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Real Options Valuation: a Monte Carlo Approach

Abstract

This paper provides a new approach for valuing a wide set of capital bud-
geting problems with many embedded real options dependent on many state
variables and a related valuation algorithm based on Monte Carlo simula-
tion.
The valuation approach decomposes of a complex real option problem with
many options into a set of simple options, but taking into account deviations
from value additivity due to interaction and strategical interdependence of
the embedded real options, as noted by Trigeorgis (1993). The valuation
approach presented in this paper is an alternative to the general switching
approach for valuing complex option problems, as proposed by Kulatilaka
and Trigeorgis (1994) and Kulatilaka (1995).
The related numerical algorithm is based on simulation along the lines of
Longstaff and Schwartz (2001) and is extended in order to implement the
decomposition approach.
We provide also an array of numerical results to show the convergence of the
algorithm and a few real life capital budgeting problems, to see how they
can be tackled with our approach.

JEL Classification: C15, C63, G13, G31.
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1 Introduction

Traditional Monte Carlo simulation has been considered a powerful and
flexible tool for capital budgeting for a very long time. It is a recommended
methodology for capital budgeting decisions in many Corporate Finance
textbooks. Actually, it permits to include a wide set of value drivers, it
is flexible enough to cope with many real life situations and it does not
suffer the “curse of dimensionality” affecting other numerical methods. Yet,
as pointed out by many authors,1 it seems not so suited to tackle capital
budgeting problems with (potentially, many) real options.

Mason and Merton [34] first described a capital budgeting problem as
a collection of real options, i.e. a set of opportunities managers (usually)
have to deviate from a previously decided course of actions. Real options
are capital budgeting decisions contingent on the value assumed by some
relevant and well specified state variables. Projects involving individual real
options have been evaluated since the early stage of development of the Real
Options Theory (see e.g. Majd and Myers [35] and McDonald and Siegel
[38, 39]).2 Generally speaking, the numerical techniques for financial options
can be successfully employed to evaluate single real options: as far as the
mathematics of real option valuation is concerned, there would be no need
of a Theory specifically devoted to individual real options. An exception is
represented by Brennan and Schwartz [11] who evaluate the investment in a
mine considering the compound effect of the flexibility to temporarily shut
down and restart the operations and to abandon the project.3 A widely
accepted classification of simple real options is the one presented in Mason
and Merton [34] (see also Amram and Kulatilaka [1] and Trigeorgis [45] for
more details and references therein) and includes: the option to defer an in-
vestment decision, the option to partially or completely abandon operations,

1See for instance Trigeorgis [45, pp. 54-57].
2For a comprehensive bibliography on the subject, see Dixit and Pindyck [20] and

Trigeorgis [45].
3This line of research, involving the option to switch from one operating mode to the

others and with the possibility to reverse the action at some cost, has been followed up
by other authors. Dixit [19] studied an investment problem with the flexibility of entry
and exit the operations over time. Kulatilaka [25, 26] introduced a model to evaluate an
investment project in a industrial plant firing two different types of fuel, endowed with
the flexibility to switch from one fuel to the other according to the relative movements of
their market prices. Kulatilaka and Trigeorgis [29] and Kulatilaka [27] (see also Trigeorgis
[45, Ch. 5, pp. 171-201]) propose a general model of managerial flexibility based on
the option to switch among properly defined operating modes. In this work we propose
a different, alternative approach to model the general flexibility embedded in a capital
budgeting problem.
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the option to alter the scale of current operations, the options to switch the
existing assets to an alternative use and many others. The valuation of
these options can be easily done by employing the same techniques used for
financial option pricing.4

Unfortunately, real life investment decisions usually present many op-
tions at once or, following Trigeorgis [43], an investment decision can be
seen as a portfolio of interacting opportunities. The interactions among
the contingent decisions make valuation harder. As a rule, the value of a
portfolio of interacting options deviates from additivity and in some cases
the difference with respect to the sum of the values of the individual real
options considered in isolation can be significant. Hence, the problem of
decomposing a complex investment project into a set of individual options
quite often does not have a straightforward solution. This fact prevents
the use of valuation techniques devoted to individual options, well known
in Financial Option Theory and calls for a valuation approach specific for
problems involving many real options.5

Kulatilaka and Trigeorgis [29] and Kulatilaka [27] (see also Trigeorgis [45,
Ch. 5, pp. 171-201]) proposed a valuation approach for complex problems
based on the general idea of switching among different “operating modes”.
In their approach, given an investment with many embedded options, at any
time a decision can be made, there is an option to switch from the current
“mode” to a different one. The switching cost of taking the action is the
“strike price” of the option. This valuation method is based on the analogy
between machines with many operating modes (and related switching costs)
and a capital budgeting problem: the operating modes are decision that the
management can make in a dynamic way. For instance, the usual wait-to-
invest option (a call option on the present value of the cash flows from op-
erations of a given investment project) can be described as an (irreversible)
option to switch from the mode “wait to invest” to the mode “invest.” Ac-
cording to this approach, a flexible capital budgeting problem can be seen
as a complex compound switch option among several and properly defined
“modes.” The technique based on the general switching flexibility, joint with
some discrete-time approximation of the continuous-time dynamics of the
state variable (either binomial lattices or Markov chains), is widely applied
to capital budgeting problems (examples are in [28, 29, 43, 45]). Besides
other problem, mainly related to the computational efficiency of a numeri-
cal valuation procedure based on this approach and which we discuss below,

4A good and comprehensive reference on this is Trigeorgis [45].
5A notable exception is Geske [23].
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the general option to switch has the following main drawback. As discussed
in Brekke and Øksendal [7], an optimal switching problem is a special type
of impulse control problem (see Bensoussan and Lions [4] for a reference). If
we are to model the problem in a continuous-time setting, and we use some
discrete-time numerical valuation approach to obtain a solution, first one has
to prove the existence of a finite solution and next the convergence of the
discrete-time (numerical) solution to the continuous-time one. (Of course,
for a switching problem with a finite number of decision dates the solution
always exists.) In Brekke and Øksendal [7] the proof of the existence of an
optimal solution in a continuous-time setting is offered for a class of switch-
ing problems.6 The same result for a general optimal switching problem is
not available yet, at the best our knowledge. This means that, although
the approach based on the general option to switch is flexible, one has to
be very careful to apply this approach in a continuous-time setting, since a
solution may not exist.

The main contribution of this work is a different way to map a complex
real options problem into a set of simple options and a way to comply with
the hierarchical structure of the options. Our approach always provides
well defined problem with a finite solution also in a continuous-time setting.
Lastly, even if the approach based on the general option to switch proves
to be fruitful in a low-dimensional setting, it becomes computationally in-
tractable if there are many (i.e., more than two) state variables. Since sim-
ulation methods requires a computational effort which is linear with respect
to the dimension of the state space, in this paper we propose an alternative
approach for valuing multi-options and multi-assets problems based on the
simulation approach developed by Longstaff and Schwartz [32].

Usually, the real options embedded in a capital budgeting problem are
American-type claims. This means that closed-form solutions are rarely
available and some numerical methods must be employed. Many methods
have been proposed for real option pricing purposes. Most of them are plain
extensions of well known algorithms used to price financial options. Roughly,
they can be divided into three main classes: finite difference methods and
other approaches dealing directly with PDE’s (first introduced by Brennan
and Schwartz [10]), Monte Carlo simulation methods (introduced by Boyle
[6]) and lattice methods first proposed by Cox, Ross and Rubinstein [18].
All these approaches have some flaws when applied to real options valua-
tion. Finite difference are quite hard to implement if the project has many

6Basically, these are the same kind of problems described in Brennan and Schwartz.
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interacting options. Bi- or trinomial lattices,7 although very flexible for cap-
ital budgeting problems with many embedded options (see Trigeorgis [44]
and [45, Ch. 10]), suffers the curse of dimensionality. Yet, real life capi-
tal budgeting problems usually involve multiple state variables (underlying
assets, as long as options are concerned). This feature, assuming that the
stochastic model of these variables are known,8 makes real options even more
difficult to evaluate. Multi-factor real options problems have been studied
for instance by Triantis and Hodder [42], Cortazar and Schwartz [15], Gelt-
ner, Riddiuogh and Stojanovic [22], Cortazar, Schwartz and Salinas [16],
Martzoukos and Trigeorgis [36], Brekke and Schieldrop [8] and others.

For all the above mentioned reasons, simulation seems to be the most
suited numerical technique for real options. Unfortunately traditional Monte
Carlo simulation (as introduced by Boyle [6]) is a forward-looking technique,
whereas dynamic programming (to evaluate American options) applies back-
ward recursion. Many approaches have been proposed to match simulation
and dynamic programming: Bossaerts [5] proposes two moment estimators
of optimal stopping time; Tilley [41] provides an algorithm in which simu-
lated paths are bundled to estimate probability weights of the state space;
Barraquand and Martineau [2] give a stratification method for pricing high-
dimensional options, in the same spirit of Tilley’s approach; Broadie and
Glasserman [12] proposed an algorithm based on simulated trees with a
small number of dates where early exercise is allowed.

A very promising approach has been presented by Longstaff and Schwartz
[32]. This numerical method is based on Monte Carlo simulation and uses
least squares linear regression to determine the optimal stopping time of
the problem. This approach, called Least Squares Monte Carlo Approach
(LSM), has the additional feature of being a very intuitive, pedagogically
clear and flexible tool. We will provide an extension of this algorithm to eval-
uate complex investment projects with many interacting options and many
state variables, along the lines of the proposed decomposition approach.

We illustrate our methodology in two steps. The first step is a valuation
approach which decomposes a complex real options problems into a sequence

7In this class of algorithms we include also discrete-time and discrete state Markov
chains. See for instance, Kulatilaka [27] for an application of Markov chains to real options
valuation.

8One of the major problem in real options applications is the specification of the
stochastic model and the correct estimation of the parameters of the model. Traditionally,
some very simple models are used (e.g. geometric Brownian motion or mean-reverting pro-
cesses) which are more suited to describe the price of traded assets. We will rely upon the
usual assumptions, leaving the issue of the underlying process specification as a subject
for future research.
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of simple options and some way to comply with their interdependencies.
Since the building blocks of the complex problem are simple real options,
we can take benefit of the numerical methods usually employed for individual
financial options. The second step is an extension of the simulation approach
proposed by Longstaff and Schwartz [32] to multi-options problems.

The paper is organized as follows. Section 2 introduces the suited envi-
ronment for capital budgeting purposes. Instead of the usual CAPM econ-
omy, we develop our model in the more flexible equilibrium economy pro-
posed by Cox, Ingersoll and Ross [17]. This permits to point out the risk
factors and and the related premia, very useful if the capital budgeting prob-
lem depends on many (not necessary traded) factors, instead of a unique
market factor as in CAPM. Section 3 presents a method to describe a wide
class of capital budgeting problems using a small set of well defined building
blocks, which are specifically designed both to comprise the largest possible
number of actual options problems and to be easily solved by the simula-
tion algorithm presented below. These small problems will be the building
blocks of our valuation algorithm. Section 4 presents an extension of the
LSM algorithm to numerically evaluate the building blocks of our algorithm.
Section 5 provides a set of numerical examples to see how to apply our ap-
proach to real life capital budgeting problems and to show the efficiency of
the numerical algorithm based on simulation.

2 The economy

2.1 State variables

Let there be given a Cox-Ingersoll-Ross economy with financial market and
a representative agent (see [17]).

There are n state variables X1, X2, . . . , Xn, for short denoted X ′ =
(X1, X2, . . . , Xn).9 The values of these variables is the only relevant infor-
mation to make the capital budgeting decisions. These variables can be
either prices of traded securities or observable values of non-traded assets
(factors). The dynamics of the state variables, with respect to the objective
probability measure follow the Markov processes

dXi(t) = ai(t, X(t))dt + bi(t, X(t))dB(t) with Xi(0) = xi, i = 1, . . . , n

where ai : Rn 7→ R and bi : Rn 7→ Rn are such that the solution of the
stochastic differential equations above exists and dB(t) is the increment of a

9A prime denotes transposition.
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standard n-dimensional Brownian motion, with E[dBi(t)dBj(t)] = 0. With
a matrix notation, the process is

dX(t) = a(t, X)dt + b(t, X)dB(t) with X(0) = x

where a′ = (a1, . . . , an) and

b(t, x) =

b1(t, x)
...

bn(t, x)


is a positive definite n× n matrix with full rank for all t.

2.2 Financial market

There is a financial market where n non-redundant financial assets10 are
traded, i.e the financial market is complete. The prices of these assets, given
by the processes {P j(t, Xt)}, j = 1, .., n, . . ., are contingent on the n state
variables (if they are not the state variables themselves). Since there is no
confusion, in the rest of the paper the dependence of the financial asset
prices on the state variables will be often dropped. The dynamics of the
asset prices are

dP j(t)
P j(t)

= (µj(t)− δj(t)) dt + σj(t)dB(t)

where δj is the payout rate,11 µj is the total expected instantaneous rate of
return and σj is a 1× n vector valued function.

An instantaneously riskless asset is available with instantaneous rate of
return r.

The set of investments opportunities remains unchanged within the rel-
evant time horizon.12

The market is assumed to be in equilibrium and the related asset pricing
relation is

µj(t) = r(t) +
n∑

i=1

Ψi(t, X)
P j

Xi
(t)

P j(t)
j = 1, . . . , n (2.1)

10We will use the definition “financial asset” in broader terms. Actually, also traded
commodities are included in this set.

11If the j-th financial asset is a traded commodity, δj is the related convenience yield
(see Brennan [9]).

12We make this assumption to avoid the difficulty arising from change in the production
technology. To see how the change in the set of investment opportunities affect the asset
pricing relation, see Cox, Ingersoll and Ross [17].
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where Ψ′ = (Ψ1, . . . ,Ψn) are the (factor) risk premia, P j
Xi

is the derivative
of asset j with respect to state variable Xi, and r(t) is the equilibrium
instantaneous riskless rate.

Accordingly, since the financial market is complete, there is a unique
equilibrium risk-neutral probability measure. With respect to this probabil-
ity measure, the dynamic of the state variables is

dX(t) = â(t, X)dt + b(t, X)dB(t) with X(0) = x (2.2)

where â = (a−Ψ) is the risk-adjusted drift.
To simplify our arguments, we will assume from now on that the riskless

rate is non-stochastic and constant. The analysis would be the same, at the
cost of more cumbersome formulas, if we assume a stochastic riskless rate.

2.3 Contingent claim valuation

If a (necessarily) redundant contingent claim, for instance an option on a
traded asset (or on a factor), is given, with maturity T and payoff Π(T,XT ),
where Π is a known function,13 we can evaluate the contingent claim with
respect to the prices in the financial market.

Let F (t, Xt) be the value of the claim at t ≤ T , with F (T,XT ) =
Π(T,XT ). If the claim is European, i.e. it can be exercised only at T ,
the price at any time t < T is

F (t, Xt) = e−r(T−t)E∗t [Π(T,XT )], (2.3)

and if the claim is American, i.e. it can be exercised at any time before T ,
and is still available at t,

F (t, Xt) = max
τ∈T (t,T )

{
e−r(τ−t)E∗t [Π(τ,Xτ )]

}
, (2.4)

where T (t, T ) is the set of stopping times in [t, T ] with respect to the infor-
mation generated by the state variables X and E∗t [·] is the expectation with
respect to the unique risk neutral probability, conditional on the information
available at t.14 See Bensoussan [3] and Karatzas [24].

13We assume that Π has enough properties so that expectation and variance with respect
to the relevant probability measure can be properly defined. Formally, Π ∈ L2(Ω,F , Q),
the space of square-integrable functions with respect to Q, where Ω denotes the space of
all possible states of the economy, F is the filtration generated by the state variables and
Q is the equilibrium risk-neutral probability measure on F .

14We will denote conditional expectation also with E∗
t [·] = E∗[· | Ft].
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Interesting enough, equations (2.3) and (2.4) are simply net present val-
ues, with respect to the riskless rate, of certainty equivalent payoffs. This
valuation paradigm will be used also for valuing capital budgeting projects
(and the embedded real options).

3 A general valuation approach for capital bud-
geting

Real options are contingent claims on real investment projects. They are
contingent on the state variables X of the reference economy. Since the
financial market is complete, Fisher separation theorem holds and the valu-
ation principle based on discounting certainty equivalent cash flows applies.

Simple (i.e. individual) real options have been extensively studied. We
are interested in valuing investment opportunities on real assets when many
interacting options are available. The individual real options embedded in
a capital budgeting decision can interact in many ways. In what follow
we present a simple and fairly general way to decompose a complex real
options problem into a set of simple building blocks. Assuming that the
simple options are well defined, we introduce a set of possible ways of in-
teraction to properly capture the interdependencies among simple options.
This methodology can be successfully applied to a large family of capital
budgeting problems: basically it can be used for all problems which do not
have the opportunity to reverse an already taken action. As an example of
a reversible action, the above cited article by Brennan and Schwartz [11]
provides a valuation approach for an investment opportunity in a mine with
the flexibility to shut down and restart the operations at some costs.15

The idea underlying the approach we propose is very simple: a cap-
ital budgeting problem is a set of simple options with some link among
them. These links permits to comply with the hierarchy and interdependen-
cies among the embedded real options. Some interdependencies are as simple
as the compoundedness. As an example, assume that the management has
both the flexibility to wait for the best timing of an investment decision and
the flexibility to abandon it, once the investment decision is made. In this
case there are two simple options, a call and a put, on the same underlying
variable, i.e. the present value of cash flows from operations. These options
are compounded, since the option to abandon is available only after and if
the option to invest is exercised. It is straightforward to extend this line of

15The extension of the simulation technique to these problems is the subject of future
research.
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reasoning to many compound options, like in sequential investment prob-
lems, where any step of the investment process provides the opportunity to
do all subsequent steps.

On the other hand, there can be some complex relations among real
options. For instance, assume that an investment decision provides the
management with many alternative options and that the management can,
at any time, exercise some (or one) of them, killing all the other options. It
seems quite obvious that, with many options at hand, the management will
exercise the most favorable and, if these are American options, there is also
a timing option embedded in this decision.

Many capital budgeting problems can be decomposed into a sequence of
options. Besides the compound option case, described above, we formalize
the following two additional possible way to interact: sum of independent
options and mutually exclusive options.

3.1 Independent options

In some capital budgeting problems, there can be many independent options
available to the management. For instance, launching a new product in a
country gives the opportunity to launch the product also in other countries.
The investment opportunity in each country is an option itself and every
such option can generally be exercised independently of the others. In this
sense, the management has a portfolio of options.

If the options are independent, then their values are not influenced by
the other options. Hence, the value of the portfolio of options is the sum
of the values of the simple options. This is the case, described in Corpo-
rate Finance textbooks, of value additivity of investment projects. We want
to stress that “independent” in this case means “strategically independent”
and not “stochastically independent.” Actually, the assets underlying the
independent options may not be (and usually are not) stochastically inde-
pendent.

Let there be given H options, with maturities Th, payoffs Πh(, t,Xt)
and values Fh(t, Xt), h = 1, . . . ,H. In what follows, since our approach
is recursive, we will phrase it by choosing a generich step in the valuation
procedure and assuming that the results of the previous steps are known.
Hence, the Fh(t, Xt), h = 1, . . . ,H have been already determined (together
with the related optimal stopping times) in the previous steps.

The possibility to exercise all the H options independently is itself an
option. Since the H subsequent options are independent of each others, the
value of the option to exercise them, denoted G(t, Xt), is the sum of their
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values:

G(t, Xt) =
H∑

h=1

Fh(t, Xt). (3.1)

According to this approach, we can describe also the case when there
is some risk, specific to the investment project at hand, which affects the
decisions to be taken on such project. More specifically, the availability
of the H options above may depend on some event. This is the case, for
instance, with R&D projects. If at the end of any stage of the process there
is a test and this can be failed or succeeded, then there is an event with two
possible outcomes. Usually, as a consequence of each of the two outcomes
there are some options: in the event the test is successful, there is the option
to follow up the R&D process; if the test is failed, there can be the option
to abandon the investment.

In our framework, the technical uncertainty surrounding an investment
project is different from the uncertainty driven from the state variables,
X. Since it is specific to the investment project at hand, we consider the
technical uncertainty stochastically independent of X. Hence, there is no
premium for this risk according to our pricing relation in (2.1).

Usually, the probability of the technical event affecting the project is
(assumed to be) known. If the event has H possible outcomes, ph > 0 is
the probability of the h-th one,

∑
h ph = 1, and assuming that the technical

uncertainty dissipates at T ′ < Th, h = 1, . . . ,H, the option value is

G(t, Xt) = e−r(T ′−t)
H∑

h=1

phE∗t
[
Fh(T ′, XT ′)

]
, (3.2)

where the h-th subsequent option can be exercised, if American, in the
interval [T ′, Th] and, if European, at Th.

This model can be easily generalized to many sources of technical un-
certainty and to the case the event can happen in a given time interval
according to a continuous-time distribution (eg. a Poisson process).

3.2 Options on options

A real option can offer, when exercised, one more option. This happens
in many staged investments in which each installment is an option on the
subsequent stages. If this is the case, then the value of the previous claim
depends also on the value of the subsequent one.

Let there be given H compounded real options, that is, the h-th option,
besides its own payoff, gives the “right” to exercise the (h + 1)-th option,
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h = 0, . . . ,H − 1. The payoffs of the options, dependent on Xt, are denoted
Πh(t, Xt). For definiteness, the maturities are T1 ≤ T2 ≤ . . . ≤ TH . We
will denote Fh the value of the h-th option and, as above, we assume that
its value is already known. In what follows, if t is greater than Th, then
the value of the h-th option is zero, because that option is not available any
longer: Fh(t, Xt) ≡ 0 if t > Th. The value Fh depends also on Fh+1. If the
h-th option is American, then its value at t ≤ Th is

Fh(t, Xt) = max
τ∈T (t,Th)

{
e−r(τ−t)E∗t [Πh(τ,Xτ ) + Fh+1(τ,Xτ )]

}
. (3.3)

If the h-th option is European,

Fh(t, Xt) = e−r(Th−t)E∗t [Πh(Th, XTh
) + Fh+1(Th, XTh

)], (3.4)

The above is true for h = 1, . . . ,H − 1.
Fh+1 can be the (already determined) value of an option, but also the

value of many independent options offered at the same time as seen in Sec-
tion 3.1, or the expected value of the options that will be available as soon as
some technical uncertainty resolves, or the best out of a given set of options,
as described below (Section 3.3).

By specifying the above expressions we can find out well know cases. If,
H = 2, Π1 ≡ −K1, and Π2 is either max {Pt −K2, 0} or max {K2 − P, 0},
i.e. the subsequent option is an European call or put on a non-dividend
paying asset whose price, Pt = P (t, Xt), evolves according to a geometric
Brownian motion, and strike K2, and the previous option is a call on the
second option, then closed form solutions are available from Geske [23].
Again, if H = 2, the first option is an European call or put and the second
is an option to exchange one asset for another (i.e., Π2 = max

{
P 1 − P 2, 0

}
),

the assets pay no dividend and their prices are geometric Brownian motions,
then closed form formulas are available in Carr [13] (extending the results
in Margrabe [33]). If the assets pay a continuous dividend, Martzoukos e
Trigeorgis [36] provide extensions of the closed-form formulae in Geske [23]
and Carr [13]. In all the other cases, closed-form formulas are not available.
We will use the known available solutions as a benchmark for our numerical
evaluation approach (see Table 9).

3.3 Mutually exclusive options

Let there be given H mutually exclusive real options. For the sake of def-
initeness, we may think of two opposite decisions regarding the same real
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asset (abandon/expansion, lease/sell, . . . ): once the decision is made, the
other competing option expires.16

The payoff of these options are denoted Πh, h = 1, 2, . . . ,H, and are
contingent on the value of the state variables X. The options have maturities
Th, h = 1, 2, . . . ,H. With no loss of generality, we assume T1 ≤ T2 ≤
. . . ≤ TH . As usual, let Fh(t, Xt) be the value of the h-th real option. The
management is asked to decide, within the time horizon TH , for the best
available option. We assume that the decision, once taken, is irreversible.
In this sense, there is a timing option also in the choice of the best (out
of H) option. Actually, since the decision is irreversible, the management
may be interested in delaying the choice of the option to be exercised (and
keeping the options open).

Let G(t, Xt) be the value of the opportunity to choose the best one out
of the H available options. Assume for the moment that at least one of the
H options is an American-style claim. We define the control as a couple
(τ, ζ), where τ is a stopping time in T (t, TH) and ζ takes value in the set
{1, 2, . . . ,H}. The value of the opportunity to select the best option is

G(t, Xt) = max
(τ,ζ)

{
e−r(τ−t)E∗t [Fζ(τ,Xτ )]

}
(3.5)

If the options are all European-style claims, that is, the maturity Th is the
only date when the h-th option can be exercised, for all h, then the problem
is still (3.5), but the stopping time is restricted to the set {T1, . . . , TH}.

Although the opportunity to select the best option seems to depend on
the value of the available options, Fh, h = 1, . . . ,H, the choice is not made
until the time to exercise the most favorable option has come, because the
decision about the option is irreversible. In other words, when the time
to choose has come, the chosen option is exercised. This can be easily
understood by considering that, if the decision is irreversible, it would be
sub-optimal to choose an option and than to wait some time before exercising
it, because in the meanwhile some other options might turn more valuable.
Hence, if option ζ = h is chosen at time τ = t, then Fh(t, Xt) = Πh(t, Xt)
and as a consequence G(t, Xt) = Πh(t, Xt).

This framework encompasses some known results. If we restrict the ma-
turities of the options, so that T1 = T2 = . . . = TH , assume that these

16Since we are describing the building blocks of real life capital budgeting projects, it
may happen that, as a consequence of the choice of the best option, other options are
made available which are embedded in the one selected. The value of these (compounded)
options is included in Fζ , the maximand of the control problem in (3.5). The value Fζ is
in this case given by equation (3.3) and is assumed to be known.
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options are European, and put Πh(t, Xt) = P h(Xt)−K, where P h is a geo-
metric Brownian motion for all h, then the problem in (3.5) reduces to the
well known option on the maximum on H assets with prices Ph(Xt) depen-
dent on the state variables Xt and strike K (see Stulz [40], Johnson [30],
and Martzoukos e Trigeorgis [36] if the underlying assets pay a continuous
dividend yield). As above, in all the other cases we have to resort to numer-
ical evaluation. We will benchmark numerical results against closed-form
formula solutions, if these are available (see Table 9).

4 A generalization of the Least Square Monte-
Carlo approach

Since the seminal article by Boyle [6], simulation has been considered a suited
numerical approach for option pricing as long as early exercise is not optimal
(or allowed). On the other hand, there are American-type contingent claims
for which early exercise can be the optimal strategy. In this case, the most
natural approach to valuation has been considered stochastic control theory
and dynamic programming. Unfortunately, simulation is forward looking
and this feature seems to be in contrast with the backward looking nature
of dynamic programming. Longstaff and Schwartz [32] provides a valuation
algorithm, called Least Squares Monte Carlo (LSM) based on simulation
but taking into account the possibility of early exercise. Their algorithm
provides a way to determine the optimal stopping time of an American-like
claim and then, by applying equation (2.4), to find the estimate of the claim.
In what remains of this section, we first describe shortly the LSM and next
we extend it in order to solve the basic relations among options needed to
apply the decomposition approach presented in Section 3

4.1 Longstaff-Schwartz approach for simple options

Given the valuation problem in (2.4) for an American claim contingent on
X and expiring at T , an approximation of the value is obtained by choosing
an integer N so that the time span [0, T ] is divided into N intervals whose
width is ∆t = T/N . Next, the dynamics of the state variables is simulated
by generating K paths of {Xt}. We will denote Xt(ω) the value of the
process at time t along the ω-th simulated path and τ(ω) the path-wise
stopping time.

The goal of the algorithm is to find the optimal exercise time restricted
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to the set of dates

{t0 = 0, t1 = ∆t, . . . , tN = N∆t}.

As usual, the optimal policy is obtained by backward dynamic programming:
if at time tn, along the path ω, the claim has not been exercised yet (i.e., the
stopping time along the ω-th path, as determined in previous time steps of
the algorithm, is greater that tn), the optimal decision is made by comparing
the payoff Π(tn, Xt(ω)) with F (t, Xt(ω)), the (optimal) value function of
problem (2.4). If F (t, Xt(ω)) = Π(tn, Xt(ω)) then τ(ω) = tn: the optimal
stopping time along the ω-th path is updated.

Unfortunately, F (t, Xt) is not available at this step of the procedure. A
way around this difficulty is offered by the Bellman equation of the optimal
stopping problem in discrete time:

F (tn, Xtn) = max
{

Π(tn, Xtn), e−r(tn+1−tn)E∗tn
[
F (tn+1, Xtn+1)

]}
.

By this equation, we can determine the path-wise optimal policy, restricted
to the given dates, by comparing the continuation value,

Φ(tn, Xtn) = e−r(tn+1−tn)E∗
[
F (tn+1, Xtn+1) | Ftn

]
(4.1)

with the payoff. So, the decision rule at time step tn along the ω-th path is:

if Φ(tn, Xtn(ω)) ≤ Π(tn, Xtn(ω)) then τ(ω) = tn. (4.2)

At tn = T , since the claim is expiring, Φ(tn, Xtn) = 0, and the rule reduces
to exercise the claim if the payoff is positive. At any tn, the optimal stopping
time is found by recursively applying the decision rule in (4.2), back from
tn = T to tn. If we have determined, at some previous step of this procedure,
τ(ω) > tn, and condition (4.2) holds true at the current step, then the
stopping time along path ω is updated: τ(ω) = tn. At tn = 0, when the
optimal stopping times along all paths are determined, the value of the
American contingent claim is estimated by averaging the path-wise values:

F (0, x) =
1
K

K∑
ω=1

e−rτ(ω)Π(τ(ω), Xτ(ω)(ω)).

The problem boils down to one of finding the continuation value at
(t, Xt), in order to apply the decision rule in (4.2). This is the point where
LSM differs from all other approaches proposed to evaluate American-type
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contingent claim with simulation. The intuition behind LSM is the following:
if at t the claim is still available, the continuation value is the expectation,
conditional on the information available at that date, of future optimal pay-
offs from the contingent claim. To clarify the next steps, we slightly modify
the previously introduced notation: let Π(t, s, τ, ω) be the (non-necessarily
positive) cash flow from the contingent claim optimally exercised at time s
(with respect to the stopping time τ(ω)), conditional on not being exercised
at t < s, along the ω-th path. Hence,

Π(t, s, τ, ω) =

{
Π(s,Xs(ω)) if s = τ(ω)
0 if s 6= τ(ω).

The dependence of this cash flow on t is due to the fact that, when we apply
recursively the decision rule in (4.2), the stopping time along the ω-th path
can change step by step.

The continuation value at tn is the present value (with respect to the
equilibrium risk neutral probability) of all future expected cash flows from
the contingent claim

Φ(tn, Xtn) = E∗tn

[
N∑

i=n+1

e−r(ti−tn)Π(tn, ti, τ, ·)

]
. (4.3)

Since Φ is an element of a linear vector space,17 then we can represent the
continuation value as a linear combination:

Φ(t, Xt) =
∞∑

j=1

φj(t)Lj(t, Xt)

where Lj is the j-th element in the orthonormal basis. In Longstaff and
Schwartz [32] Lj(t, Xt) are either Hermite, or Laguerre polynomials or also
powers of Xt. If only J < ∞ elements in the basis are used to determine Φ,
we obtain an approximation of the continuation value. Following Longstaff
and Schwartz,

ΦJ(t, Xt) =
J∑

j=1

φj(t)Lj(t, Xt).

17Φ belongs to the Hilbert space L2(Ω,F , Q) and any Hilbert space has a countable
orthonormal basis.
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Now, φj(t) can be estimated by a linear least squares regression of ΦJ(t, Xt)
onto the basis {Lj(t, Xt)}:18

{
φ̂j(tn)

}J

j=1
=

= arg min

∥∥∥∥∥∥
J∑

j=1

φj(tn)Lj(tn, Xtn)−
N∑

i=n+1

e−r(ti−tn)Π(t, ti, τ, ·)

∥∥∥∥∥∥
2

.

The estimated continuation value,

Φ̂J(tn, Xtn) =
J∑

j=1

φ̂j(tn)Lj(t, Xtn)

is then used to apply recursively the decision rule in (4.2).
Accuracy of the estimates of the value of the American contingent claim

can be increased by increasing the number of time steps, N , the number of
simulated paths, K, and the number of basis function, J . Actually, given
N , the algorithm has been proved to converge to the actual value of the
(corresponding Bermudan with N dates) claim if J →∞ and if K →∞ and
the estimation errors are asymptotically normally distributed (see Clément,
Lamberton and Protter [14]).

4.2 An extension to multi-option problems

Since we are interested in valuing capital budgeting projects with many em-
bedded (American) options, we have to extend the LSM algorithm presented
in Section 4.1 to the framework we have introduced in Section 3.

As far as the case with H independent options is concerned (see Sec-
tion 3.1), the value of the option to exercise them, according to equation
(3.1), is simply the sum of their values obtained with LSM algorithm. If
there is a project-specific source of uncertainty, which is stochastically inde-
pendent on the state variables, and which resolves at T ′, with 0 < T ′ < Th,
h = 1, . . . ,H, according to notation introduced in Section 3.1 the relevant
equation is (3.2). In this case, the valuation approach is slightly different
from the one described above. At this step of the algorithm we have al-
ready found the values (and the related stopping times) of the subsequent
options, Fh. Actually, since the subsequent options cannot be exercised in

18We denote by ‖ · ‖ the norm in L2(Ω,F , Q).
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the interval [0, T ′], their value is

Fh(0, x) = e−rT ′
E∗

[
Fh(T ′, XT ′)

]
= E∗0

[
N∑

i=1

e−rtiΠh(0, ti, τ, ·)

]
where

Πh(t, s, τ, ω) =

{
Πh(s,Xs(ω)) if s = τh(ω)
0 if s 6= τh(ω),

where τh denotes the stopping time for option h, h = 1, . . . ,H. Note that
T ′ ≤ τh ≤ Th and that Πh(0, ti, τ, ω) has been already found applying the
LSM approach to the h-th option. To find G we just need to apply equation
(3.2):

G(0, x) =
H∑

h=1

phFh(0, x).

For the compound option case (see Section 3.2), the algorithm is the
following. According to the recursive nature of the valuation problem, we
assume that the path-wise stopping time for the (subsequent) (h + 1)-th
option has been already determined. We are to compute the path-wise
stopping time for the h-th option. The Bellman equation for problem (3.3)
is

Fh(tn, Xtn) =

max
{

Πh(tn, Xtn) + Fh+1(tn, Xtn), e−r(tn+1−tn)E∗tn
[
Fh(tn+1, Xtn+1)

]}
.

Hence, to find out the stopping time of option h, denoted τh(ω), at time
step tn along the ω-th path, the decision rule is the following:

if Φh(tn, Xtn(ω)) ≤ Πh(tn, Xtn(ω)) + Fh+1(tn, Xtn(ω)) then τh(ω) = tn
(4.4)

where Φh is the continuation value from the Bellman equation (see equation
(4.1)), Πh is the payoff of the h-th option, Fh+1 is the value of the (h+1)-th
option and τh is the stopping time for option h. This decision rule replaces
the one in (4.2).

To apply this rule we have to estimate the continuation value Φh and
the value of the subsequent option, Fh+1. The former is found by extending
the Longstaff and Schwartz idea. Note that

Φh(tn, Xtn(ω)) = E∗tn

[
N∑

i=n+1

e−r(ti−tn)
H∑

`=h

Π`(tn, ti, τ, ·)

]
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On the other hand,

Fh+1(tn, Xtn(ω)) = E∗tn

[
N∑

i=n

e−r(ti−tn)
H∑

`=h+1

Π`(tn, ti, τ, ·)

]
,

i.e., according to equation (4.3), the value of the (h + 1)-th option is the
present value of expected cash flow obtained from optimally exercising that
option and all subsequent options, starting from the current date. It should
be noted that, at this step, Π`(tn, tn, τ, ω) is known, ` = h + 1, . . . ,H.

In order to apply this rule, since the conditions in Longstaff and Schwartz
[32] still apply,19 Φh is approximated by ΦJ

h and this can be estimated by
least squares regression of the discounted conditional cash flows from option
h onto the basis {Lj , j = 1, . . . , L}.

It should be noted that the above procedure encompasses also the case
in which some of the real options are European. Actually, if option (h + 1)
is European with maturity Th+1, at tn < Th+1, Πh+1(tn, ti, τ, ·) ≡ 0 for all
ti 6= Th.

As far as the case with H mutually exclusively options is considered (see
Section 3.3), at any time step we have to find the optimal control (τ, ζ),
according to equation (3.5). The Bellman equation at time tn is

G(tn, Xtn) =

max
{

F1(tn, Xtn), . . . , FH(tn, Xtn), e−r(tn+1−tn)E∗tn
[
G(tn+1, Xtn+1)

]}
.

Hence, the decision rule, along the ω-th path is:

if Φ(tn, Xtn(ω)) ≤ max
h
{Fh(tn, Xtn(ω))} then (τ, ζ)(ω) = (tn, h̄) (4.5)

where Φ is the continuation value according to the Bellman equation,

h̄ = arg max {Fh(tn, Xtn(ω))} ,

and (τ, ζ)(ω) = (τ(ω), ζ(ω)). In order to apply the decision rule in (4.5) we
have to estimate Φ(tn, Xtn) and Fh(tn, Xtn). To this aim, let

Π(t, s, τ, ζ, ω) =

{
Πh(t, s, τ, ω) if h = ζ(ω)
0 otherwise

19Φh is in L2(Ω,F , Q).
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Since the continuation value of the option to select the best option out of H
available options is the present value of the expected cash flows conditional
on following the optimal exercise strategy, then

Φ(tn, Xtn) = E∗tn

[
N∑

i=n+1

e−r(ti−tn)Π(tn, ti, τ, ζ, ·)

]
.

This can be approximated by ΦJ according to Longstaff and Schwartz [32],
and ΦJ can be estimated by Least Squares regression of the discounted
cash flows Π(tn, ti, τ, ζ, ω) onto the basis {Lj , j = 1, . . . , J}. To apply the
decision rule in (4.5), also Fh need to be estimated. Yet, since at this step,
Πh(tn, tn, τ, ω) is known, h = 1, . . . ,H, and

Fh(tn, Xtn(ω)) = E∗tn

[
N∑

i=n

e−r(ti−tn)Πh(tn, ti, τ, ·)

]

hence, we can apply (4.5) to find out the control (ω, ζ)(ω) at tn.
All the above cases are plain extensions of LSM. Hence, the convergence

results in Clément, Lamberton and Protter [14] still apply.

5 Applications

In this section we provide several numerical experiments to show how the
approach presented in Sections 3 and 4 can be used to model and evalu-
ate complex capital budgeting problems with many underlyings and many
interacting real options. To illustrate the efficiency of the extended LSM
approach, assuming that the underlying factors are geometric Brownian mo-
tions, we benchmark the estimates against the results obtained by applying
the extended Log-Transformed binomial lattice approach (see Gamba and
Trigeorgis [21]) and, if closed-form formula are available, against exact so-
lutions.

There are two families of examples. The first set of numerical exper-
iments are abstract situations whose main purpose is to illustrate the ef-
ficiency of the valuation approach when applied to the building blocks of
our approach to model complex multi-options problems. We will present
examples for the independent options case (Section 3.1), the compound
option case (Section 3.2) and the case with mutually exclusively options
(Section 3.3). For all examples we will show both the European and the
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American cases. This example permits to see the influence of various pa-
rameter values on the accuracy of the numerical methods proposed in this
work.

The second set of numerical experiments deals with a real option valua-
tion problem presented in Lint and Pennings [31], involving four sources of
uncertainty. We will see how different problems specifications can be easily
modelled in our approach.

5.1 Warm up applications

Example 1. Let there be given an investment project which, after a first
outlay, K0, (for instance, R&D, infrastructure, etc.) can have two possible
outcomes at time T ′. Each outcome can give rise to a potential business.
These business can be obtained by paying some additional capital expendi-
ture.20 The values of these business are the present values of the respective
cash flows from operations. We assume that the values of the business are,
under the risk neutral equilibrium probability, GBM’s with dynamics

dV i
t

V i
t

= αidt + σidBi
t V i

0 = V i

i = 1, 2, where αi = r − δi, δi is an equilibrium shortfall rate of return,21

r is the annualized continuously compounded risk-free interest rate, αi and
σi are given on an annual basis, and E[dB1

t dB2
t ] = ρdt. The decision on the

business to be developed can be deferred until the technical uncertainty and
the market uncertainty is dissipated. Hence, the following real options are
embedded in the case at hand:

option to develop business V 1: by paying K1 within T1 = 5 years. The
payoff (at maturity) of this option is Π1(t, V 1

t ) = max{V 1
t −K1, 0} and

the value will be denoted F1;

option to develop business V 2: the needed additional costs is K2 and
maturity is T2 = T1 = 5 years. The related payoff (at maturity) is
Π2(t, V 2

t ) = max{V 2
t −K2, 0} and the value is F2.

20For the sake of definiteness, one can think of an investment project in an undeveloped
land with potential oil or gas reserves. The first outlay is given by the exploration costs.
We assume that the geological tests can show, after a given time-period, that alternatively
either gas or oil can be extracted. The outcomes of exploration are uncertain. The
additional capital outlays are needed to build the facilities for extraction.

21For more details on the equilibrium shortfall rate of return for non traded real assets,
see McDonald and Siegel [37].
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For simplicity, we assume that the decision to spend the capital outlays
K0 = 1 is committed (i.e., not an option). We can see K0 as the cost needed
to obtain information about the feasibility of the business. The probabilities
of the possible outcomes are pi. The options to develop the business can be
exercised in the interval [T ′, Ti]. Figure 1 provides a graphical representation
of the problem.

The base case parameters are given in Table 1. The values of the invest-
ment project for several values of the parameters of the stochastic process of
the first business (S, σ and δ) and for different maturities are presented in
Table 2.22 By inspection, we can see that the overall accuracy (as measured
by Root Mean Square Error23) is fair. Keeping the parameters of one of the
two businesses constant, we can see that the value of the project is increasing
in the current value of one of the two underlyings, increasing with respect to
volatility and to maturity, whereas it is decreasing in the convenience yield.

The second and the third examples can be considered two strategic al-
ternatives of the same capital budgeting problem.

Example 2. Let there be given a real asset (a business) whose value Vt follows
a GBM

dVt

Vt
= αdt + σdBt, V0 = V

under the equilibrium risk-neutral probability, where α = r−δ, δ is an equi-
librium shortfall rate of return and r is (continuously compounded) annual
riskless rate. The following options are available:

option to defer the investment: the payoff (at maturity) as if the option
was in isolation is Π1(t, Vt) = max {e1Vt − I1, 0}, that is, with a cost
outlay I1 we can get a given percentage e1, 0 < e1 < 1 of the whole
business. The maturity of the option is T1 (years). As usual F1 will
denote the option value;

22We point out that, since the options to develop the two business are strategically
independent, then the value of the project is not dependent on the correlation ρ between
the two business.

23Root Mean Square Error (RMSE) is defined as usual:

RMSE =

√√√√ 1

m

m∑
i=1

(
Fi − F̂i

Fi

)2

,

where Fi is the (accurate) value of the i-th project value, F̂i is the related estimate obtained
by simulation and m is the number of cases (in the table).
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option to expand: the payoff is Π2(t, Vt) = max {e2Vt − I2, 0} with e2 =
1− e1; i.e., with a capital expenditure I2 we can complete the invest-
ment in the business. The maturity is T2 years, the value F2.

The payoffs above are not the true ones for the problem at hand. Actually,
since the expansion option is available only after the investment option has
been exercised, then the payoffs (at maturity) of the investment option is
max {e1Vt − I1 + F2(t, Vt), 0}. A graphical representation of the problem
is offered in Figure 2. We stress that, although the second option can be
exercised in the interval [0, T2], the actual time interval for the second option
is from the time the first option is exercised (a stopping time) to T2. The
base case parameters are in Table 3. The numerical results for a set of value
of the parameters of the project are in Table 4. As far as accuracy and the
dependence of the project value on parameters is concerned, what was said
for Table 2 still holds true.

Example 3. Given the same real asset in Example 2, we are going to evaluate
a different strategic alternative (see Figure 3):

option to defer the investment: by paying the outlay I = I1+I2 we can
get the whole business whose value is V and the opportunity is avail-
able until T1 (years). Hence, the payoff of this option is (at maturity)
Π1(t, Vt) = max {Vt − I, 0} and its value is F1;

option to contract the scale of the project: we can recover part of the
capital outlay, X = I2, by reducing the scale of the business by k
percent. This option is available, after the option to invest has been
exercised, until T2. Hence, the payoff (at maturity) is Π2(t, Vt) =
max {X − kVt, 0} and the value is F2.

As in Example 2, since the option to defer gives rise, when exercised,
to the option to reduce the scale of the project, then the actual payoff (at
maturity) of the first option is max{Vt − I + F2(t, Vt), 0}.

From a strategic viewpoint, this example offers an alternative approach
to the same investment opportunity showed in Example 2. Actually, in that
case the approach was more conservative, because the second stage takes
place only if the first step is successful. In this example, on the other hand,
we can obtain the same real asset, but we can recover part of the sunk cost
if the business turn to be less favorable than expected. Although at a first
sight the two alternatives might seem basically the same, Example 3 has
a larger “operating leverage” given the higher level of fixed costs. Hence,
coeteris paribus, if the uncertainty surrounding the value of the business (i.e.,
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σ) is higher, in principle, the second alternative should worth more, because
the upside potential is increased by the “operating leverage.” Actually, by
inspection of Table 5, we can see that there is no clear domination of the
second (high-leveraged) approach over the first one.

The values of the project, for a set of parameter values, are in Table 5.
The usual comments on accuracy we did for the previous table still apply.

Example 4. On the same asset as is Example 2, let there be given the
following opportunities:

option to defer the investment: by paying I1 we can acquire e1 percent
of the asset. This option can be exercised within T1 (years). The
payoff (at maturity) is Π1(t, Vt) = max{e1Vt − I1, 0} and its value is
F1;

option to expand: we can get the remaining part (e2 = 1 − e1) of the
business with an additional capital expenditure I2 by time T2. The
related payoff (at maturity) is Π2(t, Vt) = max{e2Vt − I2, 0} and the
value is F2;

option to abandon: we can abandon the business (k = e1), after the first
investment, as an alternative to the option to expand, saving X < I1,
by year T3. The payoff of this option (at maturity) is Π3(t, Vt) =
max{X − kVt, 0} and the value is F3.

Since the option to expand and the option to abandon are mutually
exclusive, only one of them can be exercised. The option map of the invest-
ment project is given in Figure 4. The base case parameters are in Table 6.
The results for a wide set of parameter values, are in Table 7.

5.2 Best of two product standards

The second set of examples is related to an actual case study drawn from Lint
and Pennings [31] (see also Martzoukos and Trigeorgis [36]). This example
permits to see a capital budgeting problem can be tackled according to
the decomposition approach and also to compare the estimates obtained by
simulation to exact solutions.

The case is the following. There is a firm which is considering the de-
velopment of two product standards in consumer electronic industry in a
given time horizon. There is a cost outlay to be paid upfront to obtain the
options to invest in the two product standards. The standard that finally
will prevail is uncertain at the date of the first outlay. If the firm invests in

24



both technologies, it acquires an option on the best of two assets (product
standards). Each underlying asset of this option is the market (present)
value of the resulting cash flows if that standard prevails. Moreover, the
underlying assets are correlated. The cost of introducing each standard is
the strike price of the option. Also the strike prices for the two technologies
are stochastic and correlated with the other state variables.

The underlying assets are V i, the market value of i-th business (i.e.,
the value of cash flows obtained by product standard i), and Ci, the cost to
introduce the standard i, i = 1, 2. These variables are assumed to follow cor-
related geometric Brownian motions with equilibrium rate of return shortfall
and volatilities respectively δVi , σVi , δCi and σCi , i = 1, 2. Correlations are
ρij , i 6= j, i, j = 1, . . . , 4.

Hence, the investment project has the following embedded options:

option to defer investment: by paying I we can acquire the option to
choose the best of the two standards later on. This option can be
exercised within T0 (years). The payoff (at maturity), as if it was in
isolation, is Π0 = max{−I, 0} and its value is F0;

options defer investment: with an additional capital expenditure Ch, we
can get the value of the related product standard, V h. The maturity
of this option is Th. The related payoff at maturity is Πh = max{V h

t −
Ch

t , 0} and the value is Fh, h = 1, 2.

The structure of the problem is described by the option map in Figure 5.
As usual, since the option to invest in both standards provide the opportu-
nity to choose for the best, then the actual payoff (at maturity) of the first
option is

max{G(t, V 1
t , V 2

t , C1
t , C2

t )− I, 0}.

The base case parameters are in Table 8.
Besides the above described case, we have evaluated different versions of

the investment problem by considering several features of the set of opportu-
nities. In particular, we have evaluated also the impact of higher volatility,
lower correlation, longer maturity and different investment scale on the op-
tion value.

To compare numerical results with exact solutions, we consider also the
case of non-stochastic development costs for both technologies and C1 = C =
C2. With this choice of parameters the problem has an analytic solution: if
both the dividend yields are zero (δV1 = 0 = δV2), then the model reduces to
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the European24 option on the maximum of two risky assets and the solution
formula has been provided by Stulz [40]; if at least one of the dividend yields
is not zero, the extension of Stulz’ formula for the European option on the
maximum of two assets is in Martzoukos and Trigeorgis [36]. Moreover, if
V 2

0 = C2
0 = 0 (i.e., only one of the two standards is valuable), the options

are European and I = 0.1C2, then the problem reduces to the compound-
exchange option studied by Carr [13] and a closed-form valuation formula
is available. Again, if at least one of the dividend yield is not zero, the
extension of Carr’s formula is in Martzoukos and Trigeorgis [36]. Numerical
results are presented in Table 9. As for the other examples, accuracy is fair
in most of the cases.

24Note that, if both the dividend yields are zero, the American option and the European
option are the same.
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A Exhibits

A.1 Example 1

Table 1: Example 1 - base case parameters

i 1 2
δi δ 0.05
σi σ 0.15
Vi S 80
Ki 100 80
Ti T
ρ 0

K0 8
T ′ 1

p1 = p2 0.5
r 0.05

Figure 1: Example 1 - option map
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A.2 Example 2

Table 3: Example 2 - base case parameters

I1 = I2 80
e1 0.5
V0 S
T2 T
T1 T − 2
r 0.05

Figure 2: Example 2 - option map
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A.3 Example 3

Figure 3: Example 3 - option map.
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A.4 Example 4

Table 6: Example 4 - base case parameters

I1 = I2 50
X 30
e1 0.5
k 0.5
V0 S
T1 T − 2
T2 T
T3 T − 0.5
r 0.05

Figure 4: Example 4 - option map
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A.5 Best of two product standards

Table 8: Best of two product standards - base case parameters

V i
0 100 i = 1, 2

Ci
0 100 i = 1, 2

r 0.07 i = 1, . . . , 4
δi 0.1 i = 1, . . . , 4
σi 0.2 i = 1, . . . , 4
ρij 0.5 i 6= j, i, j = 1, . . . , 4
T0 0
I 0
Ti 2 i = 1, 2

Figure 5: Best of two product standards - option map
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