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ABSTRACT
This paper addresses the problem of fairness in wireless ad-
hoc net w orks.Usually, the problem of fairness in wireless

ad-hoc netw orks is addressed in a classic approach inher-
ited from wired netw orks. The common assumption is that
nodes/ows ha ve pre-assigned fair shares. The task be-
comes then to modify wired netw orks'fair queueing algo-
rithms to address wireless netw orks nature.Wired netw orks

ha ve eÆcient means of allocating fair shares through admis-
sion con trol and additonally, the fair shares remain constant
throughout the session duration due to the static nature of
the nodes. In ad-hoc netw orks, it is meaningless to assume
statically pre-assigned fair shares, since on one hand, not
only the nodes move, but also the routers are mobile, and on

the other hand, contention is location dependent, such that
in terms of absolute guarantees, fairness would at most mean
\avoiding starvation": thus applying rate proportional fair
queueing algorithms is beyond the original goal of such algo-
rithm, viz. ow isolation/protection and bandwidth guaran-
tee. In this work we argue in favor of multi-lev el scheduling

for wireless ad-hoc netw orks with max-min fair allocation of
the fair shares at the low er-most layer (MAC layer). This pa-
per, mainly lays do wn the theoretical framework b y which
one can calculate the fair shares that w ouldachiev e max-
min fairness in an ad-hoc netw ork. We design distributed
algorithms that allow eac h node to determine its max-min

per-link fair share in a global ad-hoc netw ork without knowl-
edge of the global topology of the netw ork. The results are
then used in conjunction with a novel practical sc heduling
algorithm for IEEE 802.11 to show how fairness is achiev ed.

Keywords
Ad-hoc netw orks, Max-min fairness, per-link/per-ow fair-
ness, admission control, scheduling, distributed algorithms

1. INTRODUCTION
In ad-hoc radio netw orks,due to the limited transmission
range of mobile stations, packets ariving from transmitters

who may not kno w of each other may collide at a giv en
receiver, rendering the data unin telligible. This is the so-
called "hidden terminal" problem [2], which is kno wn to
degrade throughput signi�cantly. Several medium access
control protocols ha vebeen devised to address this prob-

lem (e.g. [1, 2, 3]). Among these, IEEE 802.11 Distributed
Foundation WirelessMedium Access Control (DFWMAC)
is a proposed standard for wireless ad-hoc and infrastruc-
ture LANs. DFWMAC is based on Carrier Sense Multi-
ple Access with Collision Avoidance (CSMA/CA) and pro-
vides also RTS/CTS access method. The RTS/CTS access

method is used to combat the hidden terminal problem by
allowing stations to acquire the channel before they transmit
the data packets. In other words collisions can occur only
during transmission of short control packets (RTS and CTS)
rather than during the transmission of potentially v ery long
data packets1. Although the RTS/CTS access method can

alleviate the e�ects induced by the presence of hidden ter-
minals, DFWMAC still su�ers from a fairness problem that
is also induced mainly by the in trinsic multihop nature of
ad-hoc netw orks.

1.1 Fairness in DFWMAC
The fairness problem w as �rst pointed out by Barghavan

et al. in [2]. This problem occurs mainly because of hid-
den terminal problem as well as the backo� sc heme used in
the DFWMAC protocol. This phenomenon can be simply
illustrated by the con�guration in Fig. 1.
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Figure 1: F airness problem

In this �gure, tw o ows/links2 compete for the radio re-

sources: ow 1, established between nodes A and B and

1As a matter of fact, 802.11 does not solve completely the
hidden terminal problem.
2In this paper since we are dealing with the link layer, unless
otherwise stated, we will use the terms ow and link inter-
changeably to refer to one-hop communications betw een tw o
nodes that can hear each other.
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ow 2 established between nodes C and D. Due to the na-

ture of the RTS/CTS based protocol, in this con�guration,
node C overhearing the RTS of node B will not reply to
RTSs of node D. Nodes D and B are hidden from each
other and thus node B wouldn't overhear node D's RTSs
to node C. When the traÆc on both ows is heavy, due to
the binary exponential backo� used in DFWMAC, node D's

contention window would double each time there is collision
at C (inferred byD from the absence of CTS from C) until it
reaches the maximum value (CWMax) speci�ed by the pro-
tocol. Meanwhile, node B's window would decrease since B
would (eventually) receive ACKs for the data packets sent
to node A until it reaches the minimum value (CWMin)
speci�ed by the protocol. In e�ect thus node B would have
an average contention window size which is much smaller
than that of node D and thus would have statistically much
higher chance of accessing the channel than node D, which
is unfair since the two ows should share the link equally.
Simulations have shown that under heavy traÆc, the two

ows can get throughput in a ratio as high as 3 to 1.

1.2 Recent efforts towards providing fairness
Recently several mechanisms have been proposed to address
this problem. Luo et al [4] have proposed a two phases
scheduling scheme to achieve fairness in ad-hoc networks.
The algorithm constructs a tree comprising all mobile sta-
tions, then rearranges the tree so that it becomes conict-

free among the one-hop ows in each level of the tree. Dur-
ing the process of constructing the conict-free tree, the sta-
tions in each level of the tree will propagate the tree knowl-
edge so that the stations can perform a weighted fair queuing
(WFQ) scheduling among di�erent levels in the tree. The
time required for constructing the tree can however be very

long when there are many nodes involved in the network.
When mobility is taken into account, say if the root station
of the conict-free tree moves out of its original location, the
tree has to be reconstructed to maintain the global fairness
among one-hop ows.

Another approach devised by Vaidya and Bahl [5] to address
this problem inherits the virtual clock method used in wired
networks to provide fair queueing (e.g., [6]). The mobile sta-
tion broadcasts its virtual clock to its neighboring stations
(using piggy backing or in a broadcast channel), and updates
its own virtual clock from other stations' broadcasts. Then

the mobile station scales its contention window according to
the updated virtual clock and its ow's fair share. Simula-
tion results have shown that this approach is good in wireless
LAN, in which there are no hidden terminals. However in
multi-hop wireless environments, there is a problem among

di�erent regions in the network as contention is not homo-
geneous. Two stations that can interfere with each other
while being hidden from each other, may face very di�er-
ent competition (i.e., may hear each a di�erent number of
stations). Consequently, the stations will negotiate di�erent
virtual clocks from their neighborhood (the one that faces

heavier competition will have a slower virtual clock). Thus
two stations that can interfere with each other may use dif-
ferent virtual clocks obtained from their di�erent regions,
thus, they cannot schedule fairly.

In [7] a measurement-based algorithm is proposed to achieve

fairness in ad-hoc networks. The algorithm replaces the bi-

nary exponential backo� (BEB) algorithm by another back-

o� scheme where the contention windows are adjusted ac-
cording to the stations' fair shares. Each station in the
ad-hoc network estimates the amount of traÆc it generates
against its fair share and the amount of traÆc generated
by other stations it can overhear against other stations' fair
share, and based on this, the station adjusts its contention

window size in order to equalize both ratios. This makes the
probability of attempting to access the channel proportional
to the station's own traÆc weight. This algorithm is sim-
ple and incurs no additional computational overhead, and
the simulation result show how promising it is in ad-hoc
environments. However, the algorithm has a major draw-

back when operating in a dense network where all stations
can hear each other's transmissions. That is, the contention
window adjustment in [7, 8] replaces the exponential incre-
ment of the BEB without paying attention to the traÆc and
stations density. While the exponential increment mecha-
nism of the BEB of IEEE 802.11 is used to alleviate the fre-

quent collisions when the density of the traÆc and stations
increases, the stations in the proposed algorithm become
very aggressive under the same traÆc conditions. Each sta-
tion overhearing other's successful transmission will reduce
it's contention window towards CWMin, and on average all
contention windows will be much closer to CWMin, lead-
ing thus to more collisions. While the BEB in the same
environment would lead to an average window increasingly
closer to CWMax to alleviate the collisions. In short, while
the new algorithm addresses very well the fairness problem
in ad-hoc networks by overcoming the bad properties of the

BEB algorithm, it fails to conserve the good properties of
this latter.

In this paper we try to address the problem of fairness more
from the point of view of providing a systematic way to-
wards guaranteeing bandwidth and thus some level of qual-

ity of service. To understand the fundamental steps of our
approach, let us consider the ad-hoc network in Fig. 2 where
three end-to-end ows labeled A, B, and C need to be es-
tablished.
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Figure 2: Ad-hoc network con�guration

In general, to provide even a semblance of QoS a network
needs to be able to decide whether to accept end-to-end
ows; it needs to be able to limit new traÆc in the network
in order not to violate previously admitted ows' QoS, and

�nally it needs to be able to control and police the ows'
generated traÆc. In an ad-hoc network based on the min-
imalist approach of considering only the network layer and
not considering any underlying link layer (e.g., [9]), it is sim-
ply very tedious if not impossible to achieve these targets.
That is because at the network layer,

� nodes have no means to eÆciently estimate the band-

width available to their ows and the ows they route;
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� nodes have no means to limit the traÆc generated by

other nodes in their vicinity;

� a node where an end-to-end ow originates has no

means of determining whether it can accept a ow or
not, as the bottleneck might be in another node along
the route.

Let's assume now that there exists a way to assign fair shares
of bandwidth (�1; :::; �8) to the single-hop ows (link layer
pipelines) numbered 1 to 8 in Fig. 2 and that there ex-
ists a method of scheduling that allows us to maintain these
fair share of bandwidth at least statistically. Knowing the

physical layer capacity, each node would be able to calcu-
late the amount of bandwidth that it has on each outgoing
link layer pipeline and thus each node on a given end-to-
end routed ow can make the decision whether to accept
or reject a ow based only on the ow's bandwidth require-
ment. Assuming the algorithm used to determine the fair

shares is a distributed algorithm that enables collaboration
between nodes to maintain the system in a coherent state,
nodes in the system can collaborate to prevent, say, a new
(non-misbehaving) node from joining, should this otherwise
lead to violation of the guarantees already committed.

This paper tries to specify algorithms and mechanisms that
would enable nodes with these capabilities. In this paper we
focus mainly on designing algorithms to assign fair shares to
link layer aggregate ows (pipelines). The criterion we try
to achieve is max-min fairness3 . With this approach, end-

to-end ows that compete for the same link level pipe can be
scheduled within each pipe according to fair queueing (e.g.,
de�cit round robin [10]). We notably propose a set of novel
algorithms to assign max-min fair shares to communication
links (one-hop ows) of the global ad-hoc network in a dis-
tributed manner, without knowledge of the global topology

of the network.

The remainder of this paper is organized as follows. Section
2 discusses and de�nes max-min fairness in ad-hoc networks.
In Section 3 we design a centralized algorithm to calculate
max-min fair shares of all the ows of an ad-hoc network

from the ow contention graph of that network. Section 4
proposes a new algorithm to assign max-min fair shares in
distributed fashion and provides some insight on how this
can be implemented in a real network. Section 5 proposes
a set of novel protocols which facilitate the implementation
of max-min fair scheduling algorithm through a modi�ed

backo� scheme for IEEE 802.11 DFWMAC. Section 6 gives
some numerical results, and �nally, we draw our conclusions
and discuss ongoing work in Section 7.

2. MAX-MIN FAIRNESS IN AD-HOC NET-
WORKS

To minimize collisions, and maximize channel utilization
through spacial bandwidth reuse, if two ows are contend-
ing ows, they are expected not to be scheduled to transmit

3As we'll see later max-min fairness and scheduling can be
two contradictory objectives in wireless networks, and some
times also in wired networks. In other words, although a set
of max-min fair shares exists according to the max-min algo-
rithm, the scheduling according to this set is not necessarily
achievable

simultaneously, otherwise, they should eventually transmit

simultaneously in order to maximize network throughput.
The contention nature of a global ad-hoc wireless network
determines the possible extent of fairness. To ideally achieve
max-min fairness in the ow scheduling, we should �rst be
able to allocate fair shares that meet the max-min crite-
rion and then devise a scheduling policy that achieves (if

possible) fairness proportionally to these fair shares. To do
this, we need to know all contention information. Based on
this contention information, node graphs (n-graph) can be
converted into ow contention graphs (c-graph). In a ow
contention graph, the vertices represent one-hop ows, while
the edges represent the existence of contention between the

two ows at the ends of the edge. Fig. 3 shows the ow
contention graph derived from the network of Fig. 2.
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Figure 3: Flow contention graph

Before proceeding any further, we de�ne clearly what this
paper is not all about. As mentioned previously, max-min
fairness and scheduling are two contradictory objectives, es-
pecially in wireless networks. Sometimes, following the max-
min fairness de�nition in [11] we are able to �nd a set of fair

shares that satisfy the conditions in [11] however, when try-
ing to schedule the ows, it is not possible to do so and
achieve those fair shares. The most interesting remark is
that this is also the case in wired networks. In fact max-
min fairness as de�ned in [11] assumes implicitly that the
underlying network is a packet switched network. Feasibility

of the rate vector assumes long term average feasibility but
not necessarily short term feasibility. In a circuit switched
network (either �xed assignment TDMA or FDMA based),
it is both necessary and suÆcient to have feasibility in short
term in order to achieve feasibility in long term. One can
construct a counter example where the fair shares vector is

feasible according to the algorithm in [11], however, there is
no schedule that can achieve th rate vector because of the
constraints added by the circuit switched nature of the net-
work. A typical example of this is the case of 5 ows: ow 0,
1, 2, 3, 4, in a 5 routers/link pentagonal subnetwork. Flow i
contends with ows (i�1) mod 5 on link i and contends with
ow (i+ 1) mod 5 on link i + 1 i.e., 2 contends with 1 and
3, 0 contends with 1 and 4, ..., such that each link is shared
by two ows only. Thus the vector of fair shares (1/2, ...,
1/2) is max-min fair according to [11], and there exists in-
deed a schedule to achieve this should the network be packet

switched, however it is easy to see from the ow contention
graph that if the network is circuit switched, there is no
schedule (partition of resources) that achieves this vector.
It is also the case in wireless networks. So the algorithms
we propose do not claim to achieve max-min fair scheduling,
but rather to achieve max-min fair partitioning of the band-

width, i.e., the chances to access the channel are allocated
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according to a max-min fair algorithm. If max-min fairness

is feasible then it would be achieved. Note also that in our
di�erent investigations, the only topology we encountered in
which max-min fair partitioning of the bandwidth and max-
min fair scheduling are not achieved at the same time is the
example above which also can be extended to all polygonal
contention graphs with an odd number of vertices. Finally,

achieving a set of fair shares that are also schedulable is a
combinatorial problem and can be modelled as a graph col-
oring problem, in which each ow's fair share is proportional
to the number of possible colors for the corresponding ver-
tex. In the counter example above, it is clear that 2 colors
are not suÆcient to color the contention graph thus the fair

shares cannot be 0.5.

Max-min fairness can be achieved in wired networks among
the rates of di�erent sessions sharing a set of links, where a
session can span several links and a link can be shared by
several sessions. We denote by rp the rate assigned to session
p. The aggregate rate of all sessions on a link a in a network
is Fa =

P
p:a2p

rp, i.e. the sum of the rates of all sessions p

crossing link a. Let Ca be the capacity of link a, we thus
have the following constraints on the vector r = (r1; r2; : : : )
of allocated rates: rp � 0; 8p 2 P and Fa � Ca; 8a. A vector
satisfying these constraints is said to be feasible. A vector of

rates is said to be max-min fair if it is feasible and for each
p 2 P , rp cannot be increased while maintaining feasibility
without decreasing the rate rp0 for some session p0 for which
rp0 � rp.

Now we want to achieve max-min fair allocation of fair

shares in the medium access control in wireless ad-hoc net-
works. Consider a ow contention graph G = (N;A) where
N is the set of ows (vertices) and A is the set of edges of
the graph (presence of contention). We de�ne a clique cl
[12] as a subset of N such that for all distinct pair u; v 2 cl,
the edge [u; v] 2 A. If jclj = n then the clique is said to have

degree n.

Fact 1: By construction of the ow contention graph, and
the de�nition of a clique, any two or more ows that belong
to the same clique, cannot be scheduled to transmit simul-
taneously. As a direct consequence of this, we can establish

a parallel between wired networks and ad-hoc networks as
follows:

� cliques in a ow contention graph are to wireless ad-
hoc MAC (one hop ows) what links are to wired net-

works,

� clique members (vertices) in a ow contention graph
are to wireless ad-hoc MAC what sessions are to wired
networks.

Since the capacity in a wireless network is function of the
space (i.e. can only be characterized by its density over
a unit of space), and since the distribution of nodes over
space is not known or at least diÆcult to characterize, it is
suÆcient to normalize the capacity to 1 for every clique of
the contention graph and replace the problem of max-min

fair rate allocation by a max-min fair shares assignment.

Fig. 4 shows a ow contention graph and the corresponding

decomposition into (independent) cliques.
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Figure 4: A ow contention graph and its cliques

Max-min fairness in a ow contention graph is thus de�ned
as follows. Given a ow contention graph G = (V;A), de-
note by C the corpus of all the cliques of G. Let �v be the
fair share of ow (vertex) v 2 V . The aggregate fair share
allocated over a clique is �cl =

P
v2cl

�v, cl 2 C. The vec-

tor � = (�1; :::) of fair shares that satis�es the constraints,
�v � 0 8v 2 V , �cl � 1; 8cl 2 C is said to be feasible. A

feasible vector of shares � is said to max-min fair if for any
v 2 V , increasing �v cannot be done without decreasing the
fair share �v0 of another ow v0 2 V such that �v � �v0 .

To allocate the fair shares, it is thus necessary to construct
the corpus C of all the cliques of the contention graph. This

problem is well known to be NP-hard [12] and thus work-
ing on the global graph of the network would be compu-
tationally prohibitive. Our approach is to propose a dis-
tributed algorithm run at each node and that works only on
a subset of the contention graph which represents only local
contentions, requiring thus reasonable computations espe-

cially when we know that graph con�gurations in which the
number of independent cliques is very large (e.g., n-partite
graphs) are non-natural con�gurations in the real world of
ad-hoc networking. We speculate (not without reason) that
in practice, it is most likely for ad-hoc networks based on
DFWMAC to have local contention graphs that contain only

a few cliques, in which case the problem is solved in a few
steps.

3. MAX-MIN FAIR SHARE ASSIGNMENT
IN A GLOBAL CONTENTION GRAPH

Let G = (V;A) be the ow contention graph of an ad-
hoc network and C = fcl1; cl2; :::; clng the corpus of all the
cliques of G. Let �v be the fair share of vertex v 2 V . Al-
gorithm 1 provides a means to allocate max-min fair shares
to all the ows in a contention graph. Note that allocat-
ing a fair share does not necessarily mean that there exist a

schedule that achieves this set of allocated fair shares.

Fig. 5 shows an example of contention graph, its decomposi-
tion in cliques, and the execution of this algorithm. Dashed
edges and vertices are those that are removed in step 4 of the
algorithm. In the �rst iteration of the algorithm, the ows

of the clique with the smallest ratio ci=di are assigned their
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Algorithm 1Max-min fair share allocation in a global con-

tention graph

Init

Let C = fc1; c2; :::; cng be the capacities of the cliques,
initialized all to 1;
Let D = fd1; d2; :::; dng be the initial degrees of the
cliques;
De�ne UCL as the set of un�nished cliques, initialized to

C;

1: Begin
2: Sort UCL in a non decreasing order of CD�1

ci1
di1
�

ci2
di2
� ::: �

cin
din

3: Assign a fair share to all vertices in clique cli1 :

8v 2 cli1 : �v =
ci1
di1

4: Remove all vertices of cli1 from all other cliques of UCL
and update the degrees and capacities of the cliques

8clk 2 UCL :

8>>>>>><
>>>>>>:

clk  � clk n cli1 \ clk
dk  � dk � jcli1 \ clkj

ck  � ck �
ci1
di1
� jcli1 \ clkj

5: if maxdi = 1 then
6: STOP
7: else
8: Goto 1
9: end if

10: End

fair shares (in the example, 1/4) and the nodes are removed
from all other cliques in UCL (the bottom right node of the
square clique is removed from the triangular clique) and the
capacity for the altered cliques is adjusted adequately. In
the second iteration, the clique with the smallest ratio ci=di
(the altered triangular clique, containing now only 2 nodes)
is assigned the fair shares and its nodes are removed from
the remaining cliques.

Proposition 1. The fair share allocation obtained when
Algorithm 1 �nishes veri�es the max-min fairness criterion
de�ned earlier.

To prove this proposition, we introduce another proposition
proved in [11]

Proposition 2. [11] A feasible rate vector r is max-min
fair if and only if each session has a bottleneck link with
respect to r.

Given a feasible rate vector r, we say a link a is a bottleneck
with respect to r for a session s crossing a, if Fa = Ca

and rs � rs0 for all sessions s0 crossing link a. To prove
Proposition 1 it is suÆcient to substitute cliques for links,

fair share vector for rate vector and ow (vertex) for session

(a) Flow con-
tention graph

(b) cliques in UCL

1/4

1/4

1/4

1/4

c2=1−1/4, d2=2

c3=1, d3=2

(c) First iteration

3/8

3/8

1−3/8

(d) Second itera-
tion

5/8
3/8

3/8
1/4

1/41/4

1/4

(e) Final max-min
allocation

Figure 5: Max-min fair share allocation example

and prove that the conditions of Proposition 2 hold in this
case.

Proof. Due to limited space, and the length of the proof,
we give here only a sketch of the proof. Notably, we only
establish the premises of a proof by induction. The rest of
the proof is left to the reader.

It is easy to see that in the �rst iteration of the algorithm,
the �rst clique cl1i1 is a bottleneck for all its vertices, since

�
cl
1

i1

=
P

v2cl1
i1

�v = 1, and, for v 2 cl1i1 , �v � �v0 , 8v
0
2

cl1i1 . In the second iteration, of the algorithm, there exists

a clique say cl1k which becomes head cl2i1 of the sorted list

of cliques, and cl2i1 = cl1k n cl
1

k \ cl
1

i1
. We thus need to show

that cl2i1 is a bottleneck for all of its vertices, i.e., that for

all v 2 cl2i1 , �v � �v0 for all vertex v0 2 cl1k. We have two

sets of such vertices v0 those which belong to cl2i1 and those

which belong to cl1k but not to cl2i1 . For the �rst set, using
the same argument as previously, we have �v = �v0 . For the
second set of vertices v0, we have

�v0 = 1=d1i1 ;

while

�v =
1� n1=d1i1
d1
k
� n

where for simplicity of notations n denotes the number of

vertices that belong to both cliques: n = jcl1i1 \ cl
1

kj. We
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thus have

�v � �v0 =
1� n1=d1i1
d1
k
� n

�
1

d1
i1

:

By virtue of the priority sorting in the �rst iteration: i.e.,
1=d1i1 � ::: � 1=d1k � ::: we have (d1i1�n)=(d

1

k�n) � 1, thus,

�v � �v0 =
1

d1
i1

�
d1i1 � n

d1
k
� n

� 1

�

� 0;

(1)

Thus in iteration 2 of the algorithm, for all v 2 cl2i1 , �v � �v0

for all vertex v0 2 cl1k. And we also have

�
cl
1

k

= d1k�v + n�v0

= 1:

Which proves that cl2i1 is bottleneck for all its vertices. Now
replacing in the above reasoning iterations 1 and 2 by itera-
tions l and l+ 1 and replacing the capacity and the degrees
of the cliques by the adequate values, one can prove more

formally by induction the proposition.

Algorithm 1 of course allows the assignment of max-min fair
shares to all ows in the ad-hoc network, however, due to
the fact that it is based on the knowledge of the full con-
tention graph of the network, it can only be useful in ad-hoc
networks whose MAC protocols use coordinated access such
as Blutooth. We can easily imagine each node forwarding

to its master its contention information (from what it hears
on the network) and the masters of the subnetworks up-
dating their own masters (if any) and so on up to a root
of the network which will assign the fair shares and for-
ward them back to the masters who will �nally use them

to schedule di�erent slave terminals proportionally to their
max-min fair shares. In environments that use uncoordi-
nated access such as ad-hoc networks whose MAC protocols
use contention (e.g., IEEE 802.11 DFWMAC) or in locally
coordinated MAC protocols, this algorithm cannot be used.
In the following we provide a distributed algorithm that tries

to approximate the behavior of Algorithm 1.

4. DISTRIBUTED MAX-MIN FAIR SHARES
ASSIGNMENT

To assign max-min fair shares in multi-hop wireless ad-hoc
networks, Algorithm 1 can be executed by each individual
node to compute the fair shares of its local ows. We de�ne
a node's local ow as a ow that either originates or ends
at this node4. To ensure the distributed algorithm leads to

the same result as the centralized algorithm, two questions
arise. First, if the node computes its ows' fair shares based
on the local ow contention graph, then what ows should
be included in the local ow contention graph? And second,
what additional parameters should be exchanged among the
nodes in order to give them a compact yet global view of the

ow's contention graph? Since we do not give the individ-
ual node suÆcient topology information, if the node uses

4Note that we are addressing the problem at MAC layer,
and thus the ows we are manipulating are one hop ows
not end-to-end ows.

Algorithm 1 on its local ow contention graph, the node

will often assign non-stable fair share values. So one impor-
tant parameter for the distributed algorithm is whether an
assigned fair share is a stable fair share as given by the cen-
tralized algorithm with global topology information or not.
From this perspective, Algorithm 2 is derived as follows. For
simplicity we use abusively the name normalized capacity of

a clique to refer to the ratio ci=di of that clique.

Definition 1. Given two cliques cli and clj, we say that
clique clj is adjacent to clique cli if and only if cli \ clj 6= ;

Definition 2. Let A(cli) be the set of cliques that are

adjacent to clique cli. We say that a clique cli is sub-head
clique if and only if, for all clique clj 2 A(cli), we have
ci=di � cj=dj .

Proposition 3. The fair share of a vertex that belongs

to a sub-head clique cli is simply the clique's normalized ca-
pacity ci=di

Proof. If a clique say clk is sub-head we will show that
all of its adjacent cliques (clk1 ; : : : clkm) are to be assigned
their fair shares later than the vertices of clk are assigned

their �nal fair share. And thus clk can be assigned its fair
shares immediately without waiting until it reaches the head
of the sorted list. More precisely we will show that anything
that is after clk in the sorted list does not inuence its fair
share allocation, and anything that is before does not either

because clk wouldn't be sub-head otherwise.

Assume there exists a clique cli, such that A(cli)\A(clk) 6=
;, clk 62 A(cli) and ci=di � : : : � ck=dk � ck1=dk1 � : : : .
When the fair shares of clique cli are assigned, all the cliques
in A(cli) \ A(clk) will have their normalized capacity in-

creased in step 4 of Algorithm 1 by virtue of (1) in the proof
of Proposition 1. Thus if clk is sub-head any allocation of
fair shares that occurs changes only the order of the cliques
that are adjacent to clk with respect to each other but not
with respect to clk. Assume now that clk 2 A(cli) in this
case clk is not sub-head. As a consequence, sub-head cliques
are not inuenced by other cliques and thus can assign their
fair shares as their normalized capacity immediately when
they become sub-head.

As a consequence of Proposition 3, for a node to know

whether the fair share allocated to a given vertex vi is �-
nal or not, it needs to know all the cliques that contain vi
as well as all the cliques that have a smaller normalized ca-
pacity and that are adjacent to all the cliques that contain
vi. An example of such situation is shown in Fig. 6

Under the commonly made assumption in designing schedul-
ing algorithms for ad-hoc networks, Algorithm 2 should re-
sult in the same max-min fair shares allocation to all ows
in the network, yet the processing and signalling overhead is
much lower than those required by the centralized algorithm
(Algorithm 1): in the distributed algorithm messages are

exchanged only locally, while in the centralized algorithms
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Figure 6: Example of required partial contention

graph

messages are exchanged end-to-end in order to build the

global topology; in the distributed algorithm nodes compute
only on local much smaller graphs comprising the cliques
that contain a ow and the cliques that are adjacent to the
cliques that contain the ow. By commonly made assump-
tions, we mean that the network con�guration is made of

static or quasi-static nodes, in other words, changes in the
topology should occur in a much larger time scale than the
time required for the algorithm to converge to a max-min
fair allocation. This is not a drawback of our algorithm, its
is rather a characteristic of any distributed algorithm that
relies on dissemination of information between nodes. We

are currently investigating the e�ects of mobility on this al-
gorithm.

To support Algorithm 2, in computing the fair share of ow
vi, the mobile node should know all the cliques, say CL
that contain vi and for any vk 2 CL, vk 6= vi the mobile

node should know the clique with the smallest normalized
capacity that contains vk.

We de�ne a ow's contention tree as the tree whose root is
the ow itself and the leafs are the ows it contends with. To
construct the cliques that contain a ow, say vi, one needs
only to know the ow's contention tree and the contention
trees of the ows that form the leafs of this tree, as shown
in Fig. 7
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Figure 7: Local contention graph

Proposition 4. A node can construct its local cliques if
and only if it can obtain the contention tree information from
all its neighbors' neighbors.

Proof. Let vi be local ow to a pair of nodes A and B.
Let vm and vn be local ows to nodes X and Y respectively,
and that ows vm and vn contend with ow vi, and vm
contends with vn. Assuming node X and node Y are not

Algorithm 2 Distributed Max-min fair share allocation

Init

Foreach node S, Let V(S) be the set of local ows of S
8v 2 V(S), Let CLvS = fclvS;1; cl

v

S;2; :::g, such that, v 2

clvS;1; v 2 cl
v

S;2; :::, and, 6 9clS 2 CL
v

S
such that v 2 clS

8v 2 V(S), de�ne a message mv

S as the triplet�
clvS

�;
c
cl
v

S

�

d
cl
v

S

�

; SHIclv
S

�

�
where:

clvS
� is such that

cclv
S

�

dclv
S

�

= min
cl2CL

v

S

ccl
dcl

;

cclv
S

�

dclv
S

�

is the normalized (residual) capacity

of clique clvS
�; and,

SHIclv
S

� is a boolean that indicates

whether clique clvS
� is a sub-head clique or not:

LetMv

S = fmu1

S1
;mu2

S2
; :::g be the set of messages received

by node S, where 8mu
i

S
i

2 M
v

S; cl
u
i

S
i

�
2 A(CLvS)

1: Begin /* Station S executes the following for vertex
v 2 V(S) */

2: for all m
u
i

S
i

2M
v

S do

3: if SHI
cl
u
i

S
i

� then

4: For all clvi 2 CL
v

S

clvi  � clvi n cl
v

i \ cl
u
i

S
i

�

dclv
i

 � dclv
i

�

���clvi \ cluiS
i

�

���

cclv
i

 � cclv
i

�

c
cl
u
i

S
i

�

d
cl
u
i

S
i

�

�

���clvi \ cluiS
i

�

���

5: remove mu
i

S
i

fromMv

S: M
v

S  �M
v

S n fm
u
i

S
i

g

6: end if
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9: Execute Algorithm 1 on the set CLvS to obtain the fair
share of v

10: construct and broadcast mv

S

11: End

neighbors of node A i.e., A cannot hear any transmission
from nodes X and Y . Then necessarily X and Y are neigh-
bors of B and thus A must have obtained the information
(vi � vn) and (vi � vm) from node B. It is easy to see that

to complete its cliques, node A needs to get the contention
information (vm � vn) from either X or Y through B.

Basically, Proposition 4 limits the scope of the local con-
tention graphs that our distributed algorithm will need to
work on in order to decide the fair share of a given ow.

Roughly speaking, despite the intrinsic NP-hardness of the
cliques discovery problem, working on a graph that is driven
by contentions only up to a few hops away, is a lot better
than working on the graph representing the whole network.
This proposition is also the basis for ongoing and future work
on proving di�erent properties of the distributed algorithm

(such as self-stability, etc.).
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5. FAIR MEDIUM ACCESS CONTROL
As an example of application of the algorithms described
earlier we choose to design here a fair medium access control
protocol based on the standard IEEE 802.11 DFWMAC.
The following algorithms as well as the ones designed above
would �t in a global architecture for QoS as shown in Fig.

8

Network Layer
Addmission control/ End−to−end bandwidth allocation

QoS Routing

Link Layer
Dissemination)

(Flow Information 
FlOID Protocol

IEEE 802.11 DFWMAC Modified Backoff

Physical Layer

Available bandwidth

assignment protocol

Conention
tree, cliques

Max−min
fairshareFlOID data

Fair share

Figure 8: QoS Architecture for ad-hoc networks

In this Figure, a ow information dissemination protocol

(FlOID) is in charge of all exchanges of ow contention
information between peer nodes up to the scope de�ned
by Proposition 4. Based on the Information collected by
FlOID, the fair share assignment protocol computes the
max-min fair shares of all ows either originating or end-
ing at the node. Using these max-min fair shares, a novel

modi�ed backo� algorithm allows an IEEE 802.11 DFW-
MAC based access protocol to achieve long term fairness in
proportion to the max-min fair shares calculated with Algo-
rithm 1. Due to limited space, we only describe briey the
components involved in this architecture.

5.1 FlOID
FlOID protocol is in charge of two tasks which lead ulti-
mately to the construction of the local contention graph of
the local ows local. In the �rst step, FlOID builds the local

contention tree and then the local cliques to which a given
ow belongs. In the second step, FlOID obtains the cliques
of all the ows that contend with a given ow.

5.1.1 Construction of local clique information
In ad-hoc networks, a node can sense partly the ows that
contend with its ows either by overhearing the RTS or the
CTS. The remaining contending ows can be sensed by the
peer node. An example of this is shown in Fig. 9.

Assume node A in Fig. 9(a) needs to construct the local
cliques of ow 1. A can sense ow 2 through the CTSs and
ACKs originating from node C to node F , and it can sense
ow 3 from the RTSs and data packets originating from
node G to node I, so the edges (1-2) and (1-3) are sensed
directly by A. Similarly, node B can sense the contentions

(1-4) and (1-5). If both nodes at each end of ow 1 exchange
their contention information (using either explicit signalling
messages or piggy-backing), both A and B would know the
local contention tree of ow 1, as shown in Fig. 9(c). On
the other hand, nodes C and D know the contention trees
of ows 2 and 4 respectively. Thus according to Proposition

4, if node A and node B can receive the contention trees
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Figure 9: Example of contending ows

from node C and node D and their neighbors, node A and
node B can construct the local cliques for their local ow 1
as shown in Fig. 9(b).

5.1.2 Flow information dissemination
Besides having to construct the local cliques information,
each station should obtain all the adjacent cliques of its lo-
cal clique in order to run Algorithm 1 eÆciently. Again, each
station can obtain partly the adjacent cliques from its neigh-
bor stations. The remaining part of the adjacent cliques can

be obtained from the peer station. For the example in Fig.
9(a), station A can obtain the potentially existing adjacent
cliques from its neighbor stations C and G, after stations
C and G construct their local cliques for their ow 2 and
3 respectively. Station B can get the potentially existing
adjacent cliques from its neighbor stations D and H, after

stations D and H construct their local cliques for their ows
4 and 5 respectively. Thus the tasks for disseminating clique
information in each station are as follows:

� Send out only the information on the clique that has
the smallest normalized capacity among all local cliques,
indicating whether it is a subhead upon the current
computation or not.

� Forward the available adjacent cliques to the peer node.

5.2 Fair medium access
To schedule one-hop ows in an ad-hoc network in a de-
terministic pattern, such as in round robin, etc., is diÆ-
cult because of the hidden terminal problem. One would

require to exchange additional information in order to coor-
dinate the nodes. Another possible solution is to adjust the
ow's transmission rate according to real time traÆc con-
ditions observed by the station. For example if a stations
�nished workload is Te and other stations' overheard �nished
workload is To, then the ratio of the two should be main-

tained proportional the the ratio of their fair shares. This
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estimation-based dynamic scheduling is very simple to im-

plement statistically for example through backo� schemes.

Based on this concept we propose hereafter two algorithms
that attempt at achieving fairness proportionally to the fair
shares assigned to the ows. One can achieve per-link fair-
ness by calculating for each link an estimate of its traÆc; or

per station fairness (as shown in the algorithms below) by
achieving the aggregate fair share of all ows originating at
a station.

Algorithm 3 TraÆc share estimation algorithm

Init

Let �E be the aggregate fair share Of ows V =
fv1; :::; vng originating at this node,
Let �o be the aggregate fair share of ows V

0 = fv01; :::; v
0

ng

sensed by this node V \ V 0 = ;,

Let Te be the measured volume of traÆc of ows in V ,
Let To be the measured volume of traÆc of ows in V 0,
Let Last Sender be a variable used to correlate ACKs
and DATA packets for the case where both sender and
receiver are in V 0, this variable is reset periodically if not
changed by the algorithm (the period depends on the pro-

tocol e.g., in DFWMAC it should be slightly larger than
SIFS+propagation delay).

1: Begin

2: For each packet p
3: if (p! Destination Id ==My Id) then
4: if (p! Type == ACK) then
5: Te := Te + TDATA

6: else

7: if (p! Type == DATA) then
8: To := To + TDATA

9: end if

10: end if

11: else
12: if (p! Type == ACK) then
13: if (p! Destination Id 6= Last Sender) then
14: To := To + TDATA

15: end if

16: else

17: if (p! Type == DATA) then
18: To := To + TDATA;
19: Last Sender := p! Sender Id
20: end if

21: end if

22: end if

23: End

In Algorithm 3, we only estimate successful transmissions or

the goodput (i.e., either failed or successful RTSs and CTSs
do not count towards the observed share). Since in IEEE
802.11, the possibility of DATA packet colliding is small,
we only estimate the volume of traÆc according to sensed
ACK and DATA packets. Since some ows can be sensed
through both DATA and ACK packets, while others may

only be sensed through either DATA or ACK packets, a state
variable Last Sender is used to correlate Data and ACK
packets to avoid duplicate estimation. If the current ACK
packet's receiver is the sender of the latest DATA packet
sensed, it means both DATA and ACK packet belong to the
same transmission. Based on the above estimation result,

the station adjusts its contention window to make its ow

more or less aggressive by comparing its obtained share to its

theoretical share. A fairness reference FR is simply de�ned
as:

FR =
Te=To � �e=�o

�e=�o
(2)

Based on the value of FR, the contention window is adjusted

according to Algorithm 4, while preserving the BEB. The
rational behind preserving the original binary exponential
backo� is that, despite the unfairness of the BEB, collisions
occur not only because of the hidden terminal problem but
also legitimately because of a dramatic increase of traÆc
density or station density. In this case, the BEB tries to

spread the attempts to access the channel over time by in-
creasing the average window size avoiding thus repeated col-
lisions, which would otherwise lead to throughput collapse.
In [7], this property is not preserved thus if all stations can
hear all other stations in the network, the backo� is too ag-
gressive as the average window size would always be close to

CWMin. In the present backo� algorithm, a station that
succeeds transmission would reset its contention window to
a value CWMin that depends on how much share of band-
width did it obtain.

Algorithm 4 Backo� window adjustment

Init

Let Threshold = 0:05;
Let T be a given timer period

1: Begin
2: Upon each timer period T , do,
3: if (�o 6= 0and�e 6= 0) then
4: if (To == 0andTe 6= 0) then
5: CWMin := CWMin� 2

6: else

7: if (Fr � Threshold) then
8: CWMin := CWMin� 2
9: else

10: if (FR � �Threshold) then
11: CWMin := CWMin=2
12: end if

13: end if

14: end if

15: end if

16: End

6. NUMERICAL RESULTS
For simplicity, we retained 3 scenarios to show the perfor-
mance of the fair share based access method under static

scenarios. The simulation is done in NS2.1b7. The Mac
layer of IEEE 802.11 is modi�ed to include Algorithms 3 and
4. The physical layer emulates the 914MHz Lucent Wave-
LAN DSSS radio interface with 2Mbps bandwidth, and a
propagation range of upto 250m. The MAC layer uses only
RTS/CTS access method with CWMin = 31 and CWMax

= 1024.

The application generates a stream of packets of 512 bytes
each at a constant rate, transported using UDP. The sim-
plest scenario simulated is the two ows scenario shown in

Fig. 1, in which the two competing ows should obtain equal
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share. In Fig. 6, we compare our results to those obtained

from the original IEEE 802.11 DFWMAC, where we see the
unfairness of this latter.
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Figure 10: Scenario 1: 4-station scenario

The second scenario we simulated is shown in Fig. 11(a),
where stations face unbalanced competition. While ows 3
and 4 compete against 2 ows each, ows 1 and 2 compete
against 1 and 3 ows respectively. The throughput achieved
by the 4 ows with our algorithm are shown in Fig. 11(b),

where as expected, ow 1 obtains twice as much as the other
3 ows.
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Figure 11: Scenario 2: unbalanced contention

Finally to show that unlike [7], our algorithm does not suf-
fer potential throughput collapse when the network is fully

connected, the third scenario (Fig. 6) simulates a network of

16 stations, half of which act as senders and the other half

as the corresponding receivers. Each station can overhear
all remaining 15 stations in the network. Thus we have 8
active ows competing with each other. In this case the ow
contention graph is a single clique of degree 8 as shown in
Fig. 12(a), and each node is expected to obtain a fair share
of 1/8. In this case the original IEEE 802.11 is fair while

the backo� algorithm proposed in [7] would achieve fairness
but eventually su�er a loss of throughput due to the ag-
gressiveness of the stations in trying to access the channel.
Our algorithm as shown in Fig. 12(b) achieves the same
throughput per station as does the original DFWMAC with
the binary exponential backo�.
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Figure 12: Scenario 3: fully connected symmetric

network with balanced contention

7. CONCLUSION AND FUTURE WORK
In this paper we proposed a set of novel algorithms that
allow assignment of max-min fair shares to entities com-
peting for shared resources in a distributed manner. Based
on these general algorithms, an architecture as well as as a

medium access protocol based on IEEE 802.11 DFWMAC
layer are proposed to provide max-min fairness in ad-hoc
radio networks. The system is shown to support upper lay-
ers into providing simply and e�ectively functions such as
admission control (of both ows and terminals) as well as
QoS-routing. In the short term, we are focusing on two di-

rections, �rst implementing the FlOID protocol in NS2, in
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order to simulate the full architecture in a mobile environ-

ment, and second, characterizing theoretically some proper-
ties of the distributed algorithm, such as convergence speed
etc., in terms of mobility patterns, and other parameters. In
a longer term, ongoing work is focused on exploiting topol-
ogy information gathered in the link layer to implement dis-
tributed admission control and QoS-routing algorithms.
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