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Optimal Training for Block Transmissions Over
Doubly Selective Wireless Fading Channels
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Abstract—High data rates give rise to frequency-selective prop- suboptimal and bandwidth consuming, training methods remain
agation, whereas carrier frequency-offsets and mobility-induced attractive in practice because they decouple symbol detection

Doppler shifts introduce time-selectivity in wireless links. To  from channel estimation, which reduces complexity and relaxes
mitigate the resulting time- and frequency-selective (or doubly . . R, .

selective) channels, optimal training sequences have been designe&he rqulred_ |der?t|f|ablllty conditions _[2_0]' )

only for special cases: pilot symbol assisted modulation (PSAM)  For time-invariant channels, a training sequence is usually
for time-selective channels and pilot tone-assisted orthogonal sent at the beginning of each transmission burst, but when
frequency division multiplexing (OFDM) for frequency-selec- the channel is time-selective, this preamble-based training
tive channels. Relying on a basis expansion channel model, iny,eih04 may not work well. This motivates periodic insertion

this paper, we design low-complexity optimal PSAM for block L . . L.
transmissions over doubly selective channels. The optimality in ©f fraining symbols during the transmission, which is known as

designing our PSAM parameters consists of maximizing a tight Pilot symbol aided modulation (PSAM) [5]. PSAM is not only
lower bound on the average channel capacity that is shown to useful for time-selective channels but also for frequency-selec-

be equivalent to the minimization of the minimum mean-square tive and even doubly selective channels [11], [21], [28] as well.
fr?:g]rgz'caelsc}'e”g%tr'%” error. Numerical results corroborate our  rhe nymper and placement of pilots affects not only the quality
' of CSl acquisition but the transmission rate as well. Within the
Index Terms—Doubly selective channels, frequency selective, general class of doubly selective channels, PSAM has been
mgéujlangﬁort%aéﬁgieftf)vtém@'iré{g'sg'?gainglgﬁaiﬂz(" assisted optimized based on several criteria, but only for special channel
' ’ ' models.
Optimization of PSAM for frequency-selective channels has
. INTRODUCTION relied on either average channel capacity bounds [1], [20], [21],
IGH data rate wireless and mobile links suffer from timel30], or the Cramér—Rao bound (CRB) of the adopted channel
and frequency-selective propagation effects. Mitigatin%s'fimator [91, [21]. PSAM fo_r t_in_1e-selective fading channels
these effects enables efficient transmission over such doubly’38S been designed by minimizing the channel mean-square
lective channels and has justifiably received increasing attéiftimation error [S] and recently by optimizing an average
tion over the last decade [11]. These fading channels are cif@Pacity bound [22]. PSAM for time- and frequency-selective
lenging to mitigate, but once acquired, they offer joint multichannels has been also considered (but not optimized) in [11],
path-Doppler diversity gains [18], [24]. The quality of channdf4], [28], and [32]. Specifically, the PSAM developed in
acquisition has a major impact on the overall system perfdi1] and [32] applies to a limited class of quasistatic channels
mance, especially when the channels are fast fading. Reliaff#€ying the “snapshot” assumption [11]), whereas the statis-
estimation of doubly selective channels is thus well motivatedcal channel estimator in [28] requires long data records, has
Two classes of methods are available for the receiver to &8ther high complexity, and may suffer from error propagation
quire channel state information (CSI): One is based on trainif§ects- This paper's objective is to optimally design PSAM
symbols that ar@ priori known to the receiver, whereas thdOr doubly selective channels by capitalizing on a parsimo-
other relies only on the received symbols to acquire CSI blindfiOUsly parameterized basis expansion channel model that was
Relative to training, blind schemes typically require longer dafdiginally introduced in [12], [26], and [27] and more recently
records and entail higher complexity [8], [25], [33]. Adaptivétilized by [3], [4], [18], [21], and [24]. _ _
or decision-directed methods offer reduced complexity alterna-The rest of the paper is organized as follows. Section Il in-
tives, but they are prone to error propagation, and their apﬁﬁoduces the system model. Section Il focuses on channel esti-

cation is limited to slowly varying channels [7], [26]. Albeitmation and its decoupling from symbol detection. The relation-
ship between channel estimation error and the lower bound on

average capacity is the subject of Section IV. Section V deals
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Fig. 1. Discrete-time baseband equivalent system model.

tian, x conjugate I’ transpose, antilmatrix pseudoinverse. We  Per block of N symbols, the basis expansion model (BEM)
will reservex for convolution,® for Kronecker product]-] for in (1) can be viewed either as deterministic or as the realization
integer ceiling,|-| for integer floor, andE[-] for expectation of a stochastic process with random coefficienté|i/N |; [).

with respect to all the random variables within the bracketg/hen transmissions experience rich scattering, and no line-of-
We will use[A]x, » to denote thek, m)th entry of a matrix sight is present, one can appeal to the central limit theorem to
A, tr(A) for its trace, andx],,, to denote thenth entry of the validate the following assumption in the random viewpoint:
column vectorx; finally, diag[x] will stand for a diagonal ma- A2) The BEM coefficientsh,(|i/N|; [) are zero-mean,

trix with x on its main diagonal. complex Gaussian random variables with variange.
The BEM offers a parsimonious finite-parameter representa-
Il. SYSTEM MODEL tion of doubly selective channels and was originally introduced

In this section, we will first present our time- and frequenc;).n;:slze])’(ézrgl"saeréda[527]- The BEM in [26, eq. (2)] or [27, eq. (4)]

selective channel model, and then we will introduce the tran¥
mission design.

Q
his 1) =Y he(li/NJ; D fy(i), 1€, L].

A. Time- and Frequency-Selective Channel Model q=0

Let h(¢; 7) denote the time-varying impulse response of oWpeacific choices for{fq(i)}qQZO have included polyno-
channel that includes transmit-receive filters as well as doubyial, wavelet, or, Fourier bases [3], [4], [12], [19]. The

selective propagation effects. With(f; ) denoting the canonical model in [3] and [24] corresponds to substituting
Fourier transform ok(t; 7), let us also define the delay—spreacyq(i) .— ¢3274/N The BEM considered here is also FFT-based
Tmax @nd the Doppler-spreaf... as the thresholds for which pt giffers from the canonical model in the following major
[H(f; T)| = 0for|7| > Tmax OF |f| > fmax. We will take the ~ aspects: i) [3] and [24] focus on spread-spectrum transmissions
sampling period at the receiver equal to the symbol pefind and assume that the channel varies from symbol to symbol,
and we will consider time intervals 6¥7; s, corresponding to \hich we do not have to do, and ii) [3] and [24] consider serial
blocks containingV symbols each. Over each interval, say thgansmissions through a continuous-time scalar channel; we
kth, we will representu(t; ) for ¢ € [kNT., (k + 1)NT,) work with a discrete-time baseband equivalent matrix-vector

using a)Q + 1 coefficients{h, }¢, that remain invariant per channel model that is suitable for block transmissions.
block but are allowed to change withand b)Q + 1 Fourier

bases that capture the time variation but are commaén B. Block Transmission Design
Using the serial index, we can describe the block index as
k = [i/N] and write ourdiscrete-time baseband equivalent
channel model as (see [18] for detailed derivations):

Fig. 1 depicts a general discrete-time baseband equivalent
ransmission format when communicating through the doubly
selective channel (1). Two types of sub-blocks can be identi-

Q o fied in each transmitted block: One type contains the informa-
Wiz 1) =Y hg([i/N]; De?, Lef0, L] (1) tionsymbols, whereras the other includes the training (or pilot)
7=0 symbols. We use two arguments énd k) to describe the se-
wherew, := 27(q — Q/2)/N, L := |Tmax/Ts], andQ := rial indexi = kN + n forn € [0, N — 1], and denote the
2[ fmaxN'Ts]. Because both,.x and fiax can be measured (n + 1)st entry of thekth block as[u(k)]. := u(kN + n).
experimentally in practice, we assume the following. Each blocku(k) includes N, information symbolss(k) :=
Al) Parametersrmax, fmax (@nd thusL, Q) are bounded, [s(kNy), ..., s(kNs + Ny — 1)]7, and N, training symbols
known, and satisfR foaxTmax < 1. b(k) = [b(kNp), ..., b(kNy + N, — 1)]T, which are known to

The produc® f,,.xTmax iS called delay-Doppler spread factoboth transmitter and receiver.

and plays an important role in estimating doubly selective chan-After parallel to serial (P/S) multiplexing, the blocék) are
nels. Underspread systems sati&fy,..mmax < 1, Which, intu- transmitted through the time- and frequency-selective channel
itively speaking ,bounds the channel’'s degrees of freedom alnd; /) modeled as in (1). Thah received sample can be written
renders channel estimation well-posed [15], [16], [18]. In facgs
most ionospheric- and tropospheric-scattering, as well as other I
[ggiopcgirg]wels, all give rise to underspread channels; see, e.g., y(i) = Z h(i; Du(i — 1) + w(i) )

. p- . :

=0
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where w(7) is additive white Gaussian noise (AWGN) with Na Mo Naz Noa Nop | Nop
mean zero and varianeg,.

We will find it convenient to work with a block-form of the
BEM we construct, after serial to parallel (S/P) conversiot D information symbols D training symbols
by collecting the sampleg(:) into N x 1 blocks:y(k) =
[y(kN), y(kN + 1), ..., y(kN + N — 1)]*. Selecting also
N > L, we can write the matrix-vector counterpart of (2) as

Fig. 2. Structure of the transmitted blodkk).

y(k) = H(k)u(k) + H"(k)u(k — 1) + w(k)  (3) s by H, f,

wherew (k) := [w(kN), w(kN +1), ..., w(kN + N —1)]T,
whereasH (k) andH™?i(k) are N x N upper and lower trian-
gular matrices with entrig#I(k)],, m, = (kN +n; n—m)and
H" (k)] m = h(EN+n; N+n—m)forn,m=1,..., N

’

The second term on the right-hand side (r.h.s.) of (3) capturyf s
the interblock interference (IBI) that emerges due to the chanr

delay spread. The difference between these channel matri J

and those in e.g., [31] is that all the channel taps here are tit y3 H:

dependent, anHL (k) as well asH™™ (k) are no longer Toeplitz H,

matrices. ,
In this paper, we wish to design the optimal training input fo”

channel estimation, which amounts to selecting the number of

training symbols per block, the placement of training symbols,

and the power allocation between training and information sym—_l_ king C1) int i ite the inout—outout rel
bols, based on conditional mutual information and channel es- aking C1) into account, we rewrite the input-output rela-

@é

Fig. 3. Partition of the matriH in (6).

timation error criteria. Our joint consideration of these criteri!’iOnShIp (3) as
is intuitively appealing because of the apparent tradeoff: Using y(k) = H(k)u(k) + w(k). (5)
more training symbols of higher power improves channel esti-
mation but also leads to reduced channel capacity. We wish to estimatéI (k) based ory (k) and our optimally de-
signed training symbols in(k) and then recover the unknown
IIl. CHANNEL ESTIMATION information symbolgs,,(k)}!_, based on the estimat&i(k).

] o ) ) ] . This decoupling of channel from symbol estimation is the mo-
Since the channel coefficientg(|i/IV]; ) in (1) are time-in-  yation behind our separable block structure in (4). It also en-

variant overNT; s, channel estimation ha§ to be performegmes separation of each received blgek) into two types of
every N symbols. To enable low-complexity block-by-blockeceived sub-blocks: one, definedagk), that depends only

processing at the receiver, we need to remove the 1Bl not onjy H(k) and{b,(k)}¥_, and a second, defined gs(k), that
across blocks but also within each block. There are at least tWé’pends o (k), {s p(_k> P_ and{b,(k)}L_,. Because the
’ P P p=1-

. . . . p=1
ways to eliminate IBI (see, e.g., [31]): One consists Of INrGy|4\ing analysis for both channel estimation and symbol de-

ducing redundancy at the transmitter through the cyclic—pref'!éctiOn is based on a single block, we omit the block inélex

and then discardi”g those “channel—cpntaminated" redund%rln‘ld subsequently deal with the input—output relationship [c.f.
symbols at the receiver, and the other is to put guard zeros P and (5)]:

transmitted (sub)block. We adopt the latter in this paper. Hence,
we construciu(k) to satisfy the condition: _ Q
C1) Eachblocku(k) has the fornfu 7' (k)0 ]*, where the y =Hu+w, with H := Z D,H, (6)
(N — L) x 1 vectoru(k) containsN, information symbols and =0
Ny — L > 0 training symbols. ~ whereD, := diag1, ¢/“v, ..., e/«(N=1)] andH, is a lower
We view theL trailing zeros inu(k) as part of the training triangular Toeplitz matrix with first columfh, (0), ..., hy(L),
syn_’nbols. Sinc#™ (k)u(k—1) = 0,C1) guarantees the eIimi-07 ..., 0]T. Corresponding to the separationyofo y, andys,
nation of IBI from block t.o block. As shown in Fig. 2, the placeihe channel matriE can be split into three matrices, namely,
ment of these symbols in(k) can be expressed as H,, H,, andH,, which are depicted in Fig. 3. Each of them is
nstr from -blocks BE. After th ration of, w
) = ST (1), BT, o SEOL BRI, Ve (@) oo Caput relatonships

where we group consecutive information symbols and training ys =H,s + Hyb + w, )
symbols in sub-blockss,(k) and b,(k) of lengths N, , —H.b 8
and N, ,, respectively. Notice that these parameters satisfy e bb W ®
S Nep =N Yoy Nop = Ny, andN, + N, = N. wheres := [s7, ..., s5]7, andb = [b], ..., bE]”, b con-
Condition C1) requires one to choodg > L and the last tains the firstL and the lastL entries ofb,, Vp, Whel’ea_SWi
entries ofbp (k) to be zero. andw, denote the corresponding noise vectors. The Hyh
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captures the interference of the training sub-blocks to their ddue to the commutativity between a Toeplitz (convolution) ma-

jacent information sub-blocks. trix product with a vector, we ha#l b, = B,h,, whereB,,
Focusing first on channel estimation, we start from this an(N, , — L) x (L + 1) Toeplitz matrix given by

training input—output relationship (8). Based on (6) and Fig. 3, _

y, can be written as bp. 1 o bp.0

y? H'b, B, =

yoi=| @ | = ; + W, (9) Lbp, Ny =1 o bpN, -1
'b b' and

Yp Hpbp [ hq(0)

wherey? := H)b, +w}, andvp € [1, P], with H}, shown at h =
. . . q

the bottom of the page,, is the index of the first element ¢f,
iny, andw; = [(w})T ... (w4 )T]7T is the corresponding noise L hq(L)

block. Itis clear that whe#, , < L, the matring disappears, \yith by denoting the(n + 1)st entry ofb,. Hence, the
andb,, does not contain sufficient training symbols for Chan”‘#}put—dutput relationship in (11) becomes
estimation. Hence, we have the condition shown at the bottom

of the page. yo = ®ph + wy (12)
C2) The length of each training sub-blobk is at least. +1,

e, Ny, > L+1,Ypell Pl where
Condition C2) shows that once we insert pilot symbols, we D37 1B1 - D‘é,lBl

should group them in sub-blocks of size at Idastl . Same con-

dition can be found in [11] and [32], which dealt with frequency- Dy = : e : (13)
selective channels only. Observing the dimensionalitmt DS SBp - Db »Bp

we deduce that out of th&, pilot symbols transmitted, we re- and ’ Q
ceive at mostV, — PL pilot-dependent observations without T AT
interference from the unknown information symbols. Since we hi=[h; - hgl . (14)

have(Q + 1)(L + 1) unknown coefficients [c.f. (1)], to ensuregjmijar to [21], we will rely on the Wiener solution of (12) that

unigueness in estimating the channel using linear equations,wgds the linear MMSE (LMMSE) channel estimator
need the total number of training symbols to satisfy

-1
L1 1
N, > PL+(Q+1)(L+1). (10) h=—5 (Rhl + U—Q‘PZ‘@,) @'y (15)

Therefore, the minimum number of pilot symbad\g for esti-
mating doubly selective channelslist (Q + 1)(L + 1), when
P = 1. SelectingP = 1 corresponds to the preamble—basego
training method. From a bandwidth efficiency point of view, this
method is optimal. Is this also optimal when we consider mutual
information based omstimatedchannels? Recall the tradeoff
that emerges: Increasing the number of pilots improves the ac- R
curacy of channel estimators, but at the same time, it redudé¥l the mean square errorlofas

which requireR;, := E[hh’] to be known at the receiver.
Defining the channel error ds:= h — h, we can express its
rrelation as

-1
- 1
R; := E[hh"] = (R;l +— <I>Z”‘<I>b) (16)

w

the rate. In the following, we will answer this question and de- ) _1

lineate the tradeoff. g% =1tr(R;) =tr <<Rh1 +— ‘ﬂf‘h) ) . 17)
Going anck to (9), and based on (1), we can write Tiw
b . b b b b _

H, = Zq=0 D, pHy . WhereH, , andD, , are corre It is clear from (13) that the placement of training symbols

sponding sub-matrices frod, and Hq in (6). PluggingHg

) ¢ affects®, and, consequently;2. To facilitate our subsequent
into (9), we obtain h

analysis, we suppose the following.
D’ \H! by A3) The channel coefficients, () are independent, i.eR,

Q is a diagonal matrix with trace(®;) = 1.
Yo = Z + wWp. (11)
P 1Under A2),h is Gaussian in the linear model (12); hence, the LMMSE co-
D’;; PH27 pbp incides with MMSE optimal channel estimator.
h(ny; L) - h(ny; 0) 0
Hb —

0 h(np—i—Nb,p—L—l; L) h(np—l—Nb,p—L—l; 0) (Ny. p—L)X Ny
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Note that A3) will not affect the optimality of our training de-From (7), we know thay, = H,s +_ﬁb5 + w,, whereH,, is
sign, simply because no CSl is assumed available at the tratie corresponding channel matrix for(see also Fig. 3 for the

mitter. structures oH, andH,). Becausdd, andb in (7) are known
Using [21, Lemma 7] and A3), it can be shown th%ﬁn (17) inthe ideal case, by defining, := y., — H,b, it can be verified
is lower bounded as follows: thatZ(ys;slh) = Z(y.;s/h). To maximizeZ(y’; s|/H), we
) establish the following lemma.
tr (R;I + 1 ‘ﬂ“h) > Z — - 1 Lemma 1: If the information bearing blockis Gaussian dis-
o5 o Ry + = '@yl tributed, then the mutual informatici(y’; s|h) is maximized.

(18) Furthermore, the capacity upper bou@din (20) can be ex-

pressed as

where the equality holds if and only #}*®, is a diagonal
matrix. Therefore, the following condition is required for ougy ._ 1

max
training strategy to attain the channel MMSE: N [RS,PS:=E[|ISIIZ]
C3) For fixed N, and N, the training symbols should be 1 H .
inserted so that the matri¥]* @, is diagonal. A\ Inerzp o2 H.RH, || bits/s/Hz (21)
Condition C3) coincides with that in [1], [9], [11], and [32]. ) .
Although we have set our channel estimate in (15), and we Proof. See Appendix A. "

have built C1)-C3), there are additional training parameters thaf‘lthough.s is generally non-Ga_ussian, W, is sufficigntly
have not been decided, such as the placement and the opti fgle ands is channel coded (or linearly precoded as in [31]),
’ ens will be approximately Gaussian. Thus, in the following,

number of training symbols. These parameters affect the p the Tollowi

formance of the channel estimator in (15), the effective tran§® assume the following. - .

mission raten = Ns/N), the mutual information, as well as Ad) _The !nformatlpn—beanng symbol blockis zero-mean
the bit error rate (BER). In the following, we will select thesé>aussian with covariand@,, = 7.1y, , andP, := Ps/N..

training parameters by optimizing an average capacity bound.Here.'ttWe sedleths = Psln, .t].;)ecause thelre 'j’ nohCSI at éhe'
Prior to this, however, we will show that optimizing this averag, ansmitierand, ence, honunriorm power-'oading has no basis.

capacity bound also minimizes the channel MMSE. e un_ders_core thﬁ is an upper bound on the average Cha”r?e'
capacity with estimated channels because it expresses the ideal

channel capacity without channel estimation error.

log det

IV. LINKING CAPACITY WITH CHANNEL ESTIMATION

It is not easy to evaluate the average capacity of an unkno®n Lower Bound on Capacity With LMMSE Channel
random channel that has to be estimated. Instead, we waRtimation
derive an upper bound and a lower bound. To design ourconsider now that the estimateHfis imperfect. Defind
optimal training pqrameters, we will maximize the capacit s the estimate @, andTT, as the estimate &,. Sinceb and
lower bound, and view the upper bound as a benchmark for P
maximum achievable rate » are known, we subtradi,b from y,. Thus, we have [c.f.

LetP denote the total transmit-power per blogk,the power ()
allocated to the information signal part, afg the power as- L=y, — ﬁbg = H,s+(H, — H,)s + (H, — ﬁb)g+ws_
signed to the training part. Before we consider optimal power aﬁl— 22)
location, we suppose th&, andP, are fixed. LefH be any esti-
mator ofH in (6). Since training symbols do not convey infor- yUsing (7) and (22), it is easy to verify thal(y’; S|¥213) -
mation, for a fixed poweP, := E_[||s||2_], the condltlonal MU- 7(y . s|H,). DefineH, := H, — H,, H, := H, — H,, and
tual information between transmitted information symbols ang’_ H,s+H,b+w,. Ingeneraly is non-Gaussian distributed

received symbols in (7) is denoted Ay ; s|f1) for each re- \ih correlation matrixR, := E[vv"] given by
alization ofH. The channel capacity averaged over the random

channelH is defined as R, = P, E[HHY| + E[H,bb"H}| + 0LIn 4rpr (23)
c—Lp max_ I(y.; s|h)| bits/s/Hz where E[H,sbH’!| = 0 because of A4). Because of the non-
N [p.(), Po=E[]s] Gaussianity ofv, it is not easy to obtain a closed form of the
(19) average capacity. In the following, we propose a lower bound

of C'in (19).
Lemma 2:When the information-bearing blocks is
A. Upper Bound on Capacity With Perfectly Known ChanneIGauss'an distributed with fixed pow®Y,, the average capacity

i T . C'in (19) is lower-bounded as:
Suppose first that the channel estimation is perfect Hes

H. Similar to (19), the average capacity in this ideal case {s > 1 E {max log det
defined as - N R,

. (INS-i—LP + R,jlﬂsRstf) } bits/s/Hz (24)

wherep;(-) denotes the probability density functionsof

— 1
C:=—F max I(ys; s|H)| bits/s/Hz
N [p: (), Po:=Ellls|1?] ( )

(20) Proof. See Appendix B. [ |
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Similar to [1] and [30], we will introduce next a lower boundanqu » Is alower triangular Toeplitz matrix with first column
that s looser than the right-hand side of (24) but easier to handlg, (0), ..., h,(L), 0, ..., 0]Z. From (26), we can detail (27)
PluggingR, = P.Iy, from A4) into (24), we obtain as

1 — RSN s s
C > ~ Ellog det (INS+LP + PSRU—lHSH?)] =C. (25) E[H; ,(H; )"

1 L L
The right-hand side of (25) offers a lower bound on the av- _ g,
erage capacity of doubly selective channels. Our objective is 9| Va0 Z Yo Z Yo Z Yo Yot

to select training parameters so thatin (25) is maximized. (28)
Certainly, the optimal training parameters should improve both
the channel estimator and the associated minimum mean-squzdgation (28) shows that the correlation matrixif (and,
error (MMSE)02 InterestinglyC' and the channel MMSEr2 thus, H,) is a diagonal matrix. In addition, we notice that se-
are linked. To establlsh this link, we will introduce two usefulectlng N, > 2L allows one to approximate the correlation
lemmas. matrix of H, as follows [c.f. (28)]:

Lemma 3: Suppose C1)-C3) and A1)-A4) hold true and that 0
the information symbol poweP, and the sub-block lengths E[f{ ﬁH] ~ Z Z bo dn.apr = 02 In 4 pL
N, , and N, , are fixed. Then, maximizing’ in (25) is equiv- o oI *

alent to minimizingR.,, in (23), at high signal-to-noise ratio =0 1=
(SNR). Considering CJ and C3), we can write the correlation matrix
Proof: See Appendix C. m R,in(23)as
AlthoughR,, in (23) d d 2 this d d i t =
oughR, in (23) depends on, this dependence is no R, ~ U}%,PSINS-FPL b o2y ypr. (29)

explicit. The following lemma provides an explicit relationship

between the two. - _ N We deduce from (29) that as' decreasesR,, decreases, and
Lemma 4: Consider a fixed number of training symba¥s  from Lemma 3, we infer that increases accordingly, i.e., better

adhering to C1) and C2). Among &}, choices that satisfy C3) channel estimation implies higher average capacity. m
and lead to identicdR;,, the design that satisfi€$, , > 2L+1

and has the first and the last. entries ofb,,, Vp € [1, P] equal V. DESIGNING OPTIMAL TRAINING PARAMETERS
to zero achieves the minimuRR,. ) ) i )
Proof: See Appendix D. - In the previous section, we linked the LMMSE channel esti-

Based on Lemmas 3 and 4, we modify condition C2) to tHgation with the maximum lower bound of the average channel
' capacity. In this section, we will capitalize on this link to de-

following.
c2) %]'he training sub-block ib, := [0ZH707]T,Vp € sign our optimal training parameters. Specifically, we will an-
[1, P], with the length ofb N > 1. Lop =Ll swer the following basic questions: How should we place the
y2al

Notice that thel, zeros betwéen the information sub-block{@ning symbols? How many training symbols should be in-
s, and the training sub-blocKs, eliminate the intersub-block serted per block’; How much power should be allocated to the
interference. Condition CRimplies thatV, , > 2L + 1. Based training symbols®
on the assumptions and design conditions we have introduce : :
far, we are regdy to establlsr? the link between channel MM%I‘:‘ Optimal Placement of Pilots
in (18) and the lower bound in (25). Since we have adopted the LMMSE channel estimator, we

Proposition 1: Suppose A1)-A4) and C1)-C3) hold true. Ifstart from (15)—(17). In (17), we expressed the MMSE channel
Ny, > 2L,V p, thenfor fixedN;, , andN, ,, the minimization estimation error as? = tr ((R;1 + (1/02)0}®,) ) Now,

of 01% in (18) is equivalent to the maximization 6fin (25). we will design®; [which certainly depends oB,, as per (13)]
Proof: Defining 1,1 = E[hq(1)hi(l )] and relying on SO thato? is minimized subject to the power constraint on the
C3), we can express the correlation matrixaih (16) as total power of pilots. Under C3), the right-hand side of (18)
satisfies
R‘ﬁ = dlag[l/J() 05 -3 ’I/JQ L]- (26)
o? = ! >3
SinceD,, is known,H, := H, — H, is a block-diagonal matrix " - R, "+ 5 @@y, m R;! 7’b 1]
[c.f. Flg 3], and becausE[hql(ll)h* (I)] = 0,V # Iy 0r “ (30)
¥ q1 # go, the correlation matrix ofI, can be written as
o where the second equality holds if and onlybif‘®, = P,I.
E[fIgf{H] _ Z D E[ﬁs(ﬁs)H]DH (27) Based on the structure @f,, we infer that equivalently, we need
T = e a two conditions to be fulfilled [c.f. (13)]:
where Ll
e > BB, =Py, (31)
q,1 p=1
HS = ot
Z B Dq1 quz,po =0, V(h 7é qz- (32)
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A general placement satisfying (31) and (32) is not easy to gblete the optimality claims on the number of training symbols

tain directly. As a first step, we will need the following lemmaper sub-block, we establish the following proposition.

to gain further insight on the optimal placement. Proposition 3: If the powersP, andP, are fixed, the number
Lemma 5: Consider a fixed number of training symbolsof sub-blocks? > @ +1, andNV, , > 2L+ 1,thenasV, , Vp

Ny, information symbolsV, > 2L, powerP,, and a number and/orP increase( decreases.

of sub-blocksP per block. If N, is an integer multiple ofP, Notice that whenV, , < 2L +1andP < @ + 1, the

then equally long information sub-blocks maximize the loweninimumR,, in (30) cannot be guaranteed, per Lemma 4.

bound of capacity’. The length of the information sub-blocks

isN, := N,/P. B. Channel MMSE and Capacity With Optimal Placement
Proof: See Appendix E. o . n We have seen that (34) offers the optimal placement of pilot
T_he following proposition provides sufficient conditions 0,4 information symbols per block that not only maximizés
achieve (31) and (32). but at the same time minimizes the LMMSE channel estimation

Proposition 2: Suppose A1)-A4) hold true. For fixé®d and  error, Under the Gaussian channel assumption, the latter coin-
7, the following placement is optimal: All information sub-ciges with the channel MMSE, and thus, it benchmarks estima-
blocks have identical block lengths, i.&V; , = N, Vp; the  tion performance wheR,, is known at the receiver. In this sub-
pilot sub-blocks have identical structui@] b 07]", Vp, and  section, we will derive this benchmark channel MMSE for the
they are equipowered with= P, := P,/P. optimal placement wheR,, is known, as well as wheR;, is

Proof: First, we will confirm that conditions C1)-C3) ynknown. Furthermore, we will develop in closed form the max-
ho!d true._ Then, accor@ng to Proposmon 1, we will \_/er|fy thatum C when the optimum placement of (34) is used. This is
C is maximized, and finally, we will check whethef is also  practically important because it allows one to predict the optimal
minimized. — average-rate possible through doubly selective fading channels

It vp, Ny , = 1, andB, = VPyIri1, then we have that yyhen optimal training is adopted for channel estimation pur-
B}B, = Pyl Therefore,ZI’::1 BB, = PIr41isa poses.
diagonal matrix. Thus, we have checked the first condition in If the channel coefficients are independent (but not neces-
(31). PluggingB,, into the left-hand side of (32), we obtain  sarily identically distributed), then plugging (33) into (16), we

can explicitly writeR; as

P P
HH - D § :_H
E : Bp D’]l,Pquspo =Ps Dql,pD’D’P . U% 0‘712u U(%? LU?”
p=1 p=1 Rj=diag| 5 5 5 5 3 (35)
0w+ Peoj o on+Peog g

whereD, , contains the firsf + 1 columns and the first + 1 _ _
rows of D, ,. Because the BEM frequencies are equispacedwheres? , is the variance of, (/). The t(R;;) benchmarks the
follows thatN,,, = N, andthatV, , = 2L+1. By definingthe performance of our doubly selective channel estimator when the

difference between two consecutive BEM frequenciesas  hq(1)s are independent with known variances.

wy—1 = 2m/N, we find that For channel-estimation purposes, the training sequence
' - in (34) is optimal. We note that for a fixed®,, when
D D, , = /M) (N2l (-1 Ny, , = 2L + 1, the optimal t(R; ) will not decrease as long as
diag [1 03 27 /N)(g2=a1) ej(27r/N)(q2_q1)(Ns+L):| P > @ + 1 since the lower bound of®;) in (39) holds for
’ T * any P. On the other hand, &B, increasesR; will decrease

monotonically. However, from a mutual information point of
view, this is not the end. Since is fixed, if we put more power
on training, less power is left for the information symbols

Now, we know that the transmitted block length should\oe-
(Ns + 2L + 1)P; hence

lis PI — to deal with the AWGN. Furthermore, aB increases, the
=H L+1, 1 q2 . . . . .

E D ,Dgp= 0 bandwidth efficiency decreases. In the following sub-sections,

p=1 ’ N # we will pursue the optimal design for these two parameters.

which implies that the proposed placement satisfies (32), as WeIIF'rS.t’ hqwever, we wo_u_ld like to summarize the new condi-
as C3) tions implied by Proposition 2 and rewrité based on these

conditions.
1P, — DI . 33 C4) Selectthe block lengthv as a multiple ofP, and design
b PHIHNEHY (33) each blocka according to (34). }
The MMSEo? in (30) has thus been achieved, aithas been  Using (35), we can simplify the correlation matrix Bf,.
maximized per Proposition 1. m SinceN,,, = N,, we can verify thats[H; ,(H; ,)’] does
Guided by Proposition 2, we can now finalize the structure abt depend on the index Defining ¥, := E[H; (H; ,)"],
our transmitted block as it follows that
u=[sT0T607...s5 076071, b=1/P,. (34) EHH;) | =1p0 ¥,
Q
From Proposition 2, we have obtained tht, = 2L + 1. To EHHY =1p® Z T,

satisfy the condition in (10), we have that> @) + 1. To com- 7=0
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Thanks to the guard zeros surrounding each training symboldiag s, . . ., /\m] isanN, x N, diagonal matrix with eigen-
(34), we have thab = 0. Hence values of (H*)"H* on its main diagonal, an®J is a uni-
B tary matrix that contains the corresponding eigen-vectors. In
R, =021+ P, (Ip ® Z \Ifq) . (36) Proposition 1, we have shown that selectiNg>> 2L yields
R, ~ (0P, + o)L Hence, we have

Using C4), we have that p P.o2
~ 1 . _ —H H
P —diag| P P it o (g o)
IR e P . 5.2
= diag[@0,0 - Q, L] (37) N Z 10g < 2?4_;{2 /\k> bits/s/Hz
k=1 fL T
and from (37), we find that (41)
E[H; ()] where in deriving (41), we used the fact thiat (I + AB) =

Equation (41) is similar to that derived in [21]. The key differ-
ence here is that thi,s are not identically distributed, in gen-
(38) eral. This will lead to a looser lower bound on the average ca-

SinceE[ﬂ;(ﬂ;)H] _ ZqQ:o E[ﬂ;p(ﬂ;p)ﬁ]’ we can obtain pacity. Let the effective SNR be defined as

] det(I+ BA) for matricesA andB with matching dimensions.

1 L L
:diag[%,oz:%,l'“z@q,l"'ztpq,z---tpqL
=0 =0

=0

the normalization factor foE [FI3 (H3)™] as Pso?,
pe = L. (42)
Q L 0'3) + PSO’I;,
2 s (Frs\VH1) — AT .
T = (E[HP(HP> ]> =N 2} zz% Pa, - (39) SinceN,P = N — P(2L + 1), our looser bound is given by
q= =
Then, we can define the normalized channel matrix as C > % Elog (1 + peidmin)] :=Ca  (43)

H, =ozH,, vp. whereA i = min{\c 12, .
Finally, we deduce that the lower bound on average channel
C. Optimal Number of Sub-blocks

capacity is
» 0 1 In Proposition 2, we established that the optimal number of
1 = [= 2 pilots per sub-block isVy , = 2L + 1 (N; | = 1). In this
¢= N ZlE log det (I P <7)”’ ZO Yot U“’I) subsection, we will consider what the optlr%al number of sub-
P= = blocks is per transmission block, i.e., how often we should insert

o e ) the training sub-blocks.
o H(H}) bits/s/Hz  (40) o obtain the optimal number of sub-blocksin (43), for
fixed N, P,, andP,, we need to treaP as a continuous variable.
Equation (40) is useful because it relates the lower baimdth ~ Then, we can differentiat€ , with respect ta” to obtain
the number of sub-block® and the signal poweP,, which oC .
in turn depend on the spacing of pilots and the chosen powdr 57 or —(2L + 1) E[log(1 + peft Amin)]

allocation. 5
N . . . va e /\min 2L + 1 w
Relying on (37) and (38), we can readily verify the following + PN,E |log(e) Peft ( 3 )—U
lemma L+ peidmin Pyo? + PN o2,
Lemma 6: If A2) holds true, then alH ? have identical dis- L\ PeffAmin(2L + 1)
- p <—F |log(e)———mM——=
tribution Vp € [1 P] 1+ poﬂ)\min
Proof: See Appendix F. _ ] Pefidmin (2L + 1)PN 02,
Based on Lemma 6, we can rewrite the lower bound on the — log(e) T4 porho Po? + PN.02
average capacity as Peft Amin o0y 4 PN 05,

poﬂ)\min (2L + 1)7)50.}%
1 + peff)\min PSCT% + PNSCTEJ

-1

P 2 2 2 =-E
C = NE log det INS+L —l—oﬁps( Z o I)
=0 where in the second step, we used the inequality + =) >
. /(1 +x)Vx > 0.SincedC , /0P < 0, to achieve the max-
- H*(H*)" | | bits/s’/Hz imum lower bound on the channel capacity, we need to fake
as small as possible. Moreover, in order to guarantee the condi-
- - tion in (10) with N, , = 2L + 1, we needP > @ + 1. This
where we used * to denoteH ; Vp. Let us now consider the jmjies that the optimal number of sub-blocksfis= Q + 1.
eigen-decompositionH *)"H* = UAz U™, whereAy := Hence, we have established the following proposition.

log(e)
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Proposition 4: Consider transmission of information blocks TABLE |
of length N through a time- and frequency-selective random SUMMARY OF DESIGN PARAMETERS
channel modeled as in (1). If C1)-C4) are satisfied, and a fix
power is allocated to the training symbols, then the lower bou: -
given in (43) is maximized if and onIy if the number of training Placement of information symbols | Equally long information sub-blocks (length N,)
sub-blocks isP = Q + 1. Placement of training symbols Equally long training sub-blocks (length Ny)
Although this result is derived for the looser bou@q, in

Parameters Optimal training

o ) ; o @ Structure of training sub-blocks b, = [0T b0T]T, vp
(43), it is also true for th€’ in (40). An intuitive explanation is Number of Traini ol oL 1 b block
that asP increases, the performance of channel estimation d¢ " © *rmng symbos L persubrbloc
not improve, but the number of information Symbo|s decreast Number of Sub-blocks Q@ + 1 training and @ + 1 information sub-blocks
causingC' to decrease as well. Whdn < @ + 1, the mutual Power Allocation a=1/(1+ /(I +1)/N,)

information suffers from unreliable channel estimation since the
condition in (10) is not satisfied. Note that now, the number of

. . s . _After differentiatingp.g with respect tav, we find that at high
pilot symbols iS(@Q +1)(2L + 1), which is the smallest possible
sinceP = Q + 1 [cf. (10)]. SNR, the optimal power allocation factor is

2 1/2
D. Optimal Power Allocation 1- (% + % (1 - %)) 48
Up to this point, we have considered that the total power js " high = 1— % (48)

fixed. Based on this, we have derived that the pilot symbols must
be equi-powered and equi-spaced. In this subsection, we WNhen the SNRP/((L + 1)(Q + 1)o2) — oo, we have

find the optimal allocation of the total power between informa- 1
tion symbols and pilots. Qoo = — (49)
Consider the total pow&? = P, +7P,, and defineP, := aP; 1+4/(L+1)/N

thus,P, = (1 — «)P for somea € (0, 1). From (39), it is easy

to verify thato?, = N(1—03), wherecr2 is given as [c.f. (30)] which coincides with the result in [21].

Case iii) Identical Distributed Channel Coefficiet? , =

2 1/((L+1)(Q+1))): Inthis case, we can rewrite (44) @%3 =
Z Z g jp = (44) (L +1)(Q + 1)o2 /(Py + (Q + 1)(L + 1)o2). Plugging this
1=0 =0 %1 simplified o2 into (45), we obtain

Thus, we can rewrite the effective SNR in (42) as ’

(1 - 0?) ) PN,
— 0 off =
Peff = 2Q+1 . (45) 03(Q+1)
TN (Q+1) 75 _ a(l —a) _
It is difficult to find an optimal power allocation factar that Ns(L+1)(Q + 1)oi, + P) — aP(Ns — (L +1)).

does not depend on any CSl directly from (45) becatfsde-  gimilar to the previous two cases, after differentiating with
pends o, ;. Therefore, we consider the following three casegaspect tav, we obtain that

1) low SNR

. 1/2
2) high SNR; 8- (ﬂz _ (1 _ %) /3)
3) identical distributed channel taps. Qi = e s
Case i) Low SNRoZ, > (1—a)Po2 )): Inthis case, we can -5
simplify (44) aso? £ 1 — (1 — a)P/02 Y1y Yty of . 2 with =1+ (L +1)(Q + 1)oy,/P.  (50)
1—(1—a)P/o2. Pluggng this result into (45), we obtain WhenP/((L + 1)(Q + 1)02) — 00, aiq CONVETGES tarn. in
o N.P2a(l — ) 46) (49). WhenP/((L + 1)(Q + 1)02) — 0, czia — 1/2.
eff ~

A N(Q+1)+aP(02 — (1 —a)P) Proposition 5: Suppose that C1)-C4) hold true and that the
SNR is sufficiently high. Under A1)—A4) and for a fixéd,, the
lower bound on average capacity is maximized with the MMSE
channel estimator when the power allocation faetds given

by (47), (48), or (50).

Our optimal PSAM parameters are summarized for conve-
Qow = 1/2. (47) nience in Table I, and the structure of each transmission hiock
is depicted in Fig. 4. The optimal pilot insertion strategy is neat
inits simplicity and can be equivalently implemented by one in-
terleaver. Fig. 4 depicts this process with a block diagram, where
the vertical arrow in each interleaver block denotes a read-out
5_]:1 (1 _ %) operation, whereas the horizontal arrow indicates a write-in op-
Peff = PIIT . eration. During each transmission burst, we first generate infor-

N.(l—a)P mation-bearing blocks of lengiN ;(Q + 1) and then feed them

The optimal power allocation facter can be obtained by dif-
ferentiatingp.s with respect to the variable and finding the
zero of this differential. Note that belongs to the rang@, 1).
Thus, for this case, we find that

Case ii) High SNR((l — «)Po?2 ; > o7): In this case, we
have from (44) thav? ~ (L + 1)(Q + 1)o7, /P, and thus, we
can rewrite the effective SNR in (42) as

2 w
on +
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Q+1
- . > X Information  Training
Information | W g l N sub-blocks  sub-blocks
symbols ¢ D/”—?ﬁ—\q
Y
PN
e e AN
Training :: 1 Guard zeros
Guard zeros :: L

Interleaver

Fig. 4. Transmission design.

to the interleaver (the grey shaded box) ashanx (Q + 1) notational conventions, it is easy to verify that (51) is equivalent
matrix, followed byL x (@ + 1) guard zeros (the blank box),to an affine mapping with transmitted blocks
Q + 1 pilot symbols (the grey box), and anothlerx (Q + 1)
guard zeros (the blank box). u=T.,Ps+T,,Psb. (52)
In summary, we have designed an optimal training scheme

to minimize the channel MMSE and maximize the average Ca-o . . difference with [1] and [21] is that a cyclic prefix

. . ?EP) is employed in [1] and [21] to eliminate IBI while we use
mation symbols and the optimal block lengihhave not been ero-padding (ZP). It is interesting that the optimal number of

touched when the average capacity is considered. On the offie o
hand, the channel parametésand L are also related to the di- reJundant symbols B+ 1 for both ZP- and CP-based training

versity order (performance) provided by the channel [3], [18?,e3|gns. Therefore, the bandwidth efficiency
[24]. Other optimizing criteria such as BER and outage capacity

are possible, but their study goes beyond the scope of this paper. n=1-— 2LA;F 1
VI. SPECIAL CASES AND SAMPLING INTERPRETATION is the same. Note that in [1] and [21], it is claimed that the op-

So far, our entire analysis applies to general doubly selectitjf@al number of training symbols 5 + 1, which does not in-
channels obeying the BEM model. In this section, we will Cor{jUde the CyC"C prefix that is needed to avoid IBI. Furthermore,
sider two special cases, namely, frequency-selective and tirséhough the power allocation parametem (50) and [1] and
selective channels. We will first link our results with those if21] are identical, they mean different things. Due to the<JR,

[1], [5], [14], [21], [22], and [30] and show that the latter ard1] and[21] corresponds to the effective information power over
subsumed as special cases in our general results here. Latefftfh;total” power that excludes the CP. However, in our setup,
we will provide a time-frequency sampling interpretation for ougorresponds to the ratio of signal power over the total power per

optimal PSAM in (34). block since we use ZP instead of CP to eliminate IBI. So, for
a fixed total power per block, our ZP-scheme results in higher
A. Frequency-Selective Channels effectiveP; and P, than the CP-scheme. In this sense, we de-

. - - duce that the ZP-scheme provides higher average capacity than
Frequency-selective channels exhibit no (or negligible) varlﬁ . . o
. : ) the CP-scheme does, with the same bandwidth efficiency. As
ation during each transmitted block and correspond to sett%g . . -
. . . [V increases, the difference between ZP- and CP-based training
Q = 0in (1). Hence, the optimum number of sub-blocks |a . . i .
. . ecreases. In the simulations section, we will further re-enforce
Q + 1 = 1, and the transmitted bloak in (34) reduces to : ;
this point.
[T 0T T
u=[s" 07 b 0] (51) B, Time-Selective Channels
where we removed the sub-scriptor obvious reasons. Notice Ic? tri]me;]selectlivedcha_nnels, th% delay spread cha_m be ignﬁred,
thatu in (51) has the same structure as the design in [1, TRt ec ;gre l:;r_ e[r:;lobmust e setin (1). Inthis case, the
3], which implies that [1] is subsumed by our design for doublg"Jmsmltte ocla in (34) becomes
selective channels. On the other hand, [21] used an affine map-
ping to represent andb. The transmission in (51) can also be u=[s{ bs; b---s, b, b:=1\/Ps. (53)
written in such an affine form. To show this, let us define ma-
tricesP; andP, as sub-matrices dfy; . ; ,, formed by the The pilot symbols are inserted equi-spaced and equi-powered.
first N, and the last. + 1 columns ofl ;. ,, respectively. This result coincides with the results in [5] and [22]. Note that
In_ anition, Iet’_I‘zp = [Iﬁs-‘,-L—i-l.‘/ 0<Ns+L+.1)xL]T be the ma- in [5], periodic insgrtion is motivated by uniform sampling ar-
trix implementing a zero padding operation that padseros guments. Comparing (53) with [1] and [21], we can observe the
when left-multiplying an(N s + L + 1) x 1 block. With these duality between periodic insertion of pilots tones in orthogonal
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frequency division multiplexing (OFDM) for frequency-selecone to write the input—output training relationship (12) for each
tive channels and the PSAM for time-selective channels. Thére [0, L] as
is, however, a notable difference between our scheme in (53)

and the optimal design in [22]. In [22], the optimal distance be- yo (1) ho(1)

tween two consecutive pilots i /(2 fmax1:) ], Where|-| de- yi (1) ha (1)

notes integer floor. In contrast, we find the optimal number of y°(7) := _ = ‘/beSHD(l) _ +wh(l)
pilot symbols per superblock to b& (+ 1) since we adopt the : :

BEM as our channel model. A natural question is whether these 0 ho(l)

two designs are related. In the following, we will show that these °Q @ (55)

two designs are in fact equivalent.
Since we rely on the BEM in (1), for a fixed block length,

where F denotes th 1)-point FFT matrix with
our Q is defined as Q+1 &Q + 1)-p

entries [exp(—j2r(m — 1)(n — 1)/(Q + 1))]m,», and

i D(l) := diagexp(jwo(Ns + L + 1)), exp(jwi (N, + L +

Q = 2[fmaxTsNT = 2fmaxTo N (54) 1), ..., exp(jwg(Ns + L + 1))]. The presence of the in-
verse FFT matrix in (55) corroborates our intuition that the

PluggingN = (Q + 1)(N, + 1) into the inequality (54), we optimal training in (34) contains pilot tones as well. Let

obtain us now concatenate equations like (55) withe [0, L] to
_ - Q 1 form the L + 1 columns of the(Q + 1) x (L + 1) matrix
Noe+12 001 afondy Y, := [y’(0) y’(1)---y®(L)]. Notice that the matrixY,

_ ) o contains all the training-based received data frgimin (12)
When@ > 1,i.e., when the block lengtl is sufficiently large, arranged in a 2-D format. I¥, := Fo,1Y,/(Q + 1) denotes

we find that the distance between two consecutive pilot SYmb@lg FET of this 2-D received data array, we can express the
is Ns+1=|1/(2fmaxTs)]- Sl_nce [22].obta|ned this optimal training input—output relationship after FFT processing as
distance based on a general time-varying channel model, while

we started from the BEM, the equivalence that we just estab- 1 eiwo ... giwol
lished also corroborates the validity of our BEM. 1 efor ... giwL
Y, =1/PyD(0) | . :

C. Time-Frequency Sampling Interpretations

For time-selective channels, it is well known that the optimal 1 elwe ... giwal
PSAM samples uniformly the channel in the time domain ho(0) -+ ho(L)
via periodic insertion of pilot symbols [5]. Indeed, starting hi(0) - (L)
from the scalar input—output relationship for the training ® +W, (56)

samplesy; (i) = h(i)b + wy(i), one can estimate the channel

ash(i) = yp(7)/b. In a dual fashion, for frequency-selective W (0) oo h(L

channels, optimal PSAM with cyclic prefix samples uniformly 1(0) (L)

the channel in the frequency-domain via periodic insertiqnere ) denotes the Hadamard product. In scalar form, (56)
of pilot tonesb [1], [21]. The input-output relationship NOW yie|ds

becomesy,(¢) = h(q)b + wy(q), wherey,(g) denotes the

received sample at th@th_ fr(.aqu_en_cy bin after fast Fourier gg(l) zéq(l)hq(l) +u§f’1(l),
transform (FFT) processing; similarlyi(q) is the channel .
transfer function at theth bin. Channel estimates are now by(l) := 1/ Ppet@a(Net 14D (57)

formed in the frequency-domain a$q) = 4 (¢)/b.

For doubly selective channels, we can view the BEM coeffivhich proves that indeed our optimal PSAM samples the BEM
cienth, (1) in (1) as the two-dimensional (2-D) channel sampli time-frequency to enable estimation of the doubly selective
at the gth frequency bin/th lag or time-slot). We wish to channel viah, (1) = 75(1)/b(1). In fact, our optimal training
show in this subsection that our optimal PSAM in (34) enabl&equence in (34) is precisely what one needs to obtain the
2-D sampling and estimation of our time-frequency selectivghannel model that is assumadortiori in [14]. Interestingly,
channel. Intuitively thinking, the Kronecker deltas in (34¥ptarting from the continuous-time channglt; ), and fol-
surrounded by zero-guards implement time-domain sampliliyving the steps in [18] to obtain our discrete-time equivalent
with pilot symbols; furthermore, the fact that these deltas aBEM in (1), one can verify that our time and frequency sam-
periodically inserted implies that they are also equivalent fing rates satisfy the 2-D sampling theorem in [14]. Because
Kronecker deltas in the frequency-domain and thus serveths latter did not adopt the BEM, this equivalence further
pilot tones as well. To solidify this intuition, observe firstconfirms the validity of the BEM.
that with our optimal PSAM in (34), the matricds, in (12)
become all equal ta/P,I; ;. Let us now select the) + 1 VIl. NUMERICAL EXAMPLES

entries fromy;, in (12) with indices{(q + 1)(I + 1)} for  We now present test cases to validate our analysis and design.
a fixed lagl. With our optimalB, = +/PyIr41, this allows Unless otherwise mentioned, in all test cases, the transmitted
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Fig. 5. Capacity versus number of pilof§ (). Fig. 6. Power ratio allocation.
block size isNV = 63, the number of information symbalg, = 8 , , , .
42, and the modulation is QPSK. The doubly selective chann “=— Upper (optimal) | :
model is generated using the following parameters: -& - Lower (optimal) |
. . 5t Upper (equi)
« carrier frequencyfy, = 2 GHz; W1 --- Lower (equi)
» sampling periodl’;, = 53.6 us; 5 .
» mobile speed,,., = 160 km/hr. %4-
Thus, the maximum frequency shift is found to bes
Smax = 296.30 Hz. With these parameters, we find tliat= 2. %3 |
Our channel order id. = 3. All the channel coefficients §
he(l) are generated as independent, standardized, comp&
Gaussian random deviates. The multipath intensity profile %2* .
selected as).(1) = exp(—0.17/7s), V¢, and the Doppler @ e
. —1 < - -
power spectrum is chosen &s(f) = (Ww/fr%ax — f2) ir T .
when f < fua Otherwise,S.(f) = 0, YI. We define the MESEaa f _
variance ofh,(l) aso; ; = v$.(IT;)S.(q¢/(NTs)), where of ; ; , ;

v = (X, ¢e(ITe)Se(q/(NT.)))~" denotes the normal- 0 5 0 mam 20 25
izing factor. The signal-to-noise ratio (SNR) is defined as (dB)
P/(N - ZL(Q + 1))/‘7121;- Fig. 7. Optimal power allocation versus equi-powered allocation.

Test Case 1 (Optimal PSAM Parameterd)vo parameters

will be tested in this example. The first one is the number of Test C 2 (C . With Equi-P d PSAWD:
the nonzero pilot symbol&7; » in C2). We letNy » =g, Vp est Case 2 (Comparison With Equi-Powere w):

and adopt all the other parameters in Table | while changiff§Phasize the importance of power allocation, we compare our
N;. Fig. 5 depicts the lower bound on the average capacity (4jtimal design (in Table 1) with a PSAM design havifg =
versusNV;. It can be seen that the capacity bound decreas%;s and the other parameter_s selected_ according to Table I. For
monotonically asV; increases for each SNR value considerddiS case, the power allocation factoris= N/(1 + N) =~
(0, 10, and 20 dB). Furthermore, we notice that as the SNR 93 From (48), the optimak ~ 0.65. Fig. 7 depicts the lower
creases, the effect of; increases. The result in Fig. 5 validate§nd upper bounds for both cases. We note that i) for the optimal
the claim in Proposition 3. allocation, the lower bound is closer to the upper bound than for
Another important parameter we want to test here is the powigis equi-powered PSAM; therefore, optimal power allocation
allocation factor. We depict the lower bound on the averag@ays off, and ii) the lower bound for the optimal PSAM is higher
capacity versus in Fig. 6. Whena is too small (near 0), the than that of equi-powered PSAM since more power is allocated
average capacity is small since the information symbols do rfet training in the optimal case. Similar reasoning explains why
have enough power to combat AWGN. Wheis too large (near the upper bound of equi-powered PSAM is higher than that of
1), the average capacity is also small since the training symbtile optimal PSAM. To further compare the performance of these
do not have enough power to provide reliable channel estintao cases, we depict the BER versus SNR in Fig. 8. It can be
tion. From (48), the optimak ~ 0.65 in our setup is also veri- observed that compared with the equi-powered PSAM, the op-
fied by inspecting the maximum in Fig. 6. timal scheme gains 3 dB d0~2. In Fig. 8, we also plot the



MA et al: OPTIMAL TRAINING FOR BLOCK TRANSMISSIONS 1363

(MMSE}
P (ideal)

MMSE)
Idea} £

e Opt}mai
e EgUi-powered
S —— lIdeal

NNO
'U‘U

Average BER
Average BER

Py
o
Py
o

0 5 10 15 20 25 0 5 10 15 20 25
SNR (dB) SNR (dB)

Fig. 8. BER curves for optimal versus equi-powered transmissions. Fig. 10. CP versus ZP for frequency-selective channels.

6 ; g 1 ! (40) with Q@ = 0. For CP-based training, the capacity bounds
o gg\fg : - - are plotted according to [21]. Fig. 9 depicts the average ca-
pacity bounds for CP- and ZP-based schemes. We natice that the
bounds (either upper or lower) for ZP are consistently greater
than those of CP, which is partially due to the power loss in-
curred by the CP.
Although BER is not our design criterion, it is the ultimate
. performance metric for all communication systems. Therefore,
we plot BER versus SNR in Fig. 10. In the same figure, the ideal
cases corresponding to perfect channel estimates are also plotted
as benchmarks (the dashed lines). We computed MMSE channel
estimates based on pilot symbols and used zero-forcing (ZF)
a equalization for symbol detection in both cases. From Fig. 10,
: _ we observe that i) ZP outperforms CP at high SNR, whereas CP
Q , : has about a 2-dB advantage at BER).1; ii) from the slopes of
mSNR (68)15 20 25 the curves, we notice that CP offers lower diversity order than
ZP; and iii) for both cases, the penalty for inaccurate channel

Fig. 9. CP versus ZP for frequency-selective channels. state information is about 1.5 dB.
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ideal case with perfect channel estimates. The SNR penalty for Vill. CONCLUDING REMARKS

channel estimation error is only about 1.5 dB if we adopt the Optimal PSAM was designed for LMMSE estimation of
optimal a.. doubly selective channels by maximizing a lower bound on
Test Case 3 (Comparison of ZP in (51) With CP in [1] anthe average capacity while at the same time minimizing the
[21]): Thistest case is designed to compare our scheme in Se@an-square channel estimation error. It turned out that the
tion VI-A with [1] and [21]. The channel is frequency-selectiveptimal training strategy consists of equi-spaced and equi-
with independent and identically distributed (i.i.d.) taps. Theowered pilot symbols surrounded by a number of zeros
channel orderl. = 7, and each tap is a zero mean Gaussiatictated by the channel’s delay-spread and inserted periodically
random variable with variance/(L + 1). The number of in- with a period dictated by the channel’s Doppler-spread. The
formation symbols per block i&, = 48, and the block length design enabled a time-frequency sampling of the channel and
N = N, + 2L + 1. Therefore, for CP-based training, the CRvas shown to subsume time- or frequency-selective channel
length isL. The total power per block is fixed tB. Hence, the estimation as special cases.
power ratio allocated between information symbols and trainingOur future research will target: i) combining the maximum
symbols for the CP-based schem@igV, + L + 1)/N.Fig. 9 diversity design in [18] with our optimal training herein to fur-
depicts the average capacity bounds for both ZP- and CP-bateat increase the overall system performance, and ii) extending
alternatives. Here, SNR= P /(N , +1). For ZP-based training, the optimal training here to space-time coded multiantenna links
the capacity upper and lower bounds are plotted using (21) ahdt encounter doubly selective fading effects.
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APPENDIX A estimator ok is an MMSE estimator. Therefore, we can obtain
PROOF OFLEMMA 1 R, . by the LMMSE estimator of as
Based on the definition of mutual information, we have
R, = Re — Ry R 'Ry, (60)

I(ys; s[H) = H(s|h) — H(s|h, y)
where
where™(-) denotes entropy. Singg, = H,s + w, wherew
is AWGN, we have that the random varialsle€onditioned on R, := E[s(y’)"|h] = R,H' + E[sv"!|h]
h, andy’, is Gaussian distributed. Thus, the entr@pis|h, y’) R, == Ely.(y,)" Ih]

can be expressed as R . . . SN
P =H.R.H” + R, + H,E[sv"|h] + E[vs"|hJH.
H(S|h7 y;) = log(det(ﬂ-eRsh/é,h))

Becauséh is Gaussian and the noise, in (12) is Gaussian,

. o rrrer |1 _ for the LMMSE channel estimator, we ha#gh|h] = E[h —

whereR. . ;= (Rs_ + (103, ) Hy H,) - ForagivernR,, [ p] = 0. Thus, we can verify that
we know thatH(s|h) is maximized whers is Gaussian [2, p.
143, Th. 3.8], i.e. . ~ oA — ey A
3.Th. 3.8 Le. E[sv’|h] = E[ss"H! |h] + E[sb"H]'|h] = 0. (61)

h,) < log(det(meR, . . .
H(slh, ) < log(det(meR.)) Taking (61) into account, we can rewrite (60) as

with equality if and only if the random variabkeis complex 5 -y 14
Gaussian distributed. Hence, we can upper bound the mutual Rs\fuy; =R, - R.H(H,R.H." + R,)" H.R,
informationZ(y’;s|h) as =(R;'+HIR;'H,)" "

I(yg; S|h) <log (det (I + % HSRSHZ'l)) PIuggingRsmvyg into (58), we obtain
- - - Z(y’; slh) > log(det(I + R,H"R;'H,)).

and the average capacity upper-bound in (20) can be written as s = stls Thv s

in (21). [

Therefore, the average capacity in (19) has a lower bound given
APPENDIX B in (24). =
PROOF OFLEMMA 2
APPENDIX C

Starting from the conditional mutual informatidity’,; s|h), PROOE OFL EMIA 3

we have
Suppose there are two training schemes leading to correlation
I(y; s|f1) _ H(s|f1) _ H(s|f1, v0). (58) matr_icesR.U andR, . LetA := R, — R, > 0in the positive
semi-definite sense, and note that bBthandR .- are full-rank
matrices [c.f. (23)]. By eigen-decomposidy, we obtain that
A = UaAAU¥, whereA 4 includes all nonzero eigenvalues
of A, and the columns dJ o are the corresponding eigenvec-
tors. From the matrix inversion lemma, we have that

Recalling (12), we notice that does not depend on Hence,
from A4), we have

H(s|h) = log(det(meRy)).
R,;!'=R,!'-RJUAAL + ULR,'UA)'UAR,!
Similar to Appendix A, based on [2, p. 143, Th. 3.8], we obtain —R-1_ A/ 62
that B (62)

H(s|h, y’) < log (det (weRsm y)) (59) whereA’ > 0, and henceR;! < R,'. Using the mono-
e tonicity of log, and the propertylet(A + B) > det(A), for

where the equality holds if and onlysfconditioned orh and A+ B > 0, we infer that at high SNRH., ~ H.,), it holds that
y. is Gaussian distributed with covariance matﬂ{glﬂ_y, = [cf.(62)]
El(s — E[s|h, y.])(s — E[s|h, y.])"]. Note that wherv is - o
Gaussians for givenh, andy, is also Gaussian. Thus, the enlog det (IN5+LP + PSR,ElHSH?f)
tropy H(s|h, y’) is maximized [c.f. (59)]. HereR ; , isthe ) = 1t GH
covariance matrix of the MMSE estimator sffor each real- < logdet (IN~<+LP + PR, H.H, ) - (63)
ization ofh. Recall that our model ig’, = H,s + v. Sinceh
is Gaussian, if the noise is also Gaussian, then the LMMSETherefore, minimizindR., is equivalent to maximizin@. m
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APPENDIX D It can be verified thaHfI o= H; er Vq € [0, Q). SinceH
PROOF OFLEMMA 4 is Gaussian [c.f. A2)], the estimakeis also Gaussian, and thus,

Suppose there are two training schemes with identicHl,, ,, is Gaussian. Because
E[hh™], leading to correlation matriceR., and R/, as in .
(23). We observe that the first term on the right-hand side of EH ]
(23).|s identical for the two_schemes. If the scheme \Rjghh_as EH: - (H Z,pl) |=EH Z,M(—;,M)H]
the firstL and the last. entries ofb,, equal to zero (a two-sided
zero-guard condition), then the second term in (23) is Z€fcause of the Gau35|an|ty, we obtain tfﬁt;m and

becausd,b = 0 [c.f. (3)]; if the one withR.,, does not have L
jwq ( Y(Ns+2L+1)FT s
this zero-guard, then it cannot null this positive semi- deflnlt“é] e H p, have the same distribution. So do

term. Therefore, we obtaiR, < R, If 3N, , < 2L, then H‘1 andHS SinceN is fixed, asN,,, increases, we infer

E[e]'wq(p27pl)(ﬁs+2lz+1)ﬁ; ) ] -0
,P1

the two-sided zero-guard condition requires thgt= 0. In thatN, decreases and so daés ]
this casep,, cannot be used for channel estimation; indeed, if
b, # 0, then the minimunR,, cannot be achieved. Hence, we ACKNOWLEDGMENT
require thaiNy, , > 2L + 1. u The authors would like to thank Prof. L. Tong of Cornell Uni-
versity for his suggestions on the proof of Lemma 2.
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