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This paper examines an electrochemistry-based lithium-ion battery model developed by Doyle, Fuller, and Newman. The paper
makes this model more tractable and conducive to control design by making two main contributions to the literature. First, we
adaptively solve the model’s algebraic equations using quasi-linearization. This improves the model’s execution speed compared
to solving the algebraic equations via optimization. Second, we reduce the model’s order by deriving a family of analytic Padé
approximations to the model’s spherical diffusion equations. The paper carefully compares these Padé approximations to other
published methods for reducing spherical diffusion equations. Finally, the paper concludes with battery simulations showing the
significant impact of the proposed model reduction approach on the battery model’s overall accuracy and simulation speed.
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This paper examines the problem of developing reduced,
electrochemistry-based models of the dynamics of charging and dis-
charging of lithium-ion batteries. The overarching goal of the paper
is to develop lithium-ion battery models that satisfy two important
but potentially conflicting objectives. First, the models must have
the ability to accurately predict the performance of lithium-ion bat-
teries in applications involving potentially complex and rapid
charge/discharge cycles, e.g., hybrid vehicle applications. Second,
the models must run with sufficient speed to enable battery system
design, optimization, and control.

Several models have been used to monitor battery state of charge
�SOC� and state of health.1-4 While these models are very desirable
for control and estimation, they do not capture all of the high rate
dynamics associated with hybrid vehicle drive cycles. For this one
can use an electrochemical battery model. One such model is pro-
vided by Doyle, Fuller, and Newman, with the addition of a poten-
tial degradation mechanism provided by Ramadass et al.5-8 There
are two major numerical difficulties with this electrochemical
model. The first is the large number of state variables: a finite
difference discretization of the model with M points along the
width of the cell and N points in the pseudospherical direction has
approximately �2/3� * M * N state variables. The second challenge
is the model’s nonzero index, represented by approximately
�2/3� * M * N algebraic equations, most of them involving a hy-
perbolic sine nonlinearity. This results in a large set of differential
algebraic equations �DAEs�. Ideally, one would like a model that: �i�
runs quickly with a low number of state variables to enable optimal
design and control studies, while �ii� still retaining the ability to
accurately model complex, high rate charge/discharge cycles.

Applying model reduction techniques to the above electrochemi-
cal battery model can bring it closer to the ideal speed and fidelity
goals. Several reductions of this model are already presented in the
literature. Some of these reductions pay special attention to the
spherical diffusion submodel because it appears repeatedly within
the full battery model and contributes significantly to its state vari-
able count. Reduction of the spherical diffusion submodel has been
approached in a variety of different ways. Spherical diffusion dy-
namics have been approximated by parabolic and quartic profiles.9

These profile approximations are analytic but have not been gener-
alized to higher orders. Proper orthogonal decomposition �POD� and
residue grouping �RG� have also been used with great success.10,11

Both POD and RG are numerical in nature and POD requires, as
input, a representative set of battery state trajectories.

In addition to the above studies focusing on spherical diffusion,
researchers have also examined the problem of reducing the
electrochemistry-based battery model as a whole. The single-particle
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model and electrode-averaged model have been shown to be excel-
lent at rates up to at least 1C, where “C” is defined as the current
needed for fully charging/discharging a battery in 1 h.4,12 These
models have the added advantage of not requiring the solution of
large sets of algebraic equations. Proper orthogonal decomposition
has been used for reducing the full battery model.10 This furnishes a
reduced model capable of simulating constant high rate charging and
discharging. However, the model’s performance increase is limited
by the need to still solve a large set of algebraic equations. A model
reduction based on “volume averaging, approximation methods, and
intuition” is presented in Ref. 13, and shown to be computationally
efficient for lower charge/discharge rates. The battery model can
also be reduced using orthogonal polynomials, which decrease the
total number of model equations.14,15

This paper contributes to the above literature by providing two
additional unique reductions to the above electrochemistry-based
battery model. The first contribution is a quasi-linearized model of
intercalation current that aids in efficiently solving the battery mod-
el’s algebraic equations. The second contribution is a family of ana-
lytic Padé approximations to spherical diffusion that substantially
reduce the number of state variables present in the model while
retaining a high level of accuracy.

The remainder of the paper introduces and discusses the full
battery model, then shows how to efficiently solve the model’s al-
gebraic equations via quasi-linearization and how to reduce its order
substantially through a family of Padé approximations of the spheri-
cal diffusion equation. The paper then compares the Padé approxi-
mations to other methods used in the model reduction of spherical
diffusion. Finally, the paper presents numerical simulations of the
reduced battery model, and provides some conclusions.

The Lithium-Ion Battery Model

This section summarizes the lithium-ion battery model originally
developed by Doyle, Fuller, and Newman. The section also summa-
rizes the degradation submodel contributed to this battery model by
Ramadass et al.5-7,12 This submodel represents the dynamics of
anode-side resistive film formation, a process that may have signifi-
cant impact on long-term battery health for certain battery
chemistries.7,12,16 The literature describes several other lithium-ion
battery aging mechanisms, including dendrite formation, carbon dis-
solution, electrolyte degradation, and electrode structure
distortion.16,17 We present the degradation equations by Ramadass et
al. here in order to show how one can incorporate them into this
paper’s proposed quasi-linearization methods. The quasi-
linearization and Padé approximation methods presented in this pa-
per are equally applicable to the original model by Doyle, Fuller,
and Newman without this degradation submodel.

The diffusion of Li-ions within the electrolyte is governed by
Fick’s law of linear diffusion combined with an intercalation current
density term, J, transferring Li-ions between the solution and solid
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The above intercalation current density, J, also acts as an input to the
dynamics of Li-ion diffusion within the solid. This diffusion occurs
at every point in the anode and cathode and can be modeled using a
spherical, radially symmetric diffusion law as follows

�c1,j

�t
=

D1,j

r2

�

�r
�r2�c1,j

�r
� �2�

The intercalation current density, J, consists of two components.
The first component is a main intercalation reaction current density,
J1, and the second component is the side intercalation current den-
sity, Jsd. The main intercalation current density is driven predomi-
nantly by potential differences between the solid and electrolyte
solution, and governed by the well-known Butler–Volmer equation

J1 = aji0,j�exp��a,jF

R̄T
� j� − exp�−

�c,jF

R̄T
� j�� �3�

i0,j = kj�c1,j
max − c1,j

S ��a,j�c1,j
S ��c,j�c2��a,j, j = n,p �4�

The overpotentials in the above equations equal the difference
between the solid and solution potentials minus the reference poten-
tials for the main intercalation reaction, which in turn depend on the
local state of charge. In other words, the overpotentials are given by

�p = �1 − �2 − Uref,p �5�

�n = �1 − �2 − Uref,n −
J

an
Rfilm �6�

Because the above potentials/overpotentials can change much
faster than the Li-ion concentrations, they are typically assumed to
respond instantaneously. This assumption is valid to approximately
100 Hz.18 The solid potential is governed by Ohm’s law with a term
governing the charge transfer due to intercalation

� · �� j
eff � �1,j� − J = 0 �7�

Similarly, the solution potential is governed by Ohm’s law, interca-
lation current density, and the charge carried by the ions in solution

� · ��eff � �2� + J + � · ��D � ln�c2�� = 0 �8�

The above system of equations governs the dynamics of charging
and discharging in the Li-ion cell. From a dynamic systems perspec-
tive it is a system of differential algebraic equations, where the
differential equations govern the diffusion dynamics and the alge-
braic equations constrain the potentials and intercalation current ac-
cordingly. A degradation component can be added to this model by
assuming that film growth in the anode is governed by an electro-
chemically driven irreversible side reaction. This side reaction is
itself governed by a side reaction overpotential as follows

�sd = �1 − �2 − Uref,sd −
J

an
Rfilm �9�

Jsd = − i0,sdan exp�−
�c,nF

R̄T
�sd� �10�

The above side reaction creates a resistive film at a rate proportional
to the side reaction current density, i.e.

��film

�t
= −

JsdMp

an�pF
�11�

The above resistive film adds to the internal resistance of the anode,
thereby negatively affecting battery performance

Rfilm = RSEI +
�film

K
�12�
p
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The above battery model suffers from two main numerical chal-
lenges. First, Eq. 3-8 create an algebraic loop within the model,
thereby causing the model to have a nonzero index. This increases
the computational cost of simulating the model considerably. Sec-
ond, the fact that the spherical diffusion equation, Eq. 2, must be
satisfied at every point in the anode and cathode creates a need for
potentially very large numbers of state variables just for the purpose
of calculating the solid concentration at every discretized point
along the battery electrodes. The literature recognizes these two
challenges and presents some methods for addressing them. The
main contribution of this paper is its contribution of algebraic equa-
tion quasi-linearization and Padé approximation of spherical diffu-
sion as two unique methods for addressing these challenges.

Quasi-Linearization Approach for Solving Algebraic Equations

Equations 3-8 in the above electrochemistry-based battery model
form an algebraic loop. A consistent set of solutions to this algebraic
loop must be obtained at every integration time step, which is es-
sentially a root-finding problem. One may attempt to solve this
problem using a number of different root-finding methods, including
the Newton–Raphson method, fixed-point iteration, and optimiza-
tion methods. These methods differ in numerical complexity and
cost, but they all contribute significantly to the cost of simulating the
full battery model numerically. This results in simulation speeds
which are undesirable for system identification, optimization, and
control studies. We therefore propose an alternative approach that
significantly reduces the computational cost of solving the battery
model’s algebraic equations.

The proposed approach for solving the battery model’s algebraic
equations relies on two key insights. First, one can assume that the
diffusion dynamics are much slower than the electrical dynamics.
This allows one to freeze the equilibrium potentials Unref, Upref and
solution conductivities Keff and KD in time �they still may vary
spatially� when solving the algebraic equations. Now the only non-
linearities remaining in the algebraic equations are J1 and Jsd. These
are the Butler–Volmer �BV� expressions given in Eq. 3 and 10.
Second, while the BV equation itself is nonlinear, this nonlinearity
tends to produce very large changes in intercalation current densities
for small increases in overpotential. This, in turn, generally forces
the overpotentials to remain within some reasonable bounds over
which the Butler–Volmer equation can be quasi-linearized. Quasi-
linearization, in this context, is the process of linearizing the Butler–
Volmer equation at every integration time step. This approximates
the algebraic loop in the battery model by a different set of linear
equations at every integration time step. The proposed approach
results in a smaller Jacobian of only the algebraic equations, rather
than the entire system of equations. So rather than having a square
Jacobian with �2/3� * M * N + �8/3� * M rows one has a square
Jacobian with �5/3� * M rows, where M is the number of points
along the width of the cell and N is the number of points in the
spherical direction. For the case M = N = 100, the proposed quasi-
linearization approach furnishes a Jacobian matrix with 97.5% fewer
rows than quasi-linearization of the entire system of model equa-
tions.

We now derive the quasi-linearization and then the block matrix
form of the algebraic equations. This paper derives the case where
all the anodic and cathodic transfer coefficients are equal, i.e., �
= �an = �ap = �cn = �cp. One can still perform the linearization if
this is not the case. Equation 3 can be rewritten as

J1 = 2aji0,j sinh��F

R̄T
� j� �13�

This can be linearized about � and �
1 2
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J1 = 2aji0,j�sinh��F

R̄T
� j�� + cosh��F

R̄T
� j���F

R̄T
���1 − �1��

− ��2 − �2���� �14�

where the primes denote the value associated with the point of the
linearization. The equation for Jsd can be linearized as well

Jsd = i0,sdan exp�−
�F

R̄T
�sd� ���F

R̄T
����1 − �1�� − ��2 − �2���

�15�

Now it is desirable to combine the linearization into the matrix
equations related to the algebraic equations. These equations are
derived by finite differencing Eq. 7 and 8 and including the 10
boundary value equations. First we define two diagonal matrices
related to the linearizations

Ln�x,x� = �an�F

R̄T
��2i0n cosh��F

R̄T
�n��x��

+ i0,sd exp�−
�F

R̄T
�sd� �x��� �16�

Lp�x,x� = �ap�F

R̄T
��2i0p cosh��F

R̄T
�p��x��� �17�

Now the block matrix form of the algebraic equations is

	
A1n − Ln 0 Ln 0 0

0 A1p − Lp 0 0 Lp

Ln 0 A2n − Ln 0 0

0 0 0 A2s 0

0 0 Ln 0 A2p − Lp

Boundary Conditions. . .


	
�1n

�1p

�2n

�2s

�2p



= 	

Jn�

Jp�

Jn� + Fn

Fs

Jp� + Fp

BCs. . .


 �18�

where the A1 matrices represent the ���eff � � · �� operator, A2 ma-
trices represent the ��Keff � � · �� operator, and the F vectors rep-
resent the ��KD � ln�c2�� term. The J� vectors represent the value
about which J has been linearized �recall that J = J1 + Jsd�. The last
row in the block matrix equation consists of 10 equations represent-
ing the various boundary conditions.

The equation above is a system of linear equations and approxi-
mates the nonlinear algebraic equations. It is the result of freezing
the diffusion dynamics and then linearizing the Butler–Volmer equa-
tion. Assuming that the nonlinear equations are solvable and that the
integration time step of the model is small enough that the quasi-
linearization remains “close enough” to the true value, this set of
linear equations is solvable. Several numerical simulations �pro-
vided in a later section� indicate successful inversion and accurate
solution of this matrix under various loading conditions. The nu-
merical complexity of solving the equation depends on the number
of discretization points along the electrodes and the separator. If N,
S, and P indicate the number of points along anode, separator, and
cathode, respectively, the associated matrix becomes a �sparse�
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square matrix of size 2N + S + 2P. Although finer discretizations
can improve the simulation accuracy, they may significantly in-
crease simulation time.

In summary, the proposed quasi-linearization is accomplished by
first freezing �in time� all state variables related to the diffusion
dynamics and then linearizing the intercalation current equations,
the only remaining nonlinearities. This furnishes three main compu-
tational benefits. First, the proposed approach improves the electro-
chemical model’s tractability by greatly reducing the numerical dif-
ficulties involved in satisfying its algebraic equations. Second, the
proposed quasi-linearization breaks the model’s DAEs into two
natural pieces, the differential equations and the algebraic equations,
which can be solved in an alternative manner. Finally, the proposed
quasi-linearization has a significant numerical speed advantage over
quasi-linearizing the entire set of model equations, due to the
smaller Jacobian.

A Family of Padé Approximations of Spherical Diffusion

This section examines the problem of reducing the order of the
discretized Doyle–Fuller–Newman battery model using Padé ap-
proximations of Fick’s law of spherical diffusion. The importance of
these Padé approximations stems from the fact that spherical diffu-
sion occur at every point across the width of the anode and cathode.
If one creates M discretization points along the width of the battery
cell, then roughly 2/3 of these points are in the anode and cathode
�the rest would be in the separator�. Furthermore, if one has N states
in the spherical diffusion model then the total number of battery
model states related to spherical diffusion is �2/3�M * N. Put an-
other way, lowering the number of states in the spherical diffusion
model by one lowers the number of states in the full model by
�2/3�M. Thus the importance of reducing this submodel becomes
clear.

The spherical diffusion model is a standard radially symmetric
model governed by Fick’s law. The input to this model is either
intercalation current or intercalation current density, both of which
impose Neumann �slope� boundary conditions. The paper handles
both cases at once because they differ only by a multiple. The mod-
el’s two outputs are volume-averaged total concentration c̄ and sur-
face concentration cs. The total concentration c̄ is related to battery
SOC, and the surface concentration cs affects the electrochemical
reaction driving intercalation in the battery. The diffusion model
governing these concentrations is a linear one-dimensional partial
differential equation with one input and two outputs. It is given by

�c�t,R�
�t

= D� �2c�t,r�
�r2 +

2

r

�c�t,r�
�r

� �19�

�c�t,R�
�r

= − mu�t� �20�

�cs

c̄
� = 	

c�t,R�

��0

R

c�t,r��4	r2dr�

�4/3�	R3
 
 �21�

where c�t,r� is the concentration at time t and radial distance r
�where r = 0 is the center and r = R is the surface�, D is the diffu-
sion coefficient, u is either an intercalation current leaving the
sphere or an intercalation current density leaving the sphere, m is a
factor relating this to the boundary slope, cs is the concentration at
the surface of the sphere, c̄ is the total concentration per volume, and
R is the radius of the sphere.

One can compute transfer functions between the input and out-
puts by treating r as a parameter, i.e.
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L� �c�t,R�
�t

� = L�D� �2c�t,r�
�r2 +

2

r

�c�t,r�
�r

�� �22�

sC�s,r� = D� �2C�s,r�
�r2 +

2

r

�C�s,r�
�r

� �23�

Now consider the above one-dimensional boundary value problem
with s as a parameter. This has the solution

C�s,r� =
e�s/D�R−r��e2�s/Dr − 1�mR2

�1 + R� s

D
+ e2R�s/D�R� s

D
− 1��r

U�s� �24�

Equation 24 provides a transfer function from the input to an arbi-
trary radial distance in the sphere. Jacobsen and West have a study
on impedance involving spherical diffusion that makes nice use of
transfer functions.19 Applying the �linear� evaluation operator r
= R yields the transfer function for cs

Cs�s�
U�s�

= −
�e2R�s/D − 1�mR

1 + R� s

D
+ e2R�s/D�R� s

D
− 1� �25�

This is an infinite-dimensional transfer function with a countably
infinite number of poles.

To evaluate the volume-averaged concentration, c̄, one can use
the following spherical integral

C̄�s�
U�s�

=

�
0

R

C�s,r��4	r2dr�

�4/3�	R3 = −
3Dm

Rs
�26�

This spherical integral has canceled an infinite number of poles,
leaving just a pure integrator. One need only integrate the input to
compute c̄ exactly. This makes physical sense if one considers a
control volume around the sphere: one would only need to track
what was going into and out of it to compute the total amount in the
sphere. Because the averaged concentration transfer function is al-
ready quite simple in form we only need to make a Padé approxi-
mation for the surface concentration. This approximation is centered
about zero due to the interest in lower frequency behavior.

The Padé approximation is a rational polynomial approximation
to a function centered about a point. One can choose the desired
order of the numerator P and denominator Q. The Padé approxima-
tion matches the value of the approximated function and all of its
derivatives up to �P + Q� terms at the centered point. One can com-
pute the Padé approximation by directly enforcing these constraints.
Padé approximations are commonly used for time delay transfer
functions, which are also infinite-dimensional. Padé approximations
are a good choice for approximating spherical diffusion because
they can be centered about low frequency, handle infinite dimen-
sionality without spatial discretization, are analytic, and can easily
trade off speed versus accuracy by changing their order.

One slight modification to the standard Padé approximation is
needed. Because the expansion is about zero and the function is
undefined at zero �due to the removable pole at zero�, first one
multiplies by s and then computes the Padé approximation. After
this we divide by s. This works because the pole at s = 0 is not an
essential singularity. The order of the numerator is chosen one less
than the order of the denominator, ensuring that the approximate
transfer function is strictly proper.

The second-order Padé approximation for cs will now be derived.
The form of the Padé approximation is given in Eq. 27

P�s� =
a0 + a1s

s�1 + b2s�
�27�

First we multiply Eq. 25 by s, and then we evaluate this quantity at
s = 0. Then the same is done for the first and second derivative. This
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same procedure is performed on the Padé approximation and the
derivatives of equal order are equated

�s
Cs�s�
U�s�

�
s=0

= �sP�s��s=0 ⇒ −
3dm

R
= a0 �28�

�� d

ds
�s

Cs�s�
U�s�

���
s=0

= �� d

ds
�sP�s����

s=0
⇒ −

mR

5
= a1 − a0b2

�29�

�� d2

ds2�s
Cs�s�
U�s�

���
s=0

= �� d2

ds2 �sP�s����
s=0

⇒
2mR3

175

= 2b2�− a1 + a0b2� �30�

Solving these equations for a0, a1, and b2, one finds the approxima-
tion given in Eq. 31

P�s� = −

3dm

R
+

2mR

7
s

s +
R2

35d
s2

�31�

The pole at origin in all of the Padé approximations can be used
to compute c̄ without increasing the number of states. One follows
an identical method to derive higher order approximations. The sec-
ond, third, and fourth-order approximations are tabulated in Table I.

The developed family of Padé approximations has several impor-
tant characteristics. The family ranges from a one-state approxima-
tion to a countably infinite number of states, increasing in accuracy
with the number of states. The approximations are generated
through a systematic process with identical assumptions and all are
analytical. The first few have been collected in Table I. The second
to 10th-order Padé approximations compare well in the frequency
domain to the true model �Fig. 1�. The true model is given by the
infinite-dimensional transfer function in Eq. 25. A comparison with
finite differencing with 5 to 50 states in increments of 5 is shown
Fig. 2, showing clearly that the Padé approximation provides much
better accuracy per state.

Implementation of the Padé Approximates

This section demonstrates how to take the Padé approximation
transfer function to a state space form for numerical simulation.
Specifically, a set of state space equations is derived that computes
both concentration at the surface and bulk concentration, without
adding additional state variables. Then it is shown how one can

Table I. Low-order padé approximations of Cs.

Order padé approximation

Second
−

3dm

R
−

2mR

7
s

s +
R2

35d
s2

Third
−

3Dm

R
−

4mRs

11
−

mR3s2

165D

s +
3R2s2

55D
+

R4s3

3465D2

Fourth
−

3Dm

R
−

2mRs

5
−

2mR3s2

195D
−

4mR5s3

75075D2

s +
R2s2

15D
+

2R4s3

2275D2 +
R6s4

675675D3
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initialize a uniform concentration profile for this reduced model.
These two steps create a model ready for numerical simulation.

One way to show that no additional state variables are needed to
compute c̄ is to consider the transfer function

Cs

U
�s ; Q� =

a0 + a1s + a2s2 + ¯ + aQ−1sQ−1

�1 + b2s + b3s2 + ¯ + bQsQ−1�
�1

s
� �32�

where again Q is the order of the Padé approximation and U is
�without loss of generality� either intercalation current or intercala-
tion current density. This can be viewed as two transfer functions
chained together

Cs

C̄
�s ; Q� =

a0 + a1s + a2s2 + ¯ + aQ−1sQ−1

�1 + b2s + b3s2 + ¯ + bQsQ−1� � − R

3Dm
� �33�

Figure 1. �Color online� Bode plot of Cs: padé approximation order 2 to 10
vs true model.

Figure 2. �Color online� Bode plot of Cs: finite difference method orders 5 to
50 in increments of 5 vs the true model.
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C̄

U
�s� = −

3Dm

Rs
�34�

where c̄ is now an intermediate step in calculating cs. This is due to
c being an integrator and the transfer function from u to cs having an
integrator in it.

A �controllable canonical form� state space representation of this
transfer function from u to cs is

ẋ = 	
0 1 0 0 ¯ 0

0 0 1 0 ¯ 0

0 0 0 � 0

] ] ] 1 0

0 0 0 0 0 1

0
1

bQ

b2

bQ

b3

bQ
¯

bQ−1

bQ


x + 	
0

]

]

]

0

1

bQ


u

cs = �a0 a1 a2 ¯ ¯ aQ−1�x �35�

Now the pure integrator is located by canceling out all of the state
variables’ contribution in the A matrix

ẋ̃ = bQ�ẋQ − �
k=1

Q−1 � bk

bQ
ẋk� +

1

bQ
u� = u �36�

Recall that b1 = 1. Adding c̄ as an output is accomplished by using
the second row of the C matrix. The integrator scale factor is com-
puted by noting that the surface concentration and total concentra-
tion per volume are equal under steady-state conditions

c̄ = − �a0

b1
��− b1 − b2 ¯ − bQ−1 bQ�x �37�

This brings the total system to

ẋ = 	
0 1 0 0 ¯ 0

0 0 1 0 ¯ 0

0 0 0 � 0

] ] ] 1 0

0 0 0 0 0 1

0
1

bQ

b2

bQ

b3

bQ
¯

bQ−1

bQ


x + 	
0

]

]

]

0

1

bQ


u

y = �cs

c̄
� = �a0 a1 a2 ¯ aQ−1

a0 a0b2 ¯ a0bQ−1 − a0bQ
�x �38�

One common initialization for this model is that of uniform con-
centration profile. To do this one considers the constraints that a
uniform concentration imposes and then finds x0, the initial state
variable vector to match these. The uniform concentration profile
imposes three constraints: ẋ = 0, cs = c̄, and u = 0. The first con-
straint, ẋ = 0, leaves exactly one degree of freedom for x0 because
the A matrix’s single zero eigenvalue gives it a kernel of dimension
one. One can take the value of c0, the height of the uniform concen-
tration, and set c0 = cs = c̄ and solve for the x0. Due to the form of
the zero eigenvalue’s eigenvector, this reduces to

c0 = �a0 a1 a2 ¯ aQ−1��
x01

0

]

0
 = a0x01 �39�

The total concentration per volume will be automatically satisfied
because the uniform profile requires it to equal the surface concen-
tration. Initialization amounts to solving for x01 with Eq. 39 and
setting the other elements of x to zero.
0
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This section has demonstrated how to take the Padé approxima-
tion transfer function to a state space form for numerical simulation.
There were a few important subtleties in this process. First, even
though the transfer function is between u and cs one is able to
compute c̄ without adding any additional state variables. Second, a
formula was given to initialize the concentration to a uniform pro-
file. This was shown to depend on a single state variable. One can
now take the state space form with the initialization and apply their
choice of numerical simulation method.

Comparisons of Various Spherical Diffusion Approximations

The proposed Padé approximation is not the first attempt at re-
ducing the spherical diffusion model. When constrained to using
two or fewer states, the parabolic and quartic profile models are easy
to implement and accurate at lower rates. When one has an idea of
what signals will be fed into the model, POD is a good choice. For
a specific frequency range, window residue grouping �RG� is very
effective. Both POD and RG are numerical in nature. Padé approxi-
mation allows one to have an analytical method with an arbitrary
number of states. This section presents comparisons in the frequency
domain of the Padé approximation and various other approximations
from the literature.

This paper does not nondimensionalize the spherical diffusion
models because the main interest is how well they work inside the
full battery model. A representative set of parameters is used for
comparing the approximations. The parameters are given in Table II
and are all identical to those in both Ref. 10 and 11. This makes the
values in the Bode plots more physically meaningful.

While the single-input two-output spherical diffusion system has
two transfer functions all the Bode plots are of cs. Bode plots of c̄
would not be enlightening because c̄ is a pure integrator and every
approximation with a zero eigenvalue will match it perfectly.

Parabolic and quartic profile approximations.— In Ref. 9, two
ways of approximating spherical diffusion are considered. Both are
based on approximating the spherical profile. One assumes a para-
bolic profile, and the other assumes a quartic profile. The surface
concentration transfer functions for each are given in Eq. 40 and 41,
respectively

Cs�s�
U�s�

= −
15mD − R2ms

5Rs
�40�

Cs�s�
U�s�

= −
3150D2m + 315DmR2 + mR4s2

35Rs�30D + R2s�
�41�

Bode plots of these along with the exact transfer function are pre-
sented in Fig. 3.

The parabolic profile has been shown to be effective in low rate
battery simulation.12 However it is not clear how to generalize this
result to higher orders. The higher order polynomial which has two
states slightly outperforms the second-order Padé approximation.
This is due to the higher model having a direct input, whereas the
Padé approximations are all strictly proper. Interestingly enough a
non-strictly proper first-order Padé approximation is identical to the
parabolic approximation.

POD approximation.— Reference 10 presents a POD-based
model reduction of spherical diffusion. The Bode plot of this and
Padé approximations 7th and 12th are given in Fig. 4.

Table II. Spherical diffusion parameters.

Parameter Value

D �m2/s� 2 
 10−16

R �m� 1 
 10−6

m �s/m2� 1/D
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The approximation given in the paper is 12th order; a seventh-
order Padé approximation exceeds its accuracy. The 12th order is
given to compare the responses with an equal number of states. A
major advantage of the POD method is that it allows the reconstruc-
tion of the entire state of the system, whereas the Padé approxima-
tion does not.

Residue grouping.— Residue grouping can also be used to re-
duce the diffusion models.11 Instead of approximating the surface
concentration, Ref. 11 approximates the difference of the surface
concentration to the average concentration. Thus the correct steady-
state behavior is zero, so there is no need to have a zero eigenvalue.
This method focuses on matching the model in a specific frequency
range. This is different from the Padé approximation as it matches
steady state exactly and then extends toward faster frequencies. In
moving from a Padé approximation to a residue grouping approxi-
mation one gives up some accuracy at lower frequencies, but in
return one can get a good approximation for a wider frequency
range. Figure 5 shows Padé approximations to the surface concen-
tration minus the average concentration. The Bode plot is in hertz,

Figure 3. �Color online� Bode plot of Cs: the parabolic profile and quartic
profile models vs the true model.

Figure 4. �Color online� Bode plot of Cs: pod, various Padé approximation,
and the true model.
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and the magnitude values on the magnitude plot are absolute; this
allows for direct comparison with Fig. 3 in Ref. 11.

Summary: Advantages of Padé approximation.— The family of
Padé approximations is analytic, generalizable to any order, does not
involve discretization, and preserves steady-state behavior. They
compare favorably with finite differencing, parabolic and higher or-
der polynomial approximations, and POD, although the Padé ap-
proximation does not allow for the reconstruction of the distribution.
While Padé approximations are better than residue grouping at very
low frequencies, residue grouping is an excellent method if one is
concerned with a frequency window. The Padé approximation gives
one an analytic option with an arbitrary number of states for reduc-
ing the model of spherical diffusion.

Numerical Simulations

Numerical simulation of the model with quasi-linearization and
Padé approximation has been carried out to evaluate how the meth-
ods affect model accuracy and computational speed. Model param-
eters are identical to those in Ref. 7. Three different 20-h simula-
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Figure 6. �Color online� Simulation of CCCV at 0.1C with various Padé
approximations and finite differences.

Figure 5. �Color online� Bode plot of Cs: Padé approximations 2 to 10 for
comparison with Fig. 3, Ref. 11.
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tions of constant current constant voltage �CCCV� cycles were
simulated at 0.1, 0.5, and 2.5C �0.18, 0.9, and 4.5A� with voltage
limits of 3.1 and 4.2 V. All of the simulations used quasi-
linearization.

While Padé approximation and finite difference both converge to
accurate solutions, the Padé approximation converges at a much
quicker rate with model order, as seen in Fig. 6-8. All of the Padé
approximations give essentially identical battery simulation results,
which implies that a second-order Padé approximation is sufficient
at these C rates. One achieves very high accuracy with just a
second-order Padé approximation, whereas one needs a 100th-order
finite difference model for comparable results. Here one can reduce
the number of state variables in each submodel by 98 and thus the
full model by approximately 98 * �2/3� * M state variables. For
M = 100 this results in a model with 6700 state variables decreasing
to one with 134. This can lead to large increases in numerical per-
formance. Simulation times are given in Table III for an implemen-
tation in MATLAB on a computer with a 2.0 GHz processor using
10 s time steps. While the 100th-order finite difference and second-
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Figure 7. �Color online� Simulation of CCCV at 0.5C with various Padé
approximations and finite differences.
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Figure 8. �Color online� Simulation of CCCV at 2.5C with various Padé
approximations and finite differences.
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order Padé approximation have comparable accuracy, the Padé ap-
proximation runs at least twice as quickly on all three cycles. Figure
9 shows the internal variable c1s/c1max at the boundaries and inter-
faces of the cell for a 100th-order finite difference and a second-
order Padé approximation. This further reinforces the accuracy of
the Padé approximation when used inside the full battery model.

Quasi-linearization is a highly accurate way to solve the nonlin-
ear algebraic equations. The natural way to check this is to compute
how accurately the quasi-linear solution satisfies the nonlinear alge-
braic equations. Because there is a large number of equations at each
time step it is best to use two relative error norms to make sense of
the data. The maximum relative error is given by an L� norm in
space and the average relative error is given by an L1 norm in space.
Figure 10 shows both of these error norms during the 0.5C CCCV
simulation; the average error never exceeds 0.01% and the maxi-
mum error never exceeds 0.25%. In fact, for the vast majority of the
time they are much lower. The spikes in these plots occur at abrupt
changes in current. This is because the accuracy depends on how
close the current linearization point is to the previous one and these
are most different during these current changes.

It is difficult to determine how much faster quasi-linearization is
over other methods because there is a vast number of methods for
solving nonlinear equations. The quasi-linearization makes solving
for the DAE’s algebraic equations more efficient in two ways: it
dramatically decreases the size of the Jacobian associated with the
DAE and gives an analytical way to calculate it. It is the authors’
experience that quasi-linearization is substantially faster than using
optimization to solve the nonlinear algebraic equations. Applying
both the Padé approximation and quasi-linearization greatly reduces
the computational complexity of the model while maintaining very
high accuracy.

Conclusion

Quasi-linearization and Padé approximation of diffusion substan-
tially decrease the complexity and numerical cost of this electro-
chemical model. The quasi-linearization makes solving for the
DAE’s algebraic equations more efficient. The analytic Padé ap-
proximation of spherical diffusion greatly decreases the number of
diffusion states in the model while remaining very accurate. These
two contributions make using the Doyle, Fuller, and Newman model
more tractable and conducive for optimization and control design.
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List of Symbols

aj specific area of the porous electrode j, 1/m
c1 lithium concentration in the solid phase, mol/m3

c2 lithium concentration in the solution phase, mol/m3

c1,j
max maximum concentration of lithium in the sphere
c1,j

s lithium concentration at the surface of sphere
D1,j diffusion coefficient of lithium in the solid phase, m2/s
Deff effective solution diffusion coefficient, m2/s

ons.

0 Padé 2 Padé 5 Padé 10

296.31 396.42 428.51
290.35 382.38 425.27
291.56 386.48 428.49
Table III. Computational time in seconds for several 20-h CCCV simulati

FD 20 FD 50 FD 10

0.1 C 225.44 341.86 649.94
0.5 C 225.89 338.92 652.77
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Figure 9. �Color online� Comparison Finite Difference 100 vs Padé 2 of
C /C at various interfaces in the cell for the 2.5C CCCV.
Figure 10. �Color online� Relative errors for CCCV at 0.5C; A Top: L2 error
of J�x�, Bottom: L� error of J�x�.
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F Faraday’s constant, C/mol
i0,j main intercalation reaction current density, A/m2

i0,sd side intercalation reaction current density, A/m2

iapp applied current density, A/m2

J1 main intercalation volumetric current density, A/m3

Jsd local volumetric current density for side reaction, A/m3

Kp film conductivity, 1/�m
kj rate constant of reaction, A/m2 �mol/m3�1+�

L length of the cell, m
Mp molecular weight of side reaction product, kg/mol

R̄ universal gas constant, J/mol
Rfilm film resistance at anode/solution interface, �m2

RSEI film resistance due to solid electrolyte interface, �m2

R radius of sphere, m
T temperature, K
t+ transference number

Dref,j local equilibrium potential for main reaction, V
Usd local equilibrium potential for side reaction, V
�a anodic transfer coefficients of electrochemical reaction
�c cathodic transfer coefficients of electrochemical reaction

�1,j volume fraction of electrode j
�2,j volume fraction of solution
�1 local potential of solid, V
�2 local potential of solution, V
� j local over potential for main intercalation reaction, V

�sd local overpotential for side reaction, V
�sd effective conductivity of solution, S/m
�eff effective conductivity of solution, S/m
�D diffusional conductivity of solution, S/m
� j conductivity of electrode, S/m
�p density of active material, kg/m3

�film resistive film thickness, m

Subscripts

n anode/negative electrode

s separator

 address. Redistribution subject to ECS term130.203.136.75aded on 2016-05-18 to IP 
p cathode/positive electrode
j Solid: ∀ j � �n,p�; Solution: ∀ j � �n,s,p�
1 solid
2 solution

Superscripts

eff effective
max maximum

S surface
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