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Introduction

My task is to reflect on the papers in the two Special Issues on "Representations and the
Psychology of Mathematics Education,"    Journal of Mathematical Behavior    Vol. 17, Numbers 1
and 2, especially to find common themes and opportunities for further progress. The papers were
produced independently, but were based on and influenced by the discussions in the PME
Working Group on Representations from 1990 to 1993.  Gerald Goldin and Claude Janvier edited
all the papers in the collection, and Goldin refers to several of them in his theoretical overview
paper.

The content of this paper is determined by the others mainly through complementarity and a focus
on issues not directly addressed by, and perspectives not taken by, the papers.  These issues and
perspectives have to do with the roles of detailed features of conventional notations and student
notational productions in problem solving and learning - how do notations actually work in
particular circumstances, especially in designed learning contexts?  What do the decidedly
cognitivist framework and language adopted in most of the papers prevent us from seeing or
understanding?  Finally, how can analyses of representational activity and the features of notations
inform the design of learning environments within computational media, especially those that foster
deliberate and intense representational activity?  I do not pretend to answer such questions, but
rather to raise them in relation to the collected papers.  I also offer an extended example to help
illustrate the beginnings of a notational analysis in the context of instructional design that might be
considered complementary to the bulk of those provided in this collection.

Authors use terms in different ways, and so I will discuss terminology at the outset in a way that is
intended to frame and clarify usage across the papers.  I shall begin with a discussion of
terminologies in relation to Goldin's goal of a "unified model" (Goldin, this issue), and then go on
to point out how the same terms are used differently by Greer and Harel (1998), Even (1998),
Cifarelli (this issue), Boulton-Lewis,  Hall (1998), Owens & Clements (this issue), and Hitt (this
issue).  Larer in the paper, a closer look at the paper by Mesquita (this issue) leads me to a
discussion of geometry in the computational medium and the impacts on the phenomena that
Mesquita reports that result from a move to dynamic geometry.  We also remark briefly on the
status of mathematics as a language (Vergnaud, this issue).

Of course, the particularity of language use is one window on authors’ assumptions, perspectives
and intent.  I will use that window just as you will use it to understand me.  So we are already at
our first reflexive duality, looking at and looking through the language window while
simultaneously being distracted by our own reflection in it.  And what do we see through this
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warped (whorfed?) window?  More windows, in a jumble, none straight or transparent, some
reflecting into others, some translucent, some that seem to change when looked at, and some that
seem to be treated as writing surfaces.  A peculiar, but inviting kaleidoscope.

This area of study is notorious for its complexity and subtlety because it seems to connect to
everything we want to know or study.  And our work is especially sensitive to foundational
assumptions about knowledge, mind, learning, language, development, and culture - assumptions
that inevitably define ontologies, methodologies and explanatory objectives, sometimes explicitly,
sometimes tacitly.  It is also sensitive to point of view - to whether we use the language of
researcher-observer, educator, or student.  There is no neutral ground and no high ground from
which a privileged perspective is possible.  But we must start somewhere, and we will begin with
basic issues of terminology and the assumptions and entailments of the ways the authors approach
the basic issues.  We will then offer an illustration of the kinds of instructional design issues that
arise when representational activities occur in computational media.

Terminologies and Goldin’s Goal of a “Unified Model”

The Abstract Correspondence Approach
Goldin’s overview explicitly addresses terminology as he attempts a unified framework, which he
describes as a “unified model.”  It is less a model than a very general framework for a way of
talking about representational phenomena, problem solving, and (to a lesser extent) learning and
development.  In an aggressive effort to be broadly inclusive in his treatment, he begins where I
did (Kaput, 1985), with an abstract “correspondence” characterization of representation adapted
from Palmer (1977) that deliberately pays no attention to what kinds of things are involved in the
correspondence - only that there be two entities that are taken, by an actor or an observer, to be in
some referential relation to one another, one taken to “represent” the other.  In the case of an actor,
the referential connection may be experienced as a “standing for” or “corresponds to” relation
between one part of her/his experience and another.  Such a referential connection is hypothesized
by an observer to be expressed in actions (including writings and utterances).  For an observer, the
referential connection may also include connections between an actor’s hypothesized mental events
and externally observable actions on physical material.  Goldin also asserts as representational such
cases of referential relationships as that between DNA and the biological material whose growth it
controls.  All such relationships, nonetheless, require an observer to be asserted into our collective
world.  Following Palmer Goldin suggests, as did I in earlier work and in our joint work (Goldin
& Kaput, 1992, 1996), that there follows an obligation to say what is representing what and in
what ways.

Such an abstract starting point enables us to talk about many different kinds of “representing” that
in languages other than English often have different designations, as many have pointed out.  But it
also requires us to distinguish these different kinds of representing.  However, by its explicitness
regarding what is representing what and in what ways, it embodies biases towards a style of
description and assumptions regarding what is knowable and in what ways that may not be
universally shared.  Moreover, its generality may be misleading in the sense that other approaches
and perspectives may not fit this style of description. I will illustrate with specific examples
shortly.

It is probably not accidental that Goldin and I share a background in abstract mathematics, where a
premium is put on generality, and where the operation of abstracting away from content-based
detail is as natural as walking.  However, I now feel that much is to be gained by adopting
alternative points of view while simultaneously exploiting the local conceptual stability of a
correspondence perspective.
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Problem Solving vs. Instructional Design
One other important but tacit feature of Goldin’s approach is that it is born of a long-standing effort
to understand problem solving independent of everyday classroom instruction.  It is not rooted in
instructional design.  This fact has large implications regarding its applicability.  Indeed, the
papers, as a collection, are concerned more with problem solving rather than instruction.  Of
course, most mathematics instructors attempt to teach problem solving skill, and most use
problems to teach mathematical content.  A few of the papers take specific instructional sequences
to teach particular content as their object of study - the papers by Even (functions), Boulton-Lewis,
and Hall (arithmetic using manipulatives).  But none addresses issues of representation in the
context of a specific extended curriculum.  But, while none addresses issues of representation in
the context of a specific extended curriculum, this is the area where detailed analyses of
representational strategies based on the work of the papers in this joint issue, coupled with long
term instructional design, may have the biggest practical payoffs.  I will try to illustrate this point
via an extended example in the last major section of the paper.

Internal vs. External Representations

Cognitivism and Dualism: Roads Not Takable

Goldin, and in a more tacit way, most of the other authors make a fundamental distinction between
“internal representations” and “external representations.”  The former refer to hypothesized mental
constructs and the latter to material notations of one kind or another.  Several basic
cognitivist/dualist assumptions are often, but not necessarily, wrapped up in this distinction,
including the very idea of mental representation, which begs such questions as: What is it?  What
do we mean when we say it “represents” something?  For whom?  How?  What is the difference
between the experience of an internal representation and that of an external representation?  And is
an external representation a socially or a personally constituted system?  I should note that Goldin,
however, characterizes representation sufficiently abstractly so as to avoid being trapped in strict
dualist framework.  His characterization is broad enough as a way of describing or accounting for
observations to include representations as descriptive of structures encoded physically in brains,
neurons, DNA, etc.

Aside from Vergnaud, the papers in this collection do not take up such questions directly, although
most work within this internal-external linguistic framework, with differing degrees of
explicitness.  Cifarrelli seems to use the word “representation” exclusively as mental
representation, whereas Even uses the word to mean material representation.  The other authors
make the internal/external distinction at some level of explicitness, although the analysis by
Vergnaud complicates the distinction by attending to the actions from which mental structures are
constituted.

To illustrate the challenges of encompassing all points of view from within a Goldin-like
framework, let us consider the phenomenon of fusion as examined by Nemirovsky & Monk (in
press).  While we often discuss symbol and referent as if they are experienced as independent
entities, with some kind of specifiable connection between them - correspondence, association,
indexical, etc. - Nemirovsky and Monk question whether this approach actually can account for the
creative functionality of symbol use in the lived-in world identified by Werner & Kaplan (1962),
and where symbols are frequently not experientially distinguished from referents.  They point out
that while identification of symbol and referent is treated by anthropologists as fetishism, animism
and magic, and by psychologists as varieties of pathology, we treat regularly symbols in place of
what we know they stand for, despite the fact that we know that the picture of the person is
different from the person, or the drawn figure is not really a circle, the toy car is not a real car, the
square we gestured in space with our hand is not a real square, etc.  Nemirovsky and Monk (in



Page 4

press) note:  “Fusion experiences are pervasive in everyday life and can adopt infinite forms, from
discussing directions on a map to commenting on a photograph; from drawing a face to gesturing
the shape of an object.”  They go on to analyze in great detail the fusion experiences displayed in a
student’s conversations with a researcher about the construction and meanings of certain graphs of
motion.  The fusions involved the curve in the graph with the paths taken by the objects in motion,
with the curvature shapes of the graph with the speed of the objects, and so on. Nemirovsky and
Monk stress that fusion is a functional way of using symbols and tools, and not con-fusion.  It is a
way of maintaining structure and orientation in time and in the space of actions and possibilities
surrounding or activated by a symbol-rich experience.

While Nemirovsky and Monk draw on the classic Werner-Kaplan (1962) approach to
understanding symbol formation, I suggest that an evolutionary psychological perspective might
also be fruitful.  In particular, Donald (1991) examines the evolution of representational capacity
from early primates to modern humans, and in doing so, he identifies a stage before spoken
language that he refers to as “mimetic” beginning about 1.5 million years ago and during which
some major pre-human achievements occurred, including the use of fire for cooking, the
development of sophisticated tools, migrations out of Africa, and so on.  Mimetic culture involved
an intentional decentering, a use of the body (dance and gesture) to stand for or to refer to
something else.  Gesture, facial expression, body orientation and movement continue to play an
essential role in the deep organization of experience and the tacit support of conversation.  I suspect
that aspects of fusion have their roots in the mimetic dimension of human experience, although
they are expressed in symbolic behavior in our modern, symbol-saturated, linguistically mediated
culture.

Speculations aside, however, we need to acknowledge that the kind of analysis offered by
Nemirovsky, Monk and others, provides insights to phenomena not easily reached from the
correspondence view of representation and its dualist entailments.  We will see further illustration
of the limits of this view below, although, for simplicity’s sake, we will continue to use the
language of the collection of papers to discuss them.

Systems and Structures vs. Loose, Isolated Notational Elements
Goldin takes pains (as do Goldin & Kaput, 1992, 1996) to argue that “external representations”
occur in systems.  Such systems, while they can be personal and idiosyncratic under certain
circumstances, usually are cultural artifacts that cannot be separated from what is normally taken as
“mathematical content.”  Indeed, learning such systems and how to operate within them dominates
school mathematics.  Moreover, such systems are seldom used singly or in isolation from one
another.  Most mathematical activity involves multiple representation systems used in combination
with one another, as Even illustrates so clearly.  Several papers explicitly examine connections
between external representation systems, including Boulton-Lewis, Hall, and Hitt.  Greer and
Harel deal with the question of how or whether students can learn to recognize common structures
across different situations, situations that they would describe as “isomorphic.”  Greer and Harel
do not, however, explicate these connections in terms of detailed notational and situational
particulars.

The Language Aspects of Mathematics
But what is such a thing as, say, the base-ten placeholder system?  Is it internal or external, or
neither?  On one hand, it is a shared cultural artifact amounting to a language with referential
function and, most especially, through the very special organizations of actions upon it, a powerful
computational function.  In another sense, it can appear concretely instantiated in a physical
medium - paper, computer screen, whatever.  But then, is it internal or external?  And what does it
represent (numbers?), for whom and under what circumstances?  Is it a mathematical thing?  That
is, is it part of mathematics, or only a language used to represent and work with the real
mathematical objects, whole numbers?  One could ask similar questions about the Cartesian
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coordinate system.  These kinds of questions arise when one begins with the internal/external
distinction.  On the other hand, as a way of framing discussion within a cognitivist perspective, it
seems to have heuristic value.

Vergnaud argues that it is incorrect to think of mathematics only as a language.  The italicized
“only” in the previous sentence reflects my interpretation of his point.  My view is that
mathematics, as a means of organizing experience, rooted in schematically organizing action, must
include the expressive features of language.  This expressive side of mathematics is invigorated
through the use of notation schemes instantiated within computational media (Shaffer & Kaput,
submitted). While cognitive and social constructivist approaches to mathematics learning based on
organizing students’ actions into schema have provided credible outlines of instructional design
regarding the objects of mathematical languages, the challenge of how to build students’ expressive
power employing mathematical notation schemes remains.  Somehow, the problem of how to
organize expressive acts in such a way as to produce expressive competence within conventional
notation schemes and systems seems more difficult.  For example, it seems easier to get a handle
on students’ invention of algorithms within the number system notation system than it is to develop
means by which students can develop number systems.  However, promising insights are
developing from various quarters, including, for example, diSessa, et al. (1991), Hoyles and Noss
(1998), and the Freudenthal Institute (Gravemeijer, et al., in press).  My hunch is that the basic
notation schemes are more fundamental and more complex cultural achievements than we may
realize, and hence learning them as expressive tools requires more time and deeper expressive
engagement than we have devoted to date.  The placeholder number system, the algebraic systems
(including variables), and the coordinate systems are remarkable and hard-won cultural
achievements within which most other mathematics is constituted.

Inscriptions vs. Notation Schemes vs. Notation (or Representation) Systems
I suspect that I am one of a group who, in the early-mid 1980’s, introduced the phrase “multiple
linked representations.”  As I noted in (Kaput, 1991), this perspective and language comes
dangerously close to Platonism, and it is now clear that it is fundamentally cognitivist in spirit.
The recent debate between cognitivists and situationists (Anderson, et. al, 1996; 1997; Greeno,
1997; Cobb & Bowers, in press) has exposed the incommensurability of these theoretical stances.
This incommensurability is starkly revealed in the lack of connection between the papers in this
collection and the work in the situationist and activity-theoretic traditions.  A forthcoming book
edited by Cobb, Yackel and McClain (in press), refers virtually not at all to the work described in
this collection, and vice-versa.  These two bodies of work seem to exist in parallel universes.

Another perspective on the representation problem is offered by certain researchers in the sociology
of scientific knowledge, led by Latour (1987, 1993) (see Roth & McGinn, 1998, for an
introductory review).   For these researchers, the notion of inscription is central, an idea that I,
influenced by Goodman (1976), approached via the construct of “representation scheme” in
(Kaput, 1987) (I also used the phrase “notation scheme” interchangeably).  One difference is that
the word “inscription” is used by third-party observers to characterize marks in a physical medium
apart from any reference to how they might be used, understood, or perceived, and, apart from any
structure they might embody, from the third-party point of view.  They are merely marks in a
medium.  “Representation scheme” was intended to refer to marks in a structured system, in
principle machine-compilable, apart from their use in a representational way, standing for
something else - similar to what Goldin and others in the collection refer to as an “external
representation system.”  The set of all finite linearly ordered sequences of numeric characters
serves as an example.  “Notation system” (used interchangeably with “representation system” and
even “symbol system”) was intended to refer to a notation scheme used in a representational way.
For example, the linearly ordered sequences of numeric characters used to represent permutations
would constitute a notation system.  The same notation scheme could be used in a different
notation system, e.g., to represent whole numbers rather than permutations.  Put differently, the
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scheme does not include a referent, and the system does.  (In both these cases we are ignoring the
action-structure that represents the composing of permutations and combining of numbers,
respectively.)  Since notation schemes are almost always discussed vis-à-vis their use to represent
something else, we almost always frame discussions in terms of systems rather than schemes.

A second critical difference between inscription and notation scheme as theoretical constructs is that
the former is used in a situationist explanatory framework and the latter in a cognitivist framework.
Hence inscriptions are discussed relative to their production and active use, including how they
serve as “boundary objects” shared between discourse communities, how they are moved from one
place to another, how they are overlaid, modified, discussed, and so on, in a social context apart
from their possible connections with hypothetical cognitive events.

The papers in this collection were conceived mostly before these ideas became current (which helps
explain the lack of reference to their approaches and perspectives), and hence do not focus on the
detailed features of student produced inscriptions as they may bear upon the learning and problem
solving being studied.  It should be noted that this style of analysis and the data on which it could
be based are often not far from the analyses offered.  Many papers include examples of student
inscriptions, e.g., Boulton-Lewis, Greer and Harel, Cifarelli, Even, Owens & Clements.
However, we seldom see how the particular features of those inscriptions influence the course of
problem solving and learning.  We are all believe that they do, and the authors show that they do,
but none showhow  they do.  This is a central question yet to be fully addressed.

Addressing this question will necessarily require tracking how these features evolve as students
progress through problem solving or an instructional sequence.  Cifarelli, near the end of his
paper, acknowledges the dynamic nature of student productions in problem solving.  It would be
interesting to see this observation followed up in subsequent work, particularly in the style of
Meira (1992), for example, where microanalysis of student productions is at the heart of the
methodology.

Geometry in the Computational Medium
The papers in this collection, with the exception of those by Edwards, Hall  and Even, focus on the
mathematics of static inert media.  The papers by Even and Hall (and to a less direct extent the
paper by Hitt), focus on linked notations.  However, certain papers point up explicit student
difficulties with mathematics in static inert media that directly relate to the potentials of notations in
dynamic interactive media.

Let us take a closer look at the paper by A. Lobo Mesquita which examines student difficulties with
geometric figures.  In particular, she examines in detail the consequences of the fact that in most
school geometry situations a drawn figure is, by necessity, a single concrete inscription whereas it
is intended to stand for an idealized geometric object in what Poincare called the “Geometric
Space.”  The physical drawing resides in what Poincare called the “Representative Space,” subject
to interpretation by human sensory apparatus.  This subtle connection between the particular and
the general is understood only gradually by students as she illustrates.

However, it is exactly this connection that is addressed by computer-based geometry
environments, first the Geometric Supposers, and then dynamic geometry environments such as
Cabri and the Geometer’s Sketchpad.  Here a particular construction (no longer merely a drawing),
is subject to variation under the constraints of its construction.  This has two immediate and
powerful consequences: (1) to expose the generality of the construction, since a given construction
can usually have a continuum of instantiations as revealed by dragging any “free” point, and (2) the
logico-geometric structure of the construction is made more explicit through the patterns of
movements of the figure as it is varied under the given constraints, with constructed and
consequent incidences, length-relations, symmetries, and so on, all preserved and subject to
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observation, inquiry, explanation and even proof.  Since the examples and behaviors of the paper
bear so directly on the two factors changed by dynamic geometry, it would be especially interesting
if students’ reported reactions to the examples offered in the paper were compared with student
reactions to analogous figures constructed and manipulated in a dynamic geometry environment.

We now turn to an illustration of how the computational medium offers notational opportunity for
instructional design within a curricular context.

Representation and Instructional Design in Computational Media: A Sample
Analysis from Calculus

To illustrate the kinds of issues that arise when one approaches representational issues from an
instructional design perspective, I will provide an example interspersed with discussion of basic
issues raised in the various papers.

Anchoring Student Learning in Concrete, Experientially Real Data: The
Inadequacy of the “Big Three” Linked Representations
Hot, bi-directional links between pairs of the traditional “Big Three” (numerical, graphical and
character-string) notations have dominated the attention of educators and researchers (see the paper
by Even), and, indeed, have driven computer software design and calculator design in recent
years.  This has had the effect of enlarging the representational island and increasing students’
ability to move around on it, but it has failed to connect to the students’ experiential mainland.  In
the words of Anna Sfard in her plenary address (with Patrick Thompson) at the PME-NA Annual
Meeting in October, 1994, “If the representations only represent each other, then the emperor is
only clothes.”  A strong illustration of the kinds of learning that take place in the absence of
anchoring in concrete experience is given by Schoenfeld, et al. (1994).  These researchers
provided an extremely detailed analysis of a single student’s learning in a linked “Big Three”
environment, supplemented by a version of a target game based on Green Globs which involves
students defining functions whose graphs will pass through as many pre-given, randomly
generated points on the plane as possible.  The student’s learning was characterized by fragility,
instability and disconnectedness from other knowledge or sense-making capability.  (This was a
capable, mature college-age student who had taken several prior courses involving algebra.)  The
student’s conception of function was “only clothes” in the sense that, for her, the representations
were only referring to one another and not to any data associated with phenomena or situations
grounded in her experience.  By contrast, for the researchers the representations were physical
embodiments of their own ideas of function.  Other reports of student learning difficulty in multiple
linked function environments indicate the inadequacy of linked representations and the strong need
to provide experiential anchors for function representations.

Our current work in the SimCalc Project (Kaput, Roschelle & Stroup, in press) puts phenomena
and situations at the center and treats the various representations of functions as means for
understanding and reasoning about those phenomena and situations as reflected in Figure 1.
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Figure 1. Putting Phenomena at the Center

Here we are explicit about physical and cybernetic phenomena experienced as separate from the
person, but, perhaps generated in interaction with the person.  Of course there are other kinds of
phenomena of direct interest, such as notational phenomena - the behavior of notations as we
interact with them.  Or experienced kinesthetic phenomena, as occur in whole body motion or
when a student moves an object using her hand.

The reader will notice the bidirectionality of the arrows in Figure 1.  The next two sections discuss
interpretations of these arrows.

From Representing to Creating and Controlling Situations or Phenomena
Historically, we have assumed that mathematics was to be used to represent aspects of situations or
phenomena within the notational systems of mathematics (often referred to as “modeling”) in order
to reason about and make sense of those situations or phenomena, which were taken as given.
This can be taken as our intended meaning of the outward-pointing arrows.  A second
interpretation of the outward pointing arrows is data-transfer, from the physical environment to a
computational one through the use of measuring devices connected to a computational device
which can display the data in some mathematical notation system.  Our work has focused on the
mathematics of motion, so in many cases, the notations describe velocities, positions, times, and
combinations of these in graphs, equations and tables, with our emphasis on graphs indicated in
the figure.  However, such motion phenomena, and others such as fluid-flow, are not only
modeled by the notations that describe them, they can be controlled by those notations.  These
phenomena can either be cybernetic, as with screen-objects whose movement is controlled by
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mathematical functions - represented as graphs, equations or tables - or physical, as with toy cars
linked to a computer where their motion is controlled by mathematical functions defined on the
computer. This can be taken as our intended meaning of the inward-pointing arrows.  See
(Nemirovsky, Kaput & Roschelle, 1998) for more details and concrete examples.

These kinds of affordances turn a fundamental representational relationship between mathematics
and experience from one-way to bi-directional.  This in turn supports a much tighter and more
rapid interaction on which to base learning.  Because the mathematical notation that controls a
phenomenon also can be treated as a model of it, one can test a hypothetical model against
expectations or predictions immediately - by “running” it.  Note that the feedback structure often
requires two

Figure 2: Matching Red’s Position by Controlling Blue’s Velocity

phenomena, P and P’, where P is given as a target and P’ is defined or controlled by the student
attempting to match P in another system of description.  In cases involving rate-totals connections,
P may act as a referent phenomenon for either a rate or totals description, and the student inputs
one of these and gets feedback in terms of the other.  For example, (See Figure 2) suppose we are
given a vertical motion P of a Red elevator (on the left) and its position description (a position vs.
time graph, for instance as in Figure 2).  Then the student controls the motion P’ of a parallel Blue
elevator (on Red’s right) by constructing its velocity, say a graph (or even a formula) to match the
motion P of Red with feedback available by watching both elevators run simultaneously.  Of
central importance is that the student’s intentions can be made visible, explicit and testable through
the phenomena that the student controls.  By exercising our many representational options, we can
address an enormous range of learning objectives.

From Multiple Linked Representations to Multiple Linked Descriptions of
Experientially Real Situations or Phenomena
First we set the stage for the distinction between different representations of the “same” description
and the “same” representation of “different” descriptions.  Situations or phenomena admitting of
quantitative analysis almost always have two kinds of quantitative descriptions, one describing the
total amount of the quantity at hand with respect to some other quantity such as time, and the other
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describing its rate of change with respect to that other quantity.  In the SimCalc Project we have
taken the perspective that understanding the two-way relations between totals and rates descriptions
of varying quantities (and the situations that they describe), is a fundamental aspect of quantitative
reasoning.  It is exactly this relationship that is at the heart of the Fundamental Theorem of
Calculus, and indeed, at the heart of Calculus itself.  Given the centrality of Calculus to our
curriculum and to the mathematics, science and technology of western civilization, the connections
between these two types of description is difficult to overestimate.

Now, these rates-totals connections can be instantiated in any of the different representation
systems we have mentioned so far because both the rates and the totals descriptions are, in most
cases of interest to us, functions.  In Figure 2 we saw a case where the two descriptions were both
instantiated in the same representation system, coordinate graphs, but mentioned that they could
have been represented across different systems. Furthermore, we continue to take advantage of
linked representations, so that we not only can connect graphs and formulas, we can cross-
connect, for example, a rate graph to a totals formula.  See Figure 3 for an illustration of the many
possible linkages.

Figure 3: Linked Representations AND Linked Descriptions

Similar points could be made about different descriptions in other mathematical domains, such as
statistical data analysis, probability, graph theory (especially rich representationally).  In all these
cases, differences at the level of descriptions runs structurally deeper than do the differences in
representation systems, although it is of course the case that representations differ in their abilities
to render that structure available to us.  This description-representation issue is worthy of much
further study, especially cross-domain study.
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This new description-representation distinction adds another burden to our terminology and the
need to be explicit.  To speak only of a “model” or a “representation” without further elaboration is
clearly inadequate given the many different interpretations possible.

The Invisible Effects of Static, Inert Media: Dominance of Character String
Notation Schemes

Fish don’t know they are wet.  Similarly, we have historically taken without question the static,
inert media in which notation schemes have been instantiated and used in representational and
computational ways.  And just as fish have gills and fins rather than lungs and legs, our ways of
doing mathematics have certain features that evolved due to the nature of the media in which they
evolved.  Thus, among notation systems, one type, the character string based systems, dominates
the others.  Character string systems are very compact, they can support intricate syntax for both
reading and transformations and so can support complex computation and reasoning far beyond
what could be achieved by a notationally naked mind, and they can be representationally neutral in
the sense of being able to denote enormous varieties of referents without needing to share the
visual features of what they are representing (e.g., the meaning of “big” does not require the word
“big” to be big).

Changes from static inert to dynamic interactive medium affect the place of character string notation
systems in mathematics in at least three basic ways.  The first is by enabling character strings to
“come alive” - to embody procedures, or algorithms, that can be autonomously executed in order to
“do something,” carry out a computation, evaluate an expression, perform a translation or
transformation, etc. - essentially to do anything a computer program can do.  Second, the medium
can support live linkages among notation systems.  Third, it can support the instantiation of new
notation schemes that can be linked with others, new or old.  We now turn attention to this third,
most promising affordance.

This deep notational bias is reflected in a deep cultural and curricular bias that has led to the bulk of
school mathematics being centered on the teaching of reading and writing in character-based
notation schemes, especially routines for calculation or reasdoning.  The momentum of this
notational bias from static inert media led to the design of most first generation electronic
educational technology in mathematics to require character string input, e.g., keyboards and
calculator keys.  This character string orientation extends to underlying issues of legitimacy - what
counts as significant mathematics is typically taken to be mathematics expressed in terms of
character strings.  While we have no reason to expect that the extraordinarily powerful of character
string mathematics will ever or should ever disappear or be displaced, we should expect that it will
be increasingly augmented by mathematics expressed in other notational styles, especially those
that draw upon the new structurable flexibilities and visually rich notations of dynamic, graphic
and direct-manipulation media.  We see in the papers by Edwards, Even and Hitt (this issue),
gradual movement  away from exclusive dependence on character  strings.  Of course, the work by
Janvier beginning in the 1970’s, pioneered the study of graphical notation systems. His
posthumously published paper in this issue raises the question of how the subtle and pervasive
semantics of time structures descriptions of phenomena, whether or not the key variables used to
describe the phenomena are themselves temporal.

Historical Approaches: Globally Defined Functions Are Primary
Historical necessity pushed mathematics towards globally defined functions - a character string
definition of a function or quantitative relationship was globally defined (over its natural domain)
essentially by default - through the identification of the function or quantitative relationship with the
character string.  But, of course, the phenomena and situations that these are used to model do not
usually have such “simply” definable characteristics over unbounded domains.  Rather, they are
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defined over finite extent (domains) and often change their essential character within that finite
extent.  Much elaborate and beautiful mathematics has been produced to achieve the flexibility that
closed form functions do not admit - infinite series approximations of various kinds, Fourier
series, and so on - all of which require an apprenticeship in the algebraic world that most citizens
today cannot afford and whose role in sense-making is fundamentally transformed by new
technologies.  (Note that their significance does not disappear, but is played out in different ways,
e.g., by being embodied in tools that are used by people who may not need to master that style of
mathematics.)

A Alternative: Piecewise Defined, Visually Editable Functions
In MathWorlds, an important feature is the ability to construct and modify functions that are
connected to motion and other simulations through strictly graphical means - direct manipulation of
piecewise defined functions (see also Yerushalmy, 1997).  As indicated in Figure 4 below, one can
create a piecewise constant velocity function that controls the motion of the Clown in the motion
simulation by dragging the black dots associated with parts of the graphs.

Drag this hotspot
left or right to
adjust the initial
time

Drag this hotspot
left or right to
adjust the initial
time

Drag this hotspot
left or right to
adjust the initial
time

Figure 4: Visually Editable Velocity Graphs

An important point is that the historical power of algebra lay in its status as an action notation
scheme, one that supports structured actions on well-formed character strings in support of
mathematical reasoning and modeling.  By contrast, in static inert media, coordinate graphs have
typically been used as static notations - to be inspected, and analyzed as fixed inscriptions.  In
recent times, by instantiating coordinate graphs in dynamic interactive media as linked to algebraic
representations, as noted above they become manipulable, but in global form.  That is, one acts
uniformly on the function over its entire domain - translating, stretching, reflecting, etc.  (See
Confrey, 1991)  However, the approach illustrated in Figure 4 goes a step beyond this, in not
requiring an algebraic interpretation or linkage.  Instead, much in the spirit of Dynamic Geometry,
the graphs are directly manipulable: pieces can be inserted and modified, etc.  The manipulability of
algebraic notation has been replaced by a new kind of manipulabilty.
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Three sets of reasons lie behind our use in the SimCalc Project of piecewise defined functions: (1)
from a modeling orientation, phenomena occur in segments of time, each of which has bounded
extent, so the phenomenon usually is not regarded as being defined in a unitary fashion “forever;”
(2) work by Nemirovsky and colleagues has established that people naturally tend to interpret
graphs on the basis of interval-analyses (Nemirovsky, 1994, 1996; Nemirovsky, Tierney &
Wright, in press; Tierney & Nemirovsky, 1995; Monk & Nemirovsky, 1994), wherein
complicated graphs linked to phenomena are parsed one section or interval at a time according to
the student’s current experience of both the graph and whatever it is linked to; and (3) in order to
achieve the variation needed to avoid the logical and psychological degeneracy of constant or linear
functions while preserving computational tractability, we chose to begin with graphically editable
piecewise constant and linear functions whose slope and area computations can be approached
using simple arithmetic and geometry, temporarily avoiding the subtleties of limits and
approximations (Kaput, Roschelle & Stroup, in press).

Curricular Implications: Moving Past the Algebra Bottleneck
In addition to the factors identified above, the weight of the historical tradition based in the
extraordinary achievements of algebra-based mathematics in the hands of the masters who invented
and used it (these constitute some of the greatest intellectual achievements of Western civilization),
the assumption that the mathematics of change and variation, including the ideas and techniques of
calculus, should be learned exclusively in the language of algebra - this assumption -  has
continued by default up to the current time.  It is deeply embedded in our curriculum and our
institutional structures (Kaput, 1997), and indeed, it is reflected in both our popular and intellectual
cultures.

No one should presume to challenge the power of algebra, and indeed, much mathematics
absolutely requires algebra, including most of classical mathematics.  Rather, we can and should
challenge its currently dominant place in the curriculum as a prerequisite for access to other
important mathematics by students who will never need the specialized techniques that the algebra
makes possible.  On the other hand, all that we have learned about student learning suggests that
students bring enormously rich resources to us that are intimately tied to their natural ways of being
in and constructing their world.  Our ongoing work provides strong evidence that these resources,
combined with technologically supported learning environments that instantiate new notation
systems and ways of acting upon them, offer dramatically new possibilities for mathematics
learning.

Conclusions
We are entering a new era in the study of representation, where new issues need attention and new
perspectives and analytical tools are becoming available.  The same factors that are being felt across
our society and our intellectual landscape are at work here: new technologies yield new media that
alter the semiotic foundations of mathematics; situationist perspectives provide new ways to
integrate, or supersede, traditional cognitivist and social-psychological perspective and methods;
advances in the sociology of science provide fresh perspectives on the creation and communication
of the inscriptions that move among us and that constitute an essential dimension of our world; and
new obligations are opposed upon mathematics educators to render ever more mathematics
learnable by ever more, and hence more diverse, people.

We are entering a new era in the study of representation, where new issues need attention and new
perspectives and analytical tools are becoming available.  The same factors that are being felt across
our society and our intellectual landscape are at work here: new technologies yield new media that
alter the semiotic foundations of mathematics; situationist perspectives provide new ways to
integrate, or supercede, traditional cognitivist and social-psychological perspectives and methods;
advances in the sociology of science provide fresh perspectives on the creation and communication
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of the inscriptions that move among us and constitute an essential dimension of our world; and
new obligations are imposed upon mathematics educators to render ever more mathematics
learnable by ever more, and hence more diverse, people.

I hope that this paper, as a small twist of the representational kaleidoscope, has provided a few
indications of how the work in this collection can serve the needs of the new era.  Of special
interest is how we may extend this work to inform the design of instruction, especially in the
contexts of school-implementable curricula, which is where we ultimately turn for a fair test of any
of our endeavors.



Page 15

References

Anderson, J. R., Reder, L. M., & Simon, H. A.  (1996).  Situated learning and education.
Educational Researcher,25    (4), 5-11.

Anderson, J. R., Reder, L. M., & Simon, H. A.  (1997).  Situative vs. cognitive perspective:
Form vs. substance.      Educational Researcher,26    (1), 18-21.

Cobb, P., & Bowers, J.  (in press).  Cognitive and situated learning perspectives in theory and
practice.  To appear in     Educational Researcher   .

Cobb, P., Yackel, E., & McClain, K.  (in press).      Symbolizing and communicating in
mathematics classrooms   .  Hillsdale, NJ: Erlbaum.

Confrey, J., & Smith, E.  (1991).      A framework for functions: Prototypes, multiple
representations, and transformations   .  Paper presented at the Proceedings of the thirteenth annual
meeting of Psychology of Mathematics Education-NA, Blacksburg, VA.

diSessa, A. A., Hammer, D., Sherin, B. & Kolpakowski, T.  (1991).  Inventing graphing: Meta-
representational expertise in children.     Journal of Mathematical Behavior, 10    , 117-160.

Donald, M.  (1991).      Origins of the modern mind: Three stages in the evolution of culture and
cognition    . Cambridge, MA: Harvard University Press.

Goodman, N.  (1976).      Languages of art   . (Revised ed.). Amherst, MA: University of
Massachusetts Press.

Goldin, G. A., & Kaput, J.  (1992).  Comments at Working Group on Representations, Annual
Meeting of the International Group for the Psychology of Mathematics Education, Durham, New
Hampshire.

Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J.  (in press).  Symbolizing, modeling,
and instructional design.  To appear in P. Cobb, E. Yackel, and K. McClain (Eds.),     Symbolizing
and communicating in mathematics classrooms   .  Hillsdale, NJ: Erlbaum.

Greeno, J.  (1997).  On claims that answer the wrong questions.      Educational Researcher, 26    (1),
5-17.

Hoyles, C., & Noss, R. (Eds.) (1998).       Mathematics for a new millennium     .  London, England:
Springer-Verlag.

Kaput, J.  (1985).  Representation and problem solving: Methodological issues related to
modeling. In E. Silver (Ed.),     Teaching and learning mathematical problem solving:  Multiple
research perspectives   , (pp. 381-398). Hillsdale, NJ: Lawrence Erlbaum.

Kaput, J.  (1987).  Toward a theory of symbol use in mathematics. In C. Janvier (Ed.),     Problems
of representation in mathematics learning and problem solving    , (pp. 159-196). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Kaput, J.  (1991).  Notations and representations as mediators of constructive processes. In E. v.
Glasersfeld (Ed.),     Constructivism and mathematics education    , (pp. 53-74). Dordrecht,
Netherlands: Kluwer.



Page 16

Kaput, J.  (1997).  Rethinking calculus in terms of learning and thinking.     The American
Mathematics Monthly    ,     104     (8), 731-737.

Kaput, J., Roschelle, J., & Stroup, W. (in press).  SimCalc: Accelerating Students' Engagement
with the Math of Change.  To appear in M. Jacobson & R. Kozma (Eds.)      Learning the sciences of
the 21    st    century: Research, design, and implementation of advanced technology learning   
environments   .  Hillsdale, NJ: Lawrence Erlbaum.

Latour, B.  (1987).      Science in action: How to follow scientists and engineers through society    .
Cambridge, MA: Harvard University Press.

Latour, B.  (1993).      La clef de Berlin et autres lecons d’un amateur de science   s [The key to Berlin
and other lessons of a science lover].  Paris: Editions la Decouverte.

Meira, L.  (1992).      The microevolution of mathematical representations in children's activity.
Paper presented at the Proceedings of the Sixteenth Annual Conference of the PME, Vol. 2,
Durham, NH.

Monk, S., & Nemirovsky, R.  (1994) The Case of Dan: Student construction of a functional
situation through visual attributes.  In E. Dubinsky, J. Kaput, & A. Schoenfeld (Eds.),     Research
in Collegiate Mathematics Education.  Vol. 1    . Providence, RI: American Mathematics Society,
139-168.

Nemirovsky, R.  (1994).  On ways of symbolizing: The case of Laura and velocity sign.      The
Journal of Mathematical Behavior   ,     13    ,  389-422

Nemirovsky, R.  (1996).  Mathematical narratives.  In N. Bednarz, C. Kieran, & L. Lee (Eds.),
Approaches to algebra: Perspectives for research and teaching    , (p. 197-223).  Dordrecht, The
Netherlands:  Kluwer Academic Publishers.

Nemirovsky, R., Kaput, J., & Roschelle, J.  (1998).      Enlarging mathematical activity from
modeling phenomena to generating phenomena   .  Paper presented at the Proceedings of the 22nd

International Conference of the Psychology of Mathematics Education in Stellenbosch, South
Africa.

Nemirovsky, R., & Monk, S.  (in press).  “If you look at it the other way...”  An exploration into
the nature of symbolizing.  In Cobb, P., Yackel, E. and McClain, K. (Eds.)     Symbolizing and
communicating in mathematics classrooms   .  Hillsdale, NJ: Erlbaum.

Nemirovsky, R., Tierney, C., Wright, T.  (in press).  Body motion and graphing.      Cognition and
Instruction    .

Palmer, S. E.  (1977).  Fundamental aspects of cognitive representation.  In E. Rosch & B. B.
Lloyd (Eds.),     Cognition and categorization    .  Hillsdale, NJ: Lawrence Erlbaum Associates.

Roth, W-M., & McGinn, M. K.  (1998).  Inscriptions: Toward a theory of representing as social
practice.      Review of Education Research, 68    (1), 35-59.

Schoenfeld, A., Smith, J., & Arcavi, A.  (1994).  Learning: The microgenetic analysis of one
student’s evolving understanding of a complex subject matter domain.  In R. Glaser (Ed.),
Advances in instructional psychology    ,  (Vol. 4).  Hillsdale, NJ: Lawrence Erlbaum.

Shaffer, D., & Kaput, J.  (submitted).  Mathematics and virtual culture: An evolutionary
perspective on technology and mathematics education.      Educational Studies in Mathematics   .



Page 17

Tierney, C., & Nemirovsky, R.  (1995).      Children's Graphing of Changing Situations   .  Presented
at the 1995 Annual Meeting of the American Educational Research Association.  San Francisco,
CA.

Werner, H., & Kaplan, B.  (1962).      Symbol formation    .  New York: Wiley.

Yerushalmy, M.  (1997).      Emergence of new schemes for solving algebra word problems: The
impact of technology and the function approach.     Paper presented at the Proceedings of the 21st

Conference of the International Group for the Psychology of Mathematics Education, Lahti,
Finland.


