
, , 1{21 ()c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.A Parallel Algorithm to ReconstructBounding Surfaces in 3D ImagesFREDERIC H. MABIN frederic.mabin@forenap.asso.frFoundation for Applied Neuroscience Research in Psychiatry, Centre Hospitalier, Service du Dr.J.P. Macher, 27 rue du 4e RSM, F-68250 Rou�achCATHERINE MONGENET mongenet@icps.u-strasbg.frUniversit�e Louis Pasteur de Strasbourg, ICPS laboratory, Pôle API, Boulevard S�ebastien Brant,F-67400 IllkirchEditor:Abstract. The growing size of 3D digital images causes sequential algorithms to be less andless usable on whole images and a parallelization of these algorithm is often required. We havedeveloped an algorithm named Sewing Faces which synthesizes both geometrical and topologicalinformation on bounding surface of 6-connected 3D objects. We call such combined informationa skin. In this paper we present a parallelization of Sewing Faces. It is based on a splitting of 3Dimages into several sub-blocks. When all the sub-blocks are processed a gluing step consists ofmerging all the sub-skins to get the �nal skin. Moreover we propose a �ne-grain approach whereeach sub-block is processed by several parallel processors.Keywords: parallel applications, computer graphics, 3D digital images, bounding surfaces re-construction, coarse and �ne-grain parallelization.1. IntroductionOver the past decade, 3D digitalization techniques such as Magnetic ResonanceImaging have been extensively developed. They have opened new research topicsin 3D digital image processing and are of primary importance in many applicationdomains such as medical imaging. The classical notions of 2D image processinghave been extended to 3D (pixels into voxels, 4-connectivity into 6-connectivity,etc) and the 2D algorithms have to be adapted to 3D problems ([4], [2]). In thisprocess the amount of data is increased by an order of magnitude (from n2 pixelsin a 2D image to n3 voxels in a 3D image, where n is the size of the image edges)and in consequence the time complexity of 3D algorithms is also increased by anorder of magnitude. In order to still get e�cient algorithms in terms of runningtime and to deal with images with ever increasing size, these algorithms have to beparallelized.Among the many problems in 3D image processing, we focus in this paper onthe problem of the reconstruction of bounding surface of 6-connected objects in 3Ddigital images.A 3D digital image is characterized by a 3D integer matrix called block; eachinteger I(v) of the block de�nes a value associated with a volume element or voxelv of the image. An image describes a set of objects such as organs in medical



2images. The contour of an object is composed of all the voxels which belong tothe object but which have at least one of their adjacent voxels in the background.From this set of voxels we compute the bounding surface of the object. It is a setof closed surfaces enclosing the object.We have developed in [6] a sequential algorithm for bounding surface reconstruc-tion. The objective of this paper is to present a parallel version of this algorithm.This parallelization is based on a decomposition of the 3D block into sub-blocks.On each sub-block a fragment of the bounding surface is computed. Once all thefragments have been determined a �nal step consists in merging them together inorder to retrieve the complete bounding surface.The paper is organized as follows. Section 2 recalls the principles of boundingsurface reconstruction. Section 3 presents some basic notions of 3D digital imageswhile section 4 briey recalls our sequential algorithm for bounding surface recon-struction. Section 5 discusses the sub-block decomposition, then sections 6 and7 respectively present the coarse-grain and �ne-grain parallelizations of the algo-rithm. In section 8 we briey show how to transform a reconstructed surface intoa 2D mesh. Finally section 9 presents experimental results. Some of the notionsintroduced in this paper are illustrated with �gures. Since they are not always easyto visualize in 3D they will be presented using the 2D analogy.2. Surface reconstructionThe closed surfaces that bound an object can be determined in two di�erent ways :� using a method by approximation, the surface is reconstructed by interpolat-ing the discretized data. The Marching Cubes [5] developed by Lorensen andCline is such a method : it builds a triangulation of the surface. Various exten-sions of the method have been proposed, either by de�ning a heuristic to solveambiguous cases [9] or by reducing the number of generated triangles. Fasterreconstructions have been developed. Some are based on parallelized versions ofthe algorithm [7]. Others use the octree abstract data type [10] which reducesthe number of scanned voxels.� using an exact method, the surface is composed of faces shared by a voxel ofthe object and a voxel of the background. Such a method has been proposedby Artzy et al. [1] and later improved by Gordon and Udupa [3].The e�ciency of the various reconstruction algorithms is strongly related to thetype of scan used to determine the surface. Hence the surface reconstruction canbe realized either by a complete search among all the voxels of the block or by acontour following for which only the voxels of the object contour are scanned. Thecontour following approach yields more e�cient algorithms whose time complexityis proportional to the number of voxels of the contour instead of the number ofvoxels of the whole block. The Marching Cubes algorithm is based on a whole-blockscanning while the methods proposed in [1] and [3] rely on a contour following.



3The determination of the bounding surface of an object is useful to visualize theobject but also to manipulate it, using techniques such as a distortion of a surface,a transformation of a surface into a surface mesh, a dere�nement of a surface bymerging adjacent coplanar faces, a reversible polyhedrization of discretized volumes.For visualization, the surface needs only to be de�ned by geometrical information,i.e. the list of its triangles in case of approximation methods or the list of its facesin case of an exact method. For manipulation however, the surface must be de-�ned not only by geometrical information but also by topological information, i.e.information stating how the faces are connected together. Note that it is of coursepossible to recover the topological information from the geometrical one. For eachface, one have to scan all the other faces de�ning the surface in order to �nd itsadjacent faces, i.e. the ones which share one edge with it. If the surface contains nfaces then this topological reconstruction is O(n2). To avoid this quadratic oper-ation the topological information must be collected together with the geometricalinformation.The algorithm we have developed in [6] reconstructs the bounding surface ofany 6-connected object of a 3D digital image. It is called Sewing Faces and itscharacteristics are the following :� it is an exact method. It extracts faces belonging to a voxel of the object and avoxel of the background.� it is based on a contour following. Its time complexity is therefore proportionalto the number of voxels of the contour.� it synthesizes both geometrical and topological information. In this case the re-constructed surface is named a skin. The topological information is synthesizedusing sews stating how two adjacent faces of the bounding surface are connectedtogether.� its time and space complexity are both linear according to the number of facesof the skin, as proved in [6].3. Notions of 3D digital imagesA 3D block (see �gure 1) can be seen as a stack of adjacent voxel slices pushedtogether according to any one of the three axes x, y or z. A voxel is made of sixfaces (whose types can be numbered as shown in �gure 2), and twelve edges. Eachface has an opposite face in a voxel; for instance face of type 2 is opposite to faceof type 5 (cf. �gure 2). In the following we call face i a face of type i.Two faces that share one edge are adjacent. Two voxels that share one face are6-adjacent; if they share only one edge they are 18-adjacent (see �gure 3). In thefollowing we call object in a block a set of 6-connected voxels.De�nition 1. Let u and v be any two voxels of set �. If there exists a pathx0; x1; : : : ; xn with u = x0 and v = xn such that 8k 2 [0; n[; xk; xk+1 2 � and are6-adjacent, then � is 6-connected.
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5If block B contains more than one object, that is to say if B is made of several6-connected components �i, we call this set of objects a composed object and wedenote it by � : � = Si �i. The voxels which are not in composed object � are inthe background.A boolean function is de�ned on block B. It is denoted by �B(v) and stateswhether or not voxel v belongs to composed object �. There are several waysto de�ne function �B(v), depending on the type of digitalized data. If the blockis already thresholded, we may de�ne �B(v) = true , I(v) = � where � is user-de�ned. If the block is not segmented, we may use a function �B(v) = true, �1 <I(v) < �2. On the contrary, if we want to de�ne the object as the complement of thebackground, we may de�ne �B(v) = true , I(v) 6= �. Other more sophisticatedde�nitions are possible.
Figure 4. A 2D object with one hole and its two borders.If an object contains n holes, its bounding surface is made of (1+n) borders thatare not connected together. Each border is a closed surface made of adjacent facessewed together. Figure 4 illustrates this notion with a 1-hole object using the 2Danalogy.Since objects are 6-connected sets of voxels, there exist three di�erent types ofsews between two adjacent faces of a border. These three types of relations havebeen presented by Rosenfeld et al. [8] and are named 1-sew, 2-sew and 3-sew (see�gure 5). They depend on the adjacency relation between the voxel(s) supportingthe two faces.De�nition 2. Let �i be a 6-connected object with n holes. Each border ��i;j(j = 1; : : : ; 1 + n) of �i is a pair (F;R) where :� F is the set of faces which separate 6-connected component �i from the back-ground by a closed surface;



6
3-sew2-sew1-sewFigure 5. Three types of sews.� R is the sewing relation. It is a set of 4-tuples (f1; f2; e; s) expressing that facesf1 and f2 are sewed together through their common edge e using a sew of types (s = 1; 2 or 3).Using this de�nition the notions of skin are introduced as follows.De�nition 3. The skin of object �i characterized by n holes is the union of allits borders and is denoted by S�i : S�i =1+nSj=1 ��i;j.The skin of composed object � = mSi=1 �i is the union of the skins S�i and is denotedby S� : S� = mSi=1 S�i .Since the skin of a composed object is a union of borders, it is also de�ned as apair (F;R) as introduced by de�nition 2.4. Sewing Faces : an algorithm for skin reconstructionFor each border � to be reconstructed, the starting point of Sewing Faces is a pair(v; i) where v is a voxel of the object contour and i is a face of v belonging toborder �. Such a pair is called a starting-voxel and can be either given by the useror determined by a dichotomous search algorithm that depends on the type of the3D image.The principles of the sequential version of Sewing Faces are the following. Fromthe starting voxel, the algorithm�rst computes its faces that belong to the boundingsurface and then detects among its adjacent voxels (either 6 or 18-adjacent) the onesthat belong to the contour. For each of these voxels it determines the faces that arealso included in the bounding surface and realizes their sews with adjacent faces ofthe skin. The process is then iterated for all the adjacent voxels that also belong to



7the contour. Step-by-step the bounding surface is reconstructed based on a contourfollowing.The algorithm uses a hash table to memorize the faces that have already beenadded to the skin, and a stack to store the voxels to be examined. It uses two mainfunctions GetFaces (v; i) and TreatSeq: (v) that are now described. They rely onthe notion of neighbor of a voxel according to a given face de�ned by its type (cf.�gure 2).De�nition 4. Let v be a voxel whose face of type i is shared with voxel u. Voxelu is called the neighbor of v by its face i and is denoted by n(v; i) = u.Function GetFaces (v; i) determines the faces of v belonging to the skin when itsface of type i does. It runs as follows :1. Add 1 to F face i of v.2. Add to F any of the four faces of type j of v adjacent to face i such thatn(v; j) =2 � or n(v; j) =2 B, i.e. such that the neighbor of v by face j is not inthe object.3. If one face has been added to the border during steps (1) or (2) then :(A) Add to F face of type k of v which is opposite to i if n(v; k) =2 � orn(v; k) =2 B. 2(B) Add to R the 1-sews (f1; f2; e; 1) for all faces f1 and/or f2 that have beenadded to F during steps (1), (2) or (3)(A).(C) Push v onto the stack of voxels to be treated. Hence voxel v is not entirelytreated at this step. In particular its 2 and 3-sews with adjacent voxelshave not been detected yet.(D) Add to the hash table the faces of v added to the skin.Function TreatSeq: (v) determines all the 6 or 18-adjacent voxels of v such thatone or more of their faces belong to the skin, and sews these faces to those of vwhen they share one edge, i.e. realizes the 2 and 3�sews. The data structure usedby TreatSeq: (v) is an array [0 � � �5] memorized in the hash table. It indicates foreach face type, the reference in F of the corresponding face of voxel v if this facehas already been added to the skin. The corresponding entry is empty if the faceis not in F or if the face has not already been added to the skin. TreatSeq: (v) isde�ned as follows :1. TreatSeq: (v)2. get facesv [ ] from the hash table3. for each edge e of v shared by faces i and j of v4. such that facesv [i] =2 S�; facesv [j] 2 S� do5. u n(v; i)6. w  n(u; j)



87. if (�B (w) = false)8. /* w is not in object �B */9. /* in this case face j of voxel u belongs to the skin */10. facesu [ ] GetFaces(u; j)11. R (facesv [j]; facesu[j]; e; 2)12. else13. /* w is in object �B */14. /* in this case the opposite face to face i in voxel w */15. /* (denoted by k) belongs to the skin */16. k  (i + 3) mod 617. facesw [ ] GetFaces(w; k)18. R (facesv [j]; facesw[k]; e; 3)19. endif20. endforUsing these two functions the sequential version of Sewing Faces, denoted bySFSeq: ( ) is de�ned by:1. SFSeq: ( )2. for each starting voxel (v; i) do3. GetFaces (v; i)4. while not empty (stack) do5. TreatSeq: (top (stack))5. Sub-blocks decompositionLet us suppose that the blocks we deal with contain one byte long integers. Thememory size required for blocks of size 1283, 5123 or 10243 is respectively 2MB,128MB or 1GB. To allow any computer to run Sewing Faces on such large-size data,the whole block must be decomposed into sub-blocks and the algorithm must beprocessed on these sub-blocks. The size of the sub-blocks depends on the availableamount of memory. In the general case, each voxel intensity being g bytes long, ac bytes memory space can hold sub-blocks up to size (l; l; l) with l = (g=c)1=3.Using a parallel machine, such a decomposition into sub-blocks is also very usefulsince the bounding surface reconstruction algorithm may be run simultaneously onthe di�erent sub-blocks assigned to di�erent processors of the architecture.5.1. Sub-blockingSplitting the block into sub-blocks is the sub-blocking operation. A sub-block isfully de�ned by the coordinates of its origin in the block and by its size accordingto axes x, y and z. It has six faces, each face is a voxel slice.



9On each sub-block, Sewing Faces builds a sub-skin. All the sub-skins must �nallybe merged to get the whole skin. In order to be able to glue all the sub-skinstogether, the overlap between two adjacent sub-blocks must be two-slice wide.De�nition 5. Let bi=1;2 be two sub-blocks whose origins in block B are(B:x1; B:y1; B:z1) and (B:x2; B:y2; B:z2) and whose sizes are (b1:x; b1:y; b1:z) and(b2:x; b2:y; b2:z). If there exist two axes �; � 2 fx; y; zg such that B:�1 = B:�2 andB:�1 = B:�2 and if the third axis  is such that B:1 + b1: � 2 = B:2 or suchthat B:2 + b2: � 2 = B:1, then sub-blocks b1 and b2 are said to be adjacent.
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GFGFGFGFGFGFGFFigure 6. The gluing and forbidden faces of a sub-block.On any sub-block two particular types of faces are emphasized: the gluing facesand the forbidden faces, as illustrated in �gure 6 using the 2D analogy. Theycorrespond to the overlap between sub-blocks and are therefore de�ned only "inside"the whole block and not on its own faces.De�nition 6. Let b be a sub-block and fb be one of its faces such that fb is notincluded into a face of block B. Face fb is called a forbidden face. A slice which isadjacent to a forbidden face is called a gluing face.The execution of Sewing Faces on sub-block b reconstructs the sub-skin associatedwith b. This sub-skin is similar to a skin except on the "border" of sub-block bwheresome sews are missing. The missing sews connect a face of a voxel lying on oneof its gluing faces with a face of a voxel belonging to a sub-block adjacent to b.Notice that since the sews of type 1 involve only one voxel, they can always bedetected even if they are on a gluing face. The missing sews are therefore only oftype 2 or 3. They must be detected and memorized to be treated during the �nal



10gluing phase. To do so the complete neighboring of the gluing face voxels must beexamined. This explains the presence of the forbidden faces adjacent to the gluingfaces.Since the voxels of the forbidden faces are not treated in sub-block b, any forbiddenface must be shared by an adjacent sub-block where it is considered as a gluing face.These adjacency relations between sub-blocks guarantee that the gluing process willbe possible. They are characterized as follows.De�nition 7. A set fb0; : : : ; bng of sub-blocks such that :8v 2 �; 9 bi; i 2 [0; n] such that v 2 bi but v does not belong to a forbidden faceof bi, and8v such that v 2 bi and v 2 bj , then bi and bj are adjacentis a valid sub-blocking (with respect to composed object �).Figure 7 shows a valid sub-blocking using the 2D analogy. Notice that a validset of sub-blocks needs not to cover the whole block. If part of the image containsonly background voxels, it is unnecessary to process it. In the general case it iseasy to automatically split a block into a valid sub-blocking whose sub-blocks canbe separately processed.5.2. Gluing phaseOnce the sub-skins on the di�erent sub-blocks have been reconstructed, they mustbe merged together to get the �nal skin. This process requires the realization of themissing sews. We call the whole process (merging and sewing) the gluing phase.For any sub-block bi the sub-skin is characterized by pair (Fbi; Rbi) where Fbiis the set of faces belonging to the sub-skin of bi and Rbi is the corresponding setof fully realized sews. During the sub-skin computation the missing sews calledhalf-sews are memorized. They are de�ned as follows.De�nition 8. A half-sew is a quintuple (e; s; f; coord; t) where e is the edge tobe sewed, s is the type of sew to realize, f is the face of set F sharing edge e, coordare the coordinates of voxel v that owns f , t is the type of the unknown face thatshare edge e with face f .For each sub-block this information is memorized using either a hash table or alist ordered according to �eld coord.The gluing process is realized in two steps. The �rst one consists in mergingtogether the di�erent sets Fbi computed on sub-blocks bi : FB = Si Fbi. Thesecond step concerns set RB de�ning the sews between all the faces of FB. Thisstep is realized by building full-sews from pairs of half-sews describing the two partsof a sew.
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125.3. Fragmentation of the objectsThe following problem occurs when decomposing a block into sub-blocks. A 6-connected object contained in the block is fragmented on the di�erent sub-blocksand on a given sub-block the fragment of the object may be non 6-connected. If thisproblem is not carefully taken into account the skin reconstruction will be incorrect.Figure 8 illustrates such a situation using the 2D analogy. The initial block issplitted into two sub-blocks with an overlap of two slices : the gluing and forbiddenfaces. The 6-connected object is distributed on the two sub-blocks in such a waythat on sub-block 2 there are two non-connected fragments of the object. Thereforeif the algorithm on sub-block 2 runs with only one starting voxel, then only oneof the two fragments will be reconstructed. Since it is not realistic to expect theuser to give as many starting voxels as there are fragments of the objects on thedi�erent sub-blocks, this problem must be automatically solved by the method.This is realized on the gluing faces. When a voxel of the contour lies on a gluingface, its adjacent voxels belonging to the forbidden face may also belong to thecontour and are therefore considered as new starting voxels for the adjacent sub-block. In �gure 8 let the two voxels drawn in dark grey be the starting voxels oneach sub-block. During its processing, sub-block 1 detects that the sub-skin it isreconstructing gets out in sub-block 2. A new starting voxel (drawn in black) is thenpushed by sub-block 1 onto the stack of sub-block 2 and no part of the skin is lost.Sub-block 1 will also send to sub-block 2 as other starting voxel the voxel mentionedon the �gure. Sub-block 2 will discard this voxel since it has already been treatedwhile constructing the small fragment on top of the �gure from it initial startingvoxel. Vice versa, sub-block 2 will send two new starting voxels to sub-block 1.They will also be discarded by sub-block 1 since they have already been treated.This mecanism guarantees that the whole skin will �nally be reconstructed. As aconsequence only one starting-voxel (v; i) (as described in section 4) per sub-blockis required at the beginning of the algorithm.6. Coarse-grain parallelizationThe coarse-grain parallelization of Sewing Faces is based on the notions of sub-blocking and gluing phase. The idea is to decompose the 3D block of data intosub-blocks as de�ned in section 5. The sub-skins on each sub-block are computedsimultaneously on di�erent processors. Once all the sub-skins have been determinedthe �nal gluing phase is realized.The computation of a sub-skin is similar to that used in the sequential version,except for the voxels of the gluing faces that may induce missing sews. For anysuch voxel the following steps must be realized :1. Store the corresponding half-sew (as de�ned in de�nition 8) in order to latercompute the full-sew;2. Determine which voxel v0 of the forbidden face should be treated to realize thissew;



133. Determine which sub-block bj owns v0 on one of its gluing faces;4. Push voxel v0 onto the stack associated with sub-block bj as a new startingvoxel. This allows to solve the fragmentation problem discussed in section 5.3.
initial starting voxel

sub-block 2

sub-block 1

new starting voxel

initial starting voxelFigure 8. Fragmentation of a 6�connected object into non 6�connected fragments.These four points are realized by function HalfSews ( ). Notice that in order torealize point (3), each sub-block has to know the origin and the size of all the othersub-blocks. Point (4) can be realized either with a message passing mecanism on adistributed memory processor or using shared memory on a share memorymachine.The parallel version of the algorithm, denoted by SFPar:(), is obtained by chang-ing function TreatSeq:(v) into TreatPar:(v) as follows.1. TreatPar: (v)2. get facesv [ ] from the hash table3. for each edge e of v shared by faces i and j of v4. such that facesv [i] =2 S�; facesv [j] 2 S� do5. if e de�nes a missing sew then6. HalfSews ( )7. else8. u n(v; i)9. w  n(u; j)10. if (�B (w) = false)11. /* w is not in object �B */12. /* in this case face j of voxel u belongs to the skin */13. facesu [ ] GetFaces(u; j)



1414. R (facesv [j]; facesu[j]; e; 2)15. else16. /* w is in object �B */17. /* in this case the opposite face to face */18. /* i in voxel w belongs to the skin */19. k  (i + 3) mod 620. facesw [ ] GetFaces(w; k)21. R (facesv [j]; facesw [k]; e; 3)22. endif23. endif24. endforWhen all the sub-blocks have ended execution, each sub-skin is characterized bya pair (F;R) and the gluing process can begin. As explained in section 5.2 the half-sews associated with each sub-block are memorized into ordered lists. The gluingphase consists therefore in scanning these lists in order to complete the sews. Dueto the ordering of the lists according to the coordinates of the supporting voxels,this process is linear relatively to their length.The number of voxels to be treated in each sub-block obviously depends on theobjects that are considered and also on the sub-blocking. Sub-blockingmay be data-driven : the whole image is scanned in order to detect the objects before splittingthe block. This method is used by [7] to achieve load-balancing in Marching Cubesparallelization. Such a whole block scanning is terribly cost-e�ective compared tothe contour following used by Sewing Faces to get good time performance. Moreoverwe believe that a good load balancing is strongly related to a given �eld : forinstance brain images obtained from Magnetic Resonance Imaging are all rathersimilar relatively to the question of load-balancing. Therefore we think that beforeusing Sewing Faces in a given �eld, a preliminary study must be conducted on a setof standard images in order to detect the appropriate sub-block decomposition thatwill result in e��cent load-balancing. Such a decomposition may be for example tosplit the block either into cubic sub-blocks or into slices.7. Fine-grain parallelizationThe �ne-grain parallelization of Sewing Faces consists in allowing several processorsto deal with the same sub-block. In this case input data and data structures mustobviously be shared by all the processors running Sewing Faces on the same sub-block. In consequence the main di�culty of such a parallelization is to prevent datafrom corruption. Let us see in detail where corruption problems may arise :� sub-block : no possible data-corruption because it is read-only;� hash table : when array facesv [ ] is written in the hash table, its previous versioncurrently stored may contain values that are not in facesv [ ]. In this case the



15two versions of the array, denoted by facesoldv [ ] and facesnewv [ ] must be merged.Moreover 1-sews between faces i and j such that (facesnewv [i] and facesoldv [j]both belong or not to F ) or (facesnewv [j] and facesoldv [i] both belong or not toF ) must be added to R. During this merging step, access in the hash table toarray facesv [ ] by other processors must be forbidden using a semaphore-likemethod;� stack of voxels : no possible data-corruption since the voxels are just pushedonto or poped from the common stack. The stack implementation must ofcourse guarantee its correctness using semaphore-like operations.� set F of faces : it is simply implemented using an array. When a new skin faceis detected during one GetFaces ( ) execution, the next available face numberin F must be read and incremented using non interruptible instructions;� set R of sews : no data curruption is possible because R is a write-only �le;� set of half-sews : it is implemented as a write-only disk �le, therefore no datacorruption is possible. Moreover, the gluing process can easily deal with dupli-cated half-sews by omitting them when the case arises.The �ne-grain parallelization of Sewing Faces solves the load balancing problemin the general case. All the processors executing the algorithm on the same sub-block share one stack of voxels, one hash table, etc. As a result they all �nishtheir execution at the same time, that is when the stack of voxels is empty. Whenthe �ne-grain approach is used alone without any coarse-grain parallelization, theload-balancing is always optimal.The �ne-grain parallelization may be combined with a coarse-grain decompositionusing a cluster of share-memory processors. The di�erent sub-blocks are assigned tothe di�erent machines of the cluster. On each share memory machine the di�erentprocessors may compute the sub-skin associated with one sub-block through theshared stack of voxels.8. EmbeddingSo far we have only realized topological operations (adding faces to set F , addingsews to set R), without considering real coordinates of the vertices. Thereforethe extracted surface is a topological surface. In order to visualize it, it must betransformed it into a geometrical surface, i.e. into a 2D mesh. Such a process iscalled an embedding. A face embedded in the 3D space becomes a facet. To convertall the faces into facets, a starting point is required : the real coordinates of thefour vertices of a given face f of each border. From the type of face f and fromits sew types, it is easy to deduce the coordinates of the four faces sewed with f .And so on. We thus obtain the real coordinates of all the faces of FB and we getall the facets. If the three dimensions of the basic parallelepiped representing onevoxel are integer values, embedding of the skin does not require any computationwith real values. The embedding process is O(f) where f is the number of faces ofthe skin.



169. ResultsWe have already proved in [6] that the sequential version of Sewing Faces is linearin time and space according to the number of faces in the skin. Linearity is stillachieved by the coarse-grain and �ne-grain approaches. In tables 1, 2 and 3 we focuson the execution time of the coarse-grain version versus the sequential version. Theinput data consist of digital balls of growing size (from 2303 to 3003). Each imagecontains only one object whose skin is made of only one border. The starting voxelsare automatically detected by a dichotomous algorithm. Sub-blocking is achievedby splitting each block into eight equal size sub-blocks. Tests summarized in tables1, 2, and 3 were realized on a Intel Pentium 133MHz computer running underLinux. Figures include user and system times.Table 1. Execution time related to the sequential version SFSeq: ( ).Size of the 3D block Number of faces Time (s.)230 247512 4.7240 269688 5.1250 292800 5.6260 316656 6.0270 341640 6.5280 367368 7.0290 394080 7.5300 421968 8.0Table 1 recalls some results obtained with the sequential version of Sewing Faces.The number of faces and the elapsed time (in seconds) are indicated. Indicated du-rations include the block loading, the starting voxel detection and the skin building.Table 2. Execution time related to the coarse-grain parallel version of SFPar: ( ).Size of the 3D block Time to compute on a sub-block Time of the gluing phase Total (s.)230 0.7 0.2 0.9240 0.7 0.3 1.0250 0.8 0.3 1.1260 0.8 0.4 1.2270 0.9 0.4 1.3280 1.0 0.4 1.4290 1.0 0.5 1.5300 1.1 0.5 1.6Table 2 shows the elapsed time of the coarse-grain version of Sewing Faces onany elementary sub-block. The measured durations include the sub-block loading,the starting voxel detection, the sub-skin building and the half-sews detection. Thethird column indicates the elapsed time related to the gluing process. Finally thelast column shows the theoretical time obtained on a multi-processor architecture



17where all sub-blocks are simultaneously processed. It is obtained by adding thegluing time and the elementary sub-block time.Table 3. Speed-up obtained with the coarse-grain parallelization.Size of the 3D block Time saved (%) Speed-up230 80.85 5.2240 80.39 5.1250 80.35 5.1260 80.00 5.0270 80.00 5.0280 80.00 5.0290 80.00 5.0300 80.00 5.0Table 3 points out the time saved by the coarse-grain approach. The last columnindicates the speed-up factor due to the coarse-grain approach and underlines thefact that using 8 processors we get an speed-up factor of about 5.
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# of sub-blocksFigure 9. Parallel time computation for the bar.Let us now study the inuence of the sub-blocking on the parallel computationtime. The e�ciency obviously depends on the number and the structure of the sub-



18blocks. If the number of sub-blocks is too large, the gluing phase will become moretime-consuming due to the increasing number of missing sews. This problem hasbeen studied with a synthetic block of size 225�300�225 representing a bar of size210� 300� 210. The block is decomposed into vertical sub-blocks of equal width.In order to analyze the inuence of the number of sub-blocks on the e�ciency ofthe parallel version, we have executed it on the above-mentioned block, increasingthe number of sub-blocks. This experiment has been realized on a SGI R4400.Figure 9 shows the experimental results. It indicates that the computation timedecreases with the number of sub-blocks until we reach 12 sub-blocks. With morethan 12 sub-blocks the computation time remains almost the same. We may takeadvantage of the lack of penality in terms of computation time when increasingthe number of sub-blocks, to execute Sewing Faces on more than 12 sub-blocksin case of memory limitation. The experiment has also been conducted on brainimages (cf. �gure 11) using cubic sub-blocks of equal size. The previous results arecon�rmed : above a certain number of sub-blocks, 27 in this case as indicated in�gure 10, the computation time does not decrease anymore due to the increasingnumber of missing sews to glue. Figure 12 shows the result of the decompositionof a brain image into two sub-blocks.
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# of sub-blocksFigure 10. Parallel time computation for the brain.
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Figure 11. A human brain.10. ConclusionsWe have proposed in this paper a parallel version of a reconstruction surface algo-rithm. Our goal is not only to increase time performances but also to deal withlarge 3D images that are now currently available in practical �elds such as medicalimaging. This parallelization is based on a sub-block decomposition. In order tocompute the skin using a contour following approach, a two-slice wide overlappingbetween adjacent sub-blocks is required. Moreover sub-blocks must communicatewith their neighbors to guarantee the computation of the whole skin. The initialchoice of the data structures used by the sequential version of Sewing Faces (onestack of voxels and one hash table for voxel faces) allows to easily and fully paral-lelize it, using a coarse-grain and/or a �ne-grain approach. Moreover the notionsof border, composed object and sub-block overlapping cause the parallel versionof Sewing Faces to be very exible. Notice furthermore that the sub-block based
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Figure 12. A human brain splitted in two sub-blocks.algorithm may also be useful on a mono processor machine to deal with blocksof data that are too large to �t in memory. Experimental results have shown thee�ciency of the parallel version of the algorithm, both on synthetic data and onbrain images.
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