
DEPENDENCY PARSING

JOAKIM NIVRE

Contents

1. Dependency Trees 1
2. Arc-Factored Models 3
3. Online Learning 3
4. Eisner’s Algorithm 4
5. Spanning Tree Parsing 6
References 7

A dependency parser analyzes syntactic structure by identifying dependency relations between
words. In this lecture, I will introduce dependency-based syntactic representations (§1), arc-
factored models for dependency parsing (§2), and online learning algorithms for such models
(§3). I will then discuss two important parsing algorithms for these models: Eisner’s algorithm
for projective dependency parsing (§4) and the Chu-Liu-Edmonds spanning tree algorithm for
non-projective dependency parsing (§5).

1. Dependency Trees

In a dependency tree, a sentence is analyzed by connecting words by binary asymmetrical relations
called dependencies, which are categorized according to the functional role of the dependent word.
Formally speaking, a dependency tree for a sentence x can be defined as a labeled directed graph
G = (Vx, A), where Vx = {0, . . . , n} is a set of nodes, one for each position of a word xi in the
sentence plus a node 0 corresponding to a dummy word root at the beginning of the sentence,
and where A ⊆ (Vx×L×Vx) is a set of labeled arcs of the form (i, l, j), where i and j are nodes
and l is a label taken from some inventory L. Figure 1 shows a typical dependency tree for an
English sentence with a dummy root node.

Date: 2013-03-01.

Figure 1. Dependency tree for an English sentence with dummy root node.

1

2 JOAKIM NIVRE

Figure 2. Non-projective dependency tree for an English sentence.

In order to be a well-formed dependency tree, the directed graph must also satisfy the following
conditions:

(1) Root: The dummy root node 0 does not have any incoming arc (that is, there is no arc
of the form (i, l, 0)).

(2) Single-Head: Every node has at most one incoming arc (that is, the arc (i, l, j) rules
out all arcs of the form (k, l′, j) where k 6= i or l′ 6= l).

(3) Connected: The graph is weakly connected (that is, in the corresponding undirected
graph there is a path between any two nodes i and j).

In addition, a dependency tree may or may not satisfy the following condition:

(4) Projective: For every arc in the tree, there is a directed path from the head of the
arc to all words occurring between the head and the dependent (that is, the arc (i, l, j)
implies that i→∗ k for every k such that min(i, j) < k < max(i, j)).

Projectivity is a notion that has been widely discussed in the literature on dependency grammar
and dependency parsing. Broadly speaking, dependency-based grammar theories and annotation
schemes normally do not assume that all dependency trees are projective, because some linguistic
phenomena involving discontinuous structures can only be adequately represented using non-
projective trees. By contrast, many dependency-based syntactic parsers assume that dependency
trees are projective, because it makes the parsing problem considerably less complex. Figure 2
shows a non-projective dependency tree for an English sentence.

The parsing problem for a dependency parser is to find the optimal dependency tree y given
an input sentence x. Note that this amounts to assigning a syntactic head i and a label l to
every node j corresponding to a word xj in such a way that the resulting graph is a tree rooted
at the node 0. This makes the parsing problem more constrained than in the case of phrase
structure parsing, as the nodes are given by the input and only the arcs have to be inferred.
In graph-theoretic terms, this is equivalent to finding a spanning tree in the complete graph
Gx = (Vx, Vx × L × Vx) containing all possible arcs (i, l, j) (for nodes i, j and labels l), a fact
that is exploited in so-called graph-based models for dependency parsing.

Another difference compared to phrase structure parsing is that there are no part-of-speech
tags in the syntactic representations (because there are no pre-terminal nodes, only terminal
nodes). However, most dependency parsers instead assume that part-of-speech tags are part of
the input, so that the input sentence x actually consists of tokens x1, . . . , xn annotated with their
parts of speech t1, . . . , tn (and possibly additional information such as lemmas and morphosyn-
tactic features). This information can therefore be exploited in the feature representations used
to select the optimal parse, which turns out to be of crucial importance.

DEPENDENCY PARSING 3

2. Arc-Factored Models

A widely used graph-based model for dependency parsing is the so-called arc-factored (or edge-
factored) model, where the score of a dependency tree decomposes into the scores of individual
arcs:1

(1) Score(x, y) =
∑

(i,l,j)∈Ay

Score(i, l, j, x)

We use Ay for the arc set of the dependency tree y (that is, y = (Vx, Ay)) and Score(i, l, j, x)
for the score of the arc (i, l, j) for the sentence x. This gives us a parsing model, where the
generative component maps each sentence x to the set of all spanning trees for the node set Vx

(relative to some label set L):

(2) GEN(x) = {y | y is a spanning tree in Gx = (Vx, Vx × L× Vx)}
The evaluative component then ranks candidate trees according to their arc-factored score and
returns the one with the highest score:

(3) y∗ = argmax
y∈GEN(x)

EVAL(x, y) = argmax
y∈GEN(x)

∑
(i,l,j)∈Ay

Score(i, l, j, x)

The scoring function for arcs can be implemented in many ways but usually takes the form of a
linear model:

(4) Score(i, l, j, x) =

K∑
k=1

fk(i, l, j, x) ·wk

In this model, every function fk(i, l, j, x) is a numerical (often binary) feature function, represent-
ing some salient property of the arc (i, l, j) in the context of x, and wk is a real-valued feature
weight, reflecting the tendency of fi(i, l, j, x) to co-occur with good or bad parses. Note that
this is a linear model of essentially the same type that we saw in the previous lecture, but it is
not a log-linear model because the scores are not normalized to form a probability distribution.
As a matter of historical tradition, dependency parsers tend to use purely discriminative models
instead of probability models, but there is no principled reason why this should be the case. With
a linear discriminative scoring model for arcs, the final form of the arc-factored model becomes:

(5) y∗ = argmax
y∈GEN(x)

EVAL(x, y) = argmax
y∈GEN(x)

∑
(i,l,j)∈Ay

K∑
k=1

fk(i, l, j, x) ·wk

Since this model contains no grammatical rules at all, parsing accuracy is completely dependent
on the choice of good features. Table 1 shows a selection of typical feature templates for arc-
factored dependency parsing.

3. Online Learning

Learning the weights of an arc-factored model can be done in many ways, but the most popular
approach is to use an online learning algorithm that parses one sentence at a time and updates
the weights after each training example with the goal of minimizing the number of errors on
the training corpus. Here we will only consider the structured perceptron algorithm, which is
the simplest of these learning algorithms. For a discussion of more sophisticated margin-based
methods, see McDonald et al. (2005a).

1This model is sometimes referred to as a first-order graph-based model, because it only considers one arc
in isolation. In the next lecture, we will consider higher-order graph-based models, which incorporate structures
consisting of more than one arc.

4 JOAKIM NIVRE

Unigram Features Bigram Features In-Between PoS Features
xi-word, xi-pos xi-word, xi-pos, xj-word, xj-pos xi-pos, b-pos, xj-pos
xi-word xi-pos, xj-word, xj-pos Surrounding PoS Features
xi-pos xi-word, xj-word, xj-pos xi-pos, xi+1-pos, xj−1-pos, xj-pos
xj-word, xj-pos xi-word, xi-pos, xj-pos xi−1-pos, xi-pos, xj−1-pos, xj-pos
xj-word xi-word, xi-pos, xj-word xi-pos, xi+1-pos, xj-pos, xj+1-pos
xj-pos xi-word, xj-word xi−1-pos, xi-pos, xj-pos, xj+1-pos

xi-pos, xj-pos

Table 1. Arc-factored feature templates fk(i, l, j, x) for the arc (i, l, j) in the
context of sentence x (McDonald, 2006). Notation: w-word = word form of w;
w-pos = part-of-speech tag of w; b = any word between wi and wj . Binarization
is used to obtain one binary feature for each possible instantiation of a template.

The structured perceptron algorithm was proposed by Collins (2002) as a generalization of
the basic perceptron algorithm (Rosenblatt, 1958). The general idea in both cases is that we
start with some initial weights (usually zero) and then process each training example using our
current weights. If our model predicts the correct output, we do nothing (because our model did
not perform an error). If our model predicts an incorrect output, we update our weights in such
a way that we are less likely to make an error on the same example next time, by simply adding
weight to the features of the correct output and subtracting weight from the features of the
incorrectly predicted output. We keep iterating over the training examples multiple times either
until we reach some termination criterion or (more commonly) for a fixed number of iterations.

The structured perceptron algorithm, as it applies to the arc-factored model for dependency
parsing, is given in Figure 3. After the entire weight vector w has been initialized to zero (line
1), there is an outer loop over training iterations (line 2) and an inner loop over sentences in the
training set (line 3). For each sentence on each iteration, we parse the sentence using the current
weights (line 4). If the output parse y∗ is different from the treebank parse yi for sentence xi

(line 5), we update the weight vector with respect to y∗ and yi (line 6). After we have completed
all iterations, we return the final weight vector (line 7).2

The learning algorithm in Figure 3 uses two subroutines. The subroutine Parse(xi,w) is
simply a parser, or decoder, for the arc-factored model, which is the topic of the next two sections
and will be treated as a black box for now. The subroutine Update(w, y∗, yi) is specified in
Figure 3 and updates the weight wk by subtracting the value fk(i, l, j, x) for every arc (i, l, j)
in the predicted parse y∗ and adding the value fk(i, l, j, x) for every arc (i, l, j) in the predicted
parse y∗. Assuming that all features are binary, this will be equivalent to updating wk by the
difference between the number of times the feature fk(i, l, j, x) is active (has value 1) in the good
and bad parse, respectively. Other things being equal, this means that the good parse will get
a higher score next time, while the bad parse will get a lower score. Whether the model will
actually prefer the good parse next time depends on the magnitude of the difference as well as
what happens with other sentences in the training set until the next iteration.

4. Eisner’s Algorithm

In order to use the arc-factored model for parsing, we need an efficient algorithm for decoding,
that is, for finding the highest scoring dependency tree y for a given sentence x. Moreover, if we

2In practice, better results are usually obtained if, instead of returning the final weight vector, we return the
average of all weight vectors seen during training. For a theoretical motivation of averaging, see Collins (2002).

DEPENDENCY PARSING 5

Training data: T = {(xi, yi)}|T |i=1

1 w← 0
2 for n : 1..N
3 for i : 1..|T |
4 y∗ ← Parse(xi,w)
5 if y∗ 6= yi

6 w← Update(w, y∗, yi)
7 return w

Parse(x,w)

1 return argmaxy∈GEN(xi)

∑
(i,l,j)∈Ay

∑K
k=1 fk(i, l, j, xi) ·wk

Update(w, y∗, yi)
1 for k : 1..K
2 for (i, l, j) ∈ Ay∗

3 wk ← wk − fk(i, l, j, x)
4 for (i, l, j) ∈ Ayi

5 wk ← wk + fk(i, l, j, x)

Figure 3. The structured perceptron algorithm for arc-factored dependency parsing.

want to use perceptron learning (or similar algorithms), an efficient decoding algorithm is needed
also for learning the weights of the model. In this section, we look at the standard algorithm for
arc-factored dependency parsing under the projectivity constraint: Eisner’s algorithm (Eisner,
1996, 2000). In the next section, we consider the more general case, where non-projective trees
are allowed as well.

As long as we restrict ourselves to projective trees, we can build dependency trees by a dynamic
programming algorithm very similar to the CKY algorithm. In fact, we can define a special kind
of head-lexicalized (P)CFG that generates parse trees isomorphic to dependency trees. However,
besides the fact that the arc-factored model does not have a any proper grammar rules, the time
complexity of lexicalized PCFG parsing is O(n5), while Eisner’s algorithm achieves lexicalized
parsing in O(n3) by exploiting the special properties of dependency trees. The key idea is to
use a split-head representation, that is, to let the chart cells represent half-trees instead of trees,
which means that we can replace the indices for lexical heads (one in each half of the new
subtree) by boolean variables indicating whether the lexical head is at the left or at the right
periphery of the respective half-trees. In addition, we need to two combinatory operations, one
for adding a dependency arc between the heads of two half-trees to form an incomplete half-tree,
and one for subsequently combining this incomplete half-tree and with a complete half-tree to
form a larger complete half-tree. Figure 4 gives a schematic representation of this process for
left-headed dependencies and contrasts it with the CKY algorithm.

Pseudo-code for Eisner’s algorithm can be found in Figure 5. First of all, note that this is an
algorithm for unlabeled parsing, that is, where an arc is simply a pair of nodes (i, j) without any
label. This is because, in the arc-factored model, the highest scoring labeled dependency tree is
always the highest scoring unlabeled dependency tree with the highest-scoring label for each arc
(because there is no interaction between the choice of labels for different arcs). Therefore, we can
improve efficiency during parsing by only adding labels in a post-processing step, possibly using
a different model for choosing labels. Eisner’s algorithm is a dynamic programming algorithm

6 JOAKIM NIVRE

Figure 4. Comparison of the chart items in the CKY algorithm (left) and
Eisner’s algorithm (right).

that computes chart items of the form C[i][j][d][c], where i and j are the leftmost and rightmost
words of the substring spanned by the item, d is ← if the head word is at the right periphery
and → if it is at the left periphery, and c is 1 for complete items – a word and all its left or right
half-tree – and 0 for incomplete items – two words connected by an arc and their inside half-trees
(cf. Figure 4). The value stored in C[i][j][d][c] is the score of the highest scoring substructure with
this signature. To be able to retrieve the actual structure we need to maintain a corresponding
chart with back-pointers, which are omitted in Figure 5.

Parsing is initialized by setting the score of every possible one-word item (left-headed, right-
headed, complete and incomplete) to zero (lines 1–2). We then loop over span lengths m from
smaller to larger (line 3) and over start positions i from left to right (line 4), setting the end
position to i+m (line 5). We first find the best incomplete items from i to j by finding the best
split position k and adding up the scores of the left and right halves plus the score of the new
arc, either (j, i) (line 6) or (i, j) (line 7). Note that the two (complete) items being combined
must have i and j as their heads. Next, we find the best complete items from i to j by again
finding the best split position k but this time only adding up the scores of one incomplete and
one complete item having the same head, producing a complete item with the head to the right
(line 8) or to the left (line 9). Finally, we return the highest-scoring complete item spanning 0
to n and with its head to the left.3 It is easy to see that the parsing complexity is O(n3) since
there are two nested for loops plus a loop hidden in the max operation, all of which take O(n)
time. This is considerably better than O(n5) for a naive adaptation of the CKY algorithm.

Eisner’s algorithm was first put to use in Eisner (1996), who combined it with a generative
probability model to create one of the first statistical dependency parsers. Later on, it was
picked up by McDonald et al. (2005a), who instead used an arc-factored discriminative model
and online learning (as described in the two preceding sections) to reach state-of-the-art accuracy
for dependency parsing of English and Czech.

5. Spanning Tree Parsing

We noted earlier that a dependency tree y for a sentence x is a (directed) spanning tree in the
complete graph Gx = (Vx, Vx × L × Vx) (or Gx = (Vx, Vx × Vx) for unlabeled trees). Moreover,
given an arc-factored model, finding the highest scoring dependency tree y for a sentence x is
equivalent to the graph-theoretic problem of finding a weighted maximum spanning tree in Gx,
where the weight of an arc (i, l, j) is simply Score(i, l, j, x). From this perspective, Eisner’s
algorithm can be regarded as an algorithm for finding a projective maximum spanning tree. So

3This presupposes that we use a dummy root node indexed 0 and prefixed to the sentence. If we do not use a
dummy root node, we instead return argmaxi C[1][i][←][1] + C[i][n][→][1].

DEPENDENCY PARSING 7

1 for i : 0..n and all d, c
2 C[i][i][d][c]← 0.0
3 for m : 1..n
4 for i : 0..n−m
5 j ← i+m
6 C[i][j][←][0]← maxi≤k<j C[i][k][→][1] + C[k+1][j][←][1] + Score(j, i)
7 C[i][j][→][0]← maxi≤k<j C[i][k][→][1] + C[k+1][j][←][1] + Score(i, j)
8 C[i][j][←][1]← maxi≤k<j C[i][k][←][1] + C[k][j][←][0]
9 C[i][j][→][1]← maxi≤k<j C[i][k][→][0] + C[k][j][→][1]
10 return C[0][n][→][1]

Figure 5. Eisner’s cubic-time algorithm for arc-factored dependency parsing.
Items of the form C[i][j][d][c] represent subgraphs spanning from word i to j;
d =← if the head is at the right periphery and d =→ if the head is at the
left periphery (the arrow pointing towards the dependents); c = 1 if the item is
complete (that is, contains a head and its complete half-tree on the left/right)
and c = 0 if the item is incomplete (that is, contains a head linked to a dependent
with both inside half-trees).

what do we do if we want to allow non-projective trees as well? Finding a maximum spanning
tree without the projectivity constraint is a harder problem that cannot be efficiently solved
using dynamic programming. Fortunately, we can instead use standard algorithms from graph
theory for finding a maximum spanning tree in a directed graph, such as the Chu-Liu-Edmonds
algorithm (Chu & Liu, 1965; Edmonds, 1967).

This is a greedy recursive algorithm that starts by building a graph where every node (except
the designated root node) has its highest-scoring incoming arc. If this graph is a tree, it must be
the maximum spanning tree. If it is not a tree, it must contain at least one cycle. The algorithm
then identifies a cycle, contracts the cycle into a single node and calls itself recursively on the
smaller graph. The key idea is that a maximum spanning tree for the smaller contracted graph
can be expanded to a maximum spanning tree for the larger initial graph, which means that
when the recursion bottoms out (which it must do because the graphs keep getting smaller),
we can construct successively larger solutions until we have the maximum spanning tree for the
original graph. Every recursive call takes O(n2) time, and there can be at most O(n) recursive
calls, which means that the Chu-Liu-Edmonds algorithm can be used to perform non-projective
dependency parsing with the arc-factored model in O(n3) time.4 For the details of this algorithm,
see McDonald et al. (2005b).

The use of spanning tree algorithms for non-projective spanning tree parsing was pioneered by
McDonald et al. (2005b). Using the Chu-Liu-Edmonds algorithm together with an arc-factored
model, they showed that parsing accuracy could be improved significantly for a language like
Czech, where non-projective dependency trees are common, compared to a parser using the same
model with Eisner’s projective algorithm.

References

Y. J. Chu & T. H. Liu (1965). ‘On the Shortest Arborescence of a Directed Graph’. Science
Sinica 14:1396–1400.

4There is even an optimisation due to Tarjan (1977) that brings the complexity down to O(n2), paradoxically
making non-projective parsing asymptotically faster than projective parsing with the arc-factored model.

8 JOAKIM NIVRE

M. Collins (2002). ‘Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms’. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1–8.

J. Edmonds (1967). ‘Optimum Branchings’. Journal of Research of the National Bureau of
Standards 71B:233–240.

J. M. Eisner (1996). ‘Three new probabilistic models for dependency parsing: An exploration’.
In Proceedings of the 16th International Conference on Computational Linguistics (COLING),
pp. 340–345.

J. M. Eisner (2000). ‘Bilexical grammars and their cubic-time parsing algorithms’. In H. Bunt
& A. Nijholt (eds.), Advances in Probabilistic and Other Parsing Technologies, pp. 29–62.
Kluwer.

R. McDonald (2006). Discriminative Learning and Spanning Tree Algorithms for Dependency
Parsing. Ph.D. thesis, University of Pennsylvania.

R. McDonald, et al. (2005a). ‘Online Large-Margin Training of Dependency Parsers’. In Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 91–98.

R. McDonald, et al. (2005b). ‘Non-Projective Dependency Parsing using Spanning Tree Algo-
rithms’. In Proceedings of the Human Language Technology Conference and the Conference on
Empirical Methods in Natural Language Processing (HLT/EMNLP), pp. 523–530.

F. Rosenblatt (1958). ‘The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain’. Psychological Review 65(6):386–408.

R. E. Tarjan (1977). ‘Finding Optimum Branchings’. Networks 7:25–35.

