
Information Retrieval, 8, 521–545, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Semantic Similarity Search on Semistructured Data
with the XXL Search Engine

RALF SCHENKEL schenkel@mpi-sb.mpg.de
ANJA THEOBALD atb@mpi-sb.mpg.de
GERHARD WEIKUM weikum@mpi-sb.mpg.de
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Query languages for XML such as XPath or XQuery support Boolean retrieval: a query result is a
(possibly restructured) subset of XML elements or entire documents that satisfy the search conditions of the query.
This search paradigm works for highly schematic XML data collections such as electronic catalogs. However, for
searching information in open environments such as the Web or intranets of large corporations, ranked retrieval is
more appropriate: a query result is a ranked list of XML elements in descending order of (estimated) relevance.
Web search engines, which are based on the ranked retrieval paradigm, do, however, not consider the additional
information and rich annotations provided by the structure of XML documents and their element names.

This article presents the XXL search engine that supports relevance ranking on XML data. XXL is particularly
geared for path queries with wildcards that can span multiple XML collections and contain both exact-match as
well as semantic-similarity search conditions. In addition, ontological information and suitable index structures
are used to improve the search efficiency and effectiveness. XXL is fully implemented as a suite of Java classes
and servlets. Experiments in the context of the INEX benchmark demonstrate the efficiency of the XXL search
engine and underline its effectiveness for ranked retrieval.

Keywords: XML retrieval, semistructured data, ranked retrieval

1. Introduction

1.1. Motivation

XML is becoming the standard for integrating and exchanging data over the Internet and
within intranets, covering the complete spectrum from largely unstructured, ad hoc docu-
ments to highly structured, schematic data. A number of XML query languages have been
proposed, such as XPath, XML-QL, or the recently announced W3C standard XQuery.
These languages combine SQL-style logical conditions over element names, content, and
attributes with regular-expression pattern matching along entire paths of elements. The re-
sult of a query is a set of paths or subgraphs from a given data graph that represents an
XML document collection; in information retrieval (IR) terminology this is called Boolean
Retrieval.

This search paradigm makes sense for queries on largely schematic XML data such
as electronic product catalogs or bibliographies. It is of very limited value, however, for
searching highly heterogeneous XML document collections where either data comes from
many different information sources without a global schema or most documents have an ad

522 SCHENKEL, THEOBALD AND WEIKUM

hoc schema or DTD with element names and substructures that occur only in a single or a
few documents. The latter kind of environment is typical for document management in large
intranets, scientific data repositories such as gene expression data collections and catalogs of
protein structures, and, of course, also for the Web. For example, a bank has a huge number
of truly semistructured documents, probably much larger in total size than the production
data held in (object-) relational databases; these include briefing material and the minutes
of meetings, customer-related memos, reports from analysts, financial and business news
articles, and so on. Here, the variance and resulting inaccuracies in the document structures,
vocabulary, and document content dictate ranked retrieval as the only meaningful search
paradigm.

The result of a query should be a list of potentially relevant XML documents, elements,
or subgraphs from the XML data graph, in descending order of estimated relevance. This
is exactly the rationale of today’s Web search engines, which are also widely used for
intranet search, but this technology does not at all consider the rich structure and semantic
annotations provided by XML data. Rather state-of-the-art IR systems restrict themselves
to term-frequency-based relevance estimation (Baeza-Yates and Riberto-Neto 1999) and/or
link-based authority ranking (Brin and Page 1998, Kleinberg 1999).

This article presents a query language, coined XXL (for Flexible XML Search Language),
and the prototype implementation of the XXL search engine, as steps towards more power-
ful XML querying that reconciles the more schematic style of logical search conditions and
pattern matching with IR-style relevance ranking. Aiming at simplicity and with focus on
simple but widely usable search templates, our approach has adopted a core of essential fea-
tures from XQuery-style languages and has enhanced it with a similarity operator, denoted
∼, on element names and contents. The evaluation of similarity conditions is based on a
quantified ontology for element names and contents in combination with term-frequency-
based IR-style estimations for element contents. The assessments of “local” similarity tests
are combined into “global” relevance rankings using simple probabilistic arguments.

Even though some of our results have been previously published (Theobald and Weikum
2000, 2002a, Schenkel et al. 2003), this article is the first that completely covers the XXL
Search Engine in all its aspects, including the underlying ontological model, query evalua-
tion, and implementation issues. It further presents new experimental results with the INEX
benchmark that were not published outside the INEX community before.

1.2. XML data model

In our model, a collection of XML documents is represented as a directed graph where
the nodes represent elements, attributes and their values. For identification, each node is
assigned a unique ID, the oid. There is an directed edge from a node x to a node y if

– y is a subelement of x ,
– y is an attribute of x ,
– y contains the content of element x , or
– y contains the value of attribute x .

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 523

Additionally, we model a link from one element to another (this can be an ID/IDREF link,
an XLink or an XPointer) by adding two directed edges in opposite directions between the
corresponding nodes; while this model covers simple and extended XLinks, our system
currently supports only simple XLinks. We call the resulting graph the XML data graph for
the collection.

Figure 1 shows the XML data graph for a collection of two XML documents similar
to those in the INEX collection: a journal document with an XLink pointing to an article
document. Each node that contains an element or attribute name is called an n-node (shown
as normal nodes in figure 1), and each node that contains an element content or attribute
value is called a c-node (dashed nodes in figure 1). To represent mixed content, we need a
local order of the child nodes of a given element. Figure 1 shows an example for a sentence
that is distributed over several c-nodes.

1.3. Outline

The rest of the article is structured as follows. We discuss related work in Section 2. In
Section 3 we introduce our ontology model. Section 4 presents our query language XXL,
and Section 5 describes architecture and core components of our search engine. Section 6
presents details of the query evaluation in the XXL Search Engine. Finally, Section 7 shows
the effectiveness of our search engine with example results from the INEX benchmark.

2. Related work

Ranked retrieval on XML data has been quite popular in recent years. The first approaches
carried over keyword-based search from the Web to XML data and did not provide structural
constraints. Among the more recent retrieval engines of this kind are XRANK (Guo et al.
2003) and XSearch (Cohen et al. 2003). XRANK uses a two-dimensional proximity measure
and a pagerank-like authority ranking to increase result quality for keyword-based queries;
XSearch allows to restrict a keyword-based query to elements with certain tag names, but
does not support more complex structural constraints.

The majority of recent approaches support both keyword-based and structural constraints.
Extending existing XML query languages such as XML-QL (Deutsch et al. 1998) or
XQuery (Boag et al. 2002) with text search methods has been suggested by Chinenyanga
and Kushmerick (2001) Fuhr and Großjohann (2001) Hayashi et al. (2000) Theobald and
Weikum (2000). The simultaneously developed languages XIRQL (Fuhr and Großjohann
2001) and XXL (Theobald and Weikum 2000) (the latter is our own approach) have been
designed to support ranked retrieval. A restricted approach along these lines is Hayashi
et al. (2000), which assumes advance knowledge of the document structure and provides
similarity search only on element contents, not on element names. The ELIXIR system
(Chinenyanga and Kushmerick 2001, Chinenyanga and Kushmerick 2002) provides an
extension of XML-QL by content-based conditions that are evaluated using the WHIRL
system (Cohen 1999). The TeXQuery project (Amer-Yahia et al. 2004), extends XQuery
with extensive keyword-based search conditions on the content of XML elements. To our

524 SCHENKEL, THEOBALD AND WEIKUM

article

bdy

sec

st

scp

p

books

journal

title issue publisher sec1 reference

I

ntroduction

IEEE Transactions on
Knowledge and
Data Engineering

title

Special Section on the
14th International Conference

on Data Engineering

sec1

title

CONCISE
PAPERS

xmlns:xlink xlink:type xlink:href

k0468.xmlsimplehttp://www...

ind align

none left

ref

type rid

bib bibk046818

ref ref

fno doi

k0468 10.1041/
K0468s-2000

tk/2000/k0468.xml

tk/2000/volume.xml

1 2 3 4 5 6 7

type rid

bib bibk046820

type rid

bib bibk046810

XPointer

Currently,
information

retrieval [

], database
queries [

], and
hypermedia
techniques [

] are the only
methods to
access and

navigate info
bases.

18 20 10

1 1 1

1 2

Figure 1. XML data graph.

knowledge, none of the above approaches uses ontological information in their similarity
metrics.

Structural similarity of path patterns within XML documents has been investigated by
some authors. Schlieder and Meuss (2000) extend the vector space model to term vectors

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 525

consisting of structured terms by generalizing tf*idf-based term weights to structured terms.
The language ApproXQL (Schlieder 2002) considers structural similarity between query
graphs and XML data graphs based on graph transformation and matching. Guha et al. (2002)
apply a tree distance measure to implement approximate joins on XML data. Amer-Yahia
et al. (2002) consider a broader set of transformation rules, including ontological-based
generalization of tag names (but without discussing the problem of quantifying ontolog-
ical relationships), edge generalization, and subtree promotion. However, in all these ap-
proaches, ranked results are computed based on the cost of the graph transformations; the
general problem of embedding a query tree into a data tree is NP-complete. In contrast, our
XXL search engine aims to exploit similarity conditions on element names and contents,
which can be evaluated much more efficiently.

Index structures for the support of XML path queries have been intensively studied in
the literature. The most efficient path indexes use encoding schemes for trees (e.g., Grust
2002, Zezula et al. 2003), but are inherently limited to tree-structured XML without links.
Recently, index structures have been published that support XLinks and XPointers, e.g.
APEX (Chung et al. 2002), the Index Definition Scheme (Kaushik et al. 2002), the D(k)
Index (Qun et al. 2003), HOPI (Schenkel et al. 2004), and the FliX framework (Schenkel
2004). All these approaches don’t provide explicit support for ranked retrieval. Our XXL
search engine can make use of all of them.

There are many recent papers on XML query processing and optimization. A special
focus has been on the efficient evaluation of query twig patterns (see, e.g., Bruno et al.
2002, Jiang et al. 2003, Choi et al. 2003, Kaushik et al. 2004). The latter approach integrates
a variant of Fagin’s Threshold algorithm to return only the most relevant results. Another
important aspect in the literature have been selectivity estimation for queries on XML (see,
e.g., Aboulnaga et al. 2001, Chen et al. 2001, Wu et al. 2002) and statistical summaries of
XML data (Polyzotis and Garofalakis 2002a, 2002b). None of these approaches considers
similarity search.

The interest in ontologies has been recently revived with the recent discussion about
the “Semantic Web”. In contrast to the extremely ambitious early AI approaches toward
building universal ontologies (see, e.g., Lenat and Guha 1990, Russel and Norvig 1995),
more recent proposals are aiming at domain- or user-specific ontologies and are based
on more tractable logics (see, e.g., Horrocks 2002, Staab et al. 2000). However, these
publications do not consider the quantification of relationships which was first introduced
by Rubenstein and Goodenough (1965) as a result of a manual annotation process. The first
automatic approaches for term similarity concentrated on exploiting statistical correlations
between terms (Lesk 1969), especially for the problem of query expansion (Qiu and Frei
1993, 1995). Early work on similarity measures for ontologies concentrated on the graph
structure of the ontology (Rada et al. 1989, Sussna 1993, Leacock and Chodrow 1998,
Wu and Palmer 1994, Hirst and St-Onge 1998, Richardson et al. 1994, Agirre and Rigau
1996, Lewis 2002). Since the mid of the 90ies, researchers started connecting both worlds,
yielding similarity measures that take into account both the graph structure as well as
statistics on a large corpus (Resnik 1995, Jiang and Conrath 1997, Lin 1998, Resnik 1999).
A detailed comparison of similarity measures for WordNet can be found in Budanitsky
and Hirst (2001), McHale (1998) and Jamasz and Szpankowicz (2003) compare measures

526 SCHENKEL, THEOBALD AND WEIKUM

based on WordNet with similar measures for Roget’s Thesaurus (Jamasz and Szpankowicz
2001).

3. Ontology-based similarity

Ontologies have been used as a means for storing and retrieving knowledge about the words
used in natural language and relations between them. This section presents an overview
of our ontological model with its quantified relationships; more details can be found in
Schenkel et al. (2003).

In our approach we consider an ontological term t as a pair t = (w, s) where w is a word
over an alphabet � and s is the word sense (short: sense) of w, e.g.

t1 = (star, a celestial body of hot gases)
t2 = (heavenly body, a celestial body of hot gases)
t3 = (star, a plane figure with 5 or more points)

The synset syn(s) for a sense s is the set of all words with that sense, and we call the pair
(syn(s), s) a concept. A concept collects all possible words for a sense. In order to determine
which concepts are related, we introduce semantic relationships between concepts that are
derived from common sense. We say that a concept c is a hypernym (hyponym) of a concept
c′ if the sense of c is more general (more specific) than the sense of c′. We also consider
holonyms and meronyms, i.e., c is a holonym (meronym) of c′ if c′ means something that is
a part of something meant by c (vice versa for meronyms).

Based on these definitions we now define the ontology graph O = (VO , EO) which is a
data structure to represent concepts and relationships between them. This graph has concepts
as nodes and an edge between two concepts whenever there is a semantic relationship
between them. In addition, we label each edge with a weight and the type of the underlying
relationship. The weight expresses the semantic similarity of two connected concepts.

To fill our ontology with concepts and relationships we use the voluminous electronical
thesaurus WordNet (Fellbaum 1998) as backbone. WordNet organizes words in synsets
(i.e., sets of words with the same sense) and presents relationships between synsets without
any quantification.

For quantification of relationships we consider frequency-based correlations of concepts
using large web crawls. In our approach, we compute the similarity of two concepts using
correlation coefficients from statistics, e.g. the Dice or Overlap coefficient (Manning and
Schuetze 1999). Figure 2 shows an excerpt of an example ontology graph around the first
sense for the word “star”.

For two arbitrary nodes u and v that are connected by a path p = 〈u = n0 . . . nk = v〉,
we define the similarity simp(u, v) of the start node u and the end node v along this path to
be the product of the weights of the edges on the path:

simp(u, v) =
length(p)−1∏

i=1

weight(〈ni , ni+1〉)

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 527

star
celestial body
of hot gases

celestial body, heavenly body
natural objects visible in the sky

beta centauri
the second brightest

star in centaurs

sun
Any star around which a

planetary systems evolves

galaxy, extragalactic nebula
a collection of star systems

milky way, milky way galaxy
the galaxy containing

the solar system

heliosphere
the region inside the heliopause...

hyper
[0.6]

hypo
[0.6]

hyper
[0.85]

hypo
[0.85]

hyper
[0.85]

hypo
[0.85]

hyper
[0.73]

hypo
[0.73]

holo
[0.4]

mero
[0.4]

holo
[0.36]

mero
[0.36]

solar system
the sun with the celstial bodies...

holo
[0.4]

mero
[0.4]

natural object
an object occurring naturally

hyper
[0.2]

hypo
[0.2]

collection, aggregation,
accumulation, assemblage

several things grouped together

hyper
[0.45]

hypo
[0.45]

Figure 2. Excerpt of an ontology graph O with labeled edges.

where weight(〈ni , ni+1〉) denotes the weight of the edge e = (ni , ni+1). The rationale for
this formula is that the length of a path has direct influence on the similarity score. We may
additionally restrict the type of edges that are allowed on the path (e.g., allow only hyponym
edges to have positive similarity only to more specific concepts). The similarity sim(u, v)
of two nodes u and v is then defined as the maximal similarity along any path between u
and v:

sim(u, v) = max{simp(u, v) | p path from u to v}

However, the shortest path (the path with the smallest number of edges) need not always be
the path with the highest similarity. Thus, we need an algorithm that takes into account all
possible paths between two given concepts, calculates the similarity scores for all paths, and

528 SCHENKEL, THEOBALD AND WEIKUM

chooses the maximum of the scores for the similarity of these concepts. This is a variant of
the single-source shortest path problem in a directed, weighted graph. A good algorithm to
find similar concepts to a given concept and their similarity scores is a variant of Dijkstra’s
algorihm (Cormen et al. 2001) that takes into account that we multiply the edge weights on
the path and search for the path with the maximal weight instead of minimal weight.

Furthermore, as words may have more than one sense, it is a priori not clear in which
sense a word is used in a query or in a document. To find semantically similar words, it
is fundamental to disambiguate the word, i.e., to map it to the concept that corresponds
to its current sense. In our work we compute the correlation of a context of a given word
and the context of a potential appropriate concept from the ontology (e.g., the concepts
that contain the word). Here, the context of a word are other words in the proximity of
the word in the query or document, and the context of a concept is built from the words
of closely related nodes of the concept in the ontologies (like hypernyms and hyponyms).
After removing stopwords, we determine the most similar concept out of the candidate
concepts by computing the correlation of the contexts using one of the correlation measures
discusses above or (as we do in our implementation) by computing the cosine similarity of
the corresponding term vectors.

Note that the information in a query may not always be sufficient for a successful dis-
ambiguation, for example when a user submits only a single keyword. In such a situation,
it may be helpful to ask the user select the “right” concept out of the candidates, maybe
by presenting her all possible candidates together with a subset of results for the query
with that concept. However, we have not yet implemented this solution in the XXL search
engine (but the COMPASS search engine (Graupmann et al. 2004) delevoped in our group
provides a similar user interaction for disambiguation).

4. The Flexible XML Query Language XXL

The Flexible XML Search Language XXL (Theobald and Weikum 2000, Theobald and
Weikum 2002a) has been designed to allow SQL-style queries on XML data. We have
adopted several concepts from XML-QL (Deutsch et al. 1998), XQuery (Boag et al. 2002)
and similar languages as the core, with certain simplifications and resulting restrictions,
and have added capabilities for ranked retrieval and ontological similarity search. As an
example for an XXL query, consider the following query that searches for publications
about both information retrieval and databases:

SELECT $T // output of the XXL query
FROM INDEX // search space
WHERE ~article AS $A // search condition
AND $A/~title AS $T
AND $A/#/~section ~ "IR & DB"

The SELECT clause of an XXL query specifies the output of the query: all bindings of a set
of element variables. The FROM clause defines the search space, which can be a set of URLs
or the index structure that is maintained by the XXL engine. The WHERE clause specifies

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 529

the search condition; it consists of the logical conjunction of path expressions, where a path
expression is a regular expression over elementary conditions and an elementary condition
refers to the name or content of a single element or attribute. Regular expressions are formed
using standard operators like ‘/’ for concatenation, ‘|’ for union, and ‘*’ for the Kleene star.
The operator ‘%’ is a wildcard for any single element, and ‘#’ (which is equivalent to (%)*)
stands for an arbitrary path of elements. Each path expression can be followed by the
keyword AS and a variable name that binds the end node of a qualifying path (i.e., the last
element on the path) to the variable, that can be used later on within path expressions, with
the meaning that its bound value is substituted in the expression.

In contrast to other XML query languages we introduce a new operator ‘∼’ to express
semantic similarity search conditions on XML element (or attribute) names as well as on
XML element (or attribute) contents. As an example for this, consider the elementary con-
dition ∼article in the example query. It is satisfied by elements with the name article,
but also by other elements with names that are semantically similar to article, like book,
report, and so on. The relevance for such elements corresponds to the semantic similarity
of their tag name to article as reported by the ontology.

The result of an XXL query is a subgraph of the XML data graph, where the nodes
are annotated with local relevance probabilities called similarity scores for the elementary
search conditions given by the query. These similarity scores are combined into a global
similarity score for expressing the relevance of the entire result graph. See Section 6 for
more details on this process.

5. The XXL search engine

5.1. Architecture

The XXL Search Engine (Theobald and Weikum 2002b) is a client-server system with a
Java-based GUI. It uses an Oracle 9i database for storing XML documents (see Secion 5.3).
The architecture of our search engine is depicted in figure 3, it consists of the following
core components:

XXL servlets

Query
Processor

EPI
Handler

ECI
Handler

Ontology
Handler

Visual
XXL

XXL applet

EPI

ECI

OI

WWW

......

.....

......

.....

Crawler

Path
Indexer

Content
Indexer

Ontology
Indexer

Figure 3. Architecture of the XXL search engine.

530 SCHENKEL, THEOBALD AND WEIKUM

– The Crawler: This is a standalone, multithreaded Java application that imports XML
and HTML files into the search engine. It can either operate on a local filesystem or
on the Web, in both cases following links found within the documents. The documents
are decomposed into database tables (see Section 5.3 for details). The crawler uses a
simple timestamp-based heuristics to decide if a document that was encountered before
has changed in the meantime. Newly found or updated documents are automatically fed
to the index subsystems.

– The Element Content Index (ECI): The ECI contains all terms that occur in the content
of elements and attributes, together with their occurrences in documents; it corresponds
to a standard text index with the units of indexing being elements rather than complete
documents.

– The Element Path Index (EPI): The EPI contains the relevant information for evaluating
simple path expressions that consist of the concatenation of one or more element names
and path wildcards #.

– The Ontology Index (OI): The OI implements the ontology graph presented in Section 3.
– The Query Processor: This component makes use of the three indexes to efficiently and

effectively evaluate XXL queries.
– The Visual XXL Interface: This Java applet provides a user friendly, browser-based in-

terface for formulating XXL queries. Additionally, it presents the XML fragments that
are the result of a query.

More details on the index structures are provided in Section 5.2. Important aspects of the
query processor are highlighted in Section 6.

5.2. Index structures

The XXL Search Engine provides appropriate index structures, namely the element path
index (EPI), the element content index (ECI), and the ontology index (OI), that support the
evaluation process.

5.2.1. The ontology index The OI supports finding words that are semantically related
to a given word, using the techniques presented in Section 3. It delivers related words
in descending order of similarity so that they can be consumed as needed by the query
evaluation. Additionally, the search can be limited to certain edge types: For finding similar
tag names, all edge types may be used, whereas for finding similar content, search may
be restricted to hyponym edges to avoid topic drift. Finally, the OI provides methods for
disambiguation, i.e., find the current sense of a word among all candidate senses, given the
context of the word.

5.2.2. The element content index The ECI supports the evaluation of complex logical
search conditions using an inverted file and a B+–tree over element names. Given an
atomic formula, the ECI returns elements whose content is relevant with respect to that
atomic formula together with a relevance score. The current implementation makes use
of Oracle’s fulltext search engine Oracle Text (Oracle Corp. 2004). It provides, among

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 531

other features, index support for database columns with textual content and automatic
stemming and stopword removal. For a given combination of terms, Oracle Text returns
rows that contain all of the terms, in descending order of a tf/idf-based score. Since in
our database schema, each row (which is a “document” for Oracle Text) corresponds to
the content of a single element, this score is in fact a tf/ief score, i.e., includes the inverse
element frequency of the terms. This is much more appropriate to XML documents with
their explicit structure than simply considering the frequency of a term in a complete XML
document (as the standard tf/idf measure does). Note that even though Oracle Text provides
a build-in ontology, we make use of the OI to expand queries in order to have full control
over the generated score.

5.2.3. The element path index The EPI provides efficient methods to find children, parents,
descendants and ancestors of a given node, to test if two arbitrary nodes are connected, and
to determine the distance of two nodes. It provides a general Java interface that in principle
allows all existing path indexes to be applied.

When the XML data graph forms a tree, we use the well-known pre- and postorder scheme
by Grust (2002) and Grust and van Keulen (2003). This path index computes the pre order
pre(e) and the post order post(e) for each element e of a single XML document without
links, by traversing the document in depth-first order. All XPath axes can be evaluated
using these numbers, e.g., there is a path from x to y iff pre(x) < pre(y) and post(x) >

post(y).
However, if the document collection contains links, this scheme can no longer be applied

as the XML data graph no longer forms a tree. For such settings that occur frequently with
documents from the Web, the XXL Search Engine provides the HOPI index (Schenkel et al.
2004) that utilizes the concept of a 2-hop cover of a graph. This is a compact representation
of connections in the graph developed by Cohen et al. (2002). It maintains, for each node
v of the graph, two sets L in(v) and Lout(v) which contain appropriately chosen subsets of
the transitive predecessors and successors of v. For each connection (u, v) in the XML data
graph G, we choose a node w on a path from u to v as a center node and add w to Lout(u)
and to L in(v). We can efficiently test if two nodes u and v are connected by checking Lout(u)
and L in(v): there is a path from u to v iff Lout(u) ∩ L in(v) �= ∅. The path from u to v can be
separated into a first hop from u to some w ∈ Lout(u) ∩ L in(v) and a second hop from w to
v, hence the name of the method. If we additionally store the distances of u to the nodes in
L in(u) and Lout(u), we can use this information to compute the distance of two nodes u and
v by first computing the intersection I := Lout(u)∩ L in(v) and then choosing the minimum,
among all i ∈ I , of dist(u, i) + dist(i, v).

As the optimal choice of center nodes is NP-complete, Cohen et al. (2002) apply some
heuristics to find an approximation of the optimal solution, but their algorithm does not scale
well for very large graphs because it requires that all connections in the graph are computed
in advance. The HOPI index provides a divide-and-conquer algorithm for building the 2-hop
cover of an XML data graph that first partitions the graph into fragments whose connections
fit into memory, then builds the cover for the partitions and finally joins the partial covers into
the cover for the complete graph. More technical details of HOPI, including experimental
results with real-life and synthetic data, can be found in Schenkel et al. (2004).

532 SCHENKEL, THEOBALD AND WEIKUM

For heterogeneous XML collections, none of these path indexes is perfectly suited. There-
fore, the XXL Search Engine provides the FliX framework (Schenkel 2004) for indexing
paths that supports large, heterogeneous document collections with many links, using the
existing path indexes as building blocks. It first divides the document set into carefully
chosen fragments (so-called meta documents). After that, an index is built for each meta
document, using the “best” available indexing strategy given the characteristics of the meta
document. XPath axes like descendants or ancestors are then evaluated first on the local
indexes (which will probably return the “best” results, i.e., elements that are connected
with short paths). After that, results spanning multiple meta documents are evaluated by
following links between meta documents at run-time.

5.3. Implementation issues

Our prototype implementation of the XXL Search Engine stores XML data in an Oracle 9i
database with the following relational database schema (denoting primary keys as underlined
columns):

URLS (urlid, url, lastmodified)
NAMES(nid, name)
NODES(oid, urlid, nid, pre, post, depth)
EDGES(oid1, oid2)
LINKS(oid1, oid2)
CONTENTS(oid, urlid, nid, content)

LIN (oid1, oid2, distance)
LOUT(oid1, oid2, distance)

Here, NODES, EDGES and CONTENTS store the actual XML data, URLS contains the urls
of all XML documents known to the system, and LINKS holds the links between XML
documents. Each element is identified using its unique oid value. Note that, for each
element, the corresponding entry in CONTENTS stores the concatenated contents of the
element and all its (transitive) subelements; for the INEX collection, this table contains about
1.1 gigabytes of data which is about two times the size of the original (XML) data. While
this replication increases the overall storage usage, it heavily decreases query evaluation
time. Additionally, this is the only way to apply Oracle Text to the contents which would
be impossible without this kind of replication.
LIN and LOUT store the L in and Lout sets used by the HOPI index. Here, a tuple (v, w, d)

in LIN represents the fact that w ∈ L in(v), and the shortest distance of v and w is d. The
pre and post order numbers as well as the depth of the node in the tree are augmented to the
NODES table. The Ontology Index is represented by the following three relational tables:

CONCEPTS (cid, concept, description, freq)
WORDS (cid, word)
RELATIONSHIPS(cid1, cid2, type, freq, weight)

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 533

Currently the index stores hypernym, hyponym, holonym, and meronym edges, but it can be
easily extended to support new edge types. The entries in the ontology index are extracted
from the well-known electronic thesaurus WordNet (Fellbaum 1998). Frequencies and
weights are computed as shown in Section 3.

6. Query processing in the XXL search engine

As mentioned in Section 4, an XXL query is of the form SELECT S FROM F WHERE W1
AND ...AND Wk. The evaluation of the search conditions in the WHERE clause consists of
the following main steps:

– The XXL query is decomposed into subqueries W1, . . . ,Wk.
– A global evaluation order for evaluating the various subqueries is chosen.
– For each subquery, first a local evaluation order for evaluating the components of the

subquery is chosen. Then, subgraphs of the data graph that match the query graph are
computed, exploiting the various indexes to the best possible extent.

– The subresults are combined into the result for the original query.

6.1. Query decomposition

As an example for an XXL query, consider the following XXL query that asks for the titles
of scientific articles about information retrieval and databases:

SELECT $T
FROM INDEX
WHERE ~article AS $A
AND $A/~title AS $T
AND $A/#/~section ~ "IR & database"

The Where clause of an XXL query consists of a conjunction "W1 And ...And Wn" of
subqueries Wi, where each subquery has one of the following types:

– Pi, i.e., a regular path expression,
– Pi AS $A, i.e., a regular path expression where the node at the end of the path is bound

to variable $A,
– Pi ∼/LIKE/=/<>/</> condition, i.e., a regular path expression with an additional

content condition.

where each Pi is a regular path expression over elementary conditions, $A denotes a element
variable to which the end node of a matching path is bound, and condition gives a content–
based search condition using a binary operator. In our example, the first two subqueries are

534 SCHENKEL, THEOBALD AND WEIKUM

~article $A

~title

$A

~ „IR & DB“

%

~section

$A

$T

$A $T

variable dependencies

W1:
~article AS $A

W2:
$A/~title AS $T

W3:
$A/#/~section ~ „IR & DB“

Figure 4. Non-deterministic finite state automata for the subqueries of the example XXL query.

of the second form, whereas the third subquery is of the third form. From the definitions
of variables we derive the variable dependency graph that has an edge from $V to $W if
the path bound to $W contains $V. We require the variable dependency graph of a valid
XXL query to be acyclic. In our example, the variable dependency graph contains an edge
$A→$T because $A is used in the definition of $T.

Each subquery corresponds to a regular expression over elementary conditions which can
be described by an equivalent non-deterministic finite state automaton (NFSA). Figure 4
shows the automata for the subqueries of the example query and the variable dependency
graph for this query. Note that the path wildcard operator # in the third subquery has been
converted to the equivalent form (%)*.

6.2. Global evaluation order

To evaluate an XXL query, we first choose an order in which its subqueries are evaluated.
This order must respect the variable dependency graph, i.e., before a subquery that defines
a variable is evaluated, all subqueries that define variables used in this subquery must be
evaluated. As this may still leave us some choices how to order subqueries, we estimate the
selectivity of each subquery using simple statistics about the frequency of element names
and search terms that appear as constants in the subquery. Then we choose to evaluate
subqueries and bind the corresponding variables in ascending order of selectivity (i.e.,
estimated size of the intermediate result).

In our example, we may compare the frequency of element names that are similar to
article with the combined frequency of the terms IR and database in either the whole
collection or in the content of elements whose name is similar to section. This is done by
first computing all element names with similarity above a given threshold and then querying
Oracle Text for the number of elements with these names that contain the terms. As there
will probably be much more articles in the collection than sections that contain the terms,

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 535

we may choose to first evaluate the last subquery, i.e., find sections that contain the terms,
and then the first subquery, i.e., limit the results to sections within articles. The second
subquery can be evaluated last, as it is only needed to compute the results that are returned
to the user.

6.3. Subquery evaluation

Each subquery is mapped to its corresponding NFSA. A result for a single subquery, i.e. a
relevant path, is a path of the XML data graph that matches a state sequence in the NFSA
from an intial state to a final state. For such a relevant path, the relevance score is computed
by multiplying the local relevance scores of all nodes of the path. In addition, all variables
that occur in the subquery are assigned to one node of the relevant path.

A result for the query is then constructed from a consistent union of the variable as-
signments and a set of relevant paths (one from each subquery) that satisfies the variable
assignments. The global relevance for such a result is computed by multiplying the local
relevances of the subresults.

The local evaluation order for a subquery specifies the order in which states of the
subquery’s NFSA are matched with elements in the XML data graph. The XXL prototype
supports two alternative strategies: in top-down order the matching begins with the start
state of the NFSA and then proceeds towards the final state(s); in bottom-up order the
matching begins with the final state(s) and then proceeds towards the start state.

As an example, we show how the NFSA shown in figure 5 is evaluated in top-down order
on the data shown in that figure:

Step 1: The first elementary search condition contains a semantic similarity search condition
on an element name. Thus, we consult the ontology index to get words which are similar
to article, yielding the word paper with sim(paper, article) = 0.9. The first part of our
result graph is therefore an n-node of the data graph named article, and it is assigned
a local relevance score of 0.9.

Step 2: To be relevant for the query, a node from the result set of Step 1 must also have a
child node with name bdy. As a result of Step 2, we consider result graphs formed by
such nodes and their respective child.

Step 3: The next state in the NFSA corresponds to a wildcard for an arbitrary path in the
data graph. Explicitly evaluating this condition at this stage would require an enumeration
of the (possibly numerous) descendants of candidate results found so far, out of which
only a few may satisfy the following conditions. We therefore proceed with the next
condition in the NFSA and postpone evaluating the path wildcard to the next step. The
following condition is again a semantic similarity condition, so we consult the ontology
index to get words which are similar to section. Assume that the ontology index returns
the word sec with a similarity score of 0.95. There are no n-nodes in the data that are
named section, but we can add n-nodes named sec to our preliminary result with a
local relevance score of 0.95.

Step 4: In this step we combine the results from steps 2 and 3 by combining n-nodes that are
connected through an arbitrary path. The local relevance score for the results corresponds

536 SCHENKEL, THEOBALD AND WEIKUM

st

scp

p

ind align

none left

ref

type rid

bib bibk046818

ref ref

fno doi

k0468 10.1041/
K0468s-2000

1 2 3 4 5 6 7

type rid

bib bibk046820

type rid

bib bibk046810

Currently,
information

retrieval [

], database
queries [

], and
hypermedia
techniques [

] are the only
methods to
access and

navigate info
bases.

18 20 10

1 1 1

~article/bdy/#/~section ~ „IR & DB“

Step 1

~article

~ „IR & DB“

%Step 2

Step 3

Step 4

bdy

~section

1 2
Step 5

paper

bdy

sec

I

ntroduction

0.9

1.0

0.95

0.4

Figure 5. Evaluation of an NFSA in top-down manner.

to the inverse of the length of the path between the nodes: the longer the path is, the lower
the relevance score.

Step 5: The final state of the NFSA contains a content-based semantic similarity search
condition which must be satisfied by the content of a sec-element in the result set of
Step 4. We first decompose the search condition that may consist of a conjunction of
search terms into the atomic formulas (i.e., single terms). For each atomic formula we
consult the ontology index for similar words and combine them in a disjunctive manner.
We then use a text search engine to evaluate the relevance of each element’s content
which is expressed through an tf/ief-based relevance score. This score is combined with
the ontology-based similarity score to the relevance score of the atomic formula. Finally,
we multiply the relevance scores for each formula to get the relevance score for the
similarity condition.

In our example, the shaded nodes in figure 5 form a relevant path for the given NFSA.

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 537

7. Experimental results with INEX

In this section, we present the results of our XXL search engine with the INEX bench-
mark; experimental results with several other data sets can be found in Theobald and
Weikum (2002a). We start with a short summary of the INEX benchmark in Section 7.1.
In Section 7.2, we present the results with keyword-only queries (“CO”-topics in INEX
terminology), showing the overall quality of our approach as well as the additional benefit
from applying ontology-backed query expansion. In Section 7.3, we discuss the results for
queries with constraints on both content and structure (“CAS”-topics).

7.1. INEX overview

The INEX benchmark (Kazai et al. 2003) is an excellent testbed for information retrieval
engines on XML data. It provides a large collection of XML documents with rich textual
components, two sets of query topics (with and without structural constraints), and several
metrics for evaluating the results.

For each topic the results of all participants are collected into a result pool for this
topic. Then the potentially relevant components from each pool are assessed by a human
who assigns an exhaustivity value and a specificity value which are both in the range 0–3.
Exhaustivity describes the extent to which the component discusses the topic of request,
specificity describes the extent to which the component focusses on the topic of request.

To assess the quality of a set of search results a metric based on the traditional re-
call/precision metrics is applied. In order to apply this metric, the assessors’ judgements
have to be quantised onto a single relevance value. Two different quantisation functions
have been used:

1. Strict quantisation is used to evaluate whether a given retrieval approach is capable of
retrieving highly exhaustive and highly specific document components.

fstrict(ex, spec) =
{

1 ex = 3, spec = 3 (short: 3/3)

0 otherwise

2. In order to credit document components according to their degree of relevance (gener-
alised recall/precision), a generalized quantisation is used.

fgeneralized(ex, spec) =

1 3/3

0.75 2/3, 3/2, 3/1

0.5 1/3, 2/2, 2/1

0.25 1/1, 1/2

0 0/0

538 SCHENKEL, THEOBALD AND WEIKUM

Using one of these quantisation functions, each document component in a result set is
assigned a single relevance value using the human–based relevance assessment.

7.2. CO-topics

To automatically transform a CO-topic into an XXL query we consider the keywords given
for the query. As there is no way to automatically decide how to combine these keywords
(conjunctively, disjunctively or mixed) in an optimal manner, we chose to combine them
conjunctively. To include results that are semantically similar to the keywords, we add our
similarity operator ∼. For CO-topic 98 with keywords information exchange, XML and
information integration, this process yields the following XXL query:

SELECT *
FROM INDEX
WHERE article/# ~ "(information exchange)

& XML
& (information integration)"

At query evaluation, each keyword in the query is (conceptually) replaced by the dis-
junction of itself and all its related terms:

SELECT *
FROM INDEX
WHERE article/# ~
("information exchange" | "data exchange"
| "heterogeneous data")

& ("XML" | "semistructured data")
& ("information integration" | "information sharing")

For the unexpanded query we obtain 7 results with an average precision of 0.0002 for the
strict quantisation and with an average precision of 0.0043 for the generalized quantisation.
For the expanded query we obtain 28 results with an average precision of 0.0002 for the
strict quantisation and with an average precision of 0.0065 for the generalized quantisation.
So even this straightforward query expansion helped to slightly increase result quality.

However, if we carefully look at the topic, it turns out that a recombination of the query
keywords could return better results. (Note that such an optimization is not allowed for the
“official” INEX runs as all queries had to be generated automatically.) Thus, we reformulate
the unexpanded query:

("information exchange" | "information integration") & "XML"

The expanded query then has the following structure:

(("information exchange" | "data exchange" |
"heterogeneous data") |

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 539

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

INEX 2003: CO:Init:98

quantization: strict; topics: CO
average precision: 0.0081

(empty topic results ignored)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

INEX 2003: CO:Onto:98

quantization: strict; topics: CO
average precision: 0.1063

(empty topic results ignored)

Figure 6. Average precision (strict) for the reformulated CO-query 98 without (left) and with (right) query
expansion.

("information integration" | "information sharing")) &
("XML" | "semistructured data")

Figure 6 shows the precision-recall curves with the strict quantization for CO-topic 98
for the reformulated, but unexpanded query (left) and the expanded query (right), and
figure 7 shows the precision-recall curves with the generalized quantization for this topic
with reformulation, but without expansion (left) and with query expansion (right). For both
metrics, the expanded queries have a much higher average precision, and they deliver much
more relevant results than the unexpanded queries. However, especially for the generalized

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

INEX 2003: CO:Init:98

quantization: generalized; topics: CO
average precision: 0.0303

(empty topic results ignored)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

INEX 2003: CO:Onto:98

quantization: generalized; topics: CO
average precision: 0.0595

(empty topic results ignored)

Figure 7. Average precision (generalized) for the reformulated CO-query 98 without (left) and with (right) query
expansion.

540 SCHENKEL, THEOBALD AND WEIKUM

INEX 2003: CO:Init

quantization: strict; topics: CO
average precision: 0.0494

rank: 18 (56 official submissions)

INEX 2003: CO:Onto

quantization: strict; topics: CO
average precision: 0.0793

rank: 8 (56 official submissions)

Figure 8. Precision-recall curves (strict) for all 36 CO-topics without (left) and with (right) ontological query
expansion.

metrics, recall is still quite low; we attribute this to the fact that many elements have been
assessed as (to some extent) relevant that don’t contain all or even any of the ontologically
expanded keywords. As XXL uses conjunctive keyword conditions, it considers all those
elements as non-relevant, leaving them out of the result list.

For the complete set of all 36 CO-topics,1 the results clearly indicate that ontological
query expansion indeed does increase query results. Figure 8 show the precision-recall
curves with strict quantisation for our search Engine (drawn in bold) in comparison to the
others that participated in INEX, figure 9 shows them with generalized quantization. Note
that the absolute average precisions are quite low for all systems; this is mostly due to the

INEX 2003: CO:Init

quantization: generalized; topics: CO
average precision: 0.0503

rank: 17 (56 official submissions)

INEX 2003: CO:Onto

quantization: generalized; topics: CO
average precision: 0.0728

rank: 7 (56 official submissions)

Figure 9. Precision-recall curves (generalized) for all 36 CO-topics without (left) and with (right) ontological
query expansion.

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 541

difficulty to select the right result granularity (depending on the topic, an article element
may not be a good result even though it contains all keywords, because its content is too
general; analogously, the content of a section element may be too narrow even though
containing all keywords. Choosing the right granularity for the result is currently an active
research problem in XML retrieval.

Our search engine took about 15 minutes to generate the results for all 36 CO-topics;
this time was dominated by the queries to OracleText and the generation of the results in
the INEX format.

The results clearly show that ontology-based query expansion for keyword-based XML
retrieval provides much better average precision and better recall.

7.3. CAS-topics

CAS-topics are represented by an expression in an XPath-like query language. We map this
expression in a straightforward way to a corresponding XXL expression, adding semantic
similarity conditions to all element names and keywords that appear in the XPath expression.
For CAS-topic 63, the query

//article[about(., "digital library")]
//p[about(., "authorization & access control & security")]

is mapped to the following XXL query:

SELECT $A
FROM INDEX
WHERE article AS $A

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: SCAS:init:63

quantization: generalized; topics: SCAS
average precision: 0.1224

(empty topic results ignored)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: SCAS:onto:63

quantization: generalized; topics: SCAS
average precision: 0.2025

(empty topic results ignored)

Figure 10. Precision-recall curves with generalized quantization for CAS-topic 63 without (left) and with (right)
ontological query expansion.

542 SCHENKEL, THEOBALD AND WEIKUM

AND $A ~ "digital library"
AND $A/#/p ~ "authorization & (access control) &

security"

As an example for the ontology-based query evaluation on CAS-topics, figure 10 shows
the generalized results for CAS-topic 63 with the original query (left) and with the expanded
query (right). The strict evaluation results in an average precision of 1.0 in both cases.

This experiment shows that the XXL search engine is able to evaluate conditions on
XML structure as well as conditions on XML contents. In addition, the ontology–based
query expansion for the content condition provides much better average precision and better
recall. Due to the regular structure of the INEX data, XXL could not make much use of
its structural similarity features. We expect that INEX’ upcoming heterogeneous data track
will allow us to demonstrate the strength of XXL in that field.

8. Conclusions and future work

Querying large collections of highly heterogeneous, richly structured XML documents is an
important task where existing XML query languages like XQuery and keyword-based search
engines are failing. The XXL Search Engine presented in this article is an important step
towards solving this problem. Combining keyword-based search with structural conditions
and semantic similarity, its query language XXL is more expressive than all existing query
languages for XML. The results obtained with the INEX benchmark clearly indicate that
exploiting semantic similarity generally increases the quality of search results.

Our ongoing and future work includes generalizing query semantics, exploiting user
feedback, and further optimizing query performance. More specifically, we plan to gen-
eralize the semantics of the path wildcard operator # to include more general notions of
connectivity like those discussed by Amer-Yahia et al. (2002). To further extend the result
quality, we plan to add a relevance feedback step to incrementally increase the quality over
time, including a user-specific personal ontology. Finally, we plan further studies on query
optimization heuristics. This includes finding good global and local evaluation ordering of
subqueries and elementary search conditions based on selectivity estimations as well as
algorithms to quickly return the best results for the query (without having to compute all
results first).

Note

1. Note that these results were submitted after the official INEX deadline, so the figures do not show the official
rank of our search engine in the INEX benchmark.

References

Aboulnaga A, et al. (2001) Estimating the selectivity of XML path expressions for Internet scale applications. In:
VLDB 2001, pp. 591–600.

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 543

Agirre E and Rigau G (1996) Word sense disambiguation using conceptual density. In: 16th Int. Conf. on Com-
putational Linguistics 1996, pp. 16–22.

Amer-Yahia S, Botev C and Shanmugasundaram J (2004) TeXQuery: A full-text search extension to XQuery. In:
WWW 2004. Online Proceedings, available from http://www2004.org/.

Amer-Yahia S, et al. (2002) Tree pattern relaxation. In: Jensen CS et al., Eds., EDBT 2002, pp. 496–513.
Baeza-Yates RA and Riberto-Neto B, Eds. (1999) Modern Information Retrieval. Addison Wesley.
Blanken H, Grabs T, Schek H-J, Schenkel R and Weikum G., Eds. (2003) Intelligent Search on XML Data, vol.

2818 of LNCS.
Boag S, et al. (2002) XQuery 1.0: An XML query language. W3c recommendation, World Wide Web Consortium.

http://www.w3.org/TR/xquery.
Brin S and Page L (1998) The anatomy of a large-scale hypertextual web search engine. Computer Networks,

30(1–7):107–117.
Bruno N, Koudas N and Srivastava D (2002) Holistic twig joins: Optimal XML pattern matching. In: SIGMOD

2002, pp. 310–321.
Budanitsky A and Hirst G (2001) Semantic distance in WordNet: An experimental, application-oriented evaluation

of five measures. In: Workshop on WordNet and Other Lexical Resources. Online Proceedings, available from
http://engr.smu.edu/ rada/mwnw/.

Chen Z, et al. (2001) Counting twig matches in a tree. In: ICDE 2001, pp. 395–404.
Chinenyanga TT and Kushmerick N (2001) Expressive and efficient ranked querying of XML data. In: WebDB

2001, pp. 1–6.
Chinenyanga TT and Kushmerick N (2002) An expressive and efficient language for XML information retrieval.

Journal of the Americal Society for Information Science & Technology, 53(6):438–453.
Choi B, et al. (2003) On the optimality of holistic algorithms for twig queries. In: DEXA 2003, pp. 28–37.
Chung C-W, et al. (2002) APEX: An adaptive path index for XML data. In: SIGMOD 2002, pp. 121–132.
Cohen E, et al. (2002) Reachability and distance queries via 2-hop labels. In: 13th ACM-SIAM Symposium on

Discrete algorithms (SODA 2002), pp. 937–946.
Cohen S, et al. (2003) XSEarch: A semantic search engine for XML. In: VLDB 2003, pp. 45–56.
Cohen WW (1999) Recognizing structure in Web Pages using similarity queries. In: 16th National Conference

of Artificial Intelligence (AAAI)/11th Conference on Innovative Applications of Artificial Intelligence (IAAI),
pp. 59–66.

Cormen TH, Leiserson CE and Rivest RL (2001) Introduction to Algorithms. 2nd edition, MIT Press.
Deutsch A, Fernandez MF, Florescu D, Levy AY and Suciu D (1998) XML-QL. In: QL ’98, The Query Languages

Workshop, W3C Workshop. available from http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.
Fellbaum C, ed. (1998) WordNet: An Electronic Lexical Database. MIT Press.
Fuhr N and Großjohann K (2001) ‘XIRQL: A query language for information retrieval in XML documents. In:

SIGIR 2001, pp. 172–180.
Graupmann J, Biwer M, Zimmer C, Zimmer P, Bender M, Theobald M and Weikum G (2004) COMPASS: A

concept-based Web search engine for HTML, XML, and deep Web data (demo). In: VLDB 2004.
Grust T (2002)Accelerating XPath location steps. In: SIGMOD 2002, pp. 109–120.
Grust T and van Keulen M (2003) Tree awareness for relational DBMS kernels: staircase join. In: Blanken H,

Grabs T, Schek H-J, Schenkel R and Weikum G., Eds. Intelligent Search on XML Data, vol. 2818 of LNCS,
pp. 231–245.

Guha S, et al. (2002) Approximate XML joins. In: SIGMOD 2002, pp. 278–298.
Guo L, et al. (2003) XRANK: ranked keyword search over XML documents. In: SIGMOD 2003, pp. 16–27.
Hayashi Y, et al. (2000) Searching text-rich XML documents with relevance ranking. In: ACM

SIGIR 2000 Workshop on XML and Information Retrieval. Online Proceedings, available from
http://www.haifa.il.ibm.com/sigir00-xml/.

Hirst G and St-Onge D (1998) Lexical chains as representations of context for the detection and correction
of malapropisms. In: Fellbaum C, Ed. WordNet: An Electronic Lexical Database. MIT Press, pp. 305–
332.

Horrocks I (2002) DAML+OIL: A reason-able Web ontology language. In: EDBT 2002, pp. 2–13.
Jamasz M and Szpankowicz S (2001) Roget’s thesaurus: A lexical resource to treasure. In: Proceedings of the

NAACL Workshop “WordNet and Other Lexical Resources,” Pittsburg, pp. 186–188.

544 SCHENKEL, THEOBALD AND WEIKUM

Jamasz M and Szpankowicz S (2003) Roget’s thesaurus and semantic similarity. Technical Report TR-2003-01,
University of Ottawa, Canada.

Jiang H, et al. (2003) Holistic twig joins on indexed XML documents. In: VLDB 2003, pp. 273–284.
Jiang JJ and Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy. In: 10th Int.

Conf. on Research on Computational Linguistics (ROCLING 1997), Taipeh, Taiwan, pp. 19–33.
Kaushik R, et al. (2002) Covering indexes for branching path queries. In: SIGMOD 2002, pp. 133–144.
Kaushik R, et al. (2004) On the integration of structure indexes and inverted lists. In: SIGMOD 2004, pp. 779–790.
Kazai G, et al. (2003) The INEX evaluation initiative. In: Blanken H, Grabs T, Schek H-J, Schenkel R and Weikum

G., Eds. Intelligent Search on XML Data, vol. 2818 of LNCS, pp. 279–293.
Kleinberg J (1999) Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5):604–632.
Leacock C and Chodrow M (1998) Combining local context and WordNet similarity for word sense disambiguation.

In: Fellbaum C, Ed. WordNet: An Electronic Lexical Database. MIT Press, pp. 265–283.
Lenat DB and Guha RV (1990) Building Large Knowledge Based Systems. Addison Wesley.
Lesk M (1969) Word-word association in document retrieval systems’. American Documentation, 20(1):27–38.
Lewis WD (2002) Measuring conceptual distance using WordNet: The design of a metric for measuring semantic

similarity. The University of Arizona Working Papers in Linguistics, 12.
Lin D (1998) An information-theoretic definition of similarity’. In: 15th Int. Conf. on Machine Learning (ICML

1998), pp. 296–304.
Manning CD and Schuetze H (1999) Foundations of Statistical Natural Language Processing. The MIT Press.
McHale ML (1998) A comparison of WordNet and Roget’s taxonomy for measuring semantic similarity. In:

Workshop on Usage of WordNet in Natural Language Processing Systems (COLING-ACL 1998). Online
Proceedings, available from http://xxx.lanl.gov/abs/cmp-lg/9809003.

Oracle Corp. (2004) Oracle 9i text. http://otn.oracle.com/products/text/.
Polyzotis N and Garofalakis MN (2002a) Statistical synopses for graph-structured XML databases. In: SIGMOD

2002, pp. 358–369.
Polyzotis N and Garofalakis MN (2002b) Structure and value synopses for XML data graphs. In: VLDB 2002,

pp. 466–477.
Qiu Y and Frei H-P (1993) Concept-based query expansion. In: SIGIR 1993, pp. 160–169.
Qiu Y and Frei H-P (1995) Improving the retrieval effectiveness by a similarity thesaurus. Technical Report 225,

Swiss Federate Institute of Technology, Zürich, Switzerland.
Qun C, et al. (2003) D(k)-index: An adaptive structural summary for graph-structured data. In: SIGMOD 2003,

pp. 134–144.
Rada R, et al. (1989) Development and application of a metric on semantic nets. IEEE Transactions on Systems,

Man, and Cybernetics, 19(1):17–30.
Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. In: 14th Int. Joint Conf.

on Artificial Intelligence (IJCAI 95), Vol. 1. pp. 448–453.
Resnik P (1999) Semantic similarity in a taxonomy: An information-based measure and its application to problems

of ambiguity in natural language. Journal of Artificial Intelligence Research, 11:95–130.
Richardson R, et al. (1994) Using WordNet as a knowledge base for measuring semantic similarity between words.

In: Proceedings of the AICS Conference.
Rubenstein H and Goodenough JB (1965) Contextual correlates of synonymy. Communications of the ACM,

8(10):627–633.
Russel S and Norvig P (1995) Artificial Intelligence—A Modern Approach. Prentice Hall.
Schenkel R (2004) FliX: A flexible framework for indexing complex XML document collections. In: 1st Int.

Workshop on Database Technologies for Handling XML Information on the Web.
Schenkel R, Theobald A and Weikum G (2003) Ontology-enabled XML search. In: Blanken H, Grabs T, Schek

H-J, Schenkel R and Weikum G., Eds. Intelligent Search on XML Data, vol. 2818 of LNCS, pp. 119–131.
Schenkel R, Theobald A and Weikum G (2004) HOPI: An efficient connection index for complex XML document

collections. In: EDBT 2004, pp. 237–255.
Schlieder T (2002) Schema-driven evaluation of approximate tree-pattern queries. In: EDBT 2002, pp. 514–532.
Schlieder T and Meuss H (2000) Result ranking for structured queries against XML documents. In:

DELOS Workshop: Information Seeking, Searching and Querying in Digital Libraries, available from
http://www.ercim.org/publication/ws-proceedings/DelNoe01.

SEMANTIC SIMILARITY SEARCH ON SEMISTRUCTURED DATA 545

Staab S, et al. (2000) Semantic community web portals. Computer Networks, 33(1–6):473–491.
Sussna M (1993) Word sense disambiguation for free-text indexing using a massive semantic network. In: 2nd

Int. Conf. on Information and Knowledge Management (CIKM 1993), pp. 67–74.
Theobald A and Weikum G (2000) Adding relevance to XML. In: 3rd Int. Workshop WebDB 2000, pp. 105–124.
Theobald A and Weikum G (2002a) The index-based XXL search engine for querying XML data with relevance

ranking. In: EDBT 2002, pp. 477–495.
Theobald A and Weikum G (2002b) The XXL search engine: Ranked retrieval of XML data using indexes and

ontologies. In: SIGMOD 2002, p. 615.
Wu Y, Patel JM and Jagadish H (2002) Estimating answer sizes for XML queries. In: EDBT 2002, pp. 590–608.
Wu Z and Palmer M (1994) Verb semantics and lexical selection. In: 32nd. Annual Meeting of the Association

for Computational Linguistics 1994, pp. 133 –138.
Zezula P, et al. (2003) Tree signatures for XML querying and navigation. In: 1st Int. XML Database Symposium,

pp. 149–163.

