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Abstract. This essay provides a short introduction to the theme of the
workshop.

1. Introduction

Section 2 presents classical homological algebra in general algebraic terms.
The classes of projective modules, injective modules, and flat modules are de-
fined, and the first two are used to introduce the derived functors Ext`(−,−)
and Tor`(−,−). Furthermore, homological characterizations of semisimple
rings and of von Neumann regular rings are presented. The Gorenstein
homological algebra, an important relative version of the classical homolog-
ical algebra, is mentioned. So is a cotorsion theory based on vanishing of
Ext1(−,−). Finally, we present hyperhomological algebra which is a power-
ful extension of the classical homological algebra.

Section 3 lists homological characterizations of selected classes of commu-
tative Noetherian rings: Dedekind rings, regular local rings, regular rings,
Gorenstein local rings, Cohen–Macaulay local rings, and local complete in-
tersections. Furthermore, classical and newer applications of these are pre-
sented. Although the rings above are introduced using classical algebraic
terminology, the proofs of many of the results use the homological charac-
terizations: Often no classical proofs are known! Betti numbers are impor-
tant invariants throughout; over a polynomial ring over a field they yield the
famous Castelnuovo–Mumford Regularity which is briefly recalled. When a
polynomial ring over a field is equipped with a suitable ordering of the mono-
mials, each ideal induces an initial ideal which is generated by monomials;
we mention some results concerning the transition of homological conditions
to an ideal from its initial ideal. Finally, Grothendieck’s local cohomology
modules are presented, and Hartshorne’s concept of cofiniteness of a module
with respect to an ideal is mentioned.
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2. Homological algebra

The title of this section is that of the September 1953 manuscript by
Henri Cartan and Samuel Eilenberg. It was published as a book in 1956 by
Princeton University Press, and the thirteenth printing [8] of it appeared in
1999 in the series “Princeton Landmarks in Mathematics and Physics”. The
book provides the foundations for homological algebra which yields a very
powerful theory of functors between categories of modules over associative
rings.

(2.1) Functors. To give examples, let R be an associative ring and let M
and N be R–modules. In this essay, rings have always a multiplicative unit,
and all modules are unitary left modules. The set HomR(M,N) of R–ho-
momorphisms is an abelian group, and the assignment N 7→ HomR(M,N)
induces a covariant functor HomR(M,−) from the category of R–modules
to that of abelian groups. That is, for any R–homomorphism ϕ : N → N ′

there is an induced group homomorphism

ϕ∗

def
= HomR(M,ϕ) : HomR(M,N) → HomR(M,N ′), µ 7→ ϕµ .

This is such that (ϕ′ϕ)∗ = (ϕ′)∗ϕ∗, if ϕ′ : N ′ → N ′′ is also an R–
homomorphism, and with (1N )∗ = 1HomR(M,N) for the identity on N .

On the other hand, the assignment M 7→ HomR(M,N) induces a con-
travariant functor HomR(−, N) from the category of R–modules to that of
abelian groups: for any R–homomorphism ψ : M →M ′ there is an induced
group homomorphism

ψ∗ def
= HomR(ψ,N) : HomR(M ′, N) → HomR(M,N), µ′ 7→ µ′ψ ;

if, furthermore, ψ′ : M ′ → M ′′ is an R–homomorphism, then (ψ′ψ)∗ =
ψ∗(ψ′)∗; and the equality (1M )∗ = 1HomR(M,N) holds.

It turns out that HomR(−,−) is a functor in two variables, contravariant
in the first and covariant in the second.

(2.2) Projectivity. An R–module P is said to be projective, if the functor
HomR(P,−) takes surjective R–homomorphisms into surjective group ho-
momorphisms. If P is a free R–module (that is, admits a basis over R) then
P is projective, and thus their are sufficiently many projective modules: To
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every R–module M there exists a projective R–module P and a surjective R–
homomorphism π : P → M . As a consequence, every R–module M admits
a projective resolution, that is, a sequence of R–homomorphisms

P. = · · · → P`+1
∂`+1
−→ P`

∂`−→ P`−1
∂`−1
−→ · · ·

∂2−→ P1
∂1−→ P0 → O

together with an R–homomorphism ∂0 : P0 → M such that the all modules
P` are projective, and such that the augmented sequence

· · · → P`+1
∂`+1
−→ P`

∂`−→ P`−1
∂`−1
−→ · · ·

∂2−→ P1
∂1−→ P0

∂0−→M
∂−1

−→ O

is exact (that is, Im∂` = Ker ∂`−1 for all ` where Im∂` is the image of ∂`

and Ker ∂`−1 is the kernel of ∂`−1 ).

(2.3) Injectivity. By reversing arrows in the theory of projective modules
one obtains that of injective modules: An R–module N is said to be in-
jective exactly when the functor HomR(−, N) takes injective R–homomor-
phisms into surjective group homomorphisms. The Z–modules Q and Q/Z
are injective.

Let R◦ be the opposite ring of R, that is, it has same additive group as
R, and its multiplication is given by (r, r ′) 7→ r′r. Let P is an R◦–module1.
The abelian group HomZ(P,Q/Z) is then an R–module, and the following
hold.

(2.3.1) P projective over R◦ =⇒ HomZ(P,Q/Z) injective over R .

This results from the (so-called) Swap Isomorphism:

HomR(−,HomZ(P,Q/Z))
∼=
→ HomR◦(P,HomZ(−,Q/Z))(2.3.2)

ϕ 7→
(
p 7→ (x 7→

(
ϕ(x)

)
(p)

)
.defined by

It follows that their are sufficiently many injective modules: To every
R–module M there exists an injective R–module I and an injective R–
homomorphism ι : M → I, and this, in turn, yields that every R–module M
admits an injective resolution, that is, a sequence

I. = O → I0 ∂0

−→ I1 → · · · → I` ∂`

−→ I`+1 ∂`+1

−→ · · ·

of injective modules together with an R–homomorphism ∂−1 : M → I0 yield-
ing an exact augmented sequence:

O →M
∂−1

−→ I0 ∂0

−→ I1 → · · · → I` ∂`

−→ I`+1 ∂`+1

−→ · · · .

1 Some refer to this situation as P being a right R–module.
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(2.4) Derived functors. Any projective resolution P. of an R–module M ,
confer above, induces for any R–module N a sequence of homomorphisms:

HomR(P., N)
def
=

· · · → HomR(P`−1, N)
(∂`)

∗

→ HomR(P`, N)
(∂`+1)∗

→ HomR(P`+1, N) → . . . .

For each `, this yields the ` th right derived functor Ext`
R(−, N) of the functor

HomR(−, N) by taking cohomology:

Ext`R(M,N)
def
= H`(HomR(P., N)) ;

(the latter is the group Ker(∂`+1)
∗/ Im(∂`)

∗ ). Up to canonical isomor-
phism, this does not depend upon the choice of projective resolution, and
Ext`R(−, N) becomes a contravariant functor. For fixed M , it turns out that

also the assignment N 7→ Ext`
R(M,N) can be turned into a covariant func-

tor, and that Ext`
R(−,−) is a functor in two variables, contravariant in the

first and covariant in the second. Furthermore, there is an isomorphism of
functors HomR(−,−) ∼= Ext0R(−,−), and the functor Ext`

R(−,−) vanishes

for all negative `. There is a dual construction of Ext`
R(−,−): For fixed

R–modules M and N , an injective resolution I. of N , and an integer `, set
Ex̃t`

R(M,N) =def H`(HomR(M, I.)). It turns out that also Ex̃t`
R(−,−) is a

functor in two variables and that it is actually isomorphic to the already de-
fined Ext`

R(−,−). The next theorems show that the functor Ext determines
projectivity and injectivity of modules as well as semisimplicity of rings.

(2.5) Projectivity Theorem. For any module M the next are equivalent:

(i) M is projective;

(ii) Ext`
R(M,−) = O for all ` > 0;

(iii) Ext1R(M,−) = O.

(2.6) Injectivity Theorem. For any module N the next are equivalent:

(i) N is injective;

(ii) Ext`
R(−, N) = O for all ` > 0;

(iii) Ext1R(−, N) = O.

(2.7) Semisimplicity Theorem. For any ring R the next are equivalent:

(i) R is semisimple 2;

(ii) every R–module is projective;

(iii) every R–module is injective;

(iv) Ext`
R(−,−) = O for all ` > 0.

2 In the classical sense that every R–module is a direct sum of simple modules.
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(2.8) Tensor products. Let N be an R–module and let M be a module
over the opposite ring R◦. The tensor product M ⊗R N is then an abelian
group generated by symbols m ⊗ n for m ∈ M and n ∈ N subject to the
relations (m+m′)⊗n = m⊗n+m′⊗n, m⊗ (n+n′) = m⊗n+m⊗n′, and
(rm) ⊗ n = m⊗ (rn) for m,m′ ∈ M , n, n′ ∈ N , and r ∈ R. This becomes
a functor in two variables: Whenever ϕ : M →M ′ is an R◦–homomorphism
there is a group homomorphism ϕ⊗ N : M ⊗R N → M ′ ⊗R N well-defined
by m ⊗ n 7→ ϕ(m) ⊗ n, and whenever ψ : N → N ′ is an R–homomorphism
there is a group homomorphism M ⊗ ψ : M ⊗R N →M ⊗R N

′ well-defined
by m⊗ n 7→ m⊗ ψ(n). There is a natural commutativity isomorphism:

(2.8.1) M ⊗R N
∼=
→ N ⊗R◦ M, m⊗ n 7→ n⊗ m,

and a natural adjointness isomorphism:

(2.8.2)

HomZ(M ⊗R N,Q)
∼=
→ HomR◦(M,HomZ(N,Q)), ϕ 7→

(
m 7→ (n 7→ m⊗ n)

)
,

when Q is a Z–module.

(2.9) Torsion functors. The ` th left derived functor TorR
` (M,−) of the

functor M ⊗R − is defined using projective resolutions: TorR
` (M,N) =def

H`(M ⊗R Q.) whenever Q. is a projective resolution of N . For fixed N
this provides a functor TorR

` (−, N), and this induces a functor TorR
` (−,−)

in two variables; the latter turns out to be isomorphic to the one induced
by (M,N) 7→ H`(P. ⊗R N) whenever P. is a projective resolution of the
R◦–module M . Furthermore, the functors −⊗R − and TorR

0 (−,−) are iso-
morphic, and the functor TorR

` (−,−) vanishes for all negative `.

An R–module N is said to be flat whenever the functor −⊗R N is exact.

(2.10) Flatness Theorem. The next are equivalent for any R–module N .

(i) N is flat;

(i’) HomZ(N,Q/Z) is an injective R◦–module;

(ii) TorR
` (−, N) = O for all ` > 0;

(iii) TorR
1 (−, N) = O.

Furthermore, if N is projective, then it is flat.

Concerning the equivalence between (i) and (i’) the following should be
noted; the points of view in (2) and (3) can be important in other categories
than the one of modules.

(1) It results from the isomorphism (2.8.2) with Q = Q/Z.
(2) It yields the last assertion by (2.3.1).
(3) It provides most of the theory of flat modules directly from that of

injective ones.
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(2.11) von Neumann Regularity. The ring R is said to be von Neumann

regular exactly when there to any r ∈ R exists an x ∈ R such that rxr = r.
Fields are von Neumann regular, and so are direct products of von Neumann
regular rings.

(2.12) von Neumann Regularity Theorem. The following are equivalent:

(i) R is von Neumann regular;

(ii) R/a is a projective R–module for all finitely generated ideals a;

(iii) every R–module is flat

(iv) TorR
` (−,−) = O for all ` > 0;

(v) TorR
1 (−,−) = O.

(2.13) Gorenstein projective modules. The class of, for example, projec-
tive R–modules has very nice (so-called) resolving properties, and these are
essential in the usage of this class of modules in the foundation of homologi-
cal algebra. There are other classes of modules with almost as nice resolving
properties. One of these, the class of (so-called) Gorenstein projective R–
modules was introduced by Enochs and Jenda in [10], see also [9] and [18].
It turns out that a non-zero finitely generated module over a Noetherian
commutative ring is G–projective if and only if it has G–dimension zero in
the sense of Auslander [1]. Other references concerning Gorenstein homo-
logical algebra include [4], [19], [20], and [23]. Several talks at the workshop
focused on Gorenstein projective modules and/or Gorenstein injective mod-
ules; the latter ones are defined dually, and they are scrutinized in [12] (in
these proceedings).

(2.14) Cotorsion theories. By saying that R–modules M and N are or-
thogonal exactly when Ext1R(M,N) vanishes, Enochs and Jenda in [11] (in
these proceedings) consider the corresponding cotorsion pairs and study sit-
uations when also higher Ext groups vanish. They also report on results
concerning covers and envelopes associated to cotorsion pairs.

(2.15) Hyperhomological algebra. Some of the talks at the workshop used
a powerful extention of classical homological algebra called hyperhomological

algebra. Its objects are complexes

M. = · · · →M`+1
∂`+1
−→M`

∂`−→M`−1 → · · ·

of R–modules, that is, Im∂`+1 ⊆ Ker ∂` for all `. Each R–module M is
considered as a complex concentrated in degree zero, that is, M0 = M and
M` = O for ` 6= 0. The morphisms ϕ : X → Y are (so-called) chain maps
of degree zero, that is, families ϕ = (ϕ` : X` → Y`)`∈Z of R–homomorphisms
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such that ∂Y
` ϕ` = ϕ`−1∂

X
` . The projective resolutions in classical homologi-

cal algebra are in hyperhomological algebra replaced by (so-called) semipro-
jective resolutions. The left column in the next table describes the formation
in classical homological algebra of the left derived functor L` T (M) of a co-
variant additive functor T applied to an R–module M , and the right column
describes the formation in hyperhomological algebra of the left derived func-
tor LT (M.) of a suitable functor T applied to a complex M. of R–modules.
If M is a module, then L` T (M) is just the ` th homology of LT (M).

Classical homological algebra Hyperhomological algebra

(1) Take projective resolution (1.) Take semiprojective resolution
P. of M ; P. of M.;

(2) apply T to P. to get T (P.); (2.) apply T to P. to get LT (M.).
(3) take ` th homology to get L`(M).

Note that the procedure in classical homological algebra is one step longer
than in hyperhomological algebra, and that information is lost in that step!
The latter represents one the advantages of hyperhomological algebra. The
appendix of [9] is a good reference.

3. Commutative Algebra

Commutative algebra emerged in the late 1800s as part of the founda-
tion of algebraic geometry. Moreover, commutative rings are ubiquitous in
algebraic number theory3. Let R, M , and N be as above, and assume, in
addition, that the ring R is commutative. The abelian groups HomR(M,N)
and M ⊗R N are then R–modules and so are Ext`

R(M,N) and TorR
` (M,N)

for all `.
Assume, furthermore, that the ring R is also Noetherian; this means that

every ideal is finitely generated, and this is tantamount to: every ascending
chain of ideals is ultimately stationary. Under these assumptions, if the R–
modules M and N are both finitely generated, then so are HomR(M,N) and
M ⊗R N as well as Ext`

R(M,N) and TorR
` (M,N) for all `.

(3.1) Assumptions. From now on, all rings are assumed to be commutative

and Noetherian.

(3.2) Dedekind rings. Let the ring R be an integral domain; it is then said
to be Dedekind exactly when every non-zero ideal is the product of prime
ideals. Obviously, any Principal Ideal Domain is a Dedekind ring. The latter
ones also play a crucial role in algebraic number theory, partly due to the
following fact: Let R be a Dedekind ring with K as field of fractions, and let

3 Actually, it seems that the word ring appeared for the first time in 1897 on page 237
in David Hilbert’s Zahlbericht [17] .
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K ′ be a finite field extension of K. The integral closure of D in K ′ is then
a Dedekind ring. There is the following homological characterization.

(3.3) Dedekindness Theorem. The following are equivalent:

(i) R is Dedekind;

(ii) Ext`
R(−,−) = O for i ≥ 2;

(iii) Ext2R(−,−) = O.

(3.4) Krull dimension. The Krull dimension is defined as dimR
def
=

sup{n | there exists a chain p0 ⊂ p1 ⊂ · · · ⊂ pn of prime ideals in R } .

This number might be infinite. If k is a field, the dim k = 0 and, for any
positive integer n, dim k[x1, . . . , xn] = n. If R is a Dedekind ring and not a
field, then dimR = 1. The term “dimension” comes from classical algebraic
geometry: Let V be an affine variety in complex n–space Cn. There is
then an associated ideal I(V ) in Γ(Cn) =def C[x1, . . . , xn], namely the one
consisting exactly of those f ∈ Γ(Cn) with f(Q) = 0 for all Q ∈ V . The ring
of residues Γ(V ) =def Γ(Cn)/I(V ) is the coordinate ring of V . It turns out
that dimΓ(V ) equals the geometrical dimension of V , that is, the maximal
length n of a chain Un ⊂ · · · ⊂ U1 ⊂ U0 of subvarieties of V .

(3.5) Local rings. Let R be a ring. It is said to be local precisely when
it has exactly one maximal ideal m, and in this case we let k denote the
residue field R/m and say that (R,m, k) is a local ring. If p is a prime
ideal in R, then we let Rp denote the ring { r/s | r ∈ R , s ∈ R \ p } of
fractions. This is a local ring called the localization of R; its maximal ideal
is pRp = { p/s | p ∈ p , s ∈ R \ p }.

The term “local” comes from classical algebraic geometry: to any point
P in an affine variety V in complex n–space Cn, there is an associated local
ring OP (V ). Namely, consider the coordinate ring Γ(V ), cf. (3.4), and its
maximal ideal mP (V ) at P , that is,

mP (V )
def
= { f ∈ Γ(Cn) | f(P ) = 0 }/I(V ) .

The local ring OP (V ) of V at P is then the ring of fractions Γ(V )mP (V )

which is local with maximal ideal mP (V )OP (V ).

(3.6) Regular local rings. Let (R,m, k) be a local ring. The (initial) Betti

number of m is defined as

(3.6.1) βR
0 (m)

def
= the minimal number of generators of m .

Krull’s Principal Ideal Theorem yields the inequality dimR ≤ βR
0 (m). The

ring R is said to be a regular exactly when there is equality dimR = βR
0 (m).
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The following hold. If dimR = 0, then R is regular if and only if it is a
field. If dimR = 1, then R is regular if and only if it is a Principal Ideal
Domain. If R is regular then so is the ring R[[X]] of formal power series
(and dimR[[X]] = dimR + 1). If R is regular then it is a domain. For a
point P in an affine variety V as above, then the local ring OP (V ) is regular
if and only if V is non-singular at P (cf. e.g. Theorem I.5.1 in [15] ).

The next two assertions are often referred to as Krull’s Conjectures; the
second one can be found in [21].

• If p is a prime ideal in a regular ring R, then the ring Rp is regular.
• If R is regular, then R is a Unique Factorization Domain.

Concerning the first, note that regularity is defined in terms of a special
property of the maximal ideal m, and that localization at a prime ideal
p 6= m seemingly ruins this property as mRp = Rp . Nevertheless, it holds:
it follows quite easily from the homological characterization (a) below and
is restated as (b) below. The second one also follows from this homological
characterization—after further preparations, cf. e.g. Theorem 2.2.19 in [7];
it is (c) below. The next results are proved by Auslander, Buchsbaum, and
Serre, cf. e.g. Theorem 2.2.7 in [7].

(3.7) Local Regularity Theorem. Let (R,m, k) be a local ring.

(a) The following are equivalent for R.

(i) R is regular;

(ii) Ext`
R(−,−) = O for `� 0;

(iii) Ext`
R(−,−) = O for ` > dimR;

(iv) Ext`
R(k,−) = O for ` > dimR;

(v) ExtdimR+1
R (k, k) = O.

(b) If R is regular, then so is the localization Rp for each prime ideal p.

(c) If R is regular, then R is a Unique Factorization Domain.

(3.8) Regular rings. A ring R, cf. (3.1), is said to be regular exactly when
the localization Rp is a regular local ring for each prime ideal p in R. By
(3.7.b) above this provides an extension of the class of regular local rings.
For the first part of the next result consult Corollary 2.2.20 in [7]. The last
part follows from the Local Regularity Theorem (3.7.a) by localization.

(3.9) Regularity Theorem.

(a) Any regular ring is isomorphic to a finite direct sum of regular domains.

(b) The ring R is regular if and only if for every finitely generated R–module

M the functors Ext`
R(M,−) vanish for `� 0 4.

4 That is, every finitely generated R–module has finite projective dimension.
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(c) The following are equivalent for any ring R with dimR <∞.

(i) R is regular;

(ii) Ext`
R(−,−) = O for `� 0;

(iii) Ext`
R(−,−) = O for ` > dimR;

(iv) ExtdimR+1
R (−,−) = O.

(v) TorR
` (−,−) = O for `� 0;

(vi) TorR
` (−,−) = O for ` > dimR;

(vii) TorR
dimR+1(−,−) = O.

If R is a domain, then it is a Dedekind ring if and only if it is a regular
ring of dimension at most one.

(3.10) Betti numbers. If (R,m, k) is a local ring, M is a finitely generated
R–module, and ` is any integer, then the ` th Betti number βR

` (M) is the

dimension of TorR
` (k,M) considered as a vector space over the field k, and

this number is known to be finite whenever M is finitely generated. The
special case in which ` = 0 and M = m turns out to be the one mentioned
in (3.6.1). It follows from (3.7.a) that the ring R is regular if and only
βR

` (M) = 0 for all ` ≥ dimR and all finitely generated R–modules M .

(3.11) Castelnuovo–Mumford Regularity. Let M be a finitely genera-
ted graded module over S = k[x1, . . . , xn] where k is a field. The local rings
Sq are then regular for all prime ideals q, and the k–module TorS

` (k,M) is
a graded vector space over k; the (`, j) th graded Betti number βS

`j(M) of

M is defined as the dimension of the j th component of TorS
` (k,M). The

Castelnuovo–Mumford regularity regS M is defined by

regS M
def
= sup

{
sup{ j | βS

`j(M) 6= 0 } − ` | `∈ N0

}

In the paper [16] (in these proceedings) Herzog considers a graded ideal a

in S and reports on results concerning regS(an) as a function of n as well as
its behavior for large n.

(3.12) Gorenstein local rings. Let (R,m, k) be a local ring with d = dimR.
If a is an ideal in R, then the Betti number βR

0 (a) turns out to be the minimal
number of generators of a. It is a consequence of Krull’s Principal Ideal
Theorem that d ≤ βR

0 (a) if the dimension of the ring R/a is zero. The ideal
a is said to be a parameter ideal exactly when dim(R/a) = 0 and d = βR

0 (a),
and one can prove that any local ring admits a parameter ideal. An ideal
a in R is said to be irreducible whenever it is not the intersection of two
strictly larger ideals. The ring R is said to be Gorenstein whenever it admits
an irreducible parameter ideal. Any regular local ring is Gorenstein. Next



Homological Methods in Commutative Algebra 11

follows, in (a) below, a homological characterization of Gorenstein local rings,
and this implies that the Gorenstein property is stable under localization,
this is (b) below. These results are due to Bass [5].

(3.13) Local Gorensteinness Theorem. Let (R,m, k) be a local ring.

(a) The following are equivalent.

(i) R is Gorenstein;

(ii) Ext`
R(−, R) = O for `� 0 5;

(iii) Ext`
R(−, R) = O for ` > dimR;

(iv) Ext`
R(k,R) = O for `� 0;

(v) Ext`
R(k,R) = O for ` > dimR;

(vi) ExtdimR+1
R (k,R) = O.

(b) If R is a Gorenstein, then so is Rp for each prime ideal p.

(3.14) Cohen–Macaulay local rings. Let (R,m, k) be a local ring. If a is
an ideal in R and x is an element in R, then x is said to be a zero-divisor

on the residue ring R/a whenever there exists r ∈ R such that r /∈ a and
xr ∈ a. A sequence x1, . . . , xn of elements in the maximal ideal m is said to
be regular whenever, for all i = 1, . . . , n, the element xi is not a zero-divisor
on R/(x1, . . . , xi−1); for i = 1 this means that x1 is not a zero-divisor on R.
The depth of R is defined as follows:

depthR
def
= the maximal length n of regular sequence x1, . . . , xn in m .

It turns out that depthR can be computed homologically as follows.

(3.14.1) depthR = inf{ ` | Ext`
R(k,R) 6= 0 } .

From this equality one can deduce the next inequality.

(3.14.2) depthR ≤ depthRp + dim(R/p) .

Here, depthRp is the depth of the local ring (Rp, pRp, Rp/pRp), and
dim(R/p) is the Krull dimension of the local ring (R/p,m/p, k). The last
inequality yields the next one.

(3.14.3) depthR ≤ dimR .

The Cohen–Macaulay defect of R is the number:

cmdR
def
= dimR− depthR ;

this number is always non-negative by (3.14.3) above. The inequality (3.14.2)
has the next easily established counterpart concerning Krull dimension.

(3.14.4) dimRp + dim(R/p) ≤ dimR .

5 That is, the R–module R has finite injective dimension.
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Combining (3.14.2) and (3.14.4) one obtains

(3.14.5) cmdRp ≤ cmdR .

The ring R is said to be Cohen–Macaulay whenever depthR = dimR,
that is, exactly when cmdR = 0. It follows from (3.14.5) that Cohen–
Macaulayness behaves well under localization, see (b) below.

(3.15) Local Cohen–Macaulayness Theorem. Let (R,m, k) be a local

ring.

(a) The following are equivalent for R.

(i) R is Cohen–Macaulay;

(ii) Ext`
R(k,R) = O for all ` < dimR;

(iii) ExtdimR+1
R (−,M) = O for some non-zero finitely generated R–mo-

dule M .

(b) If R is Cohen–Macaulay, then so is the localization Rp for each prime

ideal p.

The implication (iii)⇒(i) is a deep result, see Corollary 9.6.2 and Remark
9.6.4(a)(ii) in [7].

(3.16) Local Complete Intersections. Let (R,m, k) be a local ring, and

consider its (so-called) m–adic completion R̂ which also is a local ring. The
ring R is said to a complete intersection exactly if there exists a regular

local ring Q and a surjective homomorphism ϕ : Q → R̂ of rings such that
the kernel Kerϕ (⊂ Q) is generated by a regular sequence.

A finitely generated R–module M is said to be of finite complexity ex-
actly when its sequence of Betti numbers βR

0 (M), βR
1 (M), . . . , βR

n (M), . . .
has only polynomial growth, that is, there exists a polynomial f ∈ Z[x] such
that βR

n (M) ≤ f(n) for all n. If R is a regular local ring, respectively, a
regular local ring modulo a non-unit, then the Betti number sequences are
all eventually zero, respectively, eventually constant.

(3.17) Local Complete Intersection Theorem. Let (R,m, k) be a local

ring.

(a) The following are equivalent for R.

(i) R is a complete intersection;

(ii) Every finitely generated R–module has finite complexity.

(b) If R is a complete intersection, then so is the localization Rp for each

prime ideal p.

These two results are due to Gulliksen and Avramov, respectively, cf. e.g.
Theorem 8.1.2 and Corollary 7.4.6, respectively, in [2]. The next result is
Theorem III in [3].
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(3.18) Ext–Tor Vanishing Theorem. If (R,m, k) is a local complete inter-

section, then the following are equivalent for all finitely generated R–modules

M and N .

(i) Ext`
R(M,N) = O for `� 0;

(ii) Ext`
R(N,M) = O for `� 0;

(iii) TorR
` (M,N) = O for `� 0.

If R is a local ring such that (i), (ii), and (iii) above are equivalent for
all finitely generated modules M and N , then R is necessarily a Gorenstein
ring; namely, set M = R and N = k and appeal to (iv) in (3.13.a). For more
precise relations between (i), (ii), and (iii) consult Remark 6.3 in [3].

For the next result, consult e.g. Proposition 3.5 in [7].

(3.19) Hierarchy of Local Rings. The next hold for all local rings R.

R is regular =⇒ R is a complete intersection

=⇒ R is Gorenstein

=⇒ R is Cohen–Macaulay.

(3.20) Initial ideals. Let S = k[x1, . . . , xn] be a polynomial ring over a field
k. Moreover, assume that each xi is assigned a positive (integer) degree,
and that the set of monomials are equipped with a suitable well-ordering.
For further details, consult the paper [6] (in these proceedings) by Bruns
and Conca. To each ideal a in S one can associate its (so-called) initial

ideal ã which is generated by monomials. Consider furthermore the residue

rings R =def S/a and R̃ =def S/ã. Properties of R̃ imply sometimes the

corresponding ones for R. For example: If R̃ is such that for each prime

ideal q in R̃ the local ring R̃q is Gorenstein, respectively Cohen–Macaulay,
then the ring R has the corresponding property. Furthermore, if there is an

integer p such that Ext`
S(R̃,−) = O for ` > p , then Ext`

S(R,−) = O for
` > p.

(3.21) Local cohomology. Let (R,m, k) be a local ring. Define a co-
variant endo-functor Γm(−) on the category of R–modules by Γm(M) =def

{m ∈ M | mnm = 0 for n � 0 } when M is an R–module; for any R–
homomorphism α : M → N let Γm(α) : Γm(M) → Γm(N) be the restriction
of α. Furthermore, use injective resolutions to define its ` th right derived
functor H`

m(−) =def R` Γm(−) which is said to be the the ` th local cohomol-

ogy. If R is a homomorphic image of a Gorenstein local ring Q, and E is an
indecomposable6 injective R–module such that HomR(k,E) ∼= k (and such
exists always and is said to be the injective envelope of k), then there are

6 That is, it is not the direct sum of two non-zero submodules.
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isomorphisms of functors

H`
m(−) ∼= HomR(ExtdimQ−`

Q (−, Q), E) .

This is Grothendieck’s Local Duality Theorem, cf. Theorem 6.3 in [13]. It
follows that:

depthR = inf{ ` | H`
m(R) 6= 0 } ;

dimR = sup{ ` | H`
m(R) 6= 0 }

(and (3.14.3) above has been rediscovered).

(3.22) Cofinite modules. One can prove that the modules Ext`
R(k,H`

m(M))
are finitely generated for all ` and all finitely generated R–modules M . If
we, in the definition of the section functor Γm(−), replace the maximal ideal
m by any ideal a, then we obtain the section functor Γa(−) supported at
{ p prime ideal | p ⊇ a } and its derived functors H`

a(−). Hartshorne studied
in [14] R–modules M such that Ext`

R(R/a,H`
a(M)) is finitely generated for

all `. These investigations have been continued by Melkersson as reported in
[22] (in these proceedings). An R–module N is said to be a–cofinite exactly
when Ext`

R(R/a, N) is finitely generated for all ` and a ⊇ p whenever p

is a prime ideal such that Mp 6= O. Melkersson proves that the former is

tantamount to finite generation of TorR
` (R/a,M) for all `, and interesting

relations between the cofiniteness of M and that of H`
a(M) result.
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