
Improving Regressors using Boosting Techniques

Harris Drucker
Monmouth University

West Long Branch, NJ 07764
drucker@monmouth.edu

Abstract

In the regression context, boosting and bagging
are techniques to build a committee of
regressors that may be superior to a single
regressor. We use regression trees as
fundamental building blocks in bagging
committee machines and boosting committee
machines. Performance is analyzed on three
non-linear functions and the Boston housing
database. In all cases, boosting is at least
equivalent, and in most cases better than
bagging in terms of prediction error.

1. INTRODUCTION

Both bagging [Breiman (1996aJ996b)l and boosting
[Drucker et. al. (1994, 1996, 1993), Freund and Schapire
(1996a,1996b), Schapire (1990)] are techniques to obtain
smaller prediction errors (in regression) and lower error
rates (in classification) using multiple predictors. Several
studies of boosting and bagging in classification
[Breiman (1996b), Freund and Schapire (1996&l have
shown the superiority of boosting over bagging but this
is the first experimental study of combining regressors
using boosting techniques. In both boosting and bagging,
each regressor machine is trained on different subsets of
the training set. In bagging, each machine is
independently trained on N, samples picked with
replacement from the N, original samples of the
training set. Each machine is thereby trained on
different (but overlapping) subsets of the original
training set and will therefore give different predictions.
Since each machine can be trained independently, the
task of training each individual predictor may be
assigned to different CPU’s or a parallel processor. In
bagging regressors, the ensemble prediction is the
average of the predictions of all the machines.

In boosting, machines are trained sequentially. As in
bagging, the first machine is trained on examples picked
with replacement (of size Nt) from the original training
set. We then pass all the training patterns through this
first machine and note which ones are most in error. For

regression machines, those patterns whose predicted
values differ most from their observed values are defined
to be “most” in error (this will be defined rigorously
later). For those patterns most in error, their sampling
probabilities are adjusted so that they are more. likely to
be picked as members of the training set for the second
machine. Therefore, as we proceed in constructing
machines, patterns that arc difficult are more likely to
appear in the training sets. Thus, different machines are
better in different parts of the observation space.
Regressors are combined using the weighted median,
whereby those predictors that are more “confident” about
their predictions are weighted more heavily. The details
of this weighting scheme are discussed later.

Suppose we are given a set of o b s e r v a t i o n s ,
(y;,q) i=l,...,N, where N, is the number of training set
observations, and x is an M-variate vector. The
probability density function of (_v,.r) is fixed but
unknown. Based on these observations, we form .a
predictor y@‘(x). We define a sample modeling error
(ME) and prediction error (PE):

where yp’(x,) is the prediction for the i’th test example,
yi is the i’th observation, and y!” is the “truth”. The
parameters of y@“(r) are obtained from the N, training
set observations but the yi and xi in the above
summations are obtained from a set of IV, observations
(the test set) never seen before. If the noise is additive,
then y;=y~‘+n; where ni is the i’th sample of the noise.
Furthermore, if E[n] = 0 and E[n;r~~]=&;~bz, then we
may take. the expectation with respect to (_v,x) and obtain
(Breiman and Spector, 1992):

E[PE] = a’+E[ME]

This shows us that even if we know the model exactly,

“Improving Regressors using Boosting Techniques”, Proceedings of the Fourteenfh Iniernationd
Conference on Machine Learning, ed. Douglas H. Fisher, Jr., pp. 107-I 15, Morgan -IGmfmunn. 1997

there is a minimum prediction error due to the noise.
Our problem will be that the modeling error is also
nonzero because we have to determine the model in the
presence of noise. Since we don’t know the probability
distributions, we approximate the expectation of the ME
and PE using the sample ME (if the truth is known) and
sample PE and then average over multiple experiments.

In the following discussion, we detail both bagging and
boosting. We then discuss how to build trees which are
the basic building blocks of our regression machines and
use these ensembles on some standard test functions.

2. BAGGING

The following is a paraphrase of Breiman (1996b) with
some difference in notation. Suppose we pick with
replacement N, examples from the training set of size
N, and call the k’th set of observations 0,. Based on
these observations, we form a predictor ~~‘(x.0,).
Because we are sampling with replacement, we may
have multiple observations or no observations of a
particular training example. Sampling with replacement
is sometimes termed bootstrap sampling [Efron and
Tibshirani (1993)] and therefore this method is called
bootstnp aggregating or bagging for short. The
ensemble predictor is formed from the approximation to
the expectation over all the observation sets, i.e.
E&@‘(x,O)] by using the average of the outputs of all
the predictors. Breiman discusses which algorithms are
good candidates for predictors and concludes that the
best predictors are unstable, i.e., a small change in the
training set O1 causes a large change in the predictor
y@‘)(x,Ox). Good candidates are regression trees and
neural nets.

3. BOOSTING

In bagging, each training example is equally likely to be
picked. In boosting, the probability of a particular
example being in the training set of a particular machine
depends on the performance of the prior machines on
that example. The following is a modification of
Adaboost.R [Freund and Schapire (1996a)l.

Initially, to each training pattern we assign a weight
w;=l i=l,...,N,

Repeat the following while the average loss L defined
below is less than .5

1. The probability that training sample i is in the
training set is pi=w;~,wi where the summation is over
all members of the training set. Pick N, samples (with
replacement) to form the training set. This may be
implemented by marking a line of length Cw; and
subsections of length wi A uniform number picked
from the range [O,Cw,] and landing in section i
comesponds to picking pattern i.

2. Construct a regression machine t from that training
set. Each machine makes a hypothesis: h,:x+y

3. Pass every member of the training set through this
machine to obtain a prediction yp’(x;) i=l,...Nt

for each training sample
The loss L may be of any

functional form as long as Le [O, I]. If we let

D=sup 1 yfJ”(q) -y; 1 i=l,...,N,

then we have three candidate loss functions:

Li=
I YjP'(Xi) -yi I

D
(linear)

Lt=
I yjp'(x;) -yi I *

DZ
(square law)

L;=l - up
[

- I y?(x,) -yi I
D I

(exponential)

5. Calculate an average loss: L=xLipi
i=l

6 . Form &5. p’1s a measure of confidence in the

predictor. Low p means high confidence in the
prediction.

7. Update the weights: w;+wip**[l-L;], where **
indicates exponentiation. The smaller the loss, the more
the weight is reduced making the probability smaller
that this pattern will be picked as a member of the
training set for the next machine in the ensemble.

8. For a particular input xi, each of the T machines
makes a prediction h,, t=l,...,T. Obtain the cumulative
prediction h, using the T predictors:

This is the weighted median. Equivalently, each
machine h, has a prediction yj’) on the i’th pattern and an
associated p,. For pattern i the predictions are
relabeled such that for pattern i we have:

y(“<yQ, ,<yy2 I

(retain the association of the p, with its y?’). Then sum
the log(l/p,) until we reach the smallest t so that the
inequality is satisfied. The prediction from that machine
t we take as the ensemble prediction. If the 0, were all
equal, this would be the median.

Intuitively, the effect of varying the weight w; to give
more emphasis to “difficult” examples means that each
subsequent machine has a disproportionately harder set
of examples to train on. Thus, the average loss tends to
increase as we iterate through the algorithm and
ultimately the bound on L is not satisfied and the
algorithm terminates.

Although the above algorithm is similar to AdaboostR,
we have no,proof that it will terminate in a finite number
of steps to zero training error. Convergence to zero
training error depends on obtaining a learning machine
such that Lc5. On real data and with real learning
machines, as the number of hard training examples
increases in the training set, it becomes more difficult to
meet this bound. It should be noted that even if we could
find a real learning machine that always meets this
bound, boosting algorithms state nothing about
performance on a separate test set. Therefore, we must
insure that as we decrease the training error, we are not
overtitting to the idiosyncrasies of a training set and that
there will be good generatization to the test data. How
this is done depends on the particular implementation of
the learning machine and will be discussed in the
sections on the construction of trees.

From now on @‘(xi) refers to the ensemble prediction
for pattern i when we are referring to multiple
(committee) machines.

4. TREES

4.1 ConstNction

We basically use Breiman’s Classification and
Regression Trees with acronym CART [Breiman, el. al
(19X4)] with a pruning modification. To simplify this
discussion, we first assume that x is univariate. and we
h a v e N, training examples arranged so that
x, tiz<. CxN,. Because we sample with replacement,
some of the samples may be identical. We first ask
ourselves, that given a set of observations of the
dependent variable y, what is the one number ya that
best characterizes those N, values of y. If we are to
minimize Eb-ya12, then the value that minimizes this is
ya=E b]. Our approximation to E[y] is the sample mean
which is yA, and the A indicates “Above” where the tree
is to be constructed so that the initial root node is at the
top. The root node becomes a parent node which spawns
two children. Each of the children becomes a parent
node which in turn spawn two more children. Hence a
parent node is always “above” its children. Thus, given
an input x, and using only the root node, we would make

a prediction ya. (independent of the value of x). and
this is the value assigned to the root node.

After the root node is constructed. we generate two
children node in the following manner: We determine a
“split” value of x, termed X~ so that if x<-r, we predict
y’p’=yL and if x>x,, we predict y@‘qR (L for “left” and
R for “right”). It would be delightful if that split on x
simultaneously split y such that all the sample values of
y that arrive in the left node are identical (standard
deviation is zero) and all the values of y in the right node
were a different value of y, but again with a standard
deviation of zero. This is probably not going to happen
so we find the value of x, such that the total squared
error is minimized:

T S E = C b&]* + C [y&l*
i :xlx, i :.0x,

This is equivalent to minimizing TSE=n,$ +n&
where nL is the number of training samples that end up
in the left node and Q is the sample standard deviation
(with nL in the denominator) and 0~ and no refer to the
right hand node. At this stage, all the training examples
sit in one of the two children nodes and the predicted
value of the examples in each of the nodes is the mean of
the samples in that node. For a new test example,
depending on whether the value of the independent
variable is less than or greater than the split value of the
root node, the predicted value would either yR or yL.

For univariate x, we would recursively split at each
node, generating two children nodes from each parent
node until the variance within each node is zero. This
could happen if there is only a single sample in a node or
all the samples have the same value of the dependent
variable. If x is multivariate, then at each node, we
examine each feature of x, and determine its best split
value. That feature with the minimum TSE becomes the
feature to split on. Every time we determine two new
nodes from a parent node, the TSE decreases until we
decrease to zero. However, this is done on the training
set, and there is no guarantee that we will do as well on a
separate test set. Therefore we prune the tree to improve
generalization.

4.2 Pruning

CART does pruning using cross-validation. However,
we prefer a separate pruning set that is 20% of the
training set size. The value of 20% is somewhat ad hoc
but is based on considerations of the best training-test
split for classification [Kearns (1996)]. The primary
rationale for a separate pruning set is as follows: In
boosting, each machine is constructed on a different
probability distribution space because the probability of
a particular pattern being in the training set has been
altered by the weighting process. We would like to

prune on a data set that has similar statistics. For the
first machine, the probability of any member of the
original pruning set being in the pruning set for that
machine are equal. Subsequent to the first machine, we
alter the weights similar to that of the training set. That
is, the weight w; for a member of the pruning set is
wj+wi~**(l-Li) where Li is the loss of that pruning
pattern (but p is calculated from the average loss of the
training patterns).

Because pruning tends to severely reduce the number of
nodes in a tree, there is no point in building the tree until
terminal nodes only have one member. (A terminal node
may have more than one sample if all the samples have
the same value of the dependent variable). Therefore,
we modify our building process as follows: Recursively,
build (using the training set) to minimize TSE until one
of the following happens: (a) there are less than six
samples in a node (b) the variance of the samples in the
node is zero or (c) the TSE obtained by generating two
children nodes from a parent node does not reduce the
TSE (from the parent node) by at least 5%. These
conditions prevent building nodes that would have been
eliminated by pruning anyhow. Pruning takes place as
follow: pass all the pruning examples through the tree
and store the observed value of yi at every node it passes
through, including the terminal nodes. Stating at parent
nodes which have at least one child as a terminal node,
make that parent node (called “A” for Above node here)
a terminal node if:

A~decY-ya12< x Lvi-YJ + z [Yi-yn1*
L nndr R node

Note that the yi are from the pruning set while the y’s are
from the training set. If they; were from the training set,
the above condition would never be true. Each parent
node which becomes a terminal node is in turn examined
to see if its parent should be made a terminal node. We
recursively repeat this, working our way towards the root
node at the top of the tree. Let us define a generic mean
square error (MSE):

If the (y,x) come from the training set and N refers to the
number of training set examples, then this is the training
MSE. Similarly, if we sum over the pruning set
examples and N refers to the number of members of the
pruning set, then this is the pruning MSE. Summing over
the test set gives us the test MSE (and is identical to the
PE). In all these cases, the parameters of y@‘) zue
obtained from the training set. After the tree isinitially
built, the training MSE is smaller than the pruning MSE
on this unpruned tree. If the tree is built until each node
has a variance (on the training data) of zero, then the
training MSE is zero. After pruning, the training MSE

on the pruned tree is larger than the training MSE on the
unpruned tree. However, after pruning, the pruning
MSE on the pruned tree is lower than the pruning MSE
on the unpruned tree. Thus pruning not only makes the
tree smaller but also improves the generalization to
examples never trained on (that is, the pruning set). In
step 2 of the algorithm, when we construct a tree, we
refer to the pruned tree.

Another advantage of pruned trees are that they are
faster than unpruned trees. In some cases, during the
pruning process trees have been noted to prune to depth
two (one root node and two terminal nodes).

4.3 Advantages and Disadvantages

The primary advantages of trees are that they can be
quickly trained (say, as compared to neural networks),
and are non-parametric. The main disadvantages are that
the decision space has boundaries that are parallel to the
features axes and do not allow modeling based on
powers or products of features. It is possible to make
decision surfaces that are oblique to the axes, using so-
called oblique decision trees [Bradley and Utgoff
(1995), Ittner and Schlosser (1996), Murthy et. al.
(1993). Mouth et. al. (1994)] and in fact CART has that
option. Also, instead of the input to the tree being the
features, we could have as inputs both products of
features and features raised to some powers. All these
options make the building of trees much slower.

5. PREDICTION PROBLEMS

There are four sets of problems we considered. The first
three problems were used by Friedman (1991) in his
work on multivariate adaptive regression splines
(MARS):

Friedman #l is a nonlinear prediction problem which
has 10 independent variables that are uniform in [O,ll.

y=10sin(xx,~2)+20(~2-.5)2+10~q+5xS+fl

where n is N(0.1). Therefore, only five predictor
variables are really needed, but the predictor is faced
with the problem of trying to distinguish the variables
that have no prediction ability (xg to xl0) from those
that have predictive ability (x1 to x5).

Friedman #2,#3 have four independent variables and are
respectively:

#2 y=(x:+(X*X)-(l/(XZXq)))Z)“*+n

#3 y=tad’
[x*xz-(1~x2x4)1+n

I XI 1
where the noise is adjusted to give 3:l ratio of signal
power to noise power and the variables ax uniformly
distributed in the following ranges:

OS*, <loo

20 5 (x,/2x) < 280

1 <‘xx4 < 11

We use 200 training examples, 40 pruning samples, and
5000 test examples per run and 10 runs to determine the
best loss function. We follow the ten runs with 100 runs
using the best loss function for each of the three
prediction problems. The reason for the large number
of test examples is to get a reliable estimate of the
modeling and prediction error. Because we have access
to the truth, we report both the modeling and prediction
error.

Boston Housing: This has 506 cases with the dependent
variable being the median price of housing in the Boston
area. There are twelve continuous predictor variables.
This data was obtaining from the UC1 database
(a n o n y m o u s f t p a t ftp.ics.uci.edu in d i rec tory
/pub/machine-learning-databases). In this case, we have
no “truth”, only the observations. Thus we report only
the prediction error. We use 25 test cases. Of the
remaining 481 cases, 80 are used for pruning and 401 for
training. We repeat the boosting and bagging procedures
100 times, each time picking (without replacement) a
different training, pruning, and test set.

6. BOOSTING AND BAGGING RESULTS

6.1 Trees on Nonlinear Functions

We report the results on the Friedman functions (Tables
I-III) using either a single tree, or bagging (using 50
trees), or boosting (maximum of 75 trees or when the
average loss exceeds .5) with three loss functions. The
rationale for using these two choices of maximum
number of trees is that asymptotic behavior has been
reached when the number of trees is substantially less
than these two choices. Averages are over ten runs. As
we increase the number of trees in an ensemble, the
prediction and modeling errors reach a minimum and it
is an average of those minima for the 10 runs that is
reported under ME and PE. In other simulations, we
can’t determine the ME because the truth is unknown.
Therefore, it would be comforting to know that when the
PE reaches a minimum, the minimum of the ME is
reached. This is ME2, the value of the modeling error
when the minimum of the prediction error is reached. It
is comforting to see that ME2 and ME are close or
identical.

It may be the case that the standard deviation of,the ME
or PE is such that a clear winner for boosting against
bagging cannot be determined. Experiments were
therefore done as follows. We always used the same test
set of size 5OMl. There were 10 sets of training and
pruning data. In the first experiment, we used the same

training (size 200) and validation set (size 40) on both
the boosting machines and bagging machines and then
compared the results on the test set. We call an
experiment a success if boosting is better than bagging
on the same test set when trained and pruned on the
same data. We then used the second set of training and
pruning data and then compared the test results on the
original test data. This was iterated for the rest of the ten
training and validation sets. If boosting and bagging are
approximately equal in performance , then one would
expect boosting to win half the time and lose half the
time of the total ten experiments. Let p be the
probability of boosting beating bagging. If we make the
hypothesis that p=S, then we have a binomial
experiment with the probabilities:

P[#successes18]<5% P[#successes=lO]<l%

Therefore, if the number of times boosting is better than
bagging is 8 or better, we can reject the hypothesis that
the two algorithms are equal (with reject level of 5%).
Similarly, if in all the 10 experiments, boosting is better
than bagging, than this could happen with probability
less than 1% under this hypothesis that the performances
are equal. As can be seen in the tables, boosting is better
than bagging if the best loss function is used for the
first and third Friedman functions. In function #2, there
is no clear winner if the best loss function is used.
Function #2 is unusual in that the contribution to the
prediction error is primarily due to noise.

Subsequent to the original set of ten runs, we did 100
runs on the best results from these first three tables. We
used 100 sets of training data (size 200), 100 sets of
validation data (size 40) and one set of test data (size
5000). If using the same training and validation data,
boosting was better than bagging on the test set, we
count it as a win for boosting (Table IV). We reach the
same conclusions as we did using only ten runs.

Breiman has results on these three functions using
bagging. Our bagging results are much better than his.
The major difference in procedure is that he used a total
of 200 training examples, while we used 200 training
examples plus 40 pruning examples. Therefore, we did
another ten runs on function #l using bagging with 166
training examples and 34 pruning examples. Our
modeling error for bagging is 2.58 which is still
substantially less than Breiman’s results of 6.2. We can
only attribute the difference to the fact that we use a
separate pruning set which tends to give better
generalization.

6.2 Stacking Trees on Nonlinear Functions

Stacking [Wolpert (1992)] is not a particular algorithm
but a generic name for the following observation: if we
train on part of the training set, then the performance of
the learning machine on training data that was not part of

Table I. Results of fen runs on single trees, bagged trees and boosted trees on Friedman #I. #better
indicates how many times (out of ten runs) that boosting is better than bagging on the same training,
pruning, and test sets. ME2 is the average modeling error at the minimum of the prediction error

modeling #better ME2 prediction
error

single 3.58

bagging 2.20 2.2” 3.31
boost (linear loss) 1.65 10 1.65 2.15
boost (exponential) 1.67 9 1.68 2.79
boost (square law) 1.73 8 1.77 2.84

Table II. Results of ten runs on Friedman #2

modeling #better ME2 prediction
error error

single 29310 29310 77511
bagging 11463 11463 65316
boost (linear loss) 11684 3 11708 68622
boost (exponential) 10980 5 11108 64703
boost Csauare law) 15615 0 15660 69585

Table III. Results of ten runs on Friedman #3

I modeling #better ME2 prediction 1
error error

single / .0491 .0491 .0840
bagging / .0312 .0312 .0697
boost (linear loss) I ,021s 8 .0218 .0604
boost (exponent&I) .0213 9 .0214 .0602
boost (square law) .0202 10 .0202 .0588

Table IV. Results of 100 runs on bagged trees and boosted trees on the three Friedman functions. #better
indicates how many times (out of 100 runs) that boosting is better than bagging on the same training,
pruning, and test sets. The lossjimctions used were the best of Tables I, II and III.

ME-bagging ME-boosting # better PE-bagging PE-boosting loss-type
#l 2.26 1.74 94 3.36 2.&l linear
#2 10,093 10,446 43 66,077 65,955 exponential
#3 .0303 .0206 90 .0677 .0596 square law

Table V. Stacking on Friedman #I (boosting uses linear loss function))

modeling prediction #trees
error error

bagging
(no stacking) 2.20 3.31 50.
bagging
(stacking) 1.91 3.02 14.4
boosting
(no stacking) 1.65 2.15 59.2
boosting
(stacking) 1.43 2.56 10.4

Table VI. Stacking on Friedman #2 (boosting uses exponential loss)

modeling prediction #trees
error error

bagging
(no stacking) 11463 65316 50.
bagging
(stacking) 13702 67195 14.3
boosting
(no stacking) 10980 64703 58.4
boosting
(stacking) 13129 67110 22.2

Table VII. Stacking on Friedman #3 (boosting uses square loss)

modeling prediction #trees
error error

bagging
(no stacking) .0312 .0697 50.
bagging
(stacking) .0256 .0644 8.9
boosting
(no stacking) .0203 .0604 46.3
boosting
(stacking) .0202 .0590 15.6

the training set for that particular machine gives us
additional information. w = 2 yi_;yfiYj” *

[1
y;>o.

i=l x=1

Suppose we are now given the individual This is a constrained quadratic optimization
machines, whether obtained from boosting or problem for which the use of standardized
bagging and ask the best way to combine them quadratic programming packages is
rather than using averaging (for bagging) or the recommended. The above is equivalent to
weighted median (for boosting). Breiman (1996a) minimizing (with respect toy):
suggests the following stacking technique:
Suppose that ““ce again pattern i has a” observed w = C’+ry
value yi on the training set. Suppose machine k
has a predicted value #’ for pattern i on the where C is a vector and H is a Hessian whose
training set where there are a total of K machines.
Then find the yx that minimizes:

elements are:

N,

ck = -2~YiY!” k=l,...,K
i=l

hj,&“‘y~“’, I j,k=l,...,K a n d hjk=hki
i=l

Tables V, VI, and VII show the results of using
stacking using the best loss functions (for
boosting, from Tables I-III). Note that if yk=O,
machine k is not needed. The last column of these
tables indicate the number of trees in the stacked
or unstacked implementation. There are mixed
results. On Friedman #I, both bagging and
boosting improve over their unstacked results at a
5% significance level, but boosting still is better
than bagging. For Freidman #2, stacking makes
both boosting and bagging worse while for
Friedman #3, stacking makes bagging better but
boosting is still better than stacking.

6.3 Trees on Boston Housing

For Boston housing, using 100 runs, and the
normal approximation to the binomial, we find
since 0~(100)(.5)(.5)=5, that
P[#succesessS61.65]<1%. Therefore, if boosting
beats bagging more than 61.65% of the time, we
can reject the hypothesis that the two algorithms
are equally good. Over 100 runs, we get an
average prediction error of 12.4 using bagging and
10.7 using boosting. Boosting is better than
bagging 72% of the time. On this data Breiman
(1996a) obtained 11.7 while we obtained 12.4.
Without knowing the error bars on his results, we
have no way of telling whether our results on
bagging are significantly different. There is a
procedural difference: Breiman uses a training set
of size 481 and a test set of size 25, while we use a
training set of size 401, a pruning set of size
80,and a test set of size 25. Stacking on top of
boosting or bagging does not improve results.

8. CONCLUSIONS

Boosting is a viable approach to reducing
prediction error. It gives statistically significant
improvement in most cases and never is
statistically worse than bagging. In constructing
trees, it is important to generate a pruning set of
data whose statistics ax similar to those of the
training set. Pruning improves generalization and
increases speed. Stacking sometimes helps,
sometimes hurts.

Futhure studies will examine the use of n&J
networks or oblique decision tree as learning
machines, and the feasibility of using nonlinear
functions of features as inputs to decision trees.

Acknowledgements

This author gratefully acknowledges the many
illuminating discussions held with Yoav Freund
and Robert Schapire. This work was supported by
ARPA contract NOOO14.94-C-0186 while
employed as a consultant to Lucent
Technologies-Bell Labs.

References

Breiman, L.(l996a). “Stacked Regressions”,
Machine Learning, vol. 24, No. 1, pp. 41-64.
Also at anonymous ftP site:
ftp.stat.berkeley.edu/pub/tech-reports/367.ps.Z.

Breiman, L. (1996b). “Bagging Predictors”
Machine Learning, vol. 26, No. 2, pp. 123.140.
Also at anonymous ftP site:
ftp.stat.berkeley.edu/pub/tech-reportsl42l.ps.Z.

Breiman, L. (1996) “Bias, Variance, and Arcing
Classifiers” Technical Report 460, Department of
Statistics, University of California, Berkeley, CA.
Annals of Statistics (to be published) Also at
anonymous ftP site:
ftp.stat.berkeley.edu/pub/tech-reportsl46O.ps.Z.

Breiman, L., and Spector, P. (1992). “Submodel
Selection and Evaluation in Regression. The X-
Random Case”, Intemarional Statistical Review,
60, 3, pp.291.319.

Breiman, L., Friedman, H.H., Olshen, R.A., and
Stone, C.J. (1984). Classification and Regression
Trees, Wadsworth International Group.

Bradley, C.E., and Utgoff , P.E. (1995).
“Multivariate Decision Trees”, Machine
Learning, 19, pp. 45-77.

Drucker, H., (1996) and Cortes, C. (1996)
“Boosting Decision Trees”, Neural Information
Processing 8, ed: D.S. Touretzky, M,C. Mozer
and M.E. Hasselmo. Morgan Kaufmann, pp.479.
485.

Drucker, H., Cones, C.. Jackel, LD., LeCun, Y.,
Vapnik V. (1994). “Boosting and Other Ensemble
Methods”,

Drucker, H., Schapire, R.E., Simard, P., (1993),
“Boosting Performance in Neural Networks”,

Efron, B., and Tibshirani, R. (1993), A n
Introduction to the Bootstrap, Chapman and Hall.

Fix, M., (1963) . Probabiliry T h e o r y a n d
Mathematical Statistics, John Wiley.

Freedman, J.H., (1991). “Multivariate Adaptive
Regression Splines”, The Annals of Statistics, 19,
No. I, pp. l-82

Freund, Y., and Schapire, R.E. (1996a).
“Experiments with a New Boosting Algorithm”,
Machine Learning: Proceedings of the Thirteenth
Conference, ed: L. Saitta, Morgan Kaufmann, pp.
148.156. Also at web site:
http://www.research.att.coml-yoav. o*
http:llwww.research.att.com/orgs/ssr/people~yoav.

Freund, Y., and Schapire, R.E. (1996b). “A
decision-theoretic generalization of on-line
learning and an application to boosting”, at web
site: http://www.research.att.co~yoav. o r
http:llwww.research.att.com/orgslssr~people~yoav.
An extended abstract appears in the Proceedings
o f t h e S e c o n d E u r o p e a n C o n f e r e n c e o n
Computational Learning Theory, Barcelona,
Springer-Verlag. March, 1995, pp. 23-37.

Ittner, A., and Schlosser, M.(1996), “Non-Linear
Decision Trees-NDT”, Machine Learning:
Proceedings of the Thirteenth Conference, ed: L.
Saitta, Morgan Kaufmann, pp. 2X-257.

Kearns, M. (1996). “A Bound on the Error of
Cross Validation Using the Approximation and
Estimation Rates, with Consequences for
Training-Test Split”, Neural Information
Processing 8, ed: D.S. Touretzky, MC. Mozer
and M.E. Hasselmo. Morgan Kaufmann, pp. 183.
189.

Murthy, S., Kasif, S., S&berg, S., and Beigel, R.
(1993). “OC!: Randomized induction of oblique
decision trees” Proceeding of the 11th National
Conference on Anificial Intelligence (AAAI-93).
MIT-Press.

Mruth, S., Kasif, S., Salzber, S. (1994), “A System
for Induction of Oblique Decision Trees”, Journal
of Atiificial Intelligence Research, 2, Morgan
Kaufmann.

Schapire, R.E., (1990). “The Strength of Weak
Learnability”, Machine Learning, 5, 2, pp. 197.
227.

Wolbert, D.H. (1992), “Stacked Generalization”,
Neural Networks, 5, pp. 241-259.

