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Abstract

We propose an algorithm e�ciently imple-

menting TD(�) using (the in�nite tree of)

Haar basis functions. The algorithm can

maintain and update the information of the

in�nite tree of coe�cients in its �nitely com-

pressed form by taking advantage of the fac-

t that the information obtained from �nite

training data is �nite. Our algorithm com-

putes the whole updating at each time step

in time linear in the precision (measured by

the number of bits) of each observation. The

system of Haar basis functions includes both

broad features, which have strong generaliza-

tion and averaging ability, and narrow fea-

tures, which have high precision approxima-

tion ability. Especially, since it can approxi-

mate arbitrary continuous functions on [0;1)

in the limit, TD(�) for Haar basis function-

s obtains the best solutions for all problem-

s to obtain value functions on [0;1), apart

from the possibility it may be slower to con-

verge than other methods tuned with labor.

The universality in this sense is precious be-

cause the main application of TD(�) is re-

inforcement learning, where the environment

is unknown. Although the only concern of

our method is that the space complexity in-

creases linearly in the progress in time steps,

experimental results show that it yields no

problem provided that it adopts an appro-

priate forgetting strategy.

1. Introduction

Temporal-di�erence (TD) learning (Sutton, 1988) is

an adaptive prediction method based on dynamic pro-

gramming. By using TD, we can empirically obtain

the value for each state (or the expectation of the

discounted sum of the rewards obtained after the s-

tate) from time sequences of states and rewards, with-

out knowledge about the state transition and the re-

ward distribution after each state. Many popular re-

inforcement learning algorithms including Q-learning

(Watkins & Dayan, 1992), Sarsa (Sutton, 1996) and

actor-critic (Barto, Sutton, & Anderson, 1983) are

based on TD.

In cases of applying TD to problems with large state

spaces, we have to generalize over the state space in

order to make the time and space complexities per

time step and the convergence rate practical. We can

probably say most generalization methods are based

on function approximation. As a special form of TD

combined with function approximation, a linear TD(�)

that uses a linear function approximator is proved to

converge with probability one under some conditions

(Tsitsiklis & Van Roy, 1997).

On the other hand, the complexity of a naively imple-

mented function approximator increases linearly with

the number of the basis functions. For this reason it is

impossible to implement function approximator using

an in�nite number of basis functions naively.

When we restrict the number of the basis functions,

however, we cannot estimate the generalization error

bound in advance if we do not know how the adopted

function model �ts the problem. Therefore, if the pre-

cision of approximation needed to solve the problem

is unknown, it is di�cult to select the basis function-

s adequately. Though we can select a function ap-

proximator from some sets of approximators by some

information criterion, on-line implementation of this

approach is di�cult and it needs appropriate selection

of the sets of functions in order to avoid the increase

in the number of basis functions.

In this paper we propose an algorithm implement-

ing the updating rule of linear TD(�) using Haar ba-

sis functions (e.g., Chui, 1992). While conventional

function approximators like neural nets (e.g., Lin &

Mitchell, 1992) use �nite subset of in�nite basis func-

tions, our approach uses the complete in�nite of basis



functions. Although this may seem impossible because

one must maintain information about an in�nite set of

coe�cients, our algorithm can maintain and update it

in its �nitely compressed form because the informa-

tion obtained from a �nite training set is �nite. Seen

from the outside, our algorithm behaves as if it holds

in�nite number of coe�cients.

The system of Haar basis functions includes both

broad features, which have strong generalization and

averaging ability, and narrow features, which have high

precision approximation ability. Especially, the Haar

expansion of each continuous function f on [0; 1) u-

niformly converges to f . Therefore, apart from the

convergence rate our algorithm can universally be ap-

plied independently of the shape of the target func-

tions. This means we no longer need to investigate

appropriate basis functions by hand. This feature is

precious because one objective of reinforcement learn-

ing algorithms is to reduce the burdens of developers.

Our algorithm implements the updating rule of TD(�)

using Haar basis functions in

� time linear in the precision of the observation, and

� space linear in the number of states visited until

the time step.

The algorithm presented in this paper exploits a

method that implements tabular TD(�) updating in

time logarithmic in the number of states (Katayama

& Kobayashi, 1999).

One approach related to our own is memory-based

function approximation (Santamar��a, Sutton, & Ram,

1998). We can regard this as a combination of locally

weighted learning (Atkeson, Moore, & Schaal, 1997)

and TD(�) | it computes TD(�) assuming that there

are radial basis functions (RBF) at all states visited

until the time step.
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Santamar��a et al.'s method has two common features

with our algorithm:

� assuming that the memory space is supplied in-

exhaustibly, the approximation converges to the

target function; and

� space complexity is linear in the number of states

that has been visited.

However, its time complexity increases linearly in the

number of states that has been visited. In order to

cope with this problem, Santamar��a et al. localize each

RBF by assuming the function values relevant to the

points far away from the center of the RBF to be zero.

The increase in the number of bases causes not only

high precision of the approximated value function but

also a trade-o� between the time complexity and the
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To be exact, it computes Sarsa(�), which is an exten-

sion of TD(�) to control.

generalization power of broad features.

Methods for generalization by adaptive resolution

(Chapman & Kaelbling, 1991; McCallum, 1995) also

have some common features with our algorithm. In-

stead of using a hierarchical system of basis functions,

they discriminate between and generalize over the s-

tates by state resolution and uni�cation based on some

strategies. The convergence of learning methods com-

bined with the strategies is not assured. On the other

hand, we can apply the knowledge about TD(�) to our

algorithm because it just computes linear TD(�) using

speci�c basis functions. For this reason, assuming a

computer model with inexhaustibly supplied memory,

the function approximated by our algorithm is theo-

retically assured to converge to the target function.

2. Linear TD(�) using Haar Basis

Functions

This section describes the speci�cation of our algo-

rithm. Subsection 2.1 describes the de�nition and the

features of linear TD(�). Subsection 2.2 describes the

de�nition and the features of Haar basis functions in-

cluding the features in case we apply our algorithm.

Subsection 2.3 works out the detail of the speci�ca-

tion of linear TD(�) using Haar basis functions.

2.1 Linear TD(�)

TD(�) is a learning method for prediction of future

reward in unknown Markov processes. It is the most

popular learning method applied to value estimation in

reinforcement learning, or learning to control by trial

and error in unknown environments.

TD(�) approximates the value function, or the ex-

pectation of discounted sum of rewards V

�
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E

�

P

1

i=1
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�

�

y
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= y
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where y

t

and r

t

are the s-

tate and the reward at time t respectively and 
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(0;1) is discount factor. Linear TD(�) uses a linear

function approximator V (y) =

P

1

i=0

k(i) 

i

(y) where

 

i

are basis functions. It obtains parameters k

i

asymp-

totically as

k

t

(i) = k

t�1

(i) + �

t

�

t

D

t

(i) (1)

where TD error �

t

is de�ned as �

t

= r

t

+ 
V

t�1

(y

t

) �

V

t�1

(y

t�1

). The eligibility trace D is a mechanism for

assigning the more TD errors for the more recent s-

tates. The accumulating eligibility trace is de�ned as

D

t

(i) =  

i

(y

t

) + �
D

t�1

(i) (2)

If 8y: 

i

(y) 2 f0;1g, we can de�ne replacing eligibility

trace (Singh & Sutton, 1996) as

D

t

(i) =

�

1; if  

i

(y

t

) = 1;

�
D

t�1

(i); o.w.

(3)

Accumulating traces are more conventional, while re-

placing traces can be quicker to converge.
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Figure 1. Haar basis functions. The system of Haar basis

functions includes both broad features, which have strong

generalization and averaging ability, and narrow features,

which have high precision approximation ability.

Under some conditions on-line linear TD(�) is proved

to make V

t

converge to near V

�

, reducing the on-line

error, i.e., the generalization error kV

1

� V

�

k mea-

sured by the on-line distribution. The asymptotic

generalization error has an upper bound linear in the

minimal error that can be accomplished by the linear

function model (Tsitsiklis et al., 1997). Therefore, a

function approximator that can express all the contin-

uous functions should converge to the target function

at almost every state within the support of the on-line

distribution function.

Tabular TD(�) is a special case of linear TD(�) learn-

ing that has  

i

(y) = �

y

i

where � is Kronecker's �. It

updates V (y) (= k(y)) and D(y) directly. In Section 3

we �rst explain an e�cient implementation of tabular

TD(�) (Katayama et al., 1999) before discussing the

implementation of the target linear TD(�).

2.2 Haar Basis Functions

We adopt the system of Haar basis functions (Fig-

ure 1), which has the following features:

precision It can express all the continuous functions

on [0; 1). (Our algorithm can implement TD(�)

for the in�nite tree of Haar basis functions by

compressing the information of the in�nite tree

of coe�cients.)

generalization When the function value for some s-

tate improves, the values for all the states change

toward the same direction. Near states can

change greatly.

complexity Our algorithmic device saves the time

complexity to the extent of the order of the preci-

sion of state observation and the space complexity

the order of the number of states visited.

Figure 2 depicts an example of function approxima-

tion using Haar basis functions. It depicts the gener-

alization ability at the beginning of learning and the

averaging ability at the end of learning.
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Figure 2. Example of function approximation using Haar

basis functions. (a) The beginning of learning (
t = 2

). The

sample points from the training set draw in the approxi-

mated function and generalization takes place. (b) The

end of learning (
t = 10000

). The approximated function

converges, averaging the sample points.

2.3 Application of TD(�) to Haar Basis

Functions

When updating k

t

(i), we should be careful to keep

V

t

(y) �nite for each y because it is an in�nite series.

Our approach to this problem here is just discounting

the learning rates �

t

with the depth, namely,

k

t

(i) = k

t�1

(i) + �

t

(i)�

t

D

t

(i) (4)

�

t

(i) = �

t

(1� �)�

dlog

2

(i+1)e

(5)

where 0 < �

t

� 1 and 0 < � < 1. Discounting them

with constant � makes the in�nite series

P

1

i=0

�

t

(i)

(and hence the update of V

t

at each t) �nite.

Large � makes the learner sensitive to undulation and

noise, while small � improves the averaging ability.

We call � bias/variance parameter. Note, however,

that even if � is inappropriately selected it only a�ects

the convergence rate and the approximation converges

to the true value function as long as � is scheduled

appropriately.

Let b

i

=

p

(1� �)�

dlog

2

(i+1)e

. By adopting
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i

(y),

~

D

t

(i) = b

i

D

t

(i), and

~

k

t

(i) = k

t

(i)=b

i

in-

stead of  

i

(y), D

t

(i), and k

t

(i) respectively, we can

see (2)/(3), (4), and (5) form a conventional linear

TD(�) with unique learning rate.

We initialize the coe�cients to zero for each i > 0.

3. Our E�cient Implementation

This section describes our e�cient algorithm for the

learning speci�ed in Section 2.

Subsection 3.1 prepares for Subsection 3.2 by explain-

ing a logarithmic-time computation algorithm for tab-

ular TD(�) (Katayama et al., 1999). Subsection 3.2

describes how it can be applied to TD(�) using Haar

basis functions.

Here we only give their intuitive explanation. They

are mathematically derived in Katayama (2000).



3.1 Logarithmic-time Computation Algorithm

for Tabular TD(�) updating

Tabular TD(�) updating can be implemented in time

logarithmic in the number of states (Katayama et al.,

1999). In this subsection we explain the algorithm.

Our resulting algorithm for Haar basis functions is

based on this algorithm.

In this subsection �rst two subsubsections are prelim-

inaries describing the essential ideas of the algorithm.

The third subsubsection is its formalization.

3.1.1 Lazy Updating

The de�nition of TD(�) requests that as long as � > 0

V (y) for all states y must be updated on every time

step. The naive implementation of the overall updat-

ing costs at least jY j time where Y is the set of states.

Actually, however, the instant values for all states are

not needed at every time step. We say an algorithm

consuming only

� O(log jY j) time for updating the data the program

maintains and

� O(log jY j) time for accessing each V (y)

is a logarithmic-time computation algorithm for every

step. Now we call it lazy updating to update least at

every time step and not to update V (y) itself until y

is visited (Wiering & Schmidhuber, 1998).

2

3.1.2 The Data Structure

Assume a tree that has the same number of leaf nodes

(or leaves) as the number of jY j, and assign each state

to some leaf exclusively.

3

By regarding each state y in

the same light as its corresponding leaf L we can de�ne

D

t

(L) and V

t

(L)(= k

t

(L)). The algorithm lets each

node preserve some information, and it updates the

tree (by updating the information) in time linear in the

depth of the tree (Figure 3). By adopting a minimal

tree the depth is O(log jY j). In this way we can update

the tree in O(log jY j) time and O(jY j) space.

We can regard the sequence describing \which child

node to select" at each node in the same light as its

corresponding state, because the route from the root

node to each leaf is unique.

For time step t we call each node in the route to the

current state y

t

at time t visited node at time t and

other nodes non-visited nodes at time t. Because the

information at each leaf is updated when it is visited,

the value stored at each leaf L at time t is not V

t

(L)

2

Wiering et al. (1998) categorizes this idea into lazy

learning.

3

Just like other divide-and-conquer algorithms, this al-

gorithm enforces the tree structure to the set of states |

the tree need not re
ect the actual state structure.
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Figure 3. Computation 
ow in the algorithm for tabular

TD(�). Each tuple (d; s) means that the recency gap is d

and the put-o� update is s. When a state is observed, the

algorithm collects the information of its value decentral-

ized to each selected nodes, updates relevant nodes, and

obtains its new value as new p. The values of the other

states can be obtained through putting (1; 0) into the tree

after updating and following down the route to the states

without updating the tree.

but V

�

t+1

(L)

(L), that is, the value at the last visit to

L, where �

t

(N ) denotes the last time to visit the node

N before time t. We let p

t

(L) denote V

�

t+1

(L)

(L). In

the same manner, z

t

(L) denotes the eligibility trace of

L's corresponding state at the last visit to L.

The number of the visited nodes is equal to the depth

of the tree. In addition, each visited node has a

non-visited child node whose descendants are all non-

visited. Therefore a minimal binary tree has the same

number of \non-visited subtrees" (consisting of non-

visited nodes) as its depth. It follows that if we put

some pieces of information at the root nodes of the

non-visited subtrees about what operations to apply

to all the nodes in the non-visited subtrees, and can

update the pieces of information in constant time per

piece, we can update the whole binary tree in time

linear in its depth (or in O(log jY j) time) (Figure 3).

The addend to p's in each non-visited subtree, or the

discounted sum of the addends while it is non-visited,

is one of the pieces of information to be put at the root

node of the non-visited subtree. Since it is cleared to

0 when the subtree is visited, the sum at time t is

�

P

t

i=�

t

+1

(�
)

i�1��

t

�

i

. We call this sum the put-o�

update and let ~s

t

denote it.

~s

t

is a summation until t. In actual computations the

information put at the node is not updated until its

parent node will be updated. Therefore at node N we



do not have the instant ~s

t

but its di�erence from that

of the parent node. We let s

t

denote the di�erence.

The put-o� update of a node needs to be added to the

p's of all of its descendants after being multiplied by

their eligibility traces. Therefore, in order to be able

to compute each value, we have to be able to compute

the eligibility trace of each leaf.

As well as the usage of p

t

and ~s

t

for computing V

t

, we

use z

t

and recency gap

~

d de�ned as (�
)

t��

t

to compute

D

t

. Furthermore, we let d

t

denote its di�erence (or

rate) from that of its parent node.

3.1.3 Logarithmic-time Computation

Algorithm

Now we give the rigorous de�nitions of the variables.

We can implement the algorithm by a program that

always preserves the instant values of d, s, z, and p.

d

0

(N ) = s

0

(N ) = 0 (6)

d

t

(N ) =

8

>

<

>

:

1; if S

t

(N );

~

d

t

(g(N ))d

t�1

(N );

if S

t

(g(N )) and not S

t

(N );

d

t�1

(N ); unless S

t

(g(N ))

(7)

s

t

(N ) =

8

>

<

>

:

0; if S

t

(N );

~s

t

(g(N ))d

t�1

(N ) + s

t�1

(N );

if S

t

(g(N )) and not S

t

(N )

s

t�1

(N ); unless S

t

(g(N ))

(8)

~

d

t

(N ) =

�

�
; if N = ?;

~

d

t

(g(N ))d

t�1

(N ); o.w.

(9)

~s

t

(N ) =

(

��

t

; if N = ?;

~s

t

(g(N ))d

t�1

(N ) + s

t�1

(N );

o.w.

(10)

p

t

(L) =

(

p

t�1

(L) + z

t�1

(L)~s

t

(L);

if S

t

(L);

p

t�1

(L); o.w.

(11)

z

t

(L) =

�

~

d

t

(L)z

t�1

(L) + 1; if S

t

(L);

z

t�1

(L); o.w.

(12)

V

t

(L) = p

t�1

(L) + z

t�1

(L)~s

t

(L) (13)

In those equations, ? denotes the root node, g(N )

denotes the parent node of N , and S

t

(N ) means that

N is a visited node at time t. For above equations we

can prove that V

t

(L)'s yield the exact values for the

relevant states (Katayama et al., 1999). We can obtain

the same result for replacing eligibility traces by �xing

all the z's to 1.

3.2 Extension to the Hierarchical Basis

Functions

Since Haar basis functions form an in�nite tree, and

so do the coe�cients k(i)j

i=0;1;:::

, its naive implemen-

tation is impossible. However, it can be compressed

into a small tree, because never visited nodes have no

information, and because visited nodes are updated in

a common way. Now we derive a possible and e�cient

Table 1. The derivation process of the working algorithm.

Algorithm 0 the naive implementation

+ apply the logarithmic-time algorithm.

Algorithm 1 using in�nite list of �nite trees

+ unify each tree.

Algorithm 2 using one in�nite binary tree

+ compress the in�nite tree into �nite one.

Algorithm 3 using one �nite binary tree

implementation by repeated algorithm transformation

within the same speci�cation (Table 1).

3.2.1 Algorithm 0

Algorithm 0 is the naive implementation of the speci-

�cation described in Section 2.

3.2.2 Algorithm 0 ! Algorithm 1

For one state observation, each depth of the tree of

Haar basis functions has only one visited basis whose

support includes the state. Therefore, Algorithm 0

corresponds to conducting separate tabular TD(�) for

each depth.
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By applying the logarithmic-time algo-

rithm to each depth, we obtain Algorithm 1 preserving

the same speci�cation as Algorithm 0 (Figure 4, left).

3.2.3 Algorithm 1 ! Algorithm 2

By overlapping each tree in Algorithm 1, we �nd that

the path of visited bases coincides at each time step.

Thus the values of (d; s) at the same position always

coincide throughout the trees, and therefore we can

collect the trees into one tree by sharing the values of

(d; s) (Figure 4, right). As a result we obtain Algo-

rithm 2 using the in�nite tree containing (d; s; z; p) at

each node.

At each node (z; p) is updated with an updating rule

similar to that of the logarithmic-time algorithm.

3.2.4 Algorithm 2 ! Algorithm 3

The problem here is that the tree is an in�nite tree.

However, by following the updating process one can

�nd the way to compress the tree into �nite tree.

The initial tree T

0

at time t = 0 is depicted by Fig-

ure 5 (left). In this �gure, each (0;0;0; 0) describes

the (d; s; z; p). The subtree under the root node has a

recursive structure and if we let it � we �nd that � is

the tuple of (0;0;0; 0) and two �'s.

At time t = 1 we obtain an observation which is, say,

y

1

= 0:1101 . . . in binary base (Figure 5, center). Only

(d; s; z; p) of visited nodes and their direct children are

4

To be exact,  

i

(y) can be �1 depending on the obser-

vation y and basis  

i

.
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Figure 5. Data tree at time t = 0 (left), derivation of T

1

(center), and T

2

and its compression (right).

updated. However, from (7) and (8) the direct children

remain �. In addition, (d; s; z; p) of visited nodes be-

comes (1; 0; 1;0). T

1

has no more information than y

1

(information about \which child nodes to go down"),

and can be written as f(y

1

).

Assume that we obtain y

2

= 0:1111 . . . in binary base

at time t = 2. Figure 5 (right) depicts T

2

. In this tree

d and s of each only child node (or regular child n-

ode whose parent node has a single regular child node,

where regular node means node that is not �) are 1 and

0 respectively. In addition the consecutive only chil-

dren (or only descendants) share the same e = z=h

b

and q = p=h

b

, where h

b

2 f1;�1g represents which

child node is regular. By taking advantage of this fact

we can compress the consecutive only children to ob-

tain a binary tree with two leaves.

The same thing is true for T

t

's for all t's in general.

The compressed form of T

t

is a binary tree with at

most t leaves, which has at most 2t� 1 nodes.

4. Experimental Evaluation

In this section we experimentally evaluate our algorith-

m. We demonstrate on two tasks described in Sutton

(1996): puddle world and acrobot, comparing with C-

MAC: the conventional generalization method adopted

in Sutton.

The puddle world is a goal seeking task with an ob-

stacle. The learner observes its position and decides

which way to go. The cost (or negative reward) per

each time step is 0 at the goal, 1 at the plain, and 1 {

41 in the puddle, depending on the depth.

The acrobot is a gymnast-like two-link robot. Observ-

ing the positions and the velocities of the links, it has

to swing up its tip only by giving torque at the waist

(the �rst joint from the tip) without any torque at the

hand (the second joint) as quickly as possible. The

speci�cations of both tasks are the same as those in

Sutton.

CMAC (e.g., Sutton, 1996) is a combination of sever-

al tilings. The approximated value is the sum of the

values all the tilings return. We used the same tilings,

the same exploration strategy, and the same param-

eters for both tasks as those in Sutton, except that

we used � = 0:05 for all the puddle world agents in

order to clarify the asymptotical di�erence, and that

we used the exploration rate � = 0:1 instead of � = 0

throughout the experiments in order to assure them

to converge not to suboptimal solutions but to the op-

timal solution. We also tried some other CMACs for

the puddle world.

4.1 The Detailed Description of the Learner

As long as possible, Haar agents use the same param-

eters as those for CMAC agents. In addition, both

agents obtain the action-value function by assigning

each action a function approximator on states and on-

line learning by Sarsa(�) (Sutton, 1996).

The following subsubsections describe some issues of

the Haar agents.



4.1.1 Application to Multidimensional

Observations

In both tasks, the observations are multidimension-

al. In order to apply our algorithm, they have to be

arranged into some one-dimensional real values. To

take an instance of the two-dimensional cases, we can

obtain one-dimensional values by mixing each bina-

ry digit from two coordinates alternately. For exam-

ple, observation (0:375;0:666) which is in binary base

(0:0110000;0:1010101 . . .) yields 0:4229 . . . which is in

binary base 0:01101100010001. . ..

5

In this way the fea-

ture that \the nearer the positions of two states are,

the more bases they share" is preserved.

4.1.2 Replacing Eligibility Traces

When applied to puddle world, our algorithm with ac-

cumulating traces is slow to converge. In addition,

Sutton (1996) only shows the result using replacing

traces for puddle world. For the reasons mentioned

above, we present the results using replacing traces.

It is di�cult to settle the de�nition of replacing traces

for basis functions which may return other values than

0 or 1. We de�ned replacing traces for ternary features:

D

t

(i) =

�

 

i

(y

t

); if  

i

(y

t

) 6= 0;

�
D

t�1

(i); otherwise.

(14)

4.1.3 Forgetting Strategy

Because our algorithm increases the data size by one

leaf and one node per one time step, it may exhaust

the memory. When this happens, it has to forget, or

abandon a leaf and a node which seem to be useless.

The forgetting strategy we adopted for the presenta-

tion forgets the node that has the least in
uence on

the value function.

6

We measured the in
uence by

jpj(1� �)�

dlog

2

(i+1)e

,

7

i.e., the L

1

norm of the di�er-

ence between the value function before forgetting and

that after forgetting. We implemented the forgetting

by replacing a node and its two child leaves with a leaf.

Since the integral of a basis that is not at the root

node is 0, forgetting just 
attens a local relevant part

of the value function. This fact reduces the in
uence

of forgetting on the value function.

Our forgetting is not for generalization but only for

space e�ciency. Therefore, as long as there is free

5

By adopting this approach, the precision of the ob-

servation given to the learner increases by 2 bits as the

precision per one dimension increases by 1 bit. In our ex-

periment shown later we give 0:5 and 0:9 as �, whose sub-

stantial values must be 0:25 and 0:81 (= �

2

). In general,

� should be large for high-dimensional observations.

6

Of course we can de�ne di�erent strategies.

7

We used p instead of the actual coe�cient because the

computation of all the coe�cients costs linear time in the

number of states that have ever been visited.
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memory resource, we should exploit it. In the experi-

ment, our algorithm started forgetting at t = 100000.

4.2 Experimental Results

We conducted experiments under the same random

number sequence. Figure 6 shows the results on the

puddle world task. It is a plot of \the costs so far" per

\the number of episodes so far" on the y axis against

\the number of episodes so far" on the x axis where

episode means the interval from the start to the goal.

Figure 7 shows the results on the acrobot task. It is

a plot of \steps averaging 1000 consecutive episodes"

on the y axis against \the number of episodes so far"

on the x axis.

The CMAC agents are quick to converge to suboptimal

solutions, while the agents with Haar basis functions

always converge to the best solution steadily. We can

say our algorithm with Haar basis functions are robust

with respect to its parameter. Though CMAC could

do better with �ne grained features, its long-term ex-

periment is di�cult because it takes too long time.

5. Conclusion

We proposed an algorithm implementing TD(�) up-

dating for the in�nite tree of Haar basis functions.

They can approximate any value function on [0;1)

without any generalization error as time t!1.



Our algorithm computes TD(�) updating in time lin-

ear in the precision of observations, which is small e-

nough at least for the precisions under 100 bits. In fac-

t, for the experiments shown in Section 4 our algorith-

m for Haar basis functions computes faster than the

naive implementation of CMAC, and even faster than

the fast implementation of CMAC based on Katayama

et al. (1999). The main reason of this di�erence is that

the computational time of CMAC agents is linear in

the number of tilings, and the CMAC acrobot agents

use 48 tilings.

On the other hand, at each time step it costs space

linear in the number of the states visited until the

time. For this reason, when we use actual computer-

s instead of some theoretical computer model, it falls

short of the heap space if the learning continues for a

long time. In this case the learner has to forget unnec-

essary knowledge, which destroys the assurance that

the approximation precisely converges to the target

function. However, the experimental results suggest

that, if we adopt the forgetting strategy based on the

dependency of the value function upon the knowledge,

it yields the best solution.

As for the examples presented, our algorithm is slow-

er to converge than that using appropriately selected

CMAC. However, the former converges to the best so-

lution for any parameter �, while the latter converges

to worse solutions. Considering that CMAC requires

time and labor for appropriate selection of the size and

the number of tiles, our method can be more useful.

One possible way to accelerate the convergence may be

to decrease the learning rate � of each basis at each

time it is visited. This device can easily be included

in our algorithm, and we are working on it.

Our presented algorithm limits the states within [0; 1).

One possibility to apply it to the real state space may

be regarding the 
oating point expression as a frag-

mental number in binary base. However, we have no

experience on this approach.

Our algorithm generalizes only over states, and it can-

not apply straightforwardly to the generalization over

actions. Again, we are also working on this idea.

The most serious disadvantage of our algorithm may

be the di�culty in its implementation. In order to

avoid bugs we mathematically derived the algorithm

and implemented it in a functional language. We are

going to translate the program into a faster and more

popular language and present it to the public.
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