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This paper studies a discrete-time total-reward Markov decision process (MDP) with a given initial state distribution. A
(randomized) stationary policy can be split on a given set of states if the occupancy measure of this policy can be expressed
as a convex combination of the occupancy measures of stationary policies, each selecting deterministic actions on the given
set and coinciding with the original stationary policy outside of this set. For a stationary policy, necessary and sufficient
conditions are provided for splitting it at a single state as well as sufficient conditions for splitting it on the whole state space.
These results are applied to constrained MDPs. The results are refined for absorbing (including discounted) MDPs with finite
state and actions spaces. In particular, this paper provides an efficient algorithm that presents the occupancy measure of a
given policy as a convex combination of the occupancy measures of finitely many (stationary) deterministic policies. This
algorithm generates the splitting policies in a way that each pair of consecutive policies differs at exactly one state. The
results are applied to constrained problems to efficiently compute an optimal policy by computing and splitting a stationary
optimal policy.
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1. Introduction. This paper is concerned with a discrete-time Markov decision process (MDP) with a given
distribution of an initial state and with total-reward criteria. It investigates whether and how a stationary policy
can be replaced by another policy that is defined as a random selection among policies that are deterministic on
a prescribed set of states and coincide with the original stationary policy outside of that set. Contributions are
presented for MDPs with finite state and actions sets, for MDPs with countable state sets, and for MDPs with
Borel state and action spaces.

An MDP is said to be absorbing if its expected lifetime is finite under every policy. In particular, a discounted
MDP can be presented as an absorbing MDP. For an absorbing MDP with a fixed initial state distribution,
the occupancy measure of a policy specifies the expectation of the number of visits to each measurable set
of state-action pairs. The expected total reward for the policy can be expressed as the integral of the one-step
reward function with respect to the policy’s occupancy measure. Thus, optimizing the expected total rewards is
reduced to optimizing a linear function over the set of occupancy measures. This is the basic idea of the convex-
analytic approach which provides useful methods for solving MDPs with multiple criteria and constraints. The
convex-analytical approach was introduced by Derman; see Derman [12] and references therein. Most of the
later developments are recapped in monographs by Kallenberg [35], Borkar [6], Piunovskiy [42], Altman [1],
and Hernández-Lerma and Lasserre [32], and in surveys by Piunovskiy [43] and Borkar [7]. It has various
applications including to the Hamiltonian cycle problem; see Feinberg [21], Filar [28, §§3.3, 3.4], and Ejov
et al. [15]. The convex-analytic approach is also applicable to average rewards per unit time with expected
state-action frequencies playing the role of occupancy measures (Derman [12], Kallenberg [35], Borkar [6],
Piunovskiy [42], Altman [1]).

Two policies that have the same occupancy measure have the same expected total reward for any one-step
reward function. The gist of splitting over a set of states S is to match the occupancy measure of a given
stationary policy � to the occupancy measure of a policy that randomizes (or, in other words, mixes) over
policies that make deterministic decisions on S and match � on the remaining states. When a policy is split,
its expected total reward under each one-step reward function can be expressed as a convex combination of the
expected total rewards of the splitting policies.
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The principal results of this paper are as follows:
(i) For absorbing Borel MDPs that satisfy certain compactness and continuity conditions, Theorem 4.1 states

that a stationary policy can be split on the entire state space into deterministic policies.
(ii) Theorem 5.1 presents necessary and sufficient conditions for a stationary policy to be split at a single

state of a Borel MDP.
(iii) For absorbing MDPs with finite state and action sets, Theorem 6.1 establishes the existence of finite

splitting of a stationary policy on the entire state space via deterministic policies that can be ordered so that
successive policies differ only at a single state; Algorithm 1 efficiently executes such splitting. Furthermore, The-
orem 7.1 presents conditions under which the existence result extends to MDPs with Borel state and action sets.

(iv) For constrained absorbing MDP with finite state and action sets, Algorithm 2 efficiently computes an
optimal policy in the form of a mixture of deterministic policies that can be ordered in a way described in (iii).
For constrained countable state discounted MDPs, Theorem 10.2 presents sufficient conditions for the existence
of optimal policies with the above structure.

(v) For constrained absorbing Borel MDPs with compact action sets, Theorem 9.2(ii) establishes the existence
of a stationary optimal policy and an optimal policy being a mixture of deterministic policies.

The conclusions of (i)—splitting on the entire space—has been established by Borkar [6, p. 37] for countable
state discounted MDPs with compact action sets and by Piunovskiy [43, Theorem 6] for Borel state discounted
MDPs that satisfy certain compactness and weak-continuity conditions. Related results for nonstationary policies
appear in Feinberg [16, 20]. We do not know whether Theorem 4.1 holds without the continuity and compactness
conditions. The conditions in (ii) are necessary and sufficient for splitting at a single state for total-reward
MDPs. Splitting at a state was introduced by Hordijk and Spieksma [34, p. 415] and by Spieksma [47, p. 168]
for average-reward MDPs satisfying certain conditions. The term “splitting” was introduced by Spieksma [47,
p. 168]. For total rewards, splitting at a state was established by Altman [1, p. 109] for transient countable state
MDPs. A countable state MDP is transient if under each policy the expected number of visits to each state is
finite. A countable absorbing MDP is transient, whereas the reverse implication holds for finite state MDPs, but
not for MDPs with infinitely countable state spaces. The results in (iii) are new even for discounted MDPs. Finite
splitting of state-action frequencies were extended in Feinberg [23] to unichain finite state and action average-
reward MDPs. Algorithm 2, mentioned in (iv), is the first algorithm of polynomial complexity for finding optimal
mixtures of deterministic policies for constrained MDPs. Previous approaches (see Feinberg [19] and Altman
[1, Chapter 9]) for computing such policies had exponential bounds on the running time. The result in (v) closes
a gap between the known facts on countable state constrained absorbing MDPs (Altman [1]) and on Borel-state
constrained discounting MDPs (Piunovskiy [42, 43], Hernández-Lerma and González-Hernández [30]).

The concept of embedded MDPs, introduced in Feinberg [17] and discussed at the end of §4, is useful for
a reduction of the state space of an MDP. In particular, it is used in the current paper to reduce splitting at a
subset of the state space to splitting on the entire state space for an MDP whose state space is this subset.

The strategic measure of a policy is the probability measure it induces on the set of state-action sequences.
If strategic measures coincide for two policies, then their occupancy measures coincide, and, in addition, any
probabilistic criterion defined on the space of state-action sequences coincide for these two policies (not just
expected total rewards, as takes place for equal occupancy measures). The occupancy measure of a policy can be
viewed as a projection of its strategic measure and it contains limited information about the underlying stochastic
sequence, while the strategic measures provide complete probabilistic description of this sequence. Variants of
the convex-analytic method were applied to strategic measures; see §3 or Feinberg [20] for representations of
strategic measures for general past-dependent and Markov policies that are similar to splitting of occupancy
measures. Those results do not require continuity or compactness assumptions as does Theorem 4.1 which
concerns splitting of occupancy measures. The study of splitting of occupancy measures is important primarily
for situations when similar results do not take place for strategic measures.

2. The model. Before we introduce an MDP, we summarize some definitions and notation that we use. For
a topological space B, we always consider its Borel �-field B (the smallest �-field containing all open subsets
of B); sets in B are then called Borel sets. A standard Borel space is a pair 4B1B5 with B being a nonempty
Borel subset of a Polish (complete, separable, metric) space. To simplify notations, when referring to a standard
Borel space 4B1B5, the reference to B is usually omitted. Also, everywhere in this paper “measurable” means
“Borel measurable.”

For a standard Borel space B, denote by P4B5 and Q4B5, respectively, the sets of all probability measures
and all finite nonnegative measures on 4B1B5. The minimal �-field on Q4B5, containing the sets 8� ∈ Q4B5 �

�4E5 ≤ c9 for all c ∈ 6−�1�7 and for all E ∈ B1 is denoted by R4B5. Also, M4B5 is the �-field on P4B5
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S ⇒ M ⇒ ç

⇓ ⇓ ⇓

RS ⇒ RM ⇒ Rç

Figure 1. Relationships between classes of policies.

formed by the intersections of the sets in R4B5 with P4B5. Then 4P4B51M4B55 is a standard Borel space; see
Dynkin and Yushkevich [14, Appendix 5]. We also notice that P4B5 is a convex subset of the linear space of all
signed finite measures on 4B1B5. Similarly, 4Q4B51R4B55 is a standard Borel space and Q4B5 is a convex cone
in the linear space of all signed finite measures on 4B1B5. Everywhere in this paper we follow the convention
that 0 · � = 00

Consider a Markov decision process (MDP) 8X1A1A4 · 51p1 r9, where
(i) X is a standard Borel space (the state space);

(ii) A is a standard Borel space (the action space);
(iii) A4x5 is a nonempty subset of A for each state x ∈X (the set of actions available at x), where the graph

Gr4A5= 84x1a52 x ∈X1a ∈A4x59 is a measurable subset of X×A and where there exists a measurable mapping
�2 X →A with �4x5 ∈A4x5 for all x ∈X;

(iv) p4· � x1a5 is a probability measure on X for each 4x1a5 ∈ X ×A (the transition probability), such that
p4B � ·1 ·5 is a measurable function on X ×A for each measurable subset B of X; and

(v) r4 · 1 · 5 is a real-valued measurable function on X×A that is bounded from above (the reward function).
A policy � is a sequence of measurable transition probabilities �t4dat � ht5 concentrated on the sets A4xt5,

where ht = x01 a01 : : : 1 at−11 xt is the observed history. If transition probabilities �t depend only on the current
state and time, that is, �t4· � ht5 = �t4· � xt5 for all t = 0111 : : : 1 then the policy � is called Markov. If for a
Markov policy �, decisions do not depend on the time parameter, that is, �t4· � x5 = �s4· � x5 for all x ∈ X,
then the policy � is called stationary. For a stationary policy �, we write �4· � x5 instead of �t4· � x5. If
each measure �t4· � ht5 is concentrated at one point, then the policy is called nonrandomized. Nonrandomized
stationary policies are also called deterministic. A deterministic policy is defined by a measurable mapping �
from X to A such that �4x5 ∈A4x5 for all x ∈X0

Let Rç be the set of all policies, let ç be the set of nonrandomozed policies, let RM be the set of Markov
policies, let M be the set of nonrandomized Markov policies, let RS be the set of all stationary policies, and
let S be the set of deterministic policies. For readers’ convenience, we observe that classes of nonrandomized
policies are denoted by a single letter, and their extensions that allow randomization are denoted by the same
letter preceded by R. The relationships among the above classes are summarized in Figure 1, where ⇒ stands
for ⊆.

According to the Ionescu Tulcea theorem (Hernández-Lerma and Lasserre [31, p. 178]), an initial distribu-
tion � on X and a policy � define a unique probability measure P�

� on the space of trajectories H� = 4X×A5�

which is called a strategic measure. We denote by E�
� , expectations with respect to P�

� . We consider a �-field on
H� defined as a product of Borel �-fields on X and A. Throughout this paper, we fix the initial distribution �0

For a constant � ∈ 60115, called the discount factor, an initial distribution � on X, and a policy � ∈ Rç,
define the expected total discounted reward

Ṽ �
� 4�5 2=E�

�

�
∑

n=0

�nr4xn1 an50 (1)

Following Hordijk [33] and Altman [1], we consider a slightly more general situation than an MDP with the
expected total discounted reward criterion. We set � = 1 and assume that there is a special (possibly empty)
measurable subset Z of the state space X such that the process stops when it reaches Z. In other words,
p4x � x1a5= 1 and r4x1a5= 0 for all x ∈Z and a ∈A4x50 Consider the stopping time T = inf8n≥ 0 � xn ∈Z9,
with the minimum over the empty set defined as +�. If Z= �, then T = �. Since T =

∑�

n=0 I8n < T 9, where
I is the indicator function, for any policy �,

E�
�T =E�

�

�
∑

n=0

I8n < T 90

For a fixed initial distribution �, an MDP is called absorbing (or absorbing to Z), if E�
�T <� for any policy �.

For an absorbing MDP, the expected total reward is

V �4�5 2=E�
�

�
∑

n=0

r4xn1 an5=E�
�

T−1
∑

n=0

r4xn1 an51 (2)
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where we follow everywhere the convention that a sum from i to j < i equals 0. In addition, if r4x1a5 = 1,
when x ∈X\Z and a ∈A4x51 then V �4�5=E�

�T 0 According to Dynkin and Yushkevich [14, §§4.4 and 5.5], if
the reward function r is nonnegative and V �4�5 <� for all policies � ∈Rç, then sup8V �4�5 �� ∈Rç9<�.
Thus, if an MDP is absorbing, then E�

�T ≤ K� for some K� < �. According to Blackwell [4], for positive
dynamic programming (that is, the reward function r is nonnegative and sup8V �4�5 �� ∈Rç9<�), the equality
sup8V �4�5 �� ∈Rç9= sup8V �4�5 �� ∈ S9 holds. Therefore, an MDP is absorbing if and only if there exists a
finite constant K� <� such that E�

�T ≤K� for all deterministic policies �.
We recall (Altman [1, p. 137]) that an absorbing MDP is a more general concept than a discounted MDP,

because a discounted MDP can be transformed into an absorbing MDP by adding an additional state x∗ to X,
by choosing the absorbing set Z= 8x∗9, and by setting the transition probabilities from x ∈X:

p∗4Y � x1a5 2=

{

�p4Y � x1a5 if Y is a measurable subset of X1

1 −� if Y = 8x∗90

Then V �4�5= Ṽ �
� 4�5 for any policy � and for any reward function r , where V �4�5 is the expected total reward

for the absorbing MDP with the transition probabilities p∗, and Ṽ �
� 4�5 is the expected total discounted reward

for the original MDP; see, e.g., Altman [1, p. 137]. We remark that an absorbing MDP can be defined as an
MDP with substochastic transition probabilities p (that is, p4X � x1a5 ≤ 1 for each x ∈ X and a ∈ A4x5) and
without considering explicitly the set Z; see, e.g., Feinberg and Sonin [26], and Denardo et al. [11]. However,
this setup is not followed in the current paper, and we assume p4X � x1a5= 1 for each x ∈X and a ∈A4x5.

For any policy � denote by Q�
� the occupancy measure on X ×A defined by

Q�
�4Y ×B5 2=E�

�

T−1
∑

n=0

I8xn ∈ Y 1an ∈ B9=

�
∑

n=0

P�
� 8xn ∈ Y \Z1 an ∈ B91 (3)

where Y and B are measurable subsets of X and A, respectively. In particular, Q�
�4Z×A5 = 0 and, according

to the arguments provided on p. 112 in Altman [1], for a bounded above function r ,

V �4�5=

∫

X

∫

A
r4x1a5Q�

�4dx1da50 (4)

Therefore, if Q�
� =Q�

� , then V �4�5= V �4�5 for any reward function r0 Of course, if P�
� = P�

� , then, according
to (3), Q�

� =Q�
� . In other words, if strategic measures are equal, then occupancy measures are equal too.

We also define the measure q�
� on X by setting

q�
� 4Y 5 2=Q�

�4Y ×A5

for any measurable subset Y of X. Observe that

q�
� 4Y 5=�4Y 5+E�

�

T−1
∑

n=1

I8xn ∈ Y 90

Therefore, the measure � is absolutely continuous with respect to q�
� .

To simplify notation, we shall write Q�
�4Y 1B5 instead of Q�

�4Y ×B5, and for x ∈X identify the set 8x9 with
the point x; e.g., we write Q�

�4x1B5 and q�
� 4x5 instead of Q�

�48x91B5 and q�
� 48x95, respectively. Also, for the

probability measure �x on X that is concentrated at x ∈X, we replace �x with x; e.g., we write P�
x , Q�

x , and q�
x

instead of P�
�x

, Q�
�x

, and q�
�x

, respectively.

3. Strategic measures. For a set of policies ã, let Lã
� 2= 8P�

� � � ∈ ã9 (the set of strategic measures for
the policies in ã). Obviously, Lã

� ⊆ Lã′

� when ã⊆ã′. According to Feinberg [20, Theorem 3.2], the set Lã
� is a

measurable subset of 4P4H�51M4H�55 when ã ∈ 8Rç1ç1RM1M1RS1S90
According to Dynkin and Yushkevich [14, §§3.5 and 5.5], the set LRç

� is convex in the following strong sense.
For a probability measure � on LRç

� , define the probability measure P � on H� by

P �4E5 2=
∫

LRç
�

P4E5� 4dP51 (5)

where E is a measurable subset of H�0 Then P � ∈ LRç
� . In other words, there exists a policy � such that

P�
� = P �0 This convexity property of the set of strategic measures is relevant to Kuhn’s theorem on sufficiency

of behavioral policies in stochastic games (Kuhn [39], Aumann [2]).
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Let ã be a set of policies satisfying the condition that Lã
� is a measurable set; that is, Lã

� ∈M4H�5. A policy
� is called a mixture of policies from ã, if there exists a probability measure � on the set of strategic measures
LRç
� such that �4Lã

�5= 1 and for all measurable subsets E of H�:

P�
� 4E5=

∫

Lã
�

P4E5� 4dP50 (6)

A policy � is called a mixture of deterministic policies if there exists a probability measure � on LRç
� such that

�4LS
�5= 1 and, for all measurable subsets E of H�, (6) holds with ã= S. These definitions can be interpreted

as a random selection, up front, of a policy from ã (or, in particular, from S) using the probability measure �.
According to Feinberg [20, Theorem 5.2], any policy is a mixture of nonrandomized policies, and any Markov

policy is a mixture of nonrandomized Markov policies. In other words,
(i) for any policy � there exists a probability measure � on Lç

� such that (6) holds with ã=ç; and
(ii) for any Markov policy � there exists a probability measure � on LM

� such that (6) holds with ã=M .
For a countable state MDP, Krylov [36] establishes a result similar to (i). For Borel state controlled stochastic

processes (not necessarily MDPs), Gikhman and Skorohod [29, proof of Theorem 1.2] provide a version of
(i) and Feinberg [16] provides a version of (i) and (ii), when integration in formulae similar to (6) is taken
over an artificial set introduced by Aumann [2] rather than directly over the set of the corresponding strategic
measures. Feinberg [17, 18] formulates general sufficient conditions when the results similar to (i) and (ii) hold
for particular classes of policies.

Feinberg [17, Remark 3.1] provides an example of an MDP with two deterministic policies, that is, S =

8�11�29, such that P�
� 6= �P�1

� + 41−�5P�2

� for all � ∈RS and for all � ∈ 401150 Thus, even for a simple MDP
with one state and two actions, strategic measures of stationary policies may not be represented via strategic
measures for deterministic policies in the way similar to (i) and (ii).

According to Theorem 4.1 from the following section, under Schäl’s [45] compactness Condition (S) or (W), a
representation similar to (i) and (ii) holds for occupancy measures of stationary policies via occupancy measures
of deterministic policies. This contrasts to statements (i) and (ii) that hold for general and Markov policies
without any compactness or any continuity conditions.

4. Occupancy measures. For a policy � ∈ Rç, consider the occupancy measures Q�
� and q�

� , where the
former is a measure on X ×A and the latter is its projection on X.

Lemma 4.1. Let q�
� 4X5 < � for a policy � ∈ Rç0 Then there exists a q�

� -a.e. unique stationary policy �
such that

Q�
�4Y 1B5=

∫

Y
�4B � x5q�

� 4dx5 (7)

for any measurable sets Y and B from X and A, respectively.

Proof. We recall that a transition probability � from X to A is a measurable mapping �6x7 of X to P4A5.
Following our previous notations, we write �4B � x5, x ∈ X, instead of �6x74B5 for any measurable subset B
of A. By dividing both sides of (7) by q�

� 4X5, we see that the existence of a transition probability � satisfying (7)
follows from the existence of a conditional distribution for a probability measure on X × A; see Dynkin and
Yushkevich [14, Appendix 4]. Since Q�

�44X × A5\Gr4A55 = 0, the transition probability � can be defined in
such a way that �4A4x5 � x5 = 1, x ∈ X. In other words, � is a stationary policy satisfying (7). The q�

� -a.e.
uniqueness of � means that if � = �1 and � = �2 satisfy (7), then q�

� 48x ∈ X � �14· � x5 6= �24· � x595 = 0,
where �14· � x5 = �24· � x5 if and only if �14B � x5 = �24B � x5 for any measurable subset B of A. The q�

� -a.e.
uniqueness of � follows from the following two observations: (i) if � = �1 and � = �2 satisfy (7) for some
measurable subset B of A, then �14B � x5= �24B � x5 q�

� -a.e.; and (ii) there exists a countable set 8B11B21 : : : 9
of measurable subsets of A such that any two measures on A are equal if and only if they are equal on Bi for all
i = 1121 : : : 0 We observe that (i) follows directly from (7), and (ii) holds because A is a standard Borel space.
If A is a real line 4−�1�5, then we can select Bi = 4−�1 zi7, i = 112: : : 1 where 8z11 z21 : : : 9 is the set of
rational numbers. Any standard Borel space is either countable or isomorphic to the real line; see, e.g., Dynkin
and Yushkevich [14, Appendix 1]. Thus, if A is uncountable, then Bi, i = 112: : : 1 can be selected as isometric
images of 4−�1 zi7. For a countable A= 8a11 a21 : : : 9, we can set Bi = 8ai91 i = 1121 : : : 0 �

For an absorbing MDP, q�
� 4X5 <� for any policy �, and the corresponding condition in Lemma 4.1 holds.

Lemma 4.1 also holds when the measure q�
� is locally finite, but we do not need this fact in this paper.

The following Lemma 4.2 states that if an MDP is absorbing, then for the fixed initial measure �, the
occupancy measures for � and � , where � is defined by (7), coincide. This result was originally established
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by Borkar [5] for countable state discounted MDPs and by Krylov [37, 38] for controlled discounted diffusion
processes. For countable state MDPs, this result is proved in Altman [1, p. 102]. For Borel-state discounted
MDPs, this result is proved in Piunovskiy [42, pp. 141, 307]. Example 4.3 in Feinberg and Sonin [27] (see also
Altman [1, p. 103]) shows that the absorbing assumption is essential. In particular, Lemma 4.2 does not hold
for countable state transient MDPs; see §1 for the definition of transience.

Lemma 4.2. For an arbitrary policy � in an absorbing MDP, let � be a q�
� -a.e. unique stationary policy

satisfying (7). Then Q�
� =Q�

� 0

Proof. Altman’s [1, p. 102] proof remains correct for Borel-state MDPs after the standard measurability
considerations, described in Piunovskiy [42, p. 307], are added to it. �

For a set of policies ã ⊆ Rç, let Oã
� 2= 8Q�

� � � ∈ ã9 be the set of occupancy measures generated by the
policies � from ã0 Obviously, Oã

� ⊆ Oã′

� when ã⊆ã′.

Lemma 4.3. For an absorbing MDP, the set ORS
� coincides with the set of all finite measures Q on X ×A

satisfying q4Z5= 0 and

q4Y 5=�4Y 5+

∫

X

∫

A
p4Y � x1a5Q 4dx1da5 (8)

for any measurable subset Y of X, where q4Y 5=Q4Y 1A50

Proof. For countable state MDPs, this lemma is proved in Altman [1, Lemma 7.1]. The proof remains
correct for the uncountable state case; see Piunovskiy [42, Lemma 25, p. 141], where this lemma is proved for
Borel-state discounted MDPs. �
Corollary 4.1. For an absorbing MDP, ORS

� = ORç
� and this set is convex.

Proof. Lemma 4.2 states the equality ORS
� = ORç

� , and Lemma 4.3 implies the convexity of ORS
� . �

Consider a mapping g of LRS
� on ORS

� defined as g4P�
� 5 2=Q�

� for all � ∈Rç0

Lemma 4.4. For an absorbing MDP, the mapping g2 LRS
� → ORS

� is a one-to-one correspondence; that is,
P�
� = P�

� if and only if Q�
� =Q�

� for any �1� ∈RS0

Proof. It is obvious that P�
� = P�

� implies Q�
� = Q�

� for any policies � and � , because Q�
�4C5 =

∑�

n=0 P
�
�84xn1 an5 ∈ C\4Z × A59 for any policy �, where C is any measurable subset of X × A0 We shall

prove that Q�
� = Q�

� implies P�
� = P�

� for any �1� ∈ RS0 For any policy � we define marginal distributions
P �1n
� 4B5= P �

�4xn ∈ B\Z5, where B is an arbitrary measurable subset of X. Then q�
� =

∑�

n=0 P
�1n
� and measures

P �1n
� are absolutely continuous with respect to q�

�, n= 0111 : : : 0
Let Q�

� =Q�
� for some �1� ∈RS0 Then q�

� = q�
� . Denote q� = q�

� 0 Lemma 4.2 implies that �4· � x5= �4· � x5
q�-a.e. This equality implies that �4· � x5 = �4· � x5 P�1n

� -a.e. and P�1n
� -a.e. for all n = 0111 : : : 0 In addition,

P�10
� = P�10

� =�0 By induction, we have that P�
� 4Cn5= P�

� 4Cn5 for any measurable subset Cn of X×4A×X5n−10
Kolmogorov’s theorem on finite-dimensional distributions implies that P�

� = P�
� . �

As defined in the beginning of §2, Q4X ×A5 is the set of finite measures on X ×A, and R4X ×A5 is the
Borel �-field on Q4X × A5. The following lemma claims that the sets of occupancy measures generated by
stationary and by deterministic policies are measurable subsets of Q4X ×A5.

Lemma 4.5. For an absorbing MDP, ORS
� ∈R4X ×A5 and OS

� ∈R4X ×A5.

Proof. According to Feinberg [20, Theorem 3.2], LRS
� and LS

� are measurable subsets of the standard Borel
space 4P4H�51M4H�55. Consider the one-to-one mapping g defined in Lemma 4.4. The formula

Q�
�4Y 1B5=

�
∑

n=0

P�
� 8xn ∈ Y 1an ∈ B91 (9)

where Y is a measurable subset of X\Z and B is a measurable subset of A, implies that the mapping g
is measurable. The Lusin-Purves theorem (Cantón et al. [8, p. 279]) implies that the sets ORS

� = g4LRS
� 5 and

OS
� = g4LS

�5 belong to R4X ×A50 �
Lemma 4.6. For an absorbing MDP, OS

� is the set of extreme points of the set ORS
� .

Proof. By Piunovskiy [42, Theorem 19], OS
� is the set of the extreme points of the set ORS

� = ORç
� for

discounted MDPs. The proof of this theorem in Piunovskiy [42] relies on the properties of occupancy measures
and the statement of Lemma 4.2 for discounted MDPs. Since all of these facts hold for absorbing MDPs, the
statement of the lemma holds for absorbing MDPs. �
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Next we shall consider conditions under which the set of occupancy measures ORS
� is compact in some natural

topology. Since the set of all occupancy measures ORç
� is the projection of the set of all strategic measures LRç

� ,
it is natural to look at conditions when LRç

� is compact. Such conditions, namely conditions (W) and (S) below,
were introduced by Schäl [45].

Condition (W)
(i) The sets A4x5 are compact for all x ∈X0

(ii) The set-valued mapping A4 · 5 is upper semicontinuous; that is, for any open subset G of A, the set
8x ∈X �A4x5⊆G9 is open in X.

(iii) The transition probability p4· � x1a5 is weakly continuous on 4X ×A5; that is, if 4xi1 ai5→ 4x1a5, then
∫

X
f 4y5p 4dy � xi1 ai5→

∫

X
f 4y5p 4dy � x1a5 for any bounded continuous function f on X.

Condition (S)
(i) The same as (i) in Condition (W).

(ii) The transition probability p4· � x1a5 is setwise continuous in a ∈A4x5; that is, p4B � x1ai5→ p4B � x1a5
as ai → a for any measurable subset B of X.

We consider the w-topology on P4X ×A5. The w-topology is the coarsest topology on P4X ×A5 in which
all mappings �→

∫

X×A
f 4x1a5�4dx da5 are continuous for bounded continuous functions f 0

Lemma 4.7. Consider an absorbing MDP. If either Condition (W) or Condition (S) holds, then ORS
� is

compact in the w-topology on P4X ×A5.

Proof. Consider the w-topology on P4H�50 This is the coarsest topology on H� in which all mappings
p → Epf 4hn5 are continuous for all bounded continuous functions f on Hn = 4X ×A5n for all n = 0111 : : : ,
where p ∈ P4H�5 and Ep is the expectation operator with respect to the measure p. Conditions (W) and (S)
imply that the set of strategic measures LRç

� is compact in the w-topology (Balder [3], Nowak [40]).
We shall show that P�

� → Q�
� is a continuous mapping. Let �11�21 : : : , be a sequence of policies such

that P�k
� w-converges to a strategic measure P�

� as k → �. This means that for any N = 0111 : : : , and for
any bounded continuous function f 4x01 a01 : : : 1 xN 1 aN 5,

E�k
� f 4x01 a01 : : : 1 xN 1 aN 5→E�

� f 4x01 a01 : : : 1 xN 1 aN 50 (10)

We need to show that
∫

X

∫

A
g4x1a5Q�k

� 4dx1da5→
∫

X

∫

A
g4x1a5Q�

� 4dx1da5 for any bounded continuous func-
tion g on X ×A, which, in view of (4) and (2), is equivalent to

E�k
�

�
∑

n=0

g4xn1 an5→E�
�

�
∑

n=0

g4xn1 an50 (11)

Fix a bounded continuous function g on X ×A0 Let �g4x1a5� ≤K <� for all x ∈X and all a ∈A0
For any finite N = 1121 : : : , formula (10) with f 4x01 a01 : : : 1 xN 1 aN 5 =

∑N
n=0 g4xn1 an5 yields

E�k
�

∑N
n=0 g4xn1 an5 → E�

�

∑N
n=0 g4xn1 an5. Since the MDP is absorbing, E�

�T ≤ K� < � for some constant K�.
Therefore,

∣

∣

∣

∣

E�
�

�
∑

n=N+1

g4xn1 an5

∣

∣

∣

∣

≤E�
�

�
∑

n=N+1

�g4xn1 an5� ≤KP�
� 8T ≥N + 19≤

KE�
�T

N + 1
≤

K ·K�

N + 1
1

where the third inequality follows from the Markov inequality. Thus,
∣

∣

∣

∣

E�k
�

�
∑

n=0

g4xn1 an5−E�
�

�
∑

n=0

g4xn1 an5

∣

∣

∣

∣

≤

∣

∣

∣

∣

E�k
�

N
∑

n=0

g4xn1 an5−E�
�

N
∑

n=0

g4xn1 an5

∣

∣

∣

∣

+
2K ·K�

N + 1
1

and this inequality implies (11). So P�
� →Q�

� is a continuous mapping, and therefore ORç
� is compact as a con-

tinuous image of a compact set LRç
� 0 �

When A4x5=A for all x ∈X, Condition (W)(ii) obviously holds. In this case, for Condition (W), Lemma 4.7
is presented in Piunovskiy [43, Theorem 6] for discounted MDPs.

Theorem 4.1. Consider an absorbing MDP. If either Condition (W) or Condition (S) holds, then for any
policy � there exists a probability measure � on OS

� such that for any measurable subset C of X ×A,

Q�
�4C5=

∫

OS
�

Q4C5� 4dQ50 (12)
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Proof. According to Corollary 4.1 and Lemma 4.7, ORç
� = ORS

� is a convex compact subset of the set of
signed finite measures under the w-topology. By Rudin [44, Theorem 3.10], the set of signed finite measures
on the Borel �-field of X ×A is locally convex under the w-topology. Lemmas 4.5 and 4.6 imply that OS

� is
the set of extreme points of ORS

� , and OS
� is measurable. Thus, (12) follows from the Choquet–Bishop–de Leeuw

theorem (Phelps [41, p. 17]). �
In some sense, Theorem 4.1, which deals with occupancy measures and stationary policies, is similar to

Feinberg [20, Theorem 5.1] described in statements (i) and (ii) in §3. Currently, it is not clear whether The-
orem 4.1 holds without continuity and compactness assumptions (W) or (S). Corollary 5.2 below presents a
particular case of Theorem 4.1 that requires neither continuity nor compactness assumptions. If the MDP is
not absorbing, the statement of Theorem 4.1 does not hold even when the state and action sets are finite; see
Kallenberg [35, Theorem 3.3.4, Example 3.3.3] and Example 5.1 below.

Let Y be a measurable subset of X\Z0 We denote by �Y the time of the first visit to Y , namely �Y 2=
min8n≥ 0 � xn ∈ Y 9. For a policy �, any measurable set Z ⊆X\Z, and for any measurable set B ⊆A, we define
the expected total time spent in Z×B until the first visit to Y as

gY 1�x 4Z1B5=E�
x

�Y −1
∑

n=0

I8xn ∈Z1an ∈ B91 x ∈X\Z1

and gY 1�� 4Z1B5 =
∫

X
gY 1�x 4Z1B5�4dx50 Then, standard calculations imply that for any stationary policy � and

for any measurable sets Z ⊆X\4Y ∪Z5 and B ⊆A,

Q�
�4Z1B5= gY 1�� 4Z1B5+

∫

Y

∫

A

[

∫

X\4Y∪Z5
gY 1�x 4Z1B5p 4dx � y1a5

]

Q�
� 4dy1da50 (13)

Let us fix a stationary policy � and a measurable subset Y of X\Z0 Denote by RS4Y 1�5 the set of stationary
policies such that the policy � is always used at states x ∈ X\4Y ∪ Z5. Let S4Y 1�5 be the set of stationary
policies that select deterministic actions on Y and act like � outside of Y ∪Z. Set OS

�4Y 1�5= 8Q�
� �� ∈ S4Y 1�59

and ORS
� 4Y 1�5= 8Q�

� �� ∈RS4Y 1�590
Observe that OS

�4Y 1�5 and ORS
� 4Y 1�5 are measurable subsets of the sets of all finite measures on X × A0

Indeed, for a finite nonnegative measure Q on X ×A, define its marginal measure q on X: q4Z5 = Q4Z ×A5
for any measurable subset Z of X. We also define the measure jY 1�4Q5 by jY 1�4Z × B5 = Q44Z ∩ Y 51B5 +
∫

Z\4Y∪Z5
�4B � y5q4dy50 From Dubins and Freedman [13, 2.1], we have that Q → jY 1�4Q5 is a measurable

mapping of 4Q4B51R4B55 to itself. In addition, Qã
�4Y 1�5 = 8Q ∈ Oã

� � Q = jY 1�4Q59, where ã = S or ã = RS0
Since Oã

� ∈R4X ×A51 we have Qã
�4Y 1�5 ∈R4X ×A51 where ã ∈ 8S1RS90

In view of Theorem 4.1, the natural question is whether for any stationary policy � ∈ RS4Y 1�5 there exists
a probability measure �∗ on OS

�4Y 1�5 such that for any measurable subset C of X ×A,

Q�
�4C5=

∫

OS
�4Y 1�5

Q4C5�∗ 4dQ50 (14)

Equality (13) implies that (14) holds for all measurable subsets of X×A if and only if it holds for all measurable
subsets of Y ×A0 We observe that (14) is a straightforward generalization of (12), because (14) becomes (12)
when Y = �0 The following three sections of this paper deal with two particular situations when (14) holds
without explicit assumptions that either Condition (W) or Condition (S) holds: (i) Y = 8y9 is a singleton, and
(ii) the set Y is finite and for each x ∈ Y the set A4x5 is finite.

We conclude this section with the construction of an embedded MDP introduced in Feinberg [17] for countable
state MDPs and general policies. Here we need this construction only when a stationary policy � is fixed on
X\Y . Again, we fix a policy � ∈çRS and a measurable subset Y of X. Let �1

Y = inf8n≥ 1 � xn ∈ Y 90 We consider
an MDP with the state space Y ∪ Z, action sets A4x51 x ∈ Y ∪ Z1 and transition probabilities p�

Y such that
p�
Y 4x � x1a5= 1 if x ∈Z, and for any measurable subset Y ′ of Y ∪Z,

p�
Y 4Y

′
� x1a5=















p4Y ′
� x1a5+

∫

X\Y
P�
z 8�Y <�1 x�Y ∈ Y ′9p 4dz � x1a5 if x ∈ Y and Y ′ ⊆ Y 1

p4Z � x1a5+

∫

X\Y
P�
z 8�Y = �9p 4dz � x1a5 if x ∈ Y and Y ′ =Z0

For a stationary policy �̃ in the embedded MDP, we denote by �6Y 1 �̃7 the stationary policy for the original
MDP that coincides with �̃ on Y and coincides with � on X\Y 0 Let Q̃�̃

� be the occupancy measure in the
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embedded model for the policy �̃ and for the initial (possibly, subprobability) measure � on Y , where �4Y ′5=

P�
� 8�Y < T 1x�Y ∈ Y ′9 for any measurable subset Y ′ of Y . We denote by ÕRS

� 4Y 1�5 and ÕS
�4Y 1�5, respectively,

the sets of all occupancy measures for stationary and deterministic policies in the embedded MDP.
It is easy to conclude from (3) that

Q�6Y 1 �̃7
� 4Y ′

×B5= Q̃
�̃

�
4Y ′

×B5 (15)

for any measurable subsets Y ′ ⊆ Y and B ⊆ A. Thus, Q�6Y 1 �̃7
� 4C5= Q̃

�̃

�
4C5 for any measurable set C ⊆ Y ×A.

This equality and (13) imply that l2 Q�6Y 1 �̃7
� → Q̃�̃

� is a one-to-one measurable mapping of the set ORS
� 4Y 1�5

on the set ÕRS
� 4Y 1�5. Being applied to the subset OS

�4Y 1�5 of ORS
� 4Y 1�5, this correspondence is a one-to-one

measurable mapping of OS
�4Y 1�5 onto ÕS

�4Y 1�5. In particular, for a deterministic policy �̃ in the embedded
model, l−14Q̃�̃

� 5=Q�6Y 1 �̃7
� .

We observe that � = �6Y 1 �̃7 for any stationary policy � ∈ RS4Y 1�51 where �̃4· � x5 = �4· � x5 for any
x ∈ Y 0 We rewrite (12) for the embedded MDP: for any measurable subset C of Y ×A,

Q̃�̃
� 4C5=

∫

ÕS
� 4Y 1�5

Q4C5 �̃ 4dQ51 (16)

where �̃ is a probability measure on the set ÕS
�4Y 1�5 of occupancy measures in the embedded models corre-

sponding to deterministic policies. The following lemma shows that formulae (14) and (16) are equivalent. In
particular, formula (14) holds if the corresponding embedded MDP satisfies the conditions of Theorem 4.1.

Lemma 4.8. Let Y be a measurable subset of X\Z and let � be a stationary policy. Formula (14) holds
for any measurable set C ⊆ X × A if and only if formula (16) holds for any measurable set C ⊆ Y × A. In
addition, �∗ is induced by � and the correspondence l; that is, �∗4U5= �̃4l4U55 for any measurable subset U
of OS

�4Y 1�5 or, equivalently, �̃4Ũ 5= �∗4l−14Ũ 55 for any measurable subset Ũ of Q̃S
�4Y 1�50

Proof. Let � ∈RS4Y 1�5. Then � = �6Y 1 �̃7, where �̃4· � x5=�4· � x5 for all x ∈ Y . Let C be a measurable
subset of Y × A0 Since Q�6Y 1 �̃7

� 4C5 = Q̃�̃
� 4C51 the change of variables in Lebesque integrals implies that (14)

holds if and only if (16) holds. To complete the proof, we need to show that if (14) holds for any measurable
C ⊆ Y ×A, then it holds for any measurable C ⊆X×A or equivalently for any measurable C ⊆ 4X\4Y ∪Z55×A.
The latter is equivalent to the validity of (14) for any C = Z × B, where Z and B are measurable subsets of
X\4Y ∪Z5 and A, respectively. This is true because (13) implies

Q�
�4Z1B5 = gY 1�� 4Z1B5+

∫

Y

∫

A

[

∫

X\4Y∪Z5
gY 1�x 4Z1B5p 4dx � y1a5

]

Q�
� 4dy1da5

=

∫

OS
�4Y 1�5

{

gY 1�� 4Z1B5+

∫

Y

∫

A

(

∫

X\4Y∪Z5
gY 1�x 4Z1B5p 4dx � y1a5

)

Q4dy1da5

}

�∗4dQ5

=

∫

OS
�4Y 1�5

Q4Z1B5�∗4dQ51

where the first equality holds because gY 1�� 4Z1B5 does not depend on decisions at states x ∈ Y and therefore,
gY 1�� 4Z1B5 = gY 1�� 4Z1B51 the second equality follows from the validity of (14) for all measurable C ⊆ Y ×A
and from the change of the order of integration, and the last equality follows from the first equality applied to
the situation when all the decisions �4· � x5 are deterministic when x ∈ Y 0 �

5. Splitting at a state. We recall that an MDP with a countable state space X is transient (Altman
[1, p. 75]) if E�

�

∑�

n=0 I8xn = x9 <� for each x ∈X\Z. In particular, if X is countable, then an absorbing MDP
is transient but not vice versa. A finite-state MDP is transient if and only if it is absorbing.

For a stationary policy � , for a state y ∈X\Z, and for an action a ∈A4y5, we denote by �6y1a7 the stationary
policy that coincides with � at any state x 6= y and always selects the action a at y. The Ionescu Tulcea
theorem (Hernández-Lerma and Lasserre [31, p. 178]) implies that the mapping a → P�6y1a7

� is measurable.
Formula (3) implies that the mapping P�

� → Q�
� is measurable. Thus, the mapping a → Q�6y1a7

� is measurable;
that is, a→Q�6y1a7

� 4C5 is a measurable function on A4y5 for any measurable subset C of X ×A0
Henceforth in this section, let state y ∈X\Z be fixed. According to Altman [1, p. 108], a probability measure

�∗ on A4y5 splits a stationary policy � at the state y if for any measurable subset C of X ×A,

Q�
�4C5=

∫

A4y5
Q�6y1a7

� 4C5�∗ 4da50 (17)
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For transient countable state MDPs, Altman [1, p. 109] provided an explicit formula for �∗ satisfying (17);
see (27) below. We observe that, since a→Q�6y1a7

� is a measurable mapping of A4y5 on OS
�48y91�5, it is possible

to change the measure and to write (17) in the form of (14) with Y = 8y9. Thus, (17) can be viewed as a
particular case of (14).

Let � be the first epoch when the process hits y; i.e., � = min8n≥ 0 � xn = y9. In view of the notation used in
the previous section, � = �Y with Y = 8y90 We observe that P�

� 8� <�9= P�
� 8� <�9 for any stationary policy �

that coincides with � outside of y. We also observe that, for any policy �, the following two properties hold:
(i) q�

� 4y5≥ P�
� 8� <�91 and (ii) q�

� 4y5 > 0 if and only if P�
� 8� <�9 > 0. By setting � = �6y1a7, a ∈A4y5, we

have: (a) q�6y1a7
� 4y5 > 0 if and only if P�

� 8� <�9 > 01 and (b)

q�6y1a7
� 4y5≥ P�6y1a7

� 8� <�9= P�
� 8� <�91 a ∈A4y50 (18)

If P�
� 8� < �9 = 0, then P�6y1a7

� 8� < �9 = P�
� 8� < �9 = 0 for all a ∈ A4y5, because the policies � and

�6y1a75 coincide at any time t < �0 Thus, P�
� 8� <�9= 0 implies P�

� = P�6y1a7
� , and therefore Q�

� =Q�6y1a7
� for

all a ∈ A4y5. So, when P�
� 8� < �9 = 0, we have that Q�6y1a7

� 4C5 = Q�
�4C5 in formula (17), and therefore (17)

holds for any probability distribution �∗ on A4y5. So, we shall concentrate on the case P�
� 8� <�9 > 00

If P�
� 8� <�9 > 0, formula (18) implies that

∫

A4y5

�4da � y5

q
�6y1a7
� 4y5

≤

∫

A4y5

�4da � y5

P�
� 8� <�9

=
1

P�
� 8� <�9

<�0

On the Borel set A4y5, consider the finite measure � defined as

�4B5 2=
∫

B

�4da � y5

q
�6y1a7
� 4y5

(19)

for measurable subsets B of A4y5. We recall that two probability measures P and Q, defined on the same
measurable space, are called equivalent if P4B5 > 0 if and only if Q4B5 > 00

Theorem 5.1. Consider a stationary policy � and a state y. Let D 2= 8a ∈A4y5 � q�6y1a7
� 4y5= �9.

(i) If q�
� 4y5= 0, then any probability measure on A4y5 splits � at y.

(ii) If q�
� 4y5= �, then �4D � y5= 1 and a probability measure �∗ splits � at y if and only if �∗ is equivalent

to �4· � y5.
(iii) If 0 < q�

� 4y5 <� and �4D � y5= 0, then �∗, with

�∗4B5 2=
�4B5

�4A4y55
=

∫

B
�4da � y5/q�6y1a7

� 4y5
∫

A4y5
�4da � y5/q

�6y1a7
� 4y5

(20)

for any measurable subset B of A4y5, is the unique probability measure on A4y5 that splits � at y0
(iv) If 0 < q�

� 4y5 <� and �4D � y5 > 0, then � cannot be split at y0

Proof. (i) Condition q�
� 4y5= 0 is equivalent to P�

� 8� <�9= 0. This implies that P�6y1a7
� = P�

� , and therefore
Q�6y1a7

� =Q�
� for all a ∈A4y5.

For the remaining cases q�
� 4y5 > 0, which is equivalent to P�

� 8� < �9 > 0. Lemma 4.8 implies that a given
probability measure �∗ splits � at y if and only if for any measurable subset B of A4y5,

Q�
� 4y1B5=

∫

A4y5
Q�6y1a7

� 4y1B5�∗4da51 (21)

where �4Y 5 = I8y ∈ Y 9P�
� 8� < �9 for any measurable subset Y of X. Since Q�

� 4y1B5 = P�
� 8� < �9Q�

y 4y1B5
for � = � and for � = �6y1a7, a ∈ A4y5, Equation (21) is equivalent to the same equation with the initial
measure � being replaced with the initial state y.

Since Q�
y 4y1B5= q�

y 4y5�4B � y5 and Q�6y1a7
y 4y1B5= q�6y1a7

y 4y5I8a ∈ B9, (21) is equivalent to

q�
y 4y5�4B � y5=

∫

B
q�6y1a7
y 4y5�∗4da50 (22)

The rest of the proof is based on the validity of (22) for cases (ii)–(iv). Before we consider these cases, we
derive some useful formulae.
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Let �1 2= �1
y = min8n ≥ 1 � xn = y9 be the first time, except time 0, when the process xn hits y. Then

P�
y 8�

1 <�9 is the probability to return to state y0 For a stationary policy �, the total number of visits to y,
starting from y, has a geometric distribution with the parameter P�

y 8�
1 = �9. Since the expectation of this

number is q�
y 4y5, we have q�

y 4y5= 1/41 −P�
y 8�

1 <�95. From the total probability formula,

P�
y 8�

1 <�9=

∫

A4y5
P�6y1a7
y 8�1 <�9� 4da � y50 (23)

Thus,

q�
y 4y5=

1
1 −P�

y 8�
1 <�9

=
1

∫

A4y5
41 −P

�6y1a7
y 8�1 <�95�4da � y5

=
1

∫

A4y5
�4da � y5/q

�6y1a7
y 4y5

0 (24)

We observe that for any stationary policy �,

q�
� 4y5= P�

� 8� <�9q�
y 4y50 (25)

Formulae (24), (25), and P�
� 8� <�9= P�6y1a7

� 8� <�9 imply

q�
y 4y5=

1

P�
� 8� <�9

∫

A4y5
�4da � y5/q

�6y1a7
� 4y5

=
1

P�
� 8� <�9�4A4y55

0 (26)

(ii) Equality (24) implies �4D � y5 = 11 because otherwise q�
y 4y5 < �, and, in view of (25), q�

� 4y5 < �0
For B = A4y5\D, the left-hand side of (22) equals 0, because �4D � y5 = 1 (recall that we follow the standard
convention that 0 × � = 0). Since q�

y 4y5 ≥ 1 > 0 for any policy �, equality (22) holds for this particular B if
and only if �∗4D5= 10 This implies that (22) holds for any measurable subset B of A4y5 if and only if �∗ and
�4· � y5 are equivalent.

(iii) Let �∗ be defined by (20). Equations (19), (26), and P�
� 8� < �9 = P�6y1a7

� 8� < �9 imply that for any
measurable subset B of A4y5,

∫

B
q�6y1a7
y 4y5�∗ 4da5=

∫

B
4q�6y1a7

y 4y5/q�6y1a7
� 4y55�4da � y5

P�
� 8� <�9�4A4y55

=

∫

B
4q�6y1a7

� 4y5/q�6y1a7
� 4y55�4da � y5

�4A4y55
=

�4B � y5

�4A4y55
1

where q�6y1a7
� 4y5 cancel each other in the middle formula because �4D � y5= 0. Thus, (22) is proved. Therefore,

(21) holds and �∗ splits � at y0 If some measure �∗ splits � at y, then the inequality q�
y 4y5 ≥ 1 > 01 where

� is an arbitrary policy, and equality (22) imply that the measure �∗ is absolutely continuous with respect to
the measure �4· � y5. The Radon-Nikodym theorem implies that there exists a �4· � y)-measurable function f
on A4y5 with �∗4B5 =

∫

B
f 4a5�4da � y5 and f is �4· � y5-a.s. unique. Formula (22) implies that f satisfies

(�4· � y5-a.s.) the equality f 4a5 = q�
y 4y5/q

�6y1a7
y 4y5. This and q�

y 4y5 = �4A4y55, that in view of P�
y 8� < �9 = 1

follows from (26), imply that �∗ satisfies (19). Thus, �∗ is unique.
(iv) Suppose � is split at y. Formula (25) implies q�

y 4y5 < �0 Recall that q�
y 4y5 ≥ 1. Thus, 0 <

q�
y 4y5�4D � y5 <�0 Since q�6y1a7

y 4y5= � when a ∈D, the right-hand side of (22) with B =D is either 0 or �0
This contradiction completes the proof. �

The following example illustrates statement (iv) of Theorem 5.1.
Example 5.1. Let X = 81129 and Z= 819; that is, state 1 is absorbing. Let A425= 8a1 b9 and p41 � 21 a5=

p42 � 21 b5 = 10 In this example there are only two deterministic policies: �a with �a425 = a and �b with
�b425 = b. From state 2 the policy �a moves the process to the absorbing state, while policy �b moves the
process back to state 2. Thus, Q�a

2 425= 1 and Q
�b

2 425= �0 Consider the stationary policy � that selects actions a
and b at state 2 with probabilities 005. This policy defines a Markov chain with the recurrent state 1 and transient
state 2. In particular, Q�

2 425= 2. Since 2 is not a convex combination of 1 and �, � cannot be split.
Remark 5.1. As mentioned above, Altman [1, p. 109] established splitting of a stationary policy at a state

for transient countable state MDPs. The splitting measure is presented in Altman [1] in the form

�∗4B5=

∫

B
41 −P�6y1a7

y 8�1 <T 95�4da � y5

1 −P�
y 8�

1 <T 9
0 (27)

Formulas (24), (25), and q�6y1a7
y 4y5 = 1/41 − P�6y1a7

y 8�1 < �95 imply that representations (20) and (27) are
equivalent. However, the advantage of (20) is that splitting of Q�

� into Q�6y1a7
� , a ∈ A4y5, is represented in (20)



Feinberg and Rothblum: Splitting Randomized Stationary Policies
140 Mathematics of Operations Research 37(1), pp. 129–153, © 2012 INFORMS

only via � and Q�6y1a7
� 4y1A5 = q�6y1a7

� 4y5, a ∈ A4y5. Statements (i) and (iii) of Theorem 5.1 cover transient
countable state MDPs. We also observe that, if q�

� 4y5 > 0, then �4da � y5=Q�
�4y1da5/q

�
� 4y5, and (20) can be

rewritten as

�∗4B5=

∫

B
Q�

�4y1da5/q
�6y1a7
� 4y5

∫

A4y5
Q�

�4y1da5/q
�6y1a7
� 4y5

0 (28)

If A4y5 is countable, then (17) becomes Q�
� =

∑

a∈A4y5 �
∗4a5Q�6y1a7

� 1 where

�∗4a5=
�4a � y5/q�6y1a7

� 4y5
∑

a∈A4y5 �4a � y5/q
�6y1a7
� 4y5

1 a ∈A4y50 (29)

We notice that (22) is equivalent to

�∗4da5=
q�
� 4y5

q
�6y1a7
� 4y5

�4da � y5=
Q�

�4y1da5

q
�6y1a7
� 4y5

1 (30)

where the second equality follows from Q�
�4y1da5= q�

� 4y5�4da � y5. For a countable set A4y5, (30) becomes

�∗4a5=
q�
� 4y5

q
�6y1a7
� 4y5

�4a � y5=
Q�

�4y1a5

q
�6y1a7
� 4y5

1 a ∈A4y50 (31)

Formula (30) is simpler than (28).
Remark 5.2. As follows from the proof of Theorem 5.1, the initial measure � in the definition (20) of �∗

and in (30) can be replaced with any probability measure � such that P�
� 8� <�9 > 0 or equivalently, q�

� 4y5 > 00
In particular, after this replacement, the statements of Theorem 5.1 and Corollary 5.1 remain valid.

For an absorbing MDP, q�
� 4X5 <� for any policy �. Therefore, if the MDP is absorbing, then the situations

described in Theorem 5.1(ii) and (iv) are impossible. So, we have the following statement.

Corollary 5.1. For an absorbing MDP, consider a stationary policy � and a state y. If q�
� 4y5 > 0, then the

probability measure �∗, defined by (20), is the unique probability measure on A that splits � at y0 If q�
� 4y5= 0,

then any probability measure on A4y5 splits � at y.

Consider a particular case when the policy � is deterministic at all states except x. Then Theorem 5.1 implies
the following statement that assumes neither Condition (W) nor Condition (S).

Corollary 5.2. Consider an absorbing MDP such that there is a state y such that the sets A4x5 are
singletons when x 6= y0 Then for any policy �, there exists a probability measure � on OS

� such that (12) holds.

Proof. In view of Lemma 4.2, for any policy � there exists � ∈ RS such that Q�
� = Q�

� 0 If q�
� 4y5 = 0,

then (12) holds for any probability measure � because Q�
� = Q�

� for any policy �. If q�
� 4y5 6= 0, then there is

a one-to-one correspondence between probability distributions � on A4x5 and � on OS
�. This correspondence is

defined by �48Q�
� � �4y5 ∈ B1� ∈ S95 = �4B5 for any measurable subset B of A4y50 Let �∗ be the probability

measure on OS
� corresponding to �∗ defined in (20). Then Q�

� =
∫

A4y5
Q�6y1a7

� 4C5�∗4da5=
∫

OS
�
Q4C5�∗4dQ5 for all

measurable subsets C of X×A, where the first equality follows from Theorem 5.1(iii) and the second inequality
follows from the definition of �∗. �

6. Finite splitting at multiple states when state and action sets are finite. We recall that finite state and
action MDPs are absorbing if and only if they are transient. For such MDPs, transience and absorbing are
routinely used in the literature on unconstrained MDPs when the conditions hold, respectively, for all initial
distributions (and not just for a specified one) or, equivalently, for an initial distribution that assigns positive
probabilities to all states. These definitions are more restrictive than the definitions used in this paper. Of course,
the aforementioned equivalence also holds for the restrictive definitions; also, the restrictive definitions are known
to be equivalent to the assumption that absolute values of all eigenvalues of the transition matrices associated
with the deterministic policies are less than 1.

In this section we focus on absorbing MDPs with finite state and action sets and show how the occupancy
measure for an arbitrary stationary policy can be presented as a convex combination of occupancy measures for
deterministic policies. In other words, we show how to split a stationary policy into deterministic policies. Our
results are constructive and yield accompanying computational methods.
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When a finite state and action MDP is absorbing, the occupancy measure of each policy � is represented
by Q�

� = 8Q�
�4x1a52 x ∈X1a ∈A4x59; the coordinates Q�

�4 · 1 · 5 are then referred to as occupancy values. Also,
q�
� 4x5 2=

∑

a∈A4x5Q
�
�4x1a5 for each x ∈ X. In particular, Q�

�4x1a5 = q�
� 4x5�4a � x5 for each a ∈ A4x5, when �

is a stationary policy.
Properties of occupancy measures used in this section are next recorded. First, the occupancy values of all

policies are finite. Second, Q = 8Q4x1a52 x ∈ X1a ∈ A4x59 represents the occupancy values of a policy if and
only if Q4x1a5= 0 when x ∈Z and, with X∗ 2=X\Z,

∑

a∈A� 4x5

Q4x1a5−
∑

y∈X∗

∑

a∈A4y5

p4x � y1a5Q4y1a5=�4x51 x ∈X∗1 (32)

Q4x1a5≥ 01 x ∈X∗1 a ∈A4x53 (33)

see Altman [1, Lemma 7.1] or Lemma 4.3 above. Third, a feasible solution Q of (32)–(33), represents the
occupancy values of any stationary policy � with

�4a � x5=











Q4x1a5
∑

b∈A4x5Q4x1b5
if

∑

b∈A4x5

Q4x1b5 > 01

arbitrary otherwise.

(34)

Here, arbitrary means any selection that satisfies
∑

a∈A4x5�4a � x5 = 1; see Altman [1, Theorem 8.1(ii)] or
Lemma 4.2 above. Finally, the solution set of (32)–(33) is bounded and the extreme points of this polytope are
represented by the occupancy values of deterministic policies; see Altman [1, Lemma 8.3(ii)] and Kallenberg
[35, Theorem 3.3.3].

The following definitions refer to finite state and action MDPs but will later be extended to general MDPs.
For a stationary policy � and a state x ∈X, let A�4x5 2= 8a ∈A4x5 � �4a � x5 > 09. We say that a deterministic
policy � is a restriction of a stationary policy � if �4x5 ∈A�4x5 for all x ∈X0

For a finite set E, we denote by �E� the number of its elements. For m = 0111 : : : 1 a stationary policy � is
called m-randomized stationary if

∑

x∈X

4�A�4x5� − 15≤m3 (35)

and it is called exactly m-randomized stationary if the inequality in (35) holds as an equality. The notions of
deterministic, 0-randomized stationary, and exactly 0-randomized stationary policies coincide.

We shall use the standard convention that 8�i1 : : : 1�j9= � for j < i.

Theorem 6.1. Consider an absorbing MDP with finite state and action sets. Let � be an exactly m-
randomized stationary policy with m ≥ 0 and let �1 be a restriction of � . Then there exist restrictions of � ,
�21 : : : 1�m+1, and nonnegative numbers �11 : : : 1�m+1 such that �11 : : : 1�m+1 are distinct,

∑m+1
j=1 �j = 1,

Q�
� =

m+1
∑

j=1

�jQ
�j

� (36)

and for i = 11 : : : 1m there is exactly one state xi ∈X with �i4xi5 6=�i+14xi50

The final property of the deterministic policies �11 : : : 1�m+1 in Theorem 6.1 implies that they are “similar”
in the sense that they can be distinct in at most m states. Without this requirement, splitting formula (36) can
be viewed as an instance of (14).

The proof of Theorem 6.1 will be preceded by three lemmas. The first lemma records elementary properties
of occupancy values.

Lemma 6.1. Consider an absorbing MDP with finite state and action sets. Let � and � be two stationary
policies.

(a) If A�4x5 ⊆ A�4x5 for all x ∈ X with q�
� 4x5 > 0, then Q�

�4z1a5 > 0 implies Q�
�4z1a5 > 0 for z ∈ X and

a ∈A4z5.
(b) If �A�4x5� = 1 and A�4x5=A�4x5 for every state x with q�

� 4x5 > 0, then Q�
� =Q�

� .
(c) If � is a restriction of � , then q�

�4x5 > 0 implies q�
� 4x5 > 0 each x ∈X.
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Proof. Recall that Q�
�4z1a5= 0 for z ∈Z and any policy �0

(a) Assume that A�4x5 ⊆ A�4x5 for all x ∈ X with q�
� 4x5 > 0, and consider z ∈ X\Z with Q�

�4z1a5 > 0.
Then under the Markov chain defined by � on X, z is accessible from some y ∈ X\Z with �4y5 > 0, i.e.,
there is a finite path of states from y to z that has positive probability. Every state u on such a path, includ-
ing u = z, has q�

� 4u5 > 0 and q�
� 4u5 > 0 (as A�4x5 ⊆ A�4x5 for x with q�

� 4x5 > 0). It now follows that
Q�

�4z1a5= q�
� 4z5�4a � z5 > 0 when a ∈A�4z5.

(b) If q�
� 4u5= 0 for some u ∈X, then under the Markov chain defined by � on X1 either u ∈Z or u is not

accessible from every state y ∈X\Z with �4y5 > 0. In either case, if � is changed arbitrarily for states u with
q�
� 4u5= 0, the occupancy values do not change. Thus, Q�

� =Q�
� for every policy � that differs from � only at

states u with q�
� 4u5= 0.

(c) Follows from (a). �
We shall use the standard convention that a/0 = � for a> 0.

Lemma 6.2. Consider an absorbing MDP with finite state and action sets. Let � be a stationary policy for
which �A�4x5�> 1 for at least one state x with q�

� 4x5 > 0 and let � be a restriction of � . Then

� 2= min
x∈X1q�� 4x5>0

Q�
�4x1�4x55

q
�
�4x5

(37)

is well defined (that is, no ratio 0/0 appears in (37)) and 0 <�< 10

Proof. As Q�
� solves (32), it is nonzero and therefore q�

�4x5 > 0 for some x; in view of Lemma 6.1(c), such
x satisfies q�

� 4x5 > 0. Also, as Q�
�4x1�4x55 = q�

� 4x5�4�4x5 � x5> 0 for each x, the numerator of each ratio in
(37) is positive. These conclusions assure that � is well defined, positive and finite. Next assume that �≥ 1 and
we will establish a contradiction. As Q�

�4x1a5 = 0 when either q�
�4x5 = 0 or a 6= �4x5, the assumptions � ≥ 1

and Lemma 6.1(c) imply that

Q�
�4x1a5−Q�

�4x1a5

{

≥Q�
�4x1a5−�Q�

�4x1a5≥ 0 if q�
�4x5 > 0 and a=�4x51

=Q�
�4x1a5≥ 0 otherwise.

Next, for the state x with �A�4x5�> 1 and q�
� 4x5 > 0, there is an action b ∈A�4x5\8�4x59; this action satisfies

Q�
�4x1 b5 = q�

� 4x5�4b � x5 > 0, Q�
�4x1 b5 = q�

�4x5�4b � x5 = 0, and hence, Q�
�4x1 b5 − Q�

�4x1 b5 > 0. Define
Q′4x1a5=Q�

�4x1a5−Q�
�4x1a5 for x ∈X and a ∈A�4x5. Then all elements of Q′ are nonnegative and at least

one of them is positive. Furthermore, as Q�
� and Q�

� satisfy (32), Q′ satisfies the corresponding homogenous
equation (where � is replaced by 0). It follows that Q′ is a nonzero direction of recession of the polyhedron
defined by (32)–(33), contradicting its boundedness. This contradiction proves that �< 1. �
Lemma 6.3. Consider an absorbing MDP with finite state and action sets. Let � be a stationary policy for

which �A�4x5� > 1 for at least one state x with q�
� 4x5 > 0, let � be a restriction of � , and let � be defined

by (37). Then,
(a) the following defines a stationary policy:

�4a � x5=



























Q�
�4x1a5−�Q�

�4x1a5

q�
� 4x5−�q

�
�4x5

if q�
� 4x5 > 0 and �A�4x5�> 11

1 if a=�4x5 and either q�
� 4x5= 0 or �A�4x5� = 11

0 otherwise1

(38)

which satisfies

Q�
� =

Q�
� −�Q�

�

1 −�
3 (39)

(b) there exists a state x with �A�4x5�> 1, q�
� 4x5 > 0, and �=Q�

�4x1�4x55/q
�
�4x5; and

(c) if � is m-randomized for m> 0, then � that satisfies (38) is 4m− 15-randomized.

Proof. (a) Let Q′ 2= 4Q�
� −�Q�

�5/41 −�5. The definition of � in (37) and Lemmas 6.2 and 6.1(c) assure
that Q′ is well defined and its elements are nonnegative. Furthermore, as Q�

� and Q�
� satisfy (32), so does Q′.

Thus, Q′ satisfies (32)–(33), implying that it represents the occupancy values of any stationary policy � defined
by (34) with Q′ replacing Q. We next show that the right-hand side of (38) is an instance of (34).

Define q′4x5 =
∑

a∈A4x5Q
′4x1a5, x ∈ X. Then q′4x5 =

∑

a∈A4x54Q
�
�4x1a5−�Q�

�4x1a55/41 −�5 =

4q�
� 4x5−�q�

�4x55/41 −�5 for each x ∈ X; in particular, q′4x5 ≥ 0. If q′4x5 = 0, then trivially (38) is an
instance of (34). Consider the alternative case where q′4x5 > 00 Then 0 < q′4x5= 4q�

� 4x5−�q�
�4x55/41 −�5≤

q�
� 4x5/41 −�51 assuring q�

� 4x5 > 0. We consider two subcases: (i) and (ii).
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(i) �A�4x5�> 1. Then (38) gives �4a � x5=Q′4x1a5/q′4x5 which is the unique choice under (34).
(ii) �A�4x5� = 1. Observe that 6Q′4x1a5 > 07⇒ 6Q�

�4x1a5 > 07⇒ 6a ∈A�4x57⇒ 6a=�4x57. Thus, �4a � x5
in (34) equals 1 for a=�4x5 and it equals 0 for all other a’s. Hence �4a � x5 in (34) and �4a � x5 in (38) are
equal.

(b) The proof of (b) is by contradiction. Assume that the conclusion of part (b) is false; that is:
(1) Q�

�4x1�4x55 > �Q�
�4x1�4x55 for all x such that q�

� 4x5 > 0 and �A�4x5� > 1, and (2) Q�
�4x1�4x55 =

�Q�
�4x1�4x55 for some x with �A�4x5� = 1 and q�

� 4x5 > 0. Of course, �A�4x5� = 1 means that A�4x5= 8�4x59.
Let � be a stationary policy defined in (38). In view of (39), (1) implies that �4a � x5q�

� 4x5 = Q�
�4x1a5 > 0

whenever q�
� 4x5 > 0, �A�4x5�> 1, and a ∈A�4x50 Consequently,

6�A�4x5�> 11 q�
� 4x5 > 0 and a ∈A�4x57 ⇒ 6a ∈A�4x570

Observing that if �A�4x5� = 1, then A�4x5 = 8�4x59 = A�4x5 (the second equality following from (38)), we
conclude that

6q�
� 4x5 > 0 and a ∈A�4x57 ⇒ 6a ∈A�4x570

By Lemma 6.1(a), this implication assures that Q�
�4x1a5 > 0 whenever Q�

�4x1a5 > 0. But, in view of (39),
(2) implies that Q�

�4x1�4x55= 0 for some x with A�4x5= 8�4x59 and Q�
�4x1�4x55= q�

� 4x5 > 0, a contradiction
which completes the proof of (b).

(c) The definition of � in (38) implies that A�4x5 ⊆ A�4x5 for each x ∈ X and (38) together with part (b)
show that the inclusion is strict for some x ∈X. Consequently,

∑

x∈X �A�4x5�<
∑

x∈X �A�4x5� which implies that
if � is m-randomized, then � is 4m− 15-randomized. �
Proof of Theorem 6.1 The proof is based on the induction in m. For m= 0, the statement of the theorem

is trivial. Suppose that for some n= 1121 : : : , the conclusion of the theorem holds for m= 0111 : : : 1 n− 1. We
shall prove that it also holds for m= n0 So, let � be an exactly n-randomized policy and let �1 be a restriction
of � .

We first consider the case where some state z has �A�4z5�> 1 and q�
� 4z5= 0. For such z, let a1 =�14z5 and

choose any a2 ∈A�4z5\8a19. Define the stationary policy � by �4a2 � z5= �4a1 � z5+�4a2 � z5, �4a1 � z5= 0
and �4a � x5 = �4a � x5 when x 6= z or x = z and a y 8a11 a29. Also, define the stationary policy �2 by
�24z5 = a2 and �24x5 = �14x5 for x 6= z. Then A�4z5 = A�4z5\8a19, A�4x5 = A�4x5 for every x 6= z, � is
exactly 4m− 15-randomized, �2 is a restriction of �, and �2 differs from �1 in exactly one state. Next, by the
induction assumption, there exist restrictions of �, �31 : : : 1�n+1, and nonnegative numbers �21 : : : 1�n+1, such
that �21 : : : 1�n+1 are distinct,

∑n+1
j=2 �j = 1,

Q�
� =

n+1
∑

j=2

�jQ
�j

� 1

and for i = 21 : : : 1 n, there is exactly one state where �i and �i+1 differ. Now, as A�4x5⊆A�4x5 for each x, we
have that �21 : : : 1�n+1 are also restrictions of � . As �14z5= a1 and a1 yA�4z5⊇A�i

4z5 for i = 21 : : : 1 n+ 1,
we have that �1 y 8�21 : : : 1�n+191 implying that �11 : : : 1�n+1 are distinct. Finally, with �1 = 0, we have that
∑n+1

j=1 �j =
∑n+1

j=2 �j = 1, and using Lemma 6.1(b), Q�
� = Q�

� =
∑n+1

j=2 �jQ
�j

� =
∑n+1

j=1 �jQ
�j

� . Thus, the induction
hypothesis has been established for m= n.

We next consider the alternative case where no state z has �A�4z5� > 1 and q�
� 4z5 = 0. As m > 0 assures

that �A�4z5� > 1 for some state z, it follows that such a state has q�
� 4z5 > 0; consequently, � and � = �1

satisfy the assumptions of Lemmas 6.2–6.3. Let � and � be defined, respectively, by the conclusions of Lem-
mas 6.2 and 6.3(a) applied to � and �=�1. Let G= 8x ∈X �Q�

�4x1�4x55= �q�
�4x51 q�

� 4x5 > 01 �A�4x5�> 19.
Lemma 6.3(b) assures that k 2= �G� ≥ 1. Also, (38) together with the assumption that no state z has �A�4z5�> 1
and q�

� 4z5= 0 assure that A�4x5=A�4x5\8�4x59 for x ∈G and A�4x5=A�4x5 for x ∈X\G. In particular, �
is exactly 4n− k5-randomized.

Enumerate the elements of G, say, G= 8x11 : : : 1 xk9 and define deterministic policies �21 : : : 1�k+1 sequen-
tially for i = 21 : : : 1 k+ 1 by

�i4x5 2=

{

�i−14x5 if x 6= xi−11

any element of A�4x5\8�i−14x59 if x = xi−1.
(40)

For 1 ≤ i < j ≤ k + 1, �i4xi5 = �4xi5 6= �i+14xi5 = �j4xi5. This implies �11 : : : 1�k+1 are distinct. Also, the
construction assures that �21 : : : 1�k+1 are all restrictions of � and for i = 11 : : : 1 k, �i and �i+1 differ only in



Feinberg and Rothblum: Splitting Randomized Stationary Policies
144 Mathematics of Operations Research 37(1), pp. 129–153, © 2012 INFORMS

state xi. Finally, the explicit expressions for the A�4x5’s assure that �k+1 is a restriction of �. Next, by the induc-
tion assumption, there exist deterministic policies �k+21 : : : 1�n+1 that are restrictions of �, and nonnegative
numbers �21 : : : 1�n+1, such that �k+11 : : : 1�n+1 are distinct,

∑n+1
j=k+1 �j = 1,

Q�
� =

n+1
∑

j=k+1

�jQ
�j

� 1

and for i = 11 : : : 1 n, there is exactly one state where �i and �i+1 differ. As A�4s5⊆A�4x5 for each x, we have
that �k+11 : : : 1�n+1 are restrictions of � . Also, for 1 ≤ i ≤ k < j ≤ n+1, �i4xi5=�4xi5yA�4x5⊇A�j

4x5. This
implies 8�11 : : : 1�k9∩ 8�k+11 : : : 1�n+19= �, and therefore �11 : : : 1�n+1 are distinct. Next, for i = 11 : : : 1 n,
there is exactly one state where �i and �i+1 differ. Finally, set �1 = �, �i = 0 for i = 21 : : : 1 k, and �i = 41−�5�i

for i = k+11 : : : 1 n+1. We then have that
∑n+1

j=1 �j = �+
∑n+1

j=k+1 �j = �+
∑n+1

j=k+141−�5�j = �+ 41−�5= 1,
and (39) implies that Q�

� = 4Q�
� −�Q�

�5/41 −�5, and therefore

Q�
� = �Q�

� + 41 −�5Q�
� =

n+1
∑

j=1

�jQ
�j

� 3

thus, the induction hypothesis has been established for m= n. �
Consider the inductive step of Theorem 6.1 when 8z ∈X2 �A�4z5�> 1 and q�

� 4z5= 09= �. With � as the con-
structed policy, if �A�4z5�> 1 for z ∈X, then q�

� 4z5 > 0; consequently, 8z ∈X2 �A�4z5�> 1 and q�
� 4z5= 09= �.

The following example demonstrates that it may be impossible to require for all �i’s to be positive in (36)
(and in (42)). This example also demonstrates that it may be impossible to select the deterministic policies
�11 : : : 1�m+1 in Theorem 6.1 in such a way that, in addition to �i and �i+1, i = 11 : : : 1m, the mappings �m+1

and �1 also differ only at one state.
Example 6.1. Let X = 81129, A = 8a11 a29, A415 = A425 = A, �415 = �425 = 005, p4x � x1a5 = 1 for all

4x1a5 ∈X×A, and there is a discount factor �= 0050 Of course, instead of the discount factor, we can consider
an absorbing state Z to which the model moves with probability 005 each time before it reaches Z. Let �
be a stationary policy with �4ai � 15 = �4ai � 25 = 005, i = 1120 Then straightforward computations imply that
Q�

�4x1a5= 005 for all 4x1a5 ∈X ×A0 For a deterministic policy � we have that Q�
�4x1�4x55= 1 for all x ∈X.

It is easy to verify that m= 2 and the ordered sets 8�11�21�39 and 8�11�21�39 satisfy the properties stated in
Theorem 6.1 if and only if �1 = �3 = 005, �2 = 01 �14x5 6= �34x5 for all x ∈ X, and either 8�24151�24259 =

8�14151�34259 or 8�24151�24259= 8�34151�14259.
The proof of Theorem 6.1 is constructive and motivates the following algorithm that splits a given stationary

policy into deterministic policies satisfying the properties described in Theorem 6.1.

Algorithm 1
Input: A stationary policy � and a restriction �1 of � .

Output: A nonnegative integer m, restrictions �21 : : : 1�m+1 of � and nonnegative numbers �11 : : : 1�m+1 that
satisfy the conclusions of Theorem 6.1.

Initiation:
1. Compute 8q�

� 4x52 x ∈X\Z9 and 8Q�
�4x1a52 x ∈X\Z and a ∈A4x59.

2. Set q4x5← q�4x5, A∗4x5←A�4x5 for x ∈X\Z, �←�1, j ← 1, U ← 8x ∈X\Z2 �A∗4x5�> 11 q4x5= 09,
V ← 8x ∈X\Z2 �A∗4x5�> 11 q4x5 > 09, and Q4x1a5←Q�

�4x1a5 for x ∈ V and a ∈A∗4x5.

Preliminary step:
3. While U 6= � do Steps 3(a)–(d):

(a) Select any z ∈U and any a ∈A∗4z5\8�4z59; set �j ← 00
(b) Define deterministic policy �j+1 by: �j+14z5= a and �j+14x5=�j4x5 for x 6= z.
(c) Set A∗4z5 ← A∗4z5\8�4z59, �4z5 ← �j+14z5 (do not change the other A∗4x5’s and �4x5’s), and

j ← j + 1 (in particular, do not change the Q4x1a5’s or the q4x5’s).
(d) If �A∗4z5� = 1, then set U ←U\8z90

Recursive step:
4. While V 6= �, do Steps 4(a)–(d):

(a) Set

�j ← min
x∈V

Q4x1�4x55

q
�
�4x5

1 G←

{

x ∈ V 2
Q4x1�4x55

q
�
�4x5

= �j

}

1 k ← �G�1

and enumerate the elements of G, say G= 8x11 0 0 0 1 xk9.
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(b) For i = 11 : : : 1 k, do:

�j+i4x5←

{

�j+i−14x5 if x 6= xi1

arbitrary a ∈A�4x5\8�j+i−14x59 if x = xi0

(c) For i = 11 : : : 1 k− 1, do �j+i = 00
(d) Set A∗4x5 ← A∗4x5\8�4x59 and �4x5 ← �j+k4x5 for x ∈ G (do not change the other A∗4x5’s and

�4x5’s), V ← V \8x ∈G2 �A∗4x5� = 19, j ← j +k, and Q4x1�4x55←Q4x1�4x55−�jQ
�
�4x1�4x5 for x ∈ V (do

not change the other Q4x1a5’s).

Final step:
5. Set m← j − 1 and �m+1 ← 1 −

∑m
i=1 �i. Output m1�21 0 0 0 1�m+11�11 : : : 1�m+1.

Before presenting a formal result about Algorithm 1, we make two observations.
Observation 1. There are two alternatives for representing the input policy � : through the �4a � x5’s or

through the Q�
�4x1a5’s; for an example of the latter, see §8 which discusses the solution of constrained MDPs.

When � is presented by the �4a � x5’s, the A�4x5’s are easily available; however, the q�
� 4x5’s and Q�

�4x1a5’s
require computation that is explained in the second observation. When � is represented by the Q�

�4x1a5’s, one
has q�

� 4x5=
∑

a∈A4x5Q
�
�4x1a5 for x ∈X\Z and A�4x5= 8a ∈A4x5 �Q�

�4x1a5 > 09 for x ∈X\Z with q�
� 4x5 > 0;

in addition, one can have A�4x5 as an arbitrary element from A4x5 for x ∈X\Z with q�
� 4x5= 0 (these selections

are consistent with (34)). It is noted that there is no need to determine actual values of the �4a � x5’s as they
are not used in the preliminary or recursive steps of Algorithm 1 (though they could have been determined
from (34)).
Observation 2. The algorithm requires the computation of Q�

� for each deterministic policy that is gener-
ated, and possibly the computation of Q�

� for the input policy � (see the first observation). Let � be a stationary
policy (including � =� and � = �). For an absorbing MDP, Q�

�4x1a5= 0 for x ∈Z and Q�
�4x1a5= q�

�4x5�4a �

x5 for x ∈X\Z, where the values 8q�
�4x52 x ∈X\Z9 are the solution of the system of linear equations

q�
�4x5=�4x5+

∑

y∈X\Z

(

∑

a∈A4y5

p4x � y1a5�4a � y5

)

q�
�4y51 x ∈X\Z3 (41)

see Altman [1, Lemma 7.1]. In particular, when � is a deterministic policy, that is, � ∈ S, the coefficients
multiplying q�

�4y5 simplify to p4x � y1�4y550 Whether � is deterministic or not, the computation of q�
� is

available by solving a nonsingular �X\Z� × �X\Z� system of linear equations (41).
Let N 2= �X\Z� and M =

∑

x∈X\Z �A4x5�. Evidently, a stationary policy can be exactly m-randomized station-
ary only for m≤M −N .

Theorem 6.2. With input (�1�1), Algorithm 1 finishes in finite time with output (m1�21 : : : 1�m+1,
�11 : : : 1�m+1) that satisfies the conclusions of Theorem 6.1; furthermore; m is the unique integer for which
� is exactly m-randomized. Executing the algorithm requires at most O4m ·N 203765 arithmetic operations and
m≤M −N .

Proof. Assume that � is an exactly m′-randomized stationary policy (with 0 ≤m′ ≤M −N ). Following the
initiation step,

∑

x∈X\Z �A∗4x5� =
∑

x∈X\Z �A�4x5� =m′ +N and the execution of each preliminary and recursive
step reduces

∑

x∈X\Z �A∗4x5� by a positive number that equals the increase of j . It follows that the algorithm
must terminate in finite time; at termination, �A∗4x5� = 1 for each x (U = V = �), which implies that j =

1 + 64m′ +N5−N7=m′ + 1. The number of generated deterministic policies is equal to the total increase in j ,
that is, m′ = j − 1 =m1 and the number of generated nonnegative numbers is m+ 1.

The induction used in the proof of Theorem 6.1 yields a recursion that generates the splitting asserted in
the statement of that theorem. This recursion is implemented in Algorithm 1 with some modifications. We next
review the differences between the “algorithm” and the “recursion.” In particular, the comparison demonstrates
that the algorithm and the induction generate the same sequences of deterministic policies and nonnegative
numbers; consequently, the proof of Theorem 6.1 assures that the output of the algorithm satisfies the asserted
conclusions.

Modification 1. Given a stationary policy � , the inductive step generates a policy � which is then treated by
the induction hypothesis. The algorithm does not compute the policy � explicitly and, instead of this, it directly
computes the occupancy values for � in Step 4(d). It is straightforward to compute the policy � by using (34),
but such computations are not needed.
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Modification 2. The inductive step considers two possible cases: (i) U ≡ 8z ∈ X\Z2 A�4z5� > 1 and
q�
� 4z5= 09 6= �, and (ii) U = �. Implementing the recursion seems to require consideration of situations with

U 6= � following U = �, but the paragraph following the proof of Theorem 6.1 explains that this will never
happen. The algorithm explicitly excludes such situations, as U 6= � is restricted to the preliminary step.

Modification 3. Instead of the recursion (39), the algorithm uses its simpler normalized version

Q ← 41 −�j5Q
�

←Q−�jQ
�
�1

with the initial values Q = Q�
� . This allows us to simplify the formulae in the algorithm and simplify the

calculations of the coefficients �j 0 The algorithm computes the coefficients �j described in Theorem 6.1 directly
in Step 4(a) by using the ratios Q4x1a5/q�

� 4x5 instead of the ratios in (37) and the following calculations of the
coefficient �j as some products.

The most computation-demanding parts in executing Algorithm 1 is the initial computation of Q�
�1 if required,

and the computation of Q�
� at the recursive step. Each such computation requires the solution of an N × N

system of linear equations (in fact, the algorithm may be specified in the way that the size of the system is
�V �× �V �, where �V � ≤N , but we do not discuss this here); this can be done by Gaussian elimination in O4N 35
arithmetic operations, by the Strassen algorithm (Strassen [48]) in O4N 208075 arithmetic operations and by the
Coppersmith-Winograd algorithm (Coppersmith and Winograd [10]) in O4N 203765 arithmetic operations. All other
computations are dominated by the above. As the number of iterations is bounded by m and the computation of
at most 4m+15 occupancy measures Q�

�1Q
�1

� 1 : : : 1Q�m

� is required, the asserted complexity bound follows. �
The normalization of the occupancy rates in the algorithm, explained in Modification 3, can be interpreted

through normalization of the initial distribution. Specifically, 41 − �15Q
�
� = Q�

� for every policy � and initial
distribution �, where � is the initial distribution on X such that �4x5= 41−�15�4x5 for all x ∈X\Z. Thus, the
algorithm generates a sequence of occupancy measures for the policies � or � defined in the inductive proof of
Theorem 6.1, but with respect to altering initial distributions.

Consider the question of how to represent the occupancy values of an m-randomized stationary policy � in
the form of (36), without the specification of �1 and without the extra requirement about the “similarity” of
consecutive restrictions. The equivalent question is how to represent the occupancy values of � by (36) with m
replaced by some m′ ≤m. In fact, the existence of such a splitting follows from Carathéodory’s theorem about
the representation of a point in a polytope as a convex combination of vertices of that polytope (recall that
the occupancy arrays of deterministic policies are the vertices of the set of occupancy arrays of all stationary
policies which equals the feasible set of (32)–(33)). In those cases, where one is only interested in the variant of
(36), Algorithm 1 can be simplified by excluding restrictions that get weight 0; in particular, whenever q4x5= 0,
one can replace A∗4x5 with any singleton in A4x5 and Step 3(b) can be simplified by determining only �t+1.
While the simplified algorithm will void some of the operations of Algorithm 1, it does not have a better (worse
case) complexity bound. The simplified algorithm, as well as Algorithm 1 with its full detail, construct the
decomposition asserted by Carathéodory’s theorem.

A geometric interpretation of the “adjacency condition” of consecutive restrictions in the generated sequence
of Theorem 6.1 is that the occupancy values of consecutive restrictions are vertices that share a common edge. It
is noted that the Carathéodory theorem cannot be extended, in general, to include this requirement—specifically,
in general, a point in a d-dimensional polytope need not be representable by d+1 vertices that can be enumerated
so that each consecutive pair share an edge.

If the set V consists of one point, it is possible to find the remaining values of �i by splitting at the single
state to which V is equal. In this case the algorithm will perform fewer operations, though its computational
complexity bounds will remain the same. To implement this, the condition V 6= � in Step 4 can be changed to
�V �> 1 and the following operations can be added between Steps 4 and 5:

If �V � = 1 consider the state x∗ such that V = 8x∗9, consider its action set A∗4x∗5 = 8a01 : : : 1 al9, where
a0 =�t4x∗5, and select the restrictions �t+11 : : : 1�t+l of � as �t+j4x∗5= aj1 j = 11 : : : 1 l, and �t+j4x∗5=

�t4x5 for x 6= x∗ (observe that t + l− 1 =m+ 1), compute

�t+i 2=
Q4x∗1 ai5

q�
1 i = 11 : : : l− 11

and set t ← t + l− 10

It is possible to use embedded MDPs and solve linear equations (41) for x ∈ V ⊆ X\Z instead of x ∈ X\Z0
This requires recomputing the transition probabilities when A∗4x5 becomes a singleton and state x should be
eliminated. The details are straightforward.
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7. Finite splitting for MDPs with general state and action sets. This section extends the results of the
previous section to MDPs with Borel state and action sets. Let � be a stationary policy. For a stationary policy
� and a state x ∈X, let A�4x5 2= 8a ∈A4x5 � �4a � x5 > 09. We say that a stationary policy � is discrete at x if
�4A�4x5 � x5= 10 We say that a stationary policy uses a finite number of actions at x if it is discrete at x and
A�4x5 is finite. Suppose that Y is a finite subset of X\Z such that the policy � uses a finite number of actions
at any state y ∈ Y . We denote by F �

Y the set of functions f 2 Y → A such that f 4y5 ∈ A�4y5 for all y ∈ Y . For
f ∈ F �

Y , consider the stationary policy �6Y 1 f 7 that coincides with � outside of Y and selects the actions f 4y5
at y ∈ Y . In other words, for a measurable subset B of A,

�6Y 1 f 74B � x5=

{

I8f 4x5 ∈ B9 if x ∈ Y 1

�4B � x5 otherwise.

For m = 0111 : : : 1 a stationary policy � is called (exactly) m-randomized stationary if there exists a finite
set of states Y such that (i) � uses only one action at each state x ∈X\Y ; (ii) � uses a finite number of actions
at each state x ∈ Y ; and (iii) with Y replacing X, (35) holds (with equality).

The following theorem generalizes Theorem 6.1.

Theorem 7.1. Assume that � is a stationary policy and Y is a finite subset of X\Z such that � uses
a finite number of actions at each state y ∈ Y and, in addition, q�6Y 1 f 7

� 4Y 5 < � for all f ∈ F �
Y . Let m 2=

∑

y∈Y 4�A
�4y5� − 15 and f 1 ∈ F �

Y . Then there exist mappings f 21 : : : 1 f m+1 in F �
Y and nonnegative numbers

�11 : : : 1�m+1 such that f 11 : : : 1 f m+1 are distinct,
∑m+1

j=1 �j = 1,

Q�
� =

m+1
∑

j=1

�jQ
�6Y 1 f j 7
� 1 (42)

and for i = 11 : : : 1m there is exactly one state yi ∈ Y such that f i4yi5 6= f i+14yi50

Proof. Consider two cases: (i) q�
� 4Y 5= 0, and (ii) q�

� 4Y 5 6= 0. If case (i) takes place, then Q�6Y 1 f 7
� =Q�

� for
any f ∈ F �

Z , and (42) holds for any nonnegative �11 : : : 1�m+1 whose sum is 1 and for any f 11 : : : 1 f m+1 in F �
Z .

In particular, one can set �1 = 11 �j = 01 j = 21 : : : 1m+ 11 and choose f j , j = 11 : : : 1m+ 11 by applying the
construction of Step 3 of Algorithm 1 with U = Y , A∗4x5 = A�4x5, x ∈ Y , and �1 = f 1, and setting f j = �j

for j > 10 Next assume that case (ii) takes place. For x ∈ Y , reduce the action sets A4x5 to A�4x5. After this
reduction, consider the embedded MDP with the state set Y corresponding to � by using the construction of the
paragraphs following (14) (a construction that applies to any stationary policy). Observe that �4Y 5 > 0, where
� is the initial state distribution in the embedded MDP. The assumption q�6Y 1 f 7

� 4Y 5 <� for all f ∈ F �
Y implies

q̃�
� 4Y 5 2= Q̃�

� 4Y 1A5 < � for any deterministic policy � in the embedded MDP. As explained in §3 with the
reference to Blackwell [4], this implies that the embedded MDP is absorbing. Thus Theorem 6.1 can be applied
to the embedded MDP. Formulas (42) and (36) are particular cases of (14) and (16), respectively, when �∗ and
�̃ are discrete measures concentrated at m + 1 points. Lemma 4.8 then implies that (42) and the conclusions
of this theorem hold for the original MDP with f 21 : : : 1 f m+1 corresponding to the constructed deterministic
policies in the embedded MDP. �

Splitting formula (42) without the final requirement of Theorem 7.1 is an instance of (14).
The following corollary demonstrates that the assumptions that the state and action sets are finite are not

needed in Theorem 6.1.

Corollary 7.1. Consider an absorbing MDP. Let � be an exactly m-randomized stationary policy and let
�1 be a restriction of � . If m> 0, then there exist deterministic policies �21 : : : 1�m+1 and nonnegative numbers
�11 : : : 1�m+1 satisfying the properties described in Theorem 6.1.

Proof. Consider the finite set Y = 8x ∈X\Z2 �A�4x5�> 19 and apply Theorem 7.1. �
Example 5.1 demonstrates that the assumption q�

� 4Y 5 < � is not sufficient for the validity of Theorem 7.1.
Also, for absorbing (and, in particular, discounted) MDPs, the assumption q�6Y 1 f 7

� 4Y 5 <� for all f ∈ F �
Y holds

with Y = X\Z, because for such MDPs, q�
� 4Y 5 ≤ q�

� 4X5 < � for any policy �. In addition, this assumption
holds for transient countable state MDPs, because q�

� 4Y 5 =
∑

y∈Y q
�
� 48y95 < � for any policy �, when Y is

finite.
Algorithm 1 can be applied to situations described in Theorem 7.1, including infinite state and action MDPs.

In those cases, stationary policies �6Y 1 f j 7 play the role of deterministic policies �j in finite state-action versions
of the algorithms. In view of Lemma 4.8, it is sufficient to consider only x ∈ Y . Computations of occupancy
values Q�6Y 1 f j 7

� 4x1a5 and Q�
�4x1a5 for x ∈ Y can be done either by simulation, or by using embedding, or by

problem-specific methods.
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8. Constrained absorbing MDPs with finite state and action sets. Consider an absorbing MDP with finite
state and action sets and 4K+15 reward functions r04 · 1 · 51 : : : 1 rK4 · 1 · 5 defined on X×A, where K is a positive
integer. For an absorbing MDP we assume that rk4x1a5 = 0 when z ∈ Z, k = 0111 : : : 1K. For k = 01 : : : 1K1
let V �

k 4�5 be defined by (2) with rk replacing r . For numbers c11 : : : 1 cK , consider the problem of finding an
optimal policy for the problem

maximize8V �
0 4�5 � V �

k 4�5≥ ck1 k = 11 : : : 1K90 (43)

It is well known that if problem (43) is feasible, then there exists an optimal policy that is a mixture of K + 1
deterministic policies, and such a policy can be found from a solution of the following LP (Feinberg [19],
Altman [1, p. 133]):

maximize



















∑

�∈S

V
�

0 u�

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

�∈S

V
�
k u� ≥ ck1 k = 11 : : : 1K1

∑

�∈S

u� = 11

u� ≥ 01 u� ∈ S0



















0 (44)

However, the set of deterministic policies S grows exponentially with the growth of the problem size and the
above LP is typically computationally intractable (Altman [1, p. 117]).

As in §6, let X∗ =X\Z0 It is also known that, if problem (43) is feasible, then there is an optimal policy that
is K-randomized stationary. A standard method for determining such a policy consists of two steps. The first
step is to find an optimal basic feasible solution to the following LP:

maximize
∑

x∈X∗

∑

a∈A4x5

r04x1a5Q4x1a5 (45)

subject to

∑

x∈X∗

∑

a∈A4x5

rk4x1a5Q4x1a5≥ ck1 k = 11 : : : 1K1 (46)

∑

a∈A4x5

Q4x1a5−
∑

y∈X∗

∑

a∈A4y5

p4x � y1a5Q4y1a5=�4x51 x ∈X∗1 (47)

Q4x1a5≥ 01 x ∈X∗1 a ∈A4x50 (48)

The second step is then to determine a K-randomized stationary policy whose occupancy values coincide with
the found optimal solution of the LP, e.g., by using (34) with deterministic selection of any action when
∑

b∈A4x5Q4x1b5= 0 (see Kallenberg [35, Algorithm VII, Chapter 3]).
The following efficient algorithm finds an optimal policy to (43) which is a mixture of deterministic policies

and has further structure.

Algorithm 2
Input: Problem (43).

Output: Either a finite list of deterministic policies and corresponding nonnegative numbers whose sum is 1 or
the response “infeasible.”

1. Find an optimal basic solution Q of LP (45)–(48) or conclude that it is not feasible; in the latter case
output “infeasible.”

2. Split Q by applying Algorithm 1 using �1 as any deterministic policy having Q4x1�14x55 > 0 for each
x ∈X∗ such that Q4x1a5 > 0 for some a ∈A4x5.

Let m be a nonnegative integer. A policy � is called m-deterministic if there exist 4m + 15 deterministic
policies �11 : : : 1�m+1 and 4m+ 15 nonnegative numbers �11 : : : 1�m+1 such that

∑m+1
i=1 �i = 1 and

P�
� =

m+1
∑

i=1

�iP
�i

� 3 (49)

this definition can be interpreted as randomly selecting, up front, one of the given 4m+15 deterministic policies
with �i as the probability of selecting �i. A policy is deterministic if and only if it is 0-deterministic. Notice
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that (49) specializes (6) with ã= S when � has a finite support, and this definition is also applicable to MDPs
with infinite state and action sets. In particular, (49) refers to the strategic measures, rather than the occupancy
measures used in (36). Also, the above definition does not require the “adjacency property” of Theorem 6.1.

We recall that an algorithm is weakly (strongly) polynomial, if the number of arithmetic operations that it
performs is bounded above by a polynomial in the number of binary bits (real numbers) in a representation of
the input.

Theorem 8.1. For an absorbing MDP with finite state and action sets, the following statements hold:
(i) Algorithm 2 terminates in Step 1 if and only if (43) is infeasible. In this case, the output is “infeasible.”

(ii) If problem (43) is feasible, then the output 4m1�11 : : : 1�m+11�11 : : : 1�m+15 of Algorithm 2 defines
an m-deterministic optimal policy that randomly selects, up front, the deterministic policy �i with probability
�i, i = 1121 : : : 1m+ 1, where m = 11 : : : 1min8K1

∑

x∈X∗ �A4x5� − �X∗�9, and any two sequential deterministic
policies �i and �i+1, i = 1121 : : : 1m, differ only at one state.

(iii) Algorithm 2 is weakly polynomial.

Proof. By the paragraphs preceding Algorithm 2, if problem (43) is feasible, then for some nonnegative
integer m ≤ min8K1

∑

x∈X∗ �A4x5� − �X∗�9 the output of Step 1 will have at most �X∗� + m nonzero variables,
and it corresponds to an exactly m-randomized stationary optimal policy. The output of Algorithm 2 has the
desired properties guaranteed by Algorithm 1, as described in Theorem 6.2. Finally, the complexity bound of
Algorithm 2 follows from Theorem 6.2 (by which Algorithm 1 is strongly polynomial) and the existence of
weakly polynomial algorithms for solving LPs. �

9. Constrained MDPs with Borel state and compact action sets. Consider an MDP with Borel state and
action sets and 4K + 15 reward functions r01 : : : 1 rK defined on X ×A, where K is a positive integer and each
of these functions is measurable on X ×A and bounded from above. For k = 01 : : : 1K1 let V �

k 4�5 be defined
by (2) with rk replacing r . The following condition implies that V �

k 4�5 are well defined, relaxing the assumption
that the MDP is absorbing; see Schäl [45] and Feinberg [22].

General Convergence Condition. The inequality E�
�

∑�

t=0 r
+

k 4xt1 at5 < � holds for all � ∈ RM and for all
k = 01 : : : 1K, where z+ = max8z109 for a real number z0

For real numbers c11 : : : 1 cK , we consider problem (43). The main result of this section, Theorem 9.2, describes
sufficient conditions for the existence of a stationary optimal policy and an optimal policy, which is a mixture
of deterministic policies, for this problem, when the MDP is absorbing. Theorem 9.2 is, in fact, an application
of the results of §4.

We say that an MDP satisfies Complete Condition (W) if it satisfies Condition (W) of §4 and, in addition, each
function rk4·1 ·5 is upper-semicontinuous on X ×A. We say that an MDP satisfies Complete Condition (S), if it
satisfies Condition (S) of §4 and, in addition, for each x ∈X, the functions rk4x1 ·5 is upper-semicontinuous on
A4x5. (Our Complete Conditions (W) and (S) correspond, respectively, to Conditions (W) and (S) in Balder [3]
and Schäl [45, 46].) We shall also consider the following condition.

Condition (C). The convergence supN≥n sup�∈M E�
�

∑N
t=n+1 rk4xt1 at5 → 0 as n → � takes place for all k =

01 : : : 1K0

The General Convergence Condition and Condition (C) are equivalent to the similar conditions introduced in
slightly different forms in Schäl [45], where the supremum in Condition (C) is taken over all policies � ∈ Rç
and the General Convergence Condition is assumed for all � ∈ Rç. However, it is possible to consider the
smaller sets M and RM respectively, because of the sufficiency of Markov and nonrandomized Markov policies;
see Feinberg [16].

The next result provides sufficient conditions for the existence of an optimal policy for problem (43); for
related results, see Piunovskiy [42, 43], Hernández-Lerma and González-Hernández [30], and Feinberg and
Piunovskiy [24].

Theorem 9.1. Consider an MDP satisfying Condition (C), the General Convergence Condition, and either
Complete Condition (S) or Complete Condition (W). If problem (43) is feasible, then there exists an optimal
policy.

Proof. By Schäl [45] and Balder [3], the set of all strategic measures LRç
� is compact in the cor-

responding topologies and the mappings P�
� → V �

k 4�5 are upper-semicontinuous on LRç
� . Thus, the sets
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Bk = 8P�
� 2 V

�
k 4�5≥ ck9, k = 11 : : : 1K1 and

⋂K
k=1 Bk are compact and the objective function V04P

�
� 5 2= V �

0 4�5

achieves a maximum on this set. �

Theorem 9.2. Consider an absorbing MDP satisfying Condition (C) and either Complete Condition (S) or
Complete Condition (W).

(i) For each policy � there exist a stationary policy � and a 4K + 15-deterministic policy � such that
V �
k 4�5= V �

k 4�5= V
�
k 4�5 for all k = 01 : : : 1K0

(ii) If problem (43) is feasible, then there exists a stationary optimal policy and there exists a K-deterministic
optimal policy.

Proof. (i) For an arbitrary policy �, consider a stationary policy � defined in Lemma 4.1. Lemma 4.2
implies that Q�

� =Q�
� , and therefore,

V �
k 4�5=

∫

X

∫

A
rk4x1a5Q

�
� 4dx1da5=

∫

X

∫

A
rk4x1a5Q

�
� 4dx1da5= V �

k 4�50

Next, by Corollary 4.1 and Lemma 4.7, the set V4�5 2= 8V �4�552 � ∈ Rç59, where V �4�5 =

4V �
0 4�51 : : : 1 V �

K 4�55 is a 4K + 15-dimensional projection of the convex compact ORç
� 0 According to Theo-

rem 4.1, any occupancy measure Q�
� is a barycenter of the set OS

�0 Therefore, V �4�5 is a barycenter of the set
VS4�5= 8V �4�52 � ∈ S90 Carathéodory’s theorem implies that this vector is a convex combination of at most
4K + 25 points from VS4�5.

(ii) By Theorem 9.1, there exists an optimal policy, say �. Any policy � with V �
k 4�5 = V �

k 4�5 for k =

11 : : : 1K is then optimal, and part (i) assures the existence of a stationary optimal policy satisfying this condition.
To verify the second part of (ii) observe that V �4�5 belongs to the boundary of the convex set V4�5, because,
if a neighborhood of this point (in the Euclidian metric) belongs to V4�5, then there exists a feasible policy
� such that V �

0 4�5 > V �
0 4�50 Statement (i) assures the existence of a 4K + 15-deterministic policy � with

V �4�5 = V �4�5. If � is not exactly 4K + 15-deterministic, it is K-deterministic optimal, and the proof is
complete. Let � be exactly 4K + 15-deterministic. Consider a supporting hyperplane P to the convex set V4�5

such that V �4�5 ∈ P . All 4K + 25 points from VS4�5, whose convex combination is V �4�5, belong to P .
Since the dimension of P is K, according to Carathéodory’s theorem, it is possible to select the coefficients �i,
i = 11 : : : 1K + 21 in such a way that at most 4K + 15 of them are positive. �

Theorem 9.2 does not imply the existence of a K-deterministic optimal policy whose composing stationary
policies satisfy the “adjacency property” of the conclusions of Theorems 6.1 and 8.1.

By Schäl [45], Condition (C) is implied by the following condition:

sup
�∈M

E�
�

�
∑

t=n

r+

k 4xt1 at5→ 0 as n→ �1 k = 01 : : : 1K0

In particular, Condition (C) is satisfied in the following two cases: (i) the functions rk are nonpositive, and
(ii) the MDP is discounted. Also, since the functions rk are bounded from above, the following condition,

sup
�∈M

�
∑

t=n

P�
� 8xt ∈X\Z9→ 0 as n→ �1 k = 01 : : : 1K0

implies that the MDP is absorbing and that Condition (C) holds. Finally, Feinberg [22, Example 6.8] demonstrates
that optimal policies may not exist for an absorbing MDP with a countable state space and finite action sets
without Condition (C).

10. Constrained discounted MDPs with countable state spaces. In this section, we consider countable
state discounted MDPs with 4K + 15 reward functions r01 : : : 1 rK defined on X × A, where K is a positive
integer. The discount factor � will be assumed fixed, and we shall suppress indexing by �. For each policy
� and k = 01 : : : 1K, we shall use the notation Ṽ �

k 4�5 for the expected total discounted reward defined by the
right-hand side of (1), with rk replacing r . For numbers c11 : : : 1 cK , we consider the variant of (43) given by

maximize8Ṽ �
0 4�5 � Ṽ �

k 4�5≥ ck1 k = 11 : : : 1K90 (50)
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For a countable state space X, Conditions (W) and (S) are equivalent, as explained in detail in the appendix
of Chen and Feinberg [9]. Therefore, for bounded above one-step rewards, Complete Conditions (W) and (S)
can be written in the following form: (1) X is countable; (2) A is a metric space; (3) for each x ∈ X, A4x5 is
a compact subset of A; (4) for all x1 y ∈ X, p4y � x1 ·5 is continuous on A4x5; (5) for all x ∈ X and a ∈ A4x5,
p4X � x1a5 = 1; (6) for each x ∈ X, the functions r04x1 ·51 r14x1 ·51 r24x1 ·51 0 0 0 , are bounded from above and
upper semi-continuous in a ∈A4x5. We assume in this section that conditions (1)–(6) hold.

Problem (50) was studied by Feinberg and Shwartz [25]. First, we recall some definitions from Feinberg and
Shwartz [25].

For finite nonnegative integers m and N , a stationary policy � is called a strong 4m1N5-policy if: (a) it is
deterministic from time N onward; that is, �n4�4x5 � x5= 1 for some deterministic policy � for all x ∈X and
for all n≥N1 and (b) for all states it uses no more than m additional actions than a deterministic policy would
use, and for all time-state pairs at epochs n = 01 : : : 1N − 1 it uses no more than m additional actions than a
nonrandomized Markov policy would use; that is, for each x ∈X there exists a finite subset B4x5 of A(x) such
that �n4B4x5 � x5= 1 for all n= 0111 : : : , and for all x ∈X, and the following two properties hold:

∑

x∈X

4�B4x5� − 15≤m1

and
N−1
∑

n=0

∑

x∈X

[(

∑

a∈B4x5

I8�n4a � x5 > 09
)

− 1
]

≤m0

Feinberg and Shwartz [25, Theorem 2.1] proved that if problem (50) is feasible, then
(i) there exists a K-randomized stationary optimal policy;

(ii) for some finite N there exists an optimal strong 4K1N5-policy.
Similar results were established by Borkar for (the more difficult) average reward criterion (see Borkar [7,
Lemma 11.24, Theorem 11.6], references to Borkar’s papers in Borkar [7], and the remarks on parallel treatments
of average rewards per unit time and discounted rewards in Borkar [7, p. 368]).

Feinberg and Shwartz [25, Theorem 5.1]) also showed that for any m-randomized stationary policy �, where
m= 0111 : : : 1 there exists an m-deterministic policy � with Q�

� =Q�
� . Consequently, they concluded (Feinberg

and Shwartz [25, Corollary 5.3]) that if problem (50) is feasible, then there exists a K-deterministic optimal
policy. This conclusion follows from the second claim in Theorem 9.2(ii), which deals with absorbing MDPs
with Borel state spaces. The next result follows immediately from Theorem 7.1.

Theorem 10.1. For any m-randomized stationary policy � , where m = 0111 : : : 1 there exists an m-deter-
ministic policy � with Q�

� =Q�
� such that the deterministic policies �11 : : : 1�m+1 in (49) are distinct and for

each i = 11 : : : 1m, there exists only one state xi such that �i4xi5 6=�i+14xi50

Theorem 10.1 is a stronger result than Feinberg and Shwartz [25, Theorem 5.1] because it specifies that the
policies �i and �i+1 differ only at one state. The following result strengthens Corollary 5.3 from Feinberg and
Shwartz [25] described above.

Theorem 10.2. If problem (50) is feasible, then for some m = 01 : : : 1K, there exists an m-deterministic
optimal policy � such that the deterministic policies �11 : : : 1�m+1 in (49) are distinct, and for each i =

11 : : : 1m, there exists only one state xi such that �i4xi5 6=�i+14xi50

Proof. In view of Feinberg and Shwartz [25, Theorem 2.1(i)], consider an exactly m-randomized stationary
optimal policy � , where m ≤ K0 For the policy � , consider an m-deterministic policy � whose existence is
stated in Theorem 10.1. The policy � is also optimal. �

To the best of our knowledge, the validity of the conclusions of Feinberg and Shwartz [25, Theorem 2.1]
and the validity of Theorem 10.2 for uncountable state constrained discounted MDPs satisfying either Complete
Condition (W) or Complete Condition (S) are open questions.
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