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Abstract

We consider the problem of how two heterogeneous robots can arrange to meet in an unknown environment from unknown
starting locations: that is, the problem of arranging a robot rendezvous. We are interested, in particular, in allowingtwo robots
to rendezvous so that they can collaboratively explore an unknown environment. Specifically, we address the problem of how
a pair of exploring agents that cannot communicate with one another over long distances can meet if they start exploring at
different unknown locations in an unknown environment.

Ours is the first work to formalize the characteristics of therendezvous problem, in particular aspects relevant to hetero-
geneous robot systems. We approach it by proposing several alternative algorithms that the robots could use in attempting
to rendezvous quickly while continuing to explore. These algorithms exemplify different classes of strategy whose relative
suitability depends on characteristics of the problem definition. The algorithms are based on the assumption that poten-
tial rendezvous locations, called landmarks, can be selected by the robots as they explore; these locations are based ona
distinctiveness measure computed with an arbitrary sensor.

We consider the performance of our proposed algorithms analytically with respect to both expected- and worst-case
behaviour. We then examine their behaviour under a wider setof conditions using numerical analysis. This numerical
analysis is confirmed using a simulation of multi-agent exploration and rendezvous. We also examine the exploration speed,
and show that a multi-robot system can explore an unknown environment faster than a single-agent system, even with the
constraints of performing rendezvous to allow communication.

We conclude with a demonstration of rendezvous implementedon a pair of actual robots.

1 Introduction

In this paper, we consider a particular aspect of multi-robot environment exploration: how to get a pair of robots to meetone

another initially in an unknown environment if they do not know one another’s starting positions. The problem ofrobot ren-

dezvousis a key step in collaborative exploration. We address this problem, once it has been formally defined, by considering

it in several ways spanning closed-form analysis and real-world experimentation.

In many contexts, multiple-robot systems may be faster or more powerful than a single robot system. However, there

are difficulties associated with the use of such multi-agentsystems. Task division, synchronisation and coordinationare
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significant problems, as is maximising the efficiency of the distributed team. Practical considerations can further contribute to

the complexity of a multi-agent system when compared with a single agent system.

One example of such a practical limitation is inter-agent communication. Existing research indicates that multi-agent

robot systems for the majority of real-life applications enjoy substantial speed gains only with some level of communica-

tion (Balch and Arkin, 1994), when compared with single-agent systems or multi-agent systems that do not communicate.

Many distributed-agent algorithms, for instance dynamic path-planning, assume and rely upon instantaneous, infiniteband-

width communication between agents at all times in order to achieve promised performance levels (Brumitt and Stentz, 1996).

However, most existing hardware agents are only capable of communication over short distances. Environmental geome-

try, wireless transmission technology, power considerations and atmospheric conditions (or water conditions for underwater

agents) all contribute to limitations on communication range. In the absence of sophisticated satellite receivers or high power

devices, a common constraint for successful communicationis maintaining “line-of-sight” between agents.

Since many realistic robots must be near one another to communicate, this implies they need to be able to rendezvous. In

addition, the agents must be able to merge the maps generatedby the exploration process; if the maps cannot be merged, then

each agent must itself explore the environment to completion, and no task speed-up is achieved. Under many circumstances,

heterogeneous agents must share a common reference point tobe able to merge maps1 - completely independent maps cannot

always be merged reliably. Unless the agents start at exactly the same place in the environment, they must agree on a placeto

meeta priori, and share information. However, choosing a meeting point reliably, especially in an unknown, unconstrained

environment is difficult.

1.1 Problem Statement

We are interested in multi-robot exploration using range-limited “line of sight” sensors such as vision or sonar. In practice,

the particular sensing modality has numerous pragmatic implications, a major factor being the range at which the agentscan

either recognise one another, or any landmarks in the environment. In the context of a general rendezvous strategy, we will

initially consider a generic “abstract” sensor that both allows the agents to recognise one another when they are sufficiently

close together and also allows them to evaluate any point in space as to its suitability as a rendezvous point. We describe

how the rendezvous task can be efficiently accomplished under various assumptions about the environment and the perceptual

abilities of the agents involved.

To restate this more formally, given two heterogeneous robots equipped with noisy sensors that can be used for mapping,

1It is sometimes possible to merge maps using their shapes. However, if the agents’ sensors are substantially different,or there are spatial
ambiguities, the merging process may fail.
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and a sensor that can be used for computing a local signature of the position in the environment, how can the robots both

explore the map and meet in minimum time? In the simplest approach to the problem, the rendezvous will have the agents

search through the environment for good meeting points, andthen have them travel to the single best meeting point at a

pre-arranged time. In practice, more complex approaches are required.

The rendezvous task itself is divided into two sub-problems.

1. The first sub-problem is how to choose an appropriate rendezvous point, given an unknown environment. The ability of

the agents to meet in the environment is a function of their ability to reliably choose appropriate rendezvous points. For

instance, mountain tops may be a good outdoor rendezvous point.

2. The second sub-problem is that of dealing with confounding factors in the rendezvous process. One such factor is the

difficulty of coming to an agreement on the location for a rendezvous. Sensor noise may cause agents to disagree;

agents may not have explored the same regions of space, and therefore may choose different points. An appropriate

rendezvous strategy must take into account such asymmetry between the agents’ exploration. Pre-arranged behaviour

must also account for such asynchronies and allow for missedrendezvous attempts.

1.2 Outline

In section 3, we formalise the parameters of the rendezvous problem that necessitate more than one attempt. In section 4,two

classes of solutions are proposed and then analysed analytically. We simulate the rendezvous problem at two levels; thefirst

level, section 5, is a purely algorithmic simulation, simply to test the efficacy of the various algorithms under the different

conditions we describe. In section 6, we develop a realisticsimulation, using spatial metrics and simulated sensing and motion.

Finally, we demonstrate in section 7 the speed-up possible under multi-agent systems by comparing the running-time of the

multi-agent system versus the single-robot system on a realmulti-robot system.

2 Previous Work

The problem of rendezvous is not a new one; there exists a bodyof research in the optimisation and operations research

community involving search problems. Rendezvous is a particular variant of the search problem, similar to games with mobile

hiders, calledprincess and monster games(Alpern, 1995). There are many variants of the rendezvous problem itself, involving

distinguishable (Alpern and Shmuel, 1995) or indistinguishable agents (Anderson and Essegaier, 1995) and collaborating or

interfering agents. The environment may have focal points,or may be completely homogeneous.
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There are a number of differences between the highly theoretical approach most prior work takes and the approach used

here. In our work, the environment is not known, and one of thekey problems is tofind the focal points (what we term

landmarks). Secondly, in prior work, the theoretical agents have perfect sensing, synchronisation, etc. Here, we are dealing

with realisable agents, with the concomitant problems of noise, asynchrony, real-time travel limitations.

However, there is a key similarity between ours and the priorwork, in that communication between agents is prohibited,

until the agents are within a pre-determined line-of-sightrange. Indeed, the graph-theoretic approach reduces this distance to

0 in many cases. It is interesting to note that one of the algorithms proposed by Alpern (Alpern, 1995) is equivalent to thefirst

deterministic algorithm we propose in section 3.

2.1 Multi-agent robotics

Balch and Arkin (Balch and Arkin, 1994; Balch and Arkin, 1998) describe several tasks:consuming, foragingandgrazing.

The task of exploration is an example of a grazing task, in that each point in the environment needs to be covered by at leastone

robot’s sensors, in order to acquire a complete representation. Further tasks that have been addressed in the context ofmulti-

agent systems are box-pushing (Parker, 1994; Donald, 1995), formation holding (Beni and Liang, 1996) and exploration and

mapping (Rekleitis et al., 1997; Cohen, 1996). Like Donald’s box-pushing and the grazing task, many of these applications

use passive sensing or implicit information to perform their task. There is a dearth of work in real applications that demand

full, active communication that have been implemented on real robots. Rekleitis and colleagues’ (Rekleitis et al., 1997) work

on using multiple robots for exploration is very much in the spirit of this work, using multiple agents to overcome limitations

in the use of a single robot for exploration. While their approach overcomes inherent limits in localisation in an unknown

environment, the goal is to increase the precision of the mapacquired. This work is focussed on increasing the speed of map

acquisition.

A comprehensive taxonomy of the different types of multiple-agent systems, orswarmshas been proposed (Dudek et al.,

1996), including the various types of communication available. In addition, the three possible types of communicationwere

described as� No communication (“COM-NONE”)� limited communication (“COM-NEAR”)� full communication (“COM-INF”)

As the authors point out, COM-INF “is the classical assumption, which is probably impractical if [the number of agents]� 1.” A modest understatement, given that radio communicationbreaks down in many situations as soon as line-of-sight is

4



lost. Our work makes the assumption of swarms of range-limited communication, instantiated in this case using a line-of-sight

constraint.

There has been considerable work in studying the range of behaviour of multiple-agent systems, especially attempting to

maximise efficiency and minimise complexity (Mataric, 1992) (Hara et al., 1992). Mataric has looked at models of collabora-

tive behaviour between mobile robots (Mataric, 1992), and examined the “emergent behaviour” properties that result. She also

observed that the form of communication plays an important role in how collaborative actions proceed. Parker has developed

control strategies for heterogeneous multiple robot systems, and made clear the need for effective communication (Parker,

1994).

Finally, the problem of map generation from co-operative multi-agent exploration was discussed and implemented first by

Ishioka et al. (1996). Their work is a canonical example of the potential applications of the technique presented in thispaper,

in which co-operative heterogeneous robots generated mapsof unknown environments. They did not discuss the problem of

rendezvous, but focussed only on how to merge maps once the rendezvous has occurred. Later work also assumes rendezvous

has occurred (Rao et al., 1996), and the latest work by Fox et.al. further develops the ideas of detecting rendezvous visually,

and map merging probabilistically (Fox et al., 2000).

While it is clear from the graph-theoretical work that focalpoints in the environment are essential to effective rendezvous,

it is Kuipers’ selection of distinctive locations in a simple 2-D environment (considered previously in the context of map-

making (Kuipers and Byun, 1991)), that is the basis for the landmarks in this work. The distinctive locations in that work

were determined by active hill-climbing over the distinctiveness function, that is, by local gradient ascent over somefunction

of the sensor output. The local maxima in a continuous property of the environment allowed for the conversion of a metric

environment representation into a graph-like or topological one (Chatila and Laumond, 1985; Dudek et al., 1991; Kuipers and

Byun, 1991; Shatkay and Kaelbling, 1997; Thrun, 1998).

3 The Rendezvous Problem

In the simplest, idealised, noise-free case, the robots have a pre-arranged notion of what constitutes a good rendezvous point.

At a pre-arranged time, the robots go to the best rendezvous point, and wait for the other robot(s) to arrive. They can thenfuse

their maps and suitably partition any remaining exploration to be done.

This simple strategy can be decomposed into the following four steps:

1. Travel throughout environment

2. Find good rendezvous locations
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3. At the pre-arranged meeting time, choose the best rendezvous location

4. Travel to that rendezvous location, and share information with the other agents

In the following sections, we describe how to choose good rendezvous locations. We then formalize what can cause a ren-

dezvous attempt to fail, and how our rendezvous strategies recover from failures.

3.1 Defining Rendezvous Points

In the context of cultural environments, typical notions ofgood rendezvous locations – we refer to these points aslandmarks

– generally rely upon somea priori knowledge of the environment. For instance, humans often rely upon existing structures

such as doors of buildings or monuments. We would like to avoid assumptions about the availability of such structures,

therefore, we define the notion ofdistinctiveness, or landmarkness, as a value defined at every point in the environment,

and use this value to find landmarks. If the distinctiveness is a function of the agent’s sensor(s), then there is no issue of

environmental dependence on the ability to find landmarks — every location is a potential landmark.

We refer to the scalar measure of suitability of a particularpoint (x; y; �) as its distinctiveness:D(x;y; �). The position(x; y) and orientation� of the robot are commonly termed theposeof the robot, defined over the configuration spaceC of the

robot. For a pose vectorq we can defineD(q) : C ! R that maps from the configuration space of the robot to a real-valued

scalar.

The quantityD(q) is implicitly a function of sensor dataf(q), so we have a new distinctiveness functionD̂, such that:D : (x; y; �) ! R (1)f : (x; y; �) ! S (2)D̂ : S ! R (3)D = D̂ � f(q) (4)

Some intuitive examples of environmental attributes that might serve as distinctiveness measures are spatial symmetry,

distance to the nearest obstacle, or altitude (for 3D surfaces – for example humans might select hill tops). If we choose our

the distinctiveness function to be orientationally invariant, thenD(x;y; �) = D(x;y) (5)

The possible distinctiveness measures are heavily dependent on the types of sensors the robots have at their disposal.

Because the robot assigns a value to every point, a good sensing modality is one that allows the distinctiveness to be defined

at any location in the environment, and for which there exists some metric that can order the resultant landmarks in the

environment in terms of distinctiveness. This ordering allows the landmarks to be ranked in terms of their likelihood tolead
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to a successful rendezvous. By far the most important feature of the distinctiveness function is that the locations of its extrema

should be robust with respect to small changes in position, so that these extrema can be found again later.

It is important to note that the distinctiveness values are only computed for locations actually visited by the robot. By

restricting landmarks to lie along the robot trajectory, weavoid issues of landmark visibility and viewpoint independence.

Consequently, rendezvous locations need not be recognisable as such from afar, such as a mountaintop is. We recognise

locations as landmarks by actually visiting them.

The functionD(x;y) defines a surface across thex � y plane. Landmarks are defined as the local maxima (or minima,

if preferred), of the distinctiveness surface. Certain generic properties apply to good distinctiveness functions, independent

of the sensing modality. IfD(x;y) is smooth, locally convex, and has few local extrema or inflection points, then it is easy

to find highly stable and mutually agreed-upon extrema. Landmarks can be found by the robots performing gradient ascent

overD(x;y). However, although this strategy is attractive in principle, we believe that in many real environments, occlusion,

noise, and other factors may make the “distinctiveness surfaces” highly non-convex and thus complicate the process.

3.2 Finding Landmarks

One way to identify potential rendezvous points, or landmarks, is to sample the distinctiveness surface uniformly across the

space, and then identify the maxima in the surface off-line.However, the task of locating landmarks for rendezvous cannot

always dictate the robot trajectory. Although we are developing the technique of multi-agent rendezvous for exploration, we

would like to generalise rendezvous to any multi-agent system. The constraints of some tasks may not allow the agent to

suspend execution of the primary algorithm in order to follow the distinctiveness surface, hunting for landmarks. As a result,

the agents must be able to identify landmarks during the execution of any task.

We therefore impose two constraints on the distinctivenessfunction - the function must be trajectory-independent and

orientation-independent. For example, the “Northern-most” point in the already-explored environment is a poor choice. If

the explored area of each robot is circular, then two robots will only have the same “northern-most” point if the environment

is highly constrained or if the explored regions are very similar. In Figure 1, we see that despite having relatively similar

explored regions, the robots will choose quantitatively different landmarks. If the landmarks are separated substantially, either

by distance or by some obstacle such as a wall, a rendezvous atthese landmarks will fail.

Similarly, an orientation-dependent distinctiveness function will give very different values for a robot looking down a

corridor, as opposed to a robot looking at a wall. Unfortunately, most immediately obvious distinctiveness functions are

orientation-dependent, especially those that use the sonar rings found on most mobile robots. The solution we have chosen is

to sample the distinctiveness function at pre-determined orientations.
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Northern-most Points

Figure 1: An example of the effect of choosing a poor measure of distinctiveness. Even though the two robots have relatively similar explored
regions, the best landmark each chooses is different enoughto cause rendezvous difficulties.

There still remains an issue of spatial sampling — as the agents travel through the environment they must sample the

distinctiveness function sufficiently often to be able to specify the landmarks accurately. Coarse sampling can lead toincor-

rectly estimating a peak’s height, or even failing to observe a good landmark entirely. One possible solution is to sample the

distinctiveness surface along the trajectory as finely as possible. However, since the distinctiveness sampling is a function of

the task-dependent trajectory, the problem is independentof the distinctiveness function and must be addressed in some other

manner. Possible solutions to this problem will be discussed with rendezvous algorithms.

3.3 Inter-agent Differences and Sensor Noise

In addition to using the same distinctiveness function, theagents must compensate for differences in their perceptions of the

environment. In order for two robots to agree on a good landmark, they must have similar perceptions of the environment

or be able to convert their percepts into a common intermediate form. In the extreme case of two agents with dramatically

different sensing modalities, there is essentially no way for them to rendezvous based on the recognition of environmental

characteristics. Sensor noise can play a similarly problematic role. We model this aspect of the problem by parameterising the

extent to which the two agents can reliably obtain the same measurement of distinctiveness at the same location.

We consider the base case,D(x; y), to be “ground truth” with respect to the distinctiveness that should be measured by all

the agents. However,D(x; y) is a function of the sensors the agents use:Si(x; y) = S(x; y) + �i(x; y) + �i (6)Di(x; y) = D(Si(x;y)) (7)

whereS(x;y) is the ideal perception of the environment by the given sensor, in the absence of any noise.S1(x; y) is

Agent 1’s perception of the environment at position(x; y) that encapsulates the agent’s systematic error�(x; y) over the
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measurement at that position;�i is that agent’s random sensor noise.

For the purposes of modelling the inter-agent differences,we model� and� as scalars, and collapse them into one error

term. With full generality, we can consider one of the agentsas the reference perceiver (the arbiter of good taste) with a

perceptD1(x;y) = D(x; y) while the other robots obtain a sensor measurement which canbe viewed as noisy with respect

to that of the first robot: Di(x; y)�D1(x;y) = �̂i �̂i(x; y) + �̂iD1(x; y) (8)Di(x;y) = (1� �̂i)D1(x;y) + �̂i�̂i(x; y) (9)

where�̂i(x; y) is all stochastic and systematic noise processes of each robot, and�̂i specifies the extent to which the two

robots (Di andD1) sense (or perceive) the same thing. If both robots have exactly the same perceptions of the environment

we havê� = 0. In the context of this formalism,̂�(x; y) combines both intrinsic sensor noise and any differences inthe type

of sensor used. Note that the for the purposes of modelling differences in sensor measurement across agents, the�̂ and �̂
parameters can be treated as a single parameter,�.
4 Rendezvous Strategies

In the ideal case, the obvious choice is the “best” landmark,i.e., the point in the environment that has the largest known

maximum of the distinctiveness function. For a variety of reasons, this simple strategy proves to be difficult or impossible to

achieve in practice. Therefore, strategies must be developed to accommodate the various confounding factors that makethe

rendezvous problem challenging in practice.

4.1 Formal Parameters of the Rendezvous Problem

In order to estimate the effectiveness of alternative strategies for rendezvous, we have identified key attributes thatmust be

formalised. Important attributes of the rendezvous problem are:� Sensor noise — the distinctiveness measures observed by thetwo robots are unlikely to be identical. This is expressed

by the�(x; y) term of Equation 9.� Landmark Commonality — the extent of overlap between the spatial domains of the agents.

In the ideal case, the agents will share all landmark knowledge. More likely is that the robots have explored partially-

overlapping areas, and will have some different landmarksd that are not in the common region, of a total set ofn
landmarks.
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� Synchronisation — the level of synchronisation between theagents.

If the agents do not agree on the rendezvous time, there is a probability that the rendezvous will be missed. Also, if

an agent fails to arrive at the landmark because there of travel delays, the rendezvous will fail. The probability that a

rendezvous is missed is modelled by the parameterj.� Landmark Cardinality — the numbern of points considered for rendezvous by each agent.

If there is exactly one landmark, then the rendezvous algorithm cannot make any attempt to compensate for variations

in the problem parameters. In this extreme case, the problemis “solved” simply by revisiting that one landmark. At

the other extreme, if every point visited is considered as a landmark, the algorithm may be swamped, preventing it from

exploiting its abilities to find the other agents.

It is assumed that if the agent roles are asymmetric that there is ana priori agreement of which agent will play which

role. Furthermore, we assume that all agents share some notion of synchronisation — that is, all agents can agree on when

rendezvous attempts should be made, however, this synchronisation may be noisy. A third assumption is that all agents have

the same landmark set cardinality — they all attempt rendezvous over the same number of landmarks (even if they are not

using identically the same landmarks in their sets). Finally, it is assumed that all agents are performing the same task,and

using the same rendezvous strategies.

4.2 Landmark Selection Algorithms

Looking to biology, some simple algorithms for related problems are observed. One common strategy has one agent (e.g., a

child lost at the zoo) wait to be found while other agents (e.g., desperate parents) cover the space, performing search. Another

equally naive but much less common strategy has agents moving from landmark to landmark randomly until a rendezvous

occurs.

We have developed two main classes of algorithm: deterministic and probabilistic. The deterministic class of algorithm

creates a list of all possible combination of landmarks and specifies the order in which the landmarks should be visited. There

is no random aspect to the landmark visit sequence, and therefore the algorithms will generate the same sequence of landmark

visits for a given landmark set. The probabilistic class of algorithm does not generate ana priori ordering of landmarks, but

simply generates probabilities for landmarks being visited at any proposed rendezvous.

4.2.1 Deterministic Algorithms� Sequential– One agent picks a landmark and waits there for the other agent, which visits every landmark in turn. If the
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second agent has visited every landmark without encountering the first agent, the first agent moves to another landmark

it has not yet visited.

The active agent cycles through all its landmarks, before returning to the beginning of the set. The passive agent remains

at a landmark forn cycles, wheren is the size of the landmark set, before moving to the next landmark. This generates a list

of all pair-wise combinations of landmarks, sorted by distinctiveness. This strategy gives the agents asymmetric roles with

respect to one another. The extension from a single pair of agents to an arbitrary number of agents can be easily accomplished

by evenly dividing the agents into two classes of active and passive agents.� Smart-sequential– Each pairwise combination of landmarks known to a robot is assigned a “goodness” value. This

value is the product of the distinctiveness of the pair. The list of landmark pairs is sorted by this product, and one side

of each pair is discarded, leaving an ordered list ofn2 landmarks from a set ofn. The robot then visits the landmarks in

this order.

The smart-sequential strategy takes into account the fact that the landmarks may be mis-ordered across agents: that is,one

agent’s sorted list will not quite match the other’s, and that the relative mis-orderings are likely to be small (that is,one list

can be regarded as an almost-sorted version of the other). The landmark orderings can be thought of as being “perturbed”

rather than grossly misordered across agents. Consequently, it may make more sense to revisit highly distinct landmarks

long before considering landmarks with relatively low distinctiveness. This leads to an increased probability of meeting even

with substantial asynchrony between agents, or with high-valued landmarks that are unique to one agent. The smart-sequential

method is tantamount to guessing where the other robot mightbe, given relatively similar, but not identical, landmark rankings.

4.2.2 Probabilistic Algorithms

The probabilistic algorithms use different probability functions to accommodate different parameters of the problemspace.

The landmarks are sorted with respect to their distinctiveness and then assigned a likelihood of visitationpi for landmarki as

a function of its rank in the sorted list, i.e.,pi = f(i). The algorithm probabilistically selects a landmark to visit, usingpi for

each landmark. For example,� Exponential – The likelihood of visiting thei� th best landmark is/ ei. This function has the effect of emphasising

the relatively highly distinct landmarks, at the cost of landmarks with relative low distinctiveness.� Random– On each attempted visit, each robot selects a landmark at random and goes there.

The particular exponential function used in the simulations was
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Pi = �e�(D1�Di) (10)� = :25log(:001=D1)D1 (11)

whereDi is the distinctiveness of landmarki andPi is the probability of visiting that landmark.� is a normalisation

constant to ensure that the probabilities for the landmark set sum to 1.0, and� is a user-definable decay constant for tuning

the exponential function response. The constants in these formulae were chosen empirically.

4.3 Analytical Results

We can make an analytical assessmentof the bounds on the performance of the deterministic rendezvous algorithms, compared

to the random algorithm baseline. We examine the performance of the algorithms in the limit of high heterogeneity and noise,� = 1, such that no common ordering between agents of the same landmarks can be reliably determined. The first assessment

is the algorithmic time complexity, i.e., the expected timeto rendezvous, for the three algorithms in the limit of� = 1. For a

landmark set of sizen, the failure probability of any single, random rendezvous attempt isPunsuccessful = n�1n and if the

asynchrony rate is accounted for, then the failure probability rises toPunsuccessful = n�1n j.
These facts give rise to table 1. The first column refers to thecase in which both robots having the same set of landmarks.

The second column considers the scenario where the robots may fail to get to the appointed landmark at the same time (or fail

to notice one another). This probability is the asynchrony,j. The third column deals with the case whered of each robot’sn
landmarks are not in the other robot’s landmark set.

Algorithm Simple Async. < 100% Comm.
Random 1log2( nn�1 ) 1log2( nn�1 )+log2j 1log2( ndn�d )
Sequential n=2 n2 + j �1log j n2 + dn �1log dn
Smart-seq. n n+ j �1log j n+ dn �1log dn

Table 1: Expected case behaviour. The columns denote the ideal case, the case where the asynchronyj 6= 0 and the case where the landmark sets
are not identical, but each agent hasd non-common landmarks.

In the deterministic sequential algorithm, the expected time of the simplest case (identical landmark sets, no asynchrony),

is very straightforward. One agent sits at a landmark, and the other agent visits every landmark in turn until they meet —

on averagen=2 landmarks. However, in the presence of asynchrony, additional sweeps of alln landmarks will have to be

performed. To find the expected number,k such additional sweeps, we use0:5 = jk noting that each extra sweepi of k will

reduce the probability of failure, andk such sweeps must reduce the probability of failure to 50%. Thus, on averagej �1log j
sweeps during the rendezvous will fail due to asynchrony. Similarly, for non-identical landmark sets, additional sweeps ofn
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landmarks will have to be performed on averagedn �1log dn times.

5 Numerical Simulation

Unfortunately, the analytical description of the algorithms given above does not provide a realistic picture of the theperfor-

mance of the algorithms, as this bound will rarely, if ever, be attained in practice. The agent difference,�, will likely not

be extremal. Therefore, more useful than the analysis in thelimit of high noise is the performance of the algorithm under

conditions of worsening noise, especially under differentconditions of disjoint landmark sets and asynchrony. We therefore

use a numerical analysis technique to examine the algorithmunder a range of conditions.

5.1 Experiment Design

Two agents were modelled as having already explored an unknown area, and having collected a set ofn landmarks. The

distinctiveness values of the ordered landmarks were generated with a function,f(x) wherex was the landmark index.f(x)
was a linear function for the results given here, although other functions were examined. Random noise� as developed in

equation 9 was then applied to the two sets. The appropriate rendezvous strategy was then used to generate a sequence of

landmarks for the two agents, with a maximum length ofn2. The sequences were terminated at the first position with the

same landmark, and the running time was considered to be the length of the sequences.

The landmark set is generated by a distinctiveness distribution modelF (i), with a range of values,[0;max(F (i)]. The

noise was then modelled as a percentage� of full scale:Di = F (i) +Random(0 : � �maxF (i)) (12)

The random function was a uniform random function in the range [0 : � �maxF (i)]. The distinctiveness valuesDi were

then re-normalised into the rangemax(F (i)).
We use the time to successful rendezvous as a measure of the algorithm’s success. The length of the sub-sequences until

rendezvous is used as a measure of time until successful rendezvous. Again, without noise, the deterministic algorithms (se-

quential and smart-sequential) are guaranteed to generatesequences of length one, that is, meet on the first try. By generating

a sequence for each algorithm under different conditions, (varying�, the asynchronyj, and the landmark set commonalityd),

we can measure the time to rendezvous under the various conditions.

It should be noted that the parameter space of this problem issubstantial, and therefore not all aspects of the problem were

explored. Only the more relevant and interesting aspects ofthe problem space are presented here.
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5.2 Experimental Results

Each trial determined the number of rendezvous attempts, oriterations, needed to achieve rendezvous under different condi-

tions. Measurements were taken at 14 values of�, where each measurement was made 1000 times; these 1000 trials gave a

mean number of iterations to rendezvous for a particular algorithm and a particular value of�.
5.3 Base case: Time as a function of Noise
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Figure 2: Baseline Performance - Time to Rendezvous as a function of Noise-level�
The baseline simulation shows the performance of four algorithms in the face of increasing noise. The size of the landmark set

is 50 landmarks, asynchronyj is 0, and the landmark sets have 100% commonality. The four algorithms are the deterministic

sequential and smart-sequential algorithms, and weightedprobabilistic distributions with exponential and linear probability

functions. Figure 2 shows that the sequential algorithm is the best performer, especially in the face of high noise (i.e.,� > 0:2) , which concurs with the analytical result. Clearly, exponential is a very fragile rendezvous scheduling function,

failing catastrophically with noise,� > 0:2.

5.4 50 % Asynchrony

In the face of asynchrony, however, the algorithms exhibit less intuitive behaviour. Asynchrony, again, is the probability

that a particular rendezvous at a mutually agreed place and time actually occurs. The simulation (which created landmark

sequences) implemented asynchrony as the probability thata particular sequence element could be used. Even if the pairof

landmark sequences contained the same landmark at identical positions, the sequence may not have terminated there, because

the asynchrony probability prevented the first pair of matching landmarks in sequence from being compared, as if the robots

had failed to rendezvous successfully despite attempting to do so at the same location at the same time.

Figure 3 shows the performance of the algorithms given a 50% asynchrony rate, or a 50% probability of successfully
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Figure 3: Performance with 50% Asynchrony rate

making a rendezvous. In this case, the smart-sequential andexponential algorithms out-perform the sequential strategy,

because the sequential form suffers from having to visit every other landmark before being able to return to the landmark

that failed on a particular iteration, whereas the other twoalgorithms can return to landmarks relatively quickly. However,

once noise dominates the values, (� > 0:5) the sequential algorithm outperforms the other algorithms because it does not rely

heavily on particular landmark values — it is not returning to the same landmark over and over again.

5.5 80 % Asynchrony
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Figure 4: Performance with 80% Asynchrony rate

Even more interesting in the case of very high (80%) asynchrony, Figure 4 shows that the exponential probabilistic function

outperforms the deterministic algorithms in the face of lownoise (0:5 < � < 0:25), but again fails rapidly in the case of high

noise (� > 0:25). The exponential algorithm essentially forces the robot to return to the same landmark over and over again,

which is the correct strategy when asynchrony is high. However, when noise is high, the odds that the recurrent landmark is

the wrong one increase, and the deterministic algorithms, which do not return to the same landmark as often, perform better.
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5.6 75 % Landmark Commonality
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Figure 5: Performance with non-identical landmark sets, and 50% Asynchrony rate

Finally, Figure 5 shows performance for maps with only 75% ofthe landmarks in common and 50% asynchrony. The perfor-

mance with non-identical landmark sets (akin to non-isomorphic maps) is very similar to performance under low- to medium-

asynchrony. The smart-sequential algorithm performs better with low noise because it can return to landmarks faster than

sequential, but in the case of high noise (� > 0:35), returning to landmarks too frequently can be costly, and the sequential

algorithm again dominates.

5.7 Experimental conclusions

The sequential strategy is simple and relatively immune to sensornoise because it does not rely heavily on the relative rankings

of landmarks. However, it is sensitive to asynchrony. If thetwo robots have the same ordered landmark sets but suffer from

synchronisation problems and hence miss meetings at commonly-selected landmark,n rendezvous attempts must occur before

an identical pair of landmarks occurs in the visit sequence.

Smart-sequential has its domain of superiority where the agent differences (e.g. noise) are low, but not negligible, or

where the landmark sets are not identical. Although it is nota probabilistic strategy as such, it essentially groups landmarks

together into types of high probability through low probability, in attempt to “guess” where the other agent(s) might be. Smart-

sequential also does not perform well under conditions of high noise or high asynchrony. It suffers under conditions of high

noise, because it relies upon a reasonable, if not 100% accurate knowledge of the distinctiveness surface; as noise destroys the

accuracy of that measurement process, the estimates based on that knowledge become poorer.

The exponential algorithm proves to have a surprising domain of superiority in the low-noise, high-asynchrony case. When

a rendezvous fails due to simply a missed attempt, the optimal behaviour is to retry the attempt regularly; it is this behaviour

the exponential algorithm excels at.
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6 Physically-based Simulation

Although the numerical analysis of section 5 encapsulated anumber of practical issues with parameters such as sensor noise,

our analysis did not address the problems of space. We therefore next simulate mobile robots in a two-dimensional environ-

ment. These experiments have two goals; the first is to determine the behaviour of the various rendezvous algorithms under

different experimental conditions. The second goal is to determine the speed-up of the exploration of two robots performing

rendezvous, when compared with a single robot.

6.1 Experimental Method

Figure 6 shows the map used for these experiments The first test suite, the baseline algorithm performance. In each set of 25

trials, one agent was started at the same point every trial, theA in Figure 6, and the other agent was put at one of 5 locations,

the circles labelled1-5 in Figure 6, for 5 trials per location. The trials were conducted for 15 values of�.
1

2

3

4

5

A

Figure 6: The map for the simulated experiments, with the starting positions marked as circles. One agent always started from theposition labelled
’A’, whereas the other agent started 5 times at each of the positions marked with numbers.

The agents are modelled as idealised Nomad 200 robots with perfect (noise-free) sensing abilities and odometry.2 The

agents explore the unknown environment for a pre-determined length of time; at the end of this length of time the agents

attempt rendezvous. The agents then take then best landmarks seen so far, and use these for the rendezvous algorithm. Each

agent is running the same rendezvous algorithm; where the algorithms demand asymmetrical agents, the agents are assigned

roles randomlyab initio.

However, this simplistic description hides several complex issues, the first of which is choosing an appropriate distinctive-

ness function.

2While we did have the ability to simulate the sonars using a more realistic sonar simulator, it was not exploited in these experiments.
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6.1.1 The Distinctiveness Function

Recall from section 3 that we would like a distinctiveness function that is smooth, robust, and which has few local extrema

over the exploration space. Our choice of a distinctivenessfunction in the following experiments was inspired by human

experience; we would like the function to peak in wide-open areas that correspond to large rooms, foyers, etc.

We can measure the “openness”,R, of any point in the environment simply by summing the range returned by each sensor:R(x; y) = nXi=1 R(x; y; �i) (13)

We measure the asymmetry,A, of each point by summing the absolute difference of diametrically-opposed pairs of

sensors. If each pair of sensors measures the same, then the asymmetry falls to 0.A(x; y) = n=2Xi=1 j R(x; y; �i)�R(x; y; �i+n=2) j (14)

Combining the openness and the asymmetry givesD = P64n=1 RiP32n=1 j Ri �Ri+32 j (15)

6.1.2 Landmark Distributions in Space

Ideally, only landmarks which are not mutually visible should be kept in the landmark set, otherwise two landmarks (which

are in reality distinctiveness maxima along the trajectory) may in fact be very proximal to one another. While this does not

in principle break the rendezvous process, if the environment is large, or the area of the environment common to the agents is

relatively small, then the time to rendezvous may become unreasonably large. Since the goal is to have the agents rendezvous

in minimum time, it is undesirable for the agents to spend time visiting points in the environment that are close together.

There are a number of ways of dealing with this problem, for example using a sensor to test line-of-sight, or actually

travelling between landmarks to test if the line-of-sight path is clear. Since the task that we are performing is exploration and

an occupancy grid map is available, we use this map to test formutual visibility.

6.1.3 Accurate Peak Measurement

The method described in section 6.1.2 suffices for eliminating multiple landmarks that are associated with the same structure

in the distinctiveness surface. However, there still remain the issues of accurately recognising the distinctivenesspeaks, and

even more importantly, measuring the peak height accurately.
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If the agents share the same trajectories through the environment, then this issue simply one of sensor differences. Such a

situation would occur, for instance, if the agents were employing Voronoi diagrams or freeway methods for navigation. While

there will in practice be some positional error across agents, this will largely be due to sensor error and can be encapsulated

in the sensor model. However, if the primary task does not involve navigation along mandated trajectories, then it is likely

that the agents will, while capturing the same peaks in the distinctiveness, have very different perceptions of the height of the

peaks, as Figure 7 demonstrates.3

2nd Robot Trajectory

1st Robot Trajectory

2nd Robot’s Landmark
1st Robot’s Landmark

Figure 7: Two agents exploring the distinctiveness surface. Because of the nature of the exploration algorithm, one agent passes directly over top
of the peak, and thus measures its height correctly. The other agent passes first to one side, and then the other, retainingonly the higher of the two
maximal measurements, never measuring the peak correctly at its maximum height.

In practice, the measurement of landmarks can be refined by performing gradient ascent over the distinctiveness surface

at each potential landmark. This could be done during the landmark acquisition process, but no longer decouples the primary

task (e.g. exploration) from rendezvous. The agents could re-visit each landmark before rendezvous, but this would adda

mechanical complexity to the rendezvous process. For an environment that has many, widely separated landmarks, this will

be unacceptable.

The method chosen for the simulation and real robot experiments is to refine the landmarks during the rendezvous process.

This has the advantage that the rendezvous process and primary task are decoupled as in the previous method, but the additional

mechanical complexity is low, as in the first method. The disadvantage is that the visit sequence must be recomputed in the

majority of cases if a deterministic algorithm is being used. Furthermore, if the measurements are completely wrong, the

measurement may not be corrected until after a substantial number of iterations.

Figure 8 shows the result of the hill-climbing operation.

3This is, of course, a sampling problem. However, given the prevalence of high-frequency information in the distinctiveness surface, under-
sampling is inevitable without serious increases in mechanical complexity. In the worst case scenario, if the agents drastically undersample the
distinctiveness surface, they will not only mis-measure the distinctiveness peaks, but miss some peaks altogether. Ifthe distinctiveness function
is also used for the primary task (as it is in this research, asthe sonar is used both for the distinctiveness measurementsas well as generating the
map), the primary task must be aware that rendezvous is beingperformed, and must be willing to relinquish control of its sensors to the landmark
acquisition process. This requires some coupling between the landmark acquisition process and the primary task, but the coupling can be eliminated
if necessary by giving the rendezvous process a separate sensor.
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Figure 8: The result of the landmark refinement process. The grey filled circles are the initial peak estimates, acquired during the exploration
process. The white circles are the final positions of the landmarks. The box is the best landmark.

6.2 Modelling Noise, Landmark Commonality and Asynchrony

In the experiments using the simulation of robot exploration and rendezvous, a noise term�(x; y) was added to every point

in space using the same model as in 5. Modelling the landmark commonality,d, and asynchrony,j, explicitly as in that

section was impractical. The landmark commonality parameter is a reflection of the degree to which the trajectories of the

agents overlap; this parameter is a function of the trajectories, not the inverse. Similarly, the asynchrony is a function of

environmental and robot characteristics; it is extremely difficult to extract the appropriate characteristics from the single

parameter.

However, the simulation did model these characteristics indirectly. The landmark commonality parameter was set by

altering the size of the bounded world, and altering the timeallowed between rendezvous attempts. Asynchrony was modelled

using a radio communication simulator. The simulator had a locking mechanism that prevented the robots from moving to the

next landmark, until both had made a communication request.By allowing the locking mechanism to operate probabilistically,

the parameterj could be included in the simulation.

6.2.1 Simulating Rendezvous

The simulation of detecting other robots and achieving rendezvous was implemented using simulated radio communication.

Requests were made by each robot to the radio simulator, and the simulator then determined, based on its knowledge of the

complete map and the current positions of the two simulated robots within the map, whether or not the robots were mutually

visible (line-of-sight), and whether they were in radio range of one another (13.5 m4).

4This number for the radio range was based on the radius of the smallest robot we used, the RWI B12. 13.5m is one hundred B12 diameters.
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6.3 Experimental Results

There were three main experiments performed on the simulated exploration and rendezvous, and each was a variant of a test

of the rendezvous algorithm performance vs. noise. Each data point is the average of 25 trials. The trial was terminated at 100

rendezvous attempts if the agents had not achieved rendezvous by then.

6.3.1 Baseline Performance

Figure 9 demonstrates the performance of the 4 main algorithms, in the face of increasing noise. The size of the landmark set

is 10 landmarks and asynchronyj is 0. In order to have the agents have as close to 100% landmarkcommonality as possible,

the simulation explored for 600 seconds - this proved to be sufficient for the agents to have explored almost all of the space.

The four algorithms are sequential, smart-sequential and the probabilistic functions exponential and random.
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Figure 9: Baseline Performance - Time to Rendezvous as a function of Noise-level� = [0;500].
At the highest noise level in Figure 9, the noise is 80% of the highest noise-free peak in the environment; however, certain

algorithmic characteristics manifest themselves. For example, sequential continues to out-perform all other algorithms.

6.3.2 Disjoint Exploration Areas

This is the second of the three experiments performed using the simulated exploration and rendezvous for the explicit case of

disjoint landmark sets, representing areas of the environment explored by only one agent.

Figure 10 shows an example of the exploration carried out by two agents in this environment. Clearly, the two agents

have explored the majority of the environment, and yet the overlapping areas of their trajectories is fairly minimal. This is the

first experiment where the speed-up of the algorithms can be tested; the results of the speed-up of the algorithms will be in

section 6.4.

Figure 11 demonstrates the performance of the rendezvous algorithms in the face of both increasing noise and incomplete

exploration. The size of the landmark set is 10 landmarks andasynchronyj is 0.
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(b) Second agent’s trajectory

Figure 10: Two example trajectories through a larger space. The circles indicate landmarks. Notice that the rendezvous occurredsuccessfully, even
though a large part of the trajectories were unique to the agent.
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Figure 11: Non-Identical Landmark sets - Time to Rendezvous as a function of Noise-level, Low Noise� = [0;50].
Notice that smart-sequential is no longer the best algorithm, even in this low noise region of the parameter space. The

ability of the smart-sequential algorithm to guess the location of the other agent is damaged by the incomplete knowledge that

results from disjoint landmark sets.

6.3.3 Asynchrony

In this final experiment, we tested the ability of the agents to rendezvous under conditions where the robots would sometimes

fail to meet successfully, even when at the same location. Weare particularly interested in the low-noise region of the

parameter space, as the numerical analysis indicated that the exponential algorithms performed best under these conditions.

As Figure 12 indicates, the superior performance of the stochastic algorithms is present in the spatial simulation.

Focussing further on the region where� is small, the exponential algorithm should be the fastest isexpected. The explo-
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Figure 12: 80% Asynchrony - Time to Rendezvous as a function of Noise-level, Noise� = [0;100].
ration suffers only from missed meetings - both agents should have chosen the same landmarks. Since this algorithm will

revisit the best landmark more often than any other algorithm, it has the best chance of overcoming the asynchrony problem.

However, once any noise is present in the system, this algorithm fails rapidly.

6.4 Multi-Agent Exploration

Of particular interest in this experiment is the ability forthe rendezvous algorithm to overcome the communication restriction

and yet maintain the increase in speed that multiple-agent robotics promises. We would like to demonstrate a significant

increase in exploration speed, even accounting for the timeto rendezvous.

As our metric for measuring speed increase in exploration, we used the change in mapping speed,S = AT , whereA is the

percentage of the environment that has been mapped, andT is the time to complete the mapping.

Since the experiment was constructed so that the occupancy grid matched the size of the bounded environment, we use the

number of cells in the occupancy grid that contained information of any kind (occupied or not) as our measure of the size of

the mapped environment.

The increase in speed of the mapping process is then given by Equation 18,�S = Scombined � SsingleSsingle (16)= AcTc � AsTsAsTc (17)= AcAs TsTc � 1 (18)

We take the area of a single agent,As to be the area explored by the active agent, and the time of thesingle agentTs to be

the time allowed for the exploration process alone. The combined area,Ac is the explored area of the merged maps, and the

23



combined time,Tc is the time to explore.Ts added to the time to rendezvous,Tr so thatTc = Ts + Tr .

Once the maps from the two agents are merged, it is then possible to determine how much of the environment was explored

by the two agents together, giving the increase in explored speed, compared to the efforts of a single agent. Recall that each data

point in the preceding graphs represents the mean of 25 trials. The increase in explored areas over all 25 trials was a minimum

of 42.8%, and on average 49.4%. If the agents were capable of merging their maps immediately after the exploration phase,

thenTc = Ts, and the increase in area is exactly equal to the increase in speed. However, this ideal situation is equivalent to

total communication, and is not realistic.

There are two possible ways to interpret the exploration speed results: the first treats each exploration iteration and ren-

dezvous iteration as a single time increment, as if travelling through a graph where each arc is of time-length 1, andTr is

simply the number of rendezvous iterations.

Table 2 shows the speed increase in the algorithms in the zero-noise case, using this graph-like model of the exploration

process. Each datum is the average of 25 trials; if the agentsfailed to meet (e.g. due to the exponential algorithm), thenthe

change in mapping speed,�S was set to 1.0.

Algorithm % Speed Increase
Sequential 49.1 %

Smart-Sequential 38.1 %
Exponential 21.1 %

Random 46.7 %

Table 2: The speed increase using the graph-like model of the world,in the zero-noise case. Each number is the average of 25 trials.

Only the exploration speed of the exponential algorithm wasseriously degraded by the rendezvous process. Figure 13

shows the change in exploration speed as the noise is increased.
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Figure 13: Increase in exploration speed as a function of noise. Environment modelled as a graph.

Characteristically, sequential performed extremely wellover the majority of the noise range; smart-sequential did well
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in the low-noise range, however once the noise began to dominate the measurements, smart-sequential’s performance was

considerably degraded. These results reassuringly corroborate on a general level the numerical and simulation results. In fact,

figure 13 is compelling support for multiple-agent roboticsin general; an increase of speed of up to 50% in the exploration

task is still available. It is a problem for future work to show that this increase in speed is possible in general.

7 Rendezvous using Real Robots

All of the prior simulation experiments assumed the simulation sensors were ideal; noise was explicitly applied in order to

approximate real sensors. Odometric error was assumed to benegligible. Issues of path-planning were simplified to allow

the robots to pass through each other in space, rather than investing time in allowing the simulated agents to detect eachother

during the exploration stage. These are all assumptions that are not valid once a real robot is being used. We therefore present

a proof of concept, that, in fact, the rendezvous method is possible and useful on real robots.

7.1 Experimental Method

In this final experiment, we examine the feasibility of our rendezvous strategy on a pair of actual robots in our laboratory. The

experiment was conducted using two mobile robots, a Nomad 200 and an RWI B-12. Both robots are essentially cylindrical,

and quasi-holonomic, in that they are capable of turning with 0� radius. The Nomad 200 is 50cm in diameter, and has 16 sonar

transducers equally separated by22:5�. The RWI B-12 is 27cm in diameter, and has 12 sonar transducers equally separated

by 30�. Although the Nomad 200 has an onboard 486 processor runningLinux, all computation was performed off-board, on

two SGI Indigo platforms, and a Pentium platform. The communication between the robots and their controlling platforms

was wireless.

Figure 14 show the robots moving through the maze in the laboratory. The right panel of the figure shows the robots

standing next to each other, having made a successfully rendezvous.

The experiment was held in a laboratory space measuring 550cm by 840cm. The walls were free-standing corrugated

plastic, 60cm high, taped together for structural integrity, and stood off the floor with angle-brackets, measuring 10cm long.

The total wall length, including bounding walls, was 50.4m.
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Figure 14: The robots exploring the maze, and then making a rendezvous.

7.1.1 Sonar sensors

The sensor that was used throughout these experiments was the sonar sensor, which is a range sensor only. Consequently,

all our distinctiveness function candidates relied upon range information only. The maximum range of the robots5 is 8m for

the Nomad, and 13m for the RWI. The range precision is�2.54cm for the Nomad, and�1.07cm for the RWI. By using the

sonar to measure the distance to obstacles around it, the robot can acquire a metric map of its environment. There do exist

more sophisticated sonar models such as developed by Kleeman and Kuc (Kleeman and Kuc, 1994), Wilkes (Wilkes et al.,

1991), Borenstein (Borenstein et al., 1996) and Lacroix andDudek (Lacroix and Dudek, 1997) that can recognise and deal

appropriately with sonar artefacts in our model. However, our simple model of the sonar pulses, combined with some simple

outlier handing, is sufficient for the limited purposes of our experiments; a more sophisticated sonar model would be more

appropriate for long-term exploration and environment modelling.

7.2 Experimental Results

7.2.1 Trajectory

Figure 15 shows the trajectories of the robots moving through the maze. The RWI B-12’s trajectory is shown in the left panel,

and the Nomad 200’s trajectory is shown in the right panel. Itshould be emphasised that the maps were overlaid by hand

for clarity, and the robots had no embedded knowledge of the layout of environment. Also overlaid on the images are the

landmark positions that were chosen by the robots for rendezvous.

5Assuming speed of sound at 330 m/s.
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Figure 15: The landmark selections of the two robots overlaid on theirtrajectories. The triangles represent points where the robots considered
potential landmarks. The ranking of the landmarks in the final landmark set is shown as well.

The trajectories consist of collections of points, separated by large areas of space. These “islands” of points were areas

of the environment explored using local potential field descent. Once a local potential minimum had been reached, the robot

used breadth-first search to find a new area that was known to beclear, yet low in potential (i.e., seen but unexplored).

Although gradient ascent was used in the simulations, it wasnot used in these experiments due to the small size of the

environment. Notice that the Nomad chose a point in the uppercorridor as its best rendezvous location, whereas the RWI

chose a point in the inner maze. This is no doubt due to sensor differences between the two robots.

7.2.2 Rendezvous

This single experiment provides the clearest support for our approach, in demonstrating a need for establishing some appro-

priate behaviour if the initial rendezvous attempt is unsuccessful. As Figure 15 indicates, the two robots did not choose the

same point in the environment for the best rendezvous location. The robots made a successful rendezvous on the 4th attempt

among the three landmarks, since they were using the sequential method of exploration.

Finally, Figure 16 shows that the maps were merged. The map merging was performed manually. Although algorithms

exist to merge maps gathered by heterogeneous agents (Ishioka et al., 1993), that problem is not the focus of the present work.

The most important conclusion that was drawn from the experiment using the real robot is that the methodology we have

chosen for achieving rendezvous is practical. The fact thatthe robots failed to meet on the first iteration of the rendezvous

cycle is a very convincing piece of evidence that the rendezvous problem is substantially more complex than simply choosing

a place to meet in the environment.
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Figure 16: The final map created from the merged data acquired by the tworobots.

8 Conclusion

In this work, we have described the new problem of performingrendezvous between multiple mobile agents. The objective is

to overcome practical communication limits by periodically having the agents converge and share information. In this man-

ner, we increase the speed of operation of the multiple robotsystem compared to the single robot system, while eliminating

the traditional assumption of infinite range, full bandwidth communication between agents. We are specifically interested in

multiple-robot exploration of an unknown environment where communication is limited to short-range line of sight. Further-

more, we developed a methodology that does not depend on any particular task such as exploration, is trajectory independent

and does not require any memory-intensive spatial representations. Although our implementation does take advantage of met-

ric information that is provided by the exploration algorithm, our rendezvous methodology can be decoupled completelyfrom

the underlying primary task.

We divided the rendezvous problem into two separate subproblems. The first is determining what points in the environment

constitute good rendezvous locations, orlandmarks. We addressed this problem by modelling the environment as afunction

of the sensors; this function gave rise to a distinctivenesssurface, defined over the domain of the environment. We then

chose landmarks at the local extrema of the surface, limiting our knowledge of the surface only to those points that the agents

have visited. Which points the robot visited was dictated bythe trajectory prescribed by the underlying task, and so we

demonstrated how to overcome these trajectory dependencies.

Our use of distinctive locations as landmarks is related to the psychology of human attentive vision and, in particular,

to the selection of targets for pre-attentive vision. Although we have used only a sonar range-sensor throughout this work,
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it is easily extended to other sensor modalities, such as computer vision. For example, the notion of using distinctiveness to

define domain-independent features has been employed for visual navigation (Sim and Dudek, 1998). Of course, the particular

distinctiveness metric is a function of the sensor modality; the distinctiveness measure used in this paper is easily replaced

with a camera-specific measure without loss of generality.

While the problem of rendezvous reduces, in the idealised case, only to the task of choosing the best point in the environ-

ment to which the robots should converge, this is in fact an inappropriate idealisation. In the formalisation of this problem,

we identified 3 key parameters that characterise the problem. We showed that a number of different points in the environ-

ment must be chosen for meetings, and these points must be visited in some intelligent manner for rendezvous to be achieved

reliably. These parameters we have calledsensor noise, map commonality, andasynchrony.

This problem of which appropriate behaviour to use in choosing the landmarks to visit is the second of the two subproblems

of rendezvous. We proposed two main classes of algorithms,deterministicandprobabilistic, and gave examples of each class

of algorithm. In order to determine the characteristics of the algorithms, we gave a closed-form analysis of the worst- and

expected-case complexity of the algorithms at points in theparameter space. This closed-form analysis was complemented by

a numerical description of the performance of the algorithms at a range of points in the parameter space.

Finally, we demonstrated the rendezvous algorithm in use both in simulation and on physical robots. The simulation tests

were used as a confirmation of the numerical results. Within the class of deterministic algorithms, there were differentregions

that favoured different algorithms. These results were confirmed by both analytic closed-form solutions of section 3, and

idealised numerical simulations of section 5. The physicalexperiments served as a proof of concept for the explorationand

rendezvous algorithms, and we concluded with a map of an environment that resulted from the collaborative exploration and

subsequent successful rendezvous within our laboratory oftwo robots.

An interesting conclusion from these results is that, depending on a combination of these confounding factors, no strategy

is canonically a good or bad choice - under the correct circumstances, a heretofore poor choice of algorithm can outperform

the erstwhile winner. The exponential algorithm, while generally a poor choice, will outperform the other algorithms when

asynchrony is a problem but sensor noise is not. It may be, however, that determining the true operating conditions is suffi-

ciently difficult that smart-sequential is usually the bestchoice. Further experiments in realistic robot situationsis needed to

be able to tell how difficult it is to determine the operating conditions.

The physically-based simulation demonstrated that, although it is much harder to isolate the parameters in a physical sense,

many of the main conclusions were upheld, despite several complicating factors that were not part of the numerical simulation.

Furthermore, the physically-based simulation demonstrated that an increase of speed is still attainable with a multiple robot

system using the rendezvous approach to communication.
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Finally, the experiments using physical robots gave a compelling demonstration that the rendezvous algorithms are an

essential part of the rendezvous process; the assumption that the robots will meet on the first iteration is simply untenable.

Despite very similar sensors and configurations, and a high degree of overlap between the agents, the robots required 4

rendezvous iterations before they could successfully meetand share information.

Only a small number of rendezvous algorithms were considered for this work. There is a body of literature on online

search methods, of which rendezvous is a subclass. Algorithms that were not considered here may have particular utilityin

different regions of the problem space.

Of the analysis presented in this work, only limited but critical parts of the parameter space were examined. Further

examination is necessary for examining the behaviour of thealgorithms under conditions of worsening noise, worsening

asynchrony, and perhaps most importantly, conditions of landmark commonality. It is likely that as time passes, the areas

explored by the agents will overlap more and more; analysis of the performance of the algorithms under these conditions

would be useful.

One open problem is the ability of the agents to choose the appropriate rendezvous algorithm. A major part of this problem

is allowing the agents to estimate the environmental parameters, and identify the correct portion of the parameter space that

identifies the environment. At no time did the agents attemptto estimate the experimental parameters; the agents did not

use any environmental information in the algorithms. Allowing the agent to vary the parameters, such as constants in the

stochastic algorithms, as rendezvous succeeds or fails, may have considerable power. It may also be interesting to investigate

stochastic estimates of performance for the rendezvous algorithms.

The only consideration used by the algorithms for choosing which landmark to visit was the distinctiveness of the land-

mark. Given the sometimes substantial mechanical complexity of travelling between two landmarks, a better algorithm would

consider the mechanical complexity of visiting landmarks in addition to its distinctiveness, so that of two landmarks with

similar distinctiveness, the closer landmark would be visited first.

Finally, although we have dealt primarily with two-agent systems, the work is in principle easily extended to larger col-

lections of agents, or swarms. The probabilistic algorithms are symmetric across agents, and therefore adding new agents is

trivial. The deterministic algorithms can be extended to larger swarms, simply by dividing the swarms into pairs. However,

implicit in large robot swarms are complex issues of task division and interference, and so it is no way clear that the same

kind of speedups that are observed for two-agent collectives will be observed for larger collectives. There may also be intelli-

gent ways to use larger collectives to avoid long-distance travel by transmitting information from agent to agent over several

scheduled rendezvous. Further experiments are required todetermine how information propagation affects the speed oftask

completion.
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