retry the
invocation of an unavailable service until it return available are some of the
proposed recovery actions.

Faults can also be related to non-functional behavior of Web services in-
cluding SLA and QoS agreement [14]. SLAs are used to ensure to the consumer
a certain QoS during service execution. Even a violation of the contract raises
a SLA disagreement fault.

Adaptation Life-cycle Phases

Differently from classical SBAs, the distinguishing feature of the adaptable
SBAs is the support for accommodating and managing various changes oc-
curring in the application or in its context. This capability extends the tradi-
tional view on the Service-Based Application and requires the following two
functionalities to become the core elements of the application life-cycle: mon-
itoring and adaptation (Figure 8.14).

Fig. 8.14. The adaptation diagram

In a broad sense, monitoring is a process of collecting relevant information
in order to evaluate properties of interest over SBA and report corresponding

8 Service Engineering 303

events. As it follows from the diagram, monitoring observes either the appli-
cation (more precisely, various properties of an SBA instance, the whole class
of instances, and/or its evolution) or its context (contextual properties of an
instance or of the whole application). When the events reported by the moni-
toring represent critical deviations from the expected functionality, evolution,
or context of SBA, the latter should be adapted and therefore adaptation is
triggered.

Adaptation is a process of modifying a Service-Based Application in order
to satisfy new requirements and to fit new situations dictated by the environ-
ment. It correponds to the adaptive category of the maintenance activity that
will be described in detail in Chapter 8.4. This general definition becomes more
concrete when we consider different forms of adaptation (see Figure 8.14):
Proactive (to prevent future problems proactively identifying and handling
their sources), Reactive(to handle faults and recover from problems reported
during execution of an SBA instance or a set of instances), and Postmortem
(to modify (or evolve) the system at design time or when it is stopped). With
respect to the human involvement, as highlighted in the figure, we distinguish
the following two extreme types of adaptation: self-adaptation and human-in-
the-loop adaptation. Self-adaptation is an adaptation process that is executed
without any external human intervention. In this case all adaptation steps,
decisions, and actions are performed by the SBA autonomously. This also as-
sumes that all the necessary mechanisms to enact adaptation strategies are
built into the application. When the adaptation process assumes any form of
human intervention, one deals with human-in-the-loop adaptation. This inter-
vention may have different forms and take place at the different phases of the
adaptation cycle.

As it is shown in Figure 8.4, the adaptation cycle consists of the following
principle steps:

• decide whether the SBA adaptation is needed (Identify Adaptation Re-
quirements);

• decide how the system should be adapted (Identify Adaptation Strategies);
• modify the application (Enact Adaptation).

The ability to initiate this process relies, however, on the ability to identify
critical discrepancies between the expected (or desired) state, execution, and
evolution of SBAs and the actual ones. For this reason, monitoring becomes
an essential component of the adaptation process.

Identify Adaptation Requirements phase

The decision on the necessity for SBA to adapt is based on the information
about the execution, evolution and context of SBA provided by monitoring.
There are two possible ways to make such a decision. In the first case, the
monitoring requirements are derived from the adaptation requirements, and
the appropriate monitoring properties represent severe problems, contextual

304 Authors Suppressed Due to Excessive Length

changes or other type of discrepancies that are critical from the adaptation
perspective. These properties are observed by the monitors, and when the
corresponding events are detected, the need for adaptation is automatically
triggered. In the second case, the process requires human involvement: based
on the monitored information, the user (being end user, system integrator,
application manager, etc.) makes a decision on the need for adaptation.

Identify Adaptation Strategies phase

When the adaptation requirements are instantiated, the corresponding adap-
tation strategies should be identified and selected. In Section 8.3.2 we have
already presented a set of strategies applicable to various forms of SBA adap-
tation, including service substitution or re-negotiation of their SLAs, reconfig-
uring SBA or recomposing services, execute specific recovery or compensation
actions, and even re-planning the underlying business process. Different adap-
tation strategies may refer to different functional SBA layers, may be prede-
fined or created dynamically, may follow different methodologies and specified
in different ways.

An important aspect for the adaptation cycle is how a particular strategy
is defined and selected. As in the case of adaptation requirements, this may
or may not require human involvement. If it does not require human inter-
vention, the selection is made by the SBA or the execution platform, based
on some predefined decision mechanisms and the current information derived
from monitors. In the opposite case, the role of the user can be to choose one
or another alternative among those proposed by the adaptation framework.

Enact Adaptation phase

After the adaptation strategy is identified and chosen, the corresponding adap-
tation mechanisms are activated in order to implement the strategy and to ex-
ecute corresponding adaptation activities. For the strategies mentioned above
the following mechanisms are usually considered:

• automated service discovery and dynamic binding mechanisms are crucial
for the realization of such adaptation strategies as service substitution,
re-composition and re-configuration; (automated) SLA negotiation frame-
works and infrastructures are necessary for the realization of re-negotiation
strategy,

• automated service composition techniques and mechanisms are necessary
for the re-composition and re-planning techniques (when the latter is done
in autonomous mode),

• design time adaptation tool support may be necessary in order to perform
manual, design-time adaptation of SBA or its constituent parts when a
re-planning strategy is achieved through re-design of SBA. Such tools may
include, e.g., various frameworks for designing and generating adapters for
constituent services [25, 17], tools supporting customization of the process
models [59], etc.

8 Service Engineering 305

Also in this case the process may involve the users (e.g., to select a particular
realization, to provide additional information and decisions, or to perform the
adaptation manually through re-designing the application or components) or
may be done autonomously.

Depending on the strategy, the adaptation process may involve other
phases of the SBA life-cycle such as quality assurance and deployment.

Cross-cutting Concerns

The previous sections presented methodologies and processes for each the
phases of the service life cycle of Figure 8.4. These sections discuss issues that
spread beyond one individual phase in the life cycle, affecting in some cases
all the life cycle of services like service governance, quality assurance of SBAs,
service discovery and service level agreement negotiation.

Service Governance

A significant challenge to widespread SOA adoption is for SOAs to deliver
value. To achieve this, there must be control in areas ranging from how a cross-
organizational end-to-end business process that is composed out of a variety
of service fragments is built and deployed, how QoS is enforced, proven and
demonstrated to service consumers, to granular items such as XSD schemas
and WSDL creation. This requires efficient SOA governance.

Prior to describing SOA governance it is useful to describe the meaning of
IT governance as SOA governance stems from and is deeply rooted in IT gov-
ernance [20]. IT governance is a formalization of the structured relationships,
procedures and policies that ensure the IT functions in an organization sup-
port and are aligned to business functions. IT governance aligns IT activities
with the goals of the organization as whole and includes the decision-making
rights associated with IT investment, as well as the policies, practices and
processes used to measure and control the way IT decisions are prioritized
and executed [56].

The IT Governance Institute (http://www.itgi.org/) has established a
value IT framework that consists of a set of guiding principles, and a number
of processes conforming to those principles, which are further defined as a
suite of key management practices. ITG recommends these guiding principles
to be applied in terms of three core processes: value governance, portfolio
management and investment management. The goal of value governance is
to optimize the value of an organization’s IT-enabled investments by estab-
lishing the governance, monitoring and control framework, providing strategic
direction for the investments and defining the investment portfolio character-
istics. The goal of portfolio management is to ensure that an organization’s
overall portfolio of IT-enabled investments is aligned with, and contributing
optimal value to the organization’s strategic objectives by establishing and
managing resource profiles, defining investment thresholds, evaluating, priori-
tizing and selecting, managing the overall portfolio, monitoring, and reporting

306 Authors Suppressed Due to Excessive Length

on portfolio performance. Finally, the goal of investment management is to
ensure that an organization’s individual IT-enabled investment programs de-
liver optimal value at an affordable cost with a known and acceptable level of
risk by identifying business requirements, analyzing the alternatives, assign-
ing clear accountability and ownership, managing the program through its full
economic life cycle, and so forth.

SOA governance has to oversee the entire life cycle of an enterprise service
portfolio in order to identify, specify, create, and deploy enterprise services,
as well as to oversee their proper maintenance and growth [77].

SOA governance is an extension of IT governance and guiding principles,
such as the ones described above, which focus is on the life cycle of services
and is designed to enable enterprises to maximize business benefits of SOA
such as increased process flexibility, improved responsiveness, and reduced
IT maintenance costs. SOA governance refers to the organization, process,
policies and metrics that are required to manage an SOA successfully [75]. In
particular, SOA governance is a formalization of the structured relationships,
procedures and policies that ensure that the IT functions in an organization
support and are aligned to business functions, with a specific focus on the life
cycle of services.

Services that flow between enterprises have defined owners with established
ownership and governance responsibilities, including gathering requirements,
design, development, deployment, and operations management for any mission
critical or revenue generating service.

To achieve its stated objectives and support the enterprise’s business objec-
tives on strategic, functional, and operational levels, SOA governance provides
a well-defined structure. It defines the rules, processes, metrics, and organi-
zational constructs needed for effective planning, decision-making, steering,
and control of the SOA engagement to meet the business requirements of an
enterprise and its customers.

SOA governance introduces the notion of business domain ownership,
where domains are managed sets of services sharing some business context to
guarantee that services fulfil their functional and QoS objectives both within
the context of a business unit and the enterprise’s within which they operate
[85]. Two different governance models are possible [85]:

1. Central governance: With central governance, the governing body within
an enterprise has representation from each business domain as well as from
independent parties that do not have direct responsibility for any of the
service domains. There is also representation from the different business
units in the organization and subject matter experts who can talk to the
developers who implement key technological components of the services
solution. The central governance council reviews any additions or dele-
tions to the list of services, along with changes to existing services, before
authorizing the implementation of such changes. Central governance suits
an entire enterprise.

8 Service Engineering 307

2. Federated governance: With federated governance each business unit has
autonomous control over how it provides the services within its own en-
terprise. This requires a functional service domain approach. A central
governance committee can provide guidelines and standards to different
teams. This committee has advisory role only in the sense that it makes
only recommendations and it does not have to authorize changes to the
existing service infrastructure within any business unit. Federated gover-
nance suits enterprise chains better.

Fig. 8.15. Developing and managing SBAs

Figure 8.15 illustrates the usual stratification in runtime environment, in-
frastructure services and business services and highlights the importance that
monitoring facilities play in SOA governance. Resource and business process
optimization are also highlighted.

As mentioned above, the concept of SOA governance comprises all the
activity needed to exercise control over services in an SOA. The focus is on
those resources to be leveraged for SOA to deliver value to the business; it
involves many phases of a service architecture lifecycle, including specification,
deployment and evolution. SOA governance is about ensuring and validating
that assets and artifacts within the architecture are operating as expected and
maintaining a certain level of quality. So, it has to offer features to monitor
execution, check the policies and handle the exceptions (see the class diagram
in figure 8.16).

Quality Assurance (QA) of SBAs

In this section the focus is on the major points of QA for SBA throughout all
the phases of the life-cycle (see the section 7 for further details).

More specifically, three major approaches have been identified in the lit-
erature for SBA QA:

308 Authors Suppressed Due to Excessive Length

Fig. 8.16. The governance of Service Based applications diagram

1. Static Analysis: In a narrower sense, static analysis “. . . is the system-
atic examination of program structure for the purpose of showing that
certain properties are true, regardless of the execution path the program
may take.” [84] In a broader sense, static analysis can be extended to
documents at all stages of the software life cycle.

2. Testing: “. . . testing entails executing a program and examining the results
produced.” [84] Testing a software system or an SBA requires test data,
which are fed into the system. The resulting outputs are than compared
to the expected outputs. An error (or defect) results if the actual outputs
do not fit the expected outputs. In SBAs these defects are due to services
or to service compositions, e.g. a wrong sequence of service requests in a
BPEL specification.

3. Monitoring: The purpose of monitoring in the software engineering do-
main is to “. . . determine whether the current execution [of the software]
preserves specified properties; thus, monitoring can be used to provide ad-
ditional defence against catastrophic failure. . . ” [33] In SOAs monitoring
can be used to observe the status of SBAs - as in traditional software engi-
neering - and services. Monitoring of services may lead to the adaptation
of the SBA, e.g. when one ore more services are not available.

Figure 8.17 summarizes the QA for SBAs: Monitor is used to check the
compliance of the behavior exposed by an SBA during execution and its ex-
pected QoS. If some deviation is detected, the monitor could enact some
adaptation mechanism to correct the behavior.

Service Discovery

The Service Discovery is an important aspect in Service Oriented Computing.
The process of service discovery requires locating the services satisfying user
requirements and returning the most relevant ones for the consumer. In other
words, service discovery is the matching of the needs of a service requestor
with the offerings of service providers.

8 Service Engineering 309

Fig. 8.17. The QA diagram

The continuous growth of the number of services published in the Web
makes the process very hard. A key aspect of the service-oriented architec-
ture approach is that the services advertise themselves using directory or
lookup services so clients can find them. Consumers need to know only lim-
ited information about the service. Like a caller using telephone white pages,
a consumer application looks up the desired service in some directory, which
returns the associated service provider information. The consumer then uses
this information to interact with the provider. Performing a name lookup on
an implementation of the Java Naming and Directory Interface, for example,
returns a Java object that the caller can use to invoke the named service.

Web services enforce the paradigm of distributed computing enabling
enterprise-wide interoperability: integration of the services requires the lo-
calization and the purchase of the needed services. Existing Universal De-
scription Discovery Integration (UDDI) [3] technology uses a central server
to store information about registered Web services; the centralized approach
becomes unsuitable managing large distributed system. WSDL (Web Service
Description Language) provides descriptions for Web services [30], containing
the service interface, specifying inputs and the outputs of service operations.
But these descriptions are purely syntactic: the problem with syntactical in-
formation is that the semantics implied by the information provider are not
explicit, leading to possible misinterpretation by the users.

Among the most used service discovery approaches, important is the
keyword-based (syntactic) discovery mechanism; the limit of this approach is
that it doesn’t consider the semantic of the requestor goals, service and con-
text, retrieving objects whose descriptions contain keywords from the user’s
request. This approach can lead to the individuation of services, often not
expected by the consumers: for example the query keyword might be syntac-
tically equivalent but semantically different from the terms in the object de-
scriptions; moreover this approach doesn’t consider the relations between the
keywords. A solution is represented by ontology-based discovery approaches:
the retrieval is based on semantic information rather than keywords. Improv-
ing Web services discovery requires explicating the semantics of both the
service provider and the service requestor. Shoujian et al.[100] proposed an

310 Authors Suppressed Due to Excessive Length

ontology-based approach to capture real world knowledge for a finer granular-
ity annotation of Web services. Moreover [70] proposed a more sophisticated
approach using Probabilistic Latent Semantic Analysis (PLSA) to capture
semantic concepts hidden behind the term constituting the user query.

A lot of effort is spent to automatize discovery: automatic service discovery
requires automated matching of semantic service descriptions or, in worse
cases, a composition of them [58]. Figure 8.18 focuses on the Service Request
and the process of Service Discovery. A Service Consumer expresses one or
more Service Requests in order to discover Concrete Services that can serve
its requests and satisfy its needs. Service discovery is usually executed at
least in three different moments, related to different phases in the lifecycle of
Figure 8.4 : 1) when the requirements for a new system are gathered (Early
Discovery) (Requirement Engineering activity in Requirement Engineering
and Design Phase in figure 8.4), 2) when the system is being designed and
new specific needs for services are identified (Design Time Discovery) (Design
activity in Requirement Engineering and Design Phase in figure 8.4), or 3)
when the system is running and new services need to be discovered to replace
the ones that the system is currently using (Run-Time Discovery) (Operation,
management and Quality Assurance Phase in figure 8.4). The latter type of
discovery is required during adaptation enactment (see section 8.3.2). Some
researches attempt to optimize the runtime service discovery process [103],
using the information gathered during design time service discovery as a sort
of cache.

Fig. 8.18. The service discovery diagram

8 Service Engineering 311

Service Level Agreement Negotiation

Service Level Agreements (SLAs) are contracts between a service provider
and their customers that describe the service, terms, guarantees, responsibil-
ities and level of the service to be provided. They have been widely used by
network operators and their customers. The process that leads to the defini-
tion of a SLA between consumer and provider is called an SLA Negotiation.
The SLA Negotation cannot be referred to a specific phase of the service
lifecycle because an SLA can be negotiated either at design time or at run-
time. For example, during service execution an SLA can be negotiated or even
re-negotiated if the quality parameters defined in the previous SLA aren’t sat-
isfied. If the provider is unable to meet the SLA conditions, instead of stopping
the service provisioning, the provider and consumer can decide to re-negotiate
the SLA. The end of the process of SLA negotiation consists of the stipulation
of a contract in the form of an SLA: this contract contains what user expects
from service execution, and what the provider guarantees. Figure 8.19 focuses
on the entities and the activities characterizing the process of SLA Negotia-
tion. The negotiation process consists of two or more Negotiation Agents, each
acting on behalf of a Service Provider or a Service Consumer, formulating,
exchanging and evaluating a number of SLA Proposals in order to reach an
SLA Contract for the provision/consumption of a service. A SLA Proposal
can be an SLA Offer or an SLA Request that a Negotiation Agent formulates
enacting a certain Strategy. An SLA Proposal specifies negotiation values for
a number of Service Properties, such as QoS attributes. When the negotiation
process leads to an agreement between the involved parties, an SLA Contract
enclosing the agreed SLA Proposal is subscribed between these subjects.

Fig. 8.19. The Service Level Agreement negotiation diagram

312 Authors Suppressed Due to Excessive Length

The following chapter discusses more traditional software engineering tech-
niques, and which lessons can be drawn from them for the purposes of SBA
engineering.

8.4 Software Engineering Practices relevant to Service
Based Applications

This section covers “classical” design and development methodologies and
issues, some of which have been established as industry-wide accepted stan-
dards in the last decades. More specifically, Section 8.4.1 presents established
methods and theories for software process quality and assurance. Further-
more, Section 8.4.1 discusses the predecessor of service orientation, i.e., the
component-based paradigm; Section 8.4.1 provides some insight into the issue
of legacy system re-engineering and how it affects SBA engineering. Conse-
quently, Section 8.4.1 discusses the issues of software maintenance and evo-
lution and how they are related to SBA adaptation. Finally, Section 8.4.2
summarizes some of the dominant methodologies for business processes in or-
der to illustrate the challenges and expectations for any SBA methodology
that has to be applied in the Business Process Management area.

8.4.1 Classical Software Engineering

Software Process Quality

Software quality within software engineering is often considered to be only
testing. However, the software process community argues that quality should
be built into a product, not just ’tested for’ at the end of the development
process. In this section we discuss the overall concept of software process
quality.

Humphrey [49] defines a software process as “the set of tools, methods and
practices we use to produce a software product”. Paulk et al. [78] expand this
definition to “a set of activities, methods, practices and transformations that
people use to develop and maintain software and the associated products”.

When organisations consider their software process it is usually with a
view to improving that process to improve the quality of their product. As an
example, improvement of the process can be based on the Plan-Do-Check-Act
cycle which is a common technique used in manufacturing quality improve-
ment strategies as shown in Figure 8.20. To be useful, the improvement must
be continuous, and the process continually assessed. Specific cycles are stated
within some of the process models.

The purpose of implementing software processes within an organisation
is to improve the quality of the final product through building in quality
throughout the process rather than discovering, either at testing phase or
following release, that there are problems with the product.

8 Service Engineering 313

Fig. 8.20. Plan-Do-Check-Act for Software Process

There are many proprietary process improvement and assessment frame-
works used in industry. Such frameworks normally contain process areas
within which specific practices are performed. Two internationally recognised
models are ISO/IEC 15504 and the Capability Maturity Model Integrated
(CMMITM) [82, 107]. ISO/IEC 15504 is designed so that other process mod-
els can be ratified by the ISO standard. For organisations using CMMI, for
example, they can demonstrate a maturity level with respect to both CMMI
and within ISO/IEC15504. In the following section, to illustrate the meaning
of a process area, we chose to discuss those process areas within the Capability
Maturity Model Integrated as within CMMI Version 1.2 [107].

Process Management areas contain the cross-project activities related to
defining, planning, deploying, implementing, monitoring, controlling, apprais-
ing, measuring, and improving processes. More specifically they are:

Organizational Innovation and Deployment is designed to ensure that incre-
mental and innovative improvements improving the organisation’s processes
and technologies are implemented.

Organizational Process Definition requires that the process is developed and
defined within the organization.

Organizational Process Focus ensures that process improvements are planned
and implemented based on an understanding of the strengths and weak-
nesses of the organisation’s process and process assets.

Organizational Process Performance establishes and maintains a quantita-
tive understanding of the organisation’s process, focusing on quality and
process-performance objectives.

Organizational Training is focused on the development of skills and knowl-
edge of people.

Project Management process areas cover the project management activi-
ties related to planning, monitoring, and controlling the project. They are:

314 Authors Suppressed Due to Excessive Length

Integrated Project Management establishes and manages the project and
stakeholders according to a defined process.

Project Monitoring and Control is undertaken to ensure that corrective ac-
tions can be taken if and when required.

Project Planning establishes and maintains plans that define project activi-
ties.

Quantitative Project Management ensures that the project achieves quality
and process-performance levels through quantitative measures.

Risk Management allows the organisation to identify potential risks, and to
implement a strategy to mitigate these risks where possible.

Supplier Agreement Management manages the acquisition of product from
suppliers.

Engineering process areas cover the development and maintenance activi-
ties that are shared across engineering disciplines and are:

Product Integration ensures that the product’s sub-components are inte-
grated correctly to provide a final working product.

Requirements Development ensures that customer, product and component
requirements are produced correctly.

Requirements Management manages the requirements of the product and
components, ensuring that they are consistent with the project plans and
the work products.

Technical Solution enables the design, development and implementation of
solutions to requirements.

Validation allows the organisation to demonstrate that a product or compo-
nent fulfils its intended use in its intended environment.

Verification ensures that the work products meet the requirements.

Support process areas cover the activities that support product develop-
ment and maintenance. The Support process areas address processes that are
used in the context of performing other processes. They are:

Causal Analysis and Resolution allows the organisation to identify the causes
of defects in products and to prevent their re-occurrence.

Configuration Management implements configuration identification, configu-
ration control, configuration status accounting and configuration audits.

Decision Analysis and Resolution enables the analysis of possible decisions
against a formal evaluation process.

Measurement and Analysis enables the development of a measurement capa-
bility which supports management information needs.

Process and Product Quality Assurance involves evaluating performance of
process and process assets against pre-defined standards and ensuring
that non-compliance issues are addressed.

While there have been arguments that implementing planned processes
decrease rather than increase the efficiency of the software development

8 Service Engineering 315

process [79, 52, 57] there is also evidence that there have been increases in
productivity and efficiency due to the implementation of planned processes
[19, 104, 24, 50, 41].

Agile Development is a software process which has gained recognition in
recent years. Having introduced concepts such as Scrum, Test Driven Devel-
opment (TDD) and Extreme Programming (XP), it is distinctly different. The
agile approach thrives on the lack of stable requirements and uses small self-
managed teams to frequently produce reliable software that meets customer
requirements.

The reported success of the use of agile development was instantaneous
[98]. Key benefits reported include the faster delivery of higher quality prod-
ucts that better matched customer requirements due to their close involvement
throughout the project. Leszak et al. [65] have argued that the transition to
agile methodologies was initiated as a way of achieving a positive return on
investment in quality early in the development life cycle. However, not all
reports of these agile development techniques described positive experiences
[62]. Despite the fact that they are “simple” and “quick” [55], most are very
difficult to get right and require extensive training, discipline and managerial
support.

The ever increasing number of agile methods that are available also
presents a problem: not every technique is suitable for every type of project.
This factor must be given serious consideration before a specific development
methodology is chosen for a project.

In particular industries, such as the Medical Device industry, through
governance by the Food and Drugs Administration (FDA) and International
Standards Organisation (ISO), and the Automotive industry, who follow Au-
tomotive SPICE (derivative of ISO/IEC 15504), documented processes are
still required. The Financial sector has also commenced an initiative to im-
plement Banking SPICE as they also have to deal with regulations such as
Sarbanes-Oxley.

While there may be an argument for service developers not to consider the
implementation of software processes due to their restrictiveness, the commu-
nity needs to consider that software development within specific industries
such as those mentioned above is a growth area. For example, the cycle on
the left-hand side of Figure 8.4 does not currently exist within software engi-
neering process models, and, therefore, existing models need to be developed
to ensure that service-based software can be used successfully within the reg-
ulated industry. In doing this, organisations can work on becoming players
within these markets and software developers need to become process aware,
seriously considering how quality can be improved through the implementa-
tion of software processes for services.

Quality Assurance

Software process models are designed to ensure that the quality of the product
is built in from the start of software development, therefore, in this section, we

316 Authors Suppressed Due to Excessive Length

discuss further the service life-cycles already discussed in section 8.3.1 from
the perspective of software engineering quality. It is imperative that, for the
future, as services move into regulated industry in particular, good quality
assurance systems are implemented. While there are a number of such qual-
ity models available we chose to look specifically at the Capability Maturity
Model IntegratedTM(CMMITM[107]) as it is an accepted exemplar contain-
ing process areas relevant to the development of systems and software. The
CMMITMcontains twenty-two process areas which focus on Process Manage-
ment, Project Management, Engineering and Support Process. While it is
imperative that the Engineering process areas are implemented successfully
to develop product, it is equally important that, for a quantitatively-managed,
defined and repeatable life-cycle, process areas under the other three headings
are also implemented.

1. The SLDC appears to cover all the aspects of the CMMI technical solution
process areas but seems lacking in some of the other process areas of the
model, such as project management and process management.

2. In order to compare the RUP for SOA framework to the CMMI capability
model we will first have to look at its components. The RUP framework
consists of nine disciplines, six engineering disciplines and three support
disciplines. The engineering disciplines are Business Modelling, Require-
ments, Analysis and Design, Implementation, Testing and Deployment.
The remaining three support disciplines are Configuration Management,
Project Management and Development Environment. When we compare
the RUP for SOA to the CMMI model, the RUP for SOA activities work
flow seem to cover the majority of the CMMI process areas. The RUP
model however, does not implement most of the support process areas
or some of the important project management processes such as Supplier
Agreement management. In a survey carried out by the Software Engi-
neering Institute, there was a comprehensive comparison made between
RUP and CMMI, which highlighted some of these weaknesses [42]. [76]
discusses the implementation of new process elements that allow RUP to
overcome these weaknesses.

3. When we compare SOMA and CMMI it is evident that SOMA puts suffi-
cient emphasis on an organisation’s processes and it also covers the soft-
ware’s engineering processes in detail. SOMA does not however put a lot
of emphasis on project management or the support processes required to
deliver software.

4. The comparison between SOAD and CMMI bears resemblance to the com-
parison between CMMI and RUP for SOA. SOAD puts a lot of emphasis
on process management and SOA engineering processes; however there are
still gaps in the support process and project management aspects. In ad-
dition to that, the fact that SOAD is not yet fully defined as a process for
delivering quality SOA based applications, makes it appear even further
from being able to provide compatibility with the CMMI model.

8 Service Engineering 317

5. When we compare ASTRO and CMMI, we can see that the ASTRO
tools are primarily focused on using business process input in the form of
BPEL to generate a technical solution. The WS-animator tool, which is
an EclipseTMIntegrated Development Enjoinment plug-in, can be used in
order to visually execute the business process. This can be used to verify
and validate the generated business process. The ASTRO methodology
makes no attempt to provide support processes or project management
techniques.

6. Many aspects of the BEA lifecycle are compatible with the CMMI model.
The BEA lifecycle also contains many SOA centric components that can-
not me measured using the CMMI. The BEA lifecycle describes in detail
the processes around creating, composing and reusing service components.
This however seems at the expense of describing a lot of the CMMI key
process areas in the process management, project management and sup-
port process disciplines.

Comparing Lifecycles and CMMITM

All of the lifecycles we have looked at appear to have been developed with
varying goals in mind. Some of the lifecycles such as RUP for SOA and the
BEA lifecycle make attempts to cover all of the required lifecycles stages to
analyse, design, build, test, deploy and monitor service based applications. On
the other hand, the ASTRO life cycle focuses on combining and orchestrat-
ing third party web services. Figure 8.21 shows the varying levels of CMMI
compatibility that exists between each of the life cycles and CMMI.

At a glance it appears that most of the life cycles are more focused on the
technical engineering process areas than any of the other process area. In order
to make these lifecycles more compatible with the software engineering view
of quality they will need to focus more on the areas of support and project
management in particular. In addition, direct implementation of a software
process model such as the CMMITMinto services development does not take
into account the left-hand side of the reference lifecycle shown in Figure 8.4.
Software process models will need to be adjusted to cope with the adaptation
phases of the reference life-cycle.

Component-Based Software Engineering

In the world of software engineering, software reuse has long been one of the
major issues; it is seen as the key for increased productivity, improved reli-
ability, and ease of maintenance. The development of software starting from
existing components draws on analogy with the way that hardware is designed
and built, using “off-the-shelf” modules. In fact, Component-Based Software
Development (CBSD) approach is based on the idea to develop software sys-
tems by selecting appropriate off-the-shelf components and then to assemble
them with a well-defined software architecture. The process leading to com-
ponent based systems is integration-centric rather than development-centric.

318 Authors Suppressed Due to Excessive Length

Fig. 8.21. SBA Lifecycles vs. CMMI

The idea behind the engineering concept is that components can easily be
reused in other systems since they are autonomous units, free of the context
in which they are deployed. Components are black box, providing an external
interface to their functionality hiding all internal details. CBSD aims to reduce
development cost and time to market since ready-made and self-made com-
ponents can be used and re-used. These Commercial Off-The-Shelf (COTS)
components can be made by different developers using different languages and
different platforms.

The idea behind CBSD makes the life cycle and software engineering model
of CBSD much different from that of the traditional ones. Component-based
software systems are developed by selecting various components and assem-
bling them together rather than programming an overall system from scratch;
thus the life cycle of component-based software systems is different from that
of the traditional software systems. Boehm et al. [21] retain that both the
waterfall model and the evolutionary development are unsuitable for COTS-
based development. Since in the waterfall model requirements are identified at
an earlier stage and the COTS components chosen at a later stage, it’s likely
to choose COTS components not offering the required features. The evolu-
tionary development on the other hands assumes that additional features can
be added if required. However, COTS components cannot be upgraded by one
particular development team. The frequent lack of code availability hinders
developers to adapt them to their needs. Therefore, Boehm et al. proposed

8 Service Engineering 319

that development models which explicitly take risk into account are more
suitable for COTS-based development than the traditional waterfall or evolu-
tionary approaches. A possible life cycle of component-based software systems
consists of the following activities:

• requirements analysis;
• architecture selection, creation, analysis, and evaluation;
• component evaluation, selection, and customization;
• integration;
• system testing;
• and software maintenance.

The focus of CBSD is on composing and assembling components often de-
veloped separately, and even independently. Component identification, cus-
tomization and integration is a crucial activity in the life cycle of component-
based systems; component selection addresses the issue of browsing and indi-
viduating the component to use satisfying the desired functionality. The se-
lection of COTS products is a challenging process that utilizes and generates
a lot of information, aiming to find software components among the compo-
nents that are previously built. When the number of component grows, the
complexity of the choice becomes greater. Hence, management of the existing
components is required. For COTS selection activity, information repositories
play a crucial role; repositories contain the object code of the components, and
they should have features that allows for convenient access to reusable compo-
nents and provide reuse functionality such as selection, analysis, adaptation,
test, and deployment. Lee et al. [64] proposed a component repository for fa-
cilitating EJB (Enterprise JavaBeans) component reuse. An EJB component
is available as class files packaged in a Java ARchive (JAR) file. The class files
contained in the JAR are separated into interfaces and beans. The beans are
designed to execute their business logic through their interfaces. Among the
component infrastructure technologies that have been developed, three have
become somewhat standardized: OMGs CORBA, Microsoft’s Component Ob-
ject Model (COM) and Distributed COM (DCOM), and Sun’s JavaBeans and
Enterprise JavaBeans.

Issues in the use of Components Software

Component users develop component-based systems by integrating their appli-
cations with independently-developed components. Typically, the source code
of the components is not available to the component users. Consequently, tra-
ditional program analysis and techniques requiring access to the source code,
such as alias analysis, static analysis, control dependence computation, and
testing techniques, such as data flow, cannot be applied. One way to perform
the analysis without the source code is to analyze relations that hold in the
components and the relations caused in the application by the code in the
components, but unfortunately these analyses are often too imprecise, and

320 Authors Suppressed Due to Excessive Length

therefore useless. It’s interesting to notice that the use of high quality compo-
nents doesn’t guarantee the quality of the resulting component based system,
but its quality depends on the quality of its components and the framework
and integration process used. Hence, techniques and methods for quality as-
surance and assessment of a component-based system would be different from
those of the traditional software engineering methodology [73], requiring adap-
tation to this context. The Quality Assurance (QA) of the overall system is a
critical issue: it is important to certificate the quality of a component and the
quality of software systems based on components. To this aim Cai et al. [27]
proposed a QA model for component-based software development, which cov-
ers both the component QA and the system QA as well as their interactions.
One problem that CBSE currently faces is the lack of a universally accepted
terminology. Even the most basic entity, a software component, is defined in
many different ways; it would be useful to have a clarified and unified termi-
nology. To this aim Lau et al. [61] proposed a taxonomy of component models
(JavaBeans, EJB, COM.).

CBSE and SBAs

SBAs are developed composing available functionalities exposed by the ser-
vices; in this context services can be considered very similar to a reusable
components, and approaches developed in CBSE could be adapted to services.
However, service-oriented architectures introduce some important issues that
need to be considered: in a service-oriented scenario, users acquire just the
use of a service without integrating physically it in their applications . Each
service of a service-based system ideally represents a component executing a
business task and provides an interface that is invoked through a data format
and protocol that is understood by all the potential clients of that service.
Services can be distributed across organizations and can be reconfigured into
new business processes as organizations evolve. Users can discover a Web ser-
vice by querying a service registry and retrieving the service description of
the service they want. The service description contains enough information
for the service requestor to bind to the service he wants to use. While in the
component repository the physical component is contained, in the service reg-
istry only the description of the service is contained: using a service means
invoking it and not owning it. Another important difference is about the com-
position. While component composition is made assembling component using
connectors or glue code, service compositions are obtained composing the ser-
vice descriptions. Consequently, since services are bound only at runtime, the
realization of service composition is known only at execution time [88].

Legacy Systems Re-Engineering

Legacy systems constitute the enterprise’s heritage of software and hardware
systems. Often, legacy systems are relatively old, mainframe-based systems

8 Service Engineering 321

that were optimized to accommodate the memory, disk, and other operational
constraints of archaic software and hardware platforms. A vast majority of
them is older than twenty years and written in COBOL, PL/I or Assembly/370
using transactions management systems like Customer Information Control
System (CICS), although this certainly does not have to be the case.

Legacy systems pose an Amphitryon dilemma for enterprises. On the one
hand, enterprises perceive them as bottlenecks to implement new or rein-
vented business processes as they are notably hard to adapt to new business
requirements. Disruptions to these systems, even those as short as a couple
of seconds, may cause catastrophic losses. On the other hand, legacy systems
typically lock valuable, and in many cases indispensable, business knowledge.
This business knowledge contains not only explicit knowledge about business
processes, policies and data that is codified in a shared formal language, but
also tacit knowledge that is employed implicitly to smoothen daily business
operations (e.g., know-how).

Devising a balanced strategy for handling legacy systems and (re-)aligning
them with new process requirements has proven a particularly challenging is-
sue. Over the past decades, a number of strategies, methodologies and tools
have been touted by the industry as the next silver bullet to overcome the
legacy dilemma, ranging from non-intrusive approaches such as screen scrap-
ing and legacy wrapping, to more invasive ones like grafting new designs into
the outdated parts of the architecture of legacy systems.

Approaches for dealing with Legacy Applications

The following evolution strategies have been proposed during the past decades
([23], [117], [116], [109]): maintenance, modernization, replacement and phase-
out. The impact of these strategies on the enterprise applications ranges from
minimal to large: maintenance activities entail a contained type of evolution
implying marginal changes and extensions, whilst phasing-out is the most
disruptive approach involving retirement of (parts of) the legacy systems.

These strategies can be classified as follows:

• Continued Maintenance. This evolution strategy is applicable in case a
legacy system is still relatively well-functioning. As no intrusive changes
are accompanied with this strategy, it is by far the most optimal category
of legacy evolution strategies from a cost and risk perspective.
Continued maintenance involves nurturing the application without making
fundamental changes to the code and breaking its underlying architecture.
The strategy basically comes in three variants ([116], [117]): adaptive main-
tenance, corrective maintenance, and perfective maintenance. Adaptive
maintenance pertains to making minor changes in the system’s functional-
ity to ensure that it stays in flux with new business requirements. Besides
these activities, maintenance activities can be directed towards eliminating
fixed errors in the code (corrective maintenance), and optimizing the code

322 Authors Suppressed Due to Excessive Length

for both the functional and the non-functional requirements (perfective
maintenance).

• Modernization. Modernization through service-enablement of legacy appli-
cations and/or repository systems usually becomes desirable after several
years of continued maintenance, weakening the technical quality, e.g., flex-
ibility, of the legacy systems.
Basically, legacy system modernization can be achieved in two orthogo-
nal manners. Firstly, legacy system may be renovated by firstly packaging
them as services (encapsulation), and subsequently integrating it with new
applications. Some authors refer to this approach to as access/integration
in place [110], or black-box modernization [117]. The second, fundamen-
tally different, way of modernizing the legacy system is to transform it
into a new service-enabled application. Transformation requires a detailed
understanding of the legacy system to allow legacy code and data to be
converted, whereas integration merely demands abstract knowledge about
the external services of a legacy system to integrate them with modern sys-
tem components. Hence, transformation is considered to be an invasive,
and integration a non-invasive strategy.
In particular, transformation of legacy systems constitutes moving a source
(the legacy system) to a new, target application. As such, transformation
involves the examination and reconstitution of an enterprise information
system according to state-of-the-art engineering techniques. Transforma-
tion may be realized with (a combination of) several techniques, including:
source code translation, program and data restructuring, reverse engineer-
ing, and re-targeting. Source code translation involves transforming old
code into a new version that is written in another, contemporary pro-
gramming language, or a newer version of the same language. For ex-
ample, systems may be converted from COBOL-II into Object-Oriented
COBOL [66]. Program restructuring refers to correcting structural flaws
to the code, e.g., infinite loops in code whilst data restructuring involves
refreshing the data-structure of legacy data files and/or databases. Reverse
engineering entails the recovery and analysis of a legacy system to extract
an abstract description of the system components and their relationships.
Lastly, re-targeting of legacy systems constitutes the transformation of the
systems to another platform. An in-depth treatment of these transforma-
tion techniques falls outside the scope of this report, but may be found in
[99].
To implement the encapsulation and integration strategy it suffices to re-
create shallow understanding of the abstract services that are offered by
legacy systems, databases or user interfaces. In particular, legacy applica-
tions and database repositories may be encapsulated and accessed using
adapters, allowing new application components to co-exist with encapsu-
lated legacy systems. Screen scrapers constitute an encapsulation tech-
nique to reface archaic, mostly textual, user interfaces.

8 Service Engineering 323

• Replacement. Replacement implies rebuilding an application from scratch.
Assembling third party components, customizing standard packages (e.g.,
ERP solutions), in-house development or a mixture of these development
practices may be employed to realize this strategy.
Despite the fact that this strategy may at first sight seem very attrac-
tive to management as it holds the promise of one shared corporate data
model using the newest technologies and leads to a fast discontinuation of
redundant applications and repository systems, practice has taught that
the replacement strategy bears large risks and many unpredictable pit-
falls. Firstly, costly and complex data and code conversions have to be
made in order to save past investments in legacy systems. Avoiding ex-
pensive downtime of the existing enterprise application is often a difficult
hurdle. Secondly, upfront it is usually not possible to guarantee that the
new system will outperform the existing application in terms of both func-
tionality and extra-functional properties such as security and robustness
(transactions). Nascent technologies may at first seem to offer tantalizing
possibilities, but may not yet be ready for prime-time implementations.

• Phase Out. The most rigorous enterprise application approach possible
is to discontinue the enterprise application. This imposes the supporting
business process also to cease to exist.

Service-enabling Legacy Applications

A key challenge of service design is to be able to resurrect and rehabilitate
preexisting enterprise assets into modern services that can smoothly operate
with novel business processes. In that sense, service-enabling legacy applica-
tion falls under the category of modernization, as discussed in the previous
section. Nevertheless, the challenges and opportunities created by the intro-
duction of SOA into the enterprise level require further examination of the
interaction between legacy systems and services. In particular, service enable-
ment of these systems can be achieved through two key techniques:

Firstly, redevelopment requires re-engineering the existing asset from
scratch, which is unfortunately in many cases a too expensive and risky en-
deavour, if not unfeasible. This is especially the case for legacy systems that
should be modernized into service-oriented systems, having critical charac-
teristics such as continuous availability. Wrapping is a technique to surround
existing data, programs and interfaces with new interfaces. Wrapping entails
a rather popular approach towards modernization since it is conceptually sim-
ple, requiring limited development costs and preserving past investments in
pre-existing assets. On the downside, it unfortunately comes with some serious
drawbacks such as decreased performance and architectural erosion. There-
fore, wrapping as a legacy modernization should be applied carefully, pre-
serving the architecture and maintaining the overall quality of the migrated
system. Still, wrapping techniques can be successfully applied, e.g. to export
the functionalities of interactive systems towards SOAs [28].

324 Authors Suppressed Due to Excessive Length

The second modernization technique involves migration of the legacy sys-
tem into an updated and/or extended target software (application) system
designed, architected and coded in a modern development and deployment en-
vironment. Migration of legacy software has caught a lot of attention in the re-
search and industrial community. E.g., an approach tailored for the migration
of supervisory machine control architectures has been presented in [45]. Model-
driven architecture migration is defined by transformation rules in terms of
patterns associated with the source and target meta-models. Further work
at the architecture level, but aimed at the migration towards web-based sys-
tems is provided in [120]. Further examples are [39, 51]. These approaches are
mainly based on implementation-level architecture reconstruction and/or on
the documentation of the technical solution. These techniques assume that the
architectural decisions, drivers and rationale are directly accessible by asking
people. Unfortunately, and especially for legacy systems that live for decades,
have deteriorated, and lack any documentation, such invaluable know-how is
either forgotten or has left the company [96]. The necessary know-how must
be rebuilt, and existing legacy components must be analyzed in a disciplined
way to assess if their functionality can be successfully exposed as services [67].

In current business practices, modernization of pre-existing enterprise as-
sets is leveraged with SOA by placing a thin SOA/WSDL veneer around them,
while leaving the underlying code and data untouched. Though this may work
for simple and small enterprise applications, this is by no means sufficient for
developing large-scale, industrial applications. Unless the existing enterprise
assets are naturally suitable for use as a Web service – and most are not –
it takes serious thought and redesign to properly deliver an enterprise assets
functionality through a Web service.

In ([112], [111]), a meet-in-the-middle legacy modernization methodology
is introduced that allows to selectively integrate those parts of legacy appli-
cations that are still in line with the modern business policies and objectives,
while constructing new services that are not sufficiently supported by ex-
isting enterprise assets in general, and legacy applications in particular. The
suggested SOA-enabled methodology combines forward engineering of service-
enabled business processes with reverse engineering of legacy applications, for
the purpose of selective encapsulation/integration. This methodology, named
BALES, has been validated and explored by a comprehensive case study that
has been drawn from a real-world project at the Dutch Department of De-
fense that integrated fragments of an existing proprietary material resource
planning package into a modern service-enabled application.

Evolution and Maintenance

In the lifecycle of software the development of the first version is only a minor
part: evolution and maintenance cover the majority of the software lifecycle.
System maintenance is the process of providing service and maintenance ac-
tivities needed to use the software effectively after it has been delivered. The

8 Service Engineering 325

objectives of system maintenance are to provide an effective product or ser-
vice to the end-users while correcting faults, improving software performance
or other attributes, and adapting the system to a changed environment. All
changes for the delivered system should be reflected in the related documents.
Lientz and Swanson [69] categorized maintenance activities into four classes
(the classification is in the Standard IEEE 610.12[38]):

Adaptive adapting software to changes in the software environment
Perfective managing new or changed user requirements
Corrective fixing errors
Preventive preventing problems in the future

Only corrective is ’traditional’ maintenance, the others can be considered soft-
ware ’evolution’. Often, new technologies are proposed and introduced with-
out consideration of what happens when the software has to be changed. If
such innovations are to be exploited successfully, the full lifecycle needs to
be addressed, not just the initial development. For example, object oriented
(OO) technology was considered to be ’the solution to software maintenance’
[18], but empirical evidence shows that OO created its own new maintenance
problems, and has to be used with care (e.g. by keeping inheritance under con-
trol) to ensure that maintenance is not even more difficult than for traditional
systems.

Evolution and Maintenance in CBSE

Development of a software system from commercial components involves new
issues in maintenance, evolution, and management system. Component-based
systems must deal evolving user requirements, react to failures in the system
or to changes in the operation environment, and managers must be able to
monitor and control the deployed system. Traditional maintenance involves
observing and modifying lines of source code. However, in component-based
systems, the primary unit of construction is often a black-box component; the
custom developed source code is typically used to tailor the components and
integrate them together: maintenance of these systems is restricted to recon-
figuring and reintegrating components. Wu and Offut [119] proposed the use
of UML diagram, for corrective maintenance of component based software,
to represent the changes on a component. The research of Casanova et al.
[29] illustrates the use of multi-dimensional libraries to manage the versions;
moreover to track the dependecies among the components in a system is pro-
posed to use a configuration model; the use of metrics on the models and the
documentation for the component is a support for maintenance and evolution
of the components. One of the advantages of using components is that their
cost is amortized over many users. Although this provides many advantages,
it also means that the system builder is just one of many voices request-
ing changes or modification to the underlying components. When building a
component-based system, system builders must consider maintainability and

326 Authors Suppressed Due to Excessive Length

evolvability during two important phases of construction. The first is during
evaluation and selection because the components used to build the system
directly impact the maintainability of the system. The second phase is the
design of the component infrastructure. The approach used to integrate com-
ponents determines the flexibility of the system, which directly impacts its
evolvability.

Evolution and Maintenance in SOA

Service oriented systems differ from traditional systems so new issues have
to be addressed in maintenance and evolution activities. Service oriented sys-
tems are applications satisfying the needs of a wide variety of customers and
businesses. Examples of their use may be found in B2B and B2C applica-
tions, e-learning, and so on. Web services are highly vulnerable and subject to
constant change. Hence, they offer a novel challenge to software engineering.
From the evolution and maintenance perspective, there are many things that
must be examined. The diversity of service provider and consumer often using
different programming languages in their applications, the presence of third
party services, the high dynamicity of the environment and the shorter cycle
releases needed to react to changing business needs open new challenges in
the process of maintenance and evolution. In particular, since a service may
be shared by different consumers, it must have been identified the responsible
for the maintenance, moreover could be happen that different requirements
are desired from different business unit. In a service-oriented scenario, users
just invoke a service, without having control on it. So, the service provider can
decide to maintain the service, and the user could not be aware of that. For
example if inputs and outputs are not affected, the service provider could add
new features without advertising the changes. However, the change made could
alter the service behavior. Moreover, the service provider could optimize the
source code of the service causing a variation in the service’s non-functional
properties. An optimization could improve a non-functional property while
worsening another; even an improvement of some Quality of Service (QoS)
attributes (e.g., the response time) may not be desirable since it may cause
unwanted effects in the whole system behavior. Moreover, any optimization
could introduce faults, thus varying the service functional behavior as well.

Obviously the maintenance process has to be slightly adapted to manage
investigation of problems and impact analysis which have made across several
collaborating applications belonging to different organizations. For example
corrective maintenance has in SOA different implications: when an error oc-
curs in a service based application, a maintenance activity could be the selec-
tion of a different service in the composition, but this could not be desirable
by all the users. Moreover, while roles that are derived from the standard
maintenance offer a starting point, a number of tasks in SOA environments
are different from those of traditional maintenance tasks and therefore require
a different set of roles. Kajko et al. [53] proposed to create a new role of a ser-
vice owner responsible for evolving and maintaining high level Web services.

8 Service Engineering 327

Finally, it must be considered that the failure of a web service may affect the
productivity of other organizations. To this aim Kaijko et al. [53] proposed
a general framework (SERVIAM Maintenance Framework) for evolving and
maintaining Web services.

Adaptation and Evolution

Evolution is related to the adaptation aspects: adaptation is a process of mod-
ifying Service-Based Application in order to satisfy new requirements and to
fit new situations dictated by the environment on the basis of Adaptation
Strategies designed by the system integrator. If an application is designed to
be adaptable, adaptation can be fired by user requirement changes or envi-
ronment changes without requiring change in the source code. Evolution on
the other hand in the context of SBAs [86], refers to the continuous process
of development of a service through a series of consistent and unambiguous
changes (created by adaptation or the environment of the SBA), expressed
through the creation and decomission of different versions of the SBA.

8.4.2 Business Process Methodologies

A business process methodology (please refer to section 2 for further details) is
a formal and structured description of a comprehensive approach to organizing
companies around processes that can be applied to the incremental design and
improvement of business processes. An important characteristic of a business
process methodology is that it focuses only on the design or improvement of
a business process, and on measuring processes and redefining processes and
not on the development of a software system. A business process methodology
is used for business process centric projects ranging from incremental process
improvement to full functional transformation.

There are several established business process methodologies, which in-
clude the Rummler-Brache-PDL Methodology [95], the Define, Measure, An-
alyze, Improve, and Control methodology http://www.isixsigma.com/me/
dmaic/ and the various methodologies of the various vendors, e.g. ARIS which
is heavily focused on software development, but it is also widely used by busi-
ness process analysts, especially when they are working on company ERP-
centric projects.

DMAIC Methodology

Probably the best known and most widely used methodology is Six Sigma’s
DMAIC (Define, Measure, Analyze, Improve, and Control) which is widely
used by Six Sigma practitioners today. The five steps of the DMAIC method-
ology are briefly described below:

Define During this first step in the DMAIC methodology, it is important to
define specific goals in achieving outcomes that are consistent with both

328 Authors Suppressed Due to Excessive Length

an organizations customer’s demands and with its own business’ strategy.
In essence, you are laying down a road map for accomplishment.

Measure In order to determine whether or not defects have been reduced,
base measurement is needed. In this step, accurate measurements must
be made and relevant KPIs must be collected so that future comparisons
can be measured to determine whether or not defects have been reduced.

Analyze Analysis determines the relationships and the factors of causality.
When trying to understand how to fix a problem related to a business
process, cause and effect is extremely necessary and must be considered.

Improve Improvement relies on upgrading or optimizing an organization’s
business processes, based on measurements and analysis that can ensure
that defects are lowered and processes are streamlined.

Control This is the last step in the DMAIC methodology. Control ensures
that any variances stand out and are corrected before they can influence
a process negatively by causing defects. Controls can be in the form of
pilot runs to determine if the processes are capable and then, once data
are collected, a process can transition into standard production. However,
continued measurement and analysis must ensue to keep processes on
track and free of defects below the Six Sigma limit.

All steps rely on analysing each new business process as if it were unique.
One begins by defining the scope of the process to be analysed, and then
proceeds to decompose the process, identifying its major sub-processes, and
then the sub-processes of those, identifying their major activities, and so on
down to whatever level of granularity the designer chooses. Once the process
is laid out in detail, the business analyst usually considers how to change it.

Supply Chain Operations Reference Methodology

A second-generation approach to business process redesign began to emerge
a few years ago. This approach was proposed by the Supply Chain Coun-
cil www.supply-chain.org who combined the expertise of supply-chain pro-
fessionals across a broad cross-section of industries to develop best-in-class
business practices and design a specific methodology tailored to the analy-
sis of supply chain processes. Second generation software is usually tailored
for specific industries or niche markets. The SCC named this second genera-
tion methodology the Supply Chain Operations Reference (SCOR) Framework
[46]. SCOR is a business process methodology built by, and for, supply chain
analysis and design. SCOR is a cross-industry, standardized, supply-chain
reference model that enables companies to analyze and improve their supply
chain operations by helping them to communicate supply chain information
across the enterprise and measure performance objectively. SCOR also assists
enterprises with identifying supply chain performance gaps and improvement
objectives and influences the development of future supply chain management
software. SCOR provides standard definitions of measures and procedure for

8 Service Engineering 329

calculating the metrics. SCOR as a business process reference model contains
[54]:

• Standard descriptions of management practices.
• A framework of relationships among the standard processes.
• Standard metrics to measure process performance.
• Management practices that produce best in class performance.
• Standard alignment to features and functionality.

The SCOR model depicts the supply-chain from a strategic perspective. It
profiles the enterprise-wide business scope, it establishes the process bound-
aries, and it portrays the interrelationship of activities within the SCOR struc-
ture. This end-to-end business process model includes the primary activities
by which business partners provide exceptional service to their customers, and
it serves as a navigational tool and starting point to access all lower-level work-
flow models. The SCOR model consists of five basic processes: Plan, Source,
Make, Deliver and Return [46]. In addition to these basic processes, there are
three process types or categories: Enable, Planning and Execute. The SCOR
modelling approach starts with the assumption that any supply chain process
can be represented as a combination of the five basic processes. The Plan
process balances demand and supply to best meet the sourcing, manufactur-
ing and delivery requirements. The Source process procures goods and services
to meet planned or actual demand. The Make process transforms product to
a finished state to meet planned or actual demand. The Deliver process pro-
vides finished goods and services to meet planned or actual demand, typically
including order management, transportation management and distribution
management. The Return process is associated with returning or receiving
any returned products.

At the core of the SCOR model comprises four levels of processes that
guide supply chain members on the road to integrative process improvement
[46]. These are shown in Figure 8.22. Level 1 describes supply chain processes
at the most general level. It consists of the four key supply chain process
types Plan, Source, Make, and Deliver, and assumes that all supply chains are
composed out of these four basic processes. In other words, complex supply
chains are made up of multiple combinations of these basic processes.

Level 2 defines 26 core supply chain process categories that were estab-
lished by the SCC with which supply chain partners can jointly present their
ideal or actual operational structure. Level 2 provides for variations in the
Level 1 processes. These are not in fact sub-processes, but variations in the
way the processes can be implemented. Each of the Level 1 processes currently
has three variations. In analysing a process, an analyst first decides that there
is a sourcing process (Level 1 process), and then decides which of three (Level
2) variations of sourcing process it is. For example, in the case of Level 1
Source process, the Level 2 variations are S1: Source Stocked Products, S2:
Source Made-to-Order Products, or S3: Source Engineered-to-Order Product.
Figure 8.22 shows all of the four basic SCOR Level 1 processes with current

330 Authors Suppressed Due to Excessive Length

Fig. 8.22. Levels of SCOR processes (source: [46])

Level 2 variations inside their respective Level 1 process. Each Level 2 process
is further defined by a set of sub-processes or activities that define the basic
sequence of steps involved in implementing the process. In fact, in SCOR, the
Level 3 processes are sub-processes of the Level 1 processes, and are the same,
no matter the variation. Level 3 provides partners with information useful in
planning and setting goals for supply chain improvement. Processes in the
first three levels of the SCOR framework serve as the foundation for the de-
velopment of Level 4 processes. Level 4 processes focus on implementation of
supply chain process improvement efforts and are company specific practices
designed to achieve and maintain competitive advantage in the industry. Level
4 processes are beyond the scope of the SCOR framework.

The SCOR methodology is divided in six broad phases:

1. Define the Supply Chain Process: During the first phase existing processes
are analyzed. This effort includes decisions about the number and scope
of the supply chain processes to be examined.

2. Determine the Performance of the Existing Supply Chain: Once the ex-
isting supply chain process is scoped, it can use historical data to define
how the existing supply chain is performing. In addition, the performance
of a supply chain can be compared with benchmarks to determine how its
processes measure up against similar processes in similar industries.

3. Establish Supply Chain Strategy, Goals and Priorities: Once the perfor-
mance of an existing supply chain is determined, business analysts are in
a position to consider if the supply chain strategy is reasonable, and how
it might be improved.

8 Service Engineering 331

4. Redesign the Supply Chain as Needed: SCOR provides tools for identifying
problems and gaps and suggests the best practices used by enterprises
within superior supply chains.

5. Enable the Redesign and Implement: Once the design is complete, the
redesign must be implemented using software and human performance
improvement techniques. Then the new supply chain must be implemented
and data must be gathered to determine if the new targets are met.

The use of a framework-based business process methodology such as the
SCOR model is only possible in cases where a high-level analysis of the
processes to be analysed already exists, and where measures of process success
have already been standardized.

Evaluation of DMAIC and SCOR

In general it is possible to divide business process methodologies, such as the
ones described in the previous, into two broad categories:

1. bottom-up approaches: where analysts focus narrowly on redesigning and
improving business processes, and

2. top-down approaches: where analysts focus more broadly on reorganizing
an entire end-to-end process chain (network) and establishing a context
for business process management.

Consider for example the difference between Six Sigma’s DMAIC and the
Supply Chain Council’s SCOR methodology: DMAIC focuses on a single, nar-
rowly defined process - usually a sub-process or sub-sub-process. The analyst
measures the process and proceeds to focus on improving the quality of the
output of the process and there is little focus on how the process fits within the
larger context of an end-to-end process chain, or how the process is managed,
or measured and monitored. On the other hand, the SCOR methodology be-
gins by defining an enterprise’s entire supply chain, comprising an end-to-end
processes. Once the supply chain is defined, measures and benchmarks are ap-
plied to determine which specific business processes within the supply chain
would yield the greatest performance improvement for the supply-chain, as a
whole.

8.5 Gaps

This chapter wants to offer an overview of the issues behind the service engi-
neering focusing on the aspects inherited by the classical software engineering.

In summary, section 8.3 classified Service Oriented Computing methods,
techniques and tools according to a proposed service lifecycle model (Figure
8.4). This model can be viewed in two stages: the development stage on the
right hand side, and the adaptation stage on the left-hand side. Moreover,

332 Authors Suppressed Due to Excessive Length

the various SBA life-cycles are, in summary, discussed. It has to be noted
that each of these can cope with the full-blown development of a service,
but due to the fact that the life-cycle of the service model clearly requires an
adaptation phase we questioned whether the adaptation phase is identified and
included in these models. In addition to that, we also need to ensure that the
requirements, design, construction, deployment, provisioning, operation and
management phases take the potential adaptation of services into account
when they are being undertaken in the first place. Furthermore, there are
governance, quality assurance, discovery and SLA negotiation issues that need
to be considered, and these also need to be included in the life-cycle model.

Two major conclusions can be drawn after the presentation of the various
life cycle methodologies:

1. Almost all methodologies have phases that correspond to right hand cycle
of Figure 8.4. In that sense, our proposed life cycle is a fit model for
representing the various stages of the service life cycle.

2. Most of the existing methodologies lack either partially or completely in
providing for the left hand part of our life cycle, i.e., the adaptation phases
of the SBA. This creates a number of opportunities in research towards
that direction.

Section 8.4 on the other hand presented in brief some of the major ap-
proaches in classical software engineering that have been applied with various
degrees of success to SBA engineering. One of the most obvious candidates
towards this direction is CBSE (component-based software engineering) due
to the fact that services are the evolution of (software) components, and ap-
proaches developed in CBSE can be easily adapted to services. However, SOAs
introduce some important issues that need to be considered: the ownership,
physical location, description, discovery, and usage models of a service are
drastically different than those of a component.

Quality assurance is an important issue for both SBA and Software Engi-
neering. Essentially, the purpose of implementing planned software processes,
following a standard like CMMI or ISO/IEC 15504, is to ensure the qual-
ity of the final product through building in quality throughout the process -
rather than discovering either at testing phase or after its release that there
are problems with the product. While it is recognized that there are many
valid reasons for not implementing the process models prescribed by these
standards, there are also efficiencies and increases in quality to be gained in
doing so, and, in particular, there are markets who require planned processes
to be in place. For example, the financial sector has commenced an initiative
to implement Banking SPICE as they have to deal with regulations such as
Sorbonnes-Oxley. In any case, SBAs as software artifacts can definitely benefit
from lessons learned in software process quality approaches.

The need for standardized processes in developing products has also been
prevalent in business process methodologies like the Rummler-Brache-PDL

8 Service Engineering 333

Methodology, DMAIC, SCOR, and vendor specific methodogies. An impor-
tant difference though is that business process methodogies focus on the de-
sign or improvement of a business process, and on measuring and redefining
processes, and not on the development of a software system. Nevertheless, the
challenges addressed and the solutions proposed in the business process do-
main have to be taken seriously into account for the service-based computing
domain if the synergy between them is to be exploited.

In addition, due to the wide adoption of SOAs in the enterprise domain,
and the intrinsic relation between business processes and SBAs, SBA engineer-
ing should also consider the existing assets of each organization while provid-
ing solutions for leveraging its business processes. One of the major assets
that have to be taken into account is the legacy systems of the organization,
that is the relatively old, mainframe-based systems that were optimized to
accommodate the memory, disk, and other operational constraints of archaic
software and hardware platforms. Devising a balanced strategy for handling
legacy systems and (re-)aligning them with new process requirements is a
very challenging issue. A number of strategies, methodologies and tools have
been proposed by the industry, ranging from non-intrusive approaches such as
screen scraping and legacy wrapping, to more invasive ones like grafting new
designs into the outdated parts of the architecture of legacy systems. None of
them though proved to be a silver bullet that could be applied in each situ-
ation, and that is a lesson also for SBA engineering: different approaches in
developing and managing SBAs have to be examined, and the criteria based
on which the decision to apply one or more of them have to be investigated.
Finally, the service development has a set of implications for system develop-
ment and maintenance processes, in particular with respect to the necessity
of constant change driven by the shifting business needs they have to fullfil.
There are a number of issues pertaining to the effect of the evolution and/or
the maintainance of SBAs, sometimes with unforseen consequences, to their
clients.

The classical SE methodologies such as the ones that we presented do
not directly address three key elements of an SOA: services, service assem-
blies (composition), and components realizing services. These methodologies
can only address part of the requirements of service-oriented computing ap-
plications. These practices fail when they attempt to develop service-oriented
solutions while being applied independently of each other. Service-oriented de-
sign and development requires an inter-disciplinary approach fusing elements
of techniques like object-oriented and component-based design with elements
of business modeling. The challenge of SOA [85], and of SBA engineering by
extension, is to elevate service enablement beyond just technology functions.
The reality is that an SOA has limited value unless it encompasses disparate
applications and platforms, and most importantly, it moves beyond technol-
ogy and is orchestrated and controlled in the context of business processes.
Developers need to be offered a variety of different services and functions that
they can combine at will to create the right set of automated one-of-a-kind

334 Authors Suppressed Due to Excessive Length

processes that can distinctly differentiate themselves from those of competi-
tors. New processes and alliances need to be routinely mapped to services
that can be used, modified, built or syndicated. In addition, there is also a
clear need for SOA design methods that allow an organization to avoid the
pitfalls of deploying an uncontrolled maze of services and provide a solid foun-
dation for service enablement in an orderly fashion so that Web services can
be efficiently used in SBAs.

8.6 Conclusion

In the previous sections we presented in brief some of the major approaches
in classical SE that have been applied with various degrees of success to SBA
engineering. More specifically, we discussed component-based software engi-
neering since approaches developed for components can be easily adapted
to services. However, SOAs introduce some important issues that need to
be considered: the ownership, physical location, description, discovery, and
usage models of a service are drastically different than those of a compo-
nent. Consequently, quality assurance was elaborated on as an important
issue for both SBA and Software Engineering. Essentially, the purpose of
implementing planned software processes is to ensure the quality of the final
product by building in quality throughout the process. The need for stan-
dardized processes in developing products has also been prevalent in business
process methodologies. The challenges addressed and the solutions proposed
in the business process domain have to be taken seriously into account for
the service-based computing domain if the synergy between them is to be ex-
ploited. Finally, the service development has a set of implications for system
development and maintenance processes, in particular with respect to the ne-
cessity of constant change driven by the shifting business needs they have to
fullfil.

References

1. jBPM Process Definition Language (JPDL). http://docs.jboss.org/jbpm.
2. SeCSE Project. http://www.secse-project.eu/.
3. Uddi white papers. http://www.uddi.org/whitepapers.html.
4. UNSPSC. http://www.unspsc.org/.
5. Web Services Distributed Management (WSDM).
6. Business process execution language for web services.

ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf,,
2003.

7. D. Ardagna, C. Cappiello, M.G. Fugini, E.Mussi, B.Pernici, and P.Plebani.
Faults and recovery actions for self-healing web services, 2006. www 2006,
Edinburg, UK.

8 Service Engineering 335

8. Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino
Segnan. Fault Tolerant Web Service Orchestration by Means of Diagnosis. In
Software Architecture, Third European Workshop, EWSA 2006, pages 2–16,
2006.

9. A. Arkin. Business Process Modeling Language (BPML), November 2002.
10. Assaf Arkin. Web Service Choreography Interface (WSCI) 1.0, Aug 2002.
11. William Arnold, Tamar Eilam, Michael H. Kalantar, Alexander V. Konstanti-

nou, and Alexander Totok. Pattern based soa deployment. In ICSOC, pages
1–12, 2007.

12. Ali Arsanjani. Service-oriented modeling and architecture, November 2004.
13. Ali Arsanjani, Shuvanker Ghosh, Abdul Allam, Tina Abdollah, Sella Gana-

pathy, and Kerrie Holley. SOMA: A method for developing service-oriented
solutions. IBM Systems Journal, 47(3), 2008.

14. L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software: Issue and
challenges. Computer, 39(10):36–43, 2006.

15. L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL processes with Dy-
namo and the JBoss rule engine. In ESSPE ’07: International workshop on
Engineering of software services for pervasive environments, pages 11–20, 2007.

16. Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-BPEL
Processes. In Service-Oriented Computing - ICSOC 2005, Third International
Conference, pages 269–282, 2005.

17. B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. De-
veloping Adapters for Web Services Integration. In Advanced Information Sys-
tems Engineering, 17th International Conference, CAiSE 2005, Porto, Portu-
gal, June 13-17, 2005, Proceedings, pages 415–429, 2005.

18. Keith H. Bennett and Vaclav T. Rajlich. Software maintenance and evolution:
a roadmap. In Conference on The Future of Software Engineering, pages 73–87,
New York, NY, USA, 2000. ACM Press.

19. Bo Bergman and Bengt Klefsjo. Quality From Customer Needs to Customer
Satisfaction. Studentlitteratur, 1994.

20. Norbert Bieberstein and et al. Service-Oriented Architecture (SOA) Compass:
Business Value, Planning, and Enterprise Roadmap. IBM Press, 2006.

21. Barry Boehm and Chris Abts. Cots integration: Plug and pray? Computer,
32(1):135–138, 1999.

22. T. Bohmann, M. Junginger, and H. Krcmar. Modular service architectures: a
concept and method for engineering it services. System Sciences, 2003. Pro-
ceedings of the 36th Annual Hawaii International Conference on, pages 10 pp.–,
Jan. 2003.

23. M. L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways, Inter-
faces and the Incremental Approach. Morgan Kaufman Publishing Company,
1995.

24. J. G. Brodman and D. L. Johnson. A software process improvement approach
tailored for small organisations and small projects. In 19th International Con-
ference on Software Engineering, Boston, Massachusetts, USA, 1997.

25. Antonio Brogi and Razvan Popescu. Automated Generation of BPEL
Adapters. In International Conference on Service Oriented Computing, 2006.

26. Alan W. Brown, Simon K. Johnston, Grant Larsen, and Jim Palistrant. SOA
Development Using the IBM Rational Software Development Platform: A Prac-
tical Guide, 2005.

336 Authors Suppressed Due to Excessive Length

27. Xia Cai, Michael R. Lyu, Kam fai Wong, and Roy Ko. Component-based
software engineering: Technologies, development frameworks, and quality as-
surance schemes. In Lecture Notes, pages 372–379. IEEE Computer Society,
2000.

28. Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio Tramon-
tana. A wrapping approach for migrating legacy system interactive function-
alities to service oriented architectures. J. Syst. Softw., 81(4):463–480, 2008.

29. Miro Casanova, Ragnhild Van Der Straeten, and Viviane Jonckers. Support-
ing evolution in component-based development using component libraries. In
CSMR ’03: Proceedings of the Seventh European Conference on Software Main-
tenance and Reengineering, page 123, Washington, DC, USA, 2003. IEEE Com-
puter Society.

30. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) 1.1. W3C,
http://www.w3.org/TR/wsdl, 2001.

31. J. Clark, C. Casanave, K. Kanaskie, B. Harvey, N. Smith, J. Yunker, and
K. Riemer. ebXML Business Process Specification Schema Version 1.01. Tech-
nical report, UN/CEFACT and OASIS, May 2001. http://www.ebxml.org/

specs/ebBPSS.pdf.
32. A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G. Kincaid,

G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos. Identifying
and measuring quality in a software requirements specification. Software Met-
rics Symposium, 1993. Proceedings., First International, pages 141–152, May
1993.

33. Nelly Delgado, Ann Q. Gates, and Steve Roach. A taxonomy and cata-
log of runtime software-fault monitoring tools. IEEE Trans. Software Eng.,
30(12):859–872, 2004.

34. Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and
Klaus Pohl. A journey to highly dynamic, self-adaptive service-based applica-
tions. Automated Software Engineering, 15(3-4):313–341, 2008.

35. Vijay Dialani, Simon Miles, Luc Moreau, David De Roure, and Michael Luck.
Transparent fault tolerance for web services based architectures. In In Eighth
International Europar Conference (EUROPAR02), Lecture Notes in Computer
Science, Padeborn, pages 889–898. Springer-Verlag, 2002.

36. Surekha Durvasula and et al. SOA Practitioners Guide, 2007. Published: BEA
Systems.

37. Schahram Dustdar and Martin Treiber. A view based analysis on web service
registries. Distributed and Parallel Databases, 18(2):147–171, 2005.

38. Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard
Glossary of Software Engineering Terminology. IEEE Computer Society, 1990.

39. Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Policy-driven
middleware for self-adaptation of web services compositions. In Middleware
’06: Proceedings of the ACM/IFIP/USENIX 2006 International Conference
on Middleware, pages 62–80, New York, NY, USA, 2006. Springer-Verlag New
York, Inc.

40. D. Fensel and C. Bussler. The web service modeling framework wsmf, 2002.
41. Daniel Galin and Motti Avrahami. Are cmm program investments beneficial?

analyzing past studies. IEEE Software, pages 81–87, 2006.

8 Service Engineering 337

42. B. Gallagher and L. Brownsword. The rational unified process and the capabil-
ity maturity model – integrated systems/software engineering. In RUP/CMMI
Tutorial – ESEPG, 2001.

43. John Ganci, Amit Acharya, Jonathan Adams, Paula Diaz de Eusebio, Gurdeep
Rahi, Diane Strachan, Kanako Utsumi, and Noritoshi Washio. Patterns: SOA
Foundation Service Creation Scenario. IBM Redbooks, 2006.

44. H.J. Goldsby, P. Sawyer, N. Bencomo, B.H.C. Cheng, and D. Hughes. Goal-
based modeling of dynamically adaptive system requirements. Engineering of
Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE International
Conference and Workshop on the, pages 36–45, 31 2008-April 4 2008.

45. Bas Graaf, Sven Weber, and Arie van Deursen. Model-driven migration of
supervisory machine control architectures. J. Syst. Softw., 81(4):517–535, 2008.

46. Paul Harmon. Second generation business process methodologies. Business
Process Trends: Newsletter, 1(5), 2003.

47. John Harney and Prashant Doshi. Speeding up adaptation of web service
compositions using expiration times. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 1023–1032, 2007.

48. Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A
Framework for Proactive Self-Adaptation of Service-based Applications Based
on Online Testing. In ServiceWave 2008. to be published, 10-13 December
2008.

49. W. S. Humphrey. Managing the Software Process. Addison-Wesley, Reading,
M.A., U.S.A.,, 1989.

50. W.S. Humphrey. Three dimensions of process improvement, part i: Process
maturity. CROSSTALK The Journal of Defense Software Engineering, 1998.

51. John Hutchinson, Gerald Kotonya, James Walkerdine, Peter Sawyer, Glen
Dobson, and Victor Onditi. Evolving existing systems to service-oriented archi-
tectures: Perspective and challenges. In ICWS, pages 896–903. IEEE Computer
Society, 2007.

52. C. Jones. Patterns of Software Systems Failure and Success. International
Thompson Computer Press, 1996.

53. Mira Kajko-Mattsson and Michal Tepczynski. A framework for the evolution
and maintenance of web services. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages 665–668, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

54. Vijay Kasi. Systemic assessment of scor for modeling supply chains. In HICSS
’05: Proceedings of the Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS’05) - Track 3, page 87.2, Washington,
DC, USA, 2005. IEEE Computer Society.

55. B. Kent. Extreme Programming Explained: Embrace Change. Reading, Mass.:
Adison-Wesley, 2000.

56. Steve Graham Kerrie Holley, Jim Palistrant. Effective SOA Governance, 2006.
57. J.P. Kolind and D. G. Wastell. The sei’s capability maturity model: a criti-

cal survey of adoption experiences in a cross-section of typical uk companies.
In T. McMaster, E. Mumford, E. B. Swanson, B. Warboys, and D. Wastell,
editors, IFIP TC8 WG8.6 International Working Conference on Diffusion,
Adoption and Implementation of Information Technology, pages 305–319, Am-
bleside, Cumbria, U.K, 1997.

338 Authors Suppressed Due to Excessive Length

58. Ulrich Küster, Birgitta König-Ries, Mirco Stern, and Michael Klein. Diane: an
integrated approach to automated service discovery, matchmaking and com-
position. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 1033–1042, New York, NY, USA, 2007. ACM.

59. Leen Lambers, Hartmut Ehrig, Leonardo Mariani, and Mauro Pezze. Itera-
tive Model-Driven Development of Adaptable Service-Based Applications. In
ASE07, pages 453–456, 2007.

60. Rubén Lara, Miguel Corella, and Pablo Castells. A flexible model for web
service discovery. In 1st International Workshop on Semantic Matchmaking
and Resource Retrieval: Issues and Perspectives, Seoul, Korea, September 2006.

61. Kung-Kiu Lau and Zheng Wang. A taxonomy of software component models.
In EUROMICRO ’05: Proceedings of the 31st EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 88–95, Washington,
DC, USA, 2005. IEEE Computer Society.

62. A. Law and S. Learn. Waltzing with Changes. In Proceedings of the Agile
Development Conference, pages 279–288. IEEE Computer Society Washington,
DC, USA, 2005.

63. Alexander Lazovik, Marco Aiello, and Mike P. Papazoglou. Associating Ssser-
tions with Business Processes and Monitoring their Execution. In Service-
Oriented Computing - ICSOC 2004, Second International Conference, pages
94–104, 2004.

64. Jihyun Lee, Jinsam Kim, and Gyu-Sang Shin. Facilitating reuse of soft-
ware components using repository technology. In APSEC ’03: Proceedings of
the Tenth Asia-Pacific Software Engineering Conference Software Engineering
Conference, page 136, Washington, DC, USA, 2003. IEEE Computer Society.

65. M. Leszak, D.E. Perry, and D. Stoll. A Case Study in Root Cause Defect
Analysis. In International Conference on Software Engineering: Proceedings of
the 22 nd international conference on Software engineering, volume 4, pages
428–437, 2000.

66. Robert Levey. Reengineering COBOL with Objects: Step by Step to Sustainable
Legacy Systems. McGraw-Hill, New York, 1996.

67. Grace Lewis, Edwin Morris, Dennis Smith, and Liam O’Brien. Service-oriented
migration and reuse technique (smart). In STEP ’05: Proceedings of the 13th
IEEE International Workshop on Software Technology and Engineering Prac-
tice, pages 222–229, Washington, DC, USA, 2005. IEEE Computer Society.

68. Sharman Lichtenstein, Lemai Nguyen, and Alexia Hunter. Issues in it service-
oriented requirements engineering. Australasian Journal of Information Sys-
tems, 13(1), 2007.

69. Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980.

70. Jiangang Ma, Jinli Cao, and Yanchun Zhang. A probabilistic semantic ap-
proach for discovering web services. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 1221–1222, New York,
NY, USA, 2007. ACM.

71. Linda A. Macaulay. Requirements engineering. Springer-Verlag, London, UK,
1996.

72. Khaled Mahbub and George Spanoudakis. Monitoring WS-Agreements: An
Event Calculus-Based Approach. In Luciano Baresi and Elisabetta Di Nitto,
editors, Test and Analysis of Web Services, pages 265–306. Springer, 2007.

8 Service Engineering 339

73. Sajjad Mahmood, Richard Lai, Yong-Soo Kim, Ji Hong Kim, Seok Cheon Park,
and Hae Suk Oh. A survey of component based system quality assurance and
assessment. Information & Software Technology, 47(10):693–707, 2005.

74. N. Maiden. Servicing your requirements. Software, IEEE, 23(5):14–16, Sept.-
Oct. 2006.

75. Eric A. Marks and Michael Bell. Service Oriented Architecture (SOA): A
Planning and Implementation Guide for Business and Technology. Wiley, 2006.

76. Walcelio Melo. Rup for cmmi compliance: A methodological approach, July
2008.

77. Tilak Mitra. Business-driven Development. http://www-
128.ibm.com/developerworks/
webservices/library/ws-bdd/index.html, 2005.

78. M.Paulk, B. Curtis, M. Chrissis, and C. Weber. The capability maturity model
for software. Technical report, SE Institute Carnegie Mellon, 1993.

79. Yoshinori Lizuka Norman Fenton, Robin Whitty. Software Quality Assurance
Measurement Perspective. International Thomson Computer Press, UK, 1995.

80. Business Process Modeling Notation (BPMN) Specification, Final Adopted
Specification. Technical report, OMG, Feb 2006. www.bpmn.org.

81. David Oppenheimer and David A. Patterson. Studying and using failure data
from large-scale internet services. In EW10: Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 255–258, New York, NY, USA,
2002. ACM.

82. International Standards Organisation. Information technology - software
process assessment. 2, International Standards Organisation, 1998. Parts 1-9.

83. Web Services Business Process Execution Language Version 2.0 – OASIS Stan-
dard. Technical report, Organization for the Advancement of Structured In-
formation Standards (OASIS), Mar 2007.

84. Leon Osterweil. Strategic directions in software quality. ACM Comput. Surv.,
28(4):738–750, 1996.

85. Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-Oriented Computing: State of the Art and Research Challenges.
Computer, 40(11):38–45, 2007.

86. Mike P. Papazoglou. The Challenges of Service Evolution. In Advanced In-
formation Systems Engineering, 20th International Conference, CAiSE, pages
1–15, 2008.

87. Cesare Pautasso and Gustavo Alonso. The jopera visual composition language.
Journal of Visual Languages and Computing (JVLC), 16:119–152, 2005.

88. Hongyu Pei-Breivold and Magnus Larsson. Component-based and service-
oriented software engineering: Key concepts and principles. In 33rd Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA),
Component Based Software Engineering (CBSE) Track, IEEE, August 2007.

89. Thomi Pilioura, Georgios-Dimitrios Kapos, and Aphrodite Tsalgatidou. Seam-
less federation of heterogeneous service registries. In EC-Web, pages 86–95,
2004.

90. M. Pistore, A. Marconi, P. Traverso, and P. Bertoli. Automated Composition
of Web Services by Planning at the Knowledge Level. In Proc. IJCAI’05, 2005.

91. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Ser-
vices by Planning in Asynchronous Domains. In Proc. ICAPS’05, 2005.

340 Authors Suppressed Due to Excessive Length

92. Marco Pistore and Paolo Traverso. Assumption-Based Composition and Mon-
itoring of Web Services. In Luciano Baresi and Elisabetta Di Nitto, editors,
Test and Analysis of Web Services, pages 307–335. Springer, 2007.

93. Manfred Reichert and Peter Dadam. Adeptflex: Supporting dynamic changes of
workflow without loosing control. Journal of Intelligent Information Systems,
10:93–129, 1998.

94. J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual, The. Pearson Higher Education, 2004.

95. Geary A. Rummler and Alan P. Brache. Improving Performance: How to Man-
age the White Space on the Organization Chart. Jossey-Bass, San Francisco, 2
edition, 1995.

96. I. Rus and M. Lindvall. Knowledge management in software engineering. IEEE
Software, 19(3), May 2002.

97. Giuliana Teixeira Santos, Lau Cheuk Lung, and Carlos Montez. Ftweb: A fault
tolerant infrastructure for web services. In EDOC ’05: Proceedings of the Ninth
IEEE International EDOC Enterprise Computing Conference, pages 95–105,
Washington, DC, USA, 2005. IEEE Computer Society.

98. B. Schatz and I. Abdelshafi. Primavera gets agile: a successful transition to
agile development. Software, IEEE, 22(3):36–42, 2005.

99. R.C. Seacord, D. Plakosh, and G.A. Lewis. Modernizing Legacy Systems.
Carnegie Mellon, SEI, Addison-Wesley, 2003.

100. Jianwei Liu Shoujian Yu and Jiajin Le. Intelligent Web Service Discovery in
Large Distributed System. In Richard Everson Zhen Rong Yang and Hujun
Yin, editors, Intelligent Data Engineering and Automated Learning IDEAL
2004, pages 166–172. Springer, 2004.

101. Kaarthik Sivashanmugam, Kunal Verma, and Amit Sheth. Discovery of web
services in a federated registry environment. In ICWS ’04: Proceedings of the
IEEE International Conference on Web Services, page 270, Washington, DC,
USA, 2004. IEEE Computer Society.

102. Ian Sommerville and Gerald Kotonya. Requirements Engineering: Processes
and Techniques. John Wiley & Sons, Inc., New York, NY, USA, 1998.

103. Michael Stollberg, Martin Hepp, and Jrg Hoffmann. A caching mechanism for
semantic web service discovery. In Karl Aberer, Key-Sun Choi, Natasha Noy,
Dean Allemang, Kyung-Il Lee, Lyndon J B Nixon, Jennifer Golbeck, Peter
Mika, Diana Maynard, Guus Schreiber, and Philippe Cudr-Mauroux, editors,
Proceedings of the 6th International Semantic Web Conference and 2nd Asian
Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, volume
4825 of LNCS, pages 477–490, Berlin, Heidelberg, November 2007. Springer
Verlag.

104. L.B. Strader, M.A. Beim, and J.A. Rodgers. The motivation and develop-
ment of the space shuttle onboard software (obs) project. Software Process
Improvement and Practice, 1:107–113, 1995.

105. K. Sycara et al. OWL-S 1.0 Release. OWL-S Coalition,
http://www.daml.org/services/owl-s/1.0/, 2003.

106. V. Talwar, Qinyi Wu, C. Pu, Wenchang Yan, Gueyoung Jung, and D. Miloji-
cic. Comparison of approaches to service deployment. Distributed Computing
Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International Conference
on, pages 543–552, June 2005.

107. CMMI Product Team. Capability maturity modelTMintegration for develop-
ment. Technical report, S. E. Institute, 2006.

8 Service Engineering 341

108. W. T. Tsai, Z. Jin, P. Wang, and B. Wu. Requirement engineering in service-
oriented system engineering. In ICEBE ’07: Proceedings of the IEEE Inter-
national Conference on e-Business Engineering, pages 661–668, Washington,
DC, USA, 2007. IEEE Computer Society.

109. W.M. Ulrich. Legacy Systems Transformation Strategies. Prentice Hall PTR,
Upper Saddle River, NJ., 2002.

110. A. Umar. Application (Re) Engineering: Building Web-Based Applications and
Dealing with Legacies. Prentice Hall, 1997.

111. Willem-Jan van den Heuvel. Aligning Modern Business Processes and Legacy
Systems: A Component-Based Perspective (Cooperative Information Systems).
The MIT Press, 2006.

112. Willem-Jan van den Heuvel, Jos van Hillegersberg, and Mike P. Papazoglou.
A methodology to support web-services development using legacy systems. In
Proceedings of the IFIP TC8 / WG8.1 Working Conference on Engineering
Information Systems in the Internet Context, pages 81–103, Deventer, The
Netherlands, The Netherlands, 2002. Kluwer, B.V.

113. K. Verna, K. Sivashanmugam, A. Shet, A. Patil, S. Oundhakar, and J. Miller.
Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publica-
tion and discovery of web services. Information Technology and Management,
Volume 6:17–39, 01 2005.

114. Lemahieu W. New Directions in Software Engineering, chapter Web Service
decription, advertising and discovery: WSDL and beyond, pages 135–152. Leu-
ven University Press, Leuven, 2001.

115. W3C. Web Services Choreography Description Language Version 1.0., 2005.
[http://www.w3.org/TR/ws-cdl-10/].

116. Ian Warren. The Renaissance of Legacy Systems: Method Support for Software-
System Evolution. Springer, Practitioner Series, London, 1999.

117. Nelson Weiderman, Linda Northrop, Dennis Smith, Scott Tilley, and Kurt
Wallnau. Implications of distributed object technology for reengineering. Tech-
nical Report CMU/SEI-97-TR-005 / ESC-TR-97-005, 1997.

118. WS-Diamond. Characterization of diagnosability and repairability for self-
healing web services. Technical report, WS-DIAMOND Project IST-516933,
2007. Deliverable D5.1.

119. Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques of maintaining evolving
component-based software. Software Maintenance, IEEE International Con-
ference on, 0:236, 2000.

120. Uwe Zdun. Reengineering to the web: A reference architecture. In CSMR
’02: Proceedings of the Sixth European Conference on Software Maintenance
and Reengineering, page 164, Washington, DC, USA, 2002. IEEE Computer
Society.

121. Olaf Zimmermann, Pal Krogdahl, and Clive Gee. Elements of service-oriented
analysis and design, 2005. Published: IBM developerWorks White Paper.

9

Architecture Views illustrating the Service
Automation Aspect of SOA

Qing Gu1, Félix Cuadrado2, Patricia Lago1, and Juan C. Duenãs2

1 Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
2 Dept. de Ingenieŕıade Sistemas Telemáticos Universidad Politécnica de Madrid,

Spain

Chapter Overview Earlier in this book, Chapter 8 provided a detailed analysis
of Service Engineering, including a review of service engineering techniques and
methodologies. This chapter is closely related to Chapter 8 as shows how such ap-
proaches can be used to develop a service, with particular emphasis on the identi-
fication of three views (the automation decision view, degree of service automation
view and service automation related data view) that structure and ease elicitation
and documentation of stakeholders’ concerns. This is carried out through two large
case studies to learn the industrial needs in illustrating services deployment and
configuration automation. This set of views adds to the more traditional notations
like UML, the visual power of attracting the attention of their users to the addressed
concerns, and assist them in their work. This is especially crucial in service oriented
architecting where service automation is highly demanded.

9.1 Introduction

Service-oriented architecture (SOA) as an architectural style has drawn the
attention from both industry and academia. SOA-based systems (i.e., Service-
Based Applications or SBA) are constructed by integrating heterogeneous ser-
vices that are developed using various programming languages and running
on different operating systems from a range of service providers. Services are
loosely coupled entities, often designed under open-world assumptions, distrib-
uted across organizational boundaries and executed remotely at their service
providers’ environment. They require a smoother transition from development
to operation than traditional applications.

Consequently, the architecting of SBAs pose additional concerns as com-
pared to traditional software applications. Some examples of these concerns
include how to reason about a SOA design and how to represent the charac-
teristics of SOA that the design delivers, how to architect the SBA to operate
in an unknown environment, or how business processes can be supported by
means of the collaboration of multiple services.

344 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

Clearly, traditional software engineering and architecting techniques, meth-
ods and tools are no longer sufficient to deliver SBAs, as they do not take into
account specificities of services, such as the need for smooth transition from de-
velopment to operation, the need to integrate third-party components, or the
possibility to be hosted by a different organization. Therefore, it is necessary
to propose new techniques that supplement the traditional models, enabling
the capture at design time of all the relevant information about those new
concerns and improving the usefulness of the architecture description.

We have chosen as the aspect under study the degree of automation of
SBAs. The current situation is that the design decisions on whether a service
can be possibility automated, its benefits and limitations, or the degree of au-
tomation are often left implicit in the architectural design and its description.
Our goal in this paper is to make them explicit and to find a notation useful
for this purpose, able to be understood for most stakeholders (including the
user if relevant to the domain).

We carried out two large case studies to learn the industrial needs in il-
lustrating services deployment and configuration automation, from now on
service automation. As a result, we broke down service automation into three
important sub-aspects, and we developed a corresponding set of architecture
views (automation decision view, degree of service automation view and ser-
vice automation related data view) that expresses the different concerns of
stakeholders who share interest in service automation.

The first one (the decision view) conveys the decisions about service au-
tomation by making explicit which architecture constraints may impact the
degrees of automation, and which services are affected by each constraint. The
degree view -second one- shows the degree of service automation that the ser-
vice flow is expected to achieve, but not the details on how to get it. Last, the
automation-related data view contains explicit information about the gener-
ation, management and provision of additional input that are required from
either human actors or policies.

In addition to constructing these views, we highlighted the added-value
of the graphic notations we used. We argue that this set of views adds to
the more traditional notations like UML, the visual power of attracting the
attention of their users to the addressed concerns, and assist them in their
work. Moreover, we also reflected on the relationship between the degree of
automation and the granularity of services and the applicability of these views
to SOA in general.

The reminder of the chapter is organized as follows. In Sec. 9.2, we provide
some background information on architecture views and management systems
for SBAs. In Sec. 9.3, we discuss the need of documenting SOA design decisions
and rationale in effective illustrations and present a set of concerns that we
elicited from the case studies, which points out what needs to be illustrated
in SOA architecture description. With these requirements in mind, we present
the three service automation views in Sec. 9.4, 9.5 and 9.6 respectively. We

9 Architecture Views illustrating the Service Automation Aspect of SOA 345

highlight the power of visualization in Sec. 9.7 and we discuss our observations
in Sec. 9.8. We conclude the chapter in Sec. 8.6.

9.2 Background information

9.2.1 Architecture views

The architecture of a software system should be documented with the purpose
of capturing early design decisions, providing re-useable abstractions of soft-
ware systems and enabling communication of the software architecture among
stakeholders [4]. To produce relevant documentation for a software system, one
has to decide what information needs to be documented and which notations
or diagrams are suitable for representing this information. These decisions
heavily depend on who is the target reader of the documentation.

A software system typically involves multiple stakeholders that have differ-
ent concerns. For instance, the architect is concerned about the structure of
the system; the project manager is concerned about the resources (e.g., cost,
time, number of developers) needed for developing the system; and the devel-
oper has concerns about the implementation of the system. The architectural
design of the system therefore should be documented in such a way that the
concerns of each stakeholder are addressed.

Following the separation of concerns principle, software architects have
already been using multiple views for years to represent the software systems
of interest from multiple perspectives. These views facilitate the management
of the complexity of software engineering artifacts. For instance, a structure
view can be used to describe the construction of a software system (including
e.g. components and connectors); while a data view can be used to describe
the data flow between the components. By representing the architecture of
the system in these two separate views, the software architect may focus on
the construction design of the system by using the structure view, while the
data manager may concentrate on the management of data by using the data
view.

One of the original goals behind IEEE 1471 and ISO/IEC 42010 was to
“establish a frame of reference of terms and concepts for architectural de-
scription” [5]. This frame of reference provides a basis for the community
to develop a collection of views which addresses concerns that occur com-
monly across software projects. Practitioners may directly benefit from the
application of these viewpoints in that they enable an effective architecture
description.

However, the existing reusable views are limited in the sense that they ad-
dress concerns that often appear in traditional software architectures. With
the wide adoption of recently emerged software architecture styles (like SOA),
additional concerns (often specific to the architecture styles) challenge the

346 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

reusability of the existing viewpoints. The lack of available views make prac-
titioners face difficulties to find an effective way to illustrate any new charac-
teristics introduced by any architecture style. As a result, views that enable
the illustration of specific concerns introduced by modern software architec-
ture styles are needed.

9.2.2 Management system for SBAs

Hegering [7] described the management of networked systems as the set of
measures necessary to ensure the effective and efficient operation of a system
and its resources, according to an organization’s goals. In service-based appli-
cations the functionality is not provided by individual, monolithic elements,
but is achieved by collaboration between multiple services. In order to get this
collaboration, the management system must be aware of the participating el-
ements, deploy and configure them if necessary. This is a complex process,
because as the number of services grows, the possible combinations that must
be considered by the management system increase exponentially. On top of
that, the distribution of the participating elements over a computing network
further complicates the process. Those are common characteristics for every
SBA. However, they are not the only relevant factors. The domain-specific
characteristics of each SBA, such as the characteristics of the services, the
capabilities of the runtime resources, or the organization’s business aspects
must also be supported by the management system. It is clear that the po-
tential variation of all the factors complicates defining a general solution for
SBAs deployment and configuration.

In the field of systems management, there are two opposite approaches
for controlling the deployment and configuration process: traditional manage-
ment processes and autonomic management [9]. In traditional processes, a
human administrator is continuously in control of the change process. He /
She diagnoses the system, manually defines the required changes and controls
every aspect of the execution. This approach is very costly and cumbersome,
because it implies that every activity executed by the architecture must be per-
formed or at least validated by a human actor. On the other hand, autonomic
computing promotes to automate as much as possible the operation of the
system. Ideally, completely automated closed control loops are implemented,
where the system reacts automatically to a change in the environment, di-
agnoses its severity and implications and applies the required corrections in
order to restore the environment functionality. This approach eliminates the
bottleneck inherent to human operation, consequently improving scalability
and efficiency of the management system.

Although autonomic control would be the most desirable approach, it is
not always feasible to achieve it, because of either technical factors (e.g., a
monitoring interface from a managed server does not provide information
about service faults so a human administrator has to manually diagnose the

9 Architecture Views illustrating the Service Automation Aspect of SOA 347

incidences by inspecting the server and system logs) or, organizational as-
pects (e.g., manual control is preferred because the service update process
is considered critical for the organization, so an automated system cannot
have complete control over the process). For most cases an adequate balance
between traditional and autonomic management will be the right approach.
Management systems should pursue the autonomic approach to the greatest
extent possible, while respecting the requirements derived from the domain
of application.

Supporting the diversity of managed services, operation environments and
organizational aspects with the same management architecture demands a
high level of flexibility, which is pushed forward adopting a service-oriented
approach. Service orientation can offer great flexibility and agility so that the
architecture can easily adapt to the characteristics of different environments
with reduced required configuration. The Service Deployment and Configura-
tion Architecture (from this point onwards SDCA) [11] is an example of such
an approach, which is further described in Sec. 9.3.1.

9.3 The requirements for illustrating the automation
aspect of SBAs

The SOA paradigm promotes creating new functionality from the dynamic
combination of services provided by different stakeholders. A SBA can be
viewed as a set of dynamically combined services.

While automation in a traditional software system refers to the degree
to which the execution of the software process can be automated without
human intervention, automation in SOA systems refers to the degree to which
services, comprising the system of interest, can be executed automatically
without any human intervention. While the two definitions are quite similar,
due to a set of characteristics that differentiate SBAs from traditional software
systems [6], in service-oriented development the decision on the degree of
automation of each service is heavily influenced by (and has impact on) at
least two quality attributes.

The first quality attribute is trust, i.e. confidence (especially from the
users perspective) on the truth of what delivered or promised. SBAs are typ-
ically not fully controlled by the company: some integrated services execute
in the domain of remote, dynamically determined service providers, and can
be discovered and integrated at runtime. This means that if something goes
wrong, malfunctions might decrease the satisfaction of ones customers, and
hence influence the overall company business. Especially in traditional busi-
ness domains (like banking and services to the public) the tendency is to
develop applications with service-oriented technologies, but with the proper-
ties of old fashion software systems: low level of automation, static integration
of services, no dynamic discovery and no dynamic composition. In the case

348 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

of required interaction with third-party services, the requirements -both func-
tional as non functional- of these and the penalties for failure, are governed
by Business Level Agreements (BLA) or Services Level Agreements (SLA).

The second quality attributes is reliability, i.e. the ability of a software
system to perform its required functions under stated conditions for a specified
period of time [3]. By automatically integrating services during execution,
reliability of the whole execution depends on various unpredictable factors, like
the correct specification of the requirements of the services to be dynamically
integrated, availability of such services, or their correct execution. If third-
party service discovery & composition is automated, the company does not
have anymore full control on the software products delivered to its customers.

It is often claimed that SBAs have the agility to adapt to customer needs
by automatically reacting to continuous changes in business processes. Con-
sequently, the more services in a SOA system can be automated (i.e., do not
need humans to make decisions for execution), the higher agility a SBA can
achieve.

Users of highly automated SBAs clearly benefit from less human interven-
tion and thus less labor costs. However, automating the execution of services
and delivering agile and reliable SBAs is not always possible (as we explained
above in the examples of trust and reliability) and poses additional concerns.
Some of the concerns relate to the decisions on the degree of service au-
tomation; while some of the concerns are related to the realization of these
decisions.

However, design decisions and their associated rationale on whether a ser-
vice can be possibility automated, the benefits and limitations of automating
a service, or how to automate a service are often either ignored or left im-
plicit in the architectural design and its description. In spite of the evidence
for the need of documenting design decisions and rationale in effective illus-
trations [10, 1] little work exists so far in the area of SOA [6]. This need
has been further highlighted in the S-Cube analysis of the state of the art
in [2], where one major challenge is in identifying and representing relevant
concerns in SBA engineering, like monitoring, self-organization and adapta-
tion. Viewpoints are mentioned as means to capture multiple perspectives on
a given SBA. Though, they are meant to aid engineering of specific systems,
whereas the corresponding architecture descriptions have not been sufficiently
addressed yet. This motivated us to investigate what the stakeholders are con-
cerned about with respect to service automation and how to address these
concerns in the architecture description.

To answer this question, we analyzed the service automation aspect of the
SDCA as well as two concrete industrial case studies where the SCDA has
been applied to. The first case study (BankFutura) describes the deployment
and configuration system of a banking organization. As for most enterprise
systems, in this case the non-functional requirements such as the criticality
of the delivered services, guaranteed performance levels, and organizational
aspects are the dominating factors for driving the decisions on the degree of

9 Architecture Views illustrating the Service Automation Aspect of SOA 349

automation of the service execution flow. In the second case (HomeFutura)
the implementation of SDCA provides the services of multiple third-party
providers, which are presented to the end users through a service catalog,
allowing them to select the functionality they require. While the same service
execution flow is adopted in both cases, there are significant variations in the
automation related aspects, due to the impact of their domain-specific and
organization-specific constraints.

In the remaining of this section, we present an overview of the SDCA
and its industrial case studies (BankFutura and HomeFutura), focusing on
the concerns related to service automation that we have elicited from the
cases. These concerns serve as the requirements for illustrating the automation
aspect of SOA in the architecture description.

9.3.1 The Service Deployment and Configuration Architecture

The Service Deployment and Configuration Architecture (SDCA) is a flexible,
service-oriented management architecture that can address the requirements
of distributed, heterogeneous SBAs (a.o. dynamic discovery, dynamic compo-
sition, adaptation, runtime evolution). The management functions are pro-
vided by a set of services, which collaborate to identify the required changes
to the environment in order to fulfill the SBA business objectives (a.o. service
availability). SDCA Services are automated, reasoning over models represent-
ing the characteristics of the managed services and the runtime environment.
Finally, in order to adapt to the domain-specific characteristics, the specific
behavior of the services can be customized through the definition of policies
that govern the decisions taken over the process.

The objective of the SCDA is to provision new functionality (in the form
of services) by identifying and applying a set of changes to the managed
environment. This function is achieved by an execution flow consisting of the
combined invocation of nine deployment services, as shown in Fig.9.1.

Obtain
Possible

Mappings

Generate
Plan

Get Available
Services

Evaluate Required
Changes

Select
Unit

Resolve
Unit

Map Units
To Nodes

Validate
Plan

Schedule Plan
Execution

Fig. 9.1. The SDCA deployment service execution flow

A typical execution starts when an external change to the system is trig-
gered (e.g. an updated version of a service has been released and must be
deployed, or a hardware malfunction caused a server to stop working, and the

350 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

affected services must be redeployed at another node). After it is decided that
a change is necessary, the deployment service Get Available Units is invoked.
This first step retrieves the complete list of units and services currently avail-
able. The second step is the deployment service Select Unit, where one of those
available units is selected, in order to be deployed to the environment. The
unit selection criteria will be provided to the service as an external input.
After that, the deployment service Resolve Unit is invoked, where the deploy-
ment unit containing the service is analyzed, in order to find a closed set
of units satisfying all their dependencies. There might be multiple candidate
units satisfying one dependency (e.g. multiple units with minor, compatible
versions) and for those cases a criteria for selecting among them must be pro-
vided as external input. Once the complete set of units that will participate
in the operation has been identified, the deployment service Obtain Possible
Mappings evaluates the available resources from the container, and returns
for each unit the potential nodes of the environment where those can be de-
ployed. Starting with that input, the deployment service Map Units To Nodes
decides on the final destination for each one of the involved units, according
to external distribution criteria. After those mappings have been established,
the deployment service Evaluate Required Changes compares the current envi-
ronment status with the desired changes in order to obtain the set of required
changes that must be applied to it (e.g. install selected deployment units if
they are not currently running at the environment). Those changes are packed
and sorted into a deployment plan in the deployment service Generate Plan,
whose purpose is to ensure a correct execution of the list of changes, by adding
restrictions to their execution order. Defined plans can either be instantly ap-
plied to change the environment, or can be temporarily stored at a change
repository. Before being applied to the environment, plans must pass through
the deployment service Validate Plan. This step checks that the automatically
obtained plan is coherent with the environment state, and will obtain the de-
sired result. Finally, the deployment service Schedule Plan Execution receives
the accepted plan and schedules it for execution at some point in the future,
which will be also determined by an external schedule agenda.

Some of the deployment services can be completely automated as they
do not require any external intervention, such as Get Available Service and
Obtain Possible Mappings; whereas some others cannot be completely auto-
mated as external input (i.e., additional input external to the service invoca-
tion flow)(e.g., distribution criteria, unit selection criteria) are required during
the deployment process. The architect of SDCA provided services requiring
external input with certain degree of flexibility, supporting two alternatives
for their implementation. One of the solutions is to create a user interface so
that a dedicated human actor can provide the required input to those ser-
vices. Another solution is to formalize the necessary knowledge for providing
the required input in terms of policies, which can be automatically consumed
bt the deployment service. SDCA services with the format approach are called

9 Architecture Views illustrating the Service Automation Aspect of SOA 351

semi-automated services whereas the latter are called policy-driven automated
services.

The stakeholders of the SDCA that are concerned about service automa-
tion include the SOA architect, who is responsible for defining a deployment
service flow that can support the automated provisioning of services, adapting
to the hardware characteristics of each environment; the SOA manager, who
governs the design and implementation of the SDCA, and the users of the
SDCA, who are often the SOA architects that intend to apply the SDCA to
specific domains.

Being the designer of the SDCA, the SOA architect is mainly concerned
about how to provide enough flexibility with the degree of automation, in order
to allow adaptation of the flow to specific domain requirements. Additionally,
the SOA architect is concerned about how to support the other stakeholders
in terms of service automation. SDCA users are mainly concerned about how
to customize the SDCA in such a way that domain specific constraints are
fulfilled.

The complete list of concerns of each stakeholder is presented in Tab. 9.1,
where each concern is described by its associated stakeholder, a description,
and a concern ID.

Table 9.1. Concerns relevant to service automation in the SDCA

Stakeholder Concern ID Concern description

SOA architect

SDCACon1 Justify whether their decisions on the degree of service
automation are reasonable.

SDCACon2 Provide enough flexibility with the degree of automation,
in order to allow adaptation of the deployment service flow
to specific domain requirements.

SDCACon3 Suggest policies that are required for assisting the deploy-
ment service flow.

SOA manager

SDCACon4 Trace, verify and control the decisions on the degree of
service automation.

SDCACon5 Gain an overview of the degree of service automation sup-
ported by the SDCA.

SDCACon6 Gain an overview of the re-configurability of the SDCA.
SDCA Users SDCACon7 Be aware of which deployment services are domain specific

(hence customization is needed) and which ones are do-
main independent (hence no customization is necessary).

9.3.2 BankFutura: An application of the SDCA to an enterprise
domaina

A Spanish banking company, called from this point on BankFutura, with sev-
eral millions of clients over the world, and more than two thousand branches,
renovates its services portfolio, which includes client services (internet bank-
ing, cashiers), internal services (for company workers at the bank offices) and
B2B services for inter-bank transactions. As those services capture the com-
pany knowledge, they are internally developed and provided, with no third

352 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

party dependencies. This is understandable, as they constitute the core of the
company business and consequently must be under full control of the com-
pany. The company services have been architected following the SOA / BPM
paradigm, in order to cope with the complexity.

The services runtime infrastructure that will replace the legacy systems
and mainframes is composed by artifacts such as relational databases, JEE ap-
plication servers, and BRM (Business Rule Managers) systems. Each artifact
of the system is presented as a banking service, hiding its implementation de-
tails and providing a uniform high-level view. Banking services are published
in directories and connected through an ESB (Enterprise Service Bus). The
complete runtime infrastructure is dimensioned and defined beforehand, in
order to support the strict non-functional requirements for the service opera-
tion, as well as adequately support the types of services that will provide the
core banking functionality.

In BankFutura, every deployed banking service must be always available,
respecting the requirements defined at the SLA, while dispatching the requests
from a potentially enormous number of consumers. Neither hardware and
software malfunction, or denial of service attacks from ill-intended actors,
should be able to disrupt the service operation, as service downtime would
imply huge monetary costs. The stability of the banking system becomes one
of the most important non-functional requirements.

Another non-functional requirement for the banking system is security.
The exchanged information of banking services is very sensible, as it contains
the financial status and personal data of the clients, so it is not only critical
for their trust but also legally protected by the personal data confidentiality
regulations. Because of that, it is fundamental to safeguard the security of
the underlying systems, and provide complete logging and traceability of the
performed operations. This way, change initiation, approval and execution
must be registered and supported by the change management architecture,
including a responsibility chain for any identified incidences.

In order to respect all these restrictions and facilitate at the same time sys-
tem evolution, the BankFutura infrastructure is replicated into several, tiered
environments (integration, pre-production and production) which present a
balance between agility of changes and criticality. The complexity and pre-
defined structure of the deployment and configuration architecture justifies
that BankFutura employs specialized staff, such as Environment adminis-
trators, for watching over the runtime health, diagnosing malfunctions and
controlling the execution of planned changes to the environment, despite the
costs the bank is incurring by keeping this staff.

The stakeholders who are concerned about service automation in Bank-
Futura include the SOA architect, the banking deployment plan creator, the
environment administrator, and the service deployment manager.

The SOA architect is responsible for applying and customizing the SDCA
so that the resulting deployment service flow can support the complete pro-
visioning of the released services to the several tiered environments of the

9 Architecture Views illustrating the Service Automation Aspect of SOA 353

infrastructure of the company. He/She is mainly concerned about automating
the deployment services as much as possible (moving away from handcrafted
scripts) while at the same time integrating human control and responsibility
over the complete process.

The banking deployment plan creator and the environment administra-
tor are both deployment actors in the banking deployment service flow. The
former is responsible for creating a deployment plan which will provide the
desired functionality when applied to the environment; while the latter is re-
sponsible for the correct configuration of the managed infrastructure and the
selection of the right physical node for each newly deployed service, taking
into account the additional resources consumption by each new service. Both
of them are mainly concerned about how to perform their roles in the banking
deployment service flow.

The deployment manager is in charge of supervising the execution of bank-
ing deployment service flow and ensuring that the deployed banking system
is aligned with the business objectives of BankFutura.

The detailed concerns of each stakeholder are listed in Tab. 9.2, where
each concern is presented with its associated stakeholder, a description, and
a concern ID.

9.3.3 HomeFutura - An application of the SDCA to a personal
domain

The service aggregator of this case study (called from this point on Home-
Futura) wants to offer subscribers a large catalog of services that can be
consumed from the devices available at the digital home. The digital home
is the house of the near future, an always connected entity, provided with
network and devices to access Internet resources. It allows users to consume
a wide range of services; multimedia entertainment services, surveillance ser-
vices, e-learning services or consumer electronics control, just to mention a
few. Services are provisioned over the Internet and accessed through multiple
home devices. The specific hardware elements that will be available are con-
trolled by the end users, which can dynamically decide to acquire additional
equipment.

The ultimate goal is to create an environment that benefits end users, ser-
vice providers, and service aggregators. End users should be able to browse all
available services and subscribe to those they are interested in, automatically
accessing them without technical skills. Service providers develop and offer
services to be consumed by the end users. Service aggregators are the point
of contact with the users, managing their subscription, interacting with the
service providers, and ensuring correct and seamless service provisioning.

In this case study the deployment architecture plays a fundamental role. In
order for those services to be available, it is necessary to execute deployment
and configuration activities over the home infrastructure. The general charac-
teristics of the environment are similar to the previous case, with the required

354 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

Table 9.2. Concerns relevant to service automation in BankFutura

Stakeholder Concern ID Concern description

SOA architect

BankCon1 Justify whether their decisions on the degree of service
automation are reasonable given the specific constraints
in the BankFutura.

BankCon2 Understand what specific constraints affect each deploy-
ment services and how each constraint influences the de-
gree of service automation.

BankCon3 Analyze the possible alternatives on the degree of ser-
vice automation in order to evaluate how the deployment
service flow can react to changing requirements or con-
straints.

The deployment
manager

BankCon4 Trace, verify and control the decisions on the degree of
service automation.

BankCon5 Gain an overview of the degree of service automation in
the BankFutura deployment service flow.

BankCon6 Ensure that the environment administrator and banking
deployment plan creator carry out the assigned tasks as
expected and are able to trace responsibility in case an
error occurs.

BankCon7 Ensure the availability of required policies that are re-
quired for the deployment services in time.

BankCon8 Ensure that the required policies for the deployment
process are aligned with the organizational goals and reg-
ulations.

Environment
administrator

BankCon9 Ensure the stability of the managed environment after ex-
ecuting the deployment services.

BankCon10 Define the role and responsibility in preparing policies.
BankCon11 Define the role and responsibility in the deployment service

flow.
Banking deploy-
ment plan
creator

BankCon12 Select the right physical node for each newly deployed ser-
vice, taking into account the reasons that led to the initial
definition of the environment topology

BankCon13 Know which services (and what version of the service)
must be made available in each environment.

BankCon14 Define the role and responsibility in the deployment
process.

operations consisting of managing services running over a distributed, hetero-
geneous infrastructure. However, the specific characteristics of this scenario
lead to a different solution. In contrast with the case study of BankFutura,
environment stability is not the dominating constraint. This is because the
domain is personal, and the services are consumed and used without warran-
tee of performance nor agreed Quality of Service expressed through BLAs or
SLAs. On top of that, guaranteeing stability is much harder, because of the
high degree of uncertainty about the specific equipment that will be available
at every moment.

Instead, the fundamental goal in HomeFutura is being able to provide the
end user with a seamless experience in the process of acquiring new services.
The user is not concerned about the technical details behind the services or
the installation process. Those aspects must be correctly managed by the
architecture, while the user is only informed about the relevant information,
like functionality, or pricing.

9 Architecture Views illustrating the Service Automation Aspect of SOA 355

The stakeholders who are concerned about service automation in Home-
Futura include the SOA architect, the service aggregator, and the end user.

The SOA architect is responsible for defining the architecture of the digital
home service deployment system by applying the SDCA. The main concern
consists of how to provide a flexible deployment system that is able to adapt
to the available infrastructure at each home while at the same time hiding all
the technical details from the end user.

The role of a service aggregator is to manage the service catalog available
to the different users and handle the signed contracts with service providers,
ensuring that the portfolio of services offered to the users can have all their
technical dependencies correctly satisfied. The service aggregator is also re-
sponsible for providing selection policies which determine what providers /
versions for the services can be accessed by each different client.

The end user consumes the available services offered by HomeFutura, de-
manding as much variety in the services catalog as possible. The end user is
mainly concerned about the simplicity of the process of accessing the desired
functionality.

The detailed concerns of each stakeholder are listed in Tab. 9.3, where
each concern is presented with its associated stakeholder, a description, and
a concern ID.

Table 9.3. Concerns relevant to service automation in HomeFutura

Stakeholder Concern ID Concern description

SOA architect

HomeCon1 Justify whether the decisions on the degree of service au-
tomation are reasonable given the specific constraints in
HomeFutura.

HomeCon2 Understand what specific constraints affect each deploy-
ment service and how each constraint influences the degree
of service automation.

HomeCon3 Analyze the possible alternatives on the degree of ser-
vice automation in order to evaluate how the deployment
service flow can react to changing requirements or con-
straints.

HomeCon4 Design a highly automated deployment process, with a
minimal requirement on human intervention

The deployment
manager

HomeCon5 Trace, verify and control the decisions on the degree of
service automation

HomeCon6 Gain an overview of the degree of service automation in
the HomeFutura deployment service flow.

HomeCon7 Ensure the policies that are required in the deployment
process are ready in time

HomeCon8 Ensure the policies that are required in the deployment
process are aligned with the organizational goals and reg-
ulations

Service aggrega-
tor

HomeCon9 Define the role and responsibility in preparing policies.

End user HomeCon10 Participate in the deployment process the simplest way
possible

356 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

9.3.4 Summary

From the analysis of the SDCA and two industrial case studies, we observed
that service automation is especially important during design and is relevant
to multiple stakeholders in that we identified a considerable number of service
automation related concerns. Being considered, designed and implemented,
however, those concerns have not been explicitly addressed in the architecture
description.

Instead, the current architecture description of the SDCA (as well as the
two case studies) addresses the service automation related concerns in a very
abstract way. For instance, it is stated that the SDCA provides a flexible so-
lution that can be easily customized in various domain applications. However,
the information about how flexible the solution is, how easy the solution can
be applied, and how to customize the SDCA in specific domains is lacking.
Hence, there is a need to find an effective way to illustrate how the concerns
related to service automation are addressed in the architecture description.

In other words, we face the questions of what information should be doc-
umented in the architecture description and how to document it in an ef-
fective way so that the stakeholders can easily understand it. To answer the
first question, we synthesized the concerns listed in Tab. 9.1, Tab. 9.2, and
Tab. 9.3. The reason for doing so is that we noticed that a reasonable numbers
of concerns are overlapping and demanding for the same type information.
For instance, the concerns with ID SDCACon1, BankCon1 and HomeCon1
are all about justifying the decisions on service automation but in differ-
ent cases (hence overlapping); and concerns with ID SDCACon3, BankCon7,
BankCon10, BankCon13, HomeCon7, HomeCon9 all demand for illustrating
the information that is related to generate and access policies.

After the synthesis, we identified eight main concerns that are represen-
tative for the complete set elicited from the SDCA and its two case studies.
Decision on the degree of automation covers all the concerns that are related
to the decisions on service automation and their justification ; Reconfigura-
bility in terms of automation covers all the concerns related to alternatives
on the degree of service automation; The impact of architecture constraints
on the degree of automation covers all the concerns related to domain-specific
constraints; Degree of automation covers all the concerns related to the de-
gree of automation a SBA can achieve; Accountability covers all the concerns
related to the responsibility of stakeholders; The preparation of policies cov-
ers all the concerns related to the readiness of policies; The specification of
policies covers all the concerns related to the content of policies; and Human
participation covers all the concerns related to human actors with regards to
their involvement in the deployment service flow.

Further, we noticed that some of these main concerns are inter-related.
More specifically, the first three main concerns are about decisions, alterna-
tives and constraints, which form a cause-effect-rationale relation. As such, we
decided to address all these concerns using a decision view. The next two

9 Architecture Views illustrating the Service Automation Aspect of SOA 357

main concerns are about the degree of automation resulted from the design
and the impact of such a degree on the execution of the deployment service
flow. As such, we decided to address these concerns using a degree view.
The last three main concerns are about the policies and human participation
for enabling different degrees of service automation. Since policies and input
from human actors can both be considered as data, we decided to use a data
view to address the concerns. Hence the automation decision view, degree of
service automation view and service automation related data view illustrate
the service automation aspect for the architecting of SDCA.

The mapping between the elicited concerns, synthesized concerns and
views for addressing these concern is presented in Tab. 9.4.

Table 9.4. Mapping between the elicited concerns, synthesized concerns and views

View Main concern Concerns in
the SDCA

Concerns in
BankFutura

Concerns in
HomeFutura

Automation
decision
view

Decision on the degree of
automation

SDCACon1,
SDCACon4

BankCon1,
BankCon4

HomeCon1,
HomeCon5

Reconfigurability in terms
of automation

SDCACon2,
SDCACon6

BankCon3 HomeCon3

Impact of architecture
constraints on the degree
of automation

SDCACon7 BankCon2 HomeCon2

Degree of
service
automation
view

Degree of automation SDCACon5 BankCon5 HomeCon4,
HomeCon6

Accountability - BankCon6,
BankCon11,
BankCon14

HomeCon10

Service
automation
related data
view

The preparation of poli-
cies

- BankCon10,
BankCon7

HomeCon7,
HomeCon9

The specification of poli-
cies

SDCACon3 BankCon8,
BankCon9,
BankCon11,
BankCon13

HomeCon8

Human participation - BankCon11,
BankCon14

HomeCon10

9.4 The automation decision view

The automation decision view is designed to illustrate all the decisions that
have been made on the degree of service automation, the rationale behind
them, and the impact of domain specific constraints on the decisions. With
these requirements in mind, we created a set of graphic notations for con-
structing the automation decision view, as no other notation in the literature
fits to our purposes. These graphic notations are presented in Fig. 9.2.

In this figure, services are represented by ovals; the three ones in the first
column represent the three different degrees of service automation that have
been decided. Moreover, they also indicate that alternative degrees of service

358 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

Rationale

Architecture
constraint

Leads to

Justifies

Domain
dependent

Domain
independent

Service that is
decided to be Policy-

driven automated

Service that is
decided to be semi-

automated

Policy-driven
automated

 Semi-automated

Completely
automated

service

Decision on
automation is left

open Scope

Fig. 9.2. The graphic notations for the automation decision view

automation are not feasible or reasonable. The services in the second column
represent a decision has been made or left open among alternative degrees
of service automation. These services indicate that they can be re-configured
to an alternative degree of service automation if necessary. These two sets
of notations are meant to address the concerns of decision on the degree of
automation and reconfigurability in terms of automation.

The two notations in the third column indicate the dependency between
a degree of service automation and a specific domain. The notations in the
last column are used to illustrate the relation between decisions, architecture
constraints, and associated rationale, as well as the scope of services where
architecture constraints may have impact on. These two set of notations are
meant to address the concerns of the impact of architecture constraints on the
degree of automation.

9.4.1 The automation decision view for the SDCA

The automation decision view for the SDCA is presented in Fig. 9.3. This
view aids the SOA architect in taking design decisions on service automation
by making explicit which architecture constraints may impact the degrees of
automation, and which services are affected by each constraint.

This view differentiates the degrees of service automation that are domain-
dependent from the ones that are domain-independent. More specifically, the
four services that are completely automated are circled with a straight edge
line, indicating that they are domain-independent in terms of automation
(SDCACon7). The other five services, however, are designed being both semi-
automated and policy-automated. As such, the SDCA offers its users the
flexibility to decide on which degree of service automation to be configured
for specific domains, based on domain-specific constraints, such as quality
attributes or characteristics of the execution environment (SDCACon7).

As an example of domain-independent decision, the deployment service
Generate Plan automatically sorts a list of operations, ensuring they are ex-
ecuted in a correct order. The execution of this service only requires the in-

9 Architecture Views illustrating the Service Automation Aspect of SOA 359

put provided by the previous deployment service Evaluate Required Changes.
Hence, the deployment service Generate Plan can be completely automated,
independent with any domain specific constraints.

As an example of domain-dependent decision, the service Map Units to
Nodes decides the physical distribution of the participating services, among a
list of potential mappings provided by the service Obtain Possible Mappings.
Depending on the specific domain characteristics, the criteria for making those
decisions will be different, as well as the relevance of this decision (ranging
from any solution is acceptable to only one distribution is correct). Because
of those factors, this service has been designed with flexibility on its degree
of automation.

From these examples, we can see that the SOA architect can use this view
to explain why some of the services have been designed to be completely
automated while others have been designed for both semi-automated services
and policy-driven automated services (SDCACon1) and the SOA manager is
able to use this view to trace, verify and control these decisions (SDCACon4).

Highlighting the links between the architecture constraints and the deci-
sions, this view facilitates the SOA architect to show the flexibility of adapting
the SDCA to specific domain applications. It is obvious from the view that the
services whose decisions on service automation are left open, require further
re-configuration when architecture constraints become specific (SDCACon2,
SDCACon6). The users of the SDCA also benefit from this view by being aware
of the impact of certain architecture constraints on the degree of service au-
tomation.

For instance, the deployment service Select Unit aims at selecting the main
service to be deployed to the environment (and the enclosing deployment
unit). The decision on the degree of automation is mainly driven by quality
attributes of the deployed system and the technical capabilities of the deploy-
ment actor. An automated solution results in less human control; whereas a
non-automated solution requires certain skills from a deployment actor.

To give another example, the deployment service Map Units To Nodes de-
cides which physical node among the candidates will host each participating
unit. Whether such a decision can be obtained from a certain policy or has to
be controlled by a human actor is influenced by the characteristics of the envi-
ronment and the domain quality attributes. Strictly defined environments will
generally impose stricter distribution requirements, which need to be provided
by a human actor, whereas the environments defined on-the-fly generally lead
towards programmatic distribution policies such as round robin or even load
balancing.

9.4.2 The automation decision view for BankFutura

When applying the SDCA to BankFutura, the four completely-automated
services whose automation state is domain-independent require no further de-
cisions and hence remain being completely-automated. On the other hand,

360 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

the five services implemented as both semi-automated and policy-driven au-
tomated in the SDCA require further decisions on re-configuration based on
the BankFutura specific architecture constraints. The outcome of those deci-
sions is illustrated in the automation decision view for BankFutura, presented
in Fig. 9.4.

The view shows how the domain non-functional requirements such as crit-
icality or reliability limit the degrees of service automation that BankFutura
actually can operate with, in spite of the advantages of a completely auto-
mated service execution flow. As a result, the SOA architect decided to semi-
automate most of the services to guarantee a certain degree of control over
the deployment process (BankCon1, BankCon2). The only service that was de-
cided be policy-driven automated is the deployment service Resolve Unit. An
exception was made in that case because BankFutura services are developed
and provided by the internal IT department, satisfying the business needs of
the organization and are developed according to internal policies. This sug-
gests a simpler and predictable dependency resolution activity and hence it
was decided to be automatically driven by policies rather than human actors.

As we can see the requirements of criticality or reliability as well as
their impact on the degree of service automation are highlighted in the view
(BankCon2). Not only the SOA architect can use this view to justify their
decisions on the degree of service automation satisfying the requirements of
criticality or reliability, but also the deployment manager can use it to trace,
verify and control the decisions that the SOA architect made (BankCon4).

Explicitly documenting the rationale for the decisions on the degrees of
service automation also enables the analysis of the possible alternatives on
the degree of service automation, allowing to evaluate how the deployment
service flow can react to changing requirements or constraints (BankCon3). If
BankFutura intends to reconfigure the degrees of service automation, it will be
useful to know the automation alternatives and the trade-off among them. For
instance, the services presented in Fig. 9.4 are marked with a shadow if they
can be either semi-automated or policy-driven. Although the services have
been decided to implemented with either of the degrees of service automation,
they could be reconfigured to another degree if the organization deemed it
necessary (e.g. after a time of operation the organization increased its trust
in the automation capabilities of the BankFutura, and opted to increase the
degree of automation for a more efficient operation).

9.4.3 The automation decision view for HomeFutura

Specialized from the degree of automation view for SDCA (presented in
Fig. 9.5), this view presents the implemented degree of automation for Home-
Futura services.

Similar to BankFutura, the degree of automation view for HomeFutura
(presented in Fig. 9.5) does not display the four completely automated ser-
vices that are domain independent and need no further decisions. This view

9 Architecture Views illustrating the Service Automation Aspect of SOA 361

emphasizes the decisions on the degree of automation for the other five ser-
vices that are domain-dependent, as well as the domain specific constraints
that lead to these decisions.

Whereas in BankFutura environment stability is the dominant constraint,
HomeFutura aims at providing end users the flexibility to experience new
services available on the network. Consequently, HomeFutura opted for a de-
ployment solution with higher degree of automation, not only because end
users are not capable of providing technical input to the deployment process
but also because agility in the execution is required. The view presents this
rationale and shows its link with the architecture constraints(HomeCon2 influ-
encing the decisions.

As a result, only two services that require input from end users are semi-
automated. The service Select Unit requires the end users to select the services
that they would like to experience; and the other service Validate Plan requires
the end users to approve the execution of the deployment plan (e.g., the
cost of news service, the changes to multimedia player device). The rest of
the services in the deployment process are all automated and do not require
human intervention . Similar with the decision view for BankFutura, this view
enables the SOA architect to justify the decisions and supports the deployment
manager in governing the decisions (HomeCon1, HomeCon5).

It is worth to note that three services are marked with a shadow, which
indicates that a choice has been made between semi-automation and policy-
driven automation for these services. Although policy-driven automation has
been chosen for the current deployment solution for HomeFutura, the shadow
reminds the architect that this service could be re-configured to be semi-
automated if needed (HomeCon3). For instance, after a time of operation it
turns out the service Map Units To Nodes does not provide the most optimal
mapping of the selected services to devices (due to e.g. too complicated depen-
dency graph that Map Units To Nodes cannot interpret correctly or incomplete
policy that is not able to provide sufficient information for the mapping), the
architect could decide to let a technical expert decides the mapping and hence
make Map Units To Nodes to be semi-automated. However, involving another
deployment actor (other than the end user) in the process would cause that
the user cannot instantly start to experience the new service, having to wait
for the required input from the technical expert. This way, usability and agility
of HomeFutura would be challenged.

9.5 The degree of service automation view

Whereas the automation decision view emphasises the domain-specific con-
straints that lead to the decisions on the degree of service automation, the
degree view focuses on the decided degrees of service automation for the ser-
vice execution flow. As a result, only the degree of service automation that
the service flow is expected to achieve is relevant in this view, while the details

362 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

of how the decisions are made are irrelevant and should not be presented in
this view.

As denoted by the graphic notations presented in Fig. 9.6, the degrees
of automation are graphically rendered by the darkness of the color assigned
to each service: the darker is the color, the higher is the degree of automa-
tion. In addition, human actors are associated to semi-automated services
with the purpose of highlighting who are expected to provide input to which
services. The sequence between services indicates the order in which the de-
ployment services are invoked. With this additional information, the period
during which human intervention is (and is not) required becomes explicit.
By illustrating that external inputs are expected to be provided by whom and
when, this view also addresses the accountability.

9.5.1 The degree of service automation view for the SDCA

Applying the graphic notations presented in Fig. 9.6, we constructed the de-
gree of service automation view for the SDCA shown in Fig. 9.7.

Using this view, the SOA manager can gain an overview of the degree of
service automation supported by the SDCA, as a result of the decisions illus-
trated in Fig. 9.3. More specifically, two different degrees of automation are
designed for the SDCA (SDCACon5). Deployment services that do not require
additional information are completely automated, while those needing exter-
nal information are designed to retrieve the external information either from
human actors or from policies.

9.5.2 The degree of automation view for BankFutura

Analogous to the SDCA, we also used the described notation to construct
the degree of service automation view for BankFutura, as it can be seen in
Fig. 9.8.

The deployment manager can see from this view the three degrees of service
automation designed for the BankFutura (BankCon5). More specifically, four
services are completely automated, one is policy-driven automated and four
are semi-automated. In other words, this view shows that nearly half of the
services require human intervention, meaning that the automation degree of
the deployment process for BankFutura is relatively low.

In addition, as the semi-automated services are associated with a banking
deployment plan creator and an environment administrator, the manager may
use this view to trace the responsibility of these two human actors who are
expected to provide input during the services execution (BankCon6).

Similarly, this view points out directly for the banking deployment plan
creator and environment administrator which services are expecting their in-
put. As shown in Fig. 9.8, the role of the banking deployment plan creator is
associated to the deployment services Select Unit and Map Units To Nodes,
indicating that as soon as the deployment service flow is initiated and the

9 Architecture Views illustrating the Service Automation Aspect of SOA 363

banking deployment creator should be prepared to first make a selection on
the available units and later on to establish mapping between selected units
and physical nodes (BankCon14). On the other hand, the environment admin-
istrator is only involved in the validation and execution of the deployment
plan (BankCon11).

9.5.3 The degree of automation view for HomeFutura

Similar with the degree of automation view created for BankFutura, Fig. 9.9
shows the designed degree of automation for each service in the deployment
process of HomeFutura.

The view visually highlights the fact that a higher degree of automation
has been designed for HomeFutura as compared to BankFutura (HomeCon4,
HomeCon6). As shown in Fig. 9.9, most of the services are illustrated with dark
color (indicating that the services can execute without any human interven-
tion); while two services are in light color (indicating that human intervention
is needed).

The degree of service automation view for HomeFutura can also be used
to explain to the end users how they are expected to participate in the deploy-
ment process. End users can see hwo their participation consists of selecting
the home services that they would like to experience using service Select Units
and eventually to agree on the corresponding costs of consuming these services
by using service Validate Plan. This way, it can be seen how the end users are
presented only the relevant information for them, while the low level, technical
details are hidden(HomeCon10).

9.6 The automation-related data view

While the degree of service automation view highlights the degree of service
automation designed for the deployment service flow, the automation-related
data view details the design from the data perspective. This way, the questions
related to the generation, management and provision of additional input (from
either human actors or policies) can be answered by the automation-related
data view.

The graphic notations that we created to construct the automation-related
data view is presented in Fig. 9.10. Besides the notations for the three degrees
of service automation, we distinguish the guidelines/rules from formalized
policies. While both guidelines/rules and formalized policies are relevant to
service automation, the former are used by the deployment actors to drive the
decision and the latter are directly accessed by deployment services to achieve
policy-driven automation.

The most right hand side of Fig. 9.10 shows the graphic notation denoting
the relationships between elements in the automation-related data view. More

364 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

specifically, a deployment actor is responsible for providing an input; such in-
put assists the execution of semi-automated services; guidelines / rules guide
the provision of such an input; formalized policies directly assists the execu-
tion of policy-driven automated services; and sequence between services is also
denoted. Given these details on the relationships between policies, deployment
actors, and deployment services, the deployment actors can tell which services
are expecting what information from them. Moreover, it explicitly points out
which organizational guidelines or rules should this information comply with.
In this way, the deployment actors can be prepared to transform this or-
ganizational knowledge to their input to services, hence facilitating human
participation.

In addition to the graphic notation, we also constructed a table template
(shown in Tab. 9.5) for listing the policies that are relevant to service au-
tomation in the deployment service flow. This table aids the specification of
policies in presenting all the information relevant to the policies in a structured
manner. As such, this table also aids the preparation of the policies.

Table 9.5. The template for automation-related policy table

Policy
ID

Policy name Policy Description Associated
service

Controlled
by

Type of for-
mat

9.6.1 The automation-related data view for the SDCA

As the SDCA is a reference deployment management system, it does not define
concrete deployment actors or policies, as they will be specialized in specific
applications. However, in order to guide the application of the SDCA, the
SOA architect is concerned about identifying the required policies for provid-
ing the additional input to the deployment service flow. For this reason, we
constructed the automation-related policy table, using the template presented
in Tab. 9.5.

The automation-related policy table (presented in Table 9.6) provides de-
tailed information about all the policies, including the ones for guiding human
actors and the ones for policy-driven automated services. Using this table, the
SOA architects in specific domains can gain an overview on what type of poli-
cies might be relevant and should be prepared, as well as which format should
they be expressed when applied to the SDCA (SDCACon3).

9.6.2 The automation-related data view for BankFutura

Applying the graphic notation presented in Fig. 9.10, we constructed the
automation-related data view for BankFutura (shown in Fig. 9.11). This in-
formation is complemented with the BankFutura policy table, presented in
9.7)

9 Architecture Views illustrating the Service Automation Aspect of SOA 365

Name: string
Type: ServiceType
Provided by: Service provider
Developed by: Service developer

Service

The service retrieves all
the available service
definitions from the

repository.
It needs neither a decision
nor additional inputs, thus
is completely automated

Name: String
Quality attributes

Operator:
stakeholder

Deployment
actor

This service is able to
find a closed set of units

satisfying all the
transitive dependencies

originating from the
selected service

received as input.
However, over the
execution in some

cases it needs to decide
among several

candidate units (e.g.
multiple compatible

services). Therefore,
the degree of service

automation depends on
the characteristics of
these services (e.g.

number of developers,
number of available
services or service

complexity).

This service decides which
physical node among the
candidates will host each

participating unit. Whether
such a decision can be
obtained from a certain

policy or has to be controlled
by a human actor is

influenced by the
characteristics of the

environment and the domain
quality attributes. Strictly
defined environments will
generally impose stricter
distribution requirements,

which should be provided by
a human actor, whereas on

the fly environments
generally lead towards

general distribution policies
such as round robin or even

load balancing.

This service
determines
whether the

generated plan
achieves the

desired results
and keeps

system stability.
Depending on the

pre-dominant
quality attributes,

as well as
whether the

deployment actor
can actively

participate in the
deployment
process, a

different degree
of automation

should be
decided.

Domain specific
concerns can

affect the degree
of service

automation. In
particular, the pre-
dominant quality

attributes poses a
balance between
automation and
human control;

whereas
deployment actor

technical skills
restrict their

potential
participation over

the process. These
two constraints

impact the whole
deployment
service flow.

The service decides
the exact time that

the deployment plan
will be applied to the
environment. Based
on the characteristics
of the environment,

the relative impact of
applying the changes
differs. The greater

the number of users,
or the more critical
the environment is,
the more restrictive
scheduling will be

applied. On the other
hand, on non-critical,

low-user base
environments, plans

can be instantly
executed, removing
even the need for
additional input.

Obtain
Possible
Mappings

Generate
Plan

Get Available
Services

Evaluate
Required
Changes

This service decides
the main service to
be deployed to the

environment (and the
enclosing

deployment unit).
The decision on the

degree of automation
is mainly driven by
quality attributes of

the deployed system
and the capability of

the deployment
actor. An automated

solution results in
less human control;

whereas a non-
automated solution

requires certain skills
from a deployment

actor.

Given the elements from the logical graph
(generated from Resolve Unit) and the
runtime nodes, this service is able to

identify all the possible physical mappings
for the participating services. There is no
decision or additional parameter required,

thus it is completely automated.

Given the mappings selected by the
service Map Units To Nodes, and
comparing them with the current
environment state, this service is

able to generate a list of deployment
actions. It can be automated as no

decision is neccesary.

Given the list of deployment
actions, this service generates a
deployment plan by evaluating

dependencies among the actions
(E.g. don’t start a service before

deploying it). No decision is
neccesary so it is automated.

Topology: Topology type
Number of tiers: string
Number of users: string
Application domain: name

Environment

 Select Unit

Resolve
Unit

Validate
Plan

Schedule Plan
Execution

Map Units
To Nodes

Fig. 9.3. The automation decision view for the SDCA

Table 9.6. The automation-related policy model for the SDCA

Policy
ID

Policy name Policy Description Associated
service

Controlled
by

Type of format

P01 System re-
quirements

Describes the functionality
(services) that the target en-
vironment must provide

Select Unit - Formal/Text

P02 Unit selection
policy

Provides criteria for select-
ing among multiple candi-
date units that satisfy the
same dependency

Resolve Unit - Formal/Text

P03 Unit distribu-
tion policy

Provides criteria for selecting
the physical place of the envi-
ronment where each deploy-
ment unit will be installed

Map Units To
Nodes

- Formal/Text

P04 Plan Valida-
tion Rules

Defines a set of checks that
can identify fatal errors in
the plan definition or poten-
tial risks expressed as warn-
ings

Validate Plan - Formal/Text

P05 Environment
update policy

Controls at what periods of
time plans can be applied to
the environment

Schedule Plan
Execution

- Formal/Text

366 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

Name: Credit concession
service
Type: Composite service

Service

Stability
Criticality

Quality
attributes

Topology: Pre-
defined

Environment
Banking
deployer

Deployment
Actor

Security

Quality
attributes

Name: Financial health
service: Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Name: Retrieve client
profile
Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service
Name: Evaluate client
financial status
Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Banking
services are

developed and
provided by

the internal IT
department,
according to

internal
policies.

Because of
their

homogeneity,
it is decided to

automate
through

policies this
service since

the
dependency
resolution
activity is

simpler and
predictable.

As banking
environment topology

is predefined, the
decisions taken in

this service must take
into account the

specific objectives
and guidelines

behind the definition
of the environment

topology. Because of
the criticality of these

decisions, and the
complexity to express
the underlying criteria
for the environment

definition, it is
decided that the

deployment
plan creator should
control the service

execution.

Due to the predefined
characteristics of the
environment a human
validator with profound
environment knowledge

can provide a better
verdict than an

automated analysis.
He /She can consider
additional factors (e.g.,
organizational culture).
That factor, as well as

the critical nature of this
service, have lead to

decide that the
validation should be

controlled by a human
actor other than the plan

creator for a better
control check).

The correct time to
apply the plan differs

with the type of
environment (e.g.

changes to the
integration environment

should be applied as
soon as possible,

whereas production
can only be changed
on few reserved time

slots) and the nature of
the change. The
balance between

criticality and
immediacy of the

change can be hard to
express formally.

Therefore, this service
cannot be automated
and will be controlled

by a human actor.

Stability and
criticality

requirements
impose the

environment to be
stable and operate

correctly.
Automatic

initialization implies
allowing that the

deployment system
dynamically reacts
on changes, which

may result in
unexpected errors

that lead to
unstable

configuration.
Therefore, it is

decided that the
service selection is

controlled by a
human actor.

Deployment
actors are

familiar with
the domain
knowledge
and have
technical
expertise.
Therefore,
they are

capable of
making

technical
decisions
over the

deployment
process.

Therefore,
critical

activities can
be manually
controlleD.

The system
restricts the
access for

each type of
operation. It
is required

that the
operations
that take

place at each
step can be
traced and

responsibility
can be

assigned to
staff

members.
Therefore,

critical
activities
should be
manually

controlled.

Number of tiers: Multiple, tiered
environments (integration, pre-
production, production)
Number of users: Variable number of
system users for each tier
Application domain: Business domain

Environment

 Select Unit

Resolve
Unit

Map Units to
Nodes

Validate
plan

Schedule plan
execution

Fig. 9.4. The automation decision view for BankFutura

From this view the two human actors, the banking deployment plan cre-
ator and the environment administrator, can see what types of information
they are expected to provide to which services during the service execution
flow (BankCon11, BankCon14). In addition, they can see which organization
policies (or guidancerules) can be referred in order to provide the required
information (BankCon9, BankCon11, BankCon12, BankCon13).

We will use an example scenario to illustrate how BankCon10 is supported
by the data view, guiding the participation of the deployment plan creator in
the service Map Units to Nodes. In an specific environment, the environment
design document mentioned in the data view informs that only one server from
the environment infrastructure is configured in the network firewall to be re-
motely accessible from the outside; the remaining elements being protected
from outer clients. In this case, by analyzing that information, the human
will decide to assign units containing final services (which must be remotely
accessible) to the visible server, whereas the remaining elements will be dis-
tributed over the other elements, regardless of whether those servers might
also be technically capable of hosting the same types of services.

Fig. 9.11 shows that the policy-driven automated service is explicitly linked
to the corresponding policy. For instance, service Resolve Unit is linked to

9 Architecture Views illustrating the Service Automation Aspect of SOA 367

Name: Multimedia Resource Center
Type: composite service

Service

Usability
Flexibility

Quality attributes
Topology: On the fly

Environment

End user

Deployment
actor

Name: Rss news reader
Type: atomic
Provided by: multiple known
external providers

Service

Name: Multimedia player
Type: atomic
Provided by: single
external provider

Service
Name: Content
downloader
Type: atomic
Provided by: multiple
external providers

Service

HomeFutura Services
are licensed by the
service aggregator

from multiple
providers. The

aggregator knows the
terms of use and

selects compatible
services with different

SLA levels,
depending on the

user profile. As the
process must

minimize human
intervention the

aggregator captures
his/her knowledge
into well-defined

policies and
implements the

service with policy-
driven automation.

The environment is
composed by home
devices without a

predetermined role,
thus imposing no

additional
restrictions over the

component
mapping. As the end

user cannot
participate in this

service because of
its technical nature,

the service is
decided to be policy-

driven automated,
applying an even
load-balancing

policy to distribute
the units.

The end
user must
approve
the plan
before its
execution.
Instead of
technical

details, the
informatio
n relevant
to the user

will be
presented

for its
approval.
Therefore,

this
service

cannot be
automated

.

The limited number of
simultaneous system

users and the low critical
nature of personal

services greatly reduces
the impact of system

changes. On top of that,
the process should be
completed as soon as

possible in order to
provide the functionality
to the user (improving

usability). Therefore, the
plan should be instantly

applied after its
approval. Since no
additional input is

required during the
execution of this service,

it is completely
automated.

HomeFutura
services are

from
different

nature and
functionality.
Since only

the end user
knows the

functionalitie
s that the
system
should

provide, this
service

cannot be
automated
and should
be carried
out by the
end user
manually.

The end
user is only
concerned
about the

functionalit
y, and is

not aware
about the
technical
details.

Therefore,
he/she

expects the
process to

be as
automated

as
possible.

Number of tiers: 1
Number of users: low
Domain: personal

Environment

Plan
Execution Select Unit

Validate Plan:
user confirmation

Map Units to
Nodes

Resolve
Unit

Validate Plan:
Technical
Validation

As the user
does not
know the
technical

details of the
deployment,

a set of
validation

rules Can be
applied to

check
whether the
operations

contained in
the

deployment
plan are

technically
correct for the

home
environment.

Human
intervention

would
create

bottlenecks
tn the

execution
of the

deployment
service.

Therefore,
in order to
improve
Usability,

the process
should be

as
automated

as
possible.

Fig. 9.5. The automation decision view for HomeFutura

Policy-driven
automated

Deployment Actor

Sequence between
services

 Semi-automated

Completely
automated service

Decision on
automation is left

open

Fig. 9.6. The graphic notation for constructing the degree of automation view

Obtain Possible
Mappings Generate Plan

Get Available
Services

Evaluate Required
Changes

Select Unit

Resolve Unit

Map Units To
Nodes

Validate Plan

Schedule Plan
Execution

Fig. 9.7. The degree of automation view for the SDCA

368 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

Obtain Possible
Mappings

Generate
Plan

Get Available
Services

Evaluate
Required
Changes

Banking deployment
plan creator

Environment administrator

 Select Unit

Resolve
Unit

Map Units To
Nodes Validate Plan

Schedule Plan
Execution

Fig. 9.8. The degree of automation view for BankFutura

 Select Unit

Obtain
Possible
Mappings

Generate
Plan

Validate plan: user
confirmation

Plan
Execution

Evaluate
Required
Changes

End user

Map Units to
Nodes

Resolve
Unit

Get Available
Services

Validate plan:
Technical

Correctness Check

Fig. 9.9. The degree of automation view for the HomeFutura

Guidelines
or rules

Formalized
policy

Guides

Sequence between
services

Assist the execution of

Policy-driven
automated

 Semi-automated

Completely
automated service

Human
Input

Deployment
actor

Fig. 9.10. The graphic notation for constructing the automation-related data view

9 Architecture Views illustrating the Service Automation Aspect of SOA 369

Obtain
Possible

Mappings

Generate
Plan

Get Available
Services

Evaluate
required
changes

 Select Unit

 Resolve Unit

Map Units To
Nodes Validate Plan

Schedule Plan
Execution

Unit
selection

policy:
latest

version

System
Requirements

Unit distribution
policy: optimize
performance,

ensure reliability

Plan
Validation

Rules

Environment
update policy:

minimize runtime
impact

Banking deployment
plan creator

Identification
of the desired

service

Selection among
the possible

candidate units Environment
administrator

Verdict on
Plan

Correctness

Decide when to
execute the

deployment plan

Fig. 9.11. The automation-related data flow view for BankFutura

Unit selection policy indicating that the criteria for selecting among multi-
ple candidate units defined by the policy directly influences the output of
Resolve Unit. Explicitly visualizing the dependency between the services and
their corresponding policies, the automation-related data flow model aids the
deployment manager in obtaining an overview on when certain policies are
required and which services require them during the deployment service flow
(BankCon7).

Complementary to the data view, the automation-related policy table fur-
ther details each policy presented in Fig. 9.11 by noting its description, the
role that is in charge of it and the type of format for documenting the policy.
This table aids the preparation of policies as it can be used as a check list for
the deployment manager to assign tasks to some specific personnel, making
sure that the policies are in place and are expressed in the right format before
the execution of the deployment process (BankCon7).

9.6.3 The automation-related data view for HomeFutura

Applying the graphic notation shown in Fig. 9.10, the automation-related
data view for HomeFutura is presented in Fig. 9.12. From this view, the end
users can see that they are only required to initiate the deployment process
when they want to experience new services and confirm the operation when
the selected services are ready to be deployed. More importantly, the end
users will be confident in providing this information as the data view shows
that the former is based on their own functional requirements and the latter
on their own non-functional requirements. With limited involvement in the
deployment process, the end user has full control over the selection of new
home services and the acceptance of any associated cost (HomeCon10).

As the deployment process for HomeFutura has much higher degree of
automation than our previous case, it is more critical that the policies are
in place before the deployment process starts as compared to the case of

370 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

Table 9.7. The automation-related policy model for BankFutura

Policy
ID

Policy name Policy Description Associated
service

Controlled by Type of format

PB01 System re-
quirements

Describes the business
processes that must be sup-
ported by the environment

Select Unit Managers Textual Document

PB02 Unit selection
policy: Latest
version

Selects the unit with the
most recent version among
the potential candidates

Resolve
Unit

SOA Archi-
tects

Formal/SQL Sort-
ing Query

PB03 Unit distribu-
tion policy

Defines the rationale behind
the environment definition
and the quality levels to be
sustained by the deployed
services

Map Units
To Nodes

SOA Archi-
tect

Textual Environ-
ment design / SLA
Document

PB04 Plan Valida-
tion Rules

Checks whether the plan is
coherent with the current
state of the environment

Validate
Plan

Environment
Administrator

Formal/RETE-
based rules +
Guidelines Textual
Document

PB05 Environment
update pol-
icy: Minimize
runtime impact

Controls the reserved time
slows for applying changes,
and avoids overlap in the exe-
cution of concurrent changes

Schedule
Plan Execu-
tion

Environment
Administrator

Environment Op-
eration Guidelines
Textual Document
+ Environment
Calendar

Unit selection
policy: subscription
terms, agreements

with providers.
Functional

requirements

Unit
distribution
policy: even

load balancing

Non-
functional

requirement
s

Service
selection Confirm

operation
End user

 Select Unit

Obtain
Possible

Mappings

Generate
Plan

Validate plan:
user

confirmation

Plan

Execution

Evaluate
Required
Changes

Map Units to
Nodes Resolve Unit

Get
Available
Services

Validate plan:
Technical

Correctness Check

Plan
Validation

Rules

Fig. 9.12. The automation-related data flow view for HomeFutura

BankFutura. In BankFutura, there is only one policy-driven service requir-
ing direct access to its associated policy. The other semi-automated services
require the associated policies to be well documented enough so that the de-
ployment actors are able to provide the required input. In HomeFutura, as
shown in Fig. 9.12, there are three policy-driven services, which means that
the three associated policies should all be accessible before the deployment
process starts (HomeCon7).

Complementary to the data view, the automation-related policy table for
HomeFutura presented in Tab. 9.8 provides detailed information about the
policies illustrated in the data view. From this table, the service aggregator

9 Architecture Views illustrating the Service Automation Aspect of SOA 371

can see that he/she is the main role who is in charge of the formalized policies
(HomeCon9).

Services available to HomeFutura come from different service providers,
after being licensed by the service aggregator. The aggregator knows about
their use licenses and selects compatible services with different SLA levels,
depending on the user profile. With the aggregator defining policies for solving
dependency conflicts based on the user profile, the technical knowledge of the
aggregator is transferred to formalized documents that the three deployment
services can directly access to. This not only enables these services to be
policy-driven automated, but also ensures the alignment between them and
technical requirements that are specific to HomeFutura (HomeCon8).

Table 9.8. The automation-related policy model for HomeFutura

Policy
ID

Policy name Policy Description Associated
service

Controlled by Type of format

PH01 Functional Re-
quirements

Functionality that must be
provided from the HomeFu-
tura platform to the end user

Select Unit End User Undocumented
knowledge

PH02 Unit selection
policy

Selects among the candidate
units based on the agree-
ments with service providers
and the user subscription
terms

Resolve
Unit

Service aggre-
gator

Subscription
Terms Document,
Agreements with
providers docu-
ment

PH03 Unit distrib-
ution policy:
Even load
balancing

Distributes the affected units
over the home environment
attempting to balance the
load on the computing nodes

Map Units
To Nodes

Service aggre-
gator

Formal: Linear
Programming
coding

PH04 Plan Valida-
tion Rules

Checks whether the plan is
coherent with the current
state of the environment and
the subscription terms of the
end user

Validate
Plan: Tech-
nical Cor-
rectness
Check

Service aggre-
gator

Subscription Terms
+ Formal/ RETE-
based rules

PH05 Non-functional
requirements

Checks whether the con-
sumption of the selected
service complies the non-
functional requirements of
the end user

Validate
Plan: User
Confirma-
tion

End user Undocumented
knowledge

PH06 Environment
update pol-
icy: Instant
execution

Instantly applies the plan to
the home environment

Schedule
Plan Execu-
tion

Service aggre-
gator

Formal: code

9.7 The power of visualization

Visualization is a common technique to convey abstract information in intu-
itive ways. Representing information in terms of (a set of) graphics often more
easily draws readers’ attention and improves understandability, as compared
to pieces of text. That is why visualization has been considered as one of the
most effective ways for communication. In the same vein, effectively applying
the technique of visualization in architecture description improves the com-
munication between stakeholders; in our experience the range of stakeholders

372 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

involved in services engineering is broader than in the development of tradi-
tional applications, rendering the usage of visualization techniques as a key to
get effective communication. On the other hand, the usage of diagrams (such
as UML) well-known in the field of software architecture, while useful for tech-
nical stakeholders, results to be difficult to understand and reason with for
non-technical ones (such as users in HomeFutura).

When constructing the service automation views, we consciously design
the graphic notation to make the views intuitively understandable and to hold
readers attention steady. Some of these graphic notation have been commonly
used in architecture description, like using a symbol of person to stand for a
human actor, or using a symbol of document to stand for a policy.

In addition to these commonly used notation, we created a set of color
schema representing the different degrees of service automation. The moti-
vation behind this schema is that from the human perception point of view,
objects with dark color often make one feel heavy in weight (and easy to
sink), whereas objects with light color make on feel light (as easy to float).
As shown in the views, the degree of automation is graphically rendered by
the darkness of the color assigned to each service: the darker the color, the
higher s the degree of automation. This representation resembles an iceberg
immersed in the sea: only the top (white is the lightest color) is visible (i.e.
the user is aware of the service and manually participates in its execution),
while the deeper the iceberg is sunk in water, the lesser visible it becomes (i.e.
accessible by users, or in other words, increasingly automated).

In the same vein, the graphic notation for the policies inherit the same
color schema. As shown in Fig. 9.10, the policies for providing guidance for
deployment actors are in light color; whereas the policies for assisting the ex-
ecution of policy-driven automated services are in dark color. As such, from
the color of the policies shown in Fig. 9.11, and 9.12, the reader can have
the perception of the correspondence between the degree of service automa-
tion and policies. In addition, in both the degree of service automation view
(shown in Fig. 9.7, 9.8, and 9.9) and automation-related data view (shown
in Fig. 9.11, and 9.12, the completely-automated services with dark color
“sink” at the bottom, implying that they are loosely coupled with human
actors. Whereas the semi-automated services with light color “float” at the
top, implying that they are tightly coupled with human actors. As such, these
visualization techniques enable the views become self-explaining.

9.8 Observation

By studying the SDCA, and in particular its two industrial cases, we have
identified a set of concerns that are particularly relevant to service automation.
By constructing views to illustrate the service automation aspect, we gained
insight into the way in which service automation has been designed under

9 Architecture Views illustrating the Service Automation Aspect of SOA 373

different contexts. In addition, during the course of this work, we made several
observations.

First, we noticed that the degree of service automation is also relevant to
the level of service granularity, which was not foreseen in this study. In the de-
sign of SBAs, the appropriate level of granularity of services is often regarded
of great importance and challenging. The alignment between business and IT
is often the (only) main driver for service identification due to the benefits it
might bring [8], such as the ease of comprehension of the design, the increase
of potential reuse, just to name a few. Since service granularity in nature does
not share common interests with service automation, it was not identified as
one of the concerns to be addressed by the views. However, in this work we
noticed that the service granularity, to certain extent, is also influenced by
service automation, which again makes the relevance of service automation to
SOA more evident.

In the case of HomeFutura, we noticed that the deployment service Val-
idate Plan was decomposed to two services, one is Validate plan: Technical
Correctness Check and another is Validate plan: user confirmation. The main
driver for this decomposition is that Validate Plan consists of two types of
validation that can be implemented with two different degrees of automation.
The technical validation aims to check whether the operations contained in
the deployment plan are technically correct for the home environment. This
can be done automatically, provided that the policy Plan Validation Rules
is available. Whereas the user validation aims to get approval from the end
users if they agree with the non-functional attributes associated to the select
home service. Since the end users are the only ones that have the knowledge
on their own preferences and these preferences vary from person to person, it
is not feasible to embrace this knowledge into a policy and it has to be con-
trolled directly by the end users. As a result, the deployment service Validate
plan: Technical Correctness Check validates the deployment plan from a tech-
nical perspective and is designed to be policy-driven automated; whereas the
deployment service Validate plan: user confirmation validates the deployment
plan from a user perspective and is designed to be semi-automated.

In the case of BankFutura, the deployment service Validate Plan was not
decomposed although it also consists of the technical validation and user (sys-
tem) validation. Similar with HomeFutura, Plan Validation Rules can be for-
malized as a policy that Validate Plan can directly access. The difference lies
in the fact that the non-functional requirement of the system is known by the
environment administrator and hence can also be formalized as a policy. In
this way, Validate Plan can be designed as policy-driven automated, accessing
Plan Validation Rules that consists of both the rules for technical validation
and the non-functional requirements.

From these two examples, we can see that the identification of the de-
ployment services or the level of service granularity is not only driven by the
business functionalities that they represent, but also influenced by the degree
of service automation. Despite the benefits that the business-IT alignment

374 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

may achieve, an architect sometime would decompose a coarse-grained ser-
vice into multiple fine-grained services due to different service automation
requirements. The result of decomposition might lead to a SBA with higher
maintainability and adaptability in terms of service automation but tightly-
coupled services and decreased reusabiliy. As such, in the design of SBAs, an
SOA architect has to make a trade-off between the alignment with business
functionalities and the level of service automation.

The second observation we made is on the applicability of the views to
architecture descriptions of SBA in general. As explained by Shull et. al [12],
the sources of variability may influence the result, such as the types of projects
for which a technique is effective. For this reason, we did an analysis on the
variability of the domain and the type of architecture that we studied.

More specifically, the design of the SDCA aims at providing a reference
architecture for service configuration and management while the same time fo-
cuses on its applicability in industrial domains. We also studied the application
of the SDCA in an enterprise domain and a personal domain with completely
different characteristics. The difference between these domains contributes to
the variability of this study. Although the concerns elicited from the SDCA
and its two case studies are somehow different and represent domain-specific
interests, addressing these concerns in architecture description demands for
similar types of information. When illustrating all these types of information
in terms of the same set of graphic pictures and tables (or views), we are able
to show that all the concerns identified from each case have been addressed
in the corresponding architecture design. As a result, we are confirmed that
the views can be applied to three different domains.

However, the concerns that we identified are all related to the SDCA, both
its own design and its applications in different industrial domains. The lack of
variability in terms of the type of architecture that we studied might threat
the validity of the views in illustrating the service automation aspect of SOA
in general. For this reason, we plan to replicate the study by analyzing the
service automation aspect of various types of SOA in our future work.

9.9 Conclusion

In this chapter we have studied the different degrees of automation suitable
for services configuration and deployment on different domains (business and
home). While the initial goal was just the development of a system able to
perform these functions -a Services Deployment and Configuration Architec-
ture or SDCA- we discovered that the architectural concerns were affected
by the specific domain of application it was to be used for; in fact there are
several quality attributes that must be covered, but the balance between trust
and reliability for example, is specific to the domain.

The key contribution of this paper is the identification of three views that
structure and ease elicitation and documentation of stakeholders’ concerns.

9 Architecture Views illustrating the Service Automation Aspect of SOA 375

The application of these three views onto the bank and the home domain
case studies clearly reflects the differences on the degree of automation for a
similar set of basic functions (provided by the services); with a lower degree
of automation at the bank domain when compared to the home domain. The
notation we have used for the description of views and decisions is simplified
with respect to available notations. This allows for a better representation
of the concepts involved in the architectural decision making by stakehold-
ers, while remaining intuitive even for non-technical ones. The expression of
usually implicit architectural knowledge allowed us getting a hint on the re-
lationship between the degree of automation and the granularity of services.
Also, the usage of the same description technique across domains revealed
commonalities between them.

The results obtained seem promising, but in order to better capture the
wide variability of service automation we plan as future work to to apply the
same process to additional Service-Based Applications, as well as applying
the approach to several more unconnected domains. This way, it would also
be interesting to validate whether different SBAs belonging to the same do-
main share specific constraints, which affect their decisions on the degree of
automation the same way.

References

1. Muhammad Ali Babar, Torgeir Dingsoyr, Patricia Lago, and Hans van Vliet,
editors. Software Architecture Knowledge Management: Theory and Practice.
Springer, jul 2009.

2. Vasillios Andrikopoulos, Piergiorgio Bertoli, Silvia Bindelli, Elisabetta Di Nitto,
Andreas Gehlert, Lola Germanovich, Raman Kazhamiakin, Angela Kounkou,
Barbara Pernici, Pierluigi Plebani, and Thorsten Weyer. State of the art report
on software engineering design knowledge and survey of HCI and contextual
knowledge. Technical Report PO-JRA-1.1.1, S-Cube Network of Excellence,
2008.

3. ANSI/IEEE. Standard glossary of software engineering terminology, std-729-
1991. ANSI/IEEE, 1991.

4. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 2003.

5. David Emery and Rich Hilliard. Updating ieee 1471: architecture frameworks
and other topics. In WICSA ’08: Proceedings of the Seventh Working IEEE/I-
FIP Conference on Software Architecture (WICSA 2008), pages 303–306. IEEE
Computer Society, 2008.

6. Qing Gu and Patricia Lago. On service-oriented architectural concerns and
viewpoints. In 8th Working IEEE/IFIP Conference on Software Architecture
(WICSA), Cambridge, UK, 2009. IEEE.

7. Bernhard Neumair Heinz-Gerd Hegering, Sebastian Abeck. Integrated manage-
ment of networked systems: concepts, architectures, and their operational appli-
cation. Morgan Kaufmann Publishers Inc, 1998.

376 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

8. Willem-Jan van den Heuvel, Jian Yang, and Mike P. Papazoglou. Service rep-
resentation, discovery, and composition for e-marketplaces. In Proceedings of
the 9th International Conference on Cooperative Information Systems (CoopIS
2001), volume Lecture Notes In Computer Science; Vol. 2172. Springer-Verlag
London, UK, 2001.

9. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer Magazine, IEEE, 36(1):40–49, January 2003.

10. Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up and rea-
soning about architectural knowledge. In 2nd International Conference on the
Quality of Software Architectures (QoSA), 2006.

11. José L. Ruiz., Juan C. Dueñas, and Félix Cuadrado. Model-based context-
aware deployment of distributed systems. Communications Magazine, IEEE,
47(6):164–171, June 2009.

12. FJ Shull, JC Carver, S Vegas, and N Juristo. The role of replications in empirical
software engineering. Empirical Software Engineering, 13(2), 2008.

