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ABSTRACT 

It is difficult to use the traditional Message Passing Interface (MPI) approach to implement 

synchronization, coordination, and prevent deadlocks in distributed systems. This difficulty is lessened by 

the use of Apache's Hadoop/MapReduce and Zookeeper to provide Fault Tolerance in a Homogeneously 

Distributed Hardware/Software environment. A mathematical model for the availability of the 

JobTracker in Hadoop/MapReduce using Zookeeper's Leader Election Service is presented in this paper. 

Although the availability is less than what is expected in f+1 Fault Tolerance systems for crash failures, 

this approach makes coordination and synchronization easy, reduces the effect of Byzantine faults and 

provides Fault Tolerance for distributed systems. The results obtained show that the availability changes 

with change in the number of Zookeeper servers. This model can help determine how many servers are 

optimal for high availability, from which vendor they must be purchased, and when to use a Zookeeper 

coordinated Hadoop cluster to perform safety critical tasks. 
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1. INTRODUCTION 

A major challenge facing organizations today is the ability to organize and process large data 

generated by customers. According to Nielson Online [1] there are more than 1 billion internet 

users. How much data these users are generating and how it is processed largely determines the 

success of the organization concerned. It was a similar demand to process large datasets in 

Google that inspired Engineers to introduce MapReduce [2]. MapReduce is designed to run on 

commodity nodes (cheaper machines) that can fail at any time. Its performance does not reduce 

significantly due to network latency. It exhibits high fault tolerance and is easy to use by 

programmers who have no prior experience in parallel programming. Apache’s Hadoop [3] is an 

open source implementation of Google’s MapReduce. It is made up of MapReduce and Hadoop 

Distributed File System (HDFS). Hadoop/MapReduce is currently implemented as Master-

Slave architecture; this makes both the Hadoop Distributed File System Master node 

(NameNode) and the MapReduce Master Node (JobTracker) single point of failures. The failure 

of a Slave node (DataNode or TaskTracker) does not pose serious challenge since the Master 

node simple re-assigns tasks that were to be processed by the failed node to another node. 

Researchers have proposed several solutions to the availability issue of the JobTracker in 

Hadoop/MapReduce. Among these solutions is the use of Apache’s Zookeeper [4] as a 
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coordinating service when implementing Hadoop/MapReduce. This implementation provides 

automatic failover mechanism for the JobTracker by redirecting JobClients and TaskTrackers to 

the new active JobTracker in case the current active JobTracker goes down. In this paper, a 

Markov model is used to determine how available the JobTracker is in a Zookeeper coordinated 

Hadoop/MapReduce cluster. 

2. DESCRIPTION OF HADOOP/MAPREDUCE AND ZOOKEEPER 

2.1. Hadoop 

Hadoop [5] is an open source framework which allows parallel programmers to write and run 

distributed applications that process large amounts of data. It is an open source implementation 

of Google’s MapReduce. Hadoop is implemented with the capability to run MapReduce 

programs written in Java, C++, Python, Ruby, etc. on top of the Hadoop Distributed File System 

(HDFS). MapReduce is then used to divide a user application into small blocks which are then 

replicated and stored on multiple nodes in the cluster by means of the HDFS. These applications 

are executed in parallel by MapReduce on individual nodes that are assigned a Map or Reduce 

task. Hadoop is made up of several daemons. These daemons are the major constituents of the 

Hadoop framework as shown in Figure 1. 

 

Figure 1.The Hadoop Framework 

NameNode: The Name Node is the Master of the Distributed File System. Its task is to direct 

the slave DataNode daemons on how to carry out low level input/output (I/O) tasks. The name 

node monitors and controls the storage, use, and health of the HDFS in a cluster. It keeps track 

of the file metadata; i.e. which files are currently in the system and how each file is broken 

down into file blocks. The task of the NameNode is I/O and memory intensive; hence the 

machine on which it resides does not double as a DataNode and a NameNode at the same time. 

Secondary NameNode: Each Hadoop cluster contains one Secondary Name Node that serves 

as an assistant daemon to the NameNode. It constantly monitors the NameNode and keeps a 

checkpoint of HDFS metadata at given intervals. When the NameNode fails, the file system can 

be recovered from the checkpoints of the Secondary NameNode. 

DataNode: The Data Node daemon is hosted by each slave machine in the cluster. It reads and 

writes the HDFS blocks to actual files on the local file system. If a client wants to read or write 

to the HDFS, it must ask for the location (i.e. which DataNode is hosting that file block) from 

the NameNode, and then communicates directly with that DataNode. It is also possible for Data 

Nodes to communicate with each other when replication of data is needed for redundancy. Upon 

initialization, each DataNode reports the status of its file system blocks to the NameNode, after 

that, the DataNode constantly polls the NameNode to inform it of new changes and to also 

receive instructions on how to proceed with delete, modify, or write instructions that will affect 

local persistent storage. 
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JobTracker: The JobTracker daemon works in Master-Slave architecture. It is a single point of 

failure in a typical Hadoop framework. Client jobs are submitted to the JobTracker (as jar files). 

It is the responsibility of the JobTracker to determine which job must be executed first (default 

uses FIFO), which task to assign to which machine, and must monitor the progress of the 

execution on each of the slave machines. Each slave node must periodically send a heartbeat 

signal to the JobTracker machine. If a Master does not receive a heartbeat from a slave, it 

assumes the slave is down and must consequently re-launch an instance of a TaskTracker on a 

different machine and submit the same job that failed. This is transparent to the user and must 

also auto-scale. 

 

2.2. MapReduce 

MapReduce is used to divide user applications into small blocks which are then replicated and 

stored on multiple nodes in the cluster by means of HDFS. Google implements MapReduce as 

shown in Figure 2. The principles behind the implementation are well documented in [2]. 

 

Figure 2. Google's implementation of MapReduce [2] 

2.3. Zookeeper and Zookeeper Leader Election Framework 

ZooKeeper is a high-performance, available and scalable open-source software package [6] that 

is used to coordinate distributed systems. It is a stripped-down file system that exposes some 

primitives on which distributed systems can build to implement higher level services such as 

synchronization, naming, and configuration management. It is difficult to implement 

coordination in distributed systems especially if these coordinating services are to be written 

from scratch. ZooKeeper is organized in a hierarchical tree of nodes called znodes. Znodes are 

created by clients. Each znode can have children and data associated with it. The size of the data 

is limited to 1MB per node [7] since ZooKeeper nodes are not meant for data storage but to 

keep data in memory in order to achieve high throughput and low latency. However, there are 

no renames, soft or hard links and no append semantics. All znodes can have children except 

ephemeral znodes that disappears as soon as the client that created it closes its session. A client 

may manipulate a regular node by creating and/or deleting it explicitly, as opposed to ephemeral 

nodes where the client can either decide to delete the node or let the service remove it 

automatically when the client’s session expires or a failure occurs (this property is the basis for 

implementing Zookeeper Leader Election protocol; see [4] ). All nodes are seen by all clients, 

and apart from ephemeral nodes, all nodes can be deleted by any other client including the client 

that created the node. Zookeeper guarantees the following [7]: 

Atomicity: A client must either have access to the entire data stored at a node or it will obtain 

nothing at all. This design is to maintain consistency. 
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Sequential Consistency: Zookeeper uses the First in First out (FIFO) policy to execute request 

that update the state of the service.  

Single System Image: No matter which server a client connects to, zookeeper guarantees that 

they see the same data.  

Reliability and Availability: Zookeeper is designed to work on multiple machines with the 

ability of a client to reconnect to another server should the original server serving the client go 

down.  

Timeliness: Updates and other operations in zookeeper are propagated to all concerned servers 

and clients in real time.  

Programmers take advantage of the capabilities of Zookeeper's API to implement some 

important algorithms such as Leader Election used to manage distributed systems. It is 

important that when a Leader goes down, a Follower rises to the position of a new Leader to 

carry on the processing of client requests. For each zookeeper cluster, there must be 2f+1 server 

to enable it to achieve failover; since zookeeper is fault-tolerant only if majority of servers are 

up and running (f is the number of servers whose failure the cluster can tolerate). One of the 

servers is made active during start-up and is said to be the Leader. All other servers are 

Followers. Nodes register to the Leader Election Service to enable them get notification when a 

server goes down, and as soon as this happens, a quorum is formed, and a new Leader is 

elected. It is important to get a Leader because any write request from clients can only be 

processed by the Leader, however, read requests can be processed by any of the zookeeper 

servers. The elected Leader waits for Followers to connect to it, it will then sync with them by 

sending any updates they are missing.  Zookeeper is highly fault tolerant. The failure of a client 

does not impact negatively on its performance. Such a client will always try to reconnect until it 

is successful. There are two possibilities involved when a Zookeeper server fails: First, if the 

failed server is the Leader in a Leader Election Service, then the rest of the servers must come 

together to elect a new leader. This is only possible if the working Zookeeper servers form a 

majority. In the second case, if the failed server is a Follower, the Leader will try to connect 

with it, if this fails; the Leader assumes that particular Follower is down, the Leader Election 

Service must then determine either the rest of the servers form a majority. If not, the entire 

Zookeeper service will go down. This implies that, the only time a Zookeeper coordinated 

cluster will go down aside unforeseen circumstances is when the rest of the working servers do 

not form a majority of the servers in the cluster. 

2.4. Related Work 

In his 2008 presentation, Francesco Salbaroli [8] proposed a Fault-Tolerant Hadoop JobTracker 

in which he advocates the addition of a library (JGroups) to the Hadoop source code to aid in 

making the JobTracker highly available. His proposal aimed at maintaining the current Master-

Slave implementation of Hadoop/MapReduce since it has a relatively small overhead and 

reduced coordination complexities. Though this implementation adds a little overhead 

(negligible due to the number of replicated JobTrackers), it can accommodate new features 

without modifying its current behaviour. The logical model of the replicated JobTracker is made 

up of a coordinating protocol that resides on the Distributed File System (DFS), and performs 

coordination between replicated JobTrackers and Slave machines. JGroups perform the 

discovery of members, health checking, implementation of election protocol, and 

communication between components. If a master fails, a Fault Tolerant Manager discovers its 

failure and triggers a new election accordingly. Devarajulu K. [4] proposed an implementation 

of Hadoop/MapReduce that will make the JobTracker highly available. His implementation was 

based on the Leader Election Framework suggested in Zookeeper. In the Zookeeper Leader 

Election framework, 2f + 1 zookeeper servers are started with only one of them acting as the 

Master and the rest Followers. This service can tolerate the failure of f servers since the 

remaining servers must form a majority. Oliviera et al [9] proposed the development of a 
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Markov based model for the analysis of the availability of a telecommunications management 

system. The model was used to define the availability of parts of the system, identifying 

hardware and software components responsible for reducing the availability of the system, and 

to define actions that can mitigate the low availability. Laprie [10] proposed a dependability 

model for software systems during their operational life. He used a Markov model for a single 

machine that considered the dependability of both software and hardware on the system. His 

model considered the system as being partitioned into a software part and a hardware part, each 

of which can fail and can be repaired. Dai et al [11] proposed a model for determining the 

reliability and availability of centralized heterogeneous systems. They presented a model that 

implements a system availability function for a virtual machine along with an application 

example to illustrate their method and to demonstrate its feasibility. Lai et al [12] also proposed 

a Markov model for determining the availability of a k Fault Tolerance (f+1) homogeneously 

distributed software/hardware system (HDSHS). They defined HDSHS as a distributed system 

in which all hosts are of the same type; such as machines from the same vendor. Their model of 

N homogeneous host was a cluster of one necessary host, and N-1 redundant hosts, meaning 

that if all of the N hosts fail the system fails; otherwise the system is functional even if only one 

host is active.  

Cisco and Greenplum [13] in an effort to improve the usability and availability of the 

JobTracker have introduced a user interface and a remote mirroring that will keep a 

synchronized copy of cluster data at a remote site. Their MapReduce architecture provides 

JobTracker High Availability and Distributed NameNode High Availability to prevent job loss, 

“frustrating restarts, and painful failover incidents”. Snapshots are kept to protect data from 

application errors.  

In this paper, the approach of [11] is adopted, however, the model is not a cluster of one 

necessary host, but one which can tolerate the failure of f servers out of 2f+1 servers. This will 

enable the model to cater for byzantine [14] faults. In addition, Hadoop/MapReduce and 

Zookeeper are distributed softwares that have the properties of HDSHS if they are implemented 

on hardware from the same vendor. Results obtained can then be compared with those obtained 

in [11] to help determine the effect of Zookeeper on the availability of the cluster. 

3. JOBTRACKER AVAILABILITY MODEL 

The availability of a system component is the probability that the component is still operating at 

time t, given that it was operating at time zero. In this section, a mathematical model that is 

based on Markov State transitions is proposed and used to analyse the availability of the 

JobTracker in a Hadoop/MapReduce cluster. 

3.1. Model Assumptions 

1. Each machine on the cluster runs a copy of the same software. This software has a failure rate 

(λs (t)) determined by the Jelinski-Moranda model [15]. 

2. All failures in the cluster (either hardware or software) are mutually independent. If more 

than one failure occurs at the same time, they can either be considered as a single failure or 

independent failures with a time interval of zero. 

3. All the machines in the cluster have hardware failure rate (λh) resulting from an exponential 

distribution. 

4. A fault is corrected instantaneously without introducing new faults into the 

software/hardware. The correction time follows an exponential distribution with parameter µ s 

for software failure and µh for hardware failure. 

5. Both the software and hardware have only two states; working state and faulty state. 
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The Markov model shown in Figure 3, describes a Homogenous Distributed Hardware/Software 

System with N hosts [11]. Let i, j be a state where i hosts suffer hardware failure and j hosts 

suffer software failure. The corresponding Kolmogrov differential equation is given for i, j≠0, 

N; i + j ≤ N. 

 

Figure 3. N-hosts HDSHS general model [11] 

                  (1) 

where 

  
The initial conditions are P0,0(0) = 1; and Pi,j(0) = 0 for i, j ≠ 0. Boundary conditions are at the 

following points: 

   (2) 

  (3) 

for i=1,2,3,…,N-1. 

  (4) 

for i=1,2,3,…,N-1. 

      (5) 

      (6) 

The parameter λs(t) is the software failure rate. It is determined by any appropriate software 

reliability model and is extensively covered in [11]. 

3.2. Markov Model for a Hadoop/MapReduce Cluster with 3 Zookeeper Servers 

Applying equations (1) to (6) on the model in Figure 4, the following Kolmogrov differential 

equations (7) to (16) can be obtained: 
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Figure 4. Markov model for N = 3 Servers 

     (7) 

  (8) 

  (9) 

       (10) 

  (11) 

   (12) 

     (13) 

  (14) 

     (15) 

       (16) 

The system of these ten Kolmogrov differential equations (from equation (7) to (16)) can be 

solved numerically with the initial conditions P0 (0) =1, Pi (0) = 0, i = 1, 2, 3… 5. This initial 

condition means that, at state 0, all hardware and software are in good working condition. Since 

states 0, 1, and 4 are the only working states for this model, we can determine the availability 

(A(t)) by solving the system of Kolmogrov differential equations using the given initial 

conditions. 

       (17) 

3.3. Discussion of Results 

Kolmogrov differential equations were generated for N=2, N=3, N=4 and N=5. These equations 

were solved numerically and the results depicted in the following plots. 
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Figure 5. Availability of Zookeeper coordinated Cluster versus that of f+1 HDSHS Cluster 

In Figure 5, the availability of both clusters is at its highest point immediately the cluster is 

started. With little time after start-up, the availability falls to the lowest point. This behaviour 

can be attributed to the fact that when the cluster is launched for the first time, an appreciable 

number of faults are detected due to say, initial start-up problems, and problems of coordination 

between Hadoop/MapReduce and Zookeeper, among others. At some point in time (t = 50) the 

availability of the cluster starts rising. This is because detected faults are fixed gradually until a 

point (say t > 600) when the cluster becomes bug free, causing the cluster availability to 

approach a certain value less than one. From these observations, it is strongly advised that the 

cluster must not be used to solve critical tasks before the time that it reaches its lowest 

availability mark. This period should be earmarked as a testing period for the cluster, possibly to 

help identify the number of remaining faults in the cluster. 

The Zookeeper Leader Election Service requirement that only majority servers may form a 

quorum (2f + 1) has a negative impact on the availability of the cluster. For instance, for N=3, if 

two Zookeeper servers go down, the system becomes unavailable since the one remaining server 

does not form a majority out of the 3 servers. However, in (f+1) HDSHS systems [11], the 

remaining one server may continue functioning without any problem. For (f+1) HDSHS 

systems, the equivalent for equation (17) for N = 3 is: 

 
with a resulting availability graph shown in Figure 5b. From Figure 5, we notice that the 

availability for f+1 HDSHS system is higher than that of a Zookeeper coordinated 

Hadoop/MapReduce cluster (Figure 5a) for crash failures. However, for byzantine faults [14], 

the 2f+1 property of Zookeeper makes a Hadoop/MapReduce cluster highly available. 
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Figure 6. Effect of Initial Faults and Hardware Failure rate on Availability 

For initial faults (N0) greater than 20 (refer to Figure 6a), the availability falls below 10% at the 

early stages. It rises gradually, until it reaches the maximum availability mark for the cluster. It 

is only natural that, a system with many faults is not expected to be available until those faults 

are corrected. For lower initial faults, the availability rises quickly as it approaches maximum. A 

possible solution to this problem might be that, Zookeeper clusters should be started with a few 

number of servers, and the number increased gradually as we become more conversant with the 

type of faults that can occur due to cluster installation and management. On the other hand, each 

server in the cluster is assumed to originate from the same vendor and contribute λh as the 

hardware failure rate for the cluster. As the hardware failure rate increases, the resulting 

availability falls (Figure 6b). We can apply this in the selection of machines for the cluster, i.e., 

if the failure rate of machines of a particular vendor is high, they are not good choice as servers 

for this implementation, since for a λh = 0, the availability approaches 100%. This is 

understandable since software uses hardware as a platform to run; i.e. the failure of the 

hardware may result in failure of the software running on the failed hardware. 

Assuming we have maintenance personnel on stand-by to correct any hardware or software 

faults in the cluster, then the effects of the intensity of hardware and software fault correction on  

 

Figure 7. Effect of Software and Hardware repair rates on Availability 
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availability are depicted in Figures 7a and Figures 7b respectively . If the hardware faults in the 

cluster are left uncorrected, the availability decreases rapidly until it reaches zero; this is true for 

both software and hardware faults. However, as we increase the rate of maintenance of both 

hardware and software faults, the availability increases in response. For hardware faults, it will 

reach a time that the change in the rate of repair will not have much significant effect on 

availability since most of the hardware faults might have been removed due to regular and 

consistent maintenance. It should also be noted that, the effect of increasing the hardware repair 

rate is very significant to the behaviour of the availability curve. This can be attributed to the 

fact that, a highly available hardware is the first step for obtaining better functioning available 

software. Therefore, much of the maintenance effort must be on hardware components in the 

cluster. Preventive maintenance can be very useful in this sense in order to avoid unnecessary 

downtimes. 

Figure 8 depicts the change in availability as the number of Zookeeper servers in the cluster is 

varied. For different values of N, the availability initially falls until it approaches t = 50 where it 

starts rising. For N = 2, the cluster achieves the least availability value since none of the servers 

is allowed to fail due to the 2f+1 property of Zookeeper. Naturally, one would expect that as the 

number of Zookeeper servers increase, the availability of the cluster will increase. However, this 

is not the case, since N = 3 has the highest availability compared to N = 4, and N = 5. This may 

be attributed to the fact that, with the Zookeeper service requirement of 2f + 1; out of 5 servers, 

2 are allowed to fail, the remaining 3 operate as if they are a single f+1 HDSHS server, since 

none of them is allowed to fail in order to keep the cluster going.  

 

Figure 8. Effect of the Number of Servers on Availability 

The 3 remaining servers have no redundancy and operate as one, hence their contribution to 

Availability is equivalent to that of one f+1 HDSHS server, but their contribution to both 

hardware and software failure rates is thrice that of a single server. This phenomenon decreases 

the availability of the cluster. It is therefore advisable from this model that only 3 Zookeeper 

servers be used when we require high availability for a Hadoop/MapReduce cluster. There is 

also the added advantage of reducing cost. 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, a model to determine the availability of a Zookeeper coordinated 

Hadoop/MapReduce cluster was presented. Through this model, it was observed that, the 

availability of a Zookeeper coordinated Hadoop/MapReduce cluster is lower than that of f+1 

HDSHS cluster for crash failures but higher for byzantine faults due to its 2f+1 property. 
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Hardware faults were observed to be critical to cluster availability for which reason they must 

be prioritised and fixed at the early stages of cluster life. Hardware failure rate’s contribution to 

availability is significant, hence the suggestion that it be used as a criteria for purchasing new 

hardware. Finally, the model established that for a Zookeeper coordinated Hadoop/MapReduce 

cluster, the optimum number of servers should be 3.  
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