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Abstract

We consider the problem of how two heterogeneous robotsrcange to meet in an unknown environment from unknown
starting locations: that is, the problem of arranging a rdbendezvous. We are interested, in particular, in allowtwg robots
to rendezvous so that they can collaboratively explore dmown environment. Specifically, we address the problerowf h
a pair of exploring agents that cannot communicate with onetlaer over long distances can meet if they start exploring a
different unknown locations in an unknown environment.

Ours is the first work to formalize the characteristics of thedezvous problem, in particular aspects relevant toroete
geneous robot systems. We approach it by proposing seveatative algorithms that the robots could use in attemgpti
to rendezvous quickly while continuing to explore. Thegerithms exemplify different classes of strategy whosativel
suitability depends on characteristics of the problem dédim The algorithms are based on the assumption that poten
tial rendezvous locations, called landmarks, can be setebl the robots as they explore; these locations are based on
distinctiveness measure computed with an arbitrary sensor

We consider the performance of our proposed algorithmsydically with respect to both expected- and worst-case
behaviour. We then examine their behaviour under a widem§ebnditions using numerical analysis. This numerical
analysis is confirmed using a simulation of multi-agent esgtion and rendezvous. We also examine the exploratioadspe
and show that a multi-robot system can explore an unknowiie@maent faster than a single-agent system, even with the
constraints of performing rendezvous to allow commuriecati

We conclude with a demonstration of rendezvous implementadair of actual robots.

1 Introduction

In this paper, we consider a particular aspect of multi-tabwvironment exploration: how to get a pair of robots to merest
another initially in an unknown environment if they do nokmone another’s starting positions. The problennaifot ren-
dezvouss a key step in collaborative exploration. We address tlablem, once it has been formally defined, by considering
it in several ways spanning closed-form analysis and realdrexperimentation.

In many contexts, multiple-robot systems may be faster arenpowerful than a single robot system. However, there

are difficulties associated with the use of such multi-agsstems. Task division, synchronisation and coordinagicn



significant problems, as is maximising the efficiency of tistributed team. Practical considerations can furthetrifmurte to
the complexity of a multi-agent system when compared witingls agent system.

One example of such a practical limitation is inter-agenmhouinication. Existing research indicates that multi-agen
robot systems for the majority of real-life applicationg@nsubstantial speed gains only with some level of commamic
tion (Balch and Arkin, 1994), when compared with singlestgg/stems or multi-agent systems that do not communicate.
Many distributed-agent algorithms, for instance dynanzithpplanning, assume and rely upon instantaneous, infiaie-
width communication between agents at all times in ordectoeve promised performance levels (Brumitt and Stent26)9
However, most existing hardware agents are only capablemihwunication over short distances. Environmental geome-
try, wireless transmission technology, power consideretiand atmospheric conditions (or water conditions foreuwdter
agents) all contribute to limitations on communicationganin the absence of sophisticated satellite receivergbrgower
devices, a common constraint for successful communic&ioraintaining “line-of-sight” between agents.

Since many realistic robots must be near one another to cancate, this implies they need to be able to rendezvous. In
addition, the agents must be able to merge the maps genésatiee exploration process; if the maps cannot be merged, the
each agent must itself explore the environment to compietiod no task speed-up is achieved. Under many circumsance
heterogeneous agents must share a common reference poénatde to merge mapscompletely independent maps cannot
always be merged reliably. Unless the agents start at gxaetisame place in the environment, they must agree on atolace
meeta priori, and share information. However, choosing a meeting peiigbly, especially in an unknown, unconstrained

environment is difficult.

1.1 Problem Statement

We are interested in multi-robot exploration using raniggtéd “line of sight” sensors such as vision or sonar. Incice,

the particular sensing modality has numerous pragmatidigatppns, a major factor being the range at which the agesuts
either recognise one another, or any landmarks in the emviemt. In the context of a general rendezvous strategy, We wi
initially consider a generic “abstract” sensor that botbwas the agents to recognise one another when they are suffici
close together and also allows them to evaluate any poirpatesas to its suitability as a rendezvous point. We describe
how the rendezvous task can be efficiently accomplishednwadieus assumptions about the environment and the perakept
abilities of the agents involved.

To restate this more formally, given two heterogeneoust®bquipped with noisy sensors that can be used for mapping,

it is sometimes possible to merge maps using their shapewews, if the agents’ sensors are substantially differenthere are spatial
ambiguities, the merging process may fail.



and a sensor that can be used for computing a local signattaine @osition in the environment, how can the robots both

explore the map and meet in minimum time? In the simplestaaar to the problem, the rendezvous will have the agents
search through the environment for good meeting points,thed have them travel to the single best meeting point at a
pre-arranged time. In practice, more complex approacteseguired.

The rendezvous task itself is divided into two sub-problems

1. The first sub-problem is how to choose an appropriate mrales point, given an unknown environment. The ability of
the agents to meet in the environment is a function of thdiitylo reliably choose appropriate rendezvous points:. Fo

instance, mountain tops may be a good outdoor rendezvons poi

2. The second sub-problem is that of dealing with confougdttors in the rendezvous process. One such factor is the
difficulty of coming to an agreement on the location for a remwbus. Sensor noise may cause agents to disagree;
agents may not have explored the same regions of space, emrdotie may choose different points. An appropriate
rendezvous strategy must take into account such asymmetinebn the agents’ exploration. Pre-arranged behaviour

must also account for such asynchronies and allow for missstkzvous attempts.

1.2 OQutline

In section 3, we formalise the parameters of the rendezvimidgm that necessitate more than one attempt. In sectiwo4,
classes of solutions are proposed and then analysed aadllytWe simulate the rendezvous problem at two levelsfitke
level, section 5, is a purely algorithmic simulation, simpb test the efficacy of the various algorithms under theedit
conditions we describe. In section 6, we develop a reabstiulation, using spatial metrics and simulated sensidgastion.
Finally, we demonstrate in section 7 the speed-up possitleumulti-agent systems by comparing the running-timenef t

multi-agent system versus the single-robot system on awaki-robot system.

2 Previous Work

The problem of rendezvous is not a new one; there exists a bbdssearch in the optimisation and operations research
community involving search problems. Rendezvousis aqdai variant of the search problem, similar to games witHbiteo
hiders, callegrincess and monster gam@spern, 1995). There are many variants of the rendezvoaisipm itself, involving
distinguishable (Alpern and Shmuel, 1995) or indistinbaisle agents (Anderson and Essegaier, 1995) and collaimpoat

interfering agents. The environment may have focal poortspay be completely homogeneous.



There are a number of differences between the highly thieafetpproach most prior work takes and the approach used
here. In our work, the environment is not known, and one ofkég problems is tdind the focal points (what we term
landmarkg. Secondly, in prior work, the theoretical agents havegmr§ensing, synchronisation, etc. Here, we are dealing
with realisable agents, with the concomitant problems ag&aasynchrony, real-time travel limitations.

However, there is a key similarity between ours and the priork, in that communication between agents is prohibited,
until the agents are within a pre-determined line-of-sigimge. Indeed, the graph-theoretic approach reducesisitésde to
0in many cases. lItis interesting to note that one of the alguos proposed by Alpern (Alpern, 1995) is equivalent tofitet

deterministic algorithm we propose in section 3.

2.1 Multi-agent robotics

Balch and Arkin (Balch and Arkin, 1994; Balch and Arkin, 19@scribe several tasksonsumingforagingandgrazing
The task of exploration is an example of a grazing task, ibghah pointin the environment needs to be covered by atdeast
robot’s sensors, in order to acquire a complete repregentdturther tasks that have been addressed in the contextltf
agent systems are box-pushing (Parker, 1994; Donald, 1f86jation holding (Beni and Liang, 1996) and exploratioml a
mapping (Rekleitis et al., 1997; Cohen, 1996). Like Dormlix-pushing and the grazing task, many of these applitatio
use passive sensing or implicit information to perform thask. There is a dearth of work in real applications that ded
full, active communication that have been implemented ahn@bots. Rekleitis and colleagues’ (Rekleitis et al., 2)98ork
on using multiple robots for exploration is very much in tharis of this work, using multiple agents to overcome lintitans
in the use of a single robot for exploration. While their aggorh overcomes inherent limits in localisation in an unknow
environment, the goal is to increase the precision of the atgired. This work is focussed on increasing the speed pf ma
acquisition.

A comprehensive taxonomy of the different types of multipteent systems, @awarmshas been proposed (Dudek et al.,
1996), including the various types of communication akdéa In addition, the three possible types of communicatiere

described as

¢ No communication (“COM-NONE”")
¢ limited communication (“COM-NEAR”)
¢ full communication (“COM-INF")

As the authors point out, COM-INF “is the classical assuomtiwhich is probably impractical if [the number of agents]

> 1. A modest understatement, given that radio communicdir@aks down in many situations as soon as line-of-sight is



lost. Our work makes the assumption of swarms of rangedithitommunication, instantiated in this case using a linsigtit
constraint.

There has been considerable work in studying the range aiiair of multiple-agent systems, especially attempting t
maximise efficiency and minimise complexity (Mataric, 1982ara et al., 1992). Mataric has looked at models of coltabo
tive behaviour between mobile robots (Mataric, 1992), atah@ned the “emergent behaviour” properties that restie &so
observed that the form of communication plays an importaletin how collaborative actions proceed. Parker has deeelo
control strategies for heterogeneous multiple robot sgsteand made clear the need for effective communicatiorképar
1994).

Finally, the problem of map generation from co-operativdtiragent exploration was discussed and implemented first b
Ishioka et al. (1996). Their work is a canonical example efplotential applications of the technique presented inghfser,
in which co-operative heterogeneous robots generated nfapsknown environments. They did not discuss the problem of
rendezvous, but focussed only on how to merge maps oncerttlezeous has occurred. Later work also assumes rendezvous
has occurred (Rao et al., 1996), and the latest work by Fad efurther develops the ideas of detecting rendezvousilisu
and map merging probabilistically (Fox et al., 2000).

While it is clear from the graph-theoretical work that fopalnts in the environment are essential to effective reudeg,
it is Kuipers’ selection of distinctive locations in a sir@-D environment (considered previously in the context apm
making (Kuipers and Byun, 1991)), that is the basis for timeltaarks in this work. The distinctive locations in that work
were determined by active hill-climbing over the distinetiess function, that is, by local gradient ascent over dometion
of the sensor output. The local maxima in a continuous ptgpErthe environment allowed for the conversion of a metric
environment representation into a graph-like or topolabame (Chatila and Laumond, 1985; Dudek et al., 1991; Kgiped

Byun, 1991; Shatkay and Kaelbling, 1997; Thrun, 1998).

3 The Rendezvous Problem

In the simplest, idealised, noise-free case, the robots hgre-arranged notion of what constitutes a good rendeszyvoiuat.
At a pre-arranged time, the robots go to the best rendezwming and wait for the other robot(s) to arrive. They can these
their maps and suitably partition any remaining exploratmbe done.

This simple strategy can be decomposed into the following $teps:

1. Travel throughout environment

2. Find good rendezvous locations



3. Atthe pre-arranged meeting time, choose the best rendsucation
4. Travel to that rendezvous location, and share informatiith the other agents

In the following sections, we describe how to choose goodeegwrous locations. We then formalize what can cause a ren-

dezvous attempt to fail, and how our rendezvous strategias/er from failures.

3.1 Defining Rendezvous Points

In the context of cultural environments, typical notiongjobd rendezvous locations — we refer to these poinksrasnarks
— generally rely upon some priori knowledge of the environment. For instance, humans oftgruggon existing structures
such as doors of buildings or monuments. We would like to dvasisumptions about the availability of such structures,
therefore, we define the notion dfstinctiveness or landmarkness as a value defined at every point in the environment,
and use this value to find landmarks. If the distinctivenssa function of the agent’s sensor(s), then there is no isbue o
environmental dependence on the ability to find landmarks/engocation is a potential landmark.

We refer to the scalar measure of suitability of a particplaint (=, y, 8) as its distinctiveness(z, y, §). The position
(z, y) and orientatior® of the robot are commonly termed tpeseof the robot, defined over the configuration spéax the
robot. For a pose vectey we can defind)(q) : ¢ — R that maps from the configuration space of the robot to a rakied
scalar.

The quantityD(q) is implicitly a function of sensor dat{q), so we have a new distinctiveness functidnsuch that:

D:(z,y,8) — R 1)
f:(z,y,0) = S (2
N:8 - R (3)

D = Dof(q) )

Some intuitive examples of environmental attributes thathinserve as distinctiveness measures are spatial sygymetr
distance to the nearest obstacle, or altitude (for 3D sagacfor example humans might select hill tops). If we choase o

the distinctiveness function to be orientationally ineati then

D(z,y,8) = D(z,y) (5)

The possible distinctiveness measures are heavily dependethe types of sensors the robots have at their disposal.
Because the robot assigns a value to every point, a goochgemsidality is one that allows the distinctiveness to be eeffin
at any location in the environment, and for which there ex@ime metric that can order the resultant landmarks in the

environment in terms of distinctiveness. This orderingwa$ the landmarks to be ranked in terms of their likelihootet



to a successful rendezvous. By far the most important featfahe distinctiveness function is that the locations®eitrema
should be robust with respect to small changes in positiothat these extrema can be found again later.

It is important to note that the distinctiveness values anly computed for locations actually visited by the robot. By
restricting landmarks to lie along the robot trajectory, amid issues of landmark visibility and viewpoint independe.
Consequently, rendezvous locations need not be recodaiaatsuch from afar, such as a mountaintop is. We recognise
locations as landmarks by actually visiting them.

The functionD(z, y) defines a surface across the- y plane. Landmarks are defined as the local maxima (or minima,
if preferred), of the distinctiveness surface. Certainggenproperties apply to good distinctiveness functionggpendent
of the sensing modality. ID(z, y) is smooth, locally convex, and has few local extrema or itifi@cpoints, then it is easy
to find highly stable and mutually agreed-upon extrema. Inaawits can be found by the robots performing gradient ascent
over D(z,y). However, although this strategy is attractive in prinejple believe that in many real environments, occlusion,

noise, and other factors may make the “distinctivenessisad” highly non-convex and thus complicate the process.

3.2 Finding Landmarks

One way to identify potential rendezvous points, or landdais to sample the distinctiveness surface uniformly sstbe
space, and then identify the maxima in the surface off-liHewever, the task of locating landmarks for rendezvous oainn
always dictate the robot trajectory. Although we are depiglg the technique of multi-agent rendezvous for explorgtive
would like to generalise rendezvous to any multi-agentesyst The constraints of some tasks may not allow the agent to
suspend execution of the primary algorithm in order to felthe distinctiveness surface, hunting for landmarks. Assaikt,
the agents must be able to identify landmarks during thewgigcof any task.

We therefore impose two constraints on the distinctiverfiesstion - the function must be trajectory-independent and
orientation-independent. For example, the “Northern{hpeint in the already-explored environment is a poor cleoitf
the explored area of each robot is circular, then two robadlisomly have the same “northern-most” point if the enviroam
is highly constrained or if the explored regions are veryilsim In Figure 1, we see that despite having relatively Emi
explored regions, the robots will choose quantitativeffedént landmarks. If the landmarks are separated subaligneither
by distance or by some obstacle such as a wall, a rendezvihwesatlandmarks will fail.

Similarly, an orientation-dependent distinctivenessction will give very different values for a robot looking doma
corridor, as opposed to a robot looking at a wall. Unfortehatmost immediately obvious distinctiveness functions a
orientation-dependent, especially those that use ther siaga found on most mobile robots. The solution we have ehas

to sample the distinctiveness function at pre-determimgghtations.
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Figure 1: An example of the effect of choosing a poor measure of dittianess. Even though the two robots have relatively aingkplored
regions, the best landmark each chooses is different ertouggtuse rendezvous difficulties.

There still remains an issue of spatial sampling — as the tageavel through the environment they must sample the
distinctiveness function sufficiently often to be able tedfy the landmarks accurately. Coarse sampling can leautto-
rectly estimating a peak’s height, or even failing to obsemgood landmark entirely. One possible solution is to sartid
distinctiveness surface along the trajectory as finely asipte. However, since the distinctiveness sampling isatfon of
the task-dependent trajectory, the problem is indeperaféhe distinctiveness function and must be addressed ire sdher

manner. Possible solutions to this problem will be discdsgéh rendezvous algorithms.

3.3 Inter-agent Differences and Sensor Noise

In addition to using the same distinctiveness function apents must compensate for differences in their perceptibthe
environment. In order for two robots to agree on a good lantipthey must have similar perceptions of the environment
or be able to convert their percepts into a common internted@m. In the extreme case of two agents with dramatically
different sensing modalities, there is essentially no wantliem to rendezvous based on the recognition of envirotahen
characteristics. Sensor noise can play a similarly probtémole. We model this aspect of the problem by paraméteritie
extent to which the two agents can reliably obtain the sanssomrement of distinctiveness at the same location.

We consider the base cade(z, y), to be “ground truth” with respect to the distinctivenessttthould be measured by all

the agents. Howevel}(z, y) is a function of the sensors the agents use:

Si(z,y) = S(z,y)+ni(z,y)+ X\ (6)
Di(z,y) = D(Si(z,y)) @)

whereS(z, y) is the ideal perception of the environment by the given semsdhe absence of any nois&, (z, y) is

Agent 1's perception of the environment at positian y) that encapsulates the agent’s systematic eftory) over the



measurement at that positiok; is that agent’s random sensor noise.

For the purposes of modelling the inter-agent differeneesmodel\ andy as scalars, and collapse them into one error
term. With full generality, we can consider one of the agasthe reference perceiver (the arbiter of good taste) with a
perceptD:(z,y) = D(z,y) while the other robots obtain a sensor measurement whiclhearewed as noisy with respect

to that of the first robot:

ifi(@,y) +8:D1(w,y) ®)

1= 8D (z,y) + 8:7ii(z, y) )
wheref}; (z, y) is all stochastic and systematic noise processes of eaoh anids; specifies the extent to which the two

robots (O; and D) sense (or perceive) the same thing. If both robots havetlgxthe same perceptions of the environment

we haved = 0. In the context of this formalismij(z, y) combines both intrinsic sensor noise and any differencésdrtype

of sensor used. Note that the for the purposes of modellifigréinces in sensor measurement across agentsj, &mel§

parameters can be treated as a single paranaeter,

4 Rendezvous Strategies

In the ideal case, the obvious choice is the “best” landmiagk, the point in the environment that has the largest known
maximum of the distinctiveness function. For a variety @fgens, this simple strategy proves to be difficult or impuesd
achieve in practice. Therefore, strategies must be degdltppaccommodate the various confounding factors that rteeke

rendezvous problem challenging in practice.

4.1 Formal Parameters of the Rendezvous Problem

In order to estimate the effectiveness of alternative atias for rendezvous, we have identified key attributesrihsgt be

formalised. Important attributes of the rendezvous protéee:

¢ Sensor noise — the distinctiveness measures observed bydtrebots are unlikely to be identical. This is expressed

by thed(z, y) term of Equation 9.

¢ Landmark Commonality — the extent of overlap between théigjpdomains of the agents.

In the ideal case, the agents will share all landmark knogdedVore likely is that the robots have explored partially-
overlapping areas, and will have some different landmdridsat are not in the common region, of a total setwof

landmarks.



¢ Synchronisation — the level of synchronisation betweerathents.

If the agents do not agree on the rendezvous time, there istepility that the rendezvous will be missed. Also, if
an agent fails to arrive at the landmark because there dfltadriays, the rendezvous will fail. The probability that a

rendezvous is missed is modelled by the paramgeter

e Landmark Cardinality — the numberof points considered for rendezvous by each agent.

If there is exactly one landmark, then the rendezvous atlyorcannot make any attempt to compensate for variations
in the problem parameters. In this extreme case, the proldésolved” simply by revisiting that one landmark. At
the other extreme, if every point visited is considered andinark, the algorithm may be swamped, preventing it from

exploiting its abilities to find the other agents.

It is assumed that if the agent roles are asymmetric thaetiseana priori agreement of which agent will play which
role. Furthermore, we assume that all agents share sonenraftsynchronisation — that is, all agents can agree on when
rendezvous attempts should be made, however, this syrishtimm may be noisy. A third assumption is that all agent&ha
the same landmark set cardinality — they all attempt rendegwver the same number of landmarks (even if they are not
using identically the same landmarks in their sets). Fndllis assumed that all agents are performing the same &ask,

using the same rendezvous strategies.

4.2 Landmark Selection Algorithms

Looking to biology, some simple algorithms for related deshs are observed. One common strategy has one agent (e.g., a
child lost at the zoo) wait to be found while other agents.(elgsperate parents) cover the space, performing seanchihér
equally naive but much less common strategy has agents méam landmark to landmark randomly until a rendezvous
occurs.

We have developed two main classes of algorithm: detertigrand probabilistic. The deterministic class of algarith
creates a list of all possible combination of landmarks gretgies the order in which the landmarks should be visitéoeré
is no random aspectto the landmark visit sequence, andthertde algorithms will generate the same sequence of larkim
visits for a given landmark set. The probabilistic classigbathm does not generate arpriori ordering of landmarks, but

simply generates probabilities for landmarks being visaeany proposed rendezvous.

4.2.1 Deterministic Algorithms

e Sequential- One agent picks a landmark and waits there for the othertaghith visits every landmark in turn. If the

10



second agent has visited every landmark without encoungténie first agent, the first agent moves to another landmark

it has not yet visited.

The active agent cycles through all its landmarks, befar@méng to the beginning of the set. The passive agent resnain
at a landmark for: cycles, wheres is the size of the landmark set, before moving to the nextrizar#t. This generates a list
of all pair-wise combinations of landmarks, sorted by distiveness. This strategy gives the agents asymmetris vait&y
respect to one another. The extension from a single paireritago an arbitrary number of agents can be easily acconeplis

by evenly dividing the agents into two classes of active aagbjve agents.

e Smart-sequential- Each pairwise combination of landmarks known to a robossgned a “goodness” value. This
value is the product of the distinctiveness of the pair. T$teof landmark pairs is sorted by this product, and one side
of each pair is discarded, leaving an ordered listdfandmarks from a set af. The robot then visits the landmarks in

this order.

The smart-sequential strategy takes into account thetfatthie landmarks may be mis-ordered across agents: tioatds,
agent’s sorted list will not quite match the other’s, and the relative mis-orderings are likely to be small (thatdege list
can be regarded as an almost-sorted version of the otheg.lafldmark orderings can be thought of as being “perturbed”
rather than grossly misordered across agents. Conseguiemtiay make more sense to revisit highly distinct landnsark
long before considering landmarks with relatively low @fistiveness. This leads to an increased probability of mgetven
with substantial asynchrony between agents, or with higlhed landmarks that are unique to one agent. The smareségu

method is tantamountto guessing where the other robot rhgtgiven relatively similar, but notidentical, landmaakkings.

4.2.2 Probabilistic Algorithms

The probabilistic algorithms use different probabilitynfttions to accommodate different parameters of the prolsieate.
The landmarks are sorted with respect to their distincégsrand then assigned a likelihood of visitagigrior landmark: as
a function of its rank in the sorted list, i.gy, = f(i). The algorithm probabilistically selects a landmark tatyissingp; for

each landmark. For example,

¢ Exponential — The likelihood of visiting the — ¢k best landmark is< €. This function has the effect of emphasising

the relatively highly distinct landmarks, at the cost ofdamarks with relative low distinctiveness.

¢ Random- On each attempted visit, each robot selects a landmarkdbra and goes there.

The particular exponential function used in the simulatioms

11



P = pen(Pi=P (10)

. .25log(.001/Dy) 11)
Dh

where D; is the distinctiveness of landmatkand P; is the probability of visiting that landmarkp is a normalisation
constant to ensure that the probabilities for the landmatlsem to 1.0, and is a user-definable decay constant for tuning

the exponential function response. The constants in tteegrifae were chosen empirically.

4.3 Analytical Results

We can make an analytical assessment of the bounds on tieemparfce of the deterministic rendezvous algorithms, coetpa
to the random algorithm baseline. We examine the performafnthe algorithms in the limit of high heterogeneity andssi
¢ = 1, such that no common ordering between agents of the sammé&aks can be reliably determined. The first assessment
is the algorithmic time complexity, i.e., the expected timeendezvous, for the three algorithms in the limitho£ 1. For a
landmark set of size, the failure probability of any single, random rendezvotisrapt iS Py success fur = "T—l and if the
asynchrony rate is accounted for, then the failure proigbises t0 P success fut = "T‘lj.

These facts give rise to table 1. The first column refers ta#se in which both robots having the same set of landmarks.
The second column considers the scenario where the robgt&ihto get to the appointed landmark at the same time (or fai
to notice one another). This probability is the asynchrgny,he third column deals with the case whdref each robot's:

landmarks are not in the other robot’s landmark set.

Algorithm | Simple Async. < 100% Comm.
Random 1092(1n_21) logQ(n—fi)Hogw zogQ(Znn_dl)
Sequential n/2 Z 4 jTeE7 L %logl%
Smart-seq. n n + j1o87 ny dist

Table 1: Expected case behaviour. The columns denote the idegltbasease where the asynchrgny: 0 and the case where the landmark sets
are not identical, but each agent klason-common landmarks.

In the deterministic sequential algorithm, the expecteatof the simplest case (identical landmark sets, no asgnghr
is very straightforward. One agent sits at a landmark, aedother agent visits every landmark in turn until they meet —
on average:/2 landmarks. However, in the presence of asynchrony, additisweeps of alk landmarks will have to be
performed. To find the expected numblesuch additional sweeps, we usé = j* noting that each extra sweepf & will
reduce the probability of failure, andsuch sweeps must reduce the probability of failure to 50%wsTbn averagg‘%

sweeps during the rendezvous will fail due to asynchronyil&ily, for non-identical landmark sets, additional sywe®fn

12



=1

landmarks will have to be performed on aver@’ég % times.

5 Numerical Simulation

Unfortunately, the analytical description of the algamith given above does not provide a realistic picture of theptmor-
mance of the algorithms, as this bound will rarely, if eves,ditained in practice. The agent differenaewill likely not
be extremal. Therefore, more useful than the analysis ifithie of high noise is the performance of the algorithm under
conditions of worsening noise, especially under differsonditions of disjoint landmark sets and asynchrony. Weetioee

use a numerical analysis technique to examine the algodititer a range of conditions.

5.1 Experiment Design

Two agents were modelled as having already explored an wnkiaoea, and having collected a setrofandmarks. The
distinctiveness values of the ordered landmarks were géewith a functionf (z) wherez was the landmark index:(z)
was a linear function for the results given here, althoudteofunctions were examined. Random ncisas developed in
equation 9 was then applied to the two sets. The appropeaigervous strategy was then used to generate a sequence of
landmarks for the two agents, with a maximum lengtmdf The sequences were terminated at the first position with the
same landmark, and the running time was considered to benigeh of the sequences.

The landmark set is generated by a distinctiveness disiibunodel 7'(¢), with a range of valuegp, max(F(7)]. The

noise was then modelled as a percentagéfull scale:

D; = F(i) + Random(0 : 6 - max F(i)) 12)

The random function was a uniform random function in the 0g 4 - max F'(1)]. The distinctiveness valugs; were
then re-normalised into the rangenz (F'(z)).

We use the time to successful rendezvous as a measure ofjthrérah’s success. The length of the sub-sequences until
rendezvous is used as a measure of time until successfzeads. Again, without noise, the deterministic algorigh{®e-
quential and smart-sequential) are guaranteed to gersEqieences of length one, that is, meet on the first try. Byrgéing
a sequence for each algorithm under different conditioresy{ngd, the asynchrony, and the landmark set commonality,
we can measure the time to rendezvous under the varioustimoredi

It should be noted that the parameter space of this problenbistantial, and therefore not all aspects of the problera we

explored. Only the more relevant and interesting aspedtsoproblem space are presented here.
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5.2 Experimental Results

Each trial determined the number of rendezvous attempiggmations, needed to achieve rendezvous under diffe@mdie
tions. Measurements were taken at 14 value§ efhere each measurement was made 1000 times; these 109@ave a

mean number of iterations to rendezvous for a particulasrittgm and a particular value of

5.3 Base case: Time as a function of Noise
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/ Sequentiak
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100} / Exponentiah-- |
/ Random.—
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Figure 2: Baseline Performance - Time to Rendezvous as a functiorosfaNevel

The baseline simulation shows the performance of four #@lguos in the face of increasing noise. The size of the lanérseair

is 50 landmarks, asynchropyis 0, and the landmark sets have 100% commonality. The fgarithms are the deterministic
sequential and smart-sequential algorithms, and weightelolabilistic distributions with exponential and lineaopability
functions. Figure 2 shows that the sequential algorithmhés hiest performer, especially in the face of high noise, (i.e.
4 > 0.2) , which concurs with the analytical result. Clearly, expotial is a very fragile rendezvous scheduling function,

failing catastrophically with noisé, > 0.2.

5.4 50 % Asynchrony

In the face of asynchrony, however, the algorithms exhésslintuitive behaviour. Asynchrony, again, is the prolitstbi
that a particular rendezvous at a mutually agreed placeiaradctually occurs. The simulation (which created landmar
sequences) implemented asynchrony as the probabilityatpatticular sequence element could be used. Even if thepair
landmark sequences contained the same landmark at idgugitions, the sequence may not have terminated therapisec
the asynchrony probability prevented the first pair of matghandmarks in sequence from being compared, as if thetsobo
had failed to rendezvous successfully despite attempinptso at the same location at the same time.

Figure 3 shows the performance of the algorithms given a 569fichrony rate, or a 50% probability of successfully
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Noise vs. Time, 50% Asynchrony Rate
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Figure 3: Performance with 50% Asynchrony rate

making a rendezvous. In this case, the smart-sequentiabgpohential algorithms out-perform the sequential sgate
because the sequential form suffers from having to visityee¢her landmark before being able to return to the landmark
that failed on a particular iteration, whereas the other algwrithms can return to landmarks relatively quickly. Hwer,
once noise dominates the values ;X 0.5) the sequential algorithm outperforms the other algorghracause it does not rely

heavily on particular landmark values — it is not returninghe same landmark over and over again.

5.5 80 % Asynchrony

300

Noise vs. Time, 80% Asynchrony Rate
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Figure 4: Performance with 80% Asynchrony rate

Even more interesting in the case of very high (80%) asynohiéigure 4 shows that the exponential probabilistic figrct
outperforms the deterministic algorithms in the face of lowise (.5 < § < 0.25), but again fails rapidly in the case of high
noise § > 0.25). The exponential algorithm essentially forces the robaeturn to the same landmark over and over again,
which is the correct strategy when asynchrony is high. H@rewvhen noise is high, the odds that the recurrent landnsark i

the wrong one increase, and the deterministic algorithnhéclndo not return to the same landmark as often, perfornebett
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5.6 75 % Landmark Commonality

200 Noise vs. Time, 50% Asynchrony, Non-identical Landmark Sets
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Figure 5: Performance with non-identical landmark sets, and 50%nakyony rate

Finally, Figure 5 shows performance for maps with only 75%heflandmarks in common and 50% asynchrony. The perfor-
mance with non-identical landmark sets (akin to non-isgrhimrmaps) is very similar to performance under low- to mediu
asynchrony. The smart-sequential algorithm performsebetith low noise because it can return to landmarks fasin th
sequential, but in the case of high noigex 0.35), returning to landmarks too frequently can be costly, dredgequential

algorithm again dominates.

5.7 Experimental conclusions

The sequential strategy is simple and relatively immunetser noise because it does not rely heavily on the relaivieimgs

of landmarks. However, it is sensitive to asynchrony. If tihve robots have the same ordered landmark sets but sufier fro
synchronisation problems and hence miss meetings at coiyraelected landmarlg rendezvous attempts must occur before
an identical pair of landmarks occurs in the visit sequence.

Smart-sequential has its domain of superiority where thenadifferences (e.g. noise) are low, but not negligible, or
where the landmark sets are not identical. Although it isaaptobabilistic strategy as such, it essentially groupdnaarks
together into types of high probability through low prolagiin attempt to “guess” where the other agent(s) might®mart-
sequential also does not perform well under conditions giilmoise or high asynchrony. It suffers under conditionsighh
noise, because it relies upon a reasonable, if not 100% ateckmowledge of the distinctiveness surface; as noiseaysshe
accuracy of that measurement process, the estimates baeat &nowledge become poorer.

The exponential algorithm proves to have a surprising domgsuperiority in the low-noise, high-asynchrony case éWh
a rendezvous fails due to simply a missed attempt, the oplieteaviour is to retry the attempt regularly; it is this beioarr

the exponential algorithm excels at.
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6 Physically-based Simulation

Although the numerical analysis of section 5 encapsulataghaber of practical issues with parameters such as sensa,no
our analysis did not address the problems of space. We treraéxt simulate mobile robots in a two-dimensional em4ro
ment. These experiments have two goals; the first is to déterthe behaviour of the various rendezvous algorithms unde
different experimental conditions. The second goal is teiheine the speed-up of the exploration of two robots petfng

rendezvous, when compared with a single robot.

6.1 Experimental Method

Figure 6 shows the map used for these experiments The fitsiuits, the baseline algorithm performance. In each sebof 2
trials, one agent was started at the same point every ti@h in Figure 6, and the other agent was put at one of 5 locations,

the circles labelled-5in Figure 6, for 5 trials per location. The trials were conthetfor 15 values od.

T |

[

@]
OA 2

O de

°1

Figure 6: The map for the simulated experiments, with the startingjtmms marked as circles. One agent always started frompdkition labelled
‘A, whereas the other agent started 5 times at each of thitipoes marked with numbers.

The agents are modelled as idealised Nomad 200 robots witacpénoise-free) sensing abilities and odométyhe
agents explore the unknown environment for a pre-detemhiaregth of time; at the end of this length of time the agents
attempt rendezvous. The agents then takextbest landmarks seen so far, and use these for the rendeZgottan. Each
agent is running the same rendezvous algorithm; where guwitims demand asymmetrical agents, the agents are asdsign
roles randomlyab initio.

However, this simplistic description hides several compgsues, the first of which is choosing an appropriate distia-

ness function.

2While we did have the ability to simulate the sonars using aemealistic sonar simulator, it was not exploited in thegeegiments.
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6.1.1 The Distinctiveness Function

Recall from section 3 that we would like a distinctivenesscfion that is smooth, robust, and which has few local exérem
over the exploration space. Our choice of a distinctiveriesstion in the following experiments was inspired by human
experience; we would like the function to peak in wide-opegaa that correspond to large rooms, foyers, etc.

We can measure the “opennesR’,of any pointin the environment simply by summing the raregamed by each sensor:

Riz,y) =Y R(x,y,8) (13)
=1
We measure the asymmetod, of each point by summing the absolute difference of diaiceity-opposed pairs of

sensors. If each pair of sensors measures the same, thesytheatry falls to 0.

n/2

Az, y) = | R(w,y,6:) — R(3,,0ipnp2) | (14)

Combining the openness and the asymmetry gives

64
R;
— = Zn:l (15)
2onmt | Bi = Rigaz |

6.1.2 Landmark Distributions in Space

Ideally, only landmarks which are not mutually visible skibbe kept in the landmark set, otherwise two landmarks (tvhic
are in reality distinctiveness maxima along the trajectongy in fact be very proximal to one another. While this doet n
in principle break the rendezvous process, if the enviramrisdarge, or the area of the environment common to the agent
relatively small, then the time to rendezvous may becomeasuonably large. Since the goal is to have the agents reoggzv
in minimum time, it is undesirable for the agents to spenetinsiting points in the environment that are close together
There are a number of ways of dealing with this problem, faregle using a sensor to test line-of-sight, or actually
travelling between landmarks to test if the line-of-sighttpis clear. Since the task that we are performing is exptarand

an occupancy grid map is available, we use this map to testditnal visibility.

6.1.3 Accurate Peak Measurement

The method described in section 6.1.2 suffices for elimigatnultiple landmarks that are associated with the sametstes
in the distinctiveness surface. However, there still renthe issues of accurately recognising the distinctivepes&s, and

even more importantly, measuring the peak height accyratel
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If the agents share the same trajectories through the emagat, then this issue simply one of sensor differencesh Suc
situation would occur, for instance, if the agents were @yiplg Voronoi diagrams or freeway methods for navigatiorhil/
there will in practice be some positional error across agehis will largely be due to sensor error and can be encapeslil
in the sensor model. However, if the primary task does natli/navigation along mandated trajectories, then it isljik
that the agents will, while capturing the same peaks in therditiveness, have very different perceptions of the titadd the

peaks, as Figure 7 demonstrafes.

2nd Robot’'s Landmark
1st Robot’s Landmark

)
/
L
)
!
v
! )
/ !
;
/

1st Robot Trajectory

/
/
/j\E%

2nd Robot Trajectory

Figure 7: Two agents exploring the distinctiveness surface. Bezatithe nature of the exploration algorithm, one agent sdsectly over top
of the peak, and thus measures its height correctly. The atient passes first to one side, and then the other, retainigghe higher of the two
maximal measurements, never measuring the peak corredttyraaximum height.

In practice, the measurement of landmarks can be refined tigrpeng gradient ascent over the distinctiveness surface
at each potential landmark. This could be done during thérfeark acquisition process, but no longer decouples thegoyim
task (e.g. exploration) from rendezvous. The agents ca#dsit each landmark before rendezvous, but this wouldadd
mechanical complexity to the rendezvous process. For aimoemeent that has many, widely separated landmarks, tHis wi
be unacceptable.

The method chosen for the simulation and real robot experigie to refine the landmarks during the rendezvous process.
This has the advantage that the rendezvous process andytasiaare decoupled as in the previous method, but theiaddit
mechanical complexity is low, as in the first method. The disatage is that the visit sequence must be recomputed in the
majority of cases if a deterministic algorithm is being us@&dirthermore, if the measurements are completely wrorgy, th
measurement may not be corrected until after a substantiaber of iterations.

Figure 8 shows the result of the hill-climbing operation.

3This is, of course, a sampling problem. However, given trevglence of high-frequency information in the distinctiess surface, under-
sampling is inevitable without serious increases in meacomplexity. In the worst case scenario, if the agenéstirally undersample the
distinctiveness surface, they will not only mis-measuee dfistinctiveness peaks, but miss some peaks altogethire Histinctiveness function
is also used for the primary task (as it is in this researcthasonar is used both for the distinctiveness measurerasntgll as generating the
map), the primary task must be aware that rendezvous is lpeirigrmed, and must be willing to relinquish control of iemsors to the landmark
acquisition process. This requires some coupling betweelahdmark acquisition process and the primary task, lutdupling can be eliminated
if necessary by giving the rendezvous process a separagersen
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Figure 8: The result of the landmark refinement process. The greyfiiecles are the initial peak estimates, acquired durirgehploration
process. The white circles are the final positions of thertaadks. The box is the best landmark.
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6.2 Modelling Noise, Landmark Commonality and Asynchrony

In the experiments using the simulation of robot exploratmd rendezvous, a noise teffr, y) was added to every point
in space using the same model as in 5. Modelling the landmamknwonality,d, and asynchrony;, explicitly as in that
section was impractical. The landmark commonality paramista reflection of the degree to which the trajectories ef th
agents overlap; this parameter is a function of the trajeztpnot the inverse. Similarly, the asynchrony is a fumrctdf
environmental and robot characteristics; it is extremdfficdilt to extract the appropriate characteristics frone tingle
parameter.

However, the simulation did model these characteristidgéatly. The landmark commonality parameter was set by
altering the size of the bounded world, and altering the &ff@ved between rendezvous attempts. Asynchrony was teadel
using a radio communication simulator. The simulator hast&ihg mechanism that prevented the robots from movingeo th
next landmark, until both had made a communication reqiasallowing the locking mechanism to operate probabilestic

the parametey could be included in the simulation.

6.2.1 Simulating Rendezvous

The simulation of detecting other robots and achieving ezndus was implemented using simulated radio communitatio
Requests were made by each robot to the radio simulatorhensimulator then determined, based on its knowledge of the
complete map and the current positions of the two simulatedts within the map, whether or not the robots were mutually

visible (line-of-sight), and whether they were in radiogarof one another (13.5 f).

4This number for the radio range was based on the radius ofhtladlesst robot we used, the RWI B12. 13.5m is one hundred Bdeliers.
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6.3 Experimental Results

There were three main experiments performed on the sintiatploration and rendezvous, and each was a variant of a test
of the rendezvous algorithm performance vs. noise. Eachpizint is the average of 25 trials. The trial was terminatetDa

rendezvous attempts if the agents had not achieved rendgbydhen.

6.3.1 Baseline Performance

Figure 9 demonstrates the performance of the 4 main algositin the face of increasing noise. The size of the landmetrk s
is 10 landmarks and asynchrogys 0. In order to have the agents have as close to 100% landroarknonality as possible,
the simulation explored for 600 seconds - this proved to licgent for the agents to have explored almost all of the spac

The four algorithms are sequential, smart-sequential aagtobabilistic functions exponential and random.

100 Noise vs. Time Baseline -- Simulated Exploration
s T ; T G A —

60F ¥

Q o
£
E Iy
40} |
4 Sequentials—
\ Smart Sequentiak-
201 Exponential+- {
Random.

o

50 100 150 200 250 300 350 400 450 500
Noise

Figure 9: Baseline Performance - Time to Rendezvous as a functioroigeNevels = [0,500].

At the highest noise level in Figure 9, the noise is 80% of tighést noise-free peak in the environment; however, aertai

algorithmic characteristics manifest themselves. Fomgla, sequential continues to out-perform all other athars.

6.3.2 Disjoint Exploration Areas

This is the second of the three experiments performed ubigimulated exploration and rendezvous for the explicGea
disjoint landmark sets, representing areas of the enviesmmxplored by only one agent.

Figure 10 shows an example of the exploration carried outMaydgents in this environment. Clearly, the two agents
have explored the majority of the environment, and yet thexlapping areas of their trajectories is fairly minimal.igfs the
first experiment where the speed-up of the algorithms cam&ted; the results of the speed-up of the algorithms willnbe i
section 6.4.

Figure 11 demonstrates the performance of the rendezvgasthins in the face of both increasing noise and incomplete

exploration. The size of the landmark set is 10 landmarkssaydchrony; is O.
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(a) First agent’s trajectory (b) Second agent’s trajectory

Figure 10: Two example trajectories through a larger space. Theadricidicate landmarks. Notice that the rendezvous occatreckessfully, even
though a large part of the trajectories were unique to thetge
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Figure 11: Non-ldentical Landmark sets - Time to Rendezvous as aifumof Noise-level, Low Noisé = [0, 50].

Notice that smart-sequential is no longer the best alguoriteven in this low noise region of the parameter space. The
ability of the smart-sequential algorithm to guess the tioceof the other agentis damaged by the incomplete knove ¢llat

results from disjoint landmark sets.

6.3.3 Asynchrony

In this final experiment, we tested the ability of the agentehdezvous under conditions where the robots would sameti
fail to meet successfully, even when at the same location. aWeparticularly interested in the low-noise region of the
parameter space, as the numerical analysis indicatedtaa&xponential algorithms performed best under these tionsli
As Figure 12 indicates, the superior performance of thetststic algorithms is present in the spatial simulation.

Focussing further on the region wherés small, the exponential algorithm should be the fastesxrected. The explo-
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Time To Rendezvous vs. Sonar Error - 80% Asynchrony, Low Noise
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Figure 12: 80% Asynchrony - Time to Rendezvous as a function of Nagsel| Noise5 = [0, 100].

ration suffers only from missed meetings - both agents shbale chosen the same landmarks. Since this algorithm will
revisit the best landmark more often than any other algarjtih has the best chance of overcoming the asynchrony proble

However, once any noise is present in the system, this #hgofails rapidly.

6.4 Multi-Agent Exploration

Of particular interest in this experiment is the ability tbe rendezvous algorithm to overcome the communicatidricgsn
and yet maintain the increase in speed that multiple-aggbutics promises. We would like to demonstrate a significant
increase in exploration speed, even accounting for the tiimendezvous.

As our metric for measuring speed increase in exploratiaused the change in mapping spete; %, whereA is the
percentage of the environment that has been mapped, éthe time to complete the mapping.

Since the experiment was constructed so that the occupaidaygtched the size of the bounded environment, we use the
number of cells in the occupancy grid that contained infdiomaof any kind (occupied or not) as our measure of the size of
the mapped environment.

The increase in speed of the mapping process is then givegbgtién 18,

AS = Scombined - Ssingle (16)
Ssingle
Ac _ As
T, T,
I i an
Te
AT
= map— 18
AT 18)

We take the area of a single ageat, to be the area explored by the active agent, and the time aiitigde agent . to be

the time allowed for the exploration process alone. The doatbareaA. is the explored area of the merged maps, and the
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combined time]. is the time to explore7, added to the time to rendezvods,so thatl. = T, + 7T,.

Once the maps from the two agents are merged, it is then pessitletermine how much of the environment was explored
by the two agents together, giving the increase in explgreed, comparedto the efforts of a single agent. Recall et @ata
point in the preceding graphs represents the mean of 25.tfi&lle increase in explored areas over all 25 trials was amuirmi
of 42.8%, and on average 49.4%. If the agents were capableimg their maps immediately after the exploration phase,
thenT,. = T, and the increase in area is exactly equal to the increageeieds However, this ideal situation is equivalent to
total communication, and is not realistic.

There are two possible ways to interpret the exploratioredpesults: the first treats each exploration iteration @md r
dezvous iteration as a single time increment, as if travglthrough a graph where each arc is of time-length 1,’Bni
simply the number of rendezvous iterations.

Table 2 shows the speed increase in the algorithms in thermdse case, using this graph-like model of the exploration
process. Each datum is the average of 25 trials; if the adeitesl to meet (e.g. due to the exponential algorithm), tten

change in mapping speefl,S was set to 1.0.

Algorithm % Speed Increase
Sequential 49.1%
Smart-Sequentia| 38.1%
Exponential 21.1%
Random 46.7 %

Table 22 The speed increase using the graph-like model of the wiorlthe zero-noise case. Each numberis the average of 24 trial

Only the exploration speed of the exponential algorithm wisously degraded by the rendezvous process. Figure 13

shows the change in exploration speed as the noise is imtteas

Percent Increase in Mapping Speed vs. Sensor Noise
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Figure 13: Increase in exploration speed as a function of noise. Bnmient modelled as a graph.

Characteristically, sequential performed extremely voekr the majority of the noise range; smart-sequential didl w
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in the low-noise range, however once the noise began to ddenthe measurements, smart-sequential’s performance was
considerably degraded. These results reassuringly conatdon a general level the numerical and simulation reskntfact,
figure 13 is compelling support for multiple-agent roboticgyeneral; an increase of speed of up to 50% in the explaratio

task is still available. It is a problem for future work to sithat this increase in speed is possible in general.

7 Rendezvous using Real Robots

All of the prior simulation experiments assumed the siniafasensors were ideal; noise was explicitly applied in otde
approximate real sensors. Odometric error was assumed nedigible. Issues of path-planning were simplified to\allo
the robots to pass through each other in space, rather thiasting time in allowing the simulated agents to detect edicér
during the exploration stage. These are all assumptiomateanot valid once a real robot is being used. We therefarset

a proof of concept, that, in fact, the rendezvous method ssibée and useful on real robots.

7.1 Experimental Method

In this final experiment, we examine the feasibility of ourdezvous strategy on a pair of actual robots in our laboyatdre
experiment was conducted using two mobile robots, a Nom&diad an RWI B-12. Both robots are essentially cylindrical,
and quasi-holonomic, in that they are capable of turning @ftradius. The Nomad 200 is 50cm in diameter, and has 16 sonar
transducers equally separateddy5°. The RWI B-12 is 27cm in diameter, and has 12 sonar transdweegrally separated
by 30°. Although the Nomad 200 has an onboard 486 processor ruuming, all computation was performed off-board, on
two SGI Indigo platforms, and a Pentium platform. The comioation between the robots and their controlling platforms
was wireless.

Figure 14 show the robots moving through the maze in the &bor. The right panel of the figure shows the robots
standing next to each other, having made a successfullgrods.

The experiment was held in a laboratory space measuring®d®9c840cm. The walls were free-standing corrugated
plastic, 60cm high, taped together for structural intggeind stood off the floor with angle-brackets, measuringri@mng.

The total wall length, including bounding walls, was 50.4m.
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Figure 14: The robots exploring the maze, and then making a rendezvous
7.1.1 Sonar sensors

The sensor that was used throughout these experiments eastfar sensor, which is a range sensor only. Consequently,
all our distinctiveness function candidates relied upargeainformation only. The maximum range of the roBdss8m for

the Nomad, and 13m for the RWI. The range precisiott&54cm for the Nomad, an#t1.07cm for the RWI. By using the
sonar to measure the distance to obstacles around it, tioe¢ cab acquire a metric map of its environment. There do exist
more sophisticated sonar models such as developed by KifeanthKuc (Kleeman and Kuc, 1994), Wilkes (Wilkes et al.,
1991), Borenstein (Borenstein et al., 1996) and Lacroix Bndek (Lacroix and Dudek, 1997) that can recognise and deal
appropriately with sonar artefacts in our model. Howevar,simple model of the sonar pulses, combined with some simpl
outlier handing, is sufficient for the limited purposes of eperiments; a more sophisticated sonar model would be mor

appropriate for long-term exploration and environment eilliag.

7.2 Experimental Results

7.2.1 Trajectory

Figure 15 shows the trajectories of the robots moving thicthg maze. The RWI B-12’s trajectory is shown in the left pane
and the Nomad 200's trajectory is shown in the right paneshthuld be emphasised that the maps were overlaid by hand
for clarity, and the robots had no embedded knowledge ofdlieut of environment. Also overlaid on the images are the

landmark positions that were chosen by the robots for revmlez

5Assuming speed of sound at 330 m/s.
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(a) Nomad 200 trajectory (b) RWI B-12 trajectory

Figure 15: The landmark selections of the two robots overlaid on thejectories. The triangles represent points where thetsobonsidered
potential landmarks. The ranking of the landmarks in the far@dmark set is shown as well.

The trajectories consist of collections of points, sepatdty large areas of space. These “islands” of points wesare
of the environment explored using local potential field dggcOnce a local potential minimum had been reached, that rob
used breadth-first search to find a new area that was knowndtebe yet low in potential (i.e., seen but unexplored).

Although gradient ascent was used in the simulations, it medisised in these experiments due to the small size of the
environment. Notice that the Nomad chose a point in the uppeidor as its best rendezvous location, whereas the RWI

chose a point in the inner maze. This is no doubt due to seiifferetices between the two robots.

7.2.2 Rendezvous

This single experiment provides the clearest support foerapproach, in demonstrating a need for establishing sompmap
priate behaviour if the initial rendezvous attempt is urtassful. As Figure 15 indicates, the two robots did not ckdbe
same point in the environment for the best rendezvous lmealihe robots made a successful rendezvous on the 4th attemp
among the three landmarks, since they were using the seglumethod of exploration.

Finally, Figure 16 shows that the maps were merged. The magimgewas performed manually. Although algorithms
exist to merge maps gathered by heterogeneous agentk@sttial., 1993), that problem is not the focus of the presemkw

The most important conclusion that was drawn from the expenit using the real robot is that the methodology we have
chosen for achieving rendezvous is practical. The facttiratrobots failed to meet on the first iteration of the rendezv
cycle is a very convincing piece of evidence that the rendegproblem is substantially more complex than simply civaps

a place to meet in the environment.
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Figure 16: The final map created from the merged data acquired by thediats.

8 Conclusion

In this work, we have described the new problem of perfornmerglezvous between multiple mobile agents. The objedive i
to overcome practical communication limits by periodigdlhving the agents converge and share information. In tlis-m
ner, we increase the speed of operation of the multiple repstem compared to the single robot system, while elintigati
the traditional assumption of infinite range, full bandwidommunication between agents. We are specifically irttsign
multiple-robot exploration of an unknown environment wlieommunication is limited to short-range line of sight. ther-
more, we developed a methodology that does not depend oraatigutar task such as exploration, is trajectory indegemd
and does not require any memory-intensive spatial reptatens. Although our implementation does take advantégest-
ric information that is provided by the exploration algbrit, our rendezvous methodology can be decoupled compfetety
the underlying primary task.

We divided the rendezvous problem into two separate sullgnmoh The first is determining what points in the environment
constitute good rendezvous locations|ardmarks We addressed this problem by modelling the environmentfasction
of the sensors; this function gave rise to a distinctiverssface, defined over the domain of the environment. We then
chose landmarks at the local extrema of the surface, lighiar knowledge of the surface only to those points that thentsg
have visited. Which points the robot visited was dictatedthy trajectory prescribed by the underlying task, and so we
demonstrated how to overcome these trajectory dependencie

Our use of distinctive locations as landmarks is relatecheéogsychology of human attentive vision and, in particular,

to the selection of targets for pre-attentive vision. Alilgb we have used only a sonar range-sensor throughout thiks wo
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it is easily extended to other sensor modalities, such apatenvision. For example, the notion of using distinctiess to
define domain-independent features has been employedtmhriavigation (Sim and Dudek, 1998). Of course, the pastic
distinctiveness metric is a function of the sensor modatitg distinctiveness measure used in this paper is eagilgaed
with a camera-specific measure without loss of generality.

While the problem of rendezvous reduces, in the idealised,aanly to the task of choosing the best point in the environ-
ment to which the robots should converge, this is in fact apjmopriate idealisation. In the formalisation of this fplem,
we identified 3 key parameters that characterise the prabl& showed that a number of different points in the environ-
ment must be chosen for meetings, and these points mustiteehirs some intelligent manner for rendezvous to be aclieve
reliably. These parameters we have caledsor noisanap commonalityandasynchrony

This problem of which appropriate behaviourto use in chog#ie landmarks to visit is the second of the two subproblems
of rendezvous. We proposed two main classes of algoritdateyministicandprobabilistic, and gave examples of each class
of algorithm. In order to determine the characteristicshaf slgorithms, we gave a closed-form analysis of the worst- a
expected-case complexity of the algorithms at points irprameter space. This closed-form analysis was complemiegt
a numerical description of the performance of the algorgtaha range of points in the parameter space.

Finally, we demonstrated the rendezvous algorithm in usle incsimulation and on physical robots. The simulationgest
were used as a confirmation of the numerical results. Witierctass of deterministic algorithms, there were differegtons
that favoured different algorithms. These results wereficmed by both analytic closed-form solutions of section B¢ a
idealised numerical simulations of section 5. The physigpkeriments served as a proof of concept for the exploratih
rendezvous algorithms, and we concluded with a map of an@nwvient that resulted from the collaborative exploratiod a
subsequent successful rendezvous within our laboratary@fobots.

An interesting conclusion from these results is that, depenon a combination of these confounding factors, noegsat
is canonically a good or bad choice - under the correct cistances, a heretofore poor choice of algorithm can outparfo
the erstwhile winner. The exponential algorithm, while gelly a poor choice, will outperform the other algorithmbhem
asynchrony is a problem but sensor noise is not. It may beehexyvthat determining the true operating conditions igi-suf
ciently difficult that smart-sequential is usually the belsbice. Further experiments in realistic robot situati@seeded to
be able to tell how difficult it is to determine the operatirgnditions.

The physically-based simulation demonstrated that, aihdgt is much harder to isolate the parameters in a physétees,
many of the main conclusions were upheld, despite sevemapbbcating factors that were not part of the numerical sitioh.
Furthermore, the physically-based simulation demoredr#fiat an increase of speed is still attainable with a maltipbot

system using the rendezvous approach to communication.
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Finally, the experiments using physical robots gave a cdingedemonstration that the rendezvous algorithms are an
essential part of the rendezvous process; the assumpéothin robots will meet on the first iteration is simply untelea
Despite very similar sensors and configurations, and a hegred of overlap between the agents, the robots required 4
rendezvous iterations before they could successfully megshare information.

Only a small number of rendezvous algorithms were consiifrethis work. There is a body of literature on online
search methods, of which rendezvous is a subclass. Algwsithat were not considered here may have particular uiility
different regions of the problem space.

Of the analysis presented in this work, only limited buticat parts of the parameter space were examined. Further
examination is necessary for examining the behaviour ofaiigerithms under conditions of worsening noise, worsening
asynchrony, and perhaps most importantly, conditions ditaark commonality. It is likely that as time passes, thasre
explored by the agents will overlap more and more; analysth® performance of the algorithms under these conditions
would be useful.

One open problem is the ability of the agents to choose theappte rendezvous algorithm. A major part of this problem
is allowing the agents to estimate the environmental patersieand identify the correct portion of the parameter sghat
identifies the environment. At no time did the agents attetrmpstimate the experimental parameters; the agents did not
use any environmental information in the algorithms. Aliogvthe agent to vary the parameters, such as constants in the
stochastic algorithms, as rendezvous succeeds or failshaae considerable power. It may also be interesting tositiyate
stochastic estimates of performance for the rendezvousitdms.

The only consideration used by the algorithms for choosihgtvlandmark to visit was the distinctiveness of the land-
mark. Given the sometimes substantial mechanical conplekiravelling between two landmarks, a better algorithiwwd
consider the mechanical complexity of visiting landmanksaddition to its distinctiveness, so that of two landmarlth w
similar distinctiveness, the closer landmark would betedbfirst.

Finally, although we have dealt primarily with two-agenst®ms, the work is in principle easily extended to larger col
lections of agents, or swarms. The probabilistic algorghare symmetric across agents, and therefore adding nevisdgen
trivial. The deterministic algorithms can be extended tgéa swarms, simply by dividing the swarms into pairs. Hoarev
implicit in large robot swarms are complex issues of tasksiim and interference, and so it is no way clear that the same
kind of speedups that are observed for two-agent collextivié be observed for larger collectives. There may alsortelli-
gent ways to use larger collectives to avoid long-distaraest by transmitting information from agent to agent oveveyal
scheduled rendezvous. Further experiments are requiréetesmine how information propagation affects the speddsk

completion.
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