A Logical Language for Expressing Authorizations

Sushil Jajodia Pierangela Samarati V. S. Subrahmanian
Center for Secure Information Systemsand Dipartimento di Scienze dellinformazione Department of Computer Science
ISSE Dept., George Mason University Universita di Milano University of Maryland
Fairfax, VA 22030-4444, USA 20135 Milano, Italy College Park, MD 20742, USA
email:j aj odi a@nu. edu email:samarati @si .unim .it email:vs@s. und. edu
Abstract tion of rules (orauthorization} which determine, for any

user and any object in the system, the types of accesses

A major drawback of existing access control systems is(e.g., read, write, or execute) the user is allowed on the
that they have all been developed with a specific access conebject. There are many different choices of access control
trol policy in mind. This means that all protection require- policies [8]. In aclosed policy all accesses that are to be
ments (i.e., accesses to be allowed or denied) must be speallowed (we call thespositiveauthorizations) must be spe-
cified in terms of the policy enforced by the system. Whilecified. The request of a user to access an object is checked
this may be trivial for some requirements, specification of against the specified authorizations; if there exists an au-
other requirements may become quite complex or even im+thorization stating that the user can access the objeckin th
possible. The reason for this is that a single policy simply specific mode, the access is granted, otherwise it is denied.
cannot capture different protection requirements userg ma Alternatively, in anopen policy all accesses to be denied
need to enforce on different data. (we call thesenegativeauthorizations) have to be fully spe-

In this paper we take a first step towards a model able cified; users are allowed all those accesses that they have
to support different access control policies. We propose a not been explicitly denied. Some policies permit specific-
logical language for the specification of authorizations on ation of both positive and negative authorizations. Pdiicie
which such a model can be based. The language allowswhich permit conflicting authorizations to be specified on
users to specify, together with the authorizations, thécgol the same data object provide amerriding (e.g., denials-
according to which access control decisions are to be made.take-precedengerule stating how such conflicts are to be
Policies are expressed by means of rules which enforce detesolved.

rivation of authorizations, conflict resolution, accessi€o While an access control policy defines what is author-
trol, and integrity constraint checking. We illustrate the ized, an access control mechanism implements the policy
power of our language by showing how different constraints by ensuring that all accesses are in accordance with the un-
that are sometimes required, but very seldom supported byderlying policy. In studying access control, it is useful to
existing access control systems, can be represented in ouseparate policy and mechanism for several reasons: First,
language. we divide the problem into two subproblems, each of which
can be addressed separately. Second, it is possible to have
different mechanisms that enforce the same policy. Third,
1 Introduction it is possible have mechanisms that are capable of imple-
menting multiple security policies. This last feature isywe
important from a practical standpoint. If we have a general
mechanism that is capable of implementing a number of dif-
ferent security policies, we can replace the security polic

Access control policies govern the access of users to in-
formation on the basis of the users’ identity and a collec-

*The work of Sushil Jajodia was partially supported by NagioBci- without requiring a change in the mechanism.

ence Foundation under grants IRI-9633541 and INT-941260Hg Na- Unf | | I | del d
tional Security Agency under grants MDA904-96—-1-0103 amNd04— n or_tunate _y’ a m(_)St _a Z_iccess C(_)mro modaeis an
96-1-0104. The research of V.S. Subrahmanian was suppomedt by mechanisms fail to maintain this separation, and are &ilor
the Army Resiamh O/fgce under grants DAAH-04-95-10174 %‘\A? specifically to meet the requirements for the closed policy.
04-96-10297, by ARPA/Rome Labs contract F4630602-93-&x@@rder [SRSCSNEH ; :
A716), by an NSF Young Investigator award IRI-93-57756, agdhe This rlgldlty Creat_es a pmblem when the prOteCtlon reqUI_re
Army Research Laboratory under Cooperative Agreement DAKAR6-2- ment of an application are different from the policy built

0002 Federated Laboratory ATIRP Consortium. into the mechanism at hand. In most cases, the only solu-

tion is to implement the policy as part of the application different security policies can be represented in our frame
code. This solution, however, is dangerous from a security work.
viewpoint since it makes the tasks of verification, modifica- The remainder of this paper is organized as follows.

tion, and adequate enforcement of the policy difficult. Section 2 introduces the notations and definitions that will
The recent implementations of the microkernel-based be used in the paper. Section 3 describes the logic lan-
operating systems (e.g., Trusted Mach [4], Synergy [10], guage through which authorizations and rules can be spe-
and Distributed Trusted Operating System (DTOS) [6]) cified. Section 4 defines authorization specifications and
cleanly separate the policy enforcement from the policy de- their correctness. Section 5 discusses possible app®ache
cision. Apolicy-neutral security serverhich is inside the to propagation and conflict resolution and shows how each
microkernel is responsible for the enforcement of the golic of this can be represented in our language. Section 6 illus-
decision; the policy decision is left to security server trates how different constraints that can be required on the
which is outside the microkernel. Since the computation authorizations or on the system working can be included as

of access decisions based on a particular policy is separateules in the specifications. Finally, Section 7 concludes th
from the enforcement mechanism, it is possible to imple- paper.

ment different policies on the microkernels by simply in-
serting the right security server.

Although this is a step in the right direction, we go one 2 Basic assumptions, notations and defini-
step beyond this by making it possible to implement dif- tions
ferent policies without requiring a replacement of even the
security server. We present a language that can be used by

users to express their security policies. The language com- |, this section we introduce the basic elements on which

prises different kinds of rules: derivationrules, whicloal yr model is based and introduce notations and definitions
derivation of implicit authorizations from those expligit that will be used in the rest of this paper.

specified and determine the overriding policy to be applied;

resolution rules, which regulate how conflicts between au-

thorizations must be resolved; access control rules, which2 1 Objects

regulate access control policy decisions; and integritgsu

which are used to express different kinds of constraints

on the specification and use of authorizations. Different We assume that there is a €& of objects defined in
policies can be specified for different objects. For inseanc the system on which somactionscan be executed. The
access to an object can be controlled according to the closeathoice of the specific objects and actions depends on the
policy and access to another object according to the opensystem to which the model is applied. For instance, in a file

policy. A nice feature of our approach is that themese- system objects will be the files and directories stored and
curity server, which evaluates these rules, can support dif the possible actions will beead, wri t e, andexecut e.
ferent policies, depending on the specifications. In a relational database system, the database, tablesstupl

The first attempt aimed at providing a general frame- Or columns within a table, and application programs will be
work for expressing authorizations was made by Woo and considered as objects whereas actions will be represented
Lam [11], who proposed the use default logic to model au- by the different modes through which objects can be ac-
thorization and control rules. Default logic is a very ex- cessed such &l ect, i nsert, updat e, andr un (the
pressive framework. However, the approach suffers from latter being applicable only to application programs).

several drawbacks. First, default rules may not be conclus- To allow the specification of authorizations on sets of ob-
ive — given an access request posed by a user, they mayects, we allow objects to be grouped ifypes Again the

neither authorize nor deny the request. Second, the lantypesT to be considered are specific to the system to which
guage of default logic is not even semi-decidable. Third, the authorization model is applied and are not included in
no conflict resolution mechanisms are articulated in their the authorization model itself. Types can correspond to
framework. In contrast, we have developed a compact lan-the elements of the underlying data model. For example,
guage that is adequate to express all authorization psicie in an operating system environment types sucli iase,

but is still computable in polynomial time. Additionally i directory, execut abl e program can be defined.
our framework, user’s access requests are handled conclusfypes can also be defined with respect to the data contained
ively — they are either authorized or denied. in the objects or to the application/activity in which they

The work presented in this paper extends a previous pro-are used. For instance, typps-fil es, tex-files,
posal by us [7]. Major extensions concerns the considera-dvi - f i | es, can be defined grouping together the post-
tion of authorization for roles and the investigation of how script, latex, and dvi files respectively.

Public Employee

\
Citizens CS-Dept ?ng-Dept Non-citizens Adm-Staff Research-staff
A
/ T\?S-%Facult;/\ / Secrtéfry%jec-nﬁager %veloper
Jim Mary Jeremy George Lucy Mike Sam Cobol-Programmer C-Programmer
Figure 1. An example group hierarchy Figure 2. An example role hierarchy
2.2 Authorization’s subjects Cobol - progr ammer can be both seen as a specialization

of pr ogr anmrer . The role hierarchy can also be represen-

We consider three different kinds of SUbjeCtS to which ted by a graph where nodes are the different roles and a
authorizations can be granted. Theseuwsersy, groupsG, directed arc from role; to roler; indicates that; is a spe-
androlesR. Users are individuals connecting to the system cialization ofr;. The concepts of direct and indirect mem-
and allowed to submit requests. Groups are sets of userspership defined for groups apply to roles as well. Figure 2
groups can be nested. Roles agmedcollection of priv- illustrates an example role hierarchy.
ileges needed to perform specific activities in the system. In view of the different semantics groups and roles carry,

Let us first examine groups. A group is defined as a setwe require that the group and role hierarchies to be dis-
composed of individual users or other groups. Groups dojoint (i.e., same subject cannot appear in both hierarhies
not need to be disjoint; a user or a group can belong to Note however that a same “concept” can be seen both as a
more than one group. We say that the membership of agroup and as a role. To understand the difference between
subjects in a group(is directif s is defined as a mem- groups and roles, consider the following example. We
ber of G. It is indirect if either s = or there exists @ could define a group, calleG.pr ogr anmer , consisting
sequences, ..., s,,n > 1 such thats; is a direct member gj| users who are programmers. Any authorizations spe-
of s;41, fori = 1,...,n — 1. The only constraint on the cified for G.pr ogr ammer are propagated to its members.
groups is that the membership relationship be acyclic, i.e. Thus, if an authorization to readech- r epor t s is given
ifa SUbjECtSZ' is a member (dlrectly or indirectly) of another to G_pr ogr amrer , its members can exercise this r|ght
subjects;, with s; # s;, thens; cannot be a member of. We could also define a role, call&®pr ogr ammer , and
The group membership relationship can be represented as @ssociate to it those privileges that are related to the pro-
graph where nodes are users and groups and an arc direggramming activity and necessary for the programmers to
ted froms; to s; indicates thas; is a direct member of;. perform their jobs (such as compiling, debugging, writing
Users are the leaves of this graph. We refer to this graph aseports, and so on). These privileges can be exercised by
group-hierarchy An example group-hierarchy is illustrated authorized users only when they choose to assume the role

in Figure 1. R.pr ogr amer .
Throughout the rest of this paper, we will deal with

group-hierarchical data systems. A data system with no
hierarchy is actually captured as a data system with a hier-
archy where nodes are users and there are no arcs betweeft major difference between groups and roles is that roles
users. The only membership relationship holding in such acan be “activated” and “deactivated” by users at their éiscr
hierarchy is the indirect membership of a user to itself. tion while group membership always applies. In this section
Roles are named collection of privileges. Intuit- we clarify how role activation and deactivation changes the
ively, a role identifies a task that users need to ex- privileges of users.
ecute to perform organizational activities. Example of We refer to all roles that a user is allowed to assume as
roles can besecr et ary, dept - chai r, progr amer, potentialroles. When a user activates a role, the role be-
payrol | -of fi cer, and so on. To enable users to suc- comesactivefor the user. To take active roles into consid-
cessfully execute the task, each role has some authornzatio eration when processing access requests, we introduce the
associated with it (see Section 3). By assuming a given role,concept of aequestor subjecti.e., a subject who requests
a user is allowed to perform the actions for which the role access to objects). A requestor subject is a pair whose first
is authorized. element is a user (the user who enters the command) and
Like groups, roles can also be organized in a hierarchy. whose second element is the set of roles currently active for
A role is asub-rol e of another role if it is a special- the user (the set is empty if the user does not have any active
ization of it. For instancel-ort r an- pr ogr ammer and roles).

2.2.1 Differences between groups and roles

Ifno roles are active for a user, the user will be able to ex-
ercise all the privileges s/he has either as an individual (i
explicitly granted to him/her) or as a member of groups to
which s/he belongs. Remember that group membership al-
ways applies (i.e., usecannotactivate or deactivate group
memberships at will). By activating a role, a user will be al-
lowed to exercise the privileges for which the role is author
ized. A user can assume more than one role at atime. In this
case s/he will be able to exercise the union of the privileges
of all these roles. How this union is to be determined and
whether the user looses his/her personal privileges upon ac
tivation of some roles depend on the access decision policy
to be applied. An interesting aspect of our approach is that
our general language can be used to express and enforce
different policies. Users can choose, when stating the au-
thorization specifications, the access control policy tajpe
plied. We will discuss some possible policies in Section 5.
Moreover, in Section 6 we will illustrate how different kisd
of constraints that can be imposed on the roles users can be
authorized to activate or that can activate simultaned@sly
can be easily represented as rules in our language.

Note that the fact that the authorizations given to a role
are applicable only when that role is active for a user has
two advantages. First, it gives the user all those prividege
that are needed to perform a task. Second, it is consistent
with the “principle of least privilege”: each processisn-
finedto those actions needed to perform the task. This acts
as a defense against malicious attacks that may aim to ex-
ploit the role’s authorizations.

3 The Authorization Specification Language
(ASL)

In this section, we introduce the basic constructs of our
authorization language. We will show in subsequent sec-
tions how these constructs can be used by the System Se-
curity Officer (SSO) to specify authorizations and rules.

We start by defining an authorization policy.

Definition 3.1 (Authorization Policy) Anauthorization
policy is a mapping that maps 4-tuplés, «, R, a) consist-

ing of an object, a user, a role set, and an action, respect-
ively to the sefaut hori zed, deni ed}.

Given a set of actiona, we define a set of signed au-
thorization type$A as{+a, —a|a € A}. ASL is alogical
language created from the following alphabet:

1. Constant Symbols:Every member 0Obj U T U U U
G U R U A U SA U N where N denotes the set of
natural numbers. Remember tigal; is the set of ob-
jects, T the set of typesU the set of userd; the set

! Precisely speaking this is not actually a union since negativileges
also need to be considered.

of groups,R the set of roles, and andSA the set of
unsigned and signed authorizations respectively.

2. Variable Symbols: There are eight setg,, V;, Vi,

Vg, Vo, VR, Vi, Vo Of variable symbols ranging over
the setbj, T, U, G, R, 2R A, andSA, respectively.

In the following, we refer to elements of a s&tand
variables ranging over the set a¥ ‘terms”. For in-
stance, variables i, and members oDbj are object
terms. We collectively refer to user, role, and group
terms as subject terms.

3. Predicate Symbols:The following predicate symbols

are considered.

(8) A ternary predicate symbalando. The first ar-
gument ofcando is an object term, the second
is a subject term, and the third is a signed au-
thorization term. The predicatando represents
authorizations explicitly inserted by the SSO.

(b) A ternary predicate symboldercando, with
the same arguments aando. The predicate
dercando represents authorizations derived by
the system using logical rules of inference.

(c) A ternary predicate symbofio, with the same
arguments asando. The predicatelo repres-
ents the authorizations that hold for each subject
on each object. It enforces the conflict resolution
policy.

(d) A 4-term predicate symbogrant. The first ar-
gument is an object term, the second argument is
a user term, the third argument is a role-set term,
and the fourth argument is a signed action term.
The predicatggrant represents the accesses to
be allowed or denied to each requestor subject on
each object. It enforces the access control policy.

(e) A 5-term predicate symbofione. The first ar-
gument is an object term, the second argument
is a user term, the third argument is a role-set
term, the fourth argument is an unsigned action
term, and the fifth argument is a natural number.
Done rules represent the accesses executed by re-
guestor subjects.

() A binary predicateactive whose first argument
is a user term and second argument is a role term.
It captures the concept of active role/s for a user.

(g) Two binary predicategirin and in that take
as arguments two subjects, s;. They capture
the direct and indirect membership relationship
between subjects.

(h) A binary predicatetypeof that takes as argu-
ments, an object and an object typé. It cap-
tures the grouping relationship between objects.

(i) A predicate symboérror, with no arguments. If
error() can be derived through some rule, then
there is an error in the specification or use of au-
thorizations due to the satisfaction of the condi-
tions stated in the body of the rule.

If p is one of the above predicate symbols with ar-
ity n, and ty,...,{, are terms appropriate fop (as
defined above), thep(ty,...,¢,) is anatom We will
use the expressioliteral to denote an atom or its neg-
ation. For instance, ifOT, ST, and SAT are object

The first rule states that grou@S- Dept is authorized
to write filefi [e1. The second rule states that all mem-
bers of groupCS- Facul ty can writef i | e2. The third
rule states that rol&Secr et ar y can write objects of type
Let t er s. Finally, the fourth rule states th&eor ge can-
notreadfil el.

O

The reader may wonder why the model allows and
dirin statements in the body of rules when authorizations
can be specified for groups. The reason for this is that

terms, subject terms, and signed action terms respectivelythere are many different approachesptopagatingauthor-

then cando(OT, ST, SAT) and —cando(OT, ST, SAT)
are examples of literals.

izations from a group, to a subgroup, to a sub-subgroup and
eventually to an individual. Modeling this propagation{pro

guage.

Definition 3.2 (Done Rule) A done ruleis a rule of the
form:

done(o, s, R,a,t) +
whereo, s, R, « andt are elements oDbj, U, 2R A andN

respectively. Note that “done” rules are facts, as their god
is always empty.

Done rules are specified only by the system upon exe-
cution of accesses. Hone(o,u,R, a,t) is true, then user
u with roles inR active has executed acti@on objecto
at timet . Done rules are useful for implementing those

ations explicitly given to a subject and the authorizatitmes
subject may inherit from their super-subjects. Specifyang
authorization for a group is therefore different, in gethera
from specifying an authorization for all subjects belong-
ing to the group. To illustrate consider the first two rules
of Example 3.1. The first rule specifies an authorization
for groupCS- Dept . The rule makes a general statement
about the group as a whole, but not about specific members
of the group. Whether this authorization propagates to the
members will depend on the specific policy to be applied
as well as on the other authorizations specified by the SSO.
By contrast the second rule specifies an authorization for
the members oS- Facul t y. This latter authorization is

is therefore a short hand that can be used instead of specify-
ing a different authorization for each single member of the

policies in which future accesses of a user are based on thejroup.
accesses that the user has exercised in the past (as in the The SSO states authorizations throug@ndo rules.

case of the Chinese Wall policy [5]).

Definition 3.3 (Authorization Rule) Anauthorization rule
is a rule of the form:

cando(o, s, < sign > a) + L& ... &L,.

whereo, s, and a are elements 0Obj, UU GUR, and A
respectivelyn > 0, < sign > is either+ or — and, for
each0 < ¢ < n, L;, eitherain adirin, or typeof literal.

Authorization rules are specified by the SSO to allow or
deny accesses to subjects. The literals in the right hard sid
of the rules are used to specify conditions that must be veri-
fied for the authorization to hold.

Example 3.1 Consider the following authorization rules:

cando(filel, CS-Dept, furite
cando(file2, s, turite in(s, CS- Faculty).

cando(o7 Secretary, +urite

)«
)«
) « typeof(o,Letters).
)

cando(f ilel, George, —read

From the authorizations so specified, further authorizatio
can be derived by the system through the application of spe-
cified derivation rules. To distinguish authorizationslexp
citly stated by the SSO from the authorizations derived by
the system through derivation rules, we use the predicate
der cando for derived authorizations. Derivation rules are
formally defined as follows:

Definition 3.4 (Derivation Rule) A derivation ruleis a
rule of the form:

dercando(o, s, < sign >a) + ILi1& ... & L,.

whereo, s, and a are elements 0Obj, UU GUR, and A
respectively,< sign > is either+ or —, n > 0, and
Lq,..., L, are eithercando, dercando, done, in, dirin,
or typeof literals. All dercando-literals appearing in the
body of a derivation rule must be positive.

Example 3.2 The derivation rules

dercando(o,s,+a) ¢ cando(o,s’,+a)& in(s,s").

dercando(o, s, —a) ¢ cando(o,s’, —a)& in(s,s").

enforce implied authorizations from subjects to the subjec A resolution rule states that a subject must be al-
below them in the hierarchies (i.e., from a group to its mem- lowed/forbidden to exercise an authorization type on an ob-
bers and from a role to its specialized roles). ject.
O Note the difference betweeatho rules on the one hand
)))) andcando andder cando rules on the othecando and

_ Beside being used for expressing propagation of author-ge ¢ ando rules are authorizations, either positive or neg-
izations along subject's hierarchies, due to their gertgral - 44ive specified by the SSO or derived. These authoriza-
derl/at|(_)n rules can be used to express _d|ff_erent kmds_ %ftions may conflict and, therefore, may not be obeyed by the
implication relationships between authorizations. Fer in system. In contrastdo rules state what authorizations the
stance, the derivation of an authorization on the basisef th system must consider valid for each authorization subject,

presence or the absence of another authorization, as progp the pasis of the existing authorizations, specified or de-
posed in [2], can be enforced by putting the authorization ., .4

to be derived in the left hand side of the rule and the con-
dition for the derivation in the right hand side of the deriv- Example 3.4 Consider the following rules:
ation rule. By using variables instead of ground terms and

by combining different literals, we can also express a large do(filel,s,4+a) < dercando(filel,s,+a).
variety of implication relationships. do(file2,s,+a) < ~—dercando(file2, s, —a).
Example 3.3 Consider the following derivation rules: The first rule states that a subject can exercise an access on

dercando(£ilel, s, —read) ¢ dercando(£ile2, s',read) objectfi | el if_ s/h_e has a positiye authorizationforit (i.e.,
) R the closed policy is enforced dn | e1). The second rule
& in(s, 57)& in(s, 57). states that a subject can exercise an acceskidre2 only
dercando(o, s, —write) ¢ done(o’, s, read) if s/he does not have a negative authorization for it (ifee, t
& typeof(o, Exams) open policy is enforced dini | e2). O
& typeof(o’, Solutions).
Authorization, derivation, and resolution rules establis
The first rule derives a negative authorization for a sub- \nhether a positive, a negative, or no authorization must hol
jects to readfi | el if there exist another subjest and for each subject and access. These rules by themselves
a groups” such thats and s’ both belong tos” and s’ is are not sufficient to regulate access control. The reason
authorizedtoread i | e2. for this is that, as we have already illustrated in Section 2,
The second rule derives the negative authorization for a requestor subjects are composition of users and, possibly,
user to write an object of typExans if the user has read roles. Hence, requestor subjects do not correspond with au-
an object of typ&ol ut i ons. O thorizations subjects to which resolution rules refer. dsx
control rules determine whether a requestor subject é.e.,
user with, possibly, some active roles), must be allowed or
denied for an access depending on the authorizations spe-
cified for the user and/or for the roles. Access control rules
are defined as follows.

Derivation rules allow the derivation of authorizations on
the basis of other authorizations, either derived or eigpfic
specified by the SSO.

cando anddercando rules may admit the derivation of
both positive and negative authorizations for a given ob-
ject, subject, and action. The concept akaolution rule
given below, forces a decision to be made. Resolution rules
can also be used to force a decision in casedo and
dercando rules do not imply either a positive or a negat-
ive authorization for a given object, subject, and actian. |
such a case the decision is called tlefaultdecision. where L1, ..., L, are cando, dercando, done, do, in,

dirin, or typeof literals.

Definition 3.6 (Access Control Rule)An access control
ruleis a rule of the form:

grant(o,u,rs, < sign >a) + Li& ...& L,.

Definition 3.5 (Resolution Rule) A resolution ruleis a

rule of the form If grant(o,u,R,+a) is true, then useu with active

rolesR, will be allowed to perform actioa on objecto.

do(o,s,< sign > a) — L& ...& L,. e ; X X
Similarly, if grant(o, u, R, —a) is true, then useuw with act-

where o, s, and a are elements oDbj,UUGUR, and ive rolesRwill not be allowed to perform actioa on object
A respectively,< sign > is either4+ or —, n > 0, 0.
andLq,..., L, arecando,dercando, in,dirin, done, Or Most of the time, the user and the role-set terms in ac-

typeof literals and every variable that appears in any of cess control rules will be variables. This is due to the fact
the L;’s also appears in the head of this rule. thataccess control rulesire typically used to specify the

rulesgenerally applicabléo determine the access decisions An authorization specification is a collection of rules wlos
(whether to allow or not allow an access on the basis of au-evaluation determines, for each access request that can be
thorizations specified). They are not used to specify author submitted, whether the requested access must be granted or

izations.

Example 3.5 Consider the following rules:

grant(o,u, R,4a) + do(o,s,+a)& R=0.
+ do(o,r,+a)& —do(o,r, —a)

&reR&r €R.

grant(o, u, R, +a)

The first rule states that a request submitted by a user op-

erating as a single individual (no current active role) is to
be allowed if the user has a positive authorization for it.

The second rule states that a request by a user with some

roles R active is to be allowed if at least one of the active
roles is authorized for it and none of them is denied for it.

Authorization, derivation, resolution, and access cdntro
rules are all we need to specify authorizations and acces

denied. Authorization specifications are formally defined a
follows.

Definition 4.1 (Authorization Specification) Anauthoriz-
ation specificationA'S consists of a set of authorization
(cando), derivation @lercando), resolution o), access
control (grant), and integrity error) rules.

Every authorization specification in our language is a
stratifieddatalog program. Upon each access request by
useru with active rolesR to execute actiorr on object
o the program is evaluated and access allowed if and only
if grant(o, u, R, +a) is true according to the semantics of
the specifications. This access control checking can be per-
formed in linear time w.r.t. the number of rulesAs [7].

An important aspect of authorization specifications is

Stheir correctness. An authorization specification is odrife

control decisions. Our language supports an additional ind't 1S both consistenand complete By consistentve mean

of rule, calledintegrity rule, by which the SSO can define
constraints that must hold on the specifications. Integrity
rules can be specified on any of the literals or their combin-
ation. They are formally defined as follows.

Definition 3.7 (Integrity Rule) An integrity ruleis a rule
of the form:

error()

wherel,, ..., L, aregrant, cando, dercando, done, do,
in, dirin, typeof, literals.

that for each possible accessiaiqueaccess decision ex-
ists, i.e., the access is either to be granted or denied lbut no
both. Bycompletewe mean that for each access an access
decision, either grant or deny, exists.

Itis important to note that consistency and completeness
apply toaccess decisionsot to authorizations specified or
derived. As a matter of fact, inconsistent authorizations
or derivations can be allowed. Analogously, the presence
of both positive and negative authorizations applicable to
subject can be allowed (consider for instance the case of a
user activating two roles with contrasting authorizatjons
Consistencyrequires that theaccess decisiote unique.
The same consideration applies to completeness. Requir-

~ The above rule derives an error every time the conditions jng access decision completeness does not imply requiring
in the right hand side of the rules are satisfied. Whenever agythorization specification completeness. Access decisio
new ruler is to be inserted, the error rules are evaluated and completeness ensures that a decision can always be made.

ther accepted only if its insertion does not generated any
error? We note that integrity rules may be general or may
be specific to an application. General rules control incon-

This can be true even if for some access no authorization is
specified or deriveddefault decision
Authorization specification correctness is defined as fol-

sistencies such as “no subject can be both authorized anggys.
denied for the same access”. Application-dependent rules

control inconsistencies appropriate for the applicatsuch

as “a subject cannot be authorized to read hathe A and
fil eB". Section 6 contains some examples illustrating the
expressive power of integrity rules.

4 Authorization specifications

The authorization language we have presented in the pre-

vious section allows us to state authorization specificatio

?Note that in case is adone rule, the fact that it cannot be inserted
means that the execution of the corresponding access da@adiowed.

Definition 4.2 (Authorization Specification Consistency
and CompletenessAn authorization specification isom-
plete if for each 4-tuple(o,s, R,a) at least one of
grant(o, s, R, +a) andgrant(o, s, R, —a) is true. An au-
thorization specification igonsistentif for each 4-tuple
(0,8, R,a) grant(o,s, R,+a) and grant(o,s, R, —a)
cannot both be true.

Itis interesting to note how specification correctness can
be stated and checked by using rules expressed in the ASL
language. In particular, the following two integrity rulesn

be used to return an error if either completeness (first rule)

or consistency (second rule) is not satisfied. 51+

error() <+ —grant(o,u, R, +a)& —grant(o,u, R, —a). - ST2 STS s4 =

error() <+ grant(o,u, R,4a)& grant(o,u, R, —a). 515/157_\|

The correctness of authorization specifications can there- 56 38
fore be enforced by inserting the above rules in the specific- Figure 3. An example of subject hierarchy

ations themselves. An alternative way of enforcing specific

ation correctness is by imposing restrictions on the thesrul

that can be specified [7]. subject and omit the specification of the object and action.
As we have stated completeness and consistency obviAll authorizations in a figure are assumed to refer to the

ously apply to access decisions (it would not be proper to same object and action.

require them on the authorizations themselves). We note

however that, due to the semantics of resolution rules, con-5 1 Derivation of authorizations along subjects

sistency (ot completeness) of théo predicate must also hierarchies

be required. The consistency requirement for the conflict

resolution decision is similar to that for access control de

cision. Resolution consistency requires that for each sub-

ject, object, and actiorio(o, s, +a) anddo(o, s, —a) can-

not be both satisfied.

The derivation policy determines whether and how au-
thorizations propagate from a subject to other subjects tha
are connected to it in a hierarchy. The first choice that
must be made in this respect is whether the authorizations
o o) of a subject should propagate at all to other subjects. As
5 Derivation of authorizations and conflict for groups, the answer is obviously yes. Since groups do

resolutions along subject hierarchies not appear in access requests (only users and roles do), the
only way authorizations of groups can be effective is by

In our model, we consider two different and disjoint Propagating them to the user members of the groups.
hierarchies: the group hierarchy and the role hierarchy. ~The answer is not so obvious for roles. In most mod-
However, different models make different choices with re- €ls that have roles, authorizations specified for a role are
spect to whether or how authorizations propagate along thepropagated to other roles specialized from it. Hence, each
hierarchy and the way conflicts between authorizations in- role inherits the authorizations of the roles of which it is a
dependently propagated to a subject are resolved. In thisspecialization. However, a different, more conservatie,
section, we will examine some of these different approachesproach could be to consider the authorizations necessary fo
and show how each of them can be easily represented witteach role separately and do not propagate them.
the use of few rules in our language. Recall that the ultimate ~ When the authorizations of a subject propagate along the
goal of a security policy is to decide whether an authoriza- hierarchy, the derivation policy must determine which au-
tion (positive or negative) holds for a given subject when thorizations propagate to a subjecin cases is a child-
the authorizations specified for the subject and for other subject of subjects with contrasting authorizations. When
subjects appearing in the hierarchies are taken into a¢coun the subjects for which the contrasting authorizations are
Two different aspects of the policy can be distinguished: specified are not connected by any path in the hierarchy

(e.0.,s4 ands; in Figure 3), the contrasting authorizations

Derivation It regulates the propagation of authorizations must all be propagated toleaving the decision of which

along the hierarchy. authorization should win over the other to the conflict res-
olution policy. In contrast, when the subjects for which the
contrasting authorizations are specified are related in the
hierarchy (e.g.s; ands- in Figure 3), overriding policies
can be applied. Three different approaches can be taken in
this case, which we list below.

Conflict resolution It determines which authorization
should take precedence when conflicting authoriza-
tions (i.e., different signs but identical actions and ob-
jects) exists for theamesubject.

Below, we discuss different choices that have been made o o
for each of these two aspects. Our discussion is in terms of ¢ NO overridingAll the authorizations are propagated
a generic subject hierarchy, and applies to both group and (regardless of the presence of other conflicting author-

role hierarchies. Our clarifying examples refer to the sub- izations).

Ject hleramhy shown in Figure 3. For the sake of Slmp|IC|ty, 3We note that the two approaches are not mutually exclusivély-A

in th_e figures, we indicate_the positiy_e and/or _negative aU- prid approach could be taken in which some authorizatioapespagated
thorizations held by a subject by writing the sign near the while others are not.

51+

IS
/]
S5 87 —

Se S8
@

51+

overriding (c) sub-subject overriding; (d) path overridin

e Sub-subject overrideShe authorization specified for
a subjects overrides a conflicting authorization spe-
cified for a supersubject af In Figure 3, the negative
authorization ofs, overrides the authorization af;
for s,. In this case, only the authorization gf, not
the authorization of;, will be propagated tos.

o Path overridesThe authorization specified for a sub-

51+ 51+

+ /T\ /T\ /T\

52 s34+ saE — 82 s34+ S4— — 55 s34 54—

+ STlg/sL:l:\I — ST(/ISL_\I _ ST(//SL\I

+ sg Sg+ — S¢ Sg — + sg Sg —
(b) (c) (d)

Figure 4. Authorizations derived from the specifications in

Figure 3: (a) no propagation; (b) no
g

¢ Nothing takes precedendd¢one of the two authoriz-

ations can be considered as prevailing over the other.
(The positive and the negative authorizations nullify

each other.) The final result is equivalent to the case
where no authorization had actually been specified (no
decision will be taken for subjeet).*

Figure 6 shows the ASL rules implementing the different

ject of s overrides a conflicting authorization specified approaches to conflict resolution.
for a supersubject of only along the paths passing
from s. The overriding has not effect on other paths.
In Figure 3, the negative authorization gf overrides
the authorization of; for s, and all its members only

6 Expressiveness of the ASL

’ : From the previous section, it should already be clear how
for the membership paths passing frem The au- oyr Janguage can be used to represent many of the mod-
thorizations ofs; could still still propagate to the sub- | present in the literature. In particular, most modets us
jects below it in the hierarchy through other member- some of the different approaches we have discussed in the

ship paths. In particular, the authorization specified for previous section and, hence, their mapping is almost imme-
s1 propagates tes through the membership path from yi5te.

s¢ 10 51 passing froms;. The classicatlosed(oper) policies can be easily repres-

ented by allowing the specification of only positive (negat-

Figure 4 illustrates the authorizations derived from the jye) authorizations and by appropriate access controsrule
specification of Figure 3 in each of the approaches above.The restriction that only positive (negative) authoriaat

The ASL rules implementing each of the approaches aréca pe specified, can be enforced through an integrity rule.
illustrated in Figure 5. As for access control, the rules enforcing the closed (open)
policy will derive a positive (negative) grant if a posit-
ive (negative) authorization exists and a negative (pasiti
grant otherwise. Examples of rules enforcing the closed and

In case a subject holds both a positive and a negativeopen policies have been given in Example 3.4.
authorization for the same access (e.g., subjedh Fig- To illustrate the expressiveness of our language, we now
ure 4(b,d)), the conflict resolution policy determines vihic consider several policies that do not fall in any of the cat-
of the authorization should be enforced. Four different ap- egories given in the previous section and show how our lan-
proaches could be taken: guage can be used to represent these policies .

5.2 Conflict resolution

« No conflictlt requires that no conflict arises. The pres- 6.1 Representing Authorizations Models

ence of a conflict is considered an error.

We show how the SeaView [8] authorization model can
be represented using our language. In SeaView, authoriz-
ation subjects can be either users or groups. Groups are

¢ Denials take precedencehe negative authorization is
enforced over the positive one (subjagtwill be con-
sidered denied).

4Note that this does not mean that no access decision candre k-
cess decisions are taken on the basis of the access cofglmot on the
basis of the resolution rules. The completeness of the aamedrol rules
ensures that an access decision will always be taken everafithoriza-
tion decision can be taken by the resolution rules.

¢ Permissions take precedendée positive authoriza-
tion is enforced over the negative one (subjectvill
be considered authorized).

. dercando(o, s, +a) < cando(o,s’, +a).
No propagation dercando(o,s,—a) < cando(o,s’, —a).
! !
No overriding dercando(o, s,+a) <+ cando(o, s/7 +a)& :.Ln(s7 s/).
dercando(o, s,—a) <+ cando(o,s’, —a)& in(s,s’).
. . dercando(o, s,+a) < cando(o,s’, +a)& —cando(o, s, —a)& in(s,s')& in(s,s")& in(s”, s")& s"” !
Sub-subject overrides dercando(o, s, —a) <+ cando(o,s’, —a)& —cando(o, s”, +a)& in(s,s')& in(s,s")& in(s”, s")& " £ &'
dercando(o, s7 +a) ¢ cando(o,s,+a).
. dercando(o, s,—a) <+ cando(o,s, —a).
Path overrides dercando(o7 s7 —|—a) + dercando(o, s, +a)& —cando(o, s, —a)& dirin(s, s').
dercando(o, s, —a) <+ dercando(o,s’, —a)& —cando(o, s, +a)& dirin(s, s').
Figure 5. Different approaches to the derivation of authori zations
do(o, u, +a dercando(o, u, +a).
No conflict do(o,u, —a dercando(o, u, —a).

dercando(o, u, +a)& dercando(o, u, —a).

dercando(o, u —|—a) ﬁdercando(o,u,—a).

(o,
(o,
(o,
(o,
dercando(o, u, —a).
(o,
(o,
(o,
(o,

Denials take precedence

TTT T T TT

(
(
- d d d
Permission takes precedence o(0,u, +a ercancolo, u +a)
do(o,u, —a dercando —a)& —dercando(o, u, +a).
Nothing takes precedence do(o, u, +a dercando(o, u —|—a) —dercando(o, u, —a).
do(o,u, —a dercando —a)& —dercando(o, u, +a).

Figure 6. Different approaches to conflict resolutions

sets of individual users anthnnotbe nested. Negative au- user/group does not have a null authorization on the object.
thorizations are not considered. A special privilegg | , The three grant rules enforce access control. The two pos-
meaning no access allowed, is used instead. A user can exiive rules determine when the access is to be allowed and
ercise the privileges of only one group at a time (SeaView enforce conditionsif and (i) above respectively. The neg-
groups behave somewhat like our roles.) A requestor sub-ative rule states that an access request for which no pesitiv
ject is the pair consisting of the user and the group the usergrant can be derived is to be denied. This rule provides com-
has currently activated. The request of a subject to exercis pleteness of the specifications. The three error rules eafor

a given action on an object is granted only if any of the fol- the different constraints of the model, that is: groups céann
lowing conditions hold: i the user has the authorization be nested (first rule), no negative authorizations can be spe
for the access and does not have a null authorization for it,cified (second rule), and a user can activate at most one role
or (ii) the user does not have any authorization at all (for at a time (third rule).

any action) on the object and the group has the authoriza-

tion for the access and does not have a null authorizationon6.2 Representing constraints

the object.

Due to the way groups are used in SeaView, they can be | thjs section, we illustrate the power of the integrity
represented as roles in our model. Thus, SeaView can b&es by showing how various constraints can be easily rep-
expressed using the following ASL rules: resented as integrity rules in ASL specifications.

do(o,u,s,+a) + cando(o,u,+a)& —cando(o, s, +null).

grant(o,u, R,+a) « do(o,u, +a). Incompatible groups Two groups are said to bmcom-

patible if they cannot have common members (i.e.,

grant(o,u, R, +a) < ~—cando(o,u,+a')& active(u,r) no subject can belong to both groups). For instance,
& do(o, r, +a). groupsNon-ci ti zens andCi ti zens are incom-
grant(o,u, R,—a) « —grant(o,u, R, +a). patible. Group incompatibility can be easily represen-
) ;) , ; ted by an error rule whose body contains thepre-
error() ¢ in(s,s)& ~in(s, s)les # 5. dicates of the incompatible groups, as follows:
error() « do(o,u,s, ~a). error() +« in(s,Non-citizens)& in(s,Citizens).
error() < active(u,r)& active(u,r & r #r'.

Incompatible roles assignmentTwo roles are said to be
incompatible if they cannot be activated by the
The resolution rule states that an authorization for an ac- same user. As an example, consider the roles
tion on an object specified for a user/group is valid if the partici pant andexam ner with the constraint

that a user allowed to activate roparti ci pant
cannot be allowed to activate (at the same or at a dif-
ferent time) the rolexam ner , and conversely. This
constraint can be represented by an integrity rule that
returns an error if a user is granted the permissions to
activate both roles. More generally, the incompatibil-
ity of n rolesry, ..., r, can be expressed as follows:

error() <+ grant(ri,u, R,activate)& ...

& grant(r,,u, R, activate).

Incompatible roles activation The activationof » roles is

incompatible if the roles cannot be all activatgidh-
ultaneously Note the difference between role activa-
tion incompatibility and role assignment incompatibil-
ity. In role activation incompatibility, a user cannot ac-
tivate the incompatible rolesimultaneouslybut s/he
can activate them at different times. Role activation in-
compatibility may be required to prevent a user to op-
erate with the union of the privileges of the roles since
this would give the user (more precisely, a process ex-
ecuting on his/her behalf) too much power, possibly
allowing exploitation of the allowed accesses. kgt

..., 7, be incompatible roles. The incompatible role
activation constraint can be represented by an integrity
rule that returns an error if, according to the specifica-
tions, a user has all the incompatible roles active:

error() <+ active(u,r1)& ...& active(u,ry).

Static separation of duty Static separation of duty refers

to the fact that a certain set of accesses cannot be al-
lowed for the same subject. The reason for this is that
the union of the accesses would give the subject too
much power. For instance, consider the operations of
subm tti ng, eval uati ng, andappr ovi ng the
budget. A static separation of duty requirement indic-
ates that a same subject cannot be authorized for all
the three operations above. This requirement can be

The rule states that a same user, even if activating dif-
ferent roles, cannot be allowed for the execution of all
the actions above.

Dynamic separation of duty The separation of duty con-

straints above refers to authorizations and accesses al-
lowed. In other words they constraint the authoriza-
tion specifications. There are cases where separation
of duty constraints are not to be imposed on the au-
thorizations but on their use. In this case, a user can
potentially execute any operation in the set. However
s/he cannot execute all of them. By executing some
s/he will automatically rule out the possibility of ex-
ecuting the others. Note the difference between this
kind of separation of duty constraint, which we refer
to asdynamic and the one in the previous example,
which we refer to astatic In static separation of duty
the SSO must specify the authorizations in such a way
that no subject will ever be granted all the actions in
the set. Hence, which actions a subject will, or will
not, be allowed to execute, is determined by the SSO.
In dynamic separation of duty, which actions the user
executes is determined by the user. To illustrate the
usefulness of dynamic separation, consider an office
with ten clerks. A groupl er k is defined to which
these users belong and to which the authorizations for
subm tti ng,approvi ng, andpayi ng orders are
given? Separation of duty requires that no user must
be able to execute all the three actions mameorder.
Which of the actions a user execute is not predeter-
mined. However, if a user executes two s/he must be
forbidden to execute the other. This constraint can be
expressed by the following rule.

error() +« done(o,u, R, submitting,t)

& done(o, u, R', approving, t')
& done(o,u, R", approving, t'")
& typeof(o,Order).

referred to either authorization subjects or requestor Chinese Wall The Chinese Wall constraint [5] can be seen

subjects. The constraint that a same authorization sub-
ject cannot be authorized for all the three operations
above can be expressed as follows:

error() « do(budget, s, submitting)

& do(budget, s, evaluating)
& do(budget, s, approving).

The rule above regulates the authorizations of each au-
thorization subject individually taken. A user could
however be able to execute all the actions above by
employing, either simultaneously or at a different time,
the roles which are authorized for the different ac-
tions. To avoid this situation, it is sufficient to express
the separation of duty constraint with reference to re-
guestor subjects as follows:

error() <+ grant(budget,u, R, submitting)

as a special kind of dynamic separation of duty. In
the Chinese Wall policy, objects are grouped iobon-
pany datasetse.g., Conpany- A and Conpany- B.
Company datasets whose organizations are in compet-
itions are then grouped together intonflict of in-
terest classeslf a user accesses an object in a com-
pany datasetd s/he cannot be allowed anymore to ac-
cess any object in a company datasets that appear in
a conflict of interest class withd. For instance, if
Conpany- A andConpany- B are in a same conflict

of interest class, a user who has accessed an object of
Conpany- A will not be able to access any object in
Conpany- Band vice versa. A possible way to repres-
ent this constraint in our model is by representing com-
pany datasets as types. An integrity rule can then be
specified that returns an error if a user accesses objects

& grant(budget, u, R, evaluat ing)
& grant(budget, u, R", approving).

5Note that the example can be expressed also with the useest riol
this case a rol€l er k is considered that users can activate in order to
execute the actions on orders.

of two datasets in the same conflict of interest class. References
For instance, the following rule enforces the constraint

for the two datasets /above:/ o [1] K. Apt, H. Blair, and A. Walker. Towards a theory of

error() ¢ done(o’,u, R, a’,t)& done(o, u, ', a,t') declarative knowledge. In J. Minker, editéounda-
& typeof(o, Company- A) tions of deductive databasgsages 89-148. Morgan
& typeof(o’, Company- B). Kaufmann, San Mateo, 1988.

The ones reported above are only some examples of the [2] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A
constraints that can be represented in our language. Sev- temporal access control mechanism for database sys-

eral other constraints can be imagined and a rule enforcing tems.|EEE Trans. on Knowledge and Data Engineer-
them easily found. Also, the general constraints represkent ing é(l)'67—80 F.ebruary 1996

above can be “personalized” or slightly modified to adapt to
different requirements. For instance a more restrictiverin [3] E. Bertino, S. Jajodia, and P. Samarati. Supporting
pretation of the Chinese Wall policy can forbid the execu- multiple access control policies in database systems.

o of e b acon v oty 1. 1S USEE U EEE Symp. o Souny and Papages
ging g'e group. ' 94-107, Oakland, CA, May 1996.

user accesses an object of ty@@pany- A no user of his

group/s will be allowed to access objectsGanpany - B. [4] M. Branstad, H. Tajalli, F. Mayer, and D. Dalva. Ac-

This can be expressed as follows: cess mediation in a message passing kernePRra.

error() ¢« done(o,u, R, a,t)& done(o,u’, R',a,t') & IEEE Symp. on Security and Privacyages 66—72,
typeof(o, Company- A)& typeof(o’, Company- B) Oakland, CA, May 1989.

& in(u, G)& in(u, G). [5] D. F. C. Brewer and M. J. Nash. The Chinese wall se-

. curity policy. InProc. Symp. on Security and Privacy
7 Conclusions pages 215-228, Oakland, CA, May 1989.

In this paper we have proposed a logical language for the [6] T. Fine and S. E. Minear. Assuring distributed trusted
specification of authorizations on which such a model can mach. InProc. IEEE Symp. on Security and Privacy
be based. The language allows users to specify, together ~ pages 206-218, Oakland, CA, May 1993.
with the authorizations, the policy according to which ac-
cess control must be enforced. Different policies can be [7]
specified on different objects, according to the needs of the
users. The language supports both the concept of groups
and roles and al?owsgthe sgre)zcification ofdifferentprulesl?reg P MOD Contf. on Management of Datducson, AZ,
lating the access control decisions. We have illustrated ho May 1997.

security specifications are stated in our language and shown [g] T. F. Lunt. Access control policies for database sys-

S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing mul-
tiple access control policies. IRroc. ACM SIG-

how different control policies can be represented. We have tems. In C. E. Landwehr, editoDatabase Security
also stated consistency and completeness constraints that |: Status and Prospectpages 41-52. North-Holland,
security specifications are required to obey. Moreover we Amsterdam, 1989.

have illustrated how different constraints that are gdhera _ _
required, but very seldom supported by the access control [9] R. Sandhu, E. Coyne, H.L. Feinstein, and C.E. You-
systems, can be represented in our language. The major ~ man. Role-based access control modéi&=E Com-
advantage of our approach is that it can be used to specify ~ puter, pages 38-47, February 1996.
different access control policies that can all coexist ia th o

. [10] O. S. Saydjari, S. J. Turner, D. E. Peele, J. F. Far-
same system and be enforced by the same security server. rell, P. A. Loscocco, W, Kutz, and G. L. Bock. Syn-

Our paper leaves space for further work. A firstissue we - A distributed. microk I-based i hi
plan to investigate concerns administrative policies.his t eray- IStnbuted, microkernel-based secunty archi-
tecture, version 1.0. Technical report, National Se-

paper we have made the assumption that all specifications .
are stated by the System Security Officer. The model can be iggg/ Agency, Ft. George G. Meade, MD, November

extended to the consideration of administrative policsgs r

ulating the insertion of the different rules by the users. We [11] T. Y. C. Woo and S. S. Lam. Authorizations in distrib-

also plan to investigate how our model can be applied in the uted systems: A new approacournal of Computer
representation and enforcement of complex organization’s Security 2(2,3):107—-136, 1993.

security policies, such as those of financial or health-care
institutions.

