
REINFORCEMENT LEARNING IN CONTINUOUS TIME:

ADVANTAGE UPDATING

Leemon C. Baird III

bairdlc@wL.wpafb.af.mil

Wright Laboratory

WL/AAAT, Bldg 635

2185 Avionics Circle

Wright-Patterson Air Force Base, OH 45433-7301

ABSTRACT

A new algorithm for reinforcement

learning, advantage updating, is described.

Advantage updating is a direct learning

technique; it does not require a model to be

given or learned. It is incremental, requiring

only a constant amount of calculation per time

step, independent of the number of possible

actions, possible outcomes from a given action,

or number of states. Analysis and simulation

indicate that advantage updating is applicable

to reinforcement learning systems working in

continuous time (or discrete time with small

time steps) for which standard algorithms such

as Q-learning are not applicable. Simulation

results are presented indicating that for a

simple linear quadratic regulator (LQR)

problem, advantage updating learns more

quickly than Q-learning by a factor of 100,000

when the time step is small. Even for large

time steps, advantage updating is never slower

than Q-learning, and advantage updating is

more resistant to noise than is Q-learning.

Convergence properties are discussed. It is

proved that the learning rule for advantage

updating converges to the optimal policy with

probability one.

REINFORCEMENT LEARNING

A reinforcement learning problem is an

optimal control problem where the controller is

given a scalar reinforcement signal (or cost

function) indicating how well it is performing.

The reinforcement signal is a function of the

state of the system being controlled and the

control signals chosen by the controller. The

goal is to maximize the expected total

discounted reinforcement, which for continuous

time is defined as

E γ
t r (x

t
, u

t
) dt

0

∞

∫


 


 (1)

where E(.) denotes expected value, and where

0<g_1 is the discount factor which determines

the relative significance of early versus later

reinforcement. The controller is required to

learn which control actions are best in each

state in order to maximize the expected total

discounted reinforcement. For a continuous-

time system, the control signal is constantly

changing as the state of the system being

controlled changes. For a discrete-time system,

the controller must choose a new control action

every Dt seconds. For discrete time, the total

discounted reinforcement received during one

time step of duration Dt when performing action

ut in state xt is defined as:

R ∆ t
(x

t
, u

t
) = γ τ − t r (x τ , u τ) d τ

t

t + ∆ t

∫ (2)

The goal for a discrete-time controller is to find

actions that maximize the expected total

discounted reinforcement:

E γ ∆ t () i R ∆ t
(x

i ⋅ ∆ t
, u

i ⋅ ∆ t
)

i = 0

∞

∑


 

 (3)

This expression is often written with Dt not

shown and with g chosen to implicitly reflect Dt,

but is written here with the Dt shown explicitly

so that expression (3) will reduce to expression

(1) in the limit as Dt goes to zero. A policy, _(x),

is a function that specifies a particular action

for the controller to perform in each state x.

The optimal policy, _*(x), is a policy such that

choosing ut=_*(xt) results in maximizing the

total discounted reinforcement for any choice of

starting state. A reinforcement learning

algorithm should modify the policy in the

controller based on experience, so that the

policy eventually converges to the optimal

policy. The total discounted reinforcement

Proceedings of the International Conference on Neural Networks, Orlando Florida, June 1994.

received by starting in state x and following the

optimal policy is called the value of state x.

A reinforcement learning system typically

uses a set of real-valued parameters to store the

information that is learned. When a parameter

is updated during learning, the notation

W ←   K (4)

represents the operation of instantaneously

changing the parameter W so that its new value

is K, whereas

W α ←   K (5)

represents the operation of moving the value of

W toward K. This is equivalent to

W
new

←   (1 − α) W
old

+ α K (6)

where the learning rate a is a small positive

number.

Q-LEARNING

One popular reinforcement learning

algorithm is Q-learning (Watkins, 1989,

Watkins and Dayan, 1992). A controller using

Q-learning must store a number called a Q

value for each possible action in each state. For

a given state x and action u, the optimal Q

value, Q*(x,u), is the expected total discounted

reinforcement that is received by starting in

state x, performing action u on the first time

step, then performing optimal actions

thereafter. The maximum Q value in a state is

the value of that state. The action associated

with the maximum Q value in a state is the

policy for that state. Initially, all Q values are

set to arbitrary numbers. During learning, an

action u is performed in state x, resulting in a

transition to state x', and a receipt of

reinforcement RD(x,u). The Q value is then

updated:

Q (x , u) α ←   R
∆ t

(x , u) + γ ∆ t max
u

Q (x ' , u) (7)

If the Q values are stored in a lookup table,

then update (7) is very easy to implement. If

the Q values are represented by a function

approximation system, such as a multilayer

perceptron network, then the network would

take x and u as inputs, would give Q(x,u) as an

output, and would use the expression on the

right side of the arrow in (7) as the "desired

output" for the network during training. The

parameter a would be the learning rate for the

network. In this case, it is not obvious how to

find the maximum Q value required for update

(7). One algorithm that does this is described in

Baird (1992). Another method, wire fitting, is

described in Baird and Klopf (1993b).

Reinforcement learning systems based on

discrete Q-learning are described in Baird and

Klopf (1993a), and Klopf, Morgan, and Weaver

(1993).

Q-learning requires relatively little

computation per update, but it is useful to

consider how the number of updates required

scales with noise or with the duration of a time

step, Dt. An important consideration is the

relationship between Q values for the same

state, and between Q values for the same

action. The Q values Q(x,u1) and Q(x,u2)

represent the long-term reinforcement received

when starting in state x and performing action

u1 or u2 respectively, followed by optimal

actions thereafter. In a typical reinforcement

learning problem with continuous states and

actions, it is frequently the case that

performing one wrong action in a long sequence

of optimal actions will have little effect on the

total reinforcement. In such a case, Q(x,u1) and

Q(x,u2) will have relatively close values. On the

other hand, the values of widely separated

states will typically not be close to each other.

Therefore Q(x1,u) and Q(x2,u) may differ greatly

for some choices of x1 and x2. Therefore, if the

network representing the Q function makes

even small errors, the policy derived from it will

have large errors. As the time step duration Dt

approaches zero, the penalty for one wrong

action in a sequence decreases, the Q values for

different actions in a given state become closer,

and the implied policy becomes even more

sensitive to noise or function approximation

error. In the limit, for continuous time, the Q

function contains no information about the

policy. Therefore, Q-learning would be

expected to learn slowly when the time steps

are of short duration, due to the sensitivity to

errors, and it is incapable of learning in

continuous time. This problem is not a property

of any particular function approximation

system; rather, it is inherent in the definition of

Q values.

ADVANTAGE UPDATING

Reinforcement learning in continuous time

is possible through the use of advantage

updating. The advantage updating algorithm is

a reinforcement learning algorithm in which

two types of information are stored. For each

state x, the value V(x) is stored, representing

the total discounted return expected when

starting in state x and performing optimal

actions. For each state x and action u, the

advantage, A(x,u), is stored, representing the

degree to which the expected total discounted

reinforcement is increased by performing action

u (followed by optimal actions thereafter)

relative to the action currently considered best.

After convergence to optimality, the value

function V*(x) represents the true value of each

state. The advantage function A*(x,u) will be

zero if u is the optimal action (because u confers

no advantage relative to itself) and A*(x,u) will

be negative for any suboptimal u (because a

suboptimal action has a negative advantage

relative to the best action). For a given action

u, the Q value Q*(x,u) represents the utility of

that action, and the advantage A*(x,u)

represents the utility of that action relative to

the optimal action. The optimal advantage

function A* can be defined in terms of the

optimal value function V*:
A * (x , u) =

1

∆ t
R ∆ t (x , u) − V * (x) + γ

∆ t P (u , x , x ') V * (x ')
x '

∑


 


 
(8)

where P(u,x,x') is the probability of

transitioning from state x to state x' when

performing action u. The definition of an

advantage includes a 1/Dt term to ensure that,

for small time step duration Dt, the advantages

will not all go to zero. Advantages are related

to Q values by:

A * (x , u) =
1

∆ t
Q * (x , u) − max

u '
Q * (x , u ') [] (9)

Both the value function and the advantage

function are needed during learning, but after

convergence to optimality, the policy can be

extracted from the advantage function alone.

The optimal policy for state x is any u that

maximizes A*(x,u). All of the advantages in a

state are relative to a reference advantage,

Aref(x), which is defined by equation (10).

A ref (x) = max
u

A (x , u) (10)

If Aref is zero in every state, then the advantage

function is said to be normalized. Aref should

eventually converge to zero in every state. The

update rules for advantage updating for optimal

control in discrete time are given by updates

(11), (12), and (13).

The Advantage Updating Algorithm

LEARN:perform action ut in state xt

A (x t , u t)
α

←  

A ref (x t) +
R

∆ t
(x

t
, u

t
) + γ ∆ t V (x

t + ∆ t
) − V (x

t
)

∆ t

(11)

V (x t)
β

←   V (x t) + A ref new
(x t) − A ref old

(x t) [] α (12)

NORMALIZE:pick an arbitrary state x and

pick an action u randomly with uniform

probability

A (x , u) ω ←   A (x , u) − A ref (x) (13)

For the learning updates, the system

performs action ut in state xt and observes the

reinforcement received, RDt(xt,ut), and the next

state, xt+Dt. The advantage and value

functions are then updated according to

updates (11) and (12). Update (11) modifies the

advantage function A(x,u). The maximum

advantage in state x prior to applying update

(11) is Arefold(x). After applying update (11)

the maximum is Arefnew(x). If these are

different, then update (12) changes the value

V(x) by a proportional amount. Advantage

updating can be applied to continuous-time

systems by taking the limit as Dt goes to zero in

updates (11), (12), and (13). For (12) and (13),

Dt can be replaced with zero. Substituting

equation (2) into update (11) and taking the

limit as Dt goes to zero yields:
A (x t , u t)

α
←  

A max (x t) + V (x t) ln γ + • V (x t) + r (x t , u t)
(14)

Learning is done to find the correct policy.

Normalization is done to ensure that after

convergence Aref(x)=0 in every state, and so the

function will remain in a form that can be

represented easily. This avoids the

representation problem noted above for Q-

learning, where the Q function differs greatly

between states but differs little between actions

in the same state. Learning and normalizing

can be performed asynchronously. For

example, a system might perform a learning

update once per time step, in states along a

particular trajectory through state space, and

perform a normalizing update multiple times

per time step in states scattered randomly

throughout the state space. The advantage

updating algorithm is referred to as “advantage

updating” rather than “advantage learning”

because it includes both learning and

normalizing updates.

Advantage updating is direct; it learns to

control a system without learning to predict its

behavior. This is particularly useful if the

system being controlled is stochastic.

Traditional dynamic programming algorithms,

such as value iteration, (Bertsekas, 1987)

require an amount of calculation per update

proportional to the number of possible outcomes

from performing that action. If an action leads

stochastically to a continuum of states, then

value iteration would require complicated

integrals to be calculated numerically for each

update. For this reason, direct learning

systems, such as Q-learning and advantage

updating, can require much less computation

per update. If a model of the system being

controlled is known or learned, then the system

can learn by interacting with the model as in

the Dyna system (Sutton, 1990). Table 1

compares advantage updating, Q-learning, and

value iteration. All three learning algorithms

are guaranteed to converge to the optimal

policy in the discrete case. Value iteration is

not direct because it must learn a model of the

system being controlled. Q-learning does not

work in continuous time. Advantage updating

has all three properties. An equation called the

Bellman Equation (Bertsekas, 1987) indirectly

defines the optimal value function. It is an

equation containing the function V(x) that is

only satisfied everywhere if V(x) is the optimal

value function. The chart shows this equation,

and the analogous equations for the Q function

and advantage function, where E[] denotes the

expected value.

Analysis has shown that many reasonable-

looking algorithms for reinforcement learning

can fail to converge in some situations

(Williams and Baird, 1990, 1993). When Q-

learning is applied to a finite, discrete system,

and when a lookup table is used to store the Q

values, Q-learning is guaranteed to converge to

the optimal policy. The learning rule for

advantage updating can be shown to also have

this desirable property. Equation (9) showed a

relationship between Q values and advantages.

Given an advantage function, solving this

equation for Q gives a Q function that is implied

by the advantage function. The learning part of

the advantage updating algorithm, updates (11)

and (12), cause the implied Q function to

change as if it were being updated by the Q-

learning algorithm. Because Q-learning is

guaranteed to converge to the optimal policy,

the learning rule for advantage updating is also

guaranteed to converge. This trivial proof does

not consider the convergence of the full

advantage updating algorithm, including both

learning and normalizing. This more general

case can be addressed using the theorems of

Jaakkola, Jordan, and Singh (1993), and will be

considered in a forthcoming paper.

LINEAR QUADRATIC REGULATOR

Linear Quadratic Regulator (LQR) problems

are commonly used as test beds for control

systems, and are useful benchmarks for

reinforcement learning systems (Bradtke,

1993). The following linear quadratic regulator

(LQR) control problem can serve as a

benchmark for comparing Q-learning to

advantage updating in the presence of noise or

small time steps. At a given time t, the state of

the system being controlled is the real value xt.

The controller chooses a control action ut which

Information
stored for
state x ,
action u

Update rules Bellman equation Direct Converge

to *
Cont.
time

Q -learning Q (x , u) yes yes no

Value iteration V (x) no yes yes

Advantage

updating
V (x)

A (x , u)

For a randomly, uniformly chosen action:

yes yes yes

Q
α ←   R + γ ∆ t max ′ Q Q = E R + γ ∆ t max ′ Q []

V α ←   R + γ ∆ t max ′ V V = E R + γ ∆ t max ′ V []
A α ←   A

ref
+ (R + γ ∆ t ′ V − V) ∆ t

V
β ←   V + ∆ A

ref
α

A
ω ←   A − A

ref

V = E R + γ ∆ t ′ V [] − A ∆ t

A
ref

= 0

Table 1

is also a real value. The dynamics of the system

are:
• x

t
= u

t
(15)

The rate of reinforcement to the learning

system, r(xt,ut), is

r (x
t
, u

t
) = − x

t

2 − u
t

2
(16)

Given some positive discount factor g_1, the

goal is to maximize the total discounted

reinforcement:

γ
t
r (x t , u t) dt

0

∞

∫ (17)

A discrete-time controller can change its

output every Dt seconds, and its output is

constant between changes. The discounted

reinforcement received during a single time

step is

R
∆ t

(x
t
, u

t
) = γ τ − t r (x

τ
, u

τ
) d τ

t

t + ∆ t

∫

= γ τ − t − (x
τ

+ τ u
τ
) 2 − u

τ

2 () d τ
t

t + ∆ t

∫
(18)

and the total reinforcement to be maximized is

γ
∆ t () i R

∆ t
(x

i ∆ t
,

i = 0

∞

∑ u
i ∆ t

) (19)

Given this control problem, it is possible to

calculate the optimal policy _*(x), value function

V*(x), Q value function Q*(x,u), and advantage

function A*(x,u). These functions are linear or

quadratic for all Dt and g_1.

π * (x) = − k
1
x (20)

(21)

A * (x , u) = − k
3
(k

1
x + u) 2

(22)

Q * (x , u) =

− (k 2 + ∆ tk1
2 k 3) x 2 − 2 ∆ tk1 k 3 xu − ∆ tk3 u 2

(23)

The constants ki are positive for all nonnegative

values of Dt and g_1. For Dt=0 and g=1, all ki=1.

The appendix gives the general formula for

each ki as a function of Dt and g. Note that for

continuous time (Dt=0), the optimal Q function

is a function of x only, not u, and so the Q

function no longer contains any information

about the policy.

SIMULATION RESULTS

Advantage updating and Q-learning were

compared on the LQR problem described in the

previous section. In the simulations, the V

function was approximated by the expression

w1x2, and the A and Q functions were

approximated by w2x2+w3xu+w4u2. All

weights, wi, were initialized to random values

between ±10-4, and were updated by simple

gradient descent. Each Q function was

initialized with the same weights as the

corresponding advantage function to ensure a

fair comparison. The control action chosen by

the learning system was constrained to lie in

the range [-1,1]. When calculating the

maximum A or Q value in a given state, only

actions in this range were considered. On each

time step, a state was chosen randomly from

the interval [-1,1]. With probability 0.5, an

action was also chosen randomly and uniformly

from that interval. With probability 0.5, the

learning system chose an action according to its

current policy. The advantage updating system

also performed one normalization step on each

time step in a state chosen randomly and

uniformly from [-1,1]. A set of 100 Q-learning

systems and 100 advantage updating systems

were allowed to run in parallel, initialized with

different random weights, and all exploring

with different random states and actions. At

any given time, the policy of each system was a

linear function. The absolute value of the

difference between the constant in the current

policy and the constant in the optimal policy

was calculated for each of the 200 learning

systems. For Q-learning and advantage

updating, the solution was said to have been

learned when the mean absolute error for the

100 learning systems running in parallel fell

below 0.001. Figure 1 shows the number of

time steps required for learning when various

amounts of noise were added to the

reinforcement signal. Figure 2 shows the

number of time steps required for learning with

various time step durations.

For the simulations described here,

normalization was done once after each

learning update, and both types of update used

the same learning rate. Advantage updating

could be optimized by changing the number of

normalizing updates performed per learning

update, but this was not done here. To ensure a

fair comparison for the two learning algorithms,

the learning rate for Q-learning was optimized

for each simulation. Rates were found by

exhaustive search that were optimal to two

significant digits. The rates for advantage

updating had only a single significant digit, and

were not exhaustively optimized. The rates

used were sufficiently good to demonstrate that

advantage updating learned faster than Q-

learning in every simulation. Advantage

updating appears more resistant to noise than

Q-learning, with learning times that are shorter

by a factor of up to seven. This may be due to

the fact that noise introduces errors into the

stored function, and the policy for advantage

updating is less sensitive to errors in the stored

functions than for Q-learning. All of figure 1,

and the leftmost points of figure 2, represent

simulations with large time steps. When the

time step duration is small, the difference

between the two algorithms is more dramatic.

In figure 2, as the time step duration Dt

approaches zero (continuous time), advantage

updating is able to solve the LQR problem in a

constant 216 time steps. Q-learning, however,

requires approximately 10/Dt time steps.

Simulation showed a speed increase for

advantage updating by a factor of over 160,000.

Smaller time steps might have resulted in a

larger factor, but Q-learning would have

learned too slowly for the simulations to be

practical. Even for a fairly large time step of

Dt=0.03, advantage updating learned twice as

quickly as Q-learning. When Dt=0.03, the

optimal policy reduces x by 90% in 81 time

steps. This suggests that if a controller updates

its outputs 50 times per second, then advantage

updating will learn significantly faster than Q-

learning for operations that require at least 2

seconds (100 time steps) to perform. Further

research is necessary to determine whether this

is true for systems other than a simple LQR

problem.

CONCLUSION

Advantage updating is shown to learn much

faster than Q-learning for problems with small

time steps or noise, and no slower than Q-

learning for other problems. Advantage

updating works in continuous time, which Q-

learning cannot do. Unlike value iteration, it is

possible for advantage updating to learn the

policy without learning a model. If a model is

known or learned, advantage updating may be

combined with the model as in Dyna (Sutton,

1990). The learning rule for advantage

updating is guaranteed to converge to the

optimal policy for systems with discrete states

and actions when the values and advantages

are stored in a lookup table.

ACKNOWLEDGMENTS

This research was supported under Task

2312R1 by the Life and Environmental Sciences

Directorate of the United States Air Force

Office of Scientific Research. The author

gratefully acknowledges the contributions of

Harry Klopf, Jim Morgan, Gábor Bartha, Scott

Weaver, Mance Harmon, and Tommi Jaakkola.

Figure 1

Figure 2

REFERENCES

Baird, L. C. (1992). Function minimization for

dynamic programming using connectionist

networks. Proceedings of the IEEE

Conference on Systems, Man, and

Cybernetics (pp. 19-24). Chicago, IL.

Baird, L. C., & Klopf, A. H. (1993a). A

hierarchical network of provably optimal

learning control systems: Extensions of the

associative control process (ACP) network.

Adaptive Behavior, 1(6), 321-352.

Baird, L. C., & Klopf, A. H. (1993b).

Reinforcement Learning with High-

Dimensional, Continuous Actions. To

appear as a United States Air Force

technical report.

Bertsekas, D. P. (1987). Dynamic

Programming: Deterministic and

Stochastic Models. Englewood Cliffs, NJ:

Prentice-Hall.

Bradtke, S. J (1993). Reinforcement learning

applied to linear quadratic regulation.

Proceedings of the Fifth Conference on

Neural Information Processing Systems

(pp. 295-302). Morgan Kaufmann.

Jaakkola, T., Jordan, M. I., & Singh, S. P.

(1993). On the Convergence of Stochastic

Iterative Dynamic Programming

Algorithms (Tech. Rep. 9307). Department

of Brain and Cognitive Sciences,

Massachusetts Institute of Technology,

Cambridge, MA.

Klopf, A. H., Morgan, J. S., & Weaver, S. E.

(1993). A hierarchical network of control

systems that learn: Modeling nervous

system function during classical and

instrumental conditioning. Adaptive

Behavior, 1(6), 263-319.

Watkins, C. J. C. H. (1989). Learning from

delayed rewards . Doctoral thesis,

Cambridge University, Cambridge,

England.

Watkins, C. J. C. H., & Dayan, P. (1992).

Technical note: Q-learning. Machine

Learning, 8(3/4), 279-292.

Williams, R. J., & Baird, L. C. (1990). A

mathematical analysis of actor-critic

architectures for learning optimal control

through incremental dynamic

programming. Proceedings of the Sixth

Yale Workshop on Adaptive and Learning

Systems (pp. 96-101). New Haven, CN.

Williams, R. J., & Baird, L. C. (1993). Analysis

of Some Incremental Variants of Policy

Iteration: First Steps Toward

Understanding Actor-Critic Learning

Systems. (Tech. Rep. NU-CCS-93-11).

Boston, MA: Northeastern University,

College of Computer Science.

APPENDIX: LQR CONSTANTS

For Dt_0 and g_1, the following 3 equations give the constants, ki, for the optimal controller for the

LQR problem. If Dt=0, or g=1, or both, the constants are calculated by evaluating the limit of the

right side the equations as Dt goes to zero, or g goes to one, or both. The constants found by these

equations can then be used to check whether a learning system has learned the correct policy. This

was used in the simulation to determine how long it took for Q-learning and advantage updating to

find the correct policy in each case.

k 1 =
1 − γ ∆ t

∆ t











2 γ ∆ t − 2 ∆ t ln γ − 2 − (1 − γ ∆ t) ln 2 γ + (2 + ln 2 γ) 2 (1 − γ ∆ t) 2 − 4 ∆ t 2 γ ∆ t ln2 γ

2 − 2 γ 2 ∆ t + 4 ∆ t γ ∆ t ln γ + (1 − γ 2 ∆ t) ln2 γ + (1 − γ ∆ t) (2 + ln 2 γ) 2 (1 − γ ∆ t) 2 − 4 ∆ t 2 γ ∆ t ln2 γ
(24)

k 2 =
(2 + ln2 γ) (1 − γ ∆ t) 2 − 2 ∆ t 2 γ ∆ t ln 2 γ − (1 − γ ∆ t) (2 + ln 2 γ) 2 (1 − γ ∆ t) 2 − 4 ∆ t 2 γ ∆ t ln 2 γ

2 ∆ t 2 γ ∆ t ln 3 γ
(25)

k 3 =
(2 + ln2 γ) (γ 2 ∆ t − 1) − 4 ∆ t γ ∆ t ln γ − (1 − γ ∆ t) (2 + ln 2 γ) 2 (1 − γ ∆ t) 2 − 4 ∆ t 2 γ ∆ t ln 2 γ

2 ∆ t γ ln 3 γ
(26)

