
A Logical Language for Expressing Authorizations�
Sushil Jajodia

Center for Secure Information Systems and

ISSE Dept., George Mason University

Fairfax, VA 22030-4444, USA

email:jajodia@gmu.edu

Pierangela Samarati
Dipartimento di Scienze dell’Informazione

Università di Milano

20135 Milano, Italy

email:samarati@dsi.unimi.it

V. S. Subrahmanian
Department of Computer Science

University of Maryland

College Park, MD 20742, USA

email:vs@cs.umd.edu

Abstract

A major drawback of existing access control systems is
that they have all been developed with a specific access con-
trol policy in mind. This means that all protection require-
ments (i.e., accesses to be allowed or denied) must be spe-
cified in terms of the policy enforced by the system. While
this may be trivial for some requirements, specification of
other requirements may become quite complex or even im-
possible. The reason for this is that a single policy simply
cannot capture different protection requirements users may
need to enforce on different data.

In this paper we take a first step towards a model able
to support different access control policies. We propose a
logical language for the specification of authorizations on
which such a model can be based. The language allows
users to specify, together with the authorizations, the policy
according to which access control decisions are to be made.
Policies are expressed by means of rules which enforce de-
rivation of authorizations, conflict resolution, access con-
trol, and integrity constraint checking. We illustrate the
power of our languageby showing how different constraints
that are sometimes required, but very seldom supported by
existing access control systems, can be represented in our
language.

1 Introduction

Access control policies govern the access of users to in-
formation on the basis of the users’ identity and a collec-�The work of Sushil Jajodia was partially supported by National Sci-
ence Foundation under grants IRI–9633541 and INT–9412507 and by Na-
tional Security Agency under grants MDA904–96–1–0103 and MDA904–
96–1–0104. The research of V.S. Subrahmanian was supportedin part by
the Army Research Office under grants DAAH-04-95-10174 and DAAH-
04-96-10297, by ARPA/Rome Labs contract F4630602-93-C-0241 (Order
A716), by an NSF Young Investigator award IRI-93-57756, andby the
Army Research Laboratory under Cooperative Agreement DAAL01-96-2-
0002 Federated Laboratory ATIRP Consortium.

tion of rules (orauthorizations) which determine, for any
user and any object in the system, the types of accesses
(e.g., read, write, or execute) the user is allowed on the
object. There are many different choices of access control
policies [8]. In aclosed policy, all accesses that are to be
allowed (we call thesepositiveauthorizations) must be spe-
cified. The request of a user to access an object is checked
against the specified authorizations; if there exists an au-
thorization stating that the user can access the object in the
specific mode, the access is granted, otherwise it is denied.
Alternatively, in anopen policy, all accesses to be denied
(we call thesenegativeauthorizations) have to be fully spe-
cified; users are allowed all those accesses that they have
not been explicitly denied. Some policies permit specific-
ation of both positive and negative authorizations. Policies
which permit conflicting authorizations to be specified on
the same data object provide anoverriding (e.g., denials-
take-precedence) rule stating how such conflicts are to be
resolved.

While an access control policy defines what is author-
ized, an access control mechanism implements the policy
by ensuring that all accesses are in accordance with the un-
derlying policy. In studying access control, it is useful to
separate policy and mechanism for several reasons: First,
we divide the problem into two subproblems, each of which
can be addressed separately. Second, it is possible to have
different mechanisms that enforce the same policy. Third,
it is possible have mechanisms that are capable of imple-
menting multiple security policies. This last feature is very
important from a practical standpoint. If we have a general
mechanism that is capable of implementing a number of dif-
ferent security policies, we can replace the security policy
without requiring a change in the mechanism.

Unfortunately, almost all access control models and
mechanisms fail to maintain this separation, and are tailored
specifically to meet the requirements for the closed policy.
This rigidity creates a problem when the protection require-
ment of an application are different from the policy built
into the mechanism at hand. In most cases, the only solu-

tion is to implement the policy as part of the application
code. This solution, however, is dangerous from a security
viewpoint since it makes the tasks of verification, modifica-
tion, and adequate enforcement of the policy difficult.

The recent implementations of the microkernel-based
operating systems (e.g., Trusted Mach [4], Synergy [10],
and Distributed Trusted Operating System (DTOS) [6])
cleanly separate the policy enforcement from the policy de-
cision. A policy-neutral security serverwhich is inside the
microkernel is responsible for the enforcement of the policy
decision; the policy decision is left to asecurity server
which is outside the microkernel. Since the computation
of access decisions based on a particular policy is separate
from the enforcement mechanism, it is possible to imple-
ment different policies on the microkernels by simply in-
serting the right security server.

Although this is a step in the right direction, we go one
step beyond this by making it possible to implement dif-
ferent policies without requiring a replacement of even the
security server. We present a language that can be used by
users to express their security policies. The language com-
prises different kinds of rules: derivation rules, which allow
derivation of implicit authorizations from those explicitly
specified and determine the overriding policy to be applied;
resolution rules, which regulate how conflicts between au-
thorizations must be resolved; access control rules, which
regulate access control policy decisions; and integrity rules,
which are used to express different kinds of constraints
on the specification and use of authorizations. Different
policies can be specified for different objects. For instance,
access to an object can be controlled according to the closed
policy and access to another object according to the open
policy. A nice feature of our approach is that thesamese-
curity server, which evaluates these rules, can support dif-
ferent policies, depending on the specifications.

The first attempt aimed at providing a general frame-
work for expressing authorizations was made by Woo and
Lam [11], who proposed the use default logic to model au-
thorization and control rules. Default logic is a very ex-
pressive framework. However, the approach suffers from
several drawbacks. First, default rules may not be conclus-
ive – given an access request posed by a user, they may
neither authorize nor deny the request. Second, the lan-
guage of default logic is not even semi-decidable. Third,
no conflict resolution mechanisms are articulated in their
framework. In contrast, we have developed a compact lan-
guage that is adequate to express all authorization policies,
but is still computable in polynomial time. Additionally, in
our framework, user’s access requests are handled conclus-
ively – they are either authorized or denied.

The work presented in this paper extends a previous pro-
posal by us [7]. Major extensions concerns the considera-
tion of authorization for roles and the investigation of how

different security policies can be represented in our frame-
work.

The remainder of this paper is organized as follows.
Section 2 introduces the notations and definitions that will
be used in the paper. Section 3 describes the logic lan-
guage through which authorizations and rules can be spe-
cified. Section 4 defines authorization specifications and
their correctness. Section 5 discusses possible approaches
to propagation and conflict resolution and shows how each
of this can be represented in our language. Section 6 illus-
trates how different constraints that can be required on the
authorizations or on the system working can be included as
rules in the specifications. Finally, Section 7 concludes the
paper.

2 Basic assumptions, notations and defini-
tions

In this section we introduce the basic elements on which
our model is based and introduce notations and definitions
that will be used in the rest of this paper.

2.1 Objects

We assume that there is a setObj of objects defined in
the system on which someactionscan be executed. The
choice of the specific objects and actions depends on the
system to which the model is applied. For instance, in a file
system objects will be the files and directories stored and
the possible actions will beread, write, andexecute.
In a relational database system, the database, tables, tuples
or columns within a table, and application programs will be
considered as objects whereas actions will be represented
by the different modes through which objects can be ac-
cessed such asselect, insert, update, andrun (the
latter being applicable only to application programs).

To allow the specification of authorizations on sets of ob-
jects, we allow objects to be grouped intotypes. Again the
typesT to be considered are specific to the system to which
the authorization model is applied and are not included in
the authorization model itself. Types can correspond to
the elements of the underlying data model. For example,
in an operating system environment types such asfile,
directory, executable program, can be defined.
Types can also be defined with respect to the data contained
in the objects or to the application/activity in which they
are used. For instance, typesps-files, tex-files,
dvi-files, can be defined grouping together the post-
script, latex, and dvi files respectively.

Public

Citizens Eng-Dept Non-citizens

Jim Mary Jeremy

CS-Faculty

CS-Dept

SamGeorge Lucy Mike

Figure 1. An example group hierarchy

2.2 Authorization’s subjects

We consider three different kinds of subjects to which
authorizations can be granted. These areusersU, groupsG,
androlesR. Users are individuals connecting to the system
and allowed to submit requests. Groups are sets of users;
groups can be nested. Roles arenamedcollection of priv-
ileges needed to perform specific activities in the system.

Let us first examine groups. A group is defined as a set
composed of individual users or other groups. Groups do
not need to be disjoint; a user or a group can belong to
more than one group. We say that the membership of a
subjects in a groupG is direct if s is defined as a mem-
ber ofG. It is indirect if either s = G or there exists a
sequences1; : : : ; sn; n > 1 such thatsi is a direct member
of si+1, for i = 1; : : : ; n � 1. The only constraint on the
groups is that the membership relationship be acyclic, i.e.,
if a subjectsi is a member (directly or indirectly) of another
subjectsj , with si 6= sj , thensj cannot be a member ofsi.
The group membership relationship can be represented as a
graph where nodes are users and groups and an arc direc-
ted fromsi to sj indicates thatsi is a direct member ofsj .
Users are the leaves of this graph. We refer to this graph as
group-hierarchy. An example group-hierarchy is illustrated
in Figure 1.

Throughout the rest of this paper, we will deal with
group-hierarchical data systems. A data system with no
hierarchy is actually captured as a data system with a hier-
archy where nodes are users and there are no arcs between
users. The only membership relationship holding in such a
hierarchy is the indirect membership of a user to itself.

Roles are named collection of privileges. Intuit-
ively, a role identifies a task that users need to ex-
ecute to perform organizational activities. Example of
roles can besecretary, dept-chair, programmer,
payroll-officer, and so on. To enable users to suc-
cessfully execute the task, each role has some authorizations
associated with it (see Section 3). By assuming a given role,
a user is allowed to perform the actions for which the role
is authorized.

Like groups, roles can also be organized in a hierarchy.
A role is a sub-role of another role if it is a special-
ization of it. For instance,Fortran-programmer and

Employee

Adm-Staff Research-staff

Soft-developer

C-ProgrammerCobol-Programmer

Secretary Project-manager

Figure 2. An example role hierarchy

Cobol-programmer can be both seen as a specialization
of programmer. The role hierarchy can also be represen-
ted by a graph where nodes are the different roles and a
directed arc from roleri to rolerj indicates thatri is a spe-
cialization ofrj . The concepts of direct and indirect mem-
bership defined for groups apply to roles as well. Figure 2
illustrates an example role hierarchy.

In view of the different semantics groups and roles carry,
we require that the group and role hierarchies to be dis-
joint (i.e., same subject cannot appear in both hierarchies).
Note however that a same “concept” can be seen both as a
group and as a role. To understand the difference between
groups and roles, consider the following example. We
could define a group, calledG programmer, consisting
all users who are programmers. Any authorizations spe-
cified forG programmer are propagated to its members.
Thus, if an authorization to readtech-reports is given
to G programmer, its members can exercise this right.
We could also define a role, calledR programmer, and
associate to it those privileges that are related to the pro-
gramming activity and necessary for the programmers to
perform their jobs (such as compiling, debugging, writing
reports, and so on). These privileges can be exercised by
authorized users only when they choose to assume the role
R programmer.

2.2.1 Differences between groups and roles

A major difference between groups and roles is that roles
can be “activated” and “deactivated” by users at their discre-
tion while group membership always applies. In this section
we clarify how role activation and deactivation changes the
privileges of users.

We refer to all roles that a user is allowed to assume as
potentialroles. When a user activates a role, the role be-
comesactivefor the user. To take active roles into consid-
eration when processing access requests, we introduce the
concept of arequestor subject(i.e., a subject who requests
access to objects). A requestor subject is a pair whose first
element is a user (the user who enters the command) and
whose second element is the set of roles currently active for
the user (the set is empty if the user does not have any active
roles).

If no roles are active for a user, the user will be able to ex-
ercise all the privileges s/he has either as an individual (i.e.,
explicitly granted to him/her) or as a member of groups to
which s/he belongs. Remember that group membership al-
ways applies (i.e., userscannotactivate or deactivate group
memberships at will). By activating a role, a user will be al-
lowed to exercise the privileges for which the role is author-
ized. A user can assume more than one role at a time. In this
case s/he will be able to exercise the union of the privileges
of all these roles.1 How this union is to be determined and
whether the user looses his/her personal privileges upon ac-
tivation of some roles depend on the access decision policy
to be applied. An interesting aspect of our approach is that
our general language can be used to express and enforce
different policies. Users can choose, when stating the au-
thorization specifications, the access control policy to beap-
plied. We will discuss some possible policies in Section 5.
Moreover, in Section 6 we will illustratehow different kinds
of constraints that can be imposed on the roles users can be
authorized to activate or that can activate simultaneously[9]
can be easily represented as rules in our language.

Note that the fact that the authorizations given to a role
are applicable only when that role is active for a user has
two advantages. First, it gives the user all those privileges
that are needed to perform a task. Second, it is consistent
with the “principle of least privilege”: each process iscon-
finedto those actions needed to perform the task. This acts
as a defense against malicious attacks that may aim to ex-
ploit the role’s authorizations.

3 The Authorization Specification Language
(ASL)

In this section, we introduce the basic constructs of our
authorization language. We will show in subsequent sec-
tions how these constructs can be used by the System Se-
curity Officer (SSO) to specify authorizations and rules.

We start by defining an authorization policy.

Definition 3.1 (Authorization Policy) An authorization
policy is a mapping that maps 4-tuples(o; u;R; a) consist-
ing of an object, a user, a role set, and an action, respect-
ively to the setfauthorized,deniedg.

Given a set of actionsA, we define a set of signed au-
thorization typesSA asf+a;�a ja 2 Ag.ASL is a logical
language created from the following alphabet:

1. Constant Symbols:Every member ofObj [T [U [G [R [A [SA [IN where IN denotes the set of
natural numbers. Remember thatObj is the set of ob-
jects,T the set of types,U the set of users,G the set1Precisely speaking this is not actually a union since negative privileges

also need to be considered.

of groups,R the set of roles, andA andSA the set of
unsigned and signed authorizations respectively.

2. Variable Symbols: There are eight setsVo; Vt; Vu;Vg; Vr; VR;, Va; Vsa of variable symbols ranging over
the setsObj; T; U; G; R; 2R; A; andSA, respectively.

In the following, we refer to elements of a setX and
variables ranging over the set as “X terms”. For in-
stance, variables inVo and members ofObj are object
terms. We collectively refer to user, role, and group
terms as subject terms.

3. Predicate Symbols:The following predicate symbols
are considered.

(a) A ternary predicate symbol,cando. The first ar-
gument ofcando is an object term, the second
is a subject term, and the third is a signed au-
thorization term. The predicatecando represents
authorizations explicitly inserted by the SSO.

(b) A ternary predicate symbol,dercando, with
the same arguments ascando. The predicatedercando represents authorizations derived by
the system using logical rules of inference.

(c) A ternary predicate symbol,do, with the same
arguments ascando. The predicatedo repres-
ents the authorizations that hold for each subject
on each object. It enforces the conflict resolution
policy.

(d) A 4-term predicate symbol,grant. The first ar-
gument is an object term, the second argument is
a user term, the third argument is a role-set term,
and the fourth argument is a signed action term.
The predicategrant represents the accesses to
be allowed or denied to each requestor subject on
each object. It enforces the access control policy.

(e) A 5-term predicate symbol,done. The first ar-
gument is an object term, the second argument
is a user term, the third argument is a role-set
term, the fourth argument is an unsigned action
term, and the fifth argument is a natural number.
Done rules represent the accesses executed by re-
questor subjects.

(f) A binary predicateactive whose first argument
is a user term and second argument is a role term.
It captures the concept of active role/s for a user.

(g) Two binary predicatesdirin and in that take
as arguments two subjectss1; s2. They capture
the direct and indirect membership relationship
between subjects.

(h) A binary predicatetypeof that takes as argu-
ments, an objecto and an object typet. It cap-
tures the grouping relationship between objects.

(i) A predicate symbolerror, with no arguments. Iferror() can be derived through some rule, then
there is an error in the specification or use of au-
thorizations due to the satisfaction of the condi-
tions stated in the body of the rule.

If p is one of the above predicate symbols with ar-
ity n, and t1; : : : ; tn are terms appropriate forp (as
defined above), thenp(t1; : : : ; tn) is an atom. We will
use the expressionliteral to denote an atom or its neg-
ation. For instance, ifOT; ST; and SAT are object
terms, subject terms, and signed action terms respectively
then cando(OT; ST; SAT) and :cando(OT; ST; SAT)
are examples of literals.

We now define the rules that can be expressed in our lan-
guage.

Definition 3.2 (Done Rule) A done ruleis a rule of the
form: done(o; s;R; a; t) :
whereo; s;R; a and t are elements ofObj;U; 2R;A and IN
respectively. Note that “done” rules are facts, as their body
is always empty.

Done rules are specified only by the system upon exe-
cution of accesses. Ifdone(o; u; R; a; t) is true, then user
u with roles inR active has executed actiona on objecto
at timet. Done rules are useful for implementing those
policies in which future accesses of a user are based on the
accesses that the user has exercised in the past (as in the
case of the Chinese Wall policy [5]).

Definition 3.3 (Authorization Rule) Anauthorization rule
is a rule of the form:cando(o; s;< sign > a) L1& : : :&Ln:
whereo; s; and a are elements ofObj;U[G [R; andA
respectively,n � 0, < sign > is either+ or � and, for
each0 < i � n,Li, either ain a dirin, or typeof literal.

Authorization rules are specified by the SSO to allow or
deny accesses to subjects. The literals in the right hand side
of the rules are used to specify conditions that must be veri-
fied for the authorization to hold.

Example 3.1 Consider the following authorization rules:cando(file1;CS-Dept;+write) :cando(file2; s;+write) in(s;CS-Faculty):cando(o;Secretary;+write) typeof(o;Letters):cando(file1;George;�read) :

The first rule states that groupCS-Dept is authorized
to write filefile1. The second rule states that all mem-
bers of groupCS-Faculty can writefile2. The third
rule states that roleSecretary can write objects of type
Letters. Finally, the fourth rule states thatGeorge can-
not readfile1. 2

The reader may wonder why the model allowsin anddirin statements in the body of rules when authorizations
can be specified for groups. The reason for this is that
there are many different approaches topropagatingauthor-
izations from a group, to a subgroup, to a sub-subgroup and
eventually to an individual. Modeling this propagation pro-
cess requires the ability to distinguish between the authoriz-
ations explicitly given to a subject and the authorizationsthe
subject may inherit from their super-subjects. Specifyingan
authorization for a group is therefore different, in general,
from specifying an authorization for all subjects belong-
ing to the group. To illustrate consider the first two rules
of Example 3.1. The first rule specifies an authorization
for groupCS-Dept. The rule makes a general statement
about the group as a whole, but not about specific members
of the group.Whether this authorization propagates to the
members will depend on the specific policy to be applied
as well as on the other authorizations specified by the SSO.
By contrast the second rule specifies an authorization for
themembers ofCS-Faculty. This latter authorization is
is therefore a short hand that can be used instead of specify-
ing a different authorization for each single member of the
group.

The SSO states authorizations throughcando rules.
From the authorizations so specified, further authorizations
can be derived by the system through the application of spe-
cified derivation rules. To distinguish authorizations expli-
citly stated by the SSO from the authorizations derived by
the system through derivation rules, we use the predicate
dercando for derived authorizations. Derivation rules are
formally defined as follows:

Definition 3.4 (Derivation Rule) A derivation rule is a
rule of the form:dercando(o; s;< sign > a) L1& : : :& Ln:
whereo; s; and a are elements ofObj;U[G [R; andA
respectively,< sign > is either+ or �, n � 0, andL1; : : : ; Ln are eithercando, dercando, done, in, dirin,
or typeof literals. All dercando-literals appearing in the
body of a derivation rule must be positive.

Example 3.2 The derivation rulesdercando(o; s;+a) cando(o; s0;+a)& in(s; s0):dercando(o; s;�a) cando(o; s0;�a)& in(s; s0):

enforce implied authorizations from subjects to the subjects
below them in the hierarchies (i.e., from a group to its mem-
bers and from a role to its specialized roles). 2

Beside being used for expressing propagation of author-
izations along subject’s hierarchies, due to their generality,
derivation rules can be used to express different kinds of
implication relationships between authorizations. For in-
stance, the derivation of an authorization on the basis of the
presence or the absence of another authorization, as pro-
posed in [2], can be enforced by putting the authorization
to be derived in the left hand side of the rule and the con-
dition for the derivation in the right hand side of the deriv-
ation rule. By using variables instead of ground terms and
by combining different literals, we can also express a large
variety of implication relationships.

Example 3.3 Consider the following derivation rules:dercando(file1; s;�read) dercando(file2; s0; read)& in(s; s")& in(s0; s"):dercando(o; s;�write) done(o0; s;read)& typeof(o;Exams)& typeof(o0;Solutions):
The first rule derives a negative authorization for a sub-

ject s to readfile1 if there exist another subjects0 and
a groups00 such thats and s0 both belong tos00 and s0 is
authorized to readfile2.
The second rule derives the negative authorization for a
user to write an object of typeExams if the user has read
an object of typeSolutions. 2

Derivation rules allow the derivation of authorizations on
the basis of other authorizations, either derived or explicitly
specified by the SSO.cando anddercando rules may admit the derivation of
both positive and negative authorizations for a given ob-
ject, subject, and action. The concept of aresolution rule,
given below, forces a decision to be made. Resolution rules
can also be used to force a decision in casecando anddercando rules do not imply either a positive or a negat-
ive authorization for a given object, subject, and action. In
such a case the decision is called thedefaultdecision.

Definition 3.5 (Resolution Rule) A resolution rule is a
rule of the formdo(o; s;< sign > a) L1& : : :& Ln:
where o; s; and a are elements ofObj;U[G [R; andA respectively,< sign > is either + or �, n � 0,
andL1; : : : ; Ln arecando; dercando; in; dirin; done; ortypeof literals and every variable that appears in any of
theLi’s also appears in the head of this rule.

A resolution rule states that a subject must be al-
lowed/forbidden to exercise an authorization type on an ob-
ject.

Note the difference betweendo rules on the one hand
andcando anddercando rules on the other.cando and
dercando rules are authorizations, either positive or neg-
ative, specified by the SSO or derived. These authoriza-
tions may conflict and, therefore, may not be obeyed by the
system.In contrast,do rules state what authorizations the
system must consider valid for each authorization subject,
on the basis of the existing authorizations, specified or de-
rived.

Example 3.4 Consider the following rules:do(file1; s;+a) dercando(file1; s;+a):do(file2; s;+a) :dercando(file2; s;�a):
The first rule states that a subject can exercise an access on
objectfile1 if s/he has a positive authorization for it (i.e.,
the closed policy is enforced onfile1). The second rule
states that a subject can exercise an access onfile2 only
if s/he does not have a negative authorization for it (i.e., the
open policy is enforced onfile2). 2

Authorization, derivation, and resolution rules establish
whether a positive, a negative, or no authorization must hold
for each subject and access. These rules by themselves
are not sufficient to regulate access control. The reason
for this is that, as we have already illustrated in Section 2,
requestor subjects are composition of users and, possibly,
roles. Hence, requestor subjects do not correspond with au-
thorizations subjects to which resolution rules refer. Access
control rules determine whether a requestor subject (i.e.,a
user with, possibly, some active roles), must be allowed or
denied for an access depending on the authorizations spe-
cified for the user and/or for the roles. Access control rules
are defined as follows.

Definition 3.6 (Access Control Rule)An access control
rule is a rule of the form:grant(o; u; rs;< sign > a) L1& : : :& Ln:
whereL1; : : : ; Ln are cando; dercando; done; do; in;dirin; or typeof literals.

If grant(o; u; R;+a) is true, then useru with active
rolesR, will be allowed to perform actiona on objecto.
Similarly, if grant(o; u; R;�a) is true, then useruwith act-
ive rolesRwill not be allowed to perform actiona on object
o.

Most of the time, the user and the role-set terms in ac-
cess control rules will be variables. This is due to the fact
that access control rulesare typically used to specify the

rulesgenerally applicableto determine the access decisions
(whether to allow or not allow an access on the basis of au-
thorizations specified). They are not used to specify author-
izations.

Example 3.5 Consider the following rules:grant(o;u; R;+a) do(o; s;+a) & R = ;:grant(o;u; R;+a) do(o; r;+a)& :do(o; r;�a)& r 2 R& r0 2 R:
The first rule states that a request submitted by a user op-

erating as a single individual (no current active role) is to
be allowed if the user has a positive authorization for it.

The second rule states that a request by a user with some
roles R active is to be allowed if at least one of the active
roles is authorized for it and none of them is denied for it.2

Authorization, derivation, resolution, and access control
rules are all we need to specify authorizations and access
control decisions. Our language supports an additional ind
of rule, calledintegrity rule, by which the SSO can define
constraints that must hold on the specifications. Integrity
rules can be specified on any of the literals or their combin-
ation. They are formally defined as follows.

Definition 3.7 (Integrity Rule) An integrity rule is a rule
of the form: error() L1& : : :& Ln:
whereL1; : : : ; Ln aregrant; cando; dercando; done; do;in; dirin; typeof, literals.

The above rule derives an error every time the conditions
in the right hand side of the rules are satisfied. Whenever a
new ruler is to be inserted, the error rules are evaluated and
ther accepted only if its insertion does not generated any
error.2 We note that integrity rules may be general or may
be specific to an application. General rules control incon-
sistencies such as “no subject can be both authorized and
denied for the same access”. Application-dependent rules
control inconsistencies appropriate for the application,such
as “a subject cannot be authorized to read bothfileA and
fileB”. Section 6 contains some examples illustrating the
expressive power of integrity rules.

4 Authorization specifications

The authorization language we have presented in the pre-
vious section allows us to state authorization specifications.2Note that in caser is adone rule, the fact that it cannot be inserted
means that the execution of the corresponding access cannotbe allowed.

An authorization specification is a collection of rules whose
evaluation determines, for each access request that can be
submitted, whether the requested access must be granted or
denied. Authorization specifications are formally defined as
follows.

Definition 4.1 (Authorization Specification) Anauthoriz-
ation specificationAS consists of a set of authorization
(cando), derivation (dercando), resolution (do), access
control (grant), and integrity (error) rules.

Every authorization specification in our language is a
stratifieddatalog program. Upon each access request by
useru with active rolesR to execute actiona on objecto the program is evaluated and access allowed if and only
if grant(o; u;R;+a) is true according to the semantics of
the specifications. This access control checking can be per-
formed in linear time w.r.t. the number of rules inAS [7].

An important aspect of authorization specifications is
their correctness. An authorization specification is correct if
it is bothconsistentandcomplete. By consistentwe mean
that for each possible access auniqueaccess decision ex-
ists, i.e., the access is either to be granted or denied but not
both. Bycompletewe mean that for each access an access
decision, either grant or deny, exists.

It is important to note that consistency and completeness
apply toaccess decisionsnot to authorizations specified or
derived. As a matter of fact, inconsistent authorizations
or derivations can be allowed. Analogously, the presence
of both positive and negative authorizations applicable toa
subject can be allowed (consider for instance the case of a
user activating two roles with contrasting authorizations).
Consistencyrequires that theaccess decisionbe unique.
The same consideration applies to completeness. Requir-
ing access decision completeness does not imply requiring
authorization specification completeness. Access decision
completeness ensures that a decision can always be made.
This can be true even if for some access no authorization is
specified or derived (default decision).

Authorization specification correctness is defined as fol-
lows.

Definition 4.2 (Authorization Specification Consistency
and Completeness)An authorization specification iscom-
plete if for each 4-tuple (o; s;R; a) at least one ofgrant(o; s;R;+a) andgrant(o; s;R;�a) is true. An au-
thorization specification isconsistentif for each 4-tuple(o; s;R; a) grant(o; s;R;+a) and grant(o; s;R;�a)
cannot both be true.

It is interesting to note how specification correctness can
be stated and checked by using rules expressed in the ASL
language. In particular, the following two integrity rulescan
be used to return an error if either completeness (first rule)

or consistency (second rule) is not satisfied.error() :grant(o; u;R;+a)& :grant(o;u;R;�a):error() grant(o;u; R;+a)& grant(o; u;R;�a):
The correctness of authorization specifications can there-

fore be enforced by inserting the above rules in the specific-
ations themselves. An alternative way of enforcing specific-
ation correctness is by imposing restrictions on the the rules
that can be specified [7].

As we have stated completeness and consistency obvi-
ously apply to access decisions (it would not be proper to
require them on the authorizations themselves). We note
however that, due to the semantics of resolution rules, con-
sistency (not completeness) of thedo predicate must also
be required. The consistency requirement for the conflict
resolution decision is similar to that for access control de-
cision. Resolution consistency requires that for each sub-
ject, object, and action,do(o; s;+a) anddo(o; s;�a) can-
not be both satisfied.

5 Derivation of authorizations and conflict
resolutions along subject hierarchies

In our model, we consider two different and disjoint
hierarchies: the group hierarchy and the role hierarchy.
However, different models make different choices with re-
spect to whether or how authorizations propagate along the
hierarchy and the way conflicts between authorizations in-
dependently propagated to a subject are resolved. In this
section, we will examine some of these different approaches
and show how each of them can be easily represented with
the use of few rules in our language. Recall that the ultimate
goal of a security policy is to decide whether an authoriza-
tion (positive or negative) holds for a given subject when
the authorizations specified for the subject and for other
subjects appearing in the hierarchies are taken into account.
Two different aspects of the policy can be distinguished:

Derivation It regulates the propagation of authorizations
along the hierarchy.

Conflict resolution It determines which authorization
should take precedence when conflicting authoriza-
tions (i.e., different signs but identical actions and ob-
jects) exists for thesamesubject.

Below, we discuss different choices that have been made
for each of these two aspects. Our discussion is in terms of
a generic subject hierarchy, and applies to both group and
role hierarchies. Our clarifying examples refer to the sub-
ject hierarchy shown in Figure 3. For the sake of simplicity,
in the figures, we indicate the positive and/or negative au-
thorizations held by a subject by writing the sign near the

s1s2 s3 s4s5s6 s7 s8+� �����*6 HHHY6 66 6HHHY

�
Figure 3. An example of subject hierarchy

subject and omit the specification of the object and action.
All authorizations in a figure are assumed to refer to the
same object and action.

5.1 Derivation of authorizations along subjects
hierarchies

The derivation policy determines whether and how au-
thorizations propagate from a subject to other subjects that
are connected to it in a hierarchy. The first choice that
must be made in this respect is whether the authorizations
of a subject should propagate at all to other subjects. As
for groups, the answer is obviously yes. Since groups do
not appear in access requests (only users and roles do), the
only way authorizations of groups can be effective is by
propagating them to the user members of the groups.

The answer is not so obvious for roles. In most mod-
els that have roles, authorizations specified for a role are
propagated to other roles specialized from it. Hence, each
role inherits the authorizations of the roles of which it is a
specialization. However, a different, more conservative,ap-
proach could be to consider the authorizations necessary for
each role separately and do not propagate them.3

When the authorizations of a subject propagate along the
hierarchy, the derivation policy must determine which au-
thorizations propagate to a subjects in cases is a child-
subject of subjects with contrasting authorizations. When
the subjects for which the contrasting authorizations are
specified are not connected by any path in the hierarchy
(e.g.,s4 ands7 in Figure 3), the contrasting authorizations
must all be propagated tos leaving the decision of which
authorization should win over the other to the conflict res-
olution policy. In contrast, when the subjects for which the
contrasting authorizations are specified are related in the
hierarchy (e.g.s1 ands2 in Figure 3), overriding policies
can be applied. Three different approaches can be taken in
this case, which we list below.� No overridingAll the authorizations are propagated

(regardless of the presence of other conflicting author-
izations).3We note that the two approaches are not mutually exclusive. Ahy-

brid approach could be taken in which some authorizations are propagated
while others are not.

s1s2 s3 s4s5s6 s7 s8+� �����*6 HHHY6 66 6HHHY

�
(a)

s1s2 s3 s4s5s6 s7 s8+� �++ +�+�+ �+ �+���*6 HHHY6 66 6HHHY

�
(b)

s1s2 s3 s4s5s6 s7 s8+� ��+ ��� ���*6 HHHY6 66 6HHHY

�
(c)

s1s2 s3 s4s5s6 s7 s8+� ��+ ���+ ���*6 HHHY6 66 6HHHY

�
(d)

Figure 4. Authorizations derived from the specifications in Figure 3: (a) no propagation; (b) no
overriding (c) sub-subject overriding; (d) path overridin g� Sub-subject overridesThe authorization specified for

a subjects overrides a conflicting authorization spe-
cified for a supersubject ofs. In Figure 3, the negative
authorization ofs2 overrides the authorization ofs1
for s2. In this case, only the authorization ofs2, not
the authorization ofs1, will be propagated tos6.� Path overridesThe authorization specified for a sub-
ject ofs overrides a conflicting authorization specified
for a supersubject ofs only along the paths passing
from s. The overriding has not effect on other paths.
In Figure 3, the negative authorization ofs2 overrides
the authorization ofs1 for s2 and all its members only
for the membership paths passing froms2. The au-
thorizations ofs1 could still still propagate to the sub-
jects below it in the hierarchy through other member-
ship paths. In particular, the authorization specified fors1 propagates tos6 through the membership path froms6 to s1 passing froms3.

Figure 4 illustrates the authorizations derived from the
specification of Figure 3 in each of the approaches above.
The ASL rules implementing each of the approaches are
illustrated in Figure 5.

5.2 Conflict resolution

In case a subject holds both a positive and a negative
authorization for the same access (e.g., subjects6 in Fig-
ure 4(b,d)), the conflict resolution policy determines which
of the authorization should be enforced. Four different ap-
proaches could be taken:� No conflictIt requires that no conflict arises. The pres-

ence of a conflict is considered an error.� Denials take precedenceThe negative authorization is
enforced over the positive one (subjects6 will be con-
sidered denied).� Permissions take precedenceThe positive authoriza-
tion is enforced over the negative one (subjects6 will
be considered authorized).

� Nothing takes precedenceNone of the two authoriz-
ations can be considered as prevailing over the other.
(The positive and the negative authorizations nullify
each other.) The final result is equivalent to the case
where no authorization had actually been specified (no
decision will be taken for subjects6).4

Figure 6 shows the ASL rules implementing the different
approaches to conflict resolution.

6 Expressiveness of the ASL

From the previous section, it should already be clear how
our language can be used to represent many of the mod-
els present in the literature. In particular, most models use
some of the different approaches we have discussed in the
previous section and, hence, their mapping is almost imme-
diate.

The classicalclosed(open) policies can be easily repres-
ented by allowing the specification of only positive (negat-
ive) authorizations and by appropriate access control rules.
The restriction that only positive (negative) authorizations
can be specified, can be enforced through an integrity rule.
As for access control, the rules enforcing the closed (open)
policy will derive a positive (negative) grant if a posit-
ive (negative) authorization exists and a negative (positive)
grant otherwise. Examples of rules enforcing the closed and
open policies have been given in Example 3.4.

To illustrate the expressiveness of our language, we now
consider several policies that do not fall in any of the cat-
egories given in the previous section and show how our lan-
guage can be used to represent these policies .

6.1 Representing Authorizations Models

We show how the SeaView [8] authorization model can
be represented using our language. In SeaView, authoriz-
ation subjects can be either users or groups. Groups are4Note that this does not mean that no access decision can be taken. Ac-
cess decisions are taken on the basis of the access control rules, not on the
basis of the resolution rules. The completeness of the access control rules
ensures that an access decision will always be taken even if no authoriza-
tion decision can be taken by the resolution rules.

No propagation
dercando(o; s;+a) cando(o; s0;+a):dercando(o; s;�a) cando(o; s0;�a):

No overriding
dercando(o; s;+a) cando(o; s0;+a)& in(s; s0):dercando(o; s;�a) cando(o; s0;�a)& in(s; s0):

Sub-subject overrides
dercando(o; s;+a) cando(o; s0;+a)& :cando(o; s00;�a)& in(s; s0)& in(s; s00)& in(s00; s0)& s00 6= s0:dercando(o; s;�a) cando(o; s0;�a)& :cando(o; s00;+a)& in(s; s0)& in(s; s00)& in(s00; s0)& s00 6= s0:

Path overrides

dercando(o; s;+a) cando(o; s;+a):dercando(o; s;�a) cando(o; s;�a):dercando(o; s;+a) dercando(o; s0;+a)& :cando(o; s;�a)& dirin(s; s0):dercando(o; s;�a) dercando(o; s0;�a)& :cando(o; s;+a)& dirin(s; s0):
Figure 5. Different approaches to the derivation of authori zations

No conflict
do(o;u;+a) dercando(o; u;+a):do(o;u;�a) dercando(o; u;�a):error() dercando(o; u;+a)& dercando(o; u;�a):

Denials take precedence
do(o;u;+a) dercando(o; u;+a)& :dercando(o;u;�a):do(o;u;�a) dercando(o; u;�a):

Permission takes precedence
do(o;u;+a) dercando(o; u;+a):do(o;u;�a) dercando(o; u;�a)& :dercando(o;u;+a):

Nothing takes precedence
do(o;u;+a) dercando(o; u;+a)& :dercando(o;u;�a):do(o;u;�a) dercando(o; u;�a)& :dercando(o;u;+a):

Figure 6. Different approaches to conflict resolutions

sets of individual users andcannotbe nested. Negative au-
thorizations are not considered. A special privilegenull,
meaning no access allowed, is used instead. A user can ex-
ercise the privileges of only one group at a time (SeaView
groups behave somewhat like our roles.) A requestor sub-
ject is the pair consisting of the user and the group the user
has currently activated. The request of a subject to exercise
a given action on an object is granted only if any of the fol-
lowing conditions hold: (i) the user has the authorization
for the access and does not have a null authorization for it,
or (ii) the user does not have any authorization at all (for
any action) on the object and the group has the authoriza-
tion for the access and does not have a null authorization on
the object.

Due to the way groups are used in SeaView, they can be
represented as roles in our model. Thus, SeaView can be
expressed using the following ASL rules:do(o; u; s;+a) cando(o;u;+a)& :cando(o; s;+null):grant(o;u; R;+a) do(o;u;+a):grant(o;u; R;+a) :cando(o; u;+a0)& active(u; r)& do(o; r;+a):grant(o;u; R;�a) :grant(o; u;R;+a):error() in(s; s0)& :in(s; s0)& s 6= s0:error() do(o;u; s;�a):error() active(u; r)& active(u; r0)& r 6= r0:
The resolution rule states that an authorization for an ac-

tion on an object specified for a user/group is valid if the

user/group does not have a null authorization on the object.
The three grant rules enforce access control. The two pos-
itive rules determine when the access is to be allowed and
enforce conditions (i) and (ii) above respectively. The neg-
ative rule states that an access request for which no positive
grant can be derived is to be denied. This rule provides com-
pleteness of the specifications. The three error rules enforce
the different constraints of the model, that is: groups cannot
be nested (first rule), no negative authorizations can be spe-
cified (second rule), and a user can activate at most one role
at a time (third rule).

6.2 Representing constraints

In this section, we illustrate the power of the integrity
rules by showing how various constraints can be easily rep-
resented as integrity rules in ASL specifications.

Incompatible groups Two groups are said to beincom-
patible if they cannot have common members (i.e.,
no subject can belong to both groups). For instance,
groupsNon-citizens andCitizens are incom-
patible. Group incompatibility can be easily represen-
ted by an error rule whose body contains thein pre-
dicates of the incompatible groups, as follows:error() in(s;Non-citizens)& in(s;Citizens):

Incompatible roles assignmentTwo roles are said to be
incompatible if they cannot be activated by the
same user. As an example, consider the roles
participant andexaminer with the constraint

that a user allowed to activate roleparticipant
cannot be allowed to activate (at the same or at a dif-
ferent time) the roleexaminer, and conversely. This
constraint can be represented by an integrity rule that
returns an error if a user is granted the permissions to
activate both roles. More generally, the incompatibil-
ity of n rolesr1, . . . , rn can be expressed as follows:error() grant(r1; u; R;activate)& : : :& grant(rn; u;R;activate):

Incompatible roles activation Theactivationof n roles is
incompatible if the roles cannot be all activatedsim-
ultaneously. Note the difference between role activa-
tion incompatibility and role assignment incompatibil-
ity. In role activation incompatibility, a user cannot ac-
tivate the incompatible rolessimultaneously, but s/he
can activate them at different times. Role activation in-
compatibility may be required to prevent a user to op-
erate with the union of the privileges of the roles since
this would give the user (more precisely, a process ex-
ecuting on his/her behalf) too much power, possibly
allowing exploitation of the allowed accesses. Letr1,
. . . , rn be incompatible roles. The incompatible role
activation constraint can be represented by an integrity
rule that returns an error if, according to the specifica-
tions, a user has all the incompatible roles active:error() active(u; r1)& : : :& active(u; rn):

Static separation of duty Static separation of duty refers
to the fact that a certain set of accesses cannot be al-
lowed for the same subject. The reason for this is that
the union of the accesses would give the subject too
much power. For instance, consider the operations of
submitting, evaluating, andapproving the
budget. A static separation of duty requirement indic-
ates that a same subject cannot be authorized for all
the three operations above. This requirement can be
referred to either authorization subjects or requestor
subjects. The constraint that a same authorization sub-
ject cannot be authorized for all the three operations
above can be expressed as follows:error() do(budget; s;submitting)& do(budget; s;evaluating)& do(budget; s;approving):
The rule above regulates the authorizations of each au-
thorization subject individually taken. A user could
however be able to execute all the actions above by
employing, either simultaneously or at a different time,
the roles which are authorized for the different ac-
tions. To avoid this situation, it is sufficient to express
the separation of duty constraint with reference to re-
questor subjects as follows:error() grant(budget; u; R;submitting)& grant(budget; u;R0;evaluating)& grant(budget; u;R00; approving):

The rule states that a same user, even if activating dif-
ferent roles, cannot be allowed for the execution of all
the actions above.

Dynamic separation of duty The separation of duty con-
straints above refers to authorizations and accesses al-
lowed. In other words they constraint the authoriza-
tion specifications. There are cases where separation
of duty constraints are not to be imposed on the au-
thorizations but on their use. In this case, a user can
potentially execute any operation in the set. However
s/he cannot execute all of them. By executing some
s/he will automatically rule out the possibility of ex-
ecuting the others. Note the difference between this
kind of separation of duty constraint, which we refer
to asdynamic, and the one in the previous example,
which we refer to asstatic. In static separation of duty
the SSO must specify the authorizations in such a way
that no subject will ever be granted all the actions in
the set. Hence, which actions a subject will, or will
not, be allowed to execute, is determined by the SSO.
In dynamic separation of duty, which actions the user
executes is determined by the user. To illustrate the
usefulness of dynamic separation, consider an office
with ten clerks. A groupClerk is defined to which
these users belong and to which the authorizations for
submitting,approving, andpaying orders are
given.5 Separation of duty requires that no user must
be able to execute all the three actions on asameorder.
Which of the actions a user execute is not predeter-
mined. However, if a user executes two s/he must be
forbidden to execute the other. This constraint can be
expressed by the following rule.error() done(o; u;R; submitting; t)& done(o;u;R0;approving; t0)& done(o;u;R00;approving; t00)& typeof(o;Order):

Chinese Wall The Chinese Wall constraint [5] can be seen
as a special kind of dynamic separation of duty. In
the Chinese Wall policy, objects are grouped intocom-
pany datasets, e.g., Company-A and Company-B.
Company datasets whose organizations are in compet-
itions are then grouped together intoconflict of in-
terest classes. If a user accesses an object in a com-
pany datasetcd s/he cannot be allowed anymore to ac-
cess any object in a company datasets that appear in
a conflict of interest class withcd. For instance, if
Company-A andCompany-B are in a same conflict
of interest class, a user who has accessed an object of
Company-A will not be able to access any object in
Company-B and vice versa. A possible way to repres-
ent this constraint in our model is by representing com-
pany datasets as types. An integrity rule can then be
specified that returns an error if a user accesses objects5Note that the example can be expressed also with the use of roles. In

this case a roleClerk is considered that users can activate in order to
execute the actions on orders.

of two datasets in the same conflict of interest class.
For instance, the following rule enforces the constraint
for the two datasets above:error() done(o0; u;R; a0; t)& done(o; u;R0; a; t0)& typeof(o;Company-A)& typeof(o0;Company-B):

The ones reported above are only some examples of the
constraints that can be represented in our language. Sev-
eral other constraints can be imagined and a rule enforcing
them easily found. Also, the general constraints represented
above can be “personalized” or slightly modified to adapt to
different requirements. For instance a more restrictive inter-
pretation of the Chinese Wall policy can forbid the execu-
tion of the two actions above not only to a single user, but
also to users belonging to a single group. In such a case, if a
user accesses an object of typeCompany-A no user of his
group/s will be allowed to access objects inCompany-B.
This can be expressed as follows:error() done(o;u;R; a; t)& done(o;u0; R0; a; t0)&typeof(o;Company-A)& typeof(o0;Company-B)& in(u;G)& in(u0;G):
7 Conclusions

In this paper we have proposed a logical language for the
specification of authorizations on which such a model can
be based. The language allows users to specify, together
with the authorizations, the policy according to which ac-
cess control must be enforced. Different policies can be
specified on different objects, according to the needs of the
users. The language supports both the concept of groups
and roles and allows the specification of different rules regu-
lating the access control decisions. We have illustrated how
security specifications are stated in our language and shown
how different control policies can be represented. We have
also stated consistency and completeness constraints that
security specifications are required to obey. Moreover we
have illustrated how different constraints that are generally
required, but very seldom supported by the access control
systems, can be represented in our language. The major
advantage of our approach is that it can be used to specify
different access control policies that can all coexist in the
same system and be enforced by the same security server.

Our paper leaves space for further work. A first issue we
plan to investigate concerns administrative policies. In this
paper we have made the assumption that all specifications
are stated by the System Security Officer. The model can be
extended to the consideration of administrative policies reg-
ulating the insertion of the different rules by the users. We
also plan to investigate how our model can be applied in the
representation and enforcement of complex organization’s
security policies, such as those of financial or health-care
institutions.

References

[1] K. Apt, H. Blair, and A. Walker. Towards a theory of
declarative knowledge. In J. Minker, editor,Founda-
tions of deductive databases, pages 89–148. Morgan
Kaufmann, San Mateo, 1988.

[2] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A
temporal access control mechanism for database sys-
tems.IEEE Trans. on Knowledge and Data Engineer-
ing, 8(1):67–80, February 1996.

[3] E. Bertino, S. Jajodia, and P. Samarati. Supporting
multiple access control policies in database systems.
In Proc. IEEE Symp. on Security and Privacy, pages
94–107, Oakland, CA, May 1996.

[4] M. Branstad, H. Tajalli, F. Mayer, and D. Dalva. Ac-
cess mediation in a message passing kernel. InProc.
IEEE Symp. on Security and Privacy, pages 66–72,
Oakland, CA, May 1989.

[5] D. F. C. Brewer and M. J. Nash. The Chinese wall se-
curity policy. InProc. Symp. on Security and Privacy,
pages 215–228, Oakland, CA, May 1989.

[6] T. Fine and S. E. Minear. Assuring distributed trusted
mach. InProc. IEEE Symp. on Security and Privacy,
pages 206–218, Oakland, CA, May 1993.

[7] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing mul-
tiple access control policies. InProc. ACM SIG-
MOD Conf. on Management of Data, Tucson, AZ,
May 1997.

[8] T. F. Lunt. Access control policies for database sys-
tems. In C. E. Landwehr, editor,Database Security
II: Status and Prospects, pages 41–52. North-Holland,
Amsterdam, 1989.

[9] R. Sandhu, E. Coyne, H.L. Feinstein, and C.E. You-
man. Role-based access control models.IEEE Com-
puter, pages 38–47, February 1996.

[10] O. S. Saydjari, S. J. Turner, D. E. Peele, J. F. Far-
rell, P. A. Loscocco, W. Kutz, and G. L. Bock. Syn-
ergy: A distributed, microkernel-based security archi-
tecture, version 1.0. Technical report, National Se-
curity Agency, Ft. George G. Meade, MD, November
1993.

[11] T. Y. C. Woo and S. S. Lam. Authorizations in distrib-
uted systems: A new approach.Journal of Computer
Security, 2(2,3):107–136, 1993.

