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Growing evidence links the three mammalian lipin proteins, i.e., lipin-1, lipin-2 and lipin-3, to metabolic and
cardiovascular diseases such as noninsulin-dependent diabetes mellitus and atherosclerosis. Lipin proteins play a
dual function in lipid metabolism by acting as phosphatidate phosphatase (PAP) enzymes and as transcriptional
regulators. Genetic variants within the human LPINT and LPIN2 genes are associated with metabolic syndromes.
The fatty liver dystrophy (fld) mice carrying mutations within the Lpinl gene display life-long deficiency in
adipogenesis, insulin resistance, neonatal hepatosteatosis and hypertriglyceridemia, as well as increased
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Lipin atherosclerosis susceptibility. Cell culture studies show that hepatic lipin-1 expression is selectively stimulated by
Glycerolipid glucocorticoids and repressed by insulin, and its subcellular localization governs the assembly and secretion of

very low density lipoproteins (VLDL). In noninsulin-dependent diabetes, glucocorticoid signals lead to
dyslipidemia characterized by overproduction of VLDL and atherogenic remnants. This puts lipin-1 as a key
integrator of hormonal signals to the liver in diabetic dyslipidemia. This review summarizes the current
understanding of the role that hepatic lipin-1 plays in the synthesis, storage and compartmentalization of

VLDL assembly/secretion

glycerolipids, and highlights the lipid metabolic consequences associated with dysregulated lipin expression.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The assembly and secretion of triacylglycerol (TAG)-rich VLDL
represents a key component of hepatic TAG homeostasis and is tightly
regulated by biosynthesis and availability of various lipid constituents
including phospholipids and TAG [1,2]. The assembly of lipid constitu-
ents into VLDL particles requires the structural protein apolipoprotein
(apo) B-100 [3], and this process is facilitated by the microsomal
triglyceride transfer protein (MTP) located within the lumen of
endoplasmic reticulum (ER) and Golgi apparatus [4]. Factors affecting
VLDL assembly/secretion include lipid substrate availability (or lipid
cargo) as well as the functionality and integrity of the ER/Golgi
membranes (or lipid conveyor). Because of a dual function that lipin
proteins play in both the biosynthesis of glycerolipids (by possessing PAP
enzymatic activity) and in regulating the expression of genes involved in
lipid metabolism (by acting as a transcription coactivator), and because
of their localization at various intracellular compartments critical for
membrane biogenesis, regulation of lipin expression represents a key
component in the process of hepatic VLDL assembly and secretion. The
three mammalian lipin family members, namely lipin-1, lipin-2 and
lipin-3 are encoded by their respective genes. Mutations in the Lpin1
gene in fld mice encumber lipin-1 function and cause a life-long
deficiency in adipogenesis, neonatal hypertriglyceridemia and hepatos-
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teatosis, as well as insulin resistance and increased susceptibility to
atherosclerosis [5-8]. Intriguingly, lipin-1 deficiency in humans is not
associated with lipodystrophy as mutations in the human LPINT gene
result in defective muscle energy metabolism, recurrent rhabdomyolysis
and myoglobinuria in early childhood [9], which might be caused by a
defect in fatty acid oxidation. However, genetic variants within human
LPINT [10-12] and LPIN2 [13] genes are associated with phenotypes
characteristic of metabolic syndromes. The current review highlights a
function for lipin-1 as an integrator of hormonal signals to the liver, as
well as a multifaceted bridge between hepatic glycerolipid biosynthesis
and TAG-rich lipoprotein assembly/secretion under various metabolic
conditions. Emphasis is centered on the expression, compartmentaliza-
tion and post-translational modifications of lipin-1, as well as on the
contribution of lipin-1 driven glycerolipid homeostasis to both the cargo
and the conveyor aspects of TAG-rich lipoprotein assembly/secretion.

2. Dual function of lipin proteins in hepatic lipid homeostasis

The Lpinl gene was identified as the mutated gene underlying
lipodystrophy in the two fatty liver dystrophy (fld) mouse strains BALB/
cByl-fld (commonly known as fld) and C3H/HeJ-fld? [8]. The mouse
Lpinl gene undergoes alternative mRNA splicing to generate two
isoforms, namely lipin-1c and lipin-1p (Fig. 1) that are 891 and 924
amino acids in length, respectively [14]. The human LPINT gene is also
expressed in two isoforms (lipin-1a and lipin-1P) by alternative mRNA
splicing [15], with a third splice variant (lipin-1vy) recently identified
[16]. The human lipin-1+y specific sequence consists of 26 amino acids,
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A. Lipin protein domains and key motifs/residues
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Fig. 1. Structural and functional motifs of lipin. A) Schematic diagram depicting mammalian lipin proteins (lipin-1c, lipin-1p, lipin-1+, lipin-2 and lipin-3) with evolutionarily
conserved N- terminal (N-LIP) and C-terminal (C-LIP) domains, a nuclear localization signal (NLS), phosphatidate phosphatase-1 (PAP) enzymatic motif (DXDXT), nuclear receptor
interaction motif (LXXIL) and sumoylation (¢KXE) consensus motifs (identified by Liu and Gerace [39]) indicated. X denotes any amino acid; & represents hydrophobic amino acids;
{3 and -y denote the lipin-1p and lipin-1+y specific sequences, respectively. A conserved serine residue demonstrated to be required for PAP activity [30] in mouse lipin-1c (S724) and
lipin-2 (S731) is also indicated. The number of amino acid residues for the mouse and human lipin-1e, lipin-13 and lipin-1y isoforms is shown. T indicates the mouse counterpart of
the human lipin-1 specific sequence with 77% identity in deduced amino acids [16]. B) Phosphorylation sites of lipin-1(3 as identified by Harris et al. [22]. Residues S281/T282,
S353/S356, S647/S648 and S720/T722 indicate pairs in which either residue may be phosphorylated [22].

and homology search against the mouse genome identified a counter- end of the protein (termed C-LIP domain) (Fig. 1) in most lipin
part of the human lipin-1+y specific exon with 77% identity in deduced homologs. The first and second aspartate residues within the DXDXT
amino acids [16]. Moreover, the human lipin-13 specific sequence motif are required for PAP activity in mouse lipin-1 [25] and yeast
comprises 36 amino acids, and sequence alignment shows 72% identity Pah1p/Smp2p [29]. Imbedded in the C-LIP domain also is an o-helical
in deduced amino acids to the mouse counterpart [16]. Two other leucine rich motif (LXXIL) (Fig. 1) that mediates interaction with
members of the lipin protein family, namely lipin-2 and lipin-3, are transcription factors [8,25], and site directed mutagenesis in this motif
shown to share 44-48% amino acid sequence similarity to lipin-1 [8,17]. results in impaired PAP activity [25]. Furthermore, the conserved serine
Mammalian lipin proteins gained biological appreciation with the residue within the C-LIP domain, downstream of the PAP activity motif
discovery that they encode glycerolipid biosynthetic activity and and the transcriptional coactivator motif (Fig. 1), has been shown to be
transcriptional regulatory functions in lipid metabolism as outlined required for PAP activity in lipin-1 and lipin-2 but not for the

below. transcriptional coactivator functions [30].
The three lipin genes and their splice variants in mice and humans
2.1. Lipin encodes phosphatidate phosphatase activity have distinct yet overlapping tissue specific expression patterns [24,30].

The highest level of lipin-1 expression occurs in white/brown adipose
The de novo TAG synthesis pathway involves successive acylation of tissue, skeletal muscle, cardiac muscle and testis, with low expression in
glycerol-3-phosphate to generate phosphatidate (PA) [18], which is then the liver, kidney, and brain. Lipin-1 is also expressed in Schwann cells of
dephosphorylated by PAP to form diacylglycerol (DAG). Although it was peripheral nerves, and its deficiency in these cells causes peripheral
known for a long time that the PAP-derived DAG is a key substrate for the neuropathy in the fld mouse [31,32]. Lipin-2 is highly expressed in the
biosynthesis of TAG, phosphatidylcholine (PC) and phosphatidyletha- liver [24,30], and hepatic lipin-2 mRNA levels are substantially higher
nolamine [19-21], the molecular identity of PAP was unknown until it than lipin-1 [30]. Lipin-2 is also expressed in the kidney, lungs, brain,
was unveiled in Saccharomyces cerevisiae in 2006 to be encoded by lipin gastrointestinal tract, salivary glands, circulating red blood cells and
(the yeast ortholog being Pah1p/Smp2p) [22]. It is now clear that all lymphoid tissues [30]. Lipin-3 is expressed at much lower levels with
mammalian lipin proteins (i.e., lipin-1a, lipin-1f, lipin-1+y, lipin-2 and mRNA detectable in the liver and gut [24,30].
lipin-3) possess PAP activity that is dependent upon Mg?* or Mn?* and The contribution of each lipin isoform to PAP activity in liver cells is
on PA as a substrate [16,23-25]. Orthologs of lipin exist in plants, unclear, although it is known that lipin-1 accounts for all of the
invertebrates, and single cell eukaryotes [8]. The PAP activity is conferred measured PAP activity in white/brown adipose tissues and skeletal
by the DXDXT catalytic motif (X can be any amino acid), which is muscle cells [24]. The lipin-1 deficient fld mice exhibit reductions in
commonly found in haloacid dehalogenase (HAD)-like superfamily of adipose tissue mass and cellular lipid content [7], which resemble the
phosphatases [26-28]. The DXDXT motif is conserved from mammalian abnormalities associated with severe lipodystrophy in humans [33]. The
lipin-1 to yeast Pah1p/Smp2p [8], and it is present within the C-terminal ~  fId mice also develop glucose intolerance, insulin resistance, and become
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susceptible to atherosclerosis [7]. Lipin-1 overexpression increases TAG
accumulation in adipocytes of adipose-specific lipin-1 transgenic mice
[7,34]. However, lack of lipin-1 expression in the liver of fld mice
translates into severe hypertriglyceridemia (as high as 1,000 mg/dl)
and massive hepatosteatosis during the suckling period, with lipin-1
deficient hepatocytes exhibiting normal or half of the measured PAP
activity [5-8,23,24,35]. Paradoxically, the hypertriglyceridemia and
hepatosteatosis in fld mice resolve prior to weaning (between postnatal
days 13-15), even though the mice maintain ~25% lower body weight
[5,36]. The substantial hepatic PAP activity in fld mice could be
attributable to compensatory upregulation of lipin-3 expression
[24,30] and also due to substantial expression of hepatic lipin-2 [35].
Recent shRNA-mediated experiments in fld hepatocytes suggest that
knocking down lipin-2 expression markedly diminishes hepatic PAP
activity and suppresses TAG synthesis under high fatty acid supple-
mentation conditions [35]. Thus, the expression of hepatic lipin-2 may
account for significant PAP activity in the liver under lipin-1 deficiency
(fld) conditions. However, in HeLa cells where lipin-1 expression is
normal, knockdown of lipin-2 results in increased PAP activity,
apparently as a result of compensatory upregulation of lipin-1 [37].
The relative contribution of different lipin proteins towards the PAP
activity is, therefore, cell type specific.

2.2. Lipin acts as a transcriptional coactivator of lipid metabolism genes

Although lipin proteins do not contain DNA binding domains, a
signature motif (LXXIL) (Fig. 1) located within the C-LIP domain [8]
endows lipin proteins with the ability to interact with nuclear receptors
and function as transcriptional regulators [17,38,39]. For instance, lipin-1
forms a complex with proliferator-activated receptor-y (PPARY)
coactivator-1ac (PGC-1at) and PPARa to enhance gene expression.
Lipin-1 can also interact in vitro with nuclear receptors such as
hepatocyte nuclear factor-4oc (HNF-4at) and glucocorticoid receptor
(GR) [25]. In addition, lipin-1 also induces the expression of key
adipogenic transcription factors including PPARy and C/EBPa [40].
Specifically, lipin-1ae and lipin-1p3 appear to exert complementary roles
in adipocyte differentiation. While lipin-1cx induces the expression of
adipogenic transcription factors, lipin-1p induces the expression of lipid
synthesis genes encoding, for example, fatty acid synthase (FAS) and
diacylglycerol acyltransferase (DGAT) [14]. In fld liver, lipin-1 deficiency
results in the activation of the sterol regulatory element binding protein
1 (SREBP-1) and its target genes [36], as well as in very high expression
levels of stearoyl-CoA desaturase-1 (Scd1) and apoA-IV (Apoa4) [41].
Additionally, acute lipin-1 deficiency in the mouse liver abolishes
fasting-induced activation of Ppara and several PPARo/PGC-1« target
genes, such as Acadvl, Acadm and Fabp1, that are involved in fatty acid 3~
oxidation [25]. The transcriptional coactivator activity of lipin-1c toward
PGC-1a in neuronal cells is achieved through association and activation
of myocyte enhancer factor 2 (MEF2), a transcriptional factor required
for neuronal cells survival and differentiation [42]. However, the
mechanisms by which lipin-1a activates MEF2 and its downstream
target genes remain elusive. PGC-1a stimulates its own promoter by
coactivating MEF2 [43], as well as lipin-1 expression [25]. It is suggested
that lipin-1a employs sumoylation as a molecular switch to amplify the
PGC-1a-MEF2 loop in neuronal cells [42].

Performing bioinformatic analysis of published gene expression
profiling data [25] reveals a set of transcription factors that, we
postulate, may be involved in modulating hepatic gene expression
programs in response to lipin function (Table 1). Specifically, DNA
binding sites preferred by these transcription factors are profoundly
over-represented within the regulatory regions of genes that showed
upregulation upon lipin-1 overexpression. In addition to PPAR« that
may interact with lipin-1 either directly or indirectly through PGC-1c,
we found that lipin-1 may also exert some of its effects through
HNF4a and SREBP. All of these transcriptional regulators are known to
play a role in biological processes related to lipid homeostasis

(Table 1). Noteworthy, lipin-1 is an inducible amplifier of the PGC-
1at/PPARa signaling pathway, and PGC-1a is a coamplifier of lipin-1
in the liver. The glucocorticoid dexamethasone and cAMP increase
mRNA levels of lipin-1 and PGC-1a in the liver [44], and lipin-1
interacts in vitro with HNF4a [25]. Partnering between PGC-1a and
HNF4a is shown to be crucial for hepatic lipoprotein metabolism.
Forced expression of PGC-1ax in mouse and human hepatoma cells
increases the mRNA of Apoa4, Apoc2 and Apoc3, which have been
implicated in VLDL and TAG metabolism. Moreover, adenoviral-
mediated expression of PGC-1a into live mice stimulates the
expression of these apolipoproteins and increases serum and VLDL
TAG levels, a phenotype that is antagonized by PGC-1a knockdown
[45]. While some of these transcription factors may function in a
PGC1-dependent manner, others are thought to function indepen-
dently of PGC-1 (Fig. 2). The LXXIL motif also occurs within lipin-2 and
lipin-3. Transcriptional coactivator activity in concert with PGC-1at/
PPARYy is shown with lipin-2 [30], and a physical interaction is
reported between lipin-3 and PPAR« [25]. Whether or not any of the
lipin isoforms can act in PGC1-independent manner remains to gain
experimental validation.

A function for lipin-1 in phospholipid biosynthesis and nuclear
membrane biogenesis is also endorsed experimentally at the
transcriptional coactivation level. In yeast, transcriptional regulation
of phospholipid synthesis genes such as INO1 (which encodes
inositol-3-phosphate synthase, the rate limiting enzyme for phos-
phatidylinositol synthesis) and OPI3 (which encodes the enzyme
catalyzing the final steps in PC biosynthesis [46]) is controlled by the
interaction of the Opilp repressor with the Ino2p activator, which
forms a complex with Ino4p that binds the yeast inositol-sensitive
upstream activating sequence found in promoters of phospholipid
synthesis genes. The function of Opilp is governed by its interaction
with PA (the PAP reaction substrate) at the nuclear/ER membrane.
When PA levels are high (due to loss of PAP activity), Opilp binds to
PA at the ER membrane and transcription of phospholipid synthesis
genes is derepressed. When PA levels are reduced (due to PAP
activation), Opilp translocates into the nucleus where it binds to
Ino2p to repress transcription of phospholipid biosynthetic genes. A
nuclear/ER membrane-localized phosphatase complex consisting of
Nem1p-Spo7p recruits phosphorylated Pahlp/Smp2p onto the
membrane. At the membrane, the phosphatase complex depho-
sphorylates Pah1p/Smp2p and allows the enzyme to interact with the
membrane and bind to PA to catalyze the PAP reaction. Loss of PAP
activity and inhibition of Smp2p/Pah1p dephosphorylation result in
derepression of phospholipid biosynthetic genes and nuclear mem-
brane expansion [29,82]. The significance between lipid biosynthetic
activity and transcriptional regulation in hepatic lipid metabolism and
homeostasis will be dissected in subsequent sections.

3. Regulation of lipin expression and compartmentalization
3.1. Correlation between hepatic VLDL secretion and lipin expression

Existing experimental evidence suggests that hepatic VLDL
synthesis and secretion is highly influenced by the expression of
lipin-1. Expression of lipin-1 is regulated by various physiologic and
pathophysiologic stimuli that are known to exert an effect on
lipoprotein metabolism in the liver. The level of hepatic lipin-1
expression is low in adult mice in the fed state [8,24], and lipin-1
contributes relatively little to total hepatic PAP activity [23,24].
However, the expression of lipin-1 is markedly upregulated under
stress conditions. It has been known for a long time that glucocorti-
coids induce hepatic PAP activity and TAG synthesis, an effect that is
synergized by glucagon and antagonized by insulin [48,49]. This
glucocorticoid effect is consistent with the observed increase in
hepatic PAP activity under stress conditions such as partial hepatec-
tomy [50], starvation [51] and diabetes [52], as well as in response to
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Table 1
Partial list of transcription factors whose preferred DNA binding sequences are especially abundant among lipin-1 modulated genes*.

Possible
binding factors

Family name Representative

transfac PWMs

Connection to hepatic lipogenesis and VLDL assembly/secretion

PGC-1ce or PGC-113 dependent
Peroxisome proliferator-activated receptor MO00134-V$HNF4_01-HNF- HNF4c, PPARe, HNF4o regulates transcriptionally MTP [129,130] and VLDL secretion [131,132].
(PPAR), hepatocyte nuclear factor 4 (HNF4) 4alphal PPARY PPARa induces MTP expression [133,134] TAG mass in hepatocytes [135].
Foxa2/PGC-13 complex induces MTP expression and VLDL secretion [136,137].
PPARYy ligand agonists suppress the human MTP promoter activity [130].
Regulation of the Lpin1 gene expression by glucocorticoids [58], and the GR
indirectly stimulates VLDL receptor gene transcription in 3T3-L1 cells [138].
Estrogens modulates apoB100-containing lipoprotein metabolism [139,140].
Activation of PXR induces hepatosteatosis [141] and VLDL/LDL production
[142].
ERRa with PGC-1ax activate the apoA-IV via interaction with the apoC-III
enhancer, as well as intestinal lipid transport [143].

Nuclear receptor M00192-V$GR_Q6-GR GR, Estrogen
Receptor, AR,

PXR, ERR

PGC-1 independent
Sterol response element binding protein MO00220-V$SREBP1_01- SREBP1 SREBP1 regulates the LPINT gene expression in human hepatoblastoma cells
SREBP-1 [68].
SREBP1 stimulates hepatic lipogenesis and VLDL secretion [144].
LXR-SREBP1c axis controls VLDL particle size [145] and production [146].

cAMP responsive element binding protein MO00916-V$CREB_Q2_01-  CREB1, XBP-1,  Regulation of hepatic lipogenesis by the transcription factor XBP-1 [147].
(CREB) CREB ATF1, ATF2 Deletion of XBP1 in adult liver results in hypotriglyceridemia [148].
ATF-2 Ttansactivates the apoC-IIl promoter in hepatic cells [149], and apoC-III
enhances hepatic VLDL assembly/secretion under lipid-rich conditions
[108,150].
Aryl hydrocarbon receptor (AhR), MO00976-V$AHRHIF_Q6- AhR, Arnt, Ahr affects serum TAG levels [151].
hypoxia inducible factor (HIF) AhR HIF1a

M00497-V$STAT3_02-
STAT3

Signal transducer and activator of
transcription (STAT)

STAT-1, STAT-3, STAT5b enhances the transcriptional activity of HNF4« towards apoC-III [152].
STAT-5 Jak/STAT dependent pathway stimulates SREBP-1c¢ maturation [153].

Hepatic Stat-3 inactivation results in hypertryglyceridemia and hepatosteatosis
[154].

USF1 and USF2 stimulate hepatic lipase expression in HepG2 liver cells [155].
USF1 is linked to hyperlipidaemia and the metabolic syndrome [156].

M00726-V$USF2_Q6-USF-
1-USF-2

Upstream stimulatory factor (USF) USF1 and USF2

*The dataset of Finck et al. [25] was downloaded from GEO (accession GSE5538) and normalized gene expression values were calculated. Genes whose expression is induced more
than 2-fold (265 genes in total) were further analyzed. The sequence of their promoter region, from 1500 base pairs upstream of their transcription start site to 500 base pairs
downstream of the start site (2 kb total), was subjected to position weight matrix (PWM) scans. The Cisgenome program was used to scan these 265 promoters for all vertebrate
PWMs from the Transfac database. As background set, a group with 50 times as many promoters of the same length (13,250 promoters of 2 kb in total) was randomly selected, and
was also subjected to PWM scan. PWM enrichment values among the test set of genes were calculated using hypergeometric distribution test: for a given PWM, the number of hits
among the lipin-1 modulated promoters and among the control set of promoters, as well the size in base pairs of each promoter set were used as parameters. A cut-off of p<0.005 for
the value of (1-cumulative probability) was used to identify significant PWMs. Abbreviations: AR, androgen receptor; ERR, estrogen-related receptor; GR, glucocorticoids receptor;
PGC-1, proliferator-activated receptor-y (PPARY) coactivator-1; PXR, pregnane x receptor.

dietary fat/carbohydrate modifications or ethanol consumption
[53,54]. In particular, the glucocorticoid dexamethasone stimulates
TAG synthesis and secretion as VLDL particles [55-57]. This
stimulatory effect of dexamethasone is associated with a specific
induction of lipin-1 expression since lipin-2 or lipin-3 mRNA
concentrations and protein levels are unchanged in mouse or rat
primary hepatocytes under the same treatment [44,58]. The cis DNA
sequence element responsible for the binding of the glucocorticoid
receptor has been identified upstream of the promoter region of the
Lpin1 gene [58]. Our unpublished differential display PCR data reveals
that in primary rat hepatocytes treated with dexamethasone, lipin-1
is one of two lipid synthesis genes (the other being HMG-CoA
reductase) whose mRNA concentrations are drastically increased. The

A. Lipin activates fatty acid oxidation
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dexamethasone-induced effect on lipin-1 expression is synergized by
cAMP and antagonized by insulin. Glucagon, through cAMP, increases
the half-life of the dexamethasone-induced effect on hepatic lipin-1
expression and its encoded PAP activity [44], with cAMP modulating
PAP activity through phosphorylation [48,59]. Insulin modulates
phosphorylation of lipin-1 [23,60,61], its subcellular compartmental-
ization [23,61] and its expression [44,62]. Upregulation of lipin-1
expression under stress conditions (e.g., glucocorticoid treatment or
diabetes) may protect the liver from fatty acid overload and prevent
lipotoxicity by converting fatty acids into TAG for secretion as VLDL
particles or for storage in cytoplasm [48,62].

Work with hepatocytes isolated from fasting rats has shown that
secretion of apoB and TAG-rich VLDL are influenced profoundly by
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lead us to propose a model whereby lipin impacts transcriptional regulation of lipid metabolism genes either through interaction with PGC-1at/3 or PPARe, or through interaction
with other transcription factors such as STAT proteins. Abbreviations: Apoc3, apolipoprotein C-IIl; Hnf4a, hepatocyte nuclear factor-4oi; Mttp, microsomal triglyceride transfer
protein; PGC-1a/3, proliferator-activated receptor-y (PPARY) coactivator-1c/(3; PPAR, proliferator-activated receptor-a; RXR, retinoid X receptor; Srebpic, sterol regulatory
element binding transcription factor-1c; STAT, signal transducer and activator of transcription.
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fasting [63]. Under fasting conditions, hepatic VLDL production is
stimulated as a result of reduced insulin action [64,65]. Specifically,
the expression of hepatic lipin-1 is induced in response to fasting,
glucocorticoids action, insulin-deficiency and diabetic conditions [25].
Glucocorticoids induce VLDL production by stimulating lipogenesis
via a selective upregulation of lipin-1 expression [44], as well as by
stimulating apoB translation and post-translational stability [55-57],
with insulin acting antagonistically. Although the stimulatory effect of
glucocorticoids on lipin-1 expression is enhanced by cAMP [44], this
second messenger is reported to act as a switch to downregulate
hepatic VLDL secretion [66,67]. However, the synergistic action of
glucocorticoids and cAMP on hepatic lipin-1 expression, PAP activity
and lipid synthesis, as well as the cAMP-induced phosphorylation of
PAP [48,59] and the subsequent modulation of PAP/lipin-1 subcellular
localization [23,61] may be instrumental for providing compartmen-
talized lipid substrates and for favoring post-translational stability of
apoB [55-57], thus reversing an original and transient inhibitory
effect of CAMP on VLDL secretion. While both hepatic Lpin1 [25] and
Lpin2 [30,35] gene expression is upregulated in mice by fasting, the
regulatory circuits governing their upregulation exhibit divergence.
Hepatic Lpin1 gene expression is shown to increase by PGC-1a [25].
However, PGC-1a deficiency in mice has no effect on fasting-induced
Lpin2 gene expression [35]. Likewise, PGC-1at overexpression in
mouse hepatocytes also has no effect on Lpin2 expression [35]. The
lack of an influence of PGC-1ax on Lpin2 expression is reminiscent of
the aforementioned glucocorticoid treatment [44] and is also
observed under diabetes conditions [35]. The fasting- or glucocorti-
coid-induced lipin-1 expression in the liver [25] augments the
potential for TAG synthesis in response to the influx of fatty acid
derived from lipolysis in adipose tissue [62]. Increase in hepatic lipin-
1 expression also promotes fatty acid oxidation through its transcrip-
tion coactivator role in activating the expression of fatty acid
oxidation genes [25].

The expression of lipin-1 is also regulated by SREBP-1 [68], the major
activator of hepatic lipogenesis. A sterol regulatory element (SRE) and
nuclear factor-Y binding sites reside within the human LPINT promoter
region, and both appear to control LPIN1 gene transcription. Particularly,
hepatic lipin1 expression is elevated in diabetic db/db mice [25], which
may be attributable to elevated SREBP-1 expression/activity [69].
Although it is unclear if the increased production of hepatic DAG
contributes to the insulin resistant phenotype in db/db mice, abnormal
accumulation of fat in the peripheral tissues, including the liver, is
reported as a major culprit [70,71]. The free fatty acid-derived
accumulation of DAG is critical for the activation of PKCH, which in
turn phosphorylates insulin receptor substrate-1 and inactivates its
downstream effectors [72]. Increased production of DAG via the TAG
biosynthetic pathway also results in PKCe activation, which exacerbates
hepatic lipid accumulation and induces insulin resistance [73]. Targeted
inactivation of PKCe in nonalcoholic fatty liver disease reverses hepatic
insulin resistance [74].

3.2. Post-translational modifications affect lipin compartmentalization

Lipin-1 and lipin-2 exhibit multifaceted subcellular distribution;
they localize to the cytosol, microsomal membranes, and the nucleus in
various cell types examined, e.g., McA-RH7777, 3T3-L1, Hela and
HEK293 [23,30,35,37,75]. The compartmentalization of lipin-1, in
particular, presumably underlies its dual molecular function as a
glycerolipid biosynthetic enzyme and as a transactivator of lipid
metabolism genes. PAP activity translocates between the cytosol and
the microsomal membranes, and the membrane association potential of
lipin-1 is responsible for PAP activation [48,76-78]. Translocation of
lipin-1 and its encoded PAP activity between the cytosol and
microsomal membranes, as well as lipin-1 partitioning between the
nucleus and cytoplasm are influenced by phosphorylation status
[23,61]. Lipin-1 phosphorylation is stimulated by insulin in a rapamy-

cin-sensitive manner and results in decreased association with
microsomal membranes [23,60]. In agreement with this finding, oleic
acid decreases phosphorylation of lipin-1 and favors its microsomal
localization [23]. The oleic acid-induced association of lipin-1 with the
microsomal membranes is consistent with the known stimulatory
effects of oleic acid on PAP activity and lipogenesis [76,77,79], as well as
on VLDL assembly/secretion [80,81]. The effect of oleic acid on lipin
translocation from cytosol to microsomal membrane is not specific to
lipin-1, because binding of recombinant lipin-2 obtained from HEK-293
cells to microsomal membranes of rat liver is also enhanced by
treatment with oleic acid [30]. Like lipin-1, the majority of phosphor-
ylated lipin-2 is detected in the liver cytosol [35]. Association of lipin
proteins with the microsomal membranes allows for directed localiza-
tion at sites of action. Furthermore, selective phosphorylation of lipin-1
and lipin-2 by cyclin-dependent kinases [37] as well as phosphorylation
of the yeast Pah1p/Smp2p [47,82] results in reduced PAP activity.

The phosphorylation sites identified in lipin-1 (Ser106, Ser634, and
Ser720) are conserved in mammalian lipins and yeast Pah1p/Smp2p, of
which Ser106 appears to be the major site of insulin-stimulated
phosphorylation in lipin-1 [23] and lipin-2 [35]. Phosphorylation of
yeast Pah1p/Smp2p is catalyzed by Cdc28p/Cdk1p [47]. The identity of
a kinase(s) responsible for mammalian lipin phosphorylation remains
to be determined. Dephosphorylation of the yeast Pahlp/Smp2p is
catalyzed by a complex consisting of Nem1p and Spo7p [47]. The
mammalian counterpart that dephosphorylates lipin-1 is Dullard [83].
Dephosphorylation of Pah1p/Smp2p by the Nem1p-Spo7p complex at
the ER/nuclear membrane results in higher PAP activity, lower PA levels,
and translocation of Opilp into the nucleus to repress transcription of
phospholipid synthesis genes [29,82]. Thus, phosphorylation of lipin
proteins strongly influences their function through altered subcellular
localization and through transcriptional regulation of phospholipid
synthesis genes.

Lipin-1ac and lipin-13 undergo sumoylation on two consensus
sumoylation sites (Fig. 1) in cell culture models and in rodent brain.
Although lipin-2 contains one sumoylation consensus site (Fig. 1), no
sumoylation of lipin-2 is observed in transfected HeLa cells [42]. The
potential sumoylation site of lipin-2 may be inaccessible in its three-
dimensional structure or sumoylation of lipin-2 may occur in a cell-
specific perspective. Consensus sumoylation sites are not present in
mammalian lipin-3 or orthologs in yeast or invertebrates [42].
Sumoylation of lipin-1a stimulates its nuclear localization in both
embryonic cortical neurons and cultured SH-SY5Y neuronal cells, and
mutation of sumoylation sites within lipin-1oc hampers its nuclear
localization and its ability to coactivate the transcriptional coactivators
PGC-1ae and MEF2 [42]. Sumoylation may facilitate nuclear localization
of lipin-1cx in neuronal cells by controlling interactions with the nuclear
import/export machinery, and/or by regulating its binding to intra-
nuclear components. Sumoylation sites are located in close proximity to
nuclear export signals [84]. Thus, sumoylation of lipin-1c. might affect
its export from nucleus by interfering the binding of nuclear export
signals with their receptors. The functional significance of lipin-1p
sumoylation is unknown.

3.3. Nuclear localization signal sequences affect lipin compartmentalization

All lipin proteins contain one or more nuclear localization signals
(NLS) (Fig. 1), which allow access to the nucleus and interactions with
DNA-bound transcription factors. In the fission [85] and budding
[29,47] yeast, as well as in the nematodes [86,87], the corresponding
lipin orthologs all locate to the nucleus. In particular, Pah1p/Smp2p
associates with the nuclear membrane and chromatin in S. cerevisiae
[47], and the lipin homolog in C. elegans localizes to the nucleoplasm,
ER and nuclear envelope [86]. Deletion of the NLS sequences [8]
completely excludes lipin-1a from the nucleus in 3T3-L1 adipocytes
[61] and in hepatocytes [75]. However, although both lipin-1a and
lipin-1P contain NLS sequences, lipin-1c is localized primarily in the
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nucleus and lipin-1p is present in cytoplasm. This unique distribution
between lipin-1a and lipin-1p3 has been observed in pre- and post-
differentiated adipocytes [14,61], rat hepatoma McA-RH7777 cells
|75], and embryonic cortical neurons and cultured SH-SY5Y neuronal
cells [42]. Apparently, the NLS sequences do not solely encode lipin-1
nuclear localization.

The functional significance of nuclear localization of lipin-1at in
hepatic VLDL assembly/secretion has been tested by mutagenesis
studies. Deletion of the NLS sequences in lipin-1c abolishes its nuclear
localization, but has no effect on the encoded PAP activity [75]. The NLS
deletion (ANLS) mutant form of lipin-1ae not only loses its nuclear
localization but also the ability to associate with microsomal mem-
branes [75], suggesting that the NLS sequences may play a role in
membrane targeting. Expression of the ANLS mutant of lipin-1o results
in lowered synthesis and secretion of TAG and apoB-100, as compared
with the wild-type lipin-1a [75]. These cell culture studies provide
evidence that subcellular localization of lipin-1aw impacts to a huge
extent hepatic lipogenesis and VLDL secretion.

3.4. Protein-protein interactions affect lipin compartmentalization

Additional molecular mechanisms that regulate lipin-1 nucleo-
cytoplasmic distribution have been identified. For instance, sumoylation
is critical for nuclear localization of lipin-1c in neuronal cells [42], and
interaction of lipin-1ae with 14-3-3 proteins is a determinant for its
cytoplasmic localization in HEK293 cells and 3T3-L1 adipocytes [61]. In
particular, expression of 14-3-3 3 and 6 isoforms in adipocytes promotes
cytoplasmic over nuclear localization of lipin-1c. The interaction with
14-3-3 proteins and cytoplasmic localization of lipin-1a in 3T3-L1
adipocytes are promoted by insulin, which increases lipin-1 phosphor-
ylation [61].

Post-translational modifications and protein interaction networks
of lipin proteins play a critical role in enzymatic activation for
glycerolipid biosynthesis and transcriptional regulation of lipid
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metabolism genes through regulating lipin microsome-cytosol com-
partmentalization and nucleo-cytoplasmic shuttling (Fig. 3).

4. The dual function of lipin impacts several aspects of VLDL
assembly/secretion

4.1. Lipid substrates (cargo) for VLDL assembly/secretion are regulated
by lipin-1

The TAG-rich VLDL particles are assembled within the ER/Golgi
lumen, a process requires active biosynthesis of the lipid constituents
(e.g., phospholipids and TAG) and partitioning of TAG into the ER/
Golgi lumen [2,88]. Clinically, impaired secretion of hepatic VLDL is
frequently associated with massive accumulation of TAG in the liver
(termed hepatosteatosis), which is common in nonalcoholic fatty liver
diseases. Hepatic TAG synthesis occurs at the ER, and the resulting
TAG is present both in the cytosol (as a storage pool in the form of
lipid droplets) and in association with ER/Golgi [89,90]. The cytosolic
TAG pool is metabolically connected to the ER/Golgi reservoir via a
process termed “hydrolysis/reesterification” through which the
storage TAG is utilized as substrate for VLDL assembly [91,92]. The
activity of MTP is required for accumulation of TAG within the ER/
Golgi lumen and thus essential for VLDL assembly/secretion
[80,93,94]. In addition to hydrolysis/reesterification of TAG, hydroly-
sis of phospholipids also contributes fatty acyl substrates for TAG
synthesis during VLDL assembly/secretion [95-97]. The process of
phospholipid-hydrolysis/ TAG-reesterification in hepatic cells may be
compartmentalized, and fatty acyl chains derived from PC or PE (e.g.,
18:1(n—9) and 20:5(n—3)) are utilized differently for VLDL assem-
bly/secretion [81].

From the VLDL lipid substrate (cargo) point of view, the reaction
catalyzed by lipin provides key glycerolipids (e.g., TAG, PC, and PE) that
are synthesized either directly from the de novo pathway [27,62] or
indirectly from the hydrolysis/reesterification pathway [81,92,98].

Nucleus

“lipid” genes

— lipifs)

VLDL precursor mature VLDL
lipin-1 gene
W27\,
AL @
secretion
PGC-1a
SREBP-1 / ;
lipin-1 \insulin :
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Fig. 3. A model depicting the effect of lipin-1 gene expression, post-translational modifications and its protein interaction networks on PAP enzymatic activity and transcriptional
regulation of lipid metabolism — consequences on VLDL assembly and ER/Golgi membrane dynamics. Transcriptional regulators of lipid homeostasis are involved in establishing or
maintaining lipin-1 gene expression. SREBP-1 stimulates human LPINT [68] and mouse Lpin1 [25,69,157] gene expression, and PGC-1a activates hepatic lipin-1 expression, which is
also upregulated during fasting in mice (26) and by glucocorticoids [44]. Insulin stimulates phosphorylation of lipin-1, which favors its interaction with 14-3-3 proteins and thus
cytoplasmic over nuclear localization of lipin-1. Nucleo-cytoplasmic shuttling of lipin-1 is also regulated by sumoylation, and a phosphatase complex located at the ER/nuclear
membrane stimulates the interaction of the lipin-1 ortholog in yeast with phospholipid biosynthetic genes and ER/nuclear membrane biogenesis [47]. Phosphorylation also controls
cytosol-microsome compartmentalization of lipin-1, with oleic acid (OA) promoting lipin-1 association with the ER membrane and its subsequent activation as a glycerolipid
synthetic enzyme. The lipin-1 induced PAP reaction generates lipid substrates (TAG, PC, and PE) required for lipidation of the nascent apoB particle in the ER lumen to generate VLDL
precursors and for VLDL maturation in post-ER subcompartments (lipid cargo function of lipin-1), as well as for ER/Golgi membrane dynamics (lipid conveyor function of lipin-1) and
transport vesicle biogenesis during VLDL trafficking and secretion. Abbreviations: SREBP-1, sterol regulatory element binding protein-1; PGC-1«, peroxisome proliferator-activated

receptor-y (PPARY) coactivator-1ct.
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Recent transient transfection experiments with hepatic cell cultures
have shown that the expression of either the nucleus-bound lipin-1ct or
the cytoplasm-bound lipin-13 results in increased synthesis and
secretion of TAG-rich VLDL [75]. Conversely, knockdown of lipin-1 in
these cells decreases the secretion of TAG even though the total cellular
PAP activity is unaffected (presumably owing to the presence of lipin-2
and lipin-3) [75]. These cell culture studies indicate that, although
hepatic lipin-1 plays an important role in TAG synthesis and VLDL
secretion, the presence of hepatic lipin-2 and lipin-3 contribute to a
complex regulatory mechanism. This may explain why hepatic PAP
activity is unchanged [24] or moderately decreased [23] in adult fld
mice, and why neonatal fld mouse liver exhibits increased PAP activity
despite the lack of lipin-1 expression [35,41]. Determination of
glycerolipid species in steatotic neonatal fld liver by electrospray
ionization-mass spectrometry (ESI-MS) has shown a decrease in PA
that is accompanied by a drastic increase in TAG but not PC, PE or
phosphatidylserine (PS) [35], indicating that the lack of lipin-1 may be
compensated by lipin-2 and/or lipin-3 for normal PAP activity.
Independent of changes in steady-state Lpin2 mRNA levels in the liver
of neonatal or adult fld mice, the lipin-2 protein concentration is
drastically increased due to accelerated rates of translation [35].
Overexpression of lipin-2 in HepG2 cells, which express little endog-
enous lipin-2, yields robust PAP activity, whereas knockdown of lipin-2
in normal or fld hepatocytes decreases PAP activity and TAG synthesis in
spite of a compensatory increase in Lpin3 mRNA [35]. These results
suggest that lipin-2 can compensate for lipin-1 deficiency in fld
hepatocytes. However, the observed high protein expression of lipin-2
[24,30] and upregulated expression of Lpin3 mRNA [24] in fld
hepatocytes have not been uniformly verified by other laboratories [41].

The dual functionality of lipin-1 and multiplicity of lipin isoforms
make it challenging to determine the cellular or molecular actions of
lipin-1 in promoting or attenuating hepatic VLDL secretion. While cell
culture studies suggest that expression of lipin-1 promotes TAG
biosynthesis in hepatic [75] and cardiac myocytes [99], and enhances
hepatic VLDL assembly/secretion [75], studies with the fld mouse model
indicate that lipin-1 deficiency increases plasma VLDL levels [25].
Moreover, adenoviral-mediated overexpression of lipin-13 in fld
hepatocytes results in decreased VLDL secretion [41]. The hypertrigly-
ceridemia in fld mice during the suckling period may not be attributable
to overproduction of hepatic VLDL but rather to lower lipoprotein lipase
and hepatic lipase activities [5]. Owing to the transcriptional coactivator
activity of lipin-1, adenovirus-mediated overexpression of lipin-1 may
suppress the expression of gene products that promote VLDL assembly/
secretion, such as Scd1, Apoa4 and Apoc3 [41]. The Scd1 gene encodes
steroyl-CoA desaturase whose expression correlates positively to
plasma TAG concentrations in humans and mice [100,101]. The
Apoa4/Apoc3/Apoal gene locus is associated with atherosclerosis
[102,103]. Variations in Apoa4 are also associated with altered plasma
TAG levels [104], and expression of apoA-IV in intestinal cells promotes
TAG-rich lipoprotein secretion [105,106]. Deficiency in APOC3 in
humans leads to low plasma TAG concentrations and reduced incidence
of coronary artery calcification [107]. Expression of apoC-III in hepatic
cells stimulates the assembly and secretion of TAG-rich VLDL under
lipid-rich conditions [108]. The interplay of various VLDL lipid and
protein factors whose expression and availability are influenced by
lipin-1 in the liver requires further exploring.

4.2. Membrane dynamics (conveyor) for VLDL assembly/secretion are
regulated by lipin-1

The assembly and secretion of VLDL involves intricate intracellular
ER/Golgi membrane fission and fusion events. There is a debate in the
literature about the location and mode of assembly of VLDL particles.
Several studies demonstrate that VLDL assembly is completed in the ER
before the particle enters the Golgi apparatus in primary hepatocytes
and in McA-RH7777 cells [109-111]. However, experimental evidence

also suggests that VLDL maturation may occur in post-ER or in the Golgi
compartment [112-115]. It is suggested that hepatic and intestinal cells
have evolved post-ER subcompartments that are dedicated to the
maturation of apoB and lipoprotein particles [115]. Reconstitution of
vesicle budding using microsomes isolated from rat hepatoma McA-
RH7777 cells reveals that vesicles containing apoB-100 are distinct from
‘typical’ protein/cargo trafficking vesicles [112,115].Itis also shown that
pre-chylomicron transport vesicles targeted from the ER to the Golgi
apparatus harbor newly synthesized TAG, apoB-48, MTP, lipid related
proteins and vesicular transport proteins in enterocytes [116-118]. This
is indicative of the importance of these transport vesicles for formation,
transport, lipidation, and assembly of chylomicron particles. Various
isoforms of PKC participate in the formation of Golgi vesicles and
vesicular tubular clusters [119,120]. In particular, PKC¢-mediated
phosphorylation controls budding of the pre-chylomicron transport
vesicles [121]. PKCg [122] requires PA for activation [123], and DAG is
essential for protein trafficking from the Golgi complex in yeast [124].
This indicates that the lipin-driven PAP reaction and the balance
between substrate (PA) and product (DAG) may be a prerequisite for
vesicle and lipoprotein trafficking across the cell.

From a lipoprotein assembly and intracellular trafficking point of
view, glycerolipid biosynthesis not only governs the VLDL assembly
process but also the function and dynamics of ER/Golgi membranes
(conveyor). The lipin-encoded PAP activity and transcriptional regulator
function in phospholipid biosynthesis are crucial for glycerolipid
metabolism, membrane trafficking dynamics and lipoprotein matura-
tion events. Lipin may coordinate membrane synthesis and provide lipid
substrate during vesicular trafficking of hepatic apoB100 and its
maturation to VLDL particles. Specifically, lipin may orchestrate the
synthesis of the phospholipid coat of budding vesicles containing large
biological assemblies/lipoproteins or cargos (transport vesicle biogen-
esis) destined to exit the ER en route for secretion (Fig. 3). Mammalian
lipin-1 stimulates phospholipid synthesis and ER membrane expansion
in B lymphocytes undergoing differentiation [ 125]. Inactivation of LPIN-
1 in C elegans leads to ER disorganization and defective nuclear
envelope breakdown [86,87]. In S. cerevisiae, deficiency of Pahlp/
Smp2p or its dephosphorylated form leads to a massive expansion of the
nuclear envelope and abnormal nuclear/ER membrane structure due to
transcriptional upregulation of key enzymes involved in phospholipid
biosynthesis, as well as due to the lack of PAP activity [29,47]. Moreover,
the ortholog of lipin-1 in S. pombe (Ned1p) interacts with three nuclear
proteins that are important for nuclear envelope formation [85],
suggesting further the importance of lipin and its interaction networks
in nuclear morphology and biogenesis.

Phospholipid biosynthesis in yeast is transcriptionally induced in
response to the need for more ER membrane during the unfolded
protein response [126], indicating that lipid metabolism is coordinated
with ER growth. In mammals, enforced expression of XBP1, which is
activated during the unfolded protein response, increases the activity of
enzymes involved in PC biosynthesis and causes expansion of the ER
[127]. Mutations in the lipin gene family may result in aberrant ER
structures, which may disrupt vesicular transport [128]. The functional
link between lipin-mediated lipid biosynthesis and ER/nuclear mem-
brane dynamics in the context of VLDL assembly/secretion requires
further investigation.

5. Conclusion and Perspectives

Identification of the originally characterized nuclear protein lipin-1
as the PAP enzyme has created a remarkable opportunity to gain
insights into regulation of lipid metabolism at transcription and
enzymatic levels. The dual function of lipin-1 in catalyzing the key
reaction of the biosynthesis pathway for glycerolipids and in acting as
transcriptional regulators has placed it in a key position in regulating
hepatic lipid/lipoprotein metabolism. The multiplicity of lipin isoforms
and their intricate compensatory regulation as exemplified in the fld
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mouse model further highlight the functional significance of lipin-
encoded PAP activity and transcriptional regulatory circuits in main-
taining cellular DAG homeostasis and also the lack of functional
redundancy amongst lipin isoforms. Post-translational modifications
and associated lipin compartmentalization, particularly the nuclear and
microsomal localization, appear to govern the dual function of lipin
proteins. What remains to be unraveled is the target genes that are
influenced by different lipin isoforms in cooperation with other known
and unknown transcription factors involved in lipid metabolism. Of
particular interest is to gain a comprehensive view, through systems
biology approach, on the post-translational modifications and protein
interaction networks of lipin under various metabolic conditions, such
as lipotoxicity-induced ER stress, insulin resistance and diabetes, and to
determine the consequences on lipin function in glycerolipid synthesis,
ER/nuclear membrane biogenesis and lipoprotein metabolism and
trafficking.
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