
 
 
 
 
 
 
 
 
 
 

An Introduction to Classification and Regression Tree (CART) Analysis 
 
 

Roger J. Lewis, M.D., Ph.D. 
Department of Emergency Medicine 

Harbor-UCLA Medical Center 
Torrance, California 

 
 
 
 
 
 
 
 
 
 
Presented at the 2000 Annual Meeting of the Society for Academic Emergency Medicine in San 
Francisco, California. 
 
 
 
 
 
 
Contact Information: 
 
Roger J. Lewis, MD, PhD 
Department of Emergency Medicine 
Harbor-UCLA Medical Center, Box 21 
1000 West Carson Street 
Torrance, California 90509 
Tel: (310) 222-6741 
Fax: (310) 782-1763 
Email: roger@emedharbor.edu 
 
c:\roger\saem2000\introduction to cart  



Introduction to CART 
Roger J. Lewis, M.D., Ph.D. 
 

 
Page 2 

Introduction 
A common goal of many clinical research studies is the development of a reliable clinical 

decision rule, which can be used to classify new patients into clinically-important categories.  Examples 
of such clinical decision rules include triage rules, whether used in the out-of-hospital setting or in the 
emergency department, and rules used to classify patients into various risk categories so that appropriate 
decisions can be made regarding treatment or hospitalization. 

Traditional statistical methods are cumbersome to use, or of limited utility, in addressing these 
types of classification problems.  There are a number of reasons for these difficulties.  First, there are 
generally many possible “predictor” variables which makes the task of variable selection difficult.  
Traditional statistical methods are poorly suited for this sort of multiple comparison.  Second, the 
predictor variables are rarely nicely distributed.  Many clinical variables are not normally distributed and 
different groups of patients may have markedly different degrees of variation or variance.  Third, complex 
interactions or patterns may exist in the data.  For example, the value of one variable (e.g., age) may 
substantially affect the importance of another variable (e.g., weight).  These types of interactions are 
generally difficult to model, and virtually impossible to model when the number of interactions and 
variables becomes substantial.  Fourth, the results of traditional methods may be difficult to use.  For 
example, a multivariate logistic regression model yields a probability of disease, which can be calculated 
using the regression coefficients and the characteristics of the patient, yet such models are rarely utilized 
in clinical practice.  Clinicians generally do not think in terms of probability but, rather in terms of 
categories, such as “low risk” versus “high risk.” 

Regardless of the statistical methodology being used, the creation of a clinical decision rule 
requires a relatively large dataset.  For each patient in the dataset, one variable (the dependent variable), 
records whether or not that patient had the condition which we hope to predic t accurately in future 
patients.  Examples might include significant injury after trauma, myocardial infarction, or subarachnoid 
hemorrhage in the setting of headache.  In addition, other variables record the values of patient 
characteristics which we believe might help us to predict the value of the dependent variable.  For 
example, if one hopes to predict the presence of subarachnoid hemorrhage, a possible predictor variable 
might be whether or not the patient's headache was sudden in onset; another possible predictor would be 
whether or not the patient has a history of similar headaches in the past.  In many clinically-important 
settings, the number of possible predictor variables is quite large. 

Within the last 10 years, there has been increasing interest in the use of classification and 
regression tree (CART) analysis.  CART analysis is a tree-building technique which is unlike traditional 
data analysis methods.  It is ideally suited to the generation of clinical decision rules.  Because CART 
analysis is unlike other analysis methods it has been accepted relatively slowly.  Furthermore, the vast 
majority of statisticians have little or no experience with the technique.  Other factors which limit CART's 
general acceptability are the complexity of the analysis and, until recently, the software required to 
perform CART analysis was difficult to use.  Luckily, it is now possible to perform a CART analysis 
without a deep understanding of each of the multiple steps being completed by the software.  In a number 
of studies, I have found CART to be quite effective for creating clinical decision rules which perform as 
well or better than rules developed using more traditional methods.  In addition, CART is often able to 
uncover complex interactions between predictors which may be difficult or impossible to uncover using 
traditional multivariate techniques. 

The purpose of this lecture is to provide an overview of CART methodology, emphasizing 
practical use rather than the underlying statistical theory.   

 
Classification and Decision Problems  

A classification problem consists of four main components.  The first component is a categorical 
outcome or “dependent” variable.  This variable is the characteristic which we hope to predict, based on 
the “predictor” or  “independent” variables.  Typical outcome variables are survival, need for surgery, and 
presence of  myocardial infarction.  The second component of a classification problem are the “predictor” 
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or “independent” variables.  These are the characteristics which are potentially related to the outcome 
variable of interest.  In general, there are many possible predictor variables.  The third component of the 
classification problem is the learning dataset.  This is a dataset which includes values for both the 
outcome and predictor variables, from a group of patients similar to those for whom we would like to be 
able to predict outcomes in the future.  The fourth component of the classification problem is the test or 
future dataset, which consists of patients for whom we would like to be able to make accurate predictions.  
This test dataset may or may not exist in practice.  While it is commonly believed that a test or validation 
dataset is required to validate a classification or decision rule, a separate test dataset is not always 
required to determine the performance of a decision rule. 

A decision problem includes two components in addition to those found in a classification 
problem.  These components are a “prior” probability for each outcome, which represents the probability 
that a randomly-selected future patient will have a particular outcome, and a decision loss or cost matrix.  
The decision cost matrix represents the inherent cost associated with misclassifying a future patient. For 
example, it is a much more serious error to classify a patient with an emergent medical condition as non-
urgent, than to misclassify a patient with a non-urgent medical condition as urgent.  A sample cost matrix 
is shown below, for a triage problem in which patients are classified as emergent, urgent, and non-urgent.  
The worst possible error, consisting of classifying a truly emergent patient as non-urgent (undertriage), is 
fifteen times as serious as misclassifying an urgent patient as emergent (overtriage). 

As the first 
example, consider the 
problem of selecting the 
best size and type of 
laryngoscope blade for 
pediatric patients 
undergoing intubation.  
The outcome variable, the 
best blade for each patient 
(as determined by a consulting pediatric airway specialist), has three possible values:  Miller 0, Wis-
Hipple 1.5, and Mac 2.  The two predictor variables are measurements of neck length and oropharyngeal 
height.  The learning dataset is shown below.  As can be 
seen from the figure, the smallest patients are best intubated 
with the Miller 0, medium sized patients with the Wis-
Hipple 1.5, and the largest patients with the Mac 2.   

One possible approach to analyzing these data 
would be to use multivariate logistic regression, using neck 
length and oropharyngeal height as the two independent 
predictor variables.  A multivariate logistic regression 
model yields regression coefficients which, when used in 
logit expressions, give the probability that each blade is the 
best for that patient.  Logistic regression equations are very 
difficult to use in clinical practice, especially in situations 
such as this, in which the outcome variable has more than 
two levels.  Furthermore, it is difficult to incorporate 
possible interactions in a multivariate logistic regression 
model, and the model makes parametric assumptions which 
may not be valid.   

As shown on the next page, the logistic regression 
model yields regression coefficients for the two 
independent variables.  Both of these regression coefficients are statistically significant, suggesting that 
both neck length and oropharyngeal height are important predictors of the best laryngoscope blade.  

Classified by Tree as   
Emergent Urgent Non-Urgent 

Emergent 0 5 15 
Urgent 1 0 5 

True Value of 
Outcome 
Variable  Non-Urgent 3 2 0 

 
  Example Decision Cost Matrix. 
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Although the interpretation of this 
output is beyond the scope of the 
current lecture, suffice it to say that 
this type of model is rarely clinically 
useful (especially when faced with a 
small child who needs emergent 
airway management).   
 
Disclosure  

The Classification and 
Regression Tree (CART) software to be illustrated in this lecture is a commercial product manufactured 
and sold by Salford Systems (http://www.salford-systems.com). Salford Systems has donated CDs which 
contain a trial version of their CART software, some additional modeling software not to be discussed in 
this lecture, and copies of the datasets used in this lecture (provided by the lecturer).  The lecturer does 
not intend this presentation to be an endorsement of this particular software package.  This is the only 
CART software with which the lecturer has significant personal experience, making it impossible for him 
to comment on the capabilities of other competitive products.  The lecturer receives no financial support 
from Salford Systems, and SAEM has received no support from Salford Systems beyond the donation of 
the above-mentioned CDs for the use of meeting attendees. 
 
Binary Recursive Partitioning 

CART analysis is a form of binary recursive partitioning.  The term “binary” implies that each 
group of patients, represented by a “node” in a decision tree, can only be split into two groups.  Thus, 
each node can be split into two child nodes, in which case the original node is called a parent node.  The 
term “recursive” refers to the fact that the binary partitioning process can be applied over and over again.  
Thus, each parent node can give rise to two child nodes and, in turn, each of these child nodes may 

themselves be split, forming 
additional children.  The term 
“partitioning” refers to the fact that 
the dataset is split into sections or 
partitioned. 

The figure to the left shows 
the classification and regression 
tree which results from analysis of 
the laryngoscope blade selection 
data shown above.  This tree 
consists of a root node (Node 1), 
containing all patients.  This node 

is split based on the value of the neck length variable.  If the neck length is < 2.45 centimeters, then those 
patients are put in the first terminal node, denoted Node -1, and the best blade is predicted to be a Miller 
0.  All other patients are placed in Node 2.  The group of patients in Node 2 is initially assigned a Wis-
Hipple 1.5 blade but they are also split based on their oropharyngeal height.  Those patients with an 
oropharyngeal height less than 1.75 are placed in terminal Node -2, and assigned a Wis-Hipple 1.5 blade, 
while those with an oropharyngeal height ≥ 1.75 are placed in terminal Node –3 and assigned a Mac 2 
blade.   

Several things should be pointed out regarding this CART tree.  First, it is much simpler to 
interpret than the multivariate logistic regression model, making it more likely to be practical in a clinical 
setting.  Secondly, the inherent “logic” in the tree is easily apparent, and it makes clinical sense.  
Interestingly, it has been shown that clinical decision rules which make sense to clinicians are more 
likely to be followed in clinical practice than rules in which the reasoning is not apparent.   

Logistic Regression Results 
 
             Parameter                 Odds 
   Variable  Estimate ± SE  P value    Ratio 
 
   INTERCP1  22.4 ± 13.5    0.0974       . 
   INTERCP2  45.5 ± 13.5    0.0007       . 
   NECK_LEN  -5.8 ±  2.3    0.0114     0.003 
   OP_HEIGH -10.5 ±  3.7    0.0051     0.000 

Node 1
Class = Miller 0
Neck Length <

2.45

Node -1
Class = Miller 0

Node 2
Class = WH 1.5

OP Height <
1.75

Node -2
Class = WH 1.5

Node -3
Class = Mac 2

 Yes  No

 Yes No
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In the two figures below, a visual illustration of the CART approach is given.  The root node, 
which contains all patients, is split in two, analogous to a horizontal line being drawn at neck length = 
2.45.  All patients below the line, which are those found in the first terminal node, are assigned a 
predicted class of Miller 0.  The group of patients above the original line are then split by a second line 
drawn at oropharyngeal height = 1.75.  Those to the left of this line are assigned a class of Wis-Hipple 
1.5, while those to the right of the line are assigned the class Mac 2.  It is important to note that this 
second line applies only to one of the regions, which corresponds to the second parent node (Node 2).  
This process of partitioning is easy to visualize in two dimensions (i.e., when there are only two possible 
predictor variables) but is difficult or impossible to picture when there are five, ten, or dozens of possible 
predictors.   

 The text box to the right shows the set of commands, contained within a “command” file, which 
were used to produce the analysis represented by the CART tree.  While there are 16 lines of commands, 
half are generic formatting commands or the 
definition of the misclassification costs.  This 
command file is included in the CD which has 
been distributed, as is the dataset “airway.sys.”   
 
Advantages and Disadvantages of CART 

CART analysis has a number of 
advantages over other classification methods, 
including multivariate logistic regression.  First, it 
is inherently non-parametric.  In other words, no 
assumptions are made regarding the underlying 
distribution of values of the predictor variables.  
Thus, CART can handle numerical data that are 
highly skewed or multi-modal, as well as 
categorical predictors with either ordinal or non-
ordinal structure.  This is an important feature, as 
it eliminates analyst time which would otherwise 
be spent determining whether variables are normally distributed, and making transformation if they are 
not.   

As discussed below,  CART identifies “splitting” variables based on an exhaustive search of all 
possibilities.  Since efficient algorithms are used, CART is able to search all possible variables as 

USE 'c:\cart\data\airway.sys' 
LOPTIONS MEANS = NO, PREDICTION = NO, 

PLOTS = YES, TIMING = YES, PRINT 
FORMAT =  3 
MODEL best_bla 
KEEP neck_len op_heigh 
CATEGORY best_bla = 3 [min = 1] 
PRIORS EQUAL 
Misclass UNIT 
Misclasify Cost = 1 Classify 1 as 2 
Misclasify Cost = 1 Classify 1 as 3 
Misclasify Cost = 1 Classify 2 as 3 
Misclasify Cost = 1 Classify 3 as 1 
Misclasify Cost = 1 Classify 3 as 2 
Misclasify Cost = 1 Classify 2 as 1 
LIMIT DEPTH=16 
ERROR CROSS = 20 
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splitters, even in problems with many hundreds of possible predictors.  [While some listeners may 
shudder at possible problems with overfitting and data dredging, these issues are dealt with in depth later].   

CART also has sophisticated methods for dealing with missing variables.  Thus, useful CART 
trees can be generated even when important predictor variables are not known for all patients.  Patients 
with missing predictor variables are not dropped from the analysis but, instead, “surrogate” variables 
containing information similar to that contained in the primary splitter are used.  When predictions are 
made using a CART tree, predictions for patients with missing predictor variables are based on the values 
of surrogate variables as well. 

Another advantage of CART analysis is that it is a relatively automatic “machine learning” 
method.  In other words, compared to the complexity of the analysis, relatively little input is required 
from the analyst.  This is in marked contrast to other multivariate modeling methods, in which extensive 
input from the analyst, analysis of interim results, and subsequent modification of the method are 
required.   

Finally, CART trees are relatively simple for nonstatisticians to interpret.  As mentioned above, 
clinical decision rules based on trees are more likely to be feasible and practical, since the structure of the 
rule and its inherent logic are apparent to the clinician.  

Despite its many advantages, there are a number of disadvantages of CART which should be kept 
in mind.  First, CART analysis is relatively new and somewhat unknown.  Thus, there may be some 
resistance to accept CART analysis by traditional statisticians (some of whom consult for prestigious 
medical journals).  In addition, there is some well-founded skepticism regarding tree methodologies in 
general, based on unrealistic claims and poor performance of earlier techniques.  Thus, some statisticians 
have a generalized distrust of this approach.  Because of its relative novelty, it is difficult to find 
statisticians with significant expertise in CART.  Thus, it may be difficult to find someone to help you use 
CART analysis at your own institution.  Because CART is not a standard analysis technique, it is not 
included in many major statistical software packages (e.g., SAS). 
 
Steps in Cart 

CART analysis consists of four basic steps.  The first step consists of tree building, during which 
a tree is built using recursive splitting of nodes.  Each resulting node is assigned a predicted class, based 
on the distribution of classes in the learning dataset which would occur in that node and the decision cost 
matrix.  The assignment of a predicted class to each node occurs whether or not that node is subsequently 
split into child nodes.  The second step consists of stopping the tree building process.  At this point a 
“maximal” tree has been produced, which probably greatly overfits the information contained within the 
learning dataset.  The third step consists of tree “pruning,” which results in the creation of a sequence of 
simpler and simpler trees, through the cutting off of increasingly important nodes.  The fourth step 
consists of optimal tree selection, during which the tree which fits the information in the learning dataset, 
but does not overfit the information, is selected from among the sequence of pruned trees.  Each of these 
steps will be discussed in more detail below. 
 
Tree Building 

Tree building begins at the root node, which includes all patients in the learning dataset.  
Beginning with this node, the CART software finds the best possible variable to split the node into two 
child nodes.  In order to find the best variable, the software checks all possible splitting variables (called 
splitters), as well as all possible values of the variable to be used to split the node.  A number of clever 
programming tricks are used to reduce the time required to search through all possible splits.  In the case 
of a categorical variable, the number of possible splits increases quickly with the number of levels of the 
categorical variable.  Thus, it is useful to tell the software the maximum number of levels for each 
categorical variable.   

In choosing the best splitter, the program seeks to maximize the average “purity” of the two child 
nodes.  A number of different measures of purity can be selected, loosely called “splitting criteria” or 
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“splitting functions.”  The most common splitting function is the “Gini”, followed by “Twoing.”  
Although the CART software manual recommends experimenting with different splitting criteria, these 
two methods will give identical results if the outcome variable is a binary categorical variable.   

As discussed below, each node (even the root node) is assigned a predicted outcome class.  The 
process of node splitting, followed by the assignment of a predicted class to each node, is repeated for 
each child node and continued recursively until it is impossible to continue.  

 
Assignment of Node Classes 

Each node, even the root node, is assigned a 
predicted class.  This is necessary, as there is no way to 
know during the tree-building process which nodes will 
end up being terminal nodes after pruning.  The 
predicted class assigned to each node depends on three 
factors: (1) the assumed prior probability of each class 
within future datasets; (2) the decision loss or cost 
matrix; and (3) the fraction of subjects with each 
outcome in the learning dataset that end up in each node.  
The function used to assign predicted classes to each 
node is shown at right.  This method of node class 
assignment ensures that the tree has a minimal expected 
average decision cost for future datasets similar to the 
learning dataset in which the probability of each 
outcome is equal to the assumed prior probabilities.   
 
Missing Variables 

For each node, the “primary splitter” is the variable that best splits the node, maximizing the 
purity of the resulting child nodes.  When the primary splitting variable is missing for an individual 
observation, that observation is not discarded but, instead, a surrogate splitting variable is sought.  A 
surrogate splitter is a variable whose pattern within the dataset, relative to the outcome variable, is similar 
to the primary splitter.  Thus, the program uses the best available information in the face of missing 
values.  In datasets of reasonable quality this allows all observations to be used.  This is a significant 
advantage of this methodology over more traditional multivariate regression modeling, in which 
observations which are missing any of the predictor variables usually are often discarded.   
 
Stopping Tree Building 

As mentioned above, the tree building process goes on until it is impossible to continue. The 
process is stopped when: (1) there is only one observation in each of the child nodes; (2) all observations 
within each child node have the identical distribution of predictor variables, making splitting impossible; 
or (3) an external limit on the number of levels in the maximal tree has been set by the user (“depth” 
option).   

  The “maximal” tree which is created is generally very overfit.  In other words, the maximal tree 
follows every idiosyncrasy in the learning dataset, many of which are unlikely to occur in a future 
independent group of patients.  The later splits in the tree are more likely to represent over fitting than the 
earlier splits, although one part of the tree may need only one or two levels, while a different branch of 
the tree may need many levels in order to fit the true information in the dataset.  A major breakthrough of 
the CART methodology was the realization that there is no way during the tree-building process to know 
when to stop, and that different parts of the tree may require markedly different depths.   
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Tree Pruning 
In order to generate a sequence of simpler and simpler trees, each of which is a candidate for the 

appropriately-fit final tree, the method of “cost-complexity” pruning is used.  This method relies on a 
complexity parameter, denoted α, which is gradually increased during the pruning process.  Beginning at 
the last level (i.e., the terminal nodes) the child nodes are pruned away if the resulting change in the 
predicted misclassif ication cost is less than α times the change in tree complexity.  Thus, α is a measure 
of how much additional accuracy a split must add to the entire tree to warrant the additional complexity.  
As α is increased, more and more nodes (of increasing importance) are pruned away, resulting in simpler 
and simpler trees.   
 
Optimal Tree Selection 

The maximal tree will always fit the learning dataset with higher accuracy than any other tree.  
The performance of the maximal tree on the original learning dataset, termed the “resubstitution cost,” 
generally greatly overestimates the performance of the tree on an independent set of data obtained from a 
similar patient population.  This occurs because the maximal tree fits idiosyncrasies and noise in the 
learning dataset, which are unlikely to occur with the same pattern in a different set of data.  The goal in 
selecting the optimal tree, defined with respect to expected performance on an independent set of data, is 
to find the correct complexity parameter α so that the information in the learning dataset is fit but not 
overfit.  In general, finding this value for α 
would require an independent set of data, but 
this requirement can be avoided using the 
technique of cross validation (see below).   
 The figure to the right shows the 
relationship between tree complexity, reflected 
by the number of terminal nodes, and the 
decision cost for an independent test dataset 
and the original learning dataset.  As the 
number of nodes increases, the decision cost 
decreases monotonically for the learning data.  
This corresponds to the fact that the maximal 
tree will always give the best fit to the learning 
dataset.  In contrast, the expected cost for an independent dataset reaches a minimum, and then increases 
as the complexity increases.  This reflects the fact that an overfitted and overly complex tree will not 
perform well on a new set of data.   
 
Cross Validation 

Cross validation is a computationally-intensive method for validating a procedure for model 
building, which avoids the requirement for a new or independent validation dataset.  In cross validation, 
the learning dataset is randomly split into N sections, stratified by the outcome variable of interest.  This 
assures that a similar distribution of outcomes is present in each of the N subsets of data.  One of these 
subsets of data is reserved for use as an independent test dataset, while the other N-1 subsets are 
combined for use as the learning dataset in the model-building procedure (see the figure on the next 
page).  The entire model-building procedure is repeated N times, with a different subset of the data 
reserved for use as the test dataset each time.  Thus, N different models are produced, each one of which 
can be tested against an independent subset of the data.  The amazing fact on which cross validation is 
based is that the average performance of these N models is an excellent estimate of the performance of 
the original model (produced using the entire learning dataset) on a future independent set of patients. 
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When cross validation is used in CART, the entire tree 
building and pruning sequence is conducted N times.  Thus, 
there are N sequences of trees produced.  Trees within the 
sequences are matched up, based on their number of terminal 
nodes, to produce an estimate of the performance of the tree in 
predicting outcomes for a new independent dataset, as a function 
of the number of terminal nodes or complexity.  This allows a 
data-based estimate of the tree complexity which results in the 
best performance with respect to an independent dataset.  Using 
this method, a minimum cost occurs when the tree is complex 
enough to fit the information in the learning dataset, but not so 
complex that “noise” in the data is fit.  The figure below right 
shows a typical minimum which should occur in the cross-
validation estimate of the misclassification cost, as a function of 
the number of terminal nodes or complexity. 
 
Example:  HIV-Triage 

As our next example, consider a dataset involving the 
triage of self-identified HIV-infected patients who present to the 
emergency department (ED) for care.  The outcome variable is the “urgency” of the visit, which has three 
levels: emergent, urgent, and non-urgent.  These 
urgency levels are based on a retrospective evaluation of 
the final diagnosis and clinical course.  The patient's 
historical and presenting features, and the results of an 
abbreviated and focussed review of systems are the 
predictor variables.  The dataset includes 389 
observations and is included on the CD distributed 
during the lecture.   

 
Initial Screen 

The initial screen which appears when the 
CART program is run includes the standard “File” and 
“View” menus.  The “File” menu includes an option which allows one to submit an entire command file 
in order to conduct an analysis.  In addition, one can use the “View” to open a “Notebook” window, 
through which a command file may be viewed, edited, and submitted for processing.   

The command files included on the CD can be opened in the Notepad window or submitted 
directly from the File option.  The use of the Notepad window allows editing of the command file (e.g., to 
give the correct location for the data on your computer) followed by submission for processing.  
Alternatively, the sample dataset may be opened, and a graphical user interface for model building may 
be used in lieu of a command file.  When the graphical model-building interface is used, the associated 
command file may be saved, so that it can be viewed, edited, and reused later.   
 The text box on the next page shows the command file (“hivtree.cmd”) which can be used to 
analyze the HIV triage dataset included on the CD.  The MODEL statement shows the outcome variable, 
in this case a numerical representation of the urgency of the ED visit.  The KEEP command lists the 
possible predictor variables to be considered in building the decision tree.  [The version on the CD does 
not use the KEEP command, as only the correct variables have been included in the dataset.]  The 
PRIORS statement shows that the actual distribution of outcomes in the learning dataset is to be used as 
the prior probabilities for outcomes when assigning outcome classes to nodes.  The MISCLASSIFY 
statement defines the costs of various misclassification errors which may occur.  In this case, the most 
serious error is to misclassify a patient who is truly in class 0 (emergent) as class 2 (non-urgent).  The 
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model is limited to a depth of 16, which 
limits the size of the maximal tree which 
may be constructed.  In addition, cross 
validation is used, with the sample size 
divided into 10 subsets.  Each of the 
commands used in the command file is 
described in detail in the online 
documentation included with the software. 

The graphical user interface used for 
model setup, as well as the screen which 
appears during processing of the command 
file are shown (below right and top of next 
page).  In the latter case, 20-fold cross 
validation is being used, which requires the 
creation of 21 tree sequences (one sequence 
using all learning data, and 20 tree sequences 
in which part of the data has been withheld 
for testing).   

 
Results and Output 

The original CART software was 
written for non-graphical computers, and all 
output had to be printable on old style line 
printers.  The current CART software still 
produces the old text-based reports, although 
it provides a Window interface for 
navigating the text reports.  The 
software also provides a fully 
graphical navigator, which presents 
the same information in a more user-
friendly graphical and tabular format. 
 The CART report consists of 
7 sections.  The first section consists 
of the tree sequence, which includes 
the primary sequence of trees based 
on the entire learning dataset, as well 
as cross validation estimates of tree 
misclassification costs for an 
independent set of data.  The second 
section of the report gives detailed 
node information, including the 
splitting criteria of each node, 
surrogate variables to be used if the primary splitter is missing, and the distribution of outcomes for the 
learning dataset at each node.  The third section of the report gives information on the terminal nodes, 
including the distribution of outcome classes.   
 The next three sections of the report all involve misclassification rates.  The fourth section of the 
report gives general misclassification information for the learning dataset (which overestimates the 
performance of the tree), while the fifth section give cross validation estimates of misclassification rates 
for an independent dataset.  The sixth section give additional information on misclassif ication rates for the 
learning dataset.  The last section of the report gives information on the relative importance of different 

USE 'C:\CART\data\HIVNEW.SYS' 
LOPTIONS MEANS = NO, PREDICTION = NO, 
PLOTS = YES, TIMING = YES, PRINT 
FORMAT =  3 
MODEL NVISITCA 
KEEP NSOBE, NDIARR, NVOMIT, NDYSPH, 
NATAXI, NBEHAV, NWORSEHA, NHEADA, 
NSWEAT, NCHILL, NSOBA, NDIZZY, NCOUGH, 
SBP, RESP, PULSE, TEMP, NCCSOB, 
NCCVOMDI, NCCHEADA, NCCFEVCH, NCCWEAKN, 
NCCOTHER, CD4 
PRIORS DATA 
CATEGORY NVISITCA =   3 [min=   0] 
Misclass UNIT 
Misclasify Cost = 4 Classify 0 as 1 
Misclasify Cost = 8 Classify 0 as 2 
Misclasify Cost = 4 Classify 1 as 2 
Misclasify Cost = 6 Classify 2 as 0 
Misclasify Cost = 4 Classify 2 as 1 
Misclasify Cost = 1 Classify 1 as 0 
LIMIT DEPTH=16 
ERROR CROSS = 10 
BOPTIONS SURROGATES = 5 COMPETITORS = 3, 
TREELIST = 10, BRIEF 
BOPTIONS SERULE  = 1 ,IMPORTANCE = 1 
BOPTIONS  COMPLEXITY = 0.0, NCLASSES = 8 
TREE 'C:\CART\data\HIVTREE.TR1' 
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variables in the dataset.  These 
importance measures incorporate 
information both on the use of 
variables as primary splitters, and 
also their relative worth as surrogate 
variables when primary splitters are 
missing.  A discussion of variable 
importance is beyond the scope of 
this lecture.   

The accompanying figures 
on pages 11-13 show the primary 
Report Screen, the tree sequence 
from a typical report (the HIV 
Triage example), as well as the 
graphical navigator which can be 
used to examine any tree in the tree 
sequence in detail.  In addition, the 
navigator can be used to view 
detailed reports on misclassification 
rates, both for the learning dataset 
and for an independent dataset 
(based on cross validation). 

The CART software can 
also produce a script for the program 
allCLEAR to be used to generate 
graphical representations of trees for 
exporting to other programs (e.g., 
Microsoft Word or Microsoft 
Powerpoint).  The decision tree 
resulting from an analysis of the 
HIV triage data, represented using 
the allCLEAR software program is 
illustrated on page 13.  The program 
allCLEAR is no longer 
automatically 
included with the 
software, and the 
CART program can 
also print nice looking 
trees by itself, as well 
as export graphical 
formats. 

In the HIV 
Triage example, the 
root node is split on 
the initial heart rate, 
with patients with a 
heart rate of 104 or 
less going to the left, 
and those with a 

 Dependent variable: NVISITCA 
  
   Terminal  Cross-Validated  Resubstitution  Complexity 
   Tree Nodes  Relative Cost  Relative Cost   Parameter 
   ----------------------------------------------------- 
    1    48   0.828 +/- 0.059     0.256         0.000 
    5    35   0.798 +/- 0.059     0.299         0.008 
    6    28   0.784 +/- 0.059     0.341         0.010 
    7    25   0.731 +/- 0.059     0.361         0.011 
    8    19   0.722 +/- 0.058     0.433         0.021 
    9     9   0.678 +/- 0.057     0.558         0.022 
   10     8   0.678 +/- 0.057     0.578         0.033 
   11**   7   0.663 +/- 0.057     0.603         0.044 
   12     5   0.762 +/- 0.056     0.692         0.076 
   13     2   0.951 +/- 0.050     0.901         0.120 
   14     1   1.000 +/- 0.000     1.000         0.170 
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higher heart rate going to the right.  
As can be seen from the tree, the CD4 
count is only important for patients 
who are not tachycardic, as the CD4 
count appears only in the left-hand 
side of the tree.  This is typical of 
insights which can be obtained 
through this type of analysis, namely, 
the importance of a variable (e.g., 
CD4 count) can vary tremendously 
based on the value of other variables.  
This makes clinical sense--a patient 
with markedly abnormal vital signs 
probably has an emergent medical 
condition regardless of the degree of 
immunosuppression.  In contrast, a 
patient who is markedly 
immunocompromised may have an 
urgent or emergent medical condition 
even with relatively normal vital signs 
at triage.   
 
Future Datasets   

The purpose of a decision tree 
is usually to allow the accurate 
prediction of outcome for future 
patients, based on the values of their 
predictor variables.  Similarly, the best 
way to test a tree using an independent 
dataset is to “drop” cases from a new 
dataset through the tree in order to 
determine the observed 
misclassification rates and costs.  The 
CART software provides a command 
(the “tree” command) which allows 
the decision tree to be saved, so that it 
can be used with a new set of data in 
the future to predict outcome.  This 
allows the testing of the tree on a new 
independent dataset.   
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Additional Topics  
 There are a number of 
additional topics that, although of 
practical importance to those using 
CART analysis, are beyond the scope 
of this lecture.  These include the 
choice and use of different splitting 
rules and purity measures, the choice 
of alternative prior probability 
distributions, the interpretation of 
information on surrogate and 
competitive variables, methods used 
to rate the importance of different 
variables, and details of CART's 
handling of missing variables.  
Insights into these topics can best be 
obtained by actual use of the software, 
reference to the manual and online documentation, and comparison of results while varying user options.  
The dataset and command files included in the distributed CD should allow the listener to begin using the 
CART software and gain experience with its use. 

 
Conclusions  

Classification and Regression Tree (CART) analysis is a powerful technique with significant potential 
and clinical utility.  Nonetheless, a substantial investment in time and effort is required to use the 
software, select the correct options, and interpret the results.  Nonetheless, the use of CART has been 
increasing and is likely to increase in the future, largely because of the substantial number of important 
problems for which it is the best available solution.  

Node 1 
Class = 1 

PULSE <= 104.500

Node 2 
Class = 1 

CD4 <= 42.000

Node -1 
Class = 1

Node 3 
Class = 2 

TEMP <= 100.450

Node 4 
Class = 2 
PULSE <=

99.500

Node -2 
Class = 2

Node -3 
Class = 1

Node -4 
Class = 1

Node 5 
Class = 0 

TEMP <= 101.650

Node 6 
Class = 1 

PULSE <= 137.500

Node -5 
Class = 1

Node -6 
Class = 0

Node -7 
Class = 0

 Yes  No

 Yes No  Yes  No

 Yes  No  Yes No

 Yes No
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