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ABSTRACT: In the three decades since Marr put forward his computa-
tional theory of hippocampal coding, many computational models have
been built on the same key principles proposed by Marr: sparse represen-
tations, rapid Hebbian storage, associative recall and consolidation. Most
of these models have focused on either the CA3 or CA1 fields, using ‘‘off-
the-shelf’’ learning algorithms such as competitive learning or Hebbian
pattern association. Here, we propose a novel coding principle that is
common to all hippocampal regions, and from this one principal, we
derive learning rules for each of the major pathways within the hippocam-
pus. The learning rules turn out to have much in common with several
models of CA3 and CA1 in the literature, and provide a unifying frame-
work in which to view these models. Simulations of the complete circuit
confirm that both recognition memory and recall are superior relative to
a hippocampally lesioned model, consistent with human data. Further, we
propose a functional role for neurogenesis in the dentate gyrus (DG),
namely, to create distinct memory traces for highly similar items. Our
simulation results support our prediction that memory capacity increases
with the number of dentate granule cells, while neuronal turnover with a
fixed dentate layer size improves recall, by minimizing interference
between highly similar items. VVC 2005 Wiley-Liss, Inc.
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INTRODUCTION

The hippocampus has been called the ‘‘darling of neuroscientists’’
(Churchland and Sejnowski, 1994) because of its key role in memory,
coupled with its unique anatomical and electrophysiological characteris-
tics. Individuals suffering damage to the hippocampal complex (HPC)
and surrounding medial temporal lobe structures have severe anterograde
and retrograde amnesia for episodic events, although other forms of
learning and memory—semantic, perceptual, procedural, and simple
forms of conditioning—are spared (for a review, see e.g., Moscovitch,
1982). The highly specialized coding capabilities of this region were
revealed most strikingly by the discovery of hippocampal place cells
(O’Keefe and Dostrovsky, 1971) and the subsequent discovery of hippo-
campal long-term potentiation (LTP)—evidence for rapidly induced and
long-lasting plasticity in this region (Bliss and Lomo, 1973).

In 1971, Marr put forward a highly influential theory
of hippocampal coding (Marr, 1971), redescribed in a
very cogent review paper by Willshaw and Buckingham
(1990). Central to Marr’s theory were the notions of a
rapid, temporary memory store mediated by sparse acti-
vations and Hebbian learning, an associative retrieval
system mediated by recurrent connections, as well as a
gradual consolidation process by which new memories
would be transferred into a long-term neocortical store.
In the decades since the publication of Marr’s computa-
tional theory, many researchers have built on these ideas
and have simulated memory formation and retrieval in
Marr-like models of the hippocampus. Although several
recent models have simulated the complete hippocam-
pal circuit (see Discussion), for the most part, modelers
have focused on either the CA3 or CA1 fields, using
variants of Hebbian learning, for example, competitive
learning in the dentate gyrus (DG) and CA3 (Rolls,
1989; McClelland et al., 1995; Hasselmo et al., 1996;
McClelland and Goddard, 1996; O’Reilly and Rudy,
2001), Hebbian auto-associative learning (Marr, 1971;
McNaughton and Morris, 1987; Rolls, 1989; Treves
and Rolls, 1992; Kali and Dayan, 2000b; O’Reilly and
Rudy, 2001) or temporal associative learning (Levy,
1996; Gerstner and Abbott, 1997; Wallenstein and
Hasselmo, 1997; August and Levy, 1999; Stringer et al.,
2002) in the CA3 recurrent collaterals, and Hebbian
heteroassociative learning between entorhinal cortex
(EC)-driven CA1 activity and CA3 input (Hasselmo
and Schnell, 1994; Hasselmo et al., 1996) or between
EC-driven and CA3-driven CA1 activity at successive
points in time (Levy et al., 1990). In this paper, we pro-
pose a principled way of deriving learning equations for
all pathways within the hippocampal circuit, by assum-
ing that all regions in the hippocampus are optimizing a
common objective function. When combined with
local neuroanatomical and physiological constraints,
our learning principle leads to surprisingly simple and
biologically feasible learning rules (Becker et al., 1999).

Of fundamental importance for computational theo-
ries of hippocampal coding is the striking finding of
neurogenesis in the adult hippocampus. Although there
is now a large literature on neurogenesis in the DG, and
it has been shown to be important for at least one form
of hippocampal-dependent learning (Shors et al.,
2001), surprisingly few attempts have been made to rec-
oncile this phenomenon with theories of hippocampal
memory formation. Based on evidence that neurogene-
sis peaks in early adulthood and declines throughout
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life, Kempermann (2002) has suggested that the gradual addition
of new neurons into the existing network of the DG could allow
the hippocampus to deal with novelty and the concomitant evo-
lution of cortical representations. Nottebohm (2002) suggests
that the newly born neurons may be recruited preferentially for
storing new memories, thereby protecting old memories from
interference. Consistent with this hypothesis, Wiskott, Rasch,
and Kempermann (2005) demonstrated in a simple neural net-
work model that the addition of highly plastic new neurons does
effectively prevent new learning from interfering catastrophically
with older memories. Conversely, Feng et al. (2001) proposed
that neurogenesis is important for clearing out older memories
once they are consolidated, and several modelers have demon-
strated in abstract neural network models that neuronal turnover
improves acquisition by helping to discard older memories
(Chambers et al., 2004; Deisseroth et al., 2004). Here, we sug-
gest a somewhat different role for new neurons in the DG,
namely, in the generation of novel codes for highly similar events.
For example, if I drive to work along the same route and park my
car in the same parking lot every day, how am I able to recall
where I parked today as distinct from the numerous other occa-
sions in which I parked my car? Similarly, we often recollect vivid
episodes in memory, and can remember having recollected an
event, as distinct from one’s memory of the event itself. Here, it
is proposed that gradual changes in the internal code of the den-
tate layer could facilitate the formation of distinct representations
for these highly similar episodes.

The above view of neuronal turnover in the DG could also
explain why spaced learning is more effective than massed learn-
ing for hippocampally dependent tasks. For example, retention
in the Morris water maze is superior with spaced learning com-
pared with massed learning, but only on long-term rather than
immediate retention tasks (Commins et al., 2003) and in adult
but not adolescent rats (Spreng et al., 2002). The standard
explanation of the spaced learning effect is that it permits time
for consolidation into long-term storage between learning ses-
sions; this would apply to both hippocampally dependent and
nonhippocampally dependent learning. We suggest that in addi-
tion to this, for hippocampally dependent tasks, spaced learning
trials could permit time to develop representations in the DG
with greater variability, resulting in multiple overlapping memory
traces of an event, and facilitating the recall of details of the event
via multiple routes. This view is consistent with the multiple
trace theory of Nadel, Moscovitch and colleagues (Nadel et al.,
2000; Rosenbaum et al., 2001). We would also predict that the
benefit of spaced learning increases with age, as neurogenesis
declines. Having a fully implemented model of the complete hip-
pocampal circuit allows us to test the feasibility of this hypothe-
sis, and more generally, to explore basic questions about the con-
sequences of neurogenesis for memory.

A NEW MODEL OF HIPPOCAMPAL LEARNING
AND NEUROGENESIS

In this section, we propose a novel model of hippocampal
coding. Unlike most previous approaches that have combined a

variety of ‘‘off-the-shelf ’’ learning principles for different path-
ways, our approach is to first propose a novel coding principle
that is common to all hippocampal regions, and from this one
principle, derive learning rules. By incorporating the key ana-
tomical features of the hippocampus as architectural con-
straints, and the sparse activation levels and high degree of plas-
ticity as processing constraints, we derive learning rules for each
of the major pathways within the hippocampus. First, we
briefly outline our proposed principle for learning in the hip-
pocampus. We then review some of the important anatomical
and electrophysiological data that we draw on to constrain con-
nectivity and coding in the model. In the remainder of this sec-
tion, we then describe some of the more general details of the
model simulated here, namely, the architecture and activation
function, and how neurogenesis was simulated. In the next sec-
tion, we describe a series of simulations of the model’s pattern
recognition and recall capabilities.

The Learning Principle

The key contribution of the work described here is to pro-
pose a novel principle for learning in the hippocampus. We
postulate that every region in the hippocampus adapts its syn-
aptic connections according to the same general learning princi-
ple. Specifically, we propose that each hippocampal layer should
form a neural representation that could be transformed in a
simple manner—i.e., linearly—to reconstruct the original acti-
vation pattern in the EC. With the addition of biologically
plausible processing constraints regarding connectivity, sparse
activations, and two modes of neuronal dynamics during
encoding versus retrieval, this results in very simple Hebbian
learning rules. The key assumptions are as follows (see Appen-
dix for details):

1. During encoding, dentate granule cells are active whereas
during retrieval they are relatively silent.
2. During encoding, activation of CA3 pyramidals is domi-
nated by the very strong mossy fiber inputs from dentate gran-
ule cells.
3. During retrieval, activation of CA3 pyramidals is driven by
direct perforant path inputs from the EC combined with time-
delayed input from CA3 via recurrent collaterals.
4. During encoding, activation of CA1 pyramidals is domi-
nated by direct perforant path inputs from the EC.
5. During retrieval, CA1 activations are driven by a combina-
tion of perforant path inputs from the EC and Shaffer collat-
eral inputs from CA3.

By combining our learning principle with the above con-
straints, we obtain Hebbian learning rules for the direct (mono-
synaptic) pathways from the EC to each hippocampal region, a
temporal Hebbian associative learning rule for the CA3 recur-
rent collateral connections, and interestingly, a form of hetero-
associative learning postulated by Hasselmo et al. (1996) for
the Shaffer collaterals (the projection from CA3 to CA1).

Why is it that the constant turnover of neurons in the DG,
and hence the constant rewiring of the hippocampal memory
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circuit, does not interfere with the retrieval of old memories?
The answer to this question comes naturally from our assump-
tions about neuronal dynamics during encoding vs. retrieval.
New neurons are added only to the DG, and the DG drives
activation in the hippocampal circuit only during encoding,
not during retrieval. Thus, the new neurons contribute to the
formation of distinctive codes for novel events, but not to the
associative retrieval of older memories.

Anatomical Background

The unique multilayered circuitry of the hippocampus, sum-
marized in Figure 1, has intrigued computational neuroscient-
ists interested in unraveling how the hippocampus achieves its
unique encoding capabilities. The hippocampus communicates
with the rest of the brain via the para-hippocampal region
(PHR), a major convergence zone reciprocally connected with
widespread cortical and subcortical areas (Witter et al., 1989;
Amaral et al., 1990). Within the PHR, the EC is the major
input and output region for the hippocampus.1 In the hippo-
campus proper, activity passes in turn through the DG and
CA3 and CA1 fields—the so-called ‘‘trisynaptic circuit’’—and
back to the EC. The principal cells of the DG greatly outnum-
ber those of the EC (by a factor of five in the rat (Amaral
et al., 1990)) while having much lower activity levels (below
0.5 Hz (Barnes et al., 1990; Jung and McNaughton, 1993)).
Thus, mapping from the EC to the DG results in a high-
dimensional, extremely sparse neural code, likely due to the
unique network of principal neurons and inhibitory neurons in
the DG and adjacent hilar region (Acsady et al., 2000). The
DG in turn projects to the CA3 field via mossy fiber synapses;
these synapses are few in number, but are found close to the
cell body and are among the largest in the brain, and the acti-
vation of only a few Mossy fiber synapses is likely sufficient to
activate a CA3 pyramidal cell (Brown and Johnston, 1983). It
has therefore been suggested that these terminals act as ‘‘deto-
nator synapses,’’ so that during encoding, a sparse pattern of
activation in the DG mandatorily causes a postsynaptic CA3
cell to fire (McNaughton and Morris, 1987; Treves and Rolls,
1992). The CA3 pyramidal cells send a dense and widespread
projection of recurrent collaterals across the CA3 field, as well
as projecting via the Shaffer collaterals on to the CA1 field. In
addition to the trisynaptic circuit through the hippocampus,
the EC projects directly via the perforant path to both the
CA3 and CA1 fields. Finally, only the CA1 region projects
back onto the PHR.

Role of Trisynaptic Circuit in Learning vs. Recall

As in many previous hippocampal models, we have incorpo-
rated the key assumption that the hippocampus operates in two
distinctly different modes during learning and retrieval. Several
lines of evidence support the view that the trisynaptic circuit

plays an active role during encoding, whereas the perforant
path connections from the EC to the CA3 and CA1, bypassing
the DG, predominate during retrieval. For example, relatively
high perforant path stimulating frequencies (5–10 Hz) are
required to produce polysynaptic activation of the CA3 and
CA1 regions via the DG (Yeckel and Berger, 1990) and are
optimal for LTP induction in the DG (Greenstein et al.,
1988), whereas low stimulating frequencies (0.2 Hz) are suffi-
cient to excite CA3 and CA1 but not DG cells (Yeckel and
Berger, 1990). Correspondingly, the hippocampus spontane-
ously exhibits oscillatory theta-frequency firing, about 6–8 Hz,
when an animal is engaged in exploratory-attentive behaviors
(see e.g., Lynch et al., 1991; Buzsaki, 1998). Additionally, selec-
tive lesions of DG granule cells by micro-injections of the
neuro-toxin colchicine disrupt spatial learning, but do not abol-
ish CA3 and CA1 place specificity (McNaughton et al., 1989),
and reversible inactivation of hippocampal mossy fiber synapses
disrupts spatial memory formation but not recall in the Morris
water maze (Lasalle et al., 2000). Thus, the DG, via its mossy
fiber projections to the CA3, may mediate the creation of new,
distinctive codes, but may not be necessary for the subsequent
reactivation of these codes.

Hasselmo has suggested a mechanism by which the HPC
could switch in and out of an acquisition/encoding mode,
through the action of the neuromodulator acetylcholine (ACh)
(see e.g., Hasselmo, 1999). Microdialysis studies in the hippo-
campus reveal high levels of acetylchoine during active waking
states and in novel environments associated with theta activity,
whereas low levels of ACh are observed during quiet behaviors
in the awake state and during slow wave sleep (for a review, see

FIGURE 1. The major fields and pathways within the hippo-
campus included in our model. Additionally, there are inhibitory
interneurons that are thought to regulate the overall activity level.
Rather than model these explicitly, we normalize the activation lev-
els within each layer by using a k-winner-take-all activation func-
tion (see text).

1Though other PHR areas also communicate with the hippo-
campus, most notably the subiculum, they will not be consid-
ered further here.
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Hasselmo and McGaughy, 2004). As in Hasselmo’s model, we
further assume that the CA3 recurrent collaterals and CA3-to-
CA1 Shaffer collaterals are important for pattern completion
and therefore dominate neuronal dynamics during recall, but
not during encoding. Thus, during encoding of novel informa-
tion, these associative pathways should contribute only weakly
to neuronal activations, whereas perforant path and mossy fiber
inputs dominate in driving CA3 and CA1 activations. Consis-
tent with this view, ACh has been found to suppress neuronal
transmission along the CA3 recurrent collaterals (Hasselmo
et al., 1995) and Shaffer collaterals (see e.g., Herreras et al.,
1988; Hasselmo and Schnell, 1994).

ROLE OF CA3 RECURRENT COLLATERALS
IN PATTERN COMPLETION VS.

SEQUENCE RECALL

According to Marr’s and many other hippocampal theories, a
primary function of the hippocampus is pattern completion.
That is, once a memory has been stored, it should later be
recalled in detail when given an appropriate cue. Recent empir-
ical results with knockout mice having selective loss of NMDA
receptors in CA3 are consistent with the pattern completion
function of the hippocampal circuit; these mice show normal
acquisition and normal place fields in the Morris water maze
task, but a loss of spatial selectivity in both areas CA3 and
CA1 after visual cue removal (Nakazawa et al., 2002). The
CA3 recurrent collaterals in Marr’s view were critical to the
hippocampal pattern completion capabilities. Following Marr,
many models have assumed that the CA3 recurrent collaterals
form an attractor network that auto-associates elements of a
pattern together (McNaughton and Morris, 1987; Rolls, 1989;
Treves and Rolls, 1992; Kali and Dayan, 2000b; O’Reilly and
Rudy, 2001). However, we find that the feed-forward pathways
between the CA3 and CA1 regions already afford the model
with substantial pattern completion capabilities. We therefore
favor a more recently proposed role for the CA3 recurrent col-
laterals, namely, in learning temporal associations and thus
forming a continuous attractor network linking spatiotemporal
representations (Levy, 1996; Gerstner and Abbott, 1997; Wal-
lenstein and Hasselmo, 1997; August and Levy, 1999; Stringer
et al., 2002).

The Learning Principle

An implicit assumption in most, if not all, hippocampal
models is that the computational goal of the hippocampus is
simply to encode or memorize, and subsequently perform cued
recall. In practice, however, most hippocampal modeling efforts
have taken a bottom-up approach in meeting this goal, by con-
structing models out of learning rules selected a priori (typically
of the Hebbian form) combined with architectural and process-
ing constraints. The approach taken here is to start with the
explicit goal of pattern encoding by proposing a quantitative
objective function for the learning. By maximizing this objec-
tive function, subject to biological constraints on cell numbers,

activation levels, and connectivity in each region, we can derive
learning equations in a principled manner for all pathways
within the hippocampal circuit.

One way to model pattern encoding in a multilayer circuit is
using the auto-encoder architecture (shown in Fig. 2a). Gluck
and Meyers (1993) used the auto-encoder as the basis of their
hippocampal model, as a means of generating compressed rep-
resentations, though it was not intended to be taken literally as
a model of hippocampal neural circuitry. If we did want to use
the auto-encoder as a model neural circuit, we would have an
architecture with three hidden layers as shown in Figure 2a.
This model could be trained using the back-propagation algo-
rithm (Rumelhart et al., 1986) to generate output patterns
EC (out) identical to the input patterns EC (in), by minimizing
the mean squared error,

MSE ¼
X
p

jjEC ðoutÞðpÞ � EC ðinÞðpÞjj2 ð1Þ

with respect to the weights in the network, where kVk is the
length (Euclidean norm) of a vector V and p indexes over all
training patterns p. Unfortunately, the backward-going connec-
tions required to pass derivative terms backwards through the
network according to this algorithm are not consistent with
hippocampal anatomy. Further, back-propagation learning is
very slow, typically requiring thousands of learning iterations
through the training patterns—which is not characteristic of
animal learning in hippocampally dependent tasks.

To overcome these problems with the auto-encoder model,
we propose a simpler, but related model of learning. The key
idea is that each layer within the hippocampal circuit should
try to encode its perforant path input in a greedy fashion—
without regard to what higher layers are doing—by building
on the encoding accomplished by previous layers. For example,
the CA3 region should find an optimal encoding of the perfo-
rant path activations EC (in), given its joint inputs from the per-
forant path, the DG, and the CA3 recurrent collaterals. Like-

FIGURE 2. (a) An auto-encoder model with entorhinal input
and output layers, and hidden layers for each of the hippocampal
regions. (b) Part of the circuit for our hippocampal model, show-
ing the notation used here for weights and activations.
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wise, the CA1 region should find an optimal encoding of
EC (in) given its joint inputs from the perforant path and the
CA3 region.

To make this idea more precise, we propose the following
objective for the learning: each hippocampal layer should form
a neural representation that could be transformed in a simple
manner—i.e., linearly—to reconstruct the original activation
pattern in the EC. It is important to note, however, that the
model itself is highly nonlinear because of the sparse coding in
each region and the multiple stages of processing in the circuit
as a whole; the notion of linearity comes in only when we con-
sider the process of reconstructing the EC activation pattern
from any one region’s activities. We need an objective function
that measures the quality of each region’s representation with
respect to how well it reconstructs the EC activations. However,
the computation must not require an explicit reconstruction via
a set of projection weights, because only the CA1 region sends
direct afferent connections to the EC. We can achieve this by
assuming that the perforant path connection weights could be
used in reverse to reconstruct the EC input pattern. Taking the
CA3 layer as an example (see Fig. 2b), we have perforant path
input from the EC (in) that is associated with a matrix of
weights W (EC,CA3). The CA3 region also receives input connec-
tions from the DG with associated weights W (DG,CA3) as well
as recurrent collateral input from within the CA3 region with
connection weights W (CA3,CA3). We will use the transpose of
the perforant path weights, (W (EC,CA3))T, to calculate the CA3
region’s reconstruction of the entorhinal input vector:

EC ðreconstructedÞ ¼ W ðEC;CA3ÞTCA3 ð2Þ

The goal of the learning is to make this reconstruction as accu-
rate as possible. To quantify this goal, the objective function to
be maximized here is the cosine angle between the original and
reconstructed activations:

Perf ðCA3Þ ¼ cosðEC ðinÞ;W ðEC;CA3ÞTCA3Þ

¼ ðEC ðinÞÞT ðW ðEC;CA3ÞTCA3Þ
jjEC ðinÞjj jjW ðEC;CA3ÞTCA3jj ð3Þ

When the original and reconstructed pattern vectors are identi-
cal, the cosine angle between the two vectors takes on a maxi-
mal value of 1. By rearranging the numerator, and appropri-
ately constraining the activation levels and the weights (see
Appendix for details) so that the denominator becomes a con-
stant, we can equivalently maximize the following simpler
expression:

Perf ðCA3Þ ¼ ðW ðEC;CA3ÞEC ðinÞÞTCA3 ð4Þ

This says that the incoming weighted input from the perforant
path should be as similar as possible to the activation in the
CA3 layer. Note that the CA3 activation, in turn, is a function
of both perforant path and DG input as well as CA3 recurrent
input (see Fig. 2b). We assume that the weights from the

DG—representing the mossy fiber synapses—are very sparse,
but 100 times larger in magnitude than other weights in the
circuit so that the dentate input dominates in the calculation of
the CA3 activations during learning. In the present version of
the model, we further assume that the mossy fiber pathway is
nonplastic. In fact, there is substantial evidence for various
forms of LTP in hippocampal mossy fibers, although the func-
tional significance of mossy fiber plasticity for hippocampal-
dependent memory has been questioned (Hensbroek et al.,
2003).

The objective functions for the dentate and CA1 regions
have exactly the same form as Eq. (4), using the DG and CA1
activations and perforant path connection weights, respectively.
Thus, we have a computational objective for the learning in
each region: to maximize the overlap between the perforant
path input and that region’s reconstruction of the input. This
objective function can be maximized with respect to the con-
nection weights on each set of input connections for a given
layer, to derive a set of learning equations.

The Learning Equations

We derived learning equations for updating the weights for
each pathway in the circuit shown in Figure 1 by differentiat-
ing our objective function with respect to the weights in each
pathway. For the weights on the direct projections from the
EC, W (EC,DG), W (EC,CA3), and W (EC,CA1), under appropriate
assumptions (see Appendix), the final learning equations have a
‘‘Hebbian’’ form—a product of presynaptic and postsynaptic
activations. For example, the change in weight for the EC-to-
CA3 connections is:

�W ðEC;CA3Þ
jk ¼ lrate ECk CA3j ð5Þ

where lrate is a learning rate constant (0.5 in the simulations
reported here), ECk is the activation of the kth EC input unit,
and CA3j is the activation of the jth CA3 unit. The weight
updates for W (EC,DG), W (EC,CA1) have exactly the same Heb-
bian form. The assumptions we make, in order for the learning
equations to simplify to a Hebbian form, are as follows: Dur-
ing learning, the influence of the DG region dominates over
that of the EC input in driving the CA3 region’s activations,
while the EC region dominates over that of the CA3 in driving
the CA1 activations.

For the weights on indirect projections, (W (CA3,CA1) and
W (CA3,CA3)), the learning rule takes a slightly different form.
Rather than being a product of presynaptic and postsynaptic
activations, the postsynaptic activation is replaced by the net
weighted input from the EC. Thus, for the indirect pathways,
the EC activation pattern acts as an implicit teaching signal.
Training the CA3-to-CA1 connections in this manner is rather
similar to the heteroassociative neural network model for this
pathway proposed by Hasselmo et al. (1996). In a heteroasso-
ciator, one set of inputs acts as an explicit teaching signal by
clamping the output neurons’ activations to a target pattern,
while the weights on the second set of input connections
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undergo Hebbian associative learning. However, under appro-
priate assumptions (namely, that during learning, the DG pro-
vides the dominant input to the CA3 while the EC provides
the dominant input to the CA1; see Appendix) we can further
simplify the learning equations for the indirect pathways to
obtain pure Hebbian rules for the indirect connections, which
have exactly the same form as for the perforant path weights.
Hasselmo and Schnell (1994) have suggested that ACh selec-
tively suppresses synaptic transmission in the Shaffer collaterals
(denoted W (CA3,CA1) in our model) during learning, which
would satisfy the assumption that the perforant path provides
the dominant input to the CA1 region during learning.

For the CA3 recurrent collaterals, W (CA3,CA3), given that the
input to the hippocampus is a time-varying sequence, the CA3
recurrent connections learn to associate together CA3 activation
patterns at successive points in time, t � 1 and t:

�W ðCA3;CA3Þ
jk ¼ lrate CA3kðt � 1Þ CA3jðtÞ ð6Þ

The CA3 recurrent collaterals thereby associate together pat-
terns experienced within the same temporal context. In the
simulations reported here, when the input is a set of unrelated
items or episodes rather than a temporally structured sequence,
we assume that activations in the hippocampus are reset to zero
at the beginning of each event to be encoded, so that there is
no temporal association made across the unrelated episodes by
the CA3 recurrent collaterals.

Model Architecture and Activations

The number of model neurons and activity levels in each
layer is given in Table 1 for all simulations reported here,
except where noted. The DG layer size varied between 25 and
1,000, while the number of active DG units was held fixed at
4. All layers with interconnecting weights (shown in Fig. 1)
were fully connected except in the DG ? CA3 path in which
each DG unit was connected randomly to three CA3 units
with fixed weights of 100 to simulate the sparse but very
powerful mossy fiber connections.

Sparse coding was achieved using a k-winner-take-all activa-
tion function (O’Reilly and McClelland, 1994), with k chosen
to produce progressively less sparse codes for each layer (see
Table I). First, each neuron computed its net input, by sum-
ming over all incoming connections, the incoming activations
multiplied by the weights. Next, the k units with the greatest
net inputs were activated, and the remaining units’ activities
were set to zero. Finally, the mean of each layer’s activity vector
was subtracted from each unit’s activation to compute its final
output. Using zero-mean activation vectors improves the
capacity in sparsely coded networks using Hebb-type learning
rules (Willshaw and Dayan, 1990). Note that one could
achieve sparse coding in a more biologically realistic neural cir-
cuit by approximating the k-winner-take-all activation, using a
set of inhibitory interneurons to regulate the level of excitation,
or by finding an appropriate threshold, for each region, that
resulted on average in k neurons being active at one time.

Neurogenesis

It is difficult to obtain consistent estimates from the experi-
mental literature as to the magnitude of neurogenesis because
of major methodological differences between studies. One such
factor is the dose of labeling agent used to mark dividing cells.
Recent data (Cameron and McKay, 2001) using a high dose of
BrdU (300 mg/kg), a nontoxic marker of dividing (S-phase)
cells in the adult rat DG, combined with a second S-phase
marker (3H-thymidine) suggest that about 9,000 new cells are
generated per day, with a survival rate of about 50% within 5–
12 days. Given that there are about a million granule cells in
the rat DG, this would amount to a daily turnover of about
0.45% of the granule cell population. Unpublished results from
Martin Wojtowicz at the University of Toronto (personal com-
munication) in 35-day-old rats (i.e., young adults) indicate that
of about 10,000 cells born every 24 h, 70% survive two weeks,
suggesting a daily turnover rate of nearly 1%, whereas in
2–3-month-old rats, only 20–30% of newborn cells survive.
Note, however, that the survival rates of newly born cells
observed in caged rats are likely an underestimate of what
would be observed in more natural settings, because many
environmental factors including associative learning (Gould
et al., 1999a,b), locomotion (van Praag et al., 1999), and envi-
ronmental enrichment (Kempermann et al., 1997) have been
shown to increase the survival rates.

In the simulations reported here, we have modeled the
effects of neurogenesis and/or cell death in the DG in two dif-
ferent ways. The first is to vary the number of dentate neurons,
and the second is to vary the rate of neuronal turnover while
keeping the number of dentate neurons fixed. In the general
discussion, we consider the conditions under which these two
processes might occur. In our simulations of neuronal turnover
in the DG, we have varied the neuronal turnover rate from 25
to 100% per day, which is clearly one or more orders of mag-
nitude too high. However, a more biologically realistic turnover
rate of 0.5–1% per day would not produce a detectable effect
given the scale of our model, with only 1,000 dentate cells in
total. Additionally, it is possible that this slow rate of turnover

TABLE 1.

Number of Neurons in EC and Hippocampal Regions in the Rata

and Corresponding Layer Sizes and Activity Levelsb in the

Hippocampal Model Simulations Described Here

Field

Rat data Hippocampal model

No. of cells No. of units % Active

CA1 420,000 400 3.0

CA3 330,000 300 3.0

DG 1,000,000 1,000 0.4

EC 200,000 200 10.0

aFrom Amaral et al., 1990.
bOn the basis of data on the rat hippocampus (Barnes et al., 1990; Jung and
McNaughton, 1993).
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would affect the stability of memories over a much longer time
scale of weeks or even months. This will be explored in future
work.

In the next section, we report the results of three simulations.
Simulation 1 evaluates the model’s recognition and cued recall for
sets of unrelated items. The model’s performance is compared
with that of a hippocampally lesioned model. Both models’ ROC
curves for recognition memory are also compared with human
data (Yonelinas et al., 2002). Simulation 2 evaluates the effect of
shrinking the size of the dentate region on recall of unrelated
items, paired associates, and related items. Simulation 3 evaluates
the effect of neuronal turnover on recall of unrelated items, paired
associates, and related items.

SIMULATION 1, MEMORY CAPACITY:
RECOGNITION AND RECALL

A fundamental question about hippocampal coding concerns
the unique circuitry of this brain structure: Why are there so
many regions? What do they each contribute to the fast, effi-
cient learning for which this structure is so well-known? Simu-
lation 1 begins to address these questions by comparing the
memory capacity of the complete hippocampal model with that
of a one-layer pattern associator, lacking the DG and CA3 and
CA1 regions—thereby simulating a total hippocampal lesion.
To study memory capacity, we varied the number of training
patterns to be remembered. We expected to observe a degrada-
tion in performance with increasing memory load. Two differ-
ent performance measures were used in this simulation: recog-
nition and cued recall. It was hypothesized that the internal
layers of the hippocampus, employing sparse intermediary
codes for the EC activation pattern, would increase the mem-
ory capacity of the model.

Methods

Weights in all layers of the model, except the mossy fiber
pathway, were initialized to random values between 0 and 0.5
and were constrained not to exceed 60.5 throughout learning.

The training patterns consisted of sets of unrelated items.
Each training pattern was created by generating a random 200-
element binary pattern, with each element set to 1 with proba-
bility 0.1 and to 0 with probability 0.9, resulting in 10% of
units being active. The pattern was then translated to have zero
mean. For evaluating recognition memory, we created a test set
of new patterns drawn from the same distribution as the train-
ing set, but that had not been used during training.

The learning phase was simulated as follows. Each training
item was presented to the EC input layer, activation was propa-
gated in a single forward pass through the hippocampal circuit,
and the weights were then updated as described in the previous
section. Three passes through the training patterns were made,
so that the model was trained on each of the patterns three
times. During the learning phase, activations in the hippocampal
circuit were computed as follows. First, the activations were cal-

culated for the dentate region based on the EC input. Next, acti-
vations were calculated for the CA3 region based on the com-
bined perforant path, CA3 recurrent input, and DG inputs.
However, because of the large magnitude of the DG-to-CA3
weights (the mossy fibers), the DG inputs dominated in the cal-
culation of the CA3 activations. Also, because we were simulat-
ing single item memory rather than memory for sequences,
between each pair of successive items, the states of the CA3 layer
units were initialized to be all zeros. Therefore, in this simula-
tion, the CA3 recurrent connections underwent no learning.
Finally, the CA1 layer activations were calculated based on the
combined input from the EC input layer and the CA3 region.

To simulate a hippocampally lesioned model, we created a
version of the model shown in Figure 1 containing only the
EC input and output layers, but lacking all the hippocampal
regions. The two layers were fully interconnected, and the
model was trained on each pattern by setting both the input
and output activations to the training pattern, and then updat-
ing each of the weights according to a Hebbian learning rule:

�Wij ¼ lrate EC ðinÞ
i EC ðinÞ

j ð7Þ

After this weights were clipped to lie within (�2, 2). The
choice of minimum and maximum weights was determined
empirically to give optimal memory performance. The lesioned
model was trained and tested on the same patterns as for the
intact model, using the same k-winner-take-all activation func-
tion at the EC output layer. Thus, this model can be described
as a feed-forward nonlinear Hebbian pattern associator with
one layer of adaptive weights.

To evaluate recognition memory, a test item was presented to
the EC input layer, activations were calculated throughout the
hippocampal circuit, and finally, the EC output layer’s activation
was compared with that of the input layer. Activation was propa-
gated in a single pass through the hippocampal circuit from the
EC input layer to the EC output layer as follows. First, the activa-
tions were calculated for the CA3 region via the perforant path
connections (but not via the DG pathway). The CA1 layer acti-
vations were then calculated based on the combined input from
the EC input layer and the CA3 region. Finally, the EC output
layer activations were calculated based on their input from the
CA1 region. As was done during the learning phase, between
each pair of items, the states of the CA3 layer units were initial-
ized to be all zeros. The CA3 recurrent connections, therefore,
had no effect on the processing of successive items in this simula-
tion. An item was considered to be recognized correctly if the
activation pattern generated at the EC output layer had at least
95% of the pattern elements correct.

To test the recall of each item, the network was cued with a
degraded version of each item with 50% of the active inputs
turned off, activations were computed in the same manner as ear-
lier, and the EC output layer was tested on its ability to complete
the item. An item was considered to be recalled correctly if the
completed pattern had at least 95% of its elements correct.

Recognition and recall were evaluated for the two models on
varying sized pattern sets, ranging from 20 to 500 items in
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increments of 20 patterns. For each training set size, 10 differ-
ent runs were simulated. On each run, the model started with
a different set of initial random weights and a different set of
training patterns.

ROC curves for recognition memory for the two models
were evaluated using four different training set sizes: 500,
1,000, 1,500, and 2,000 patterns, for one run each. ROC
curves were generated by applying a sliding criterion to the
reconstruction measure (described previously) for the EC layer,
and at each criterion level, computing the probability of hits
(correctly recognizing an old or previously learned item as old)
and false alarms (incorrectly recognizing a new item as old).

Results and Discussion

The average recognition memory performance of the full
hippocampal model and of the hippocampally lesioned model,
for varying numbers of training patterns, is shown in

Figure 3a. Both models perform at ceiling up to about 100–
200 patterns, after which point the performance declines with
increasing pattern set sizes. The lesioned model’s recognition
memory capacity is superior for the smaller training set sizes:
performance stays at ceiling up to about 200 patterns, whereas
the intact model’s capacity only stays at ceiling up to about
100 patterns. However, the recognition performance of the
intact model drops off much more gradually, so that it over-
takes that of the lesioned model for pattern sets larger than
300 patterns.

The recognition memory results shown in Figure 3a apply to
one arbitrary criterion for correct recognition. We could instead
have used a lower criterion and thereby artificially boosted per-
formance. A better measure of recognition memory would
compare hits and false alarms on old and new items, respec-
tively, across a range of criteria. The ROC curve does just this.
The superiority of the intact model’s recognition memory for
very large pattern sets can be seen even more clearly in the
ROC curves, shown in Figures 4b and 4c. On training sets of
2000 patterns, the intact model’s ability to discriminate old
from new patterns is still quite good, whereas the ROC curve
for the lesioned model is nearly flat. It is interesting to compare
the ROC curves of the intact and hippocampally lesioned
model with humans with intact and lesioned hippocampi.
Although it is often claimed that hippocampal amnesics have
intact recognition memory, a careful analysis using ROC curves
by Yonelinas et al. (2002) has shown that this is not the case;
these data are reproduced in Figure 4a. The ROC curves gener-
ated by our two models at the largest training set sizes are most
similar to the human data from Yonelinas et al. (2002) (shown
in Fig. 4a); the performance of our lesioned model is similar to
that of patients with large medial temporal lobe lesions
(denoted Hþ in Fig. 4a), while our full model performs similar
to controls.

In contrast to recognition memory, recall performance (Fig.
3b) differs markedly for the two models: the lesioned model’s
performance drops very sharply, as the training set size increases
beyond 100 patterns, whereas that of the full hippocampal
model declines very gradually beyond this point.

Note that the intact hippocampal model lacks direct connec-
tions from the EC input to the EC output layer. This may
explain the advantage the lesioned model has for smaller pat-
tern set sizes. We deliberately omitted direct within-EC connec-
tions to force the hippocampal model to make use of its inter-
nal layers and sparse coding to attain higher capacity because
we were interested here in investigating the unique contribu-
tions made by the hippocampus proper. However, the hippo-
campus does have connections from the deep layers of the EC
to the superficial layers, and so a more realistic model would
incorporate processed output from the hippocampal circuit as
part of its input.

In conclusion, the memory performance of our hippocampal
model fits the general patterns in the human data quite well.
The recognition memory capacity is extremely high, and is
reduced by hippocampal lesions to a degree comparable with
that seen in human data, while the recall performance is

FIGURE 3. Mean recall and recognition scores, averaged
across 10 networks (run from different random initial weights and
with different randomly generated training patterns), for the hip-
pocampally lesioned and intact model.
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severely impaired after hippocampal damage. In interpreting
the recall and recognition performance of the simulated mod-
els, it must be emphasized that the absolute numbers should
not be taken as literal predictions—it is the qualitative rather
than the quantitative pattern in these results that is of interest,
given the small scale of the network relative to the real hippo-
campal circuit.

SIMULATION 2: EFFECT OF DG SIZE ON
MEMORY CAPACITY

In Simulation 2, we investigated the contribution of the DG
to recall in the intact model. Models with 125, 250, 500, and
1,000 dentate layer neurons were compared on three different
pattern sets: (a) 100 unrelated items, (b) 10 paired associates,
and (c) 12 related items. For the paired associates, the role of
the CA3 recurrent collaterals was critical in associating each
pair of items across time. The cued recall test, in this case, con-
sisted of cuing the model with only the first item in each pair.
It was hypothesized that the size of the DG would have a
direct impact on the memory capacity of the model, for all
three pattern sets.

Methods

The model’s weights were initialized in the same manner as
in Simulation 1. In the full scale model with 1,000 dentate
units, as indicated in Table I, the activity level was 0.4%, and
thus, 4 of the 1,000 units were active. In all models with fewer
dentate units, the total number of active units in the dentate
region was held constant at 4 to permit a fair comparison
across the different sized models.

The training patterns in the three conditions consisted of (a)
100 unrelated items created in the same manner as in Simula-
tion 1, (b) 10 paired associates, where the items in each pair
were unrelated and created in the same manner as in simula-
tion 1, and (c) 12 related items. A set of related items was gen-
erated as follows. First, three category prototypes were ran-
domly created in the same manner as for the unrelated items.
Next, from each prototype, four training exemplars were gener-
ated by randomly swapping the state of each input element
with that of another with probability 0.1. We thereby created a
set of 12 patterns consisting of 3 categories with 4 members
from each category. Patterns from the same category were
highly similar, and therefore highly confusable. We deliberately
chose patterns with a very high degree of overlap for Simula-
tions 2 and 3 that the model would find extremely challenging,
so as to illustrate the full impact of the size of the dentate layer

FIGURE 4. Recognition memory ROC curves, (a) for patients
with mild hippocampal lesions (H) due to hypoxic-ischemic events,
more extensive temporal lobe lesions (H+), and controls (C), (b)
and (c) for typical runs of our hippocampal lesioned and intact
models, respectively, when tested on 500 to 2000 items. Part (a)
was reproduced with permission from Yonelinas et al. (Nature
Neuroscience, 2002, Volume 5, Number 11, Pages 1236–1241,
Fig. 4b).
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(Simulation 2) and of neuronal turnover (Simulation 3). With
less overlap, or fewer patterns of the same category, the model’s
performance was much better, but the effects of neurogenesis
were consequently much smaller.

The model was trained in the same manner as in Simulation
1, except that for the paired associate patterns, the CA3 units’
states were not set to zero between items within the same pair.
Both items in each pair, therefore, contributed to learning on
the CA3 recurrent collaterals. For each training set size and
model size, 20 runs were simulated starting from different ini-
tial random weights and with different pattern sets.

To test recall of each item, the network was cued with a
degraded version of the item with 50% of the active inputs
turned off, and tested on its ability to complete the item. For
testing recall of paired associates, the network was cued with
the first item in the pair, and tested on its ability to complete
the second item in the pair, using the CA3 recurrent collaterals
to complete the paired associate across time. In all cases, an
item was considered to be recalled correctly if the completed
pattern had at least 95% of its elements correct.

Results and Discussion

We found that smaller dentate sizes produced a substantial
drop in the recall performance of the hippocampal model, as
shown in Figure 5. As the dentate size approached 1,000—the
size of our full model—performance approached ceiling levels
for the unrelated items and was only slightly worse for paired
associates. For highly confusable items, performance was much
worse, but showed the same pattern of dramatic improvement
with increasing size of the dentate layer.

Note that with the smallest sized dentate region, performance
is even worse than our simulated hippocampally lesioned model
(Simulation 1). This is because the full model lacks the direct
connections from the EC input to EC output layers, and is there-
fore forced to encode patterns strictly using its ‘‘shrunken’’ dentate
region, which likely causes some confusions between patterns.

SIMULATION 3, NEUROGENESIS: EFFECTS
OF NEURONAL TURNOVER

In Simulation 3, we investigated the effect of neuronal turn-
over in the DG on cued recall of unrelated items, paired associ-
ates, and related items. We have proposed a functional role for
neurogenesis in the DG, namely, to create distinct memory
traces for highly similar items. We, therefore, hypothesized that
the related, highly confusable items would benefit most from
neuronal turnover.

Methods

The model’s weights were initialized in the same manner as
in Simulations 1 and 2. The three sets of training patterns—

FIGURE 5. Effect of number of dentate cells on recall, aver-
aged across 20 runs (with standard error bars) for (a) unrelated
items, (b) unrelated paired associates, and (c) related items.
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unrelated items, paired associates and related items—were cre-
ated in the same manner as in Simulation 2.

The model was trained in the same manner as in the pre-
vious simulations, except that learning proceeded for 10 repeti-
tions through the training set, to simulate learning over 10 suc-
cessive days. On each day, the model was trained once on each
pattern in the training set. Between days, we simulated the pas-
sage of time by training on a further set of 20 novel, unrelated
items, after which the dentate layer underwent neurogenesis.
Neuronal turnover was simulated by randomly selecting a fixed
percentage of the dentate layer neurons, and rerandomizing
their incoming weights from the EC, and reconnecting them
randomly to a different subset of CA3 cells. The percentage of
‘‘new neurons’’ created in this manner was either 0, 25, 50, 75,
or 100. After the 10th simulated day, testing proceeded as in
Simulation 2.

Results and Discussion

The effect of neuronal turnover on performance in the three
types of patterns was rather different, as shown in Figure 6. In
contrast to the lack of an effect of neuronal turnover on unre-
lated items and unrelated pairs, there was a substantial effect
on related items. Superimposed on the positive effect of neuro-
nal turnover was a negative effect because of the interference of
the novel, unrelated items learned on each day. Thus, it appears
that repeated learning sessions interleaved with the opportunity
for neurogenesis can be of benefit, most particularly, in the
encoding of highly confusable items.

GENERAL DISCUSSION

The main result of this paper is a theoretical one: we can
view the job of the hippocampus as encoding the incoming
activations from the cortex, and recreating those same activa-
tion patterns during recall. We formalize the notion of encod-
ing by proposing that different parts of the hippocampus are
all greedily optimizing the same performance measure: the sim-
ilarity between the original and reconstructed inputs. Thus,
each hippocampal region should learn an invertible code. If
successive layers of the model have relatively stable weights,
then each successive layer can build on the learning that has
taken place in previous layers. However, even when learning is
fairly rapid, only after 2–3 repetitions, recall is still very accu-
rate in this model and far superior to a one-layer pattern asso-
ciator. Previous models of individual regions of the hippocam-
pus have been useful in demonstrating the utility of important
computational principles thought to be employed by the hip-
pocampus, such as sparse coding (O’Reilly and McClelland,
1994), pattern completion (McNaughton and Morris, 1987;
Rolls, 1989; Treves and Rolls, 1992; Kali and Dayan, 2000b),

FIGURE 6. Effect of neuronal turnover on recall, averaged
across 20 runs (with standard error bars), for (a) unrelated items,
(b) unrelated paired associates, and (c) related items.
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and temporal associations (Levy, 1996; Gerstner and Abbott,
1997; Wallenstein and Hasselmo, 1997; August and Levy,
1999; Stringer et al., 2002). Nonetheless, it is also important
to demonstrate in a simulation of the entire multilayer circuit
that these principles still hold up. At the very minimum, the
model should outperform a simple one-layer pattern association
network, which is confirmed by our simulations. Our model
also accounts for deficits in recognition memory and recall after
hippocampal lesions. This topic is explored in much greater
depth in simulations by Norman and O’Reilly (2003). Finally,
we have presented novel results on the consequences of neuro-
genesis for hippocampal coding.

The learning principle of invertibility, combined with sparse
coding and other biological constraints, leads to a set of simple
Hebb-like learning rules. This work therefore has broader
implications for models that employ Hebbian learning rules.
For example, Rumelhart and Zipser’s competitive learning
model (Rumelhart and Zipser, 1986) is based on a variant of
Hebbian learning combined with a sparse coding constraint in
the form of a winner-take-all activation function. The learning
in this model minimizes the error between each unit’s weight
vector and the input patterns that unit is selective for. Similar
to the multilayer hippocampal model proposed here, competi-
tive learning can also be viewed as constructing invertible codes
subject to a sparseness constraint.

Related Work

Since Marr published his computational theory of hippocam-
pal coding, there have been many models in the literature
embodying the coding principles he advocated. Interestingly, a
multilayer model of associative memory was proposed by Baum
et al. (1988) that encapsulates many of Marr’s proposed fea-
tures: pattern encoding, internal layers with sparse coding, and
recurrent connections for pattern completion. Although this
model bears a striking similarity to many of the models dis-
cussed here, it was worked out completely independently of
considerations about Marr’s theory or the hippocampus, and
emerged purely from theoretical coding considerations ( John
Moody, personal communication).

Several other modelers have simulated the complete hippo-
campal circuit (e.g., O’Reilly and McClelland, 1994; Hasselmo
et al., 1996; Hasselmo and Wyble, 1997; Fellenz and Taylor,
2003; Norman and O’Reilly, 2003). The models developed by
Hasselmo and colleagues emphasize sparse coding in the DG,
auto-associative recall in CA3, and a role for cholingeric mod-
ulation in implementing a heteroassociative memory function
in the CA1 region. The models by O’Reilly and colleagues
(e.g., O’Reilly and McClelland, 1994; Norman and O’Reilly,
2003) emphasize the differences between cortical and hippo-
campal modes of learning, namely, incremental learning of dis-
tributed codes vs. rapid, low-interference learning with sparse
codes, as first described by McClelland et al. (McClelland
et al., 1995). The learning rules employed in O’Reilly’s more
recent hippocampal models (e.g., O’Reilly and Rudy, 2001)
are a combination of Hebbian and error-driven learning terms.

A recently proposed model by Fellenz and Taylor (2003) takes
a previously described model of associative memory with hid-
den layers and adapts it to fit hippocampal circuitry. Interest-
ingly, they propose a randomly generated code in the internal
layers that is similar to the effect of neuronal turnover in our
model.

Memory for Spatiotemporal Events

There is ample evidence for the crucial role played by the
hippocampus in memory for sequences. For example, hippo-
campal lesions impair rats’ memory for the sequential ordering
of a sequence of odors (Fortin et al., 2002). A number of mod-
els of hippocampal memory for sequences have been proposed
(e.g., Levy, 1996; August and Levy, 1999; Lisman, 1999). The
model proposed here, as with most other hippocampal models,
discretizes time to simplify the problem; the hippocampus can
then simply associate items at successive discrete time points.
The cost function proposed here could in principle be applied
to models with continuous time dynamics. However, the dis-
crete time approximation used to derive the learning equations
in our model may not be unreasonable given that hippocampal
neurons fire in synchrony with the theta rhythm during behav-
ioral states associated with novel encoding. Further, it has been
found that LTP in CA1 pyramidals occurs when stimulation
coincides with the peak of the theta cycle (Hyman et al.,
2003), evidence that plasticity is phase-locked with the theta
rhythm.

An important unsolved question regarding the encoding of
spatio-temporal episodes is how exactly does the hippocampus
bind together a set of discontiguous events comprising a uni-
tary episode? Some modelers (Wiebe et al., 1997; Lisman,
1999) have taken into account the detailed circuitry of the DG
and CA3, and predict that CA3 is able to sustain reverberatory
activation patterns for quite long periods of time, on the order
of seconds, which could help to solve this problem. Further,
Salin et al. (1996) have found that mossy fiber frequency
potentiation decays over a period of about 20–40 s, long
enough to allow CA3 cells to integrate spikes from the DG
over very long time periods, even though dentate cells spike at
extremely low firing rates.

Hippocampal-Cortical Interactions

The model described here treats the hippocampus in isola-
tion, whereas in reality, it is a key component in a great many
cortical circuits. The hippocampus is thought to be a conver-
gence zone for information from virtually everywhere else in
the brain, and it projects back to most, if not all, of the areas
it receives input from. Some models have addressed how the
hippocampus interacts with the neocortex, for example, in
memory consolidation (McClelland et al., 1995; McClelland
and Goddard, 1996; Murre, 1999; Kali and Dayan, 2000a).
Other theories have focused on the role of the hippocampus as
a binding site for storage and reactivation of widely distributed
memories (e.g., Bibbig et al., 1995; Moll and Miikkulainen,
1997). Recently, some modelers have begun to address the
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complexities of what controls memory storage and retrieval
(e.g., Becker and Lim, 2003).

USE IT OR LOSE IT?

Our results of varying the size of the dentate layer suggest
the size of the rat hippocampus in near optimal, in the sense
that a larger sized DG does not provide much of a gain in
memory capacity, if we can extrapolate from our admittedly
very small scale model. On the other hand, when the size of
the dentate was decreased by 50% or more, retrieval suffered
substantially. Thus, the ability to enlarge one’s hippocampus at
times of greater memory demand might not be very practical,
as it would appear to require an increase of an extremely large
magnitude to have much of an impact on learning.

It is interesting to note that in avian species, hippocampal
volume correlates with memory demands, as measured by
degree of food-storing behavior (Healy and Krebs, 1996). And
recent human data show that extensive training over a period
of years on a very hippocampally demanding task such as
driving a taxi in London might perhaps be sufficient to cause
changes in hippocampal volume: Maguire and colleagues have
reported London taxi drivers to have larger hippocampal vol-
ume than controls (Maguire et al., 2000), whereas hippocam-
pal volume was found not to correlate with navigational
expertise in non-taxi drivers (Maguire et al., 2003). Of course,
volumetric changes could be due to factors other than or in
addition to neurogenesis, including changes in dendritic spine
densities.

It is more likely that neuronal replacement, rather than neu-
ronal addition, occurs on a very large scale measurable over a
time course of days. Our simulations show that neuronal turn-
over has a significant effect on memory for related items. This
is consistent with our prediction that neuronal turnover, which
increases the diversity of dentate layer codes across successive
learning trials, should be of benefit in spaced learning trials
when items are very similar and there is maximal potential for
interference. There is substantial evidence in the literature to
support the notion that neurogenesis is important for learning
and memory. For example, when the number of newly born
dentate cells is reduced pharmacologically, a form of hippocam-
pal-dependent learning, trace conditioning, is impaired, while
simple conditioning without a temporal gap is not (Shors
et al., 2001). Further, neurogenesis is enhanced by learning
(Shors et al., 2001), environmental enrichment (Kempermann
et al., 1997), and locomotion (van Praag et al., 1999).

On the other hand, stress-related psychiatric illnesses may be
associated with a decrease in survival of newly born hippocam-
pal cells. Neurogenesis is suppressed by adrenal hormones
(Gould et al., 1992), and stress (Gould et al., 1998; Lemaire
et al., 2000; McEwen and Magarinos, 2001) as well as in
depression (Jacobs et al., 2000), which is associated with a loss
of hippocampal volume (MacQueen et al., 2003). The conse-
quences for memory of cell death in stress-related disorders cer-
tainly merit further study.
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APPENDIX: DERIVATION OF THE
LEARNING EQUATIONS

In each hippocampal layer, weights were adapted to maxi-
mize the objective function, the cosine angle between the actual
and reconstructed input. Taking the CA3 region as an example
(see Fig. 2b), the objective function for this region is

EC ðinÞTðW ðEC;CA3ÞTCA3Þ
jjEC ðinÞjj jjW ðEC;CA3ÞTCA3jj ¼

ðW ðEC;CA3ÞEC ðinÞÞTCA3
jjEC ðinÞjj jjW ðEC;CA3ÞTCA3jj

ðA1Þ

If we constrain the activity vector CA3 and the rows of the
weight matrix (W (EC,CA3))T to have constant lengths, then the
denominator in the above equation becomes a constant; it is
then equivalent to maximize the numerator

ðW ðEC;CA3ÞEC ðinÞÞT CA3 ðA2Þ

The activity constraint was enforced by using the k-winner-
take-all activation rule described previously. The weight con-
straint, in its exact form, involves normalizing the rows of
(W (EC,CA3))T, which requires each EC unit to have access to its
outgoing weights to the hippocampus. This would not be very
biologically realistic; instead, we approximate the length con-
straint by imposing an upper bound on the length of the
weight vectors during learning. We do so by forcing each of
the weights in the matrix, W (EC,CA3)

jk , to stay within a fixed
range (�k, k) (here we used k ¼ 0.5). Thus, after each learning
iteration, each unit’s incoming weights were clipped to lie
within the range (�0.5, 0.5). The weights in all weight matri-
ces (except the mossy fibers) were normalized in this manner.

Our learning principle states that we should maximize the
objective function given by Eq. (A2), when applied to each
hippocampal region. We can do so by the method of steepest
descent (or rather, steepest ascent in this case because we are
maximizing rather than minimizing an objective function), as is
done to derive the learning rules for the back-propagation
learning procedure (Rumelhart et al., 1986). Optimization by
steepest ascent involves repeatedly calculating the gradient vec-
tor—the derivative of the objective function with respect to
each of the weights—and updating the weights by a small
amount in the direction of this gradient vector.

In preliminary simulations, we used a differentiable, continu-
ous activation function that approximates the k-winner-take-all
function and permits an exact calculation of the gradient.
However, we found that the k-winner-take-all activation func-
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tion was much faster, led to much simpler learning equations,
and worked equally well. To obtain learning equations with the
k-winner-take-all activation function requires making some
approximations in calculating this gradient.

To derive the weight update rules for each pathway in the
circuit, again taking the CA3 region weights as an example, we
differentiate Eq. (A2) with respect to each incoming weight,
wjk (which could be either a perforant path or inter- or intra-
layer weight), to each CA3 unit, where CA3j is the activation
of the jth unit:

�wjk ¼ lrate
qððW ðEC;CA3ÞEC ðinÞÞTCA3Þ

qwjk
ðA3Þ

Applying the chain rule to the above expression, we obtain a
sum of two terms:

�wjk ¼ lrate CA3j
qðW ðEC;CA3Þ

jk EC
ðinÞ
k Þ

qwjk

 

þ ðW ðEC;CA3Þ
j EC ðinÞÞ qCA3j

qwjk

!

¼ lrate CA3j
qðW ðEC;CA3Þ

jk EC ðinÞ
k Þ

qwjk

 

þ netECinput ðCA3Þj r0ðnet ðCA3Þj Þqnet
ðCA3Þ
j

qwjk

!
ðA4Þ

where lrate is a learning rate constant, net(CA3) is the net input
from all incoming connections to this unit, netECinput(CA3)j ¼
W (EC,CA3)

j EC (in) is the net input from the EC to this unit,
and r0(net(CA3))j is the derivative of the nonlinear activation
function. The final term, ðqnet ðCA3Þj Þ=ðqwjkÞ is equal to the
incoming activation on the kth connection associated with
weight wjk.

Perforant Path Weights

For the perforant path weights, Eq. (A4) becomes

�W
ðEC;CA3Þ
jk ¼ lrateðCA3j EC ðinÞ

k

þ netECinput ðCA3Þj r0ðnet ðCA3Þj ÞEC ðinÞ
k ðA5Þ

Under appropriate assumptions, we can greatly simplify Eq.
(A5) by dropping the second term to obtain a pure Hebbian
learning rule:

�W ðEC;CA3Þ
jk ¼ lrate CA3j EC

ðinÞ
k ðA6Þ

and we obtain rules of the same form for W (EC,DG) and
W (EC,CA1). This simplified learning rule was found to produce
comparable results with Eq. (A5) in simulations. The simplify-

ing assumptions are as follows. For the CA3 region, during
training, the mossy fiber pathway dominates in generating the
activations, whereas the other pathways, whose weights are
bounded within a small range, have a negligible effect. There-
fore, the derivative of the CA3 activations with respect to the
perforant path weights is negligible relative to the first term in
Eq. (A5) and can be set to zero. For the DG and CA1 regions,
we assume during training that the EC input dominates over
other sources of input in generating activations in that region; if
this assumption holds, netECinputCA1j will be highly correlated
with CA1j, and similarly, netECinputDG

j will be highly correlated
with DGj. The two terms in Eq. (A5) will be highly correlated,
and therefore, highly redundant, and so the second term can be
presumed approximately equal to the first. The assumption that
the EC dominates over other sources of input is clearly valid for
the DG where there are no other sources of input. For the CA1
region, this assumption is valid provided that the activity level
in the CA3 region is sufficiently low relative to that of the EC.

The weights from CA1 back to the EC output layer were
simply set to equal the transpose of the perforant path weights
to the CA1.

Nonperforant Path Weights

For pathways other than the direct EC input connections,
which we simply refer to here as the ‘‘indirect weights,’’ the first
term in Eq. (A4) is zero. This applies to the CA3 recurrent col-
laterals and the CA3-to-CA1 pathway (but not the DG-to-CA3
pathway because the mossy fibers do not undergo any learning
in our model). Equation (A4) is now

�wjk ¼ lrate netECinput ðCA3Þj r0ðnet ðCA3Þj Þ qnet ðCA3Þj

qwjk
ðA7Þ

For the CA3 recurrent collaterals, W (CA3,CA3), if the input is
assumed to be steady-state, then ðqCA3jÞ=ðqW ðCA3;CA3Þ

jk Þ ¼ 0,
and so no learning takes place. If the input is assumed to be a
temporal sequence, as in the simulations reported here, then
the output of the CA3 layer is a function of the input from
the EC and DG at the current time step and the CA3 output
from the previous time step CA3(t�1); in this case, the final
term in the learning equation is ðqnet ðCA3Þj ðtÞÞ=ðqW ðCA3Þ

jk Þ ¼
CA3ðt � 1Þ. For the CA1 region, the final term in Eq. (A7) is
ðqnet ðCA1Þj Þ=ðqwjkÞ ¼ CA3k.

We used two different methods of approximating the deriva-
tive of the nonlinear activation function in Eq. (A7). The first
method linearizes the activation function, and so r0(netj) becomes
a constant and therefore drops out of the learning equation. In
simulations using this linear approximation, we found that the
hippocampal model performed reasonably well on all conditions
tested except paired associate learning, which relies crucially upon
the CA3 recurrent collateral connections to form associations
across time. The second method assumes that the CA3 and CA1
activation patterns are relatively stable and optimal at recon-
structing the EC pattern, given the EC and DG inputs. We can
then equivalently make the goal of the learning on the indirect
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pathways be to reconstruct the CA3 (or CA1) activation pattern
as well as possible. We can now obtain learning equations for the
indirect weights by analogy to our derivation for the direct perfo-
rant path weights, yielding simple Hebbian learning rules. For
example, for the CA3 recurrent collaterals we have

�W ðCA3;CA3Þ
jk ¼ lrate CA3jðtÞ CA3kðt � 1Þ ðA8Þ

and for the Shaffer collaterals we have

�W ðCA3;CA1Þ
jk ¼ lrate CA1j CA3k ðA9Þ

Provided that the network is exposed to the same pattern for more
than one learning iteration, the assumption that the CA3 and
CA1 activations have converged to stable values for each pattern
is a reasonable one. In practice, we find that 2–3 iterations of
learning on the same set of patterns is sufficient for the learning to
converge to stable performance levels. This method produced
good results in all simulations, including paired associate learning.

The simulations reported here therefore employed learning
rules given by Eqs. (A6), (A8), and (A9).
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