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Abstract. The growing size of 3D digital images causes sequential algorithms to be less and
less usable on whole images and a parallelization of these algorithm is often required. We have
developed an algorithm named Sewing Faces which synthesizes both geometrical and topological
information on bounding surface of 6-connected 3D objects. We call such combined information
a skin. In this paper we present a parallelization of Sewing Faces. It is based on a splitting of 3D
images into several sub-blocks. When all the sub-blocks are processed a gluing step consists of
merging all the sub-skins to get the final skin. Moreover we propose a fine-grain approach where
each sub-block is processed by several parallel processors.
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1. Introduction

Over the past decade, 3D digitalization techniques such as Magnetic Resonance
Imaging have been extensively developed. They have opened new research topics
in 3D digital image processing and are of primary importance in many application
domains such as medical imaging. The classical notions of 2D image processing
have been extended to 3D (pixels into voxels, 4-connectivity into 6-connectivity,
etc) and the 2D algorithms have to be adapted to 3D problems ([4], [2]). In this
process the amount of data is increased by an order of magnitude (from n? pixels
in a 2D image to n® voxels in a 3D image, where n is the size of the image edges)
and in consequence the time complexity of 3D algorithms is also increased by an
order of magnitude. In order to still get efficient algorithms in terms of running
time and to deal with images with ever increasing size, these algorithms have to be
parallelized.

Among the many problems in 3D image processing, we focus in this paper on
the problem of the reconstruction of bounding surface of 6-connected objects in 3D
digital images.

A 3D digital image is characterized by a 3D integer matrix called block; each
integer I(v) of the block defines a value associated with a volume element or vozel
v of the image. An image describes a set of objects such as organs in medical



images. The contour of an object is composed of all the voxels which belong to
the object but which have at least one of their adjacent voxels in the background.
From this set of voxels we compute the bounding surface of the object. It is a set
of closed surfaces enclosing the object.

We have developed in [6] a sequential algorithm for bounding surface reconstruc-
tion. The objective of this paper is to present a parallel version of this algorithm.
This parallelization is based on a decomposition of the 3D block into sub-blocks.
On each sub-block a fragment of the bounding surface is computed. Once all the
fragments have been determined a final step consists in merging them together in
order to retrieve the complete bounding surface.

The paper is organized as follows. Section 2 recalls the principles of bounding
surface reconstruction. Section 3 presents some basic notions of 3D digital images
while section 4 briefly recalls our sequential algorithm for bounding surface recon-
struction. Section b discusses the sub-block decomposition, then sections 6 and
7 respectively present the coarse-grain and fine-grain parallelizations of the algo-
rithm. In section 8 we briefly show how to transform a reconstructed surface into
a 2D mesh. Finally section 9 presents experimental results. Some of the notions
introduced in this paper are illustrated with figures. Since they are not always easy
to visualize in 3D they will be presented using the 2D analogy.

2. Surface reconstruction
The closed surfaces that bound an object can be determined in two different ways :

e using a method by approximation, the surface is reconstructed by interpolat-
ing the discretized data. The Marching Cubes [5] developed by Lorensen and
Cline is such a method : it builds a triangulation of the surface. Various exten-
sions of the method have been proposed, either by defining a heuristic to solve
ambiguous cases [9] or by reducing the number of generated triangles. Faster
reconstructions have been developed. Some are based on parallelized versions of
the algorithm [7]. Others use the octree abstract data type [10] which reduces
the number of scanned voxels.

e using an exact method, the surface is composed of faces shared by a voxel of
the object and a voxel of the background. Such a method has been proposed
by Artzy et al. [1] and later improved by Gordon and Udupa [3].

The efficiency of the various reconstruction algorithms is strongly related to the
type of scan used to determine the surface. Hence the surface reconstruction can
be realized either by a complete search among all the voxels of the block or by a
contour following for which only the voxels of the object contour are scanned. The
contour following approach yields more efficient algorithms whose time complexity
is proportional to the number of voxels of the contour instead of the number of
voxels of the whole block. The Marching Cubes algorithm is based on a whole-block
scanning while the methods proposed in [1] and [3] rely on a contour following.



The determination of the bounding surface of an object is useful to visualize the
object but also to manipulate it, using techniques such as a distortion of a surface,
a transformation of a surface into a surface mesh, a derefinement of a surface by
merging adjacent coplanar faces, a reversible polyhedrization of discretized volumes.
For visualization, the surface needs only to be defined by geometrical information,
i.e. the list of its triangles in case of approximation methods or the list of its faces
in case of an exact method. For manipulation however, the surface must be de-
fined not only by geometrical information but also by topological information, i.e.
information stating how the faces are connected together. Note that it is of course
possible to recover the topological information from the geometrical one. For each
face, one have to scan all the other faces defining the surface in order to find its
adjacent faces, i.e. the ones which share one edge with it. If the surface contains n
faces then this topological reconstruction is O(n?). To avoid this quadratic oper-
ation the topological information must be collected together with the geometrical
information.

The algorithm we have developed in [6] reconstructs the bounding surface of
any 6-connected object of a 3D digital image. It 1s called Sewing Faces and its
characteristics are the following :

e it 1s an exact method. It extracts faces belonging to a voxel of the object and a
voxel of the background.

e it is based on a contour following. Its time complexity is therefore proportional
to the number of voxels of the contour.

e it synthesizes both geometrical and topological information. In this case the re-
constructed surface is named a skin. The topological information is synthesized
using sews stating how two adjacent faces of the bounding surface are connected
together.

e its time and space complexity are both linear according to the number of faces
of the skin, as proved in [6].

3. Notions of 3D digital images

A 3D block (see figure 1) can be seen as a stack of adjacent voxel slices pushed
together according to any one of the three axes z, y or z. A voxel 1s made of six
faces (whose types can be numbered as shown in figure 2), and twelve edges. Each
face has an opposite face in a voxel; for instance face of type 2 is opposite to face
of type 5 (cf. figure 2). In the following we call face i a face of type i.

Two faces that share one edge are adjacent. Two voxels that share one face are
6-adjacent; if they share only one edge they are 18-adjacent (see figure 3). In the
following we call object in a block a set of 6-connected voxels.

Definition 1. Let w and v be any two voxels of set #. If there exists a path
To, &1, ..., &, With u = 2g and v = z, such that Vk € [0, n[, 2x, 241 € 0 and are
6-adjacent, then 6 1s 6-connected.
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If block B contains more than one object, that is to say if B is made of several
6-connected components 8;, we call this set of objects a composed object and we
denote it by © : © = |J8;. The voxels which are not in composed object @ are in

i

the background.

A boolean function is defined on block B. Tt is denoted by ©p(v) and states
whether or not voxel v belongs to composed object ©. There are several ways
to define function ©p(v), depending on the type of digitalized data. If the block
is already thresholded, we may define ©p(v) = true < I(v) = o where « is user-
defined. If the block is not segmented, we may use a function Op(v) = true < a; <
I(v) < a2. On the contrary, if we want to define the object as the complement of the
background, we may define ©p(v) = true < I(v) # a. Other more sophisticated
definitions are possible.

Tk

Figure 4. A 2D object with one hole and its two borders.

If an object contains n holes, its bounding surface is made of (1+n) borders that
are not connected together. Each border is a closed surface made of adjacent faces
sewed together. Figure 4 illustrates this notion with a 1-hole object using the 2D
analogy.

Since objects are 6-connected sets of voxels, there exist three different types of
sews between two adjacent faces of a border. These three types of relations have
been presented by Rosenfeld et al. [8] and are named [-sew, 2-sew and 3-sew (see
figure 5). They depend on the adjacency relation between the voxel(s) supporting
the two faces.

Definition 2. Let 8; be a 6-connected object with n holes. Each border Ty, ;
(j=1,...,14n) of §; is a pair (F, R) where :

e Fis the set of faces which separate 6-connected component §; from the back-
ground by a closed surface;



Figure 5. Three types of sews.

e R is the sewing relation. Tt is a set of 4-tuples (f1, fa, €, s) expressing that faces
f1 and fo are sewed together through their common edge e using a sew of type
s(s=1,2o0r3).

Using this definition the notions of skin are introduced as follows.

Definition 3. The skin of object 8; characterized by n holes is the union of all
1+n

its borders and is denoted by Sy, : Sp, = |J Yo, ;-
=1

J=

The skin of composed object @ = #; is the union of the skins Sy, and is denoted
=1

1=

by Se : Se =J S,.
=1

1=

Since the skin of a composed object is a union of borders, it is also defined as a
pair (¥, R) as introduced by definition 2.

4. Sewing Faces : an algorithm for skin reconstruction

For each border T to be reconstructed, the starting point of Sewing Faces is a pair
(v,i) where v is a voxel of the object contour and ¢ is a face of v belonging to
border Y. Such a pair is called a starting-vozel and can be either given by the user
or determined by a dichotomous search algorithm that depends on the type of the
3D image.

The principles of the sequential version of Sewing Faces are the following. From
the starting voxel, the algorithm first computes its faces that belong to the bounding
surface and then detects among its adjacent voxels (either 6 or 18-adjacent) the ones
that belong to the contour. For each of these voxels it determines the faces that are
also included in the bounding surface and realizes their sews with adjacent faces of
the skin. The process is then iterated for all the adjacent voxels that also belong to



the contour. Step-by-step the bounding surface 1s reconstructed based on a contour
following.

The algorithm uses a hash table to memorize the faces that have already been
added to the skin, and a stack to store the voxels to be examined. It uses two main
functions GetFaces (v, 1) and Treatseq (v) that are now described. They rely on
the notion of neighbor of a voxel according to a given face defined by its type (cf.

figure 2).

Definition 4. Let v be a voxel whose face of type ¢ is shared with voxel u. Voxel
u is called the neighbor of v by its face ¢ and is denoted by n(v,i) = u.

Function GetFaces (v, i) determines the faces of v belonging to the skin when its
face of type 7 does. It runs as follows :

1. Add! to F face i of v.

2. Add to F' any of the four faces of type j of v adjacent to face ¢ such that
n(v,j) ¢ © or n(v,j) ¢ B, i.e. such that the neighbor of v by face j is not in
the object.

3. If one face has been added to the border during steps (1) or (2) then :

(A) Add to F face of type k of v which is opposite to i if n(v, k) ¢ © or
n(v, k) ¢ B.?

(B) Add to R the l-sews (f1, fa,¢e,1) for all faces f; and/or fa that have been
added to F' during steps (1), (2) or (3)(A4).

(C) Push v onto the stack of voxels to be treated. Hence voxel v is not entirely
treated at this step. In particular its 2 and 3-sews with adjacent voxels
have not been detected yet.

(D) Add to the hash table the faces of v added to the skin.

Function Treatscq (v) determines all the 6 or 18-adjacent voxels of v such that
one or more of their faces belong to the skin, and sews these faces to those of v
when they share one edge, i.e. realizes the 2 and 3—sews. The data structure used
by Treatscq (v) is an array [0---5] memorized in the hash table. It indicates for
each face type, the reference in F' of the corresponding face of voxel v if this face
has already been added to the skin. The corresponding entry is empty if the face
is not in F or if the face has not already been added to the skin. Treats.q (v) is
defined as follows :

1. Treatseq (v)

2 get faces,[] from the hash table

3 for each edge e of v shared by faces ¢ and j of v
4. such that faces,[i] € Se, faces,[j] € Se do
5 u — n(v, i)

6 w < n(u,j)



7. if (Op (w) = false)
8. /* w is not in object Op */
9. /* in this case face j of voxel u belongs to the skin */
10. facesy[] « GetFaces(u, j)
11. R« (facesy[j], facesy[j], e, 2)
12. else
13. /* wis in object Op */
14. /* in this case the opposite face to face 7 in voxel w */
15. /* (denoted by k) belongs to the skin */
16. k+ (i+3)mod 6
17. facesy [] + GetFaces(w, k)
18. R« (facesy[j], facesy[k], €, 3)
19. endif
20. endfor

Using these two functions the sequential version of Sewing Faces, denoted by

SFseq. () 1s defined by:

SFSeq ()
for each starting voxel (v,4) do
GetFaces (v, 1)
while not empty (stack) do
Treatgeq. (top (stack))

T o W N =

5. Sub-blocks decomposition

Let us suppose that the blocks we deal with contain one byte long integers. The
memory size required for blocks of size 1283, 5123 or 10243 is respectively 2 MB,
128 MB or 1GB. To allow any computer to run Sewing Faces on such large-size data,
the whole block must be decomposed into sub-blocks and the algorithm must be
processed on these sub-blocks. The size of the sub-blocks depends on the available
amount of memory. In the general case, each voxel intensity being g bytes long, a
¢ bytes memory space can hold sub-blocks up to size ({,1,1) with [ = (g/¢)'/3.

Using a parallel machine, such a decomposition into sub-blocks 1s also very useful
since the bounding surface reconstruction algorithm may be run simultaneously on
the different sub-blocks assigned to different processors of the architecture.

5.1.  Sub-blocking

Splitting the block into sub-blocks 1s the sub-blocking operation. A sub-block is
fully defined by the coordinates of its origin in the block and by its size according
to axes x, y and z. It has six faces, each face 1s a voxel slice.



On each sub-block, Sewing Faces builds a sub-skin. All the sub-skins must finally
be merged to get the whole skin. In order to be able to glue all the sub-skins
together, the overlap between two adjacent sub-blocks must be two-slice wide.

Definition 5. Let b;—1 2 be two sub-blocks whose origins in block B are
(B.xy, By, B.z1) and (B.z2, B.ya, B.z2) and whose sizes are (by.,b1.y,b1.2) and
(ba.x, ba.y, ba.z). If there exist two axes a, 8 € {®,y, 2z} such that B.ay = B.as and
B.p1 = B.f> and if the third axis v 1s such that B.y; + b1y — 2 = B.ys or such
that B.ys + bo.y — 2 = B.71, then sub-blocks b; and b, are said to be adjacent.

sub-block block

2glui ng faces

L]

R 2 forbidden faces

Figure 6. The gluing and forbidden faces of a sub-block.

On any sub-block two particular types of faces are emphasized: the gluing faces
and the forbidden faces, as illustrated in figure 6 using the 2D analogy. They
correspond to the overlap between sub-blocks and are therefore defined only ”inside”
the whole block and not on its own faces.

Definition 6. Let b be a sub-block and f; be one of its faces such that f; 1s not
included into a face of block B. Face f3 is called a forbidden face. A slice which is
adjacent to a forbidden face is called a gluing face.

The execution of Sewing Faces on sub-block b reconstructs the sub-skin associated
with b. This sub-skin is similar to a skin except on the ”border” of sub-block b where
some sews are missing. The missing sews connect a face of a voxel lying on one
of its gluing faces with a face of a voxel belonging to a sub-block adjacent to b.
Notice that since the sews of type 1 involve only one voxel, they can always be
detected even if they are on a gluing face. The missing sews are therefore only of
type 2 or 3. They must be detected and memorized to be treated during the final
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gluing phase. To do so the complete neighboring of the gluing face voxels must be
examined. This explains the presence of the forbidden faces adjacent to the gluing
faces.

Since the voxels of the forbidden faces are not treated in sub-block b, any forbidden
face must be shared by an adjacent sub-block where it is considered as a gluing face.
These adjacency relations between sub-blocks guarantee that the gluing process will
be possible. They are characterized as follows.

Definition 7. A set {bg,...,b,} of sub-blocks such that :

Yv € ©,3b;,i € [0,n] such that v € b; but v does not belong to a forbidden face
of b;, and

Vv such that v € b; and v € b;, then b; and b; are adjacent

is a valid sub-blocking (with respect to composed object ©).

Figure 7 shows a valid sub-blocking using the 21 analogy. Notice that a valid
set of sub-blocks needs not to cover the whole block. If part of the image contains
only background voxels, 1t is unnecessary to process it. In the general case it is
easy to automatically split a block into a valid sub-blocking whose sub-blocks can
be separately processed.

5.2, Gluing phase

Once the sub-skins on the different sub-blocks have been reconstructed, they must
be merged together to get the final skin. This process requires the realization of the
missing sews. We call the whole process (merging and sewing) the gluing phase.

For any sub-block b; the sub-skin is characterized by pair (Fy,, Rp,) where Fj,
is the set of faces belonging to the sub-skin of b; and Ry, is the corresponding set
of fully realized sews. During the sub-skin computation the missing sews called
half-sews are memorized. They are defined as follows.

Definition 8. A half-sew is a quintuple (e, s, f, coord, t) where e is the edge to
be sewed, s is the type of sew to realize, f is the face of set F' sharing edge e, coord
are the coordinates of voxel v that owns f, t is the type of the unknown face that
share edge e with face f.

For each sub-block this information is memorized using either a hash table or a
list ordered according to field coord.

The gluing process is realized in two steps. The first one consists in merging
together the different sets Fj, computed on sub-blocks b; : Fp = |JFp,. The

2
second step concerns set Rp defining the sews between all the faces of Fg. This
step is realized by building full-sews from pairs of half-sews describing the two parts
of a sew.
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Figure 7. A valid sub-blocking.
Definition 9. A full-sew is composed of two half-sews (ey, s1, f1, coordy, 1)

and (ez, 2, fa, coorda,ts) characterized as follows : coord; and coords define the
coordinates of the two adjacent voxels involved in the sew, e; = es, 51 = 89, 11 =

type(f2) and to = type(f1).

At the end of the gluing process, the skin (Fp, Rp) describes the geometry and
the topology of all the borders that were pointed out by the starting voxels given
at the beginning.
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5.83.  Fragmentation of the objects

The following problem occurs when decomposing a block into sub-blocks. A 6-
connected object contained in the block is fragmented on the different sub-blocks
and on a given sub-block the fragment of the object may be non 6-connected. If this
problem is not carefully taken into account the skin reconstruction will be incorrect.

Figure 8 illustrates such a situation using the 2D analogy. The initial block is
splitted into two sub-blocks with an overlap of two slices : the gluing and forbidden
faces. The 6-connected object is distributed on the two sub-blocks in such a way
that on sub-block 2 there are two non-connected fragments of the object. Therefore
if the algorithm on sub-block 2 runs with only one starting voxel, then only one
of the two fragments will be reconstructed. Since it is not realistic to expect the
user to give as many starting voxels as there are fragments of the objects on the
different sub-blocks, this problem must be automatically solved by the method.
This is realized on the gluing faces. When a voxel of the contour lies on a gluing
face, 1ts adjacent voxels belonging to the forbidden face may also belong to the
contour and are therefore considered as new starting voxels for the adjacent sub-
block. In figure 8 let the two voxels drawn in dark grey be the starting voxels on
each sub-block. During its processing, sub-block 1 detects that the sub-skin it is
reconstructing gets out in sub-block 2. A new starting voxel (drawn in black) is then
pushed by sub-block 1 onto the stack of sub-block 2 and no part of the skin is lost.
Sub-block 1 will also send to sub-block 2 as other starting voxel the voxel mentioned
on the figure. Sub-block 2 will discard this voxel since it has already been treated
while constructing the small fragment on top of the figure from it initial starting
voxel. Vice versa, sub-block 2 will send two new starting voxels to sub-block 1.
They will also be discarded by sub-block 1 since they have already been treated.
This mecanism guarantees that the whole skin will finally be reconstructed. As a
consequence only one starting-voxel (v,7) (as described in section 4) per sub-block
is required at the beginning of the algorithm.

6. Coarse-grain parallelization

The coarse-grain parallelization of Sewing Faces is based on the notions of sub-
blocking and gluing phase. The idea is to decompose the 3D block of data into
sub-blocks as defined in section 5. The sub-skins on each sub-block are computed
simultaneously on different processors. Once all the sub-skins have been determined
the final gluing phase is realized.

The computation of a sub-skin is similar to that used in the sequential version,
except for the voxels of the gluing faces that may induce missing sews. For any
such voxel the following steps must be realized :

1. Store the corresponding half-sew (as defined in definition 8) in order to later
compute the full-sew;

2. Determine which voxel v’ of the forbidden face should be treated to realize this

sew;
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3. Determine which sub-block b; owns v’ on one of its gluing faces;

4. Push voxel v' onto the stack associated with sub-block b; as a new starting
voxel. This allows to solve the fragmentation problem discussed in section 5.3.

sub-block 1

l '

-t [iti@l starting voxel

initial starting voxel o o

m=a
=
[TT1

_ 5 Hrrmrm
new starting voxel - H

' i

sbblock2

Figure 8. Fragmentation of a 6—connected object into non 6—connected fragments.

These four points are realized by function HalfSews (). Notice that in order to
realize point (3), each sub-block has to know the origin and the size of all the other
sub-blocks. Point (4) can be realized either with a message passing mecanism on a
distributed memory processor or using shared memory on a share memory machine.

The parallel version of the algorithm, denoted by SFp4, (), is obtained by chang-
ing function Treatseq (v) into Treatpa, (v) as follows.

1. Treatpgr. (v)

2 get faces,[] from the hash table

3 for each edge e of v shared by faces ¢ and j of v
4 such that faces,[i] € Se, faces,[j] € Se do
9. if e defines a missing sew then

6 HalfSews ()

7 else

8 u — n(v, i)

9. w < n(u,j)

10. if (Op (w) = false)

11. /* w is not in object Op */

12. /* in this case face j of voxel u belongs to the skin */
13. facesy[] « GetFaces(u, j)
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14. R« (facesy[j], facesy[j], e, 2)

15. else

16. /* wis in object Op */

17. /* in this case the opposite face to face */
18. /* i in voxel w belongs to the skin */
19. k+ (i+3)mod 6

20. facesy [] + GetFaces(w, k)

21. R« (facesy[j], facesy[k], €, 3)

22. endif

23. endif

24. endfor

When all the sub-blocks have ended execution, each sub-skin is characterized by
a pair (F, R) and the gluing process can begin. As explained in section 5.2 the half-
sews associated with each sub-block are memorized into ordered lists. The gluing
phase consists therefore in scanning these lists in order to complete the sews. Due
to the ordering of the lists according to the coordinates of the supporting voxels,
this process is linear relatively to their length.

The number of voxels to be treated in each sub-block obviously depends on the
objects that are considered and also on the sub-blocking. Sub-blocking may be data-
driven : the whole image 1s scanned in order to detect the objects before splitting
the block. This method is used by [7] to achieve load-balancing in Marching Cubes
parallelization. Such a whole block scanning is terribly cost-effective compared to
the contour following used by Sewing Faces to get good time performance. Moreover
we believe that a good load balancing is strongly related to a given field : for
instance brain images obtained from Magnetic Resonance Imaging are all rather
similar relatively to the question of load-balancing. Therefore we think that before
using Sewing Faces in a given field, a preliminary study must be conducted on a set
of standard images in order to detect the appropriate sub-block decomposition that
will result in effficent load-balancing. Such a decomposition may be for example to
split the block either into cubic sub-blocks or into slices.

7. Fine-grain parallelization

The fine-grain parallelization of Sewing Faces consists in allowing several processors
to deal with the same sub-block. In this case input data and data structures must
obviously be shared by all the processors running Sewing Faces on the same sub-
block. In consequence the main difficulty of such a parallelization is to prevent data
from corruption. Let us see in detail where corruption problems may arise :

e sub-block : no possible data-corruption because it is read-only;

e hash table : when array faces,[]is written in the hash table, its previous version
currently stored may contain values that are not in faces,[]. In this case the
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two versions of the array, denoted by faces?'¢[] and faces™**[] must be merged.

Moreover 1-sews between faces i and j such that (faces?®“[i] and facesS?[j]

both belong or not to F) or (faces™%[j] and faces?'¢[i] both belong or not to
F) must be added to R. During this merging step, access in the hash table to
array faces,[] by other processors must be forbidden using a semaphore-like

method;

e stack of voxels : no possible data-corruption since the voxels are just pushed
onto or poped from the common stack. The stack implementation must of
course guarantee its correctness using semaphore-like operations.

e set F of faces : it is simply implemented using an array. When a new skin face
is detected during one GetFaces () execution, the next available face number
in ' must be read and incremented using non interruptible instructions;

e set R of sews : no data curruption is possible because R is a write-only file;

e set of half-sews : it is implemented as a write-only disk file, therefore no data
corruption is possible. Moreover, the gluing process can easily deal with dupli-
cated half-sews by omitting them when the case arises.

The fine-grain parallelization of Sewing Faces solves the load balancing problem
in the general case. All the processors executing the algorithm on the same sub-
block share one stack of voxels, one hash table, etc. As a result they all finish
their execution at the same time, that is when the stack of voxels 1s empty. When
the fine-grain approach is used alone without any coarse-grain parallelization, the
load-balancing is always optimal.

The fine-grain parallelization may be combined with a coarse-grain decomposition
using a cluster of share-memory processors. The different sub-blocks are assigned to
the different machines of the cluster. On each share memory machine the different
processors may compute the sub-skin associated with one sub-block through the
shared stack of voxels.

8. Embedding

So far we have only realized topological operations (adding faces to set F', adding
sews to set R), without considering real coordinates of the vertices. Therefore
the extracted surface is a topological surface. In order to visualize it, it must be
transformed it into a geometrical surface, 1.e. into a 21 mesh. Such a process is
called an embedding. A face embedded in the 3D space becomes a facet. To convert
all the faces into facets, a starting point is required : the real coordinates of the
four vertices of a given face f of each border. From the type of face f and from
its sew types, it 1s easy to deduce the coordinates of the four faces sewed with f.
And so on. We thus obtain the real coordinates of all the faces of Fp and we get
all the facets. If the three dimensions of the basic parallelepiped representing one
voxel are integer values, embedding of the skin does not require any computation
with real values. The embedding process is O(f) where f is the number of faces of
the skin.
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9. Results

We have already proved in [6] that the sequential version of Sewing Faces is linear
in time and space according to the number of faces in the skin. Linearity is still
achieved by the coarse-grain and fine-grain approaches. In tables 1, 2 and 3 we focus
on the execution time of the coarse-grain version versus the sequential version. The
input data consist of digital balls of growing size (from 230% to 300). Each image
contains only one object whose skin is made of only one border. The starting voxels
are automatically detected by a dichotomous algorithm. Sub-blocking is achieved
by splitting each block into eight equal size sub-blocks. Tests summarized in tables
1, 2, and 3 were realized on a Intel Pentium 133 MHz computer running under
Linux. Figures include user and system times.

Table 1. Execution time related to the sequential version SFseq. ().

Size of the 3D block Number of faces Time (s.)
230 247512 4.7
240 269688 5.1
250 292800 5.6
260 316656 6.0
270 341640 6.5
280 367368 7.0
290 394080 7.5
300 421968 8.0

Table 1 recalls some results obtained with the sequential version of Sewing Faces.
The number of faces and the elapsed time (in seconds) are indicated. Indicated du-
rations include the block loading, the starting voxel detection and the skin building.

Table 2. Execution time related to the coarse-grain parallel version of SFpg, ().

Size of the 3D block  Time to compute on a sub-block  Time of the gluing phase  Total (s.)

230 0.7 0.2 0.9
240 0.7 0.3 1.0
250 0.8 0.3 1.1
260 0.8 0.4 1.2
270 0.9 0.4 1.3
280 1.0 0.4 1.4
290 1.0 0.5 1.5
300 1.1 0.5 1.6

Table 2 shows the elapsed time of the coarse-grain version of Sewing Faces on
any elementary sub-block. The measured durations include the sub-block loading,
the starting voxel detection, the sub-skin building and the half-sews detection. The
third column indicates the elapsed time related to the gluing process. Finally the
last column shows the theoretical time obtained on a multi-processor architecture
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where all sub-blocks are simultaneously processed. It is obtained by adding the
gluing time and the elementary sub-block time.

Table 3. Speed-up obtained with the coarse-grain parallelization.

Size of the 3D block Time saved (%) Speed-up
230 80.85 5.2
240 80.39 5.1
250 80.35 5.1
260 80.00 5.0
270 80.00 5.0
280 80.00 5.0
290 80.00 5.0
300 80.00 5.0

Table 3 points out the time saved by the coarse-grain approach. The last column
indicates the speed-up factor due to the coarse-grain approach and underlines the
fact that using 8 processors we get an speed-up factor of about 5.

| | |
13 5 7 9 11 13 15 17 19 21 23 25
# of sub-blocks

Figure 9. Parallel time computation for the bar.

Let us now study the influence of the sub-blocking on the parallel computation
time. The efficiency obviously depends on the number and the structure of the sub-
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blocks. If the number of sub-blocks is too large, the gluing phase will become more
time-consuming due to the increasing number of missing sews. This problem has
been studied with a synthetic block of size 225 x 300 x 225 representing a bar of size
210 x 300 x 210. The block is decomposed into vertical sub-blocks of equal width.
In order to analyze the influence of the number of sub-blocks on the efficiency of
the parallel version, we have executed it on the above-mentioned block, increasing
the number of sub-blocks. This experiment has been realized on a SGI R4400.
Figure 9 shows the experimental results. It indicates that the computation time
decreases with the number of sub-blocks until we reach 12 sub-blocks. With more
than 12 sub-blocks the computation time remains almost the same. We may take
advantage of the lack of penality in terms of computation time when increasing
the number of sub-blocks, to execute Sewing Faces on more than 12 sub-blocks
in case of memory limitation. The experiment has also been conducted on brain
images (cf. figure 11) using cubic sub-blocks of equal size. The previous results are
confirmed : above a certain number of sub-blocks, 27 in this case as indicated in
figure 10, the computation time does not decrease anymore due to the increasing
number of missing sews to glue. Figure 12 shows the result of the decomposition
of a brain image into two sub-blocks.

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6

| | | | | | | | | | | |
5 10 15 20 25 30 35 40 45 50 55 60
# of sub-blocks

Figure 10. Parallel time computation for the brain.
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Figure 11. A human brain.

10. Conclusions

We have proposed in this paper a parallel version of a reconstruction surface algo-
rithm. Our goal is not only to increase time performances but also to deal with
large 3D images that are now currently available in practical fields such as medical
imaging. This parallelization is based on a sub-block decomposition. In order to
compute the skin using a contour following approach, a two-slice wide overlapping
between adjacent sub-blocks is required. Moreover sub-blocks must communicate
with their neighbors to guarantee the computation of the whole skin. The initial
choice of the data structures used by the sequential version of Sewing Faces (one
stack of voxels and one hash table for voxel faces) allows to easily and fully paral-
lelize it, using a coarse-grain and/or a fine-grain approach. Moreover the notions
of border, composed object and sub-block overlapping cause the parallel version
of Sewing Faces to be very flexible. Notice furthermore that the sub-block based
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Figure 12. A human brain splitted in two sub-blocks.

algorithm may also be useful on a mono processor machine to deal with blocks
of data that are too large to fit in memory. Experimental results have shown the
efficiency of the parallel version of the algorithm, both on synthetic data and on
brain images.
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Notes

. Operation add does not add a face twice in F|, i.e. it checks using the hash table whether the
given face already belongs to F' and actually adds it only if it does not belong to F'.

Since face ¢ and one of its adjacent faces in v (call it j) belong to the border, face k opposite
to ¢ and adjacent to j also belongs to the border if the neighbor of v by face %k is not in the
object.
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