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Reproductive success is critical for survival of the species. The timely on-
set of labor and delivery is an important determinant of perinatal outcome.
Preterm birth (defined as delivery before 37 weeks’ gestation) and post-term
pregnancy (defined as pregnancy continuing beyond 42 weeks) are both as-
sociated with a significant increase in perinatal morbidity and mortality. The
factors responsible for the timing of labor in the human are complex and, as
yet, are not completely understood. This article reviews the current under-
standing of the parturition cascade responsible for the spontaneous onset
of labor at term and discusses preterm labor and post-term pregnancy.

Historical context

Considerable evidence suggests that the fetus is in control of the timing of
labor. Horse–donkey crossbreeding experiments in the 1950s resulted in
a gestational length intermediate between that of horses (340 days) and
that of donkeys (365 days) [1–3], suggesting a role for the fetal genotype in
the initiation of labor. The mechanism by which the fetus triggers labor at
term has been demonstrated elegantly in domestic ruminants such as sheep
and cows and involves the activation at term of the fetal hypothalamic-
pituitary-adrenal (HPA) axis, leading to a surge in adrenal cortisol produc-
tion. Fetal cortisol then acts to up-regulate directly the activity of placental
17a-hydroxylase/17,20-lyase (CYP17) enzyme, which catalyzes the conver-
sion of pregnenolone to 17b-estradiol. The switch in progesterone:estrogen
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ratio at term provides the impetus for uterine prostaglandin production and
labor [4–9]. However, human placentae lack the CYP17 enzyme, which is
critical to this pathway [2], and, as such, this mechanism does not apply in
humans. During the Hippocratic period, it was believed that the fetus pre-
sented head down so that it could kick its legs up against the fundus of
the uterus and propel itself through the birth canal. Although we have
moved away from this simple and mechanical view of labor, the factors re-
sponsible for the initiation and maintenance of labor at term are not well de-
fined. The slow progress in our understanding of labor in humans is the
result, in large part, of the absence of an adequate animal model. Parturition
in most animals results from changes in circulating hormone levels in the ma-
ternal and fetal circulations at the end of pregnancy (endocrine events),
whereas labor in humans results from a complex dynamic biochemical dialog
that exists between the fetoplacental unit and the mother (paracrine and au-
tocrine events).

Diagnosis of labor

Labor is the physiologic process bywhich a fetus is expelled from the uterus
and is common to all viviparous species. Labor remains a clinical diagnosis. It
requires the presence of regular painful uterine contractions, which increase in
frequency and intensity, leading to progressive cervical effacement and dilata-
tion. In normal labor, there appears to be a time-dependent relationship
between these elements: the biochemical connective tissue changes in the
cervix usually precede uterine contractions that, in turn, precede cervical
dilatation. All of these events occur usually before spontaneous rupture of
the fetal membranes [10]. The mean duration of human singleton pregnancy
is 280 days (40 weeks) from the first day of the last normal menstrual period.
‘‘Term’’ is defined as the period from 37.0 to 42.0 weeks of gestation.

Parturition cascade at term

It is likely that a parturition cascade exists at term that removes the mech-
anisms maintaining uterine quiescence and recruits factors promoting uterine
activity (Fig. 1) [8,9]. Given its teleologic importance, such a cascade would
likely have multiple redundant loops to ensure a fail-safe system of securing
pregnancy success and ultimately the preservation of the species. In such
a model, each element is connected to the next in a sequential fashion, and
many of the elements demonstrate positive feed-forward characteristics typ-
ical of a cascade mechanism. The sequential recruitment of signals that serve
to augment the labor process suggests that it may not be possible to single out
any one signaling mechanism as being responsible for the initiation of labor.
It may therefore be prudent to describe such mechanisms as being responsi-
ble for promoting, rather than initiating, the process of labor [11].
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Fig. 1. Proposed parturition cascade for labor induction at term. The spontaneous induction

of labor at term in the human is regulated by a series of paracrine-autocrine hormones acting

in an integrated parturition cascade responsible for promoting uterine contractions. COX-2,

cyclooxygenase 2; OT, oxytocin; PGDH, prostaglandin dehydrogenase; PGEM, 13,14-

dihydro-15-keto-PGE2; PGFM, 13,14-dihydro-15-keto-PGF2a; PLA2, phospholipase A;

SROM, spontaneous rupture of the fetal membranes; 11b-HSD, 11b-hydroxysteroid dehydroge-

nase; 16-OH DHEAS, 16-OH-dehydroepiandrostendione sulfate.
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Regardless of whether the trigger for labor begins within or outside the
fetus, the final common pathway for labor ends in the maternal tissues of
the uterus and is characterized by the development of regular phasic uterine
contractions. As in other smooth muscles, myometrial contractions are me-
diated through the ATP-dependent binding of myosin to actin. In contrast
to vascular smooth muscle, however, myometrial cells have a sparse inner-
vation, which is further reduced during pregnancy [12]. The regulation of
the contractile mechanism of the uterus is therefore largely humoral or de-
pendent on intrinsic factors within the myometrial cells.

Autocrine and paracrine mediators of parturition

Labor at term may be regarded best physiologically as a release from the
inhibitory effects of pregnancy on the myometrium rather than as an active
process mediated by uterine stimulants [13]. For example, strips of quiescent
term myometrial tissue placed in an isotonic water bath will contract vigor-
ously and spontaneously without added stimuli [13,14]. In vivo, however, it
is likely that both mechanisms are important. A comprehensive analysis of
each of the individual paracrine-autocrine pathways implicated in the pro-
cess of labor has been reviewed in detailed elsewhere [8,9,11,15,16]. Briefly,
human labor at term is a multifactorial physiologic event involving an inte-
grated set of changes within the maternal tissues of the uterus (myometrium,
decidua, and uterine cervix), which occur gradually over a period of days to
weeks. Such changes include but are not limited to an increase in prostaglan-
din synthesis and release within the uterus, an increase in the myometrial
gap junction formation, and up-regulation of myometrial oxytocin recep-
tors. Once the myometrium and cervix are prepared, endocrine or para-
crine-autocrine factors from the fetoplacental unit bring about a switch in
the pattern of myometrial activity from irregular to regular contractions.
The fetus may coordinate this switch in myometrial activity through its in-
fluence on placental steroid hormone production, through the mechanical
distention of the uterus and through the secretion of neurohypophyseal hor-
mones and other stimulators of prostaglandin synthesis. The final common
pathway toward labor appears to be the activation of the fetal HPA axis and
is probably common to all viviparous species.

Role of the fetal hypothalamic-pituitary-adrenal axis in the onset of labor

Activation of the fetal HPA axis results in enhanced fetal pituitary adre-
nocorticotropin hormone (ACTH) secretion that leads, in turn, to the release
of abundant C19 estrogen precursor dehydroepiandrostenedione sulfate
(DHEAS) from the intermediate (fetal) zone of the fetal adrenal. This is be-
cause the human placenta is an incomplete steroidogenic organ, and estrogen
synthesis by the humanplacenta has anobligate need forC19 steroidprecursor
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(see Fig. 1) [16]. DHEAS is converted in the fetal liver to 16-hydroxy DHEAS
and then travels to the placenta where it is metabolized into estradiol (E2),
estrone (E1), and estriol (E3). In the rhesus monkey, an infusion of C19 pre-
cursor (androstenedione) leads to preterm delivery [17]. This effect is blocked
by the concurrent infusion of an aromatase inhibitor [18], demonstrating that
conversion to estrogen is important. However, a systemic infusion of estro-
gen failed to induce delivery, suggesting that the action of estrogen is likely
paracrine-autocrine [17,19,20]. In addition to DHEAS, the fetal adrenal
glands also produce copious amounts of cortisol. Cortisol acts to prepares
fetal organ systems for extrauterine life and to promote expression of a num-
ber of placental genes, including corticotropin releasing hormone (CRH),
oxytocin, and prostaglandins (especially prostaglandin E2 [PGE2]).

CRH is a peptide hormone released by the hypothalamus but is also ex-
pressed by placental and chorionic trophoblasts and amnionic and decidual
cells [21–23]. CRH stimulates pituitary ACTH secretion and adrenal cortisol
production. In the mother, cortisol inhibits hypothalamic CRH and pituitary
ACTH release, creating a negative feedback loop. In contrast, cortisol
stimulates CRH release by the decidual, trophoblastic, and fetal membranes
[23–26]. CRH, in turn, further drives maternal and fetal HPA activation,
thereby establishing apotent positive feed-forward loop. Innormal pregnancy,
the increased production of CRH from decidual, trophoblastic, and fetal
membranes leads to an increase in circulating cortisol beginning in midgesta-
tion [27]. The effects of CRH are enhanced by a fall in maternal plasma
CRH-binding protein near term [28]. CRH also enhances prostaglandin pro-
duction by amnionic, chorionic, and decidual cells [23]. Prostaglandins, in
turn, stimulate CRH release from the decidual and fetal membranes [24].
The rise in prostaglandins ultimately results in parturition [29]. CRH also
can directly affect myometrial contractility [30]. Taken together, these factors
suggest that placental CRH serves as a placental clock that controls the tim-
ing of labor [31,32]. A longitudinal measurement of CRH throughout preg-
nancy suggests that the placental clock may be set to run fast or slow as early
as the first or second trimester of pregnancy [31,33–35]. Once the speed of the
placental clock is set, the timing of delivery may be predetermined.

Role of estrogens in the onset of labor

Human pregnancy is characterized by a hyperestrogenic state of unparal-
lel magnitude in the entire mammalian kingdom. The placenta is the pri-
mary source of estrogens, and concentrations of estrogens increase in the
maternal circulation with increasing gestational age. Placental estrone and
17b-estradiol are derived primarily from maternal C19 androgens (testoster-
one and androstenedione), whereas estriol is derived almost exclusively from
the fetal C19 estrogen precursor (DHEAS). Estrogens do not themselves
cause uterine contractions but do promote a series of myometrial changes,
including increasing the number of prostaglandin receptors, oxytocin
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receptors, and gap junctions, and up-regulating the enzymes responsible for
muscle contractions (myosin light chain kinase, calmodulin) [36–39] that en-
hance the capacity of the myometrium to generate contractions.

Role of progesterone in the onset of labor

The administration of a progesterone receptor antagonist such as RU-
486 readily induces abortion if given before 7 weeks (49 days) of gestation
[40]. Similarly, the surgical removal of the corpus luteum, the source of pro-
gesterone, before 7 weeks results in pregnancy loss [41]. Taken together,
these data suggest that adequate production of progesterone by the corpus
luteum is critical to the maintenance of early pregnancy until the placenta
takes over this function at approximately 7 to 9 weeks of gestation (hence,
its name: pro-gestational steroid hormone). The role of progesterone in later
pregnancy, however, is less clear.

In contrast to most animal species, the circulating levels of progesterone
during human labor are similar to levels measured 1 week prior [2,42], sug-
gesting that the systemic withdrawal of progesterone is not a prerequisite for
labor in humans. This is in contrast to most laboratory animals (with the
noted exceptions of the guinea pig and armadillo) in which progesterone
withdrawal is an essential component of parturition. However, circulating
hormone levels do not necessarily reflect tissue levels, and there is increasing
evidence from both in vitro [43–45] and in vivo studies [46–48] that the spon-
taneous onset of labor at term may be preceded by a physiologic (functional)
withdrawal of progesterone activity at the level of the uterus. In one clinical
trial, Meis and colleagues [47] randomly assigned 459 patients at high risk
for preterm delivery by virtue of a previous preterm birth to receive a weekly
intramuscular injection of 17a-hydroxyprogesterone caproate (250 mg) or
a matching placebo, beginning at 16 to 20 weeks of gestation and continuing
until 36 weeks. Prophylaxis with 17a-hydroxyprogesterone significantly re-
duced the risk of delivery at less than 37weeks (36%versus 55% in the placebo
group [relative risk [RR], 0.66; 95% CI, 0.54%–0.81%]), less than 35 weeks
(21% versus 31% [RR, 0.67; 95%CI, 0.48%–0.93%]), and less than 32 weeks
(11% versus 20% [RR, 0.58; 95% CI, 0.37%–0.91%]). Progesterone likely
maintains uterine quiescence during the latter half of pregnancy by limiting
the production of stimulatory prostaglandins and inhibiting the expression
of contraction-associated protein genes (ion channels, oxytocin and prosta-
glandin receptors, and gap junctions) within the myometrium [9,49]. The mo-
lecular mechanisms by which progesterone maintains uterine quiescence are
not known, but the progesterone receptor is likely critical to its action. In sup-
port of this hypothesis, the administration of the progesterone receptor antag-
onist RU-486 at term leads to increased uterine activity and the induction of
labor [50].

Cortisol and progesterone appear to have antagonistic actions within the
fetoplacental unit. For example, cortisol increases prostaglandin production
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by the placental and fetal membranes by up-regulating cyclooxygenase-2
(amnion and chorion) and down-regulating 15-hydroxyprostaglandin dehy-
drogenase (15-OH-PGDH) (chorionic trophoblast), thereby promoting cer-
vical ripening and uterine contractions. Progesterone has the opposite effect
[51]. In addition, cortisol has been shown to compete with the inhibitory ac-
tion of progesterone in the regulation of placental CRH gene expression
in primary cultures of human placenta [52]. It is likely, therefore, that the
cortisol-dominant environment of the fetoplacental unit just before the on-
set of labor may act through a series of autocrine-paracrine pathways to
overcome the efforts of progesterone to maintain uterine quiescence and
prevent myometrial contractions.

Role of other autocrine-paracrine hormones in the onset of labor

Placental oxytocin acts directly on the myometrium to cause contractions
and indirectly by up-regulating prostaglandin production, especially prosta-
glandin F2a (PGF2a) by the decidua [53]. PGF2a, in turn, is produced primar-
ily by the maternal decidua and acts on the myometrium to up-regulate
oxytocin receptors and gap junctions, thereby promoting uterine contrac-
tions. PGE2 is primarily of fetoplacental origin and is likely more important
in promoting cervical ripening (maturation) and spontaneous rupture of the
fetal membranes.

Preterm labor and birth

Preterm (premature) birth, defined as delivery between 20 and 37 weeks,
complicates 7% to 10% of all deliveries [54,55]. Despite intense efforts, the
ability of obstetric care providers to prevent preterm labor and birth is lim-
ited. Instead of decreasing, the incidence of preterm birth in the United
States has continued to rise over the past 2 decades, reaching a peak of
12.1% in 2002 (Fig. 2) [56]. Based on these data, there are approximately
460,000 preterm births in the United States each year. Prematurity is the
leading cause of perinatal death in nonanomalous newborns in the United
States. Even at gestational ages in which survival is relatively assured, signif-
icant morbidity is still common. For example, Robertson and colleagues [57]
reported that, at 30 weeks’ gestation, the risk of respiratory distress syn-
drome in surviving infants is 50%, and necrotizing enterocolitis will develop
in 11% and intraventricular hemorrhage in 5%.

Causes of preterm birth

Preterm labor likely represents a syndrome rather than a single diagnosis
because the causes are varied. Approximately 20% of all preterm deliveries
are iatrogenic and are performed for maternal or fetal indications, in-
cluding intrauterine growth restriction, preeclampsia, placenta previa, and
nonreassuring fetal testing [8]. Of the remaining cases of preterm birth,
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approximately 30% occur in the setting of preterm premature rupture of the
membranes (pPROM), 20% to 25% result from intra-amniotic infection,
and the remaining 25% to 30% are caused by spontaneous (unexplained)
preterm labor (Fig. 3) [8,58].

Preterm labor may reflect a breakdown of the normal mechanisms respon-
sible for maintaining uterine quiescence throughout gestation. For example,
the choriodecidua is enriched selectively with 15-OH-PGDH, the enzyme re-
sponsible for degrading the primary (biologically active) prostaglandins. A
deficiency in choriodecidual 15-OH-PGDH activity may impair the ability
of the fetal membranes to metabolize the primary prostaglandins, thereby
allowing PGE2 to reach the myometrium and initiate contractions. Such a
deficiency has been described and may account for up to 15% of idiopathic
preterm labor [59]. Alternatively, premature labor may represent a
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short-circuiting or overwhelming of the normal parturition cascade. Indeed,
a feature of the proposed parturition cascade would be the ability of the
fetoplacental unit to trigger labor prematurely if the intrauterine environment
became hostile and threatened the well being of the fetus. For example, up
to 30% of preterm labors are believed to result from intra-amniotic infection
[58]. In many patients with infection, elevated levels of lipoxygenase and cy-
clooxygenase pathway products can be demonstrated [58,60]. There are also
increased concentrations of cytokines (including interleukin [IL]-1b, IL-6,
and tumor necrosis factor [TNF]-a) in the amniotic fluid of such women
[61]. Cytokines and eicosanoids appear to accelerate each other’s production
in a cascade-like fashion, which may act to overwhelm the normal parturi-
tion cascade, resulting in preterm labor. Recently, thrombin has been shown
to be a powerful uterotonic agent [62,63], providing a physiologic mecha-
nism for preterm labor secondary to placental abruption.

Molecular mechanisms of preterm labor

Clinical and experimental evidence links most preterm births to four dis-
tinct pathogenic processes. Although these four pathogenic processes can
and often do occur simultaneously, each has a unique biochemical and bio-
physical signature with variable temporal manifestations and distinct epide-
miologic profiles. Regardless of the initiating event, these processes converge
on a final common biologic pathway characterized by cervical and fetal
membrane extracellular matrix degradation and myometrial activation,
leading to uterine contractions that increase in frequency and intensity cer-
vical change (preterm labor) with or without pPROM.

Premature activation of the maternal or fetal
hypothalamic-pituitary-adrenal axis

Premature activation of the fetal or maternal HPA axes is evident in up to
33% of preterm births [64]. Maternal physical and psychologic stress leads
to the premature activation of the maternal HPA axis and has been linked
consistently to preterm birth [65–67]. The activation of the fetal HPA axis
has been associated with preterm delivery, and uteroplacental insufficiency
is a source of fetal stress [64,68,69]. Indeed, chronic hypertension and severe
pregnancy-induced hypertension are associated with an increase of 36% and
300%, respectively, in spontaneous preterm birth [70]. Both maternal and
fetal stress likely cause preterm labor by increasing the release of placental
CRH, which, in turn, programs the placental clock (Fig. 4) [71,72]. Recent
studies have noted elevated second trimester maternal serum CRH concen-
trations among patients who deliver preterm [33,73,74].

Decidual and amniochorionic inflammation
Laboratory and clinical data show a consistent association between spon-

taneous preterm labor and genital tract infections [75,76]. The final common
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pathway is a maternal or fetal inflammatory response that is likely triggered
by infection in the decidua or amniochorion, with release of inflammatory
mediators (cytokines, matrix metalloproteinases [MMPs]) by activated mac-
rophages and granulocytes. In one histopathologic study [77], for example,
evidence of chorioamnionitis was observed in 70% of patients with preterm
birth associated with pPROM. IL-1, IL-6, and TNF-a directly stimulate
PGE2 and PGF2a production and inhibit their metabolism in the chorion
[78,79]. Cytokines also induce MMPs (collagenase, gelatinase, and strome-
lysins) that weaken the fetal membranes and ripen the cervix by disrupting
the normally rigid collagen extracellular matrix (Fig. 5). TNF-a may play an
additional role because it can induce apoptosis. Elevated circulating levels of
TNF-a have been associated with pPROM [80].

Midtrimester cervicovaginal IL-6 [81] and plasma granulocyte colony-
stimulating factor levels [82] also are elevated in asymptomatic women
who subsequently deliver preterm, but the sensitivity and positive predictive
values of these tests are only approximately 50%. The fetus can also initiate
a systemic inflammatory cytokine response leading to labor. One study of 41
women who had pPROM showed that microbial invasion of the uterine cav-
ity elicited an increase in fetal IL-6 levels that was associated with impending
preterm labor and birth [83]. Taken together, these data support the hypoth-
esis that many instances of spontaneous preterm labor results from an
inflammatory process associated with the activation of the genital tract
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cytokine network and the presence of cytokines in the maternal or fetal com-
partment several weeks before delivery.

Decidual hemorrhage
Decidual hemorrhage (abruption) presenting as vaginal bleeding in more

than one trimester of pregnancy is associated with a three- and sevenfold in-
creased risk, respectively, of preterm birth [84] and pPROM [85]. The risk of
preterm birth is even higher (100-fold) in such women if they also had
a previous pregnancy complicated by pPROM [86]. The causes of decidual
hemorrhage-associated preterm birth include older, parous, married, and
college-educated women [87], a profile quite distinct from that of both infec-
tion- and stress-mediated preterm labor.

Thrombin, a plasma protease that converts fibrinogen into fibrin, is
formed from prothrombin by the action of prothrombinase (factor Xa). Re-
cent studies have shown that thrombin stimulates myometrial contractions
by activating phosphatidylinositol-signaling pathways in a dose-dependent
fashion [88]. Thrombin also increases expression of plasminogen activators
and MMPs (Fig. 6) [89,90]. The release of thrombin associated with placen-
tal abruption may therefore directly initiate the final common pathway lead-
ing to preterm labor.

Pathologic uterine distention
Excessive uterine stretching caused by multiple-birth pregnancy or poly-

hydramnios is associated with preterm labor. Preterm birth rates exceed
50% for twin pregnancies, 80% for triplet pregnancies, and 90% for qua-
druplet pregnancies. The mechanism is not clear but appears to involve a sig-
nal initiated by the mechanical stretching of uterine myometrial, cervical,
and fetal membrane cells that is transmitted through the cellular
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cytoskeleton and leads to the activation of cellular protein kinases (Fig. 7)
[91]. Three genes have recently been identified whose expression in the mem-
branes is up-regulated by acute distention in vitro and in association with
labor: an interferon-stimulated gene encoding a 54-kD protein, the gene
for Huntington-interacting protein 2 (an ubiquitin-conjugating enzyme),
and a novel as yet unidentified transcript [92]. The precise role of these fac-
tors in parturition is not known.

Post-term pregnancy

Post-term (prolonged) pregnancy is defined as a pregnancy that has ex-
tended to or beyond 42 weeks (294 days) from the first day of the last normal
menstrual period or 14 days beyond the best obstetric estimate of the date of
delivery [93]. Because of the heterogeneity of populations, definitions, the use
of ultrasonography, and local practice patterns (such as the routine induc-
tion of labor at term and the management of parturients who previously
have undergone cesarean delivery), the reported incidence of pregnancies
continuing beyond the estimated date of delivery varies widely. In the United
States, approximately 18% of all births occur after 41 weeks, 3% to 14%
(mean 10%) occur after 42 weeks and are therefore post-term, and 4% of
pregnancies will continue to or beyond 43 weeks in the absence of obstetric
intervention [94,95]. The routine early use of ultrasonography to accurately
date pregnancies can reduce the rate of false-positive diagnoses and thereby
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the overall rate of post-term pregnancy from 10% to approximately 1% to
3% [96–99].

Causes of post-term pregnancy

As discussed previously, the most common cause of prolonged pregnancy
is an error in gestational age dating. In most cases, the cause of true post-
term pregnancy is not known. Risk factors include nulliparity and a previous
post-term pregnancy [100,101]. Recent data have also shown an association
with male fetuses [102]. Rarer causes include placental sulfatase deficiency,
fetal adrenal insufficiency, or fetal anencephaly (in the absence of polyhy-
dramnios). The increased risk of post-term pregnancy in women who have
had previous post-term pregnancy suggests an underlying biologic or genetic
cause, which has yet to be defined adequately [101,103].

Complications of post-term pregnancy

Recent studies have shown that the risks to the fetus [104–108] and mother
[107,109,110] of continuing the pregnancy beyond the estimated date of
delivery is greater than appreciated originally. Antepartum stillbirths ac-
count for more perinatal deaths than either complications of prematurity
or sudden infant death syndrome [106]. Once a fetus is delivered, it is no lon-
ger at risk of intrauterine fetal demise (stillbirth). When pregnancies exceed
42 weeks, perinatal mortality (stillbirths plus early neonatal deaths) in-
creases to 4 to 7 per 1000 deliveries compared with 2 to 3 per 1000 deliveries
at 40 weeks [111,112]. Perinatal mortality at 43 weeks’ gestation is fourfold
higher than that at 40 weeks and is five- to sevenfold higher at 44 weeks
[112]. Post-term pregnancy is also an independent risk factor for neonatal
encephalopathy [113] and for death in the first year of life [105–107]. Since
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the risks of the routine induction of labor (primarily failed induction leading to
cesarean delivery) are lower than reported previously [114,115], recent consen-
sus opinions recommend the routine induction of labor at an earlier gestation
age, specifically 41 weeks’ gestation [93,107].

Summary

Labor is a complex physiologic process involving fetal, placental, and
maternal signals. The timely onset of labor and birth is an important deter-
minant of perinatal outcome. Both preterm labor and delivery and post-term
pregnancy are associated with increased perinatal morbidity and mortality.
Considerable evidence suggests that the fetus is in control of the timing of
labor and, thus, its birth, but exactly how this is achieved in the human is still
unknown. A better understanding of the mechanisms responsible for the
process of labor will further our knowledge about disorders of parturition,
such as preterm labor, and improve the ability of obstetric care providers
to secure a successful pregnancy outcome.
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