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Abstract—High data rates give rise to frequency-selective prop-
agation, whereas carrier frequency-offsets and mobility-induced
Doppler shifts introduce time-selectivity in wireless links. To
mitigate the resulting time- and frequency-selective (or doubly
selective) channels, optimal training sequences have been designed
only for special cases: pilot symbol assisted modulation (PSAM)
for time-selective channels and pilot tone-assisted orthogonal
frequency division multiplexing (OFDM) for frequency-selec-
tive channels. Relying on a basis expansion channel model, in
this paper, we design low-complexity optimal PSAM for block
transmissions over doubly selective channels. The optimality in
designing our PSAM parameters consists of maximizing a tight
lower bound on the average channel capacity that is shown to
be equivalent to the minimization of the minimum mean-square
channel estimation error. Numerical results corroborate our
theoretical designs.

Index Terms—Doubly selective channels, frequency selective,
mutual information, optimal training, pilot symbol assisted
modulation, time-selective, wireless fading channels.

I. INTRODUCTION

H IGH data rate wireless and mobile links suffer from time-
and frequency-selective propagation effects. Mitigating

these effects enables efficient transmission over such doubly se-
lective channels and has justifiably received increasing atten-
tion over the last decade [11]. These fading channels are chal-
lenging to mitigate, but once acquired, they offer joint multi-
path-Doppler diversity gains [18], [24]. The quality of channel
acquisition has a major impact on the overall system perfor-
mance, especially when the channels are fast fading. Reliable
estimation of doubly selective channels is thus well motivated.

Two classes of methods are available for the receiver to ac-
quire channel state information (CSI): One is based on training
symbols that area priori known to the receiver, whereas the
other relies only on the received symbols to acquire CSI blindly.
Relative to training, blind schemes typically require longer data
records and entail higher complexity [8], [25], [33]. Adaptive
or decision-directed methods offer reduced complexity alterna-
tives, but they are prone to error propagation, and their appli-
cation is limited to slowly varying channels [7], [26]. Albeit
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suboptimal and bandwidth consuming, training methods remain
attractive in practice because they decouple symbol detection
from channel estimation, which reduces complexity and relaxes
the required identifiability conditions [20].

For time-invariant channels, a training sequence is usually
sent at the beginning of each transmission burst, but when
the channel is time-selective, this preamble-based training
method may not work well. This motivates periodic insertion
of training symbols during the transmission, which is known as
pilot symbol aided modulation (PSAM) [5]. PSAM is not only
useful for time-selective channels but also for frequency-selec-
tive and even doubly selective channels [11], [21], [28] as well.
The number and placement of pilots affects not only the quality
of CSI acquisition but the transmission rate as well. Within the
general class of doubly selective channels, PSAM has been
optimized based on several criteria, but only for special channel
models.

Optimization of PSAM for frequency-selective channels has
relied on either average channel capacity bounds [1], [20], [21],
[30], or the Cramér–Rao bound (CRB) of the adopted channel
estimator [9], [21]. PSAM for time-selective fading channels
has been designed by minimizing the channel mean-square
estimation error [5] and recently by optimizing an average
capacity bound [22]. PSAM for time- and frequency-selective
channels has been also considered (but not optimized) in [11],
[14], [28], and [32]. Specifically, the PSAM developed in
[11] and [32] applies to a limited class of quasistatic channels
(obeying the “snapshot” assumption [11]), whereas the statis-
tical channel estimator in [28] requires long data records, has
rather high complexity, and may suffer from error propagation
effects. This paper’s objective is to optimally design PSAM
for doubly selective channels by capitalizing on a parsimo-
niously parameterized basis expansion channel model that was
originally introduced in [12], [26], and [27] and more recently
utilized by [3], [4], [18], [21], and [24].

The rest of the paper is organized as follows. Section II in-
troduces the system model. Section III focuses on channel esti-
mation and its decoupling from symbol detection. The relation-
ship between channel estimation error and the lower bound on
average capacity is the subject of Section IV. Section V deals
with the design of the optimal training strategy that maximizes
the lower bound on average capacity. Section VI provides a
time-frequency sampling interpretation of the optimal design
and specializes it to two important cases: time-selective and fre-
quency-selective channels. Numerical examples are presented
in Section VII, and Section VIII concludes the paper.

Notation: Upper (lower) bold-face letters will be used for
matrices (column vectors). Superscriptwill denote Hermi-
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Fig. 1. Discrete-time baseband equivalent system model.

tian, conjugate, transpose, andmatrix pseudoinverse. We
will reserve for convolution, for Kronecker product, for
integer ceiling, for integer floor, and for expectation
with respect to all the random variables within the brackets.
We will use to denote the th entry of a matrix

, tr for its trace, and to denote the th entry of the
column vector ; finally, diag will stand for a diagonal ma-
trix with on its main diagonal.

II. SYSTEM MODEL

In this section, we will first present our time- and frequency-
selective channel model, and then we will introduce the trans-
mission design.

A. Time- and Frequency-Selective Channel Model

Let denote the time-varying impulse response of our
channel that includes transmit-receive filters as well as doubly
selective propagation effects. With denoting the
Fourier transform of , let us also define the delay-spread

and the Doppler-spread as the thresholds for which
for or . We will take the

sampling period at the receiver equal to the symbol period,
and we will consider time intervals of s, corresponding to
blocks containing symbols each. Over each interval, say the

th, we will represent for
using a) coefficients that remain invariant per
block but are allowed to change withand b) Fourier
bases that capture the time variation but are common.
Using the serial index, we can describe the block index as

and write ourdiscrete-time baseband equivalent
channel model as (see [18] for detailed derivations):

(1)

where , , and
. Because both and can be measured

experimentally in practice, we assume the following.
A1) Parameters , (and thus ) are bounded,

known, and satisfy .
The product is called delay-Doppler spread factor

and plays an important role in estimating doubly selective chan-
nels. Underspread systems satisfy , which, intu-
itively speaking ,bounds the channel’s degrees of freedom and
renders channel estimation well-posed [15], [16], [18]. In fact,
most ionospheric- and tropospheric-scattering, as well as other
radio channels, all give rise to underspread channels; see, e.g.,
[23, p. 816].

Per block of symbols, the basis expansion model (BEM)
in (1) can be viewed either as deterministic or as the realization
of a stochastic process with random coefficients .
When transmissions experience rich scattering, and no line-of-
sight is present, one can appeal to the central limit theorem to
validate the following assumption in the random viewpoint:

A2) The BEM coefficients are zero-mean,
complex Gaussian random variables with variance.

The BEM offers a parsimonious finite-parameter representa-
tion of doubly selective channels and was originally introduced
in [12], [26], and [27]. The BEM in [26, eq. (2)] or [27, eq. (4)]
was expressed as

Specific choices for have included polyno-
mial, wavelet, or, Fourier bases [3], [4], [12], [19]. The
canonical model in [3] and [24] corresponds to substituting

. The BEM considered here is also FFT-based
but differs from the canonical model in the following major
aspects: i) [3] and [24] focus on spread-spectrum transmissions
and assume that the channel varies from symbol to symbol,
which we do not have to do, and ii) [3] and [24] consider serial
transmissions through a continuous-time scalar channel; we
work with a discrete-time baseband equivalent matrix-vector
channel model that is suitable for block transmissions.

B. Block Transmission Design

Fig. 1 depicts a general discrete-time baseband equivalent
transmission format when communicating through the doubly
selective channel (1). Two types of sub-blocks can be identi-
fied in each transmitted block: One type contains the informa-
tion symbols, whereras the other includes the training (or pilot)
symbols. We use two arguments (and ) to describe the se-
rial index for , and denote the

st entry of the th block as .
Each block includes information symbols

, and training symbols
, which are known to

both transmitter and receiver.
After parallel to serial (P/S) multiplexing, the blocks are

transmitted through the time- and frequency-selective channel
modeled as in (1). Theth received sample can be written

as

(2)
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where is additive white Gaussian noise (AWGN) with
mean zero and variance .

We will find it convenient to work with a block-form of the
BEM we construct, after serial to parallel (S/P) conversion,
by collecting the samples into blocks:

. Selecting also
, we can write the matrix-vector counterpart of (2) as

(3)

where ,
whereas and are upper and lower trian-
gular matrices with entries and

for .
The second term on the right-hand side (r.h.s.) of (3) captures
the interblock interference (IBI) that emerges due to the channel
delay spread. The difference between these channel matrices
and those in e.g., [31] is that all the channel taps here are time
dependent, and as well as are no longer Toeplitz
matrices.

In this paper, we wish to design the optimal training input for
channel estimation, which amounts to selecting the number of
training symbols per block, the placement of training symbols,
and the power allocation between training and information sym-
bols, based on conditional mutual information and channel es-
timation error criteria. Our joint consideration of these criteria
is intuitively appealing because of the apparent tradeoff: Using
more training symbols of higher power improves channel esti-
mation but also leads to reduced channel capacity.

III. CHANNEL ESTIMATION

Since the channel coefficients in (1) are time-in-
variant over s, channel estimation has to be performed
every symbols. To enable low-complexity block-by-block
processing at the receiver, we need to remove the IBI not only
across blocks but also within each block. There are at least two
ways to eliminate IBI (see, e.g., [31]): One consists of intro-
ducing redundancy at the transmitter through the cyclic-prefix
and then discarding those “channel-contaminated” redundant
symbols at the receiver, and the other is to put guard zeros per
transmitted (sub)block. We adopt the latter in this paper. Hence,
we construct to satisfy the condition:

C1) Each block has the form , where the
vector contains information symbols and
training symbols.

We view the trailing zeros in as part of the training
symbols. Since , C1) guarantees the elimi-
nation of IBI from block to block. As shown in Fig. 2, the place-
ment of these symbols in can be expressed as

(4)

where we group consecutive information symbols and training
symbols in sub-blocks: and of lengths
and , respectively. Notice that these parameters satisfy

, , and .
Condition C1) requires one to choose and the last
entries of to be zero.

Fig. 2. Structure of the transmitted blocku(k).

Fig. 3. Partition of the matrixH in (6).

Taking C1) into account, we rewrite the input–output rela-
tionship (3) as

(5)

We wish to estimate based on and our optimally de-
signed training symbols in and then recover the unknown
information symbols based on the estimated .
This decoupling of channel from symbol estimation is the mo-
tivation behind our separable block structure in (4). It also en-
ables separation of each received block into two types of
received sub-blocks: one, defined as , that depends only
on and and a second, defined as , that
depends on , , and . Because the
following analysis for both channel estimation and symbol de-
tection is based on a single block, we omit the block index
and subsequently deal with the input–output relationship [c.f.
(1) and (5)]:

with (6)

where diag , and is a lower
triangular Toeplitz matrix with first column

. Corresponding to the separation ofto and ,
the channel matrix can be split into three matrices, namely,

, , and , which are depicted in Fig. 3. Each of them is
constructed from sub-blocks of. After the separation of, we
have two input–output relationships

(7)

(8)

where , and , con-
tains the first and the last entries of , whereas
and denote the corresponding noise vectors. The term
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captures the interference of the training sub-blocks to their ad-
jacent information sub-blocks.

Focusing first on channel estimation, we start from the
training input–output relationship (8). Based on (6) and Fig. 3,

can be written as

...
... (9)

where , and , with , shown at
the bottom of the page, is the index of the first element of
in , and is the corresponding noise
block. It is clear that when , the matrix disappears,
and does not contain sufficient training symbols for channel
estimation. Hence, we have the condition shown at the bottom
of the page.

C2) The length of each training sub-block is at least ,
i.e., , .

Condition C2) shows that once we insert pilot symbols, we
should group them in sub-blocks of size at least . Same con-
dition can be found in [11] and [32], which dealt with frequency-
selective channels only. Observing the dimensionality of,
we deduce that out of the pilot symbols transmitted, we re-
ceive at most pilot-dependent observations without
interference from the unknown information symbols. Since we
have unknown coefficients [c.f. (1)], to ensure
uniqueness in estimating the channel using linear equations, we
need the total number of training symbols to satisfy

(10)

Therefore, the minimum number of pilot symbols for esti-
mating doubly selective channels is , when

. Selecting corresponds to the preamble-based
training method. From a bandwidth efficiency point of view, this
method is optimal. Is this also optimal when we consider mutual
information based onestimatedchannels? Recall the tradeoff
that emerges: Increasing the number of pilots improves the ac-
curacy of channel estimators, but at the same time, it reduces
the rate. In the following, we will answer this question and de-
lineate the tradeoff.

Going back to (9), and based on (1), we can write
, where and are corre-

sponding sub-matrices from and in (6). Plugging
into (9), we obtain

... (11)

Due to the commutativity between a Toeplitz (convolution) ma-
trix product with a vector, we have , where
is an Toeplitz matrix given by

...
...

and

...

with denoting the st entry of . Hence, the
input–output relationship in (11) becomes

(12)

where

...
... (13)

and

(14)

Similar to [21], we will rely on the Wiener solution of (12) that
yields the linear1 MMSE (LMMSE) channel estimator

(15)

which requires to be known at the receiver.
Defining the channel error as , we can express its

correlation as

(16)

and the mean square error ofas

tr tr (17)

It is clear from (13) that the placement of training symbols
affects and, consequently, . To facilitate our subsequent
analysis, we suppose the following.

A3) The channel coefficients are independent, i.e.,
is a diagonal matrix with trace tr .

1Under A2),h is Gaussian in the linear model (12); hence, the LMMSE co-
incides with MMSE optimal channel estimator.

. . .
. . .
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Note that A3) will not affect the optimality of our training de-
sign, simply because no CSI is assumed available at the trans-
mitter.

Using [21, Lemma 7] and A3), it can be shown thatin (17)
is lower bounded as follows:

tr

(18)

where the equality holds if and only if is a diagonal
matrix. Therefore, the following condition is required for our
training strategy to attain the channel MMSE:

C3) For fixed and , the training symbols should be
inserted so that the matrix is diagonal.

Condition C3) coincides with that in [1], [9], [11], and [32].
Although we have set our channel estimate in (15), and we

have built C1)–C3), there are additional training parameters that
have not been decided, such as the placement and the optimal
number of training symbols. These parameters affect the per-
formance of the channel estimator in (15), the effective trans-
mission rate , the mutual information, as well as
the bit error rate (BER). In the following, we will select these
training parameters by optimizing an average capacity bound.
Prior to this, however, we will show that optimizing this average
capacity bound also minimizes the channel MMSE.

IV. L INKING CAPACITY WITH CHANNEL ESTIMATION

It is not easy to evaluate the average capacity of an unknown
random channel that has to be estimated. Instead, we will
derive an upper bound and a lower bound. To design our
optimal training parameters, we will maximize the capacity
lower bound, and view the upper bound as a benchmark for the
maximum achievable rate.

Let denote the total transmit-power per block,the power
allocated to the information signal part, and the power as-
signed to the training part. Before we consider optimal power al-
location, we suppose that and are fixed. Let be any esti-
mator of in (6). Since training symbols do not convey infor-
mation, for a fixed power , the conditional mu-
tual information between transmitted information symbols and
received symbols in (7) is denoted as for each re-
alization of . The channel capacity averaged over the random
channel is defined as

bits/s/Hz

(19)

where denotes the probability density function of.

A. Upper Bound on Capacity With Perfectly Known Channel

Suppose first that the channel estimation is perfect, i.e.,
. Similar to (19), the average capacity in this ideal case is

defined as

bits/s/Hz

(20)

From (7), we know that , where is
the corresponding channel matrix for(see also Fig. 3 for the
structures of and ). Because and in (7) are known
in the ideal case, by defining , it can be verified
that . To maximize , we
establish the following lemma.

Lemma 1: If the information bearing blockis Gaussian dis-
tributed, then the mutual information is maximized.
Furthermore, the capacity upper boundin (20) can be ex-
pressed as

bits/s/Hz (21)

Proof: See Appendix A.
Although is generally non-Gaussian, if is sufficiently

large and is channel coded (or linearly precoded as in [31]),
then will be approximately Gaussian. Thus, in the following,
we assume the following.

A4) The information-bearing symbol blockis zero-mean
Gaussian with covariance , and .

Here, we select because there is no CSI at the
transmitter and, hence, nonuniform power-loading has no basis.
We underscore that is an upper bound on the average channel
capacity with estimated channels because it expresses the ideal
channel capacity without channel estimation error.

B. Lower Bound on Capacity With LMMSE Channel
Estimation

Consider now that the estimate ofis imperfect. Define
as the estimate of and as the estimate of . Since and

are known, we subtract from . Thus, we have [c.f.
(7)]

(22)

Using (7) and (22), it is easy to verify that

. Define , , and
. In general, is non-Gaussian distributed

with correlation matrix given by

(23)

where because of A4). Because of the non-
Gaussianity of , it is not easy to obtain a closed form of the
average capacity. In the following, we propose a lower bound
of in (19).

Lemma 2: When the information-bearing block, is
Gaussian distributed with fixed power , the average capacity

in (19) is lower-bounded as:

bits/s/Hz (24)

Proof: See Appendix B.
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Similar to [1] and [30], we will introduce next a lower bound
that is looser than the right-hand side of (24) but easier to handle.
Plugging from A4) into (24), we obtain

(25)

The right-hand side of (25) offers a lower bound on the av-
erage capacity of doubly selective channels. Our objective is
to select training parameters so thatin (25) is maximized.
Certainly, the optimal training parameters should improve both
the channel estimator and the associated minimum mean-square
error (MMSE) . Interestingly, and the channel MMSE
are linked. To establish this link, we will introduce two useful
lemmas.

Lemma 3: Suppose C1)–C3) and A1)–A4) hold true and that
the information symbol power and the sub-block lengths

and are fixed. Then, maximizing in (25) is equiv-
alent to minimizing in (23), at high signal-to-noise ratio
(SNR).

Proof: See Appendix C.
Although in (23) depends on , this dependence is not

explicit. The following lemma provides an explicit relationship
between the two.

Lemma 4: Consider a fixed number of training symbols
adhering to C1) and C2). Among all choices that satisfy C3)
and lead to identical , the design that satisfies
and has the first and the last entries of , equal
to zero achieves the minimum .

Proof: See Appendix D.
Based on Lemmas 3 and 4, we modify condition C2) to the

following.
C2′) The training sub-block is ,

, with the length of , .
Notice that the zeros between the information sub-blocks
and the training sub-blocks eliminate the intersub-block

interference. Condition C2′) implies that . Based
on the assumptions and design conditions we have introduced so
far, we are ready to establish the link between channel MMSE
in (18) and the lower bound in (25).

Proposition 1: Suppose A1)–A4) and C1)–C3) hold true. If
, , then for fixed and , the minimization

of in (18) is equivalent to the maximization of in (25).
Proof: Defining and relying on

C3), we can express the correlation matrix ofin (16) as

diag (26)

Since is known, is a block-diagonal matrix
[c.f. Fig. 3], and because , or

, the correlation matrix of can be written as

(27)

where

...

and is a lower triangular Toeplitz matrix with first column
. From (26), we can detail (27)

as

diag

(28)

Equation (28) shows that the correlation matrix of (and,
thus, ) is a diagonal matrix. In addition, we notice that se-
lecting allows one to approximate the correlation
matrix of as follows [c.f. (28)]:

Considering C2′) and C3), we can write the correlation matrix
in (23) as

(29)

We deduce from (29) that as decreases, decreases, and
from Lemma 3, we infer that increases accordingly, i.e., better
channel estimation implies higher average capacity.

V. DESIGNING OPTIMAL TRAINING PARAMETERS

In the previous section, we linked the LMMSE channel esti-
mation with the maximum lower bound of the average channel
capacity. In this section, we will capitalize on this link to de-
sign our optimal training parameters. Specifically, we will an-
swer the following basic questions: How should we place the
training symbols? How many training symbols should be in-
serted per block? How much power should be allocated to the
training symbols?

A. Optimal Placement of Pilots

Since we have adopted the LMMSE channel estimator, we
start from (15)–(17). In (17), we expressed the MMSE channel
estimation error as tr . Now,
we will design [which certainly depends on as per (13)]
so that is minimized subject to the power constraint on the
total power of pilots. Under C3), the right-hand side of (18)
satisfies

(30)

where the second equality holds if and only if .
Based on the structure of , we infer that equivalently, we need
two conditions to be fulfilled [c.f. (13)]:

(31)

(32)
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A general placement satisfying (31) and (32) is not easy to ob-
tain directly. As a first step, we will need the following lemma
to gain further insight on the optimal placement.

Lemma 5: Consider a fixed number of training symbols
, information symbols , power , and a number

of sub-blocks per block. If is an integer multiple of ,
then equally long information sub-blocks maximize the lower
bound of capacity . The length of the information sub-blocks
is .

Proof: See Appendix E.
The following proposition provides sufficient conditions to

achieve (31) and (32).
Proposition 2: Suppose A1)–A4) hold true. For fixed and
, the following placement is optimal: All information sub-

blocks have identical block lengths, i.e., , ; the
pilot sub-blocks have identical structure , , and
they are equipowered with .

Proof: First, we will confirm that conditions C1)–C3)
hold true. Then, according to Proposition 1, we will verify that

is maximized, and finally, we will check whether is also
minimized.

If , and , then we have that

. Therefore, is a
diagonal matrix. Thus, we have checked the first condition in
(31). Plugging into the left-hand side of (32), we obtain

where contains the first columns and the first
rows of . Because the BEM frequencies are equispaced, it
follows that and that . By defining the
difference between two consecutive BEM frequencies as

, we find that

diag

Now, we know that the transmitted block length should be
; hence

which implies that the proposed placement satisfies (32), as well
as C3)

(33)

The MMSE in (30) has thus been achieved, andhas been
maximized per Proposition 1.

Guided by Proposition 2, we can now finalize the structure of
our transmitted block as

(34)

From Proposition 2, we have obtained that . To
satisfy the condition in (10), we have that . To com-

plete the optimality claims on the number of training symbols
per sub-block, we establish the following proposition.

Proposition 3: If the powers and are fixed, the number
of sub-blocks , and , then as
and/or increase, decreases.

Notice that when and , the
minimum in (30) cannot be guaranteed, per Lemma 4.

B. Channel MMSE and Capacity With Optimal Placement

We have seen that (34) offers the optimal placement of pilot
and information symbols per block that not only maximizes
but at the same time minimizes the LMMSE channel estimation
error. Under the Gaussian channel assumption, the latter coin-
cides with the channel MMSE, and thus, it benchmarks estima-
tion performance when is known at the receiver. In this sub-
section, we will derive this benchmark channel MMSE for the
optimal placement when is known, as well as when is
unknown. Furthermore, we will develop in closed form the max-
imum when the optimum placement of (34) is used. This is
practically important because it allows one to predict the optimal
average-rate possible through doubly selective fading channels
when optimal training is adopted for channel estimation pur-
poses.

If the channel coefficients are independent (but not neces-
sarily identically distributed), then plugging (33) into (16), we
can explicitly write as

diag (35)

where is the variance of . The tr benchmarks the
performance of our doubly selective channel estimator when the

s are independent with known variances.
For channel-estimation purposes, the training sequence

in (34) is optimal. We note that for a fixed , when
, the optimal tr will not decrease as long as

since the lower bound of tr in (30) holds for
any . On the other hand, as increases, will decrease
monotonically. However, from a mutual information point of
view, this is not the end. Since is fixed, if we put more power
on training, less power is left for the information symbols
to deal with the AWGN. Furthermore, as increases, the
bandwidth efficiency decreases. In the following sub-sections,
we will pursue the optimal design for these two parameters.

First, however, we would like to summarize the new condi-
tions implied by Proposition 2 and rewrite based on these
conditions.

C4) Select the block length as a multiple of , and design
each block according to (34).

Using (35), we can simplify the correlation matrix of .
Since , we can verify that does
not depend on the index. Defining ,
it follows that
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Thanks to the guard zeros surrounding each training symbol in
(34), we have that . Hence

(36)

Using C4), we have that

diag

diag (37)

and from (37), we find that

diag

(38)

Since , we can obtain
the normalization factor for as

tr (39)

Then, we can define the normalized channel matrix as

Finally, we deduce that the lower bound on average channel
capacity is

bits/s/Hz (40)

Equation (40) is useful because it relates the lower boundwith
the number of sub-blocks and the signal power , which
in turn depend on the spacing of pilots and the chosen power
allocation.

Relying on (37) and (38), we can readily verify the following
lemma.

Lemma 6: If A2) holds true, then all have identical dis-
tribution .

Proof: See Appendix F.
Based on Lemma 6, we can rewrite the lower bound on the

average capacity as

bits/s/Hz

where we used to denote . Let us now consider the

eigen-decomposition , where

diag is an diagonal matrix with eigen-

values of on its main diagonal, and is a uni-
tary matrix that contains the corresponding eigen-vectors. In
Proposition 1, we have shown that selecting yields

. Hence, we have

bits/s/Hz

(41)

where in deriving (41), we used the fact that
for matrices and with matching dimensions.

Equation (41) is similar to that derived in [21]. The key differ-
ence here is that the s are not identically distributed, in gen-
eral. This will lead to a looser lower bound on the average ca-
pacity. Let the effective SNR be defined as

(42)

Since , our looser bound is given by

(43)

where .

C. Optimal Number of Sub-blocks

In Proposition 2, we established that the optimal number of
pilots per sub-block is ( ). In this
subsection, we will consider what the optimal number of sub-
blocks is per transmission block, i.e., how often we should insert
the training sub-blocks.

To obtain the optimal number of sub-blocksin (43), for
fixed , , and , we need to treat as a continuous variable.
Then, we can differentiate with respect to to obtain

where in the second step, we used the inequality
. Since , to achieve the max-

imum lower bound on the channel capacity, we need to take
as small as possible. Moreover, in order to guarantee the condi-
tion in (10) with , we need . This
implies that the optimal number of sub-blocks is .
Hence, we have established the following proposition.
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Proposition 4: Consider transmission of information blocks
of length through a time- and frequency-selective random
channel modeled as in (1). If C1)–C4) are satisfied, and a fixed
power is allocated to the training symbols, then the lower bound
given in (43) is maximized if and only if the number of training
sub-blocks is .

Although this result is derived for the looser bound in
(43), it is also true for the in (40). An intuitive explanation is
that as increases, the performance of channel estimation does
not improve, but the number of information symbols decreases,
causing to decrease as well. When , the mutual
information suffers from unreliable channel estimation since the
condition in (10) is not satisfied. Note that now, the number of
pilot symbols is , which is the smallest possible
since [c.f. (10)].

D. Optimal Power Allocation

Up to this point, we have considered that the total power is
fixed. Based on this, we have derived that the pilot symbols must
be equi-powered and equi-spaced. In this subsection, we will
find the optimal allocation of the total power between informa-
tion symbols and pilots.

Consider the total power , and define ;
thus, for some . From (39), it is easy
to verify that , where is given as [c.f. (30)]

(44)

Thus, we can rewrite the effective SNR in (42) as

(45)

It is difficult to find an optimal power allocation factor that
does not depend on any CSI directly from (45) becausede-
pends on . Therefore, we consider the following three cases:

1) low SNR;
2) high SNR;
3) identical distributed channel taps.
Case i) Low SNR ( ): In this case, we can

simplify (44) as
. Plugging this result into (45), we obtain

(46)

The optimal power allocation factor can be obtained by dif-
ferentiating with respect to the variable and finding the
zero of this differential. Note that belongs to the range .
Thus, for this case, we find that

(47)

Case ii) High SNR ( ): In this case, we
have from (44) that , and thus, we
can rewrite the effective SNR in (42) as

TABLE I
SUMMARY OF DESIGN PARAMETERS

After differentiating with respect to , we find that at high
SNR, the optimal power allocation factor is

(48)

When the SNR , we have

(49)

which coincides with the result in [21].
Case iii) Identical Distributed Channel Coefficient

: In this case, we can rewrite (44) as
. Plugging this

simplified into (45), we obtain

Similar to the previous two cases, after differentiating with
respect to , we obtain that

with (50)

When , converges to in
(49). When , .

Proposition 5: Suppose that C1)–C4) hold true and that the
SNR is sufficiently high. Under A1)–A4) and for a fixed , the
lower bound on average capacity is maximized with the MMSE
channel estimator when the power allocation factoris given
by (47), (48), or (50).

Our optimal PSAM parameters are summarized for conve-
nience in Table I, and the structure of each transmission block
is depicted in Fig. 4. The optimal pilot insertion strategy is neat
in its simplicity and can be equivalently implemented by one in-
terleaver. Fig. 4 depicts this process with a block diagram, where
the vertical arrow in each interleaver block denotes a read-out
operation, whereas the horizontal arrow indicates a write-in op-
eration. During each transmission burst, we first generate infor-
mation-bearing blocks of length and then feed them
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Fig. 4. Transmission design.

to the interleaver (the grey shaded box) as an
matrix, followed by guard zeros (the blank box),

pilot symbols (the grey box), and another
guard zeros (the blank box).

In summary, we have designed an optimal training scheme
to minimize the channel MMSE and maximize the average ca-
pacity. Note that the structure and coding scheme of the infor-
mation symbols and the optimal block lengthhave not been
touched when the average capacity is considered. On the other
hand, the channel parametersand are also related to the di-
versity order (performance) provided by the channel [3], [18],
[24]. Other optimizing criteria such as BER and outage capacity
are possible, but their study goes beyond the scope of this paper.

VI. SPECIAL CASES ANDSAMPLING INTERPRETATION

So far, our entire analysis applies to general doubly selective
channels obeying the BEM model. In this section, we will con-
sider two special cases, namely, frequency-selective and time-
selective channels. We will first link our results with those in
[1], [5], [14], [21], [22], and [30] and show that the latter are
subsumed as special cases in our general results here. Later on,
we will provide a time-frequency sampling interpretation for our
optimal PSAM in (34).

A. Frequency-Selective Channels

Frequency-selective channels exhibit no (or negligible) vari-
ation during each transmitted block and correspond to setting

in (1). Hence, the optimum number of sub-blocks is
, and the transmitted block in (34) reduces to

(51)

where we removed the sub-scriptfor obvious reasons. Notice
that in (51) has the same structure as the design in [1, Th.
3], which implies that [1] is subsumed by our design for doubly
selective channels. On the other hand, [21] used an affine map-
ping to represent and . The transmission in (51) can also be
written in such an affine form. To show this, let us define ma-
trices and as sub-matrices of , formed by the
first , and the last columns of , respectively.
In addition, let be the ma-
trix implementing a zero padding operation that padszeros
when left-multiplying an block. With these

notational conventions, it is easy to verify that (51) is equivalent
to an affine mapping with transmitted blocks

(52)

Our main difference with [1] and [21] is that a cyclic prefix
(CP) is employed in [1] and [21] to eliminate IBI while we use
zero-padding (ZP). It is interesting that the optimal number of
redundant symbols is for both ZP- and CP-based training
designs. Therefore, the bandwidth efficiency

is the same. Note that in [1] and [21], it is claimed that the op-
timal number of training symbols is , which does not in-
clude the cyclic prefix that is needed to avoid IBI. Furthermore,
although the power allocation parameterin (50) and [1] and
[21] are identical, they mean different things. Due to the CP,in
[1] and [21] corresponds to the effective information power over
the “total” power that excludes the CP. However, in our setup,
corresponds to the ratio of signal power over the total power per
block since we use ZP instead of CP to eliminate IBI. So, for
a fixed total power per block, our ZP-scheme results in higher
effective and than the CP-scheme. In this sense, we de-
duce that the ZP-scheme provides higher average capacity than
the CP-scheme does, with the same bandwidth efficiency. As

increases, the difference between ZP- and CP-based training
decreases. In the simulations section, we will further re-enforce
this point.

B. Time-Selective Channels

In time-selective channels, the delay spread can be ignored,
and the channel order must be set in (1). In this case, the
transmitted block in (34) becomes

(53)

The pilot symbols are inserted equi-spaced and equi-powered.
This result coincides with the results in [5] and [22]. Note that
in [5], periodic insertion is motivated by uniform sampling ar-
guments. Comparing (53) with [1] and [21], we can observe the
duality between periodic insertion of pilots tones in orthogonal
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frequency division multiplexing (OFDM) for frequency-selec-
tive channels and the PSAM for time-selective channels. There
is, however, a notable difference between our scheme in (53)
and the optimal design in [22]. In [22], the optimal distance be-
tween two consecutive pilots is , where de-
notes integer floor. In contrast, we find the optimal number of
pilot symbols per superblock to be ( ) since we adopt the
BEM as our channel model. A natural question is whether these
two designs are related. In the following, we will show that these
two designs are in fact equivalent.

Since we rely on the BEM in (1), for a fixed block length,
our is defined as

(54)

Plugging into the inequality (54), we
obtain

When , i.e., when the block length is sufficiently large,
we find that the distance between two consecutive pilot symbols
is . Since [22] obtained this optimal
distance based on a general time-varying channel model, while
we started from the BEM, the equivalence that we just estab-
lished also corroborates the validity of our BEM.

C. Time-Frequency Sampling Interpretations

For time-selective channels, it is well known that the optimal
PSAM samples uniformly the channel in the time domain
via periodic insertion of pilot symbols [5]. Indeed, starting
from the scalar input–output relationship for the training
samples , one can estimate the channel
as . In a dual fashion, for frequency-selective
channels, optimal PSAM with cyclic prefix samples uniformly
the channel in the frequency-domain via periodic insertion
of pilot tones [1], [21]. The input–output relationship now
becomes , where denotes the
received sample at theth frequency bin after fast Fourier
transform (FFT) processing; similarly, is the channel
transfer function at the th bin. Channel estimates are now
formed in the frequency-domain as .

For doubly selective channels, we can view the BEM coeffi-
cient in (1) as the two-dimensional (2-D) channel sample
at the ( th frequency bin, th lag or time-slot). We wish to
show in this subsection that our optimal PSAM in (34) enables
2-D sampling and estimation of our time-frequency selective
channel. Intuitively thinking, the Kronecker deltas in (34)
surrounded by zero-guards implement time-domain sampling
with pilot symbols; furthermore, the fact that these deltas are
periodically inserted implies that they are also equivalent to
Kronecker deltas in the frequency-domain and thus serve as
pilot tones as well. To solidify this intuition, observe first
that with our optimal PSAM in (34), the matrices in (12)
become all equal to . Let us now select the
entries from in (12) with indices for

a fixed lag . With our optimal , this allows

one to write the input–output training relationship (12) for each
as

...
...

(55)

where denotes the -point FFT matrix with
entries , and

diag
. The presence of the in-

verse FFT matrix in (55) corroborates our intuition that the
optimal training in (34) contains pilot tones as well. Let
us now concatenate equations like (55) with to
form the columns of the matrix

. Notice that the matrix
contains all the training-based received data fromin (12)
arranged in a 2-D format. If denotes
the FFT of this 2-D received data array, we can express the
training input–output relationship after FFT processing as

...
...

...
...

(56)

where denotes the Hadamard product. In scalar form, (56)
yields

(57)

which proves that indeed our optimal PSAM samples the BEM
in time-frequency to enable estimation of the doubly selective
channel via: . In fact, our optimal training
sequence in (34) is precisely what one needs to obtain the
channel model that is assumeda fortiori in [14]. Interestingly,
starting from the continuous-time channel , and fol-
lowing the steps in [18] to obtain our discrete-time equivalent
BEM in (1), one can verify that our time and frequency sam-
pling rates satisfy the 2-D sampling theorem in [14]. Because
the latter did not adopt the BEM, this equivalence further
confirms the validity of the BEM.

VII. N UMERICAL EXAMPLES

We now present test cases to validate our analysis and design.
Unless otherwise mentioned, in all test cases, the transmitted
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Fig. 5. Capacity versus number of pilots (N ).

block size is , the number of information symbols
, and the modulation is QPSK. The doubly selective channel

model is generated using the following parameters:

• carrier frequency GHz;
• sampling period s;
• mobile speed km/hr.

Thus, the maximum frequency shift is found to be
Hz. With these parameters, we find that .

Our channel order is . All the channel coefficients
are generated as independent, standardized, complex

Gaussian random deviates. The multipath intensity profile is
selected as , , and the Doppler

power spectrum is chosen as

when ; otherwise, , . We define the
variance of as , where

denotes the normal-
izing factor. The signal-to-noise ratio (SNR) is defined as

.
Test Case 1 (Optimal PSAM Parameters):Two parameters

will be tested in this example. The first one is the number of
the nonzero pilot symbols in C2′). We let
and adopt all the other parameters in Table I while changing

. Fig. 5 depicts the lower bound on the average capacity (40)
versus . It can be seen that the capacity bound decreases
monotonically as increases for each SNR value considered
(0, 10, and 20 dB). Furthermore, we notice that as the SNR in-
creases, the effect of increases. The result in Fig. 5 validates
the claim in Proposition 3.

Another important parameter we want to test here is the power
allocation factor . We depict the lower bound on the average
capacity versus in Fig. 6. When is too small (near 0), the
average capacity is small since the information symbols do not
have enough power to combat AWGN. Whenis too large (near
1), the average capacity is also small since the training symbols
do not have enough power to provide reliable channel estima-
tion. From (48), the optimal in our setup is also veri-
fied by inspecting the maximum in Fig. 6.

Fig. 6. Power ratio allocation.

Fig. 7. Optimal power allocation versus equi-powered allocation.

Test Case 2 (Comparison With Equi-Powered PSAM):To
emphasize the importance of power allocation, we compare our
optimal design (in Table I) with a PSAM design having

and the other parameters selected according to Table I. For
this case, the power allocation factor is

. From (48), the optimal . Fig. 7 depicts the lower
and upper bounds for both cases. We note that i) for the optimal
allocation, the lower bound is closer to the upper bound than for
this equi-powered PSAM; therefore, optimal power allocation
pays off, and ii) the lower bound for the optimal PSAM is higher
than that of equi-powered PSAM since more power is allocated
for training in the optimal case. Similar reasoning explains why
the upper bound of equi-powered PSAM is higher than that of
the optimal PSAM. To further compare the performance of these
two cases, we depict the BER versus SNR in Fig. 8. It can be
observed that compared with the equi-powered PSAM, the op-
timal scheme gains 3 dB at . In Fig. 8, we also plot the
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Fig. 8. BER curves for optimal versus equi-powered transmissions.

Fig. 9. CP versus ZP for frequency-selective channels.

ideal case with perfect channel estimates. The SNR penalty for
channel estimation error is only about 1.5 dB if we adopt the
optimal .

Test Case 3 (Comparison of ZP in (51) With CP in [1] and
[21]): This test case is designed to compare our scheme in Sec-
tion VI-A with [1] and [21]. The channel is frequency-selective
with independent and identically distributed (i.i.d.) taps. The
channel order , and each tap is a zero mean Gaussian
random variable with variance . The number of in-
formation symbols per block is , and the block length

. Therefore, for CP-based training, the CP
length is . The total power per block is fixed to. Hence, the
power ratio allocated between information symbols and training
symbols for the CP-based scheme is . Fig. 9
depicts the average capacity bounds for both ZP- and CP-based
alternatives. Here, SNR . For ZP-based training,
the capacity upper and lower bounds are plotted using (21) and

Fig. 10. CP versus ZP for frequency-selective channels.

(40) with . For CP-based training, the capacity bounds
are plotted according to [21]. Fig. 9 depicts the average ca-
pacity bounds for CP- and ZP-based schemes. We notice that the
bounds (either upper or lower) for ZP are consistently greater
than those of CP, which is partially due to the power loss in-
curred by the CP.

Although BER is not our design criterion, it is the ultimate
performance metric for all communication systems. Therefore,
we plot BER versus SNR in Fig. 10. In the same figure, the ideal
cases corresponding to perfect channel estimates are also plotted
as benchmarks (the dashed lines). We computed MMSE channel
estimates based on pilot symbols and used zero-forcing (ZF)
equalization for symbol detection in both cases. From Fig. 10,
we observe that i) ZP outperforms CP at high SNR, whereas CP
has about a 2-dB advantage at BER ; ii) from the slopes of
the curves, we notice that CP offers lower diversity order than
ZP; and iii) for both cases, the penalty for inaccurate channel
state information is about 1.5 dB.

VIII. C ONCLUDING REMARKS

Optimal PSAM was designed for LMMSE estimation of
doubly selective channels by maximizing a lower bound on
the average capacity while at the same time minimizing the
mean-square channel estimation error. It turned out that the
optimal training strategy consists of equi-spaced and equi-
powered pilot symbols surrounded by a number of zeros
dictated by the channel’s delay-spread and inserted periodically
with a period dictated by the channel’s Doppler-spread. The
design enabled a time-frequency sampling of the channel and
was shown to subsume time- or frequency-selective channel
estimation as special cases.

Our future research will target: i) combining the maximum
diversity design in [18] with our optimal training herein to fur-
ther increase the overall system performance, and ii) extending
the optimal training here to space-time coded multiantenna links
that encounter doubly selective fading effects.
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APPENDIX A
PROOF OFLEMMA 1

Based on the definition of mutual information, we have

where denotes entropy. Since , where
is AWGN, we have that the random variableconditioned on

, and is Gaussian distributed. Thus, the entropy
can be expressed as

where . For a given ,
we know that is maximized when is Gaussian [2, p.
143, Th. 3.8], i.e.,

with equality if and only if the random variableis complex
Gaussian distributed. Hence, we can upper bound the mutual
information as

and the average capacity upper-bound in (20) can be written as
in (21).

APPENDIX B
PROOF OFLEMMA 2

Starting from the conditional mutual information ,
we have

(58)

Recalling (12), we notice that does not depend on. Hence,
from A4), we have

Similar to Appendix A, based on [2, p. 143, Th. 3.8], we obtain
that

(59)

where the equality holds if and only ifconditioned on and
is Gaussian distributed with covariance matrix

. Note that when is
Gaussian, for given , and is also Gaussian. Thus, the en-
tropy is maximized [c.f. (59)]. Here, is the
covariance matrix of the MMSE estimator offor each real-
ization of . Recall that our model is . Since
is Gaussian, if the noise is also Gaussian, then the LMMSE

estimator of is an MMSE estimator. Therefore, we can obtain
by the LMMSE estimator of as

(60)

where

Because is Gaussian and the noise in (12) is Gaussian,
for the LMMSE channel estimator, we have

. Thus, we can verify that

(61)

Taking (61) into account, we can rewrite (60) as

Plugging into (58), we obtain

Therefore, the average capacity in (19) has a lower bound given
in (24).

APPENDIX C
PROOF OFLEMMA 3

Suppose there are two training schemes leading to correlation
matrices and . Let in the positive
semi-definite sense, and note that bothand are full-rank
matrices [c.f. (23)]. By eigen-decomposing, we obtain that

, where includes all nonzero eigenvalues
of , and the columns of are the corresponding eigenvec-
tors. From the matrix inversion lemma, we have that

(62)

where , and hence, . Using the mono-
tonicity of , and the property , for

, we infer that at high SNR ( ), it holds that
[c.f. (62)]

(63)

Therefore, minimizing is equivalent to maximizing .
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APPENDIX D
PROOF OFLEMMA 4

Suppose there are two training schemes with identical
, leading to correlation matrices and , as in

(23). We observe that the first term on the right-hand side of
(23) is identical for the two schemes. If the scheme withhas
the first and the last entries of equal to zero (a two-sided
zero-guard condition), then the second term in (23) is zero
because [c.f. (3)]; if the one with does not have
this zero-guard, then it cannot null this positive semi-definite
term. Therefore, we obtain . If , then
the two-sided zero-guard condition requires that . In
this case, cannot be used for channel estimation; indeed, if

, then the minimum cannot be achieved. Hence, we
require that .

APPENDIX E
PROOF OFLEMMA 5

From the proof of Proposition 1, we know that for
, we can approximate , as in (29). Then, the lower bound

on the average capacity becomes

bits/s/Hz

With the definition

bits/s/Hz

it has been shown in [1] that is a concave function of .
Therefore, we have that

bits/s/Hz (64)

where . Equation (64) shows clearly thatis max-
imized when equally long information sub-blocks are designed
to have length .

APPENDIX F
PROOF OFLEMMA 6

, and , we can write that

...

which allows us to factor as

...

It can be verified that , . Since
is Gaussian [c.f. A2)], the estimateis also Gaussian, and thus,

is Gaussian. Because

Because of the Gaussianity, we obtain that and

have the same distribution. So do

and . Since is fixed, as increases, we infer
that decreases, and so does.
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