
Auto-Tune Design and Evaluation on
Staged Event-Driven Architecture

Zhanwen Li, David Levy
School of Electrical and Information Engineering

University of Sydney
NSW, 2006 Australia

{li_zw, dlevy }@ee.usyd.edu.au

Shiping Chen, John Zic
Networking Technologies Laboratory

CSIRO ICT Centre
NSW, 2122 Australia

{shiping.chen, john.zic}@csiro.au

ABSTRACT
SEDA (Staged Event-Driven Architecture) is a middleware
architecture designed to support massive concurrency demands of
internet services. However, managing the resources manually to
achieve high performance in such a computing system has proved
difficult, time-consuming, error-prone and non-QoS-guaranteed.
In this paper, we propose an adaptive control approach to
automatic resource management and performance control for
SEDA-based applications. This approach is based on a
combination of a load balancing strategy and feedback auto-tune
stages for global optimal performance. In addition, our control
algorithms are able to automatically optimize the control
parameters at runtime. The design has been built into a SEDA-
based web sever and validated by benchmarking this web server.
The experimental results demonstrate that our auto-tune design is
able to yield superior adaptation performance for SEDA
applications in dynamic working environments, achieving desired
performance targets with simple control algorithms and automatic
parameter tuning.

Categories and Subject Descriptors
D2.9 [Software Engineering]: Management – Model Driven
Architecture, Software Configuration Management; D4.1
[Operating Systems]: Process management – threads; I.2.8
[Artificial Intelligence]: control methods – Control theory; G.4
[Mathematical Software]

General Terms
Algorithms, Management, Performance

Keywords
Event-based middleware, Model-driven Performance
Management, Feedback Control, Self-tuning

1. INTRODUCTION
Thread-based concurrency model is a common middleware
architecture used by server applications. However, this model is
not good at handling large concurrent loads due to the overheads
associated with resource contention and threading. It has been
reported that the server performance would be greatly degraded

when the threads/loads reach a certain degree [16, 20, 21].

Alternative to the thread-concurrent model, Staged Event-Driven
Architecture (SEDA) is a new middleware architecture to support
massive concurrency demands [21]. SEDA models applications as
a series of event-driven stages interconnected with event queues
and supported by non-blocking I/O [17], avoiding the resource
contentions and the scalability limits of threads [16]. As
demonstrated by Welsh etc al. [19, 21], this design can greatly
benefit the system in massive current loads and service fairness.
Although SEDA provides such self-tune control techniques as
heuristic control and admission control in each stage, SEDA
system performance is still determined by the controlled
parameter configurations in each stage. When all stages are
optimally set up, SEDA can perform in the best conditions; but
managing a multiple-stage SEDA system manually is a very
complicated and time-consuming job. Although considerable
work has been done for automatic system resource management
[3, 4, 5, 6, 7, 8, 10, 11, 19], most of them are based on thread-
based concurrency model and do not support the multi-event-
queue system as a global control strategy.

In this paper, we propose an adaptive control approach to
automatic resource management and performance control for
SEDA-based applications. Under the SEDA framework, we
exploit global control strategy for load balancing and build each
stage as a feedback control system composed of an adaptive
controller and an event-driven thread pool. We also develop
control algorithms that are able to optimize the control parameters
at runtime. Based on the theoretical proofs and experimental
results, we argue that our design can not only greatly enhance
overall performance of the SEDA application to meet the dynamic
desired demands by adaptively adjusting the resources, but it can
also reduce a lot of manual work in system configuration.

The remainder of the paper is organized as follows. Section 2
describes the background of SEDA, especially its performance
management. Section 3 presents our autonomous control system
design for SEDA and exercises our design with three classical
control algorithms. Section 4 shows the experimental results of
benchmarking our design in a SEDA-based web server. We
discuss the related work in Section 5 and give conclusions in
Section 6.

2. STAGED EVENT-DRIVEN
ARCHITECTURE
2.1 Overview
SEDA innovates from the traditional event-driven design patterns
[21]. SEDA partitions a complex business logic into a set of
simple basic tasks in order. Each task is processed by a sequence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MODDM '06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-423-5/06/11... $5.00

of stages separated by event queues. By means of non-blocking
I/O, SEDA applications overcome the weaknesses of previous
event-driven designs based on blocking I/O operations and thus
are able to efficiently support high concurrent loads with less
resources and contentions [1, 17, 20].

In a SEDA-based system, each stage consists of an event handler,
an event queue, and a thread pool. Threads within a stage operate
by pulling a number of events off the event queue and invoking
the event handler. The event handler then processes the events and
dispatches the events by enqueueing them in the event queue of
the next stage.

The explicit event-queues between stages act as a mechanism for
controlling the flow of requests in the whole system. Each stage
therefore is isolated from each other and is responsible only for
processing a subset of requests to avoid holding resources by
single request/thread for too long. [18, 21]

2.2 Performance Management
The performance of each stage in the original SEDA design is
subject to its resource control based on the heuristic control
algorithm. The controller consists of a thread pool controller and
batching controller. Thread pool controller is used to adjust the
number of the threads in the stage by monitoring the incoming
event-queue length, and the batching controller is designed to tune
the batching factor by the performance (throughput) feedback.
Whenever the number of events in the incoming queue is over the
threshold, the thread pool controller will add a specific number of
threads in the stage thread pool; similarly, when the throughput
degrades to the value that is less than the recent running average,
the batching control mechanism will increase the batching factor
in the event handler.

The existing SEDA performance management has a simple design
and potentials to handle dynamic loads. However, how to
configure it to generate the desired performance requires
administers to correctly set multiple relevant parameters such as
threshold, thread pool size for multiple stages. It is a very time
consuming and tedious manual operation. In addition, this
configuration is not based on any mathematical relationships
between the controlled parameters and the target performance. An
‘optimal’ configuration usually depends on an experienced
administrator’s good guess. Therefore, parameter configuration
can easily result in over utilizing resources or under utilizing
available resources. Moreover, whether to add or to remove
threads, and the number of threads allowed to be changed in every
sampling period in SEDA are statically controlled by the
admission control mechanism according to the fixed policies,
which may be not suitable in a dynamic environment.

3. AUTOMATIC PERFORMANCE
CONTROL FOR SEDA
3.1 System Modeling
Generally, computing system performance can be measured with
a variety of metrics. In this paper, we take throughput (i.e.
expected workload) as the performance target. Since many other
performance metrics such as resource utilization and response
time can be calculated from system workload [9], if our design is
able to control the workload to meet the desired target, it means
that our approach also can be extended for other performance
requirements.

In SEDA, a client request is processed along a staged pipeline.
When there is a bottleneck stage in the process flow, the overall
system performance would be limited. Picture a scenario where
one stage has heavy database (DB) reads, but all others are
essentially main memory manipulation. If the stage to process DB
reads cannot improve its workload, the system final throughput
might not be enhanced even though other tasks are isolated from
DB reads by using different thread queues in SEDA. It implies
that if loading cannot be balanced in stages, when other stages
support higher workload than the bottleneck stage, it cannot help
in improving system performance, but wastes system resources.
Balancing workload in stages located in the same pipeline thus is
very important for enhancing the whole system performances.

Based on the SEDA design pattern and the above analysis, our
adaptive performance management in this paper is designed as the
combination of load balance and self-tune stage models. The load
balance model provides a framework to globally set up the desired
workload on every stage as Figure 1 illustrated. Each stage model
is a feedback self control system using adaptive control
techniques to adjust stage resources to support the expected stage
performance.

Figure 1. Global Control Framework

Since system throughput is chosen as the performance metrics in
the current design, the principle of making the setting in the global
control model is that the workload on every stage placed in serial
is expected to be the same, i.e. the maximum workload that the
system expects to support, for load balance, and the stages
working in parallel should share the workload in a specified
proportion. For example, when the SEDA application is structured
as Figure 1, the desired workloads for each stage should be

configured to hold the relationship of
~ ~ ~ ~

A B C DT T T T= + = ,

where
~
T represents the reference workload for each corresponding

stage. After getting the reference control signal from global
configuration, each stage can run the auto tune processes to self
optimize the stage resources, meeting the need of its performance
target. Each stage in Figure 1 can be modeled in detail as shown
in Figure 2.

Figure 2. Self-Tune Stage

The stage control model consists of admission control and
feedback control. Admission control is to monitor the number of
requests that entered the event-queue in the last sampling period
and to decide if the feedback controller should be enabled.
Generally, this mechanism is specifically for the situation that the
desired workload is much higher than the actual number of
requests. Feedback control here is developed to auto tune the
manipulated parameters to the best values by using automatic
control theorems so that the controlled system can generate
expected output.

Separated by event queues, in some degree, each stage in SEDA
can be viewed as an independent thread-pool based system. Like
other thread-based systems, the number of threads in the pool
determines the workload of the stage. A higher value of threads
size allows the system to process more requests concurrently,
increasing the system capacity. So stage thread pool is chosen as
the controlled target system in the feedback control system.

Although the relationship between throughput and thread pool
size is in fact nonlinear and stochastic, we found that it can be
regarded as linear before the number of threads reaches a certain
degree. Therefore, by using least mean square (LMS)
identification techniques, throughput-thread relationship can be
modeled as a first-order ARX model [12, 13] as Equation 1.

() * (1) * ()y k A y k B u k= − + (1)

where ()y k and ()u k denote the estimated throughput and
change of threads number in the stage at time k respectively;
A and B are scalars obtained by system identification. This

equation indicates that whenever the number of threads is varied,
the output would be changed immediately in the same sample
time without any delays, and the output is linear related to the
number of the threads changing in this sampling period. In Figure
3, we show the comparison of the actual and estimated throughput
of a stage in a SEDA based web server (Haboob [21]).

Figure 3. Estimated Output and Actual Output

Despite a difference between the actual and the model output, the
comparison demonstrates that modeling the system in this way is
correct and the model is sufficient to be used in the following
system control.

3.2 Adaptive Control System Design
Base of the above analysis and modeling, we design the adaptive
control system as follows. Since our control is discrete, we apply
the standard z-transformation [15] on the system equation (EQ1)
and we get:

B Z
Z A−

 (2)

The stage control model in Figure 2 thus can be simplified to the
control flowchart shown in Figure 4.

Figure 4. the Stage Control Model

In Figure 4, ()C Z and ()G Z represent the stage controller and

stage model respectively. ()u k is the control input to the plant,
which is generated by the controller through computing the error
lying between the reference and the last system output (1)y k − ,
in the current design, it physically means the change of threads
number in the stage. The unit delay in the feedback path is to
avoid the algebraic loop and to keep the information of the last
output for the control function. When () 0u k > , it means it will

add threads in the stage; otherwise, when () 0u k < , it is to say

()u k threads are retired. Whenever the stage gets this control
input, the performance output is immediately generated.

The stage control model can be drawn as a system transfer
function as below:

1

() ()()
1 () ()sys

C z G zf z
C z G z z −=

+
 (3)

3.2.1 Proportional Control
We firstly apply the P (Proportional) control on the stage
controller. We use pK to represent the proportional constant in
the controller, and the stage model described by EQ 3 can be
transformed to be:

Applying inverse Z-Transformation on EQ 4, we achieve the form
of the transfer function in time domain, shown as EQ 5,

 () () []n
p pX n K B A K B u n= − (5)

where ()X n represents the change of the output at time n , and

the ()u n represents the input signal to the system at this sample

time. In the design here, ()u n specifically denote the sampled

reference input ()r k , which is the input to the control system.

According to the system stability requirements, the poles of the
closed loop system transfer function should be located in the unit
circle. Therefore, a constraint on the choice of the parameter
values in EQ 4 is as below:

1pA K B− < (6)

1
1

()
1 ()1

p p
sy s

p
p

B ZK K BZ Af z
B Z A K B ZK Z

Z A

−
−

−= =
− −+

−

 (4)

Thus, from EQ 5 and EQ 6, we know that the system final steady
output would be the maximum system output, i.e.:

0 0

() ()
1

pn
p p

n n p

K B
X n K B A K B

A K B

∞ ∞

= =

= − =
− +∑ ∑

(7)

Whenever the EQ7 equals to the desired output, we can draw the
value of pK , which is definitely the optimal value of pK .
Therefore, we can follow the processes (EQ8~EQ10) as below to
obtain this optimal values.

Firstly, let:

1 1pA K B− + = (8)

then we can get:

p
AK
B

=

(9)

Since the system (Figure 3) final steady output is equal to A , we
can achieve the desired output by developing a simply
transformation equation as follows:

() ()y k Ar kα= (10)

And let

1
A

α =

(11)

The system model described in Figure 4 thus can be designed as
shown in Figure 5 when it is working with proportional controller.

Figure 5. P- Control Based Pre-Compensator Control Model

3.2.2 PI / PD Control
PI (proportional-integral) and PD (proportional-derivative) are
two well-known control techniques in classical control theory,
which add integral and derivative components respectively on the
proportional control [2, 10].

There have been a lot of discussions on how to get the best values
of these controlled parameters to achieve the desired output.
However, if the system is discrete and the zeros in the transfer
function affect a lot on the system performance, there is little
previous work to deal with this problem [10]. In this section, we
propose a new approach to deriving the optimal parameter values.

An ideal controller usually enables the controlled system to
perform as expected. In general, the overshoot and settling time
are the two most important performance metrics for automatic
control systems. In the following, we take these two parameters as
our control targets to develop our PI/PD control algorithms.

We first present the design of PI control system. Similar to the
above P control algorithm, from EQ 3, the PI control system
model can be depicted in the equation as EQ 12

2

2

()
()

(1)
p i p

P I
p i p

B K K Z B K Z
f z

Z A K B K B Z A K B
+ −

=
− + − − + −

(12)

where pK and iK represent the proportional and integral constants.

Converting this model from Z-plane to the time domain, we have
EQ 13 that shows the change of the system performance output

()PIX n resulted by the current input signal.

1() sin() sin()
() []

sin

n n
p i p

PI

B K K r n BK r n
X n u n

r
θ θ θ

θ

++ + −
=

(13)

where r and θ mean the distance and angle of the pole in the z-
plane respectively. Because of the stability and performance
requirements, we can demand:

0 1r< < and [0,]
2
πθ ∈ (8)

Taking the desired settling time sK into account, we can achieve
the range of r by solving the equations of EQ 15 for PI.

2sin() sin()
[1 2 cos] (1) 0

sin() sin()
s s

s s

K K
r A r A

K K
θ θ θ θ

θ
θ θ

+ +
− + + − =

(15)

Because the system output equals to

0
() ()

k

n
y n X n

=

= ∑

(16)

with the r obtained from EQ 15, the desired settling time and the
overshoot, we then can get the proper range of θ by calculating
EQ 16, and finally we can use EQ17 to obtain pK and iK .

2

p
A rK

B
−

=

2 1 2 co s
i

r rK
B

θ+ −
=

(17)

with this algorithm, the pK and iK are a set of combined values
that meet the control demands. Any pair applied in the adaptive
controller can achieve the desired performance.

PD controller development in our algorithm uses the same design
process as the above PI. Only because of the difference lying on
the system transfer function, the equations related the system
model (EQ 12, 13, 15 and 17) should be replaced by PD equations
(EQ 18, 19, 20 and 21) respectively as below

2

2

()
()

()
p d d

P D
p d d

B K K Z B K Z
f z

Z A K B K B Z K B
+ −

=
− − − −

(18)

where pK and dK represent the proportional and derivative
constant respectively. The time domain behavior then is described
as EQ 19:

1() sin() sin()
() []

sin

n n
p d d

PD

B K K r n BK r n
X n u n

r
θ θ θ

θ

++ + −
=

 (19)

EQ 15 of PI correspondingly is changed into EQ 18 for PD

sin()
2cos sin() sin()

s

s

A K
r

K K
θ θ

θ θ θ θ
+

=
+ −

(20)

Finally, we can use EQ 21 to replace the EQ 17 of PI to achieve
the optimal parameters for PD control to meet the system
performance requirements.

2

D
rK
B

= −

2 cos
p D

A rK K
B

θ−
= −

(21)

4 TESTING AND ANALYSIS
We validate our design by implementing it with the above three
control strategies into a SEDA-based web server [21] and evaluate
our approaches by benchmarking the web server. The testbed
consists of one server machine (2.8 GHz Pentium 4 systems with
1.5 GB of RAM) and a client machine (2.0 GHz Pentium 4
systems with 512MB of RAM). The SEDA web server is
developed with SUN JDK 1.5 as the JAVA platform1 running
Linux kernel v2.6. The client is running synthetic workload
generator based on the SPECweb 99 testing suite [21, 22]. .

Figure 6 demonstrates the performance results of the tests. Here,
we take the same performance tests on each control strategy.
Without human intervention, each controller adaptively tunes the
parameters to the values which achieve the desired throughput
changed at runtime. As the figure shows, our control design is
able to efficiently yield the desired output for SEDA applications
under dynamic loading environment and its behavior is similar to
the above theoretical arguments in the experiment. Despite some
oscillations in the behavior, the controller is very effective at
keeping the performance near the target. The oscillation here
might be resulted by Java’s garbage collection.

Figure 6. the Performance on SEDA-based Web Server

1 We used SUN’s NIO ([1] [14]) to implement non-blocking I/O

Among these four control approaches, the heuristic controller
used in original SEDA shows the slowest adaptation rate, and the
convergent time is strongly affected by the change of the
reference signals. In theory, PI control is a sound way in
improving the system performance by removing the steady-state
error. However, in this case, the controlled system mathematical
model limits the positions of the zeros and poles in the control
function and thus shrinks the scope of and for selections. In terms
of the model constraints, we therefore can obtain the minimum
overshoot at 30% in this experiment as shown in Figure 6. With
regards to the PD control, it demonstrates a promising
performance in this test with greater errors shown in Figure 6.
Contrasting to the above control approaches, P control exhibits the
best performance. It not only has the fastest adaptation rate and
the least errors, the design process of P control is also the simplest.
Moreover, the performance of P control is independent to the
reference signals. In general, steady-state error is viewed as a
significant weakness existing in P control. In this research, we
apply both mathematical proof and experiment results to
demonstrate that our design is good at remedying this problem.

Although in other working environments, PI and PD controller
may perform better than these tests, however, either PI or PD
design process is much more complicated than P control and the
steady-state errors and convergent rate achieved by PI/PD cannot
be better than P. Based on these facts, we argue that proportional
control could be the best selection for this autonomous control
system design.

5 RELATED WORK
Applying control in autonomous computing has attracted a lot of
research efforts. The control approaches generally can be
cataloged into two main streams: one is the admission control
such as queuing control [3, 19], and the other is the feedback-
based control [4, 5, 8, 10, 11]. Besides the two main streams,
some other approaches like neural-fuzzy control [6], resource
containment and service degradation etc [19] also attract some
attention.

In general, the admission control is simpler, but has limitations
like heavy manual costs, slow convergence and fixed policies etc.
The original SEDA is a typical example of admission control. In
contrast to the admission control mechanism, our approach shows
better adaptation performance in a dynamic loading environment,
and demonstrates that it can reduce manual work in parameters
setting and tuning for system design and management.

Feedback-based control approaches exhibit significant advantages
in high quality self-correcting and self-stabilizing. As a result,
recently both software industry [4, 5] and academic community [8]
put a lot of efforts in this area. In [8], Lu and Abdelzaher used PI
control to adaptively adjust the thread pool size and demonstrated
that feedback control is a useful set of tools for managing
resources utilization and QoS. In [4], based on the auto-tune agent
design, IBM took a further step by drawing another argument that
LQR can perform very well for MIMO systems. Our design is
also a kind of the autonomous computing system in this catalog.
Compared with the previous work, our model exhibits the
following advantages. First, our design is a global control strategy,
rather than a single thread pool model-based control approach.
Based on the SEDA pattern, every stage in SEDA works as a
thread-based concurrency model. On some degrees, the single
thread pool model like Apache can be regarded as a special case

of the SEDA architecture that processes all requests in one stage.
This implies that our approach is also available to fully support
the thread pool models if required. Second, we take the service
rate as the performance metric, which gives our control approach
potential to improve other performances. In addition, we exploited
the classical control modules (P, PI, PD) in our auto-tune design.
Compared with other complicated adaptive controls on
autonomous computing, our approach is simple and able to offer
an alternative way to efficiently self-tune the system working in
dynamic workload environments.

As a note, our design currently focuses on web servers running in
single machine. However, our design and approach can be
potentially used to support multiple machines for a complicated
distributed system.

6 CONCLUSIONS
In this paper, we presented and evaluated an auto tune design for
SEDA-based application performance management. Our
contributions include a design of adaptive control model based on
feedback control, as well as developing a practical approach to
optimize the control parameters. A SEDA-based web server was
used to validate our design. Three well-known control models (P,
PI and PD) were evaluated using the SPEC web benchmark
against the web servier. The experimental results show that our
auto-performance controller can effectively optimize the resources
in SEDA-based applications and significantly reduce manual
configurations. Our work demonstrates that, instead of applying
complicated control theory and algorithms, P control based pre-
compensation model is good enough to control multiple-stage
software systems.This makes it feasible to build our approach into
SEDA middleware and apply it for a large range of applications.
In the future, more complicated SEDA-based applications will be
used to further improve and extend our approach.

7 REFERENCES
[1] Beltran V., Carrera D., et al.: Evaluation the scalability of

java event-driven web servers. Proc. of International
Conference on Parallel Processing (ICPP'04), IEEE. (2004)

[2] Benjamin C. Kuo and Golnaraghi F.: Automatic Control
Systems (8th edition), Wiley, ISBN: 0471134767. (2002)

[3] Chen H. and Mohapatra P.: Session-based overload control
in QoS-aware Webservers. Proc. of IEEE INFOCOM2002,
pages 516-524. (2002)

[4] Diao Y., Hellerstein J.L., et al.: Managing web server
performance with autotune agents. IBM System journal Vol
42, No 1, pages 136-149. (2003)

[5] Diao Y., Gandhi N., et al.: Using MIMO feedback control to
enforce policies for interrelated metrics with application to
the Apache Web server. Proc. of the Network Operations and
Management Symposium, Florence, Italy.(2002)

[6] Diao Y., Hellerstein J.L., et al.: Optimizing quality of service
using fuzzy control. Proc. of the 13th IFIP/IEEE
International Workshop on Distributed Systems: Operations
and Management. Springer-Verlag, pages 42--53. (2002)

[7] Liu X., Lui Sha, et al.: Online Response Time Optimization
of Apache Web Server. Proc. of the 11th International

Workshop on Quality of Service (IWQoS 2003), pages 461-
478. (2003)

[8] Lu C., Abdelzaher T.F., et al.: A feedback control
architecture and design methodology for service delay
guarantees in web servers. Technical Report CS-2001-06,
University of Virginia, Department of Computer Science.
(2001)

[9] Menasce D.A. and F.Almeida V.A.: Capacity Planning for
Web Services Metrics, Models, and Methods, Prentice Hall
PTR Upper Saddle River, N.J.07458, ISBN: 0-13-065903-7.
(2002)

[10] Hellerstein J.L., Diao Y., et al.: IBM Research Report:
applying control theory to computing systems. Proc. of
Computer Science RC23459 (W0412-008). (2004)

[11] Hellerstein J.L., Diao Y., et al.: Feedback control of
computing systems, IEEE Press Wiley-Interscience, ISBN:0-
471-26637-X. (2004)

[12] Ljung, L.: System identification: theory for the user 2nd ed.
Upper Saddle River, N.J: Prentice Hall, ISBN: 0136566952.
(1999)

[13] the MathWorks Inc: System Identification Toolbox

[14] SUN Microsystems INC. New I/O APIs.
http://java.sun.com/j2se/1.4.2/docs/guide/nio. (2002)

[15] Oppenheim A.V., Schafer R.W., et al.: Discrete-time signal
processing, Prentice Hall Signal Processing Series, ISBN:
0137549202. (1999).

[16] Vivek S. Pai, Peter Druschel, et al. Flash: An efficient and
portable Web server. Proc. of the USENIX 1999 Annual
Technical Conference. (1999).

[17] Welsh M.: NBIO: Nonblocking I/O for Java
http://www.eecs.harvard.edu/~mdw/proj/java-nbio/

[18] Welsh M.: An architecture for highly concurrent, well-
conditioned internet services (Thesis). Computer Science,
University of California at Berkeley. (2002)

[19] Welsh M. and Culler D.: Adaptive Overload Control for
Busy Internet Servers. Proc. of the Fifth USENIX
Symposium on Internet Technologies and Systems (2003)

[20] Welsh M. and Culler D.: Virtualization considered harmful:
OS design directions for well-conditioned Services. Proc. of
the 8th Workshop on Hot Topics in Operating Systems
(HotOS VIII). (2001)

[21] Welsh M., Culler D., et al.: SEDA:An architecture for well-
conditioned scalable internet services. Proc. of the 18th ACM
Symposium on Operating Systems Principles, anff, Canada.
(2001)

[22] SPECweb99 Benchmark, Copyright © 1995 - 2006 Standard
Performance Evaluation Corporation
http://www.spec.org/web99/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

