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Abstract

Expanders are graphs that are sparse, yet highly connected. In this thesis, we consider an
elementary algorithm for constructing expanders, how to use them for proving hardness of ap-
proximation, how to utilize expanders for obtaining better approximations and their relation to
the parallel-repetition technique.

In Chapter 2 we consider the ”Optimal” Parallel Repetition and its application.
Finding tight thresholds for the approximability of NP -hard optimization problems has been

an ongoing successful study in complexity theory. When NP -hardness cannot be obtained, one
can reduce from problems whose complexity is not yet classified as in P or NP -hard. A recently
popular such problem is the (in)approximability of an almost completely satisfiable UniqueGame
to within an arbitrarily small constant.

Khot, Kindler, Mossel and O’Donnell [KKMO04] showed a reduction from this problem to the
problem of approximating MaxCut for any approximation that is even slightly better than the
efficient algorithm of Goemans & Williamson [GW95]. A most interesting and important open
problem is whether there exists an efficient reduction in the other direction. Such a reduction
would imply that the complexity of UniqueGame as well as all other problems shown hard for
it depend on the complexity of approximating MaxCut.

The Parallel Repetition technique —or a variation thereof— can yield such a reduction, as
long as it is proven to behave ”optimally”, namely so that the upper-bounds for satisfiability
match the known lower-bounds.

This chapter presents such upper-bound albeit only for instances with good expansion prop-
erties, and as long as the lower-bound on the satisfiability of the generated instance is some
universal constant. Additionally, an ”optimal” upper-bound that applies to any Constraint-
Graph is proved for another variation of the Parallel-Repetition instance. Unfortunately, it does
not preserve the uniqueness property.

Such analysis also has algorithmic consequences: it allows converting an approximation algo-
rithm of expander instances for one set of parameters (error, size of alphabet and approximation
ratio) into another, so that an optimal algorithm for one such set of parameters suffices to obtain
optimal approximations for all the others. This chapter is based on the paper [SS07].

In Chapter 3 we describe a short and easy to analyze construction of constant-degree ex-
panders. Expanders are some of the most widely used objects in theoretical computer science.
Many algorithm were suggested for constructing such graphs (see Chapter 3 for further discussion).

Our construction relies on the replacement product, applied by [RVW02] to give an iterative
construction of bounded-degree expanders. Here we give a simpler construction, which applies the
replacement product, only a constant number of times, to turn the Cayley expanders of [AR94],
whose degree is polylog n, into constant degree expanders. This allows us to prove the required
expansion using a new simple combinatorial analysis of the replacement product (instead of the
spectral analysis used in [RVW02]). This chapter is based on the paper [ASS07].

In Chapter 4 we study the complexity of bounded packing problems, mainly the problem



of k-SetPacking. We prove that k-SetPacking cannot be efficiently approximated to within
a factor of O( k

ln k ) unless P = NP . This improves the previous factor of k

2Ω(
√

ln k)
by Trevisan

[Tre01].
This result extends to the problem of k-DimensionalMatching and the problem of Inde-

pendentSet in (k + 1)-claw-free graphs. To this end we introduce and studey the notion of
hyper-disperser. This chapter is based on the paper [HSS06].
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Chapter 1

Introduction

A Short History

Distinguishing between feasible problems —those computable in polynomially bounded
time— and the infeasible ones —those that need more time resources— remains one of the
main goals of computational complexity. Cook, Karp and Levin [Coo71, Kar72, Lev73]
demonstrated in the early 70’s that a large class of natural combinatorial problems, whose
feasibility was not yet settled, are all equivalent in this respect: either all are feasible or
none of them is. This class is known as NP -Complete.

The feasibility of solving those problems is the question whether P = NP . This question
is considered the most important open problem of computer science. Therefore, when
approaching an optimization problem that is known to be NP -Complete, one does not
expect to find an exact solution, as this would resolve the P vs. NP open problem.

Much research effort is therefore invested in obtaining polynomial time approximation
algorithms polynomial-time approximation algorithm that guarantee a “good-enough” so-
lution for every input.

Unfortunately, for many problems, an approximate solution is as hard to obtain as
an exact one. This fact is interpreted as inapproximability for those problems. Many
inapproximability proofs rely on the seminal PCP Theorem [FGL+96, AS92, ALM+98,
Din07].

For some problems, this strong theorem strengthen the inapproximability factors, al-
lowing, in some cases, a sharp threshold. That is, there is a factor so that approximating
the problem to within this factor is feasible, but approximating it even slightly better is
NP -hard.

Nevertheless, the complexity of approximating several problems was not thus resolved,
and a gap still exists between the known efficient approximation guarantee and the best
NP -hardness factor demonstrated.



2 Introduction

1.1 On Parallel-Repetition, Unique-Game and Max-

Cut

Between P and NP -hard. Consider a problem that is neither known to be in P nor
is it known to be NP -hard. An alternative option one has to consider for such a problem,
is that it may in fact be neither in P nor in NP -hard. Unless P = NP , there are such
problems. That is, let NPI = NP \ (P ∪ NP − hard); then if P 6= NP then NPI 6= ∅
[Lad75].

No natural problem has yet been proven to be in NPI, even assuming NPI exists, i.e,
P 6= NP . There are, however, a few promising, well studied candidates. For example,
approximating ClosestVector and ShortedtVector problems to within factors of
some polynomial range (see [Sch87, Ban93, GG00, AR05]), GraphIsomorphism [BHZ87]
and Factoring (the decision version). These problems are not known to be in P , while
proving any of them to be NP -hard would imply the collapse of the polynomial time
hierarchy.

For any NPI prospective problem A, define the class A-hard to be the class of all prob-
lems having a polynomial time reduction from A, and the equivalence class A-Complete
to be the class of all problems having a polynomial time reduction to and from A. Show-
ing reductions among NPI candidates would help sort the complexity of these problems.
Any reduction between the problems above would be a major step in understanding these
problems.

Such reductions have been shown between approximation problems that are neither
known to be in P , nor in NP -hard. A recently popular such NPI candidate to reduce
from, is the Gap-UniqueGame- [ε, 1− ε] (for arbitrarily small ε > 0). Denote its hardness
class by UG-hard∗. Khot [Kho02] conjectured this problem to be NP -hard, however, no
evidence for this problem being either in P or NP -hard has been shown. When there is a
gap between the best NP -hardness of approximation factor and the known approximation
guarantee, a tight threshold may sometimes exist between P and UG-hard.

Which comes first: the Chicken or the Egg? Following Khot, Kindler, Mossel and
O’Donnell [KKMO04], we would like to consider MaxCut as a possible substitute for
UniqueGame. By their reduction it is already known that Gap-MaxCut- [1− c

√
ε, 1− ε],

(where c is any constant smaller than 2
π
) is UG-hard. Showing a reduction in the other

direction would imply the complexity of UniqueGame and all problems shown hard for
it relies on the hardness of MaxCut. This suggestion, as well as a variant of the next
conjecture are already addressed in a paper by Feige, Kindler and O’Donnell, (see [FKO07],
section ”Strong Parallel-Repetition Problem”).

∗Indeed Gap-UniqueGame- [ε, 1− ε] is a different problem for every ε > 0. Saying that A is UG-hard
denotes the fact that there exists an ε > 0 so that Gap-UniqueGame- [ε, 1− ε] ≤P A
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Hence, showing an efficient algorithm for UniqueGame requires “only” improving on
Goemans-Williamson polynomial time approximation algorithm [GW95] for MaxCut. On
the other hand, proving all these problems NP -hard must imply a meaningful improve-
ment on the technique of Trevisan et al. [TSSW00] and H̊astad’s NP -hardness factor for
MaxCut [H̊as01]. Both of these tasks seem clearer than for the UniqueGame problem,
and well beyond current technique.

A possible technique for proving this conjecture is to apply Parallel-Repetition to Gap-
MaxCut and obtain Gap-UniqueGame instance. As is later shown, the current pa-
rameters known for Parallel-Repetition (by [Raz98, Hol07]) are not strong enough to be
applied here. Such an analysis of Parallel-Repetition may in fact exist, which would imply
the previous conjecture, i.e, a MaxCut-hardness for all UG-hard problems.

Parallel-Repetition

The kth Parallel-Repetition of a ConstraintGraph instance U is an instance U⊗k of
ConstraintGraph problem, where the new vertices are k-tuples of the original vertices,
two new vertices are connected if the k corresponding edges exist in U and the constraints
are naturally defined as the disjunction of the k corresponding original constraints. Note
that the uniqueness is preserved, namely, the Parallel-Repetition of a UniqueGame in-
stance is a UniqueGame instance.

If U is 1−ε satisfiable, then U is at least 1−ε satisfiable, as one can take an assignment
to U that is entirely consistent with the optimal assignment to U . This assignment is not
necessarily the best one [FRS90].

There is, however, a qualitatively similar upper-bound on the satisfiability of U. Raz

[Raz98] and Holenstein [Hol07] showed that U is at most
(
1− ε3

6000

) k
2 lg |Σ|

satisfiable, where

|Σ| is the alphabet size of U .
Unfortunately, the cubic power of ε in this upper-bound does not allow using this

analysis for the goal of showing MaxCut-hardness for UniqueGame.
Therefore, for this goal (and for other uses, as we later discuss) we are interested in

improving the parameters of the upper-bound analysis of the Parallel-Repetition (the power
on ε, the dependency on |Σ|), or alternatively, suggesting other uniqueness preserving
amplification techniques which would allow such improvements.

1.1.1 Our Contribution

The case of the Hard-boiled Egg: This chapter presents two variants of the Parallel-
Repetition: the Noisy-Parallel-Repetition and the Expanding-Parallel-Repetition. In the
first variant we add self-loops (with equality constraints) to the original instance before
performing the original Parallel-Repetition. In the second variant, in addition to the self-
loops, we add a graph with large spectral-gap (say a complete graph or a constant degree
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expander), with trivial constraints, before performing the original Parallel-Repetition.

We show nothing regarding the original Parallel-Repetition technique. However, we
show that the two variants of the Parallel-Repetition technique perform “optimally”, i.e,
the success probability decays exponentially fast with k, regardless of the alphabet size and
with no power on ε. Unfortunately, the analysis we provide for these amplifications works
only down to some constant error probability of the generated instance.

The Noisy-Parallel-Repetition variant preserves the uniqueness property, but works only
for good expanders (or union of disjoint expanders). The Expanding-Parallel-Repetition
variant works well for any instance, but does not preserve the uniqueness property.

Unfortunately both variants are not sufficient for the goal of proving MaxCut-hardness
for UniqueGame. For this goal we need a uniqueness preserving amplification that works
for any graph, can be utilized to obtain any (arbitrarily small) soundness, and has an
“optimal” amplification rate.

Note that, in contrast to [Raz98, Hol07], our proof does not necessarily work for the
2-prover model, but only for the purpose where Parallel-Repetition is most often applied:
amplifying hardness of approximation.

We also show some algorithmic application to these variants.

1.2 An Elementary Construction of Constant-Degree

Expanders

Expanders are graphs, that are simultaneously sparse, yet highly connected, in the sense
that every cut contains (relatively) many edges.

A d-regular graph G = (V,E) is a δ-expander if for every set S ⊆ V of size at most
1
2
|V | there are at least δd|S| edges connecting S and S = V \ S.

Another widely used notion of expansion is based on algebraic properties of a matrix
representation of the graph. Let G = (V,E) be an n-vertex d-regular graph, and let A be
the adjacency matrix of G, that is, the n× n matrix, with Ai,j being the number of edges
between i and j. It is easy to see that 1n (the uniform vector) is an eigenvector of A with
the largest eigenvalue d, and that this is the only eigenvector with this eigenvalue iff G is
connected. We denote by λ2(G) the second largest eigenvalue of A. It is easy to see that
λ2(G) = max06=x⊥1n〈Ax, x〉/〈x, x〉. Let γ = 1 − λ2

d
be the (normalized) spectral-gap of G.

By [Alo86, AM85, Dod84] we know a quantitative relation between the edge expansion and
the spectral-gap:

γ

2
≤ δ ≤

√
2γ
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1.2.0.1 Usefulness

Expanders are some of the most widely used objects in theoretical computer science, and
have also found many applications in other areas of computer-science and mathematics. See
the survey of Hoory et. al. [HLW06] for a discussion of several applications and references.

Expanders of Constant Degree. The most useful expanders are those with constant
degree. A priori, it is not clear that constant-degree expanders even exist. Pinsker [Pin73]
established their existence, using a probabilistic argument. In most applications, however,
one needs to be able to efficiently construct constant degree expanders explicitly.

Explicit Expanders. There are two notions of constructibility of d-regular expanders.
The first (weaker) notion requires the n-vertex graph to be constructible in polynomial
time in its size. The second (stronger) notion requires that given a vertex v and i ∈ [d] it
would be possible to generate the ith neighbor of v in time polynomial in the representation
of v, namely, Poly(|v|) = Poly(log n). Such an expander is said to be fully explicit.

In applications where one needs to use the entire graph, it is often enough to use the
weaker notion. However, in such cases (e.g. in certain reductions) one frequently needs to
be able to construct a graph of a given size n.

In other cases, where one needs only part of the expander (e.g., when performing a
random walk on a large expander) one usually needs the stronger notion of fully explicitness.
However, in these cases it is usually enough to be able to construct an expander of size
Poly(n), as what we are interested in is actually the logarithm of the size of the graph.

Explicit Expanders and Spectral Analysis. Margulis [Mar73] and Gabber and Galil
[GG81] were the first to efficiently construct constant degree expanders. Following was a
sequence of works that culminated in the construction of Lubotzky, Phillips and Sarnak
[LPS88] and Margulis [Mar88] of Ramanujan Graphs. These constructions rely (directly
or indirectly) on estimations of the second largest eigenvalue of the graphs, and some of
them, rely on deep mathematical results.

A simpler, iterative construction was given by Reingold, Vadhan and Wigderson [RVW02].
This construction relies on proving the expansion of the graphs by estimating their eigen-
values, and is the first construction of constant degree expanders with relatively elementary
analysis.

1.2.1 Our Contribution

We describe a short and easy to analyze construction of constant-degree expanders. The
construction yields an explicit constant-degree expander of any desired size. A slight vari-
ation of the construction gives a fully-explicit constant-degree expander of size that is at
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most polynomially larger than the input parameter n (which, as mentioned above, suffices
for most cases where fully-explicitness is required).

The construction relies on the replacement product, and on the poly-logarithmic degree
expander construction of [AR94]. As our construction uses the replacement product only
a constant number of times, this enables us to prove the required expansion using a simple
combinatorial analysis of the replacement product (instead of the spectral analysis used in
[RVW02]).

1.3 k-Set Packing and Related Problems

In Chapter 4 we consider the SetPacking problem. The input to SetPacking is a set
of elements and a family of subsets of the elements. The objective is to find a maximal
number of disjoint subsets.

We examine the change in the complexity of this problem when bounds are applied to
it. In particular, we try to illustrate the connection between the bounded parameters (e.g,
sets size, occurrences of elements) and the complexity of the bounded problem.

It is already known that bounded variants of optimization problems are often easier
to approximate than the general, unbounded problems. The IndependentSet prob-
lem illustrates this well: it cannot be approximated to within O(N1−ε) unless P = NP
[H̊as99, Zuc07]. Nevertheless, once the input graph has a bounded degree d, much better
approximations exist (e.g, a d log log d

log d
approximation by [Vis96]).

The general problem of SetPacking has been extensively studied (for example [Wig83,
BYM84, BH92, H̊as99, Zuc07]). Quite tight approximation algorithms and inapproximabil-
ity factors are known for this problem. H̊astad [H̊as99] proved that SetPacking cannot
be approximated to within O(N1−ε) unless NP ⊆ ZPP (for every ε > 0, where N is the
number of sets). Recently Zuckerman [Zuc07] showed the same inapproximability factor
under p 6= NP assumption. The best approximation algorithm achieves an approximation
ratio of O( N

log2 N
) [BH92]. In contrast, the case of bounded variants of this problem seems

to be of a different nature.

Bounds on SetPacking. k-SetPacking is the problem of SetPacking where the
size of each subset is bounded by k. Another natural bound is the colorability of the
input. That is, the minimal number of colors needed for coloring the elements, so that no
two elements of the same color participate in a joint subset. We denote this problem by
k-DimensionalMatching.

These bounded variants of SetPacking are known to admit approximation algorithms
better than their general versions, the quality of the approximation being a function of the
bounds (see Chapter 4 for details).

With some abuse of notations, one can say that hardness of approximation factor of
SetPacking is a monotonous increasing function in each of the bounded parameters: the
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sets size, the number of occurrences of each element and the colorability. For example,
inapproximability factor for instances where each set is of size at most 3 holds for instances
where the bound is 4.

For large k values, we are usually interested in the asymptotic dependence of the ap-
proximation ratio (and inapproximability factor) on k. Currently, the best polynomial time
approximation algorithm for k-SetPacking achieves an approximation ratio of k

2
[HS89].

This is, to date, the best approximation algorithm for k-DimensionalMatching as well.
Alon et al. [AFWZ95] proved that k-SetPacking is NP -hard to approximate to

within kc − ε (for some c > 0 and for suitably large k). This was later improved [Tre01] to
a factor of k

2Ω(
√

ln k)
.

1.3.1 Our Contribution

We improve the known inapproximability factor for the variant k-SetPacking, and show
that it is NP -hard to approximate k-SetPacking to within O

(
k

ln k

)
.

This result is then extended to hold for k-DimensionalMatching (and shown to hold
for IndependentSet in (k + 1)-claw-free graphs).

For proving this inapproximability, we introduce and study the notion of Hyper Dis-
perser which is a the natural generalization of a disperser graph, applied to hyper graphs.
This object is used to enforce consistency. The optimality of the hyper-dispersers obtained,
allows utilizing it in a way that performs better than using many dispersers in parallel.
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1.4 Collaborators

Chapter 2 is based on the paper [SS07] written in collaboration with Muli Safra. Chapter
3 is based on the paper [ASS07] written in collaboration with Noga Alon and Asaf Shapira.
Chapter 4 is based on the paper [HSS06] written in collaboration with Elad Hazan and
Muli Safra.

The following papers are not included in this thesis: the paper [BASTS07] written with
Avi Ben-Aroya and Amnon Ta-Shma, the paper [AAS06] written in collaboration with Adi
Avidor and Amitai Armon, and the paper [SS05] written in collaboration with Muli Safra.
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1.5 General Preliminaries

1.5.1 Expanders

Expanders are graphs that are simultaneously sparse, yet highly connected, in the sense
that every cut contains (relatively) many edges.

The relevance of graph eigenvalues to its expansion is well studied. The relation between
the expansion of the graph and its second largest eigenvalue is often used to bound the
mixing time of random walks. Utilizing the expansion of a graph or its mixing time proves
to be useful in the context of NP -hardness as well (e.g, [PY88, Din07]).

Let G = (V, E) be a d-regular graph with adjacency matrix M . The normalized spectral-

gap γ of G is γ(G) = 1− λ2(A)
d

where λ2(A) is the second-largest eigenvalue of A. We say
that G as γ-expander.

The relative edge expansion h of G is h(G) = minS⊆V,|S|≤ 1
2
|V |

|E(S,V \S)|
d|S| .

Theorem 1.1 (Expander theorem). [Alo86, AM85, Dod84] Let G = (V,E) be a γ-
expander, with relative edge expansion h. Then,

1

2
γ ≤ h ≤

√
2γ

1.5.2 Approximations

We usually use the convention of approximation ratio larger than 1 for maximization prob-
lems, and smaller than 1 for minimization problems. Formally,

Let O be an optimization problem, let ALG be an approximation algorithm for this
problem, and let I be an instance of O. Denote by OPT (I) the optimal solution for I, and
by ALG(I) the solution found by ALG applied to I. Denote by r the ratio of these two:

r = max{ |ALG(I)|
|OPT (I)| ,

|OPT (I)|
|ALG(I)|}. Then we say that ALG is a c-approximation for O if for every

input I, r ≤ c. For maximization problems, we sometimes refer to the approximation ratio
(and inapproximability factor) as c′ = 1

c
(thus it is smaller than 1).

PTAS and FPTAS. A Polynomial Time Approximation Scheme (PTAS) for a maxi-
mization (minimization) problem O, is an approximation algorithm ALG that, given an
input instance I and a parameter ε > 0, ALG computes a c approximation for I in time t,
where c ≤ 1 + ε and t = Polyε(|I|). That is, for every fixed ε > 0 the running time of ALG
is polynomial, but the dependency of the running time in ε is not bounded.

If t = Poly(|I|, 1
ε
) then we say that ALG is a Fully Polynomial Time Approximation

Scheme (FPTAS).
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1.5.3 Gap-Problems

In order to prove inapproximability of an optimization problem, one usually defines a
corresponding gap problem. Recall the definition of gap-problems:

Definition 1.2 (Gap Problem - Minimization). Let O be a minimization problem.
Gap-O- [α, β] is the following decision problem:
Given an input instance, decide whether

• there exists a solution of size at most α, or

• every solution of the given instance is of size larger than β.

If the size of the solution resides between these values, then any output suffices.

Similarly,

Definition 1.3 (Gap problem - Maximization). Let O be a maximization problem.
Gap-O- [α, β] is the following decision problem:
Given an input instance, decide whether

• there exists a solution of fractional size at least β, or

• every solution of the given instance is of fractional size smaller than α.

If the size of the solution resides between these values, then any output suffices.

Clearly, for any optimization problem, if Gap-O- [α, β] is NP -hard, then it is NP -hard
to approximate O to within any factor smaller than β

α
.



Chapter 2

On Parallel-Repetition,
Unique-Game and Max-Cut

2.1 Introduction

Proving UG-hardness of approximation where NP -hardness of approximation is not known,
has recently been proven to be a fruitful technique. In some cases, the UG-hard fac-
tors match the known approximation guarantee. For example, the best NP -hardness of
approximating VertexCover is 1.3606 [DS02], where the best UG-hardness is 2 − ε
[KR03], matching the known 2-approximation for this problem. Another example is the
MaxCut problem. The best NP -hardness of approximation factor for this problem is
16
17

[TSSW00, H̊as01], where the UG-hardness of approximation [KKMO04] matches the
Goemans-Williamson approximation constant (≈ 0.87856) [GW95]. For more UG-hard
problems and further discussion of UG-hardness see overview in [Kho05].

Approximability of MaxCut. For a MaxCut instance whose optimal cut contains
almost all edges, one can efficiently find a cut only slightly smaller than the optimal [GW95].
Therefore, the approximation ratio is close to 1 and it may make more sense to measure
the approximability in terms of the unsatisfied fraction, rather than the satisfied fraction.
In other words, to consider the dual problem - MinUnCut.

In most cases, when considering approximation ratios, they are either constant or stated
as a function of the input size. However, for MinUnCut the (in)approximation factor cε

is a function of ε - the fractional size of the optimal solution.
For MinUnCut there is a sharp threshold between P and UG-hardness around 2

π
· 1√

ε

[GW95, KKMO04], but NP -hardness only for factors smaller than 16
15

(the NP -hardness
is by a simple reduction from MaxCut inapproximability of H̊astad and Trevisan et al.
[H̊as01, TSSW00] , see Appendix 2.6.1)∗.

∗A few algorithms guarantee an approximation ratio for MinUnCut that depend on the input size
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Figure 2.1: The Complexity of Approximating MinUnCut for various ratios. ε is the
fractional size of the optimum.

MaxCut-hardness vs. UG-hardness

Denote by MaxCut-hard and MaxCut-complete the hardness and completeness classes
of Gap-MaxCut- [1− c

√
ε, 1− ε], where c is some constant smaller than 2

π
.

By the reduction from UniqueGame to MaxCut of Khot et al. [KKMO04], it is
known that any MaxCut-hard problem is UG-hard as well. However, a reduction from
MaxCut to UniqueGame is not known (in fact, UniqueGame is not known to be
hard for any other problem). Note that, technically speaking, MaxCut is a special case
of UniqueGame. However, for UniqueGame, we are interested in soundness arbitrarily
close to 0, where in MaxCut we are intersected in soundness close to 1. This seemingly
makes MaxCut harder than UniqueGame. Therefore, proving MaxCut-hardness for a
problem appears to be a stronger result than showing it is UG-hard.

It would therefore be of great interest to show such a reduction. This would show that
proving UG-hardness is equivalent to proving MaxCut-hardness. Let us consider the
possibility of such a reduction, namely:

Conjecture 2.1 (MaxCut conjecture). There exists a polynomial-time reduction from
MaxCut to UniqueGame such that for every constant ε′ > 0 there exist constants cε′

and ε > 0 so that

Gap-MaxCut- [1− cε′ · ε, 1− ε] ≤p Gap-UniqueGame- [ε′, 1− ε′]

Stated otherwise, assuming this conjecture, one only needs to consider the approxima-
bility of MinUnCut in order to understand the complexity of UniqueGame. If it can
be approximated better than Goemans-Williamson approximation [GW95] then the the
UniqueGame-conjecture is false. If the NP -hardness of MinUnCut [TSSW00, H̊as01],
can be significantly improved then the UniqueGame-conjecture is right. And if MinUn-
Cut can be shown to be in NPI (which would make it the first natural problem in NPI)

(e.g, O

(
3

√
lg n
ε2

)
of Trevisan [Tre05] and O

(√
lg n
ε

)
of Gupta and Talwar [GT06]). Note however, that

such algorithms are not relevant for constant ε, but only for sub-constant ε.
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then the UniqueGame-conjecture is false, but still UG-hard problem are not in P , unless
P = NP .

Proving the MaxCut conjecture is the grand objective. Here we only manage to prove
special cases of it.

One way of showing a reduction as stated in the MaxCut conjecture may be to apply
Parallel-Repetition [Raz98] assuming optimal parameters. We next consider the Parallel-
Repetition, its parameters and some of its variations.

Hardness Reduction via Parallel-Repetition

The Parallel-Repetition is a generic technique that is used for amplifying two-provers in-
teractive proofs and hardness of approximation problems. It is often used as a first step of
NP -hardness of approximation reductions, in order to reduce the the soundness of a given
gap-problem to arbitrarily small constant (e.g, [H̊as01, DS02, DGKR05]). The parameters
of this technique are of independent interest and have impact on the its usability for various
application.

Applying the kth Parallel-Repetition to a MaxCut instance U yields a UniqueGame
instance U⊗k where each vertex is k vertices of U , each edge corresponds to k edges of U ,
and the constraints are defined naturally.

Assume that the optimal solution for U satisfies a (1 − ε) fraction of the constraints.
Then, the optimal solution for U⊗k satisfies at least (1− ε)k fraction of the constraints (as
one can take an assignment that is anywhere consistent with the optimal solution of U).
This assignment was thought to be optimal for some time, but in fact better assignments
—that are not product assignments— sometimes exist [FRS90]. However, qualitatively
speaking, the tightest known upper-bound on the successes probability does decay in an
exponentially rate (in k), as shown by Raz [Raz98] and by Holenstein [Hol07]. For general

ConstraintGraph problem it is
(
1− ε3

6000

) k
2 lg |Σ|

.

Alas, due to the cubic power of ε in the upper-bound, this guarantee is not sufficient
for some applications, in particular for the gap problem Gap-MaxCut- [1− c

√
ε, 1− ε]:

the upper bound on the soundness of U⊗k might be larger than the lower bound on its
completeness (regardless of k) †.

2.1.0.1 The Parameters of Parallel-Repetition.

When considering an error-probability amplification technique, such as the Parallel-Repetition,
a few attributes are of interest. Does it preserve uniqueness of the constraint? Can the
success probability be arbitrarily reduced? Can the technique handle any error probability
of the input? Does the amplification rate depend on input specific parameters, such as

†In fact, for the special case of MaxCut, the loss can be shown to be only square (see [FL92, FKO07]).
Unfortunately, a square loss is still too large for allowing the reduction from MaxCut to UniqueGame.
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alphabet size and spectral-gap? Is the amplification rate tight (i.e, does the upper bound
match the lower bound)?

We next consider these parameters of Parallel-Repetition and related techniques.

Amplification Rate. Consider an upper-bound on the amplification rate of the kth
Parallel-Repetition of 1− ε satisfiable UniqueGame.

If it is of the form (1 − εα)ck then, qualitatively speaking, it matches the lower bound
(1− ε)k (and α ≥ 1, c ≤ 1). Surly one is interested in α as small as possible and c as large
as possible.

The Rate Depends on the Alphabet Size. In the upper-bound on Parallel-Repetition
of Raz [Raz98], c is a constant that depends on |Σ| - the alphabet size of the input instance.

Raz [Raz95] also proves that for general ConstraintGraph instances, which are far
from being completely satisfiable, the exponent of the upper-bound has to depend on |Σ|
(it is multiplied by a factor of O( lg lg |Σ|

lg |Σ| )). That is, the 1
lg |Σ| factor in the exponent of

the upper-bound of Raz [Raz98] cannot be significantly improved. This bound on the
exponent, however, does not necessarily hold for almost completely satisfiable instances for
UniqueGame instances and for other variants of the Parallel-Repetition.

Indeed, Feige and Kilian [FK00] consider a variant of the Parallel-Repetition, which
they call the “miss-match” form. They show that the amplification rate of their variant
dose not depend on |Σ| (though their amplification rate is not tight, i.e, not of the form
(1− εα)ck).

The Size of the Output Instance and its Alphabet. The kth Parallel-Repetition
increases both the size of the instance and its alphabet by a power of k. For some applica-
tions (see for example Section 2.4) we would like that the increase of the instance size and
the alphabet size are as small as possible for a given error probability amplification.

Error probability: Source and Target. An amplification technique may have limita-
tions on the error probability it can handle in the input instance and the error probability
it can guarantee in the generated instance.

The Parallel-Repetition handles any arbitrarily small constant error probability δ in the
input instance, and generates instance with arbitrarily small constant success probability.
However, if we are interested in error probability δ of the input which is polynomially small
and success probability of the output which is polynomially small, then the generated
instance U⊗k is of exponential size, and therefore the procedure is no longer polynomial.

The PCP theorem can be viewed as an amplification technique that handles well input
instances with polynomially small error probability. Note that in Dinur’s proof of the PCP
theorem, the success probability can be reduced to some constant (larger than 1

2
), but not

to an arbitrarily small constant [Din07, Bog05].
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Uniqueness Preservation. For the purpose of showing a reduction from MaxCut to
UniqueGame, the amplification applied has to preserve the uniqueness property of the
constraints. The uniqueness is indeed preserved in the original Parallel-Repetition. In the
variant of Feige and Kilian, the output instance is not UniqueGame, even if the input
instance is.

2.1.0.2 “Optimal” Parallel-Repetition.

Ideally we would like an “Optimal” Parallel-Repetition. That is, a uniqueness preserving
amplification technique that guarantee a tight upper-bound, is independent on the alphabet
size and on the spectral-gap and works for arbitrarily small constant error probability of
the input and arbitrarily small constant success probability of the output.

It may be possible that such a guarantee can be proved for the Parallel-Repetition (or
a variant of it) when applied to MaxCut.

Conjecture 2.2. [“Optimal” Parallel-Repetition] There exists a polynomial time amplifi-
cation technique, such that for some constant 0 < c < 1, if U is a MaxCut instance of
size n with constant error probability δ, then for every k, the kth amplification of U has
success probability of at least (1− δ)k and at most (1− δ)ck, size Poly(nk) and alphabet size
2O(k).

Consequences of “Optimal” Parallel-Repetition. Applying Conjecture 2.2 to

Gap-MaxCut- [1− cε′ · ε, 1− ε]

results in a reduction to:

Gap-UniqueGame-
[
(1− cε′ε)

ck, 1− εk
]

As 1− x ≤ e−x, a MaxCut-hardness is obtained for

Gap-UniqueGame-
[
e−c·cε′ ·εk, 1− εk

]

To obtain Gap-UniqueGame- [ε′, 1− ε′], by the completeness k ≤ ε′
ε
, and by the sound-

ness k ≥ ln 1
ε′

c·cε′ ·ε . Therefore,
ln 1

ε′
c·cε′ ·ε ≤

ε′
ε
. This holds for cε′ ≥ ln 1

ε′
c·ε′ , which is true as cε′ can be

arbitrarily large (as cε′ = Ω( 1√
ε
) and ε is arbitrarily small).

Thus Conjecture 2.2 implies Conjecture 2.1. In fact, it suffices to use any weaker version
of Conjecture 2.2, where the success probability is at most (1 − δα)ck for some constant
α < 2.

2.1.1 Variants of the Parallel-Repetition

This chapter presents two variants of the Parallel-Repetition: the Noisy-Parallel-Repetition
and the Expanding-Parallel-Repetition.
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Noisy-Parallel-Repetition. In the first variant we add to the original graph G, self-
loops of relative weight Ploop (say, Ploop = 1

2
), with equality constraints, to the original

instance before performing the original Parallel-Repetition.

This has two main effects. First, it changes the success probability from 1 − ε to
Ploop + (1− Ploop) · (1− ε). This means that a completeness close to perfect remains close
to perfect and a soundness close to 0 becomes close to Ploop. The second effect is that the
instance with the self-loops added, is far from being bipartite, even if the original instance
is close to being bipartite (as is the case of MaxCut instance where the optimal cut is of
fractional size 1− ε).

One can think of the kth-Noisy-Parallel-Repetition as follows. The vertices are k-
tuples of the original vertices (the same as in Parallel-Repetition). Given a k-vertex x′ =
(x1, ..., xk) its neighbor y′ = (y1, ..., yk) is generated according to the following distribution.

yi is set to be xi with probability Ploop and to be a random neighbor of xi in G with
probability 1 − Ploop. The constraints are naturally defined to be the disjunction of the
constraints of the k corresponding edges.

Expanding-Parallel-Repetition. In the second variant, in addition to the self-loops,
we add to G a graph H with large spectral-gap (say a complete graph or a constant degree
expander), with trivial constraints, an relative weight PH , before performing the original
Parallel-Repetition. The resulting instance is not a UniqueGame instance, even if the
original instance is, due to the constraints of H.

One can think of the kth-Noisy-Parallel-Repetition as follows. The vertices are k-
tuples of the original vertices (the same as in Parallel-Repetition). Given a k-vertex x′ =
(x1, ..., xk) its neighbor y′ = (y1, ..., yk) is generated according to the following distribution.

yi is set to be xi with probability Ploop, to be a random neighbor of xi in H with
probability PH and to be a random neighbor of xi in G with probability 1 − PH − Ploop.
The constraints are naturally defined to be the disjunction of the constraints of the k
corresponding edges from G,H or self-loops, where a constraint of H is trivial (always
satisfied) and a constrain of a self-loop is equality.

This means that, unlike the Parallel-Repetition, a k-edge connects two k-vertices x′ =
(x1, ..., xk) and y′ = (y1, ..., yk) even if only for some of the coordinates i the vertices xi and
yi are neighbors in G. A typical k-edge contains about PH edges that are neither from G,
nor self-loops, and may therefore contain edges between vertices that are not neighbors in
G.

2.1.2 Our Results

We show nothing regarding the original Parallel-Repetition technique. However, we show
that the two variants of the Parallel-Repetition technique perform “optimally”, i.e, the
success probability decays exponentially fast with k, regardless of the alphabet size and
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with no power on ε. Unfortunately, the analysis we provide for these amplifications works
only down to some constant error probability of the generated instance.

The Noisy-Parallel-Repetition variant preserves the uniqueness property, but works only
for good expanders (or union of disjoint expanders). The Expanding-Parallel-Repetition
variant works well for any instance, but does not preserve the uniqueness property.

Unfortunately both variants are not sufficient for the goal of proving MaxCut-hardness
for UniqueGame. For this goal we need an amplification that works for any graph,
preserves the uniqueness and can be utilized to obtain any (arbitrarily small) soundness.

Theorem 2.3 (Main theorem). The Noisy-Parallel-Repetition is a uniqueness preserv-
ing polynomial time reduction from ConstraintGraphΣ to ConstraintGraphΣk , so that for
every k ≤ 1

α

Gap-CGΣ- [1− α, 1− β] ≤p Gap-CGΣk-
[
(1− α)cγk, (1− β)k

]

where γ = γ(U) and cγ = γ

12800·lg 800
γ

.

Moreover, if G is a union of expanders, each with eigenvalue-gap at least γ then the
same theorem holds (with cγ multiplied by some constant).

Note that we do not try to optimize cγ.
The Noisy-Parallel-Repetition is constructive, namely,

Corollary 2.4 (Constructiveness). Given an assignment to the generated instance that
satisfies 1−δ fraction of its constraint for δ < cγ, one can, in polynomial time, compute an
assignment to the input instance that satisfies at least a 1− δ

cγ ·k fraction of the constraints.

Corollary 2.5 (Expanding-Parallel-Repetition). The Expanding-Parallel-Repetition
is a polynomial time reduction (that does not preserve uniqueness) from ConstraintGraphΣ

to ConstraintGraphΣk , so that for every k ≤ c

Gap-CGΣ- [1− α, 1− β] ≤p Gap-CGΣk-
[
(1− α)ck, (1− β)k

]

where c is some universal constant (that does not depend on the spectral-gap or the
alphabet size of the input instance ).

The Expanding-Parallel-Repetition is constructive, namely, given an assignment A to
the generated instance that satisfies 1 − δ fraction of its constraint for δ < c, one can, in
polynomial time, compute an assignment to the input instance that satisfies at least a 1− δ

c·k
fraction of the constraints.

Note that, in contrast to [Raz98, Hol07], our proof does not necessarily work for the
2-prover model, but only for the purpose where Parallel-Repetition is most often applied:
amplifying hardness of approximation.

We also show some algorithmic application to these variants.
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Algorithmic Applications. We show how one can use the “Optimal” Parallel-Repetition
conjecture (or sometimes the “Optimal” Noisy-Parallel-Repetition theorem for expanders)
for generalizing approximations for UniqueGame and for amplifying approximations for
expanders instances.

Outline

In Section 2.2 we give some preliminaries, including some of the notations we later use. The
main theorem, regarding Noisy-Parallel-Repetition, is proved in Section 2.3. We start with
the case of expanders (Section 2.3.1), then consider the case of union of disjoint expanders
(Section 2.3.2). The Expanding-Parallel-Repetition and a comparison to the “miss-match”
form is then considered ( Section 2.3.3). Section 2.4 presents some algorithmic applications.
Open problems and concluding remarks are discussed in Section 2.5.

2.2 Preliminaries

2.2.1 Graphs.

All graphs considered here are undirected and regular (with possibly parallel edges). For
any graph G = (V, E) and two subsets A,B ⊆ V the set EG(A,B) is all edges (u, v) ∈ E
connecting a vertex u ∈ A to a vertex v ∈ B. Similarly, EG(A) denotes the set of all edges
(u, v) ∈ E connecting a vertex u ∈ A to any vertex of G. We write E(A,B) and E(A)
when G is obvious from the context.

When considering the adjacency matrix MG of a d-regular graph G, we think of the
normalized matrix. That is, the sum of each row (and column) is 1, and all eigenvalues
are reals in the range [−1, 1]. Stated otherwise, MG is the 0/1 adjacency matrix of G
normalized by a factor of 1

d
.

2.2.2 Problems Definition.

Let us now formally define the ConstraintGraph and UniqueGame problems and the
Parallel-Repetition theorem.

Definition 2.6. The ConstraintGraph Problem (also known as GraphLabelling
Problem) is:
Input: U = 〈G, Σ, C〉 where G = (V,E) is an undirected graph, Σ a finite alphabet and
C = {ce}e∈E a set of constraints (one constraint for each edge) where ce ⊆ Σ× Σ.
Objective: Find an assignment A : V → Σ that maximizes the number of satisfied con-
straints.

We say that a constraint ce of an edge e = (u, v) is satisfied by A if (A(u), A(v)) ∈ ce.
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We denote by δ(A(U)) the fractional size of constraints of U that are unsatisfied by A,
that is,

δ(A(U)) =
1

|C| · |{c(u,v) ∈ C | (A(u), A(v)) /∈ c(u,v)}|

We denote by δ(U) (or sometimes by ε(U)) the minimal error of U , i.e, the fraction of
unsatisfied constraints in an optimal assignment to U :

δ(U) = min
A:V→Σ

δ(A(U))

Let γ(U) be the spectral gap of G, namely, γ(G) = 1− λ(G) where λ(G) is the second-
largest eigenvalue of the adjacency matrix MG of G.

Definition 2.7 (UniqueGame). The UniqueGame problem (UG) is a special case of
the ConstraintGraph problem, where each constraint is a permutation on Σ, i.e, for
every e ∈ E there exists a permutation πe : Σ → Σ such that ce = {(σ, πe(σ))}σ∈Σ

Namely, every assignment to a vertex u uniquely determines the assignment to its neigh-
bor v in order for the constraint c(u,v) to be satisfied.

We denote by UGΣ the UniqueGame problem, over the specific alphabet Σ. For any
integer i ≥ 2, we denote by UGi the problem UGΣ over some Σ such that |Σ| = i.

Definition 2.8 (MaxCut and Max-q-Cut). The MaxCut problem is:
Input: an undirected graph G = (V, E).
Objective: find a partition of V into (S, V \ S) so that |E(S, V \ S)| is maximized.

The MinUnCut problem is:
Input: an undirected graph G = (V, E).
Objective: find a partition of V into (S, V \ S) so that 1− |E(S, V \ S)| is minimized.

The Max-q-Cut problem is:
Input: an undirected graph G = (V, E).
Objective: find a partition of V into q subsets S1, ..., Sq so that

∑
1≤i<j≤q

|E(Si, Sj)|

is maximized.

2.2.3 Parallel Repetition.

Definition 2.9 (Parallel-Repetition). Let U = 〈G, Σ, C〉 be an instance of Constraint-
Graph problem. The kth Parallel-Repetition of U , denoted by U⊗k is an instance 〈G⊗k, Σk, C∧k〉
of ConstraintGraph where:

G⊗k = (E ′, V k), i.e, a vertex of G⊗k is a k-tuple of vertices of G.
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An edge e′ ∈ E ′ connects two vertices 〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉 ∈ V k if and only if

(vi1 , vj1), ..., (vik , vjk
) are all edges of G.

The constraint ce′ : Σk → Σk of an edge e′ ∈ Ek where e′ = (〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉) is

satisfied by an assignment A : V k → Σk if and only if the constraint of the k corresponding
edges of G are satisfied by A restricted to the vertices of G. Namely, C∧k = {ce′}e′∈E′ where

ce′(A(〈vi1 , ..., vik〉), A(〈vj1 , ..., vjk
〉)) =

∧

l∈[k]

c(vil
,vjl

)(A(〈vi1 , ..., vik〉)|l, A(〈vj1 , ..., vjk
〉)|l)

Note that the adjacency matrix MG⊗k of G⊗k is simply the kth tensor product of the
adjacency matrix MG of G.

Observe that if U is a UniqueGame instance then so is U⊗k. Observe also that
γ(MG) = γ(MG⊗k). This is true as the eigenvalues of M1 ⊗M2 are exactly

{λ1 · λ2 | λ1 is an eigenvalue of M1 and λ2 is an eigenvalue of M2}

and therefore the second-largest eigenvalue of AG⊗k = (MG)⊗k is λ(G) · 1k−1 = λ(G)‡.

Theorem 2.10. [Raz98] (The exact parameters are from [Hol07]). If U is an instance of
ConstraintGraph problem with error probability δ, then for every k, U⊗k has an error

probability at least 1−
(
1− δ3

6000

) k
2 lg |Σ|

Sometimes it is convenient to consider the following generalization of Parallel-Repetition
where we have k different games:

Definition 2.11 (Parallel Games). Let Ui = 〈Gi = (Vi, Ei), Σi, Ci〉 be Constraint-
Graph instances for i ∈ [k]. Assume all Gi have the same degree d. The parallel games
of {Ui}i∈[k], denoted by

⊗
i∈k Ui is an instance 〈G′, Σ′, C ′〉 where,

• G′ =
⊗k

i=1 Gi = (E ′, V ′). of

V ′ = V1 × ...× Vk. We denote a vertex of G′ by k-vertex.

An edge e′ ∈ E ′ connects two vertices 〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉 ∈ V ′ if and only if

(vi1 , vj1), ..., (vik , vjk
) are edges of G1, ..., Gk respectively. We denote an edge of G′ by

k-edge.

• Σ′ = Σ1 × ...× Σk

‡Indeed MaxCut instance U for which γ(U) = 1 − λ2(U) reduces to UniqueGame instance U⊗k

of the same spectral gap. However, the other direction is not known: the reduction in [KKMO04] from
UniqueGame to 1− ε satisfiable MaxCut yields an instance M with spectral gap γ(M) = O(ε), as the
ε noise long-code test has spectral gap of O(ε).
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• The constraint ce′ ⊆ Σk ⊗Σk of an edge e′ ∈ E ′ where e′ = (〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉)

is satisfied by an assignment A : V ′ → Σ′ if and only if each constraint of the k
corresponding edges of G1, ..., Gk is satisfied by A restricted to the vertices of the
relevant Gi. Namely, C∧k = {ce′}e′∈E′ where

ce′(A(〈vi1 , ..., vik〉), A(〈vj1 , ..., vjk
〉)) =

∧

l∈[k]

c(vil
,vjl

)(A(〈vi1 , ..., vik〉)|l, A(〈vj1 , ..., vjk
〉)|l)

For a k-vertex v′ = 〈vi1 , ..., vik〉 ∈ V ′ we denote by v′[j] the j’th coordinate of v′, namely
vij . We denote by A(v′)|l the assignment A(v′) projected on v′[l].

For v ∈ V , let V ′
i↓v ⊆ V ′ be the set of all k-vertices in V ′ having v at their ith coordinate,

namely,
V ′

i↓v = {v′ ∈ V ′ | v′[i] = v}
For v ∈ V , σ ∈ Σ and an assignment A′ : V ′ → Σ′ let V ′

i↓v=σ be the subset of V ′
i↓v which

are assigned σ at their ith coordinate, namely,

V ′
i↓v=σ = {v′ ∈ V ′

i↓v | A′(v′)|i=σ}

and for (u, v) ∈ E, let E ′
i↓(u,v) ⊆ E ′ be

E ′
i↓(u,v) = {(x′, y′) ∈ E ′ | x′[i] = u, y′[i] = v}

Let A′ be an assignment to
⊗

i∈k Ui. Then we denote by APlur
i the assignment to Ui

that is the most plural assignment at coordinate i. Namely,

APlur
i (v) = argmax

σ∈Σ
|{v′ ∈ V ′

i↓v | A(v′)|i = σ}|
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2.3 Variants of Parallel Repetition

In this section we prove the main theorem (Theorem 2.3) regarding Noisy-Parallel-Repetition.

From here on, when analyzing Noisy-Parallel-Repetition, we assume the self-loops and
consider only the Parallel-Repetition operator. We start with the case where the input
instance is an expander.

2.3.1 Noisy-Parallel-Repetition for Expanders

Proof of the main theorem (Theorem 2.3). The lower-bound δ ≤ k · δ(U), is immediate by
taking an assignment consistent with the optimal assignment to U . We now prove the
upper-bound.

We prove the upper-bound for the case of expanders first (Lemma 2.12). The upper-
bound for union of disjoint expanders is proved in Corollary 2.22.

Lemma 2.12 (Parallel-Repetition - Constructive upper-bound). Let U = 〈G, Σ, C〉
be a ConstraintGraph instance wih spectral-gap γ = γ(U) and set U = U⊗k.

Let A be an assignment that satisfies 1−δ fraction of U and let APlur
i be the most plural

assignment of A at coordinate i. For every i ∈ [k] denote by δi the unsatisfied fraction of
G by APlur

i .

Then 1− δ ≤ 1− cγ ·min(1,
∑

i∈[k] δi), where cγ = γ

12800·lg 800
γ

.

Stated otherwise, if δ < cγ then there exists i ∈ [k] so that APlur
i satisfies at least 1− δ

kcγ

fraction of U .

Lemma 2.13 (Parallel-Games - Constructive upper-bound). Let Ui = 〈Gi, Σi, Ci〉
be ConstraintGraph instances for i ∈ [k]. Set U =

⊗
i∈k Ui = 〈G′, Σ′, C ′〉 and let

γ = min{γ(Ui)}i∈[k].

Let A′ be an assignment that satisfies 1−δ fraction of U and let APlur
i be the most plural

assignment of A at coordinate i. For every i ∈ [k] denote by δi the unsatisfied fraction of
Gi by APlur

i .

Then 1− δ ≤ 1− cγ ·min(1,
∑

i∈[k] δi), where cγ = γ

12800·lg 800
γ

.

Stated otherwise, if δ < cγ then there exists i ∈ [k] so that APlur
i satisfies at least 1− δ

cγk

fraction of Ui.

Note that Lemma 2.12 is an immediate corollary of Lemma 2.13, by taking Ui = U for
every i ∈ [k].

The constructiveness follows, as one can easily compute APlur
i for every i ∈ [k] given A,

and check the satisfied fraction by each of those assignments. See Section 2.4 for further
discussion on the efficiency of the constructiveness.
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Corollary 2.14 (Parallel-Repetition - upper-bound). If U = 〈G, Σ, C〉 is a Con-
straintGraph instance and U = U⊗k, then the maximal satisfiability of U is at most
1− cγ ·min(1, δ(U) · k), where γ = γ(U).

Corollary 2.15 (Parallel-Games - upper-bound). Let Ui = 〈Gi = (Vi, Ei), Σi, Ci〉
be ConstraintGraph instances for i ∈ [k]. Set U =

⊗
i∈k Ui = 〈G′, Σ′, C ′〉 and let

γ = min{γ(Ui)}i∈[k].
Then U is at most 1− cγ ·min(1,

∑
i∈[k] δ(Ui)) satisfiable.

Proof of Lemma 2.13. Let A be an assignment to U. Recall that APlur
i is the assignment to

Ui that is the most plural assignment at coordinate i. We show that the sum of unsatisfied
fraction of Ui by Ai (over all i ∈ [k]) is, up to sum multiplicative factor, a lower-bound on
the unsatisfied fraction of U by A.

We do this by considering two cases. Either A is very consistent with the plurality
assignments, and the upper-bound comes up naturally, or A is far from being consistent
with the plurality assignments, and the inconsistency incurs many unsatisfied k-edges.

We say that an edge of Gi is red if it is not satisfied by APlur
i . Recall that δi is the

fraction of red edges of Gi.
We say that a vertex v ∈ Vi is red if it has many occurrences that disagree with APlur

i ,
that is, if Prv′∈V ′i↓v

[
A(v′)|i = APlur

i (v)
] ≤ 99

100
. Denote by αi the fraction of red vertices of

Gi.
Let S ⊆ [k] be the set of coordinates i for which at least δi

4
of the vertices are red.

Clearly
∑

i∈[k] δi =
∑

i∈S δi +
∑

i∈S δi. Therefore, (at least) one of the two sums on the right
hand side is at least half of the left hand side.

We therefore only need to consider two cases. Either

1.
∑

i∈S δi ≥ 1
2

∑
i∈[k] δi, (in which case we show a lot of inconsistency in the projected

assignment to Ui, namely many unsatisfied k-edges due to self-loops of G) or

2.
∑

i∈S δi ≥ 1
2

∑
i∈[k] δi (in which case we show many unsatisfied k-edges due to red

edges).

We show that indeed in both cases there are many unsatisfied k-edges. We start with
(1):

Claim 2.16. In case (1), A satisfies at most 1− cγ ·min(1,
∑

i∈[k] δi) fraction of U, where
cγ = γ

12800·lg 800
γ

.

Proof. We utilize in this proof the γ expansion of the graph, as well as the self-loops of
weight at least 1

2
.

Let i ∈ S and let v ∈ Vi be a red vertex. A k-edge e′ = (x′, y′) ∈ E ′
i↓(v,v) is unsatisfied

if A(x′)|i 6= A(y′)|i (as x′[i] = y′[i] = v and the constraint on the self-loop of v demands
equality).
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Let
Pi,v = Pr

e′=(x′,y′)∈E′
i↓(v,v)

[e′ is not satisfied by A]

We next give a lower-bound on the probability Pi,v. We then find a lower-bound on the
probability P1 that a random k-edge (of G′) is unsatisfied, by considering the number of
red vertices, and taking into account that a k-edge may be unsatisfied due to more than
one red vertex, so we do not over-count.

Claim 2.17.
Pi,v ≥ γ

400

Proof. Let G′
i↓v = (V ′

i↓v, E
′
i↓(v,v)), namely G′

i↓v is a subgraph of G′ where we consider only
k-edges that correspond to the self-loops on v in the ith coordinate. As Gi is d-regular
with (at least) d

2
self-loops on each vertex, we have that G′

i↓v is D-regular for D ≥ dk

2
.

Consider the spectral-gap of G′
i↓v. G′

i↓v is the graph (tensor) product of the following
two graphs: (1) a single vertex v and self-loops on it and (2)

⊗
j∈[k]\{i} Gj. Therefore, we

have that γ(G′
i↓v) = min{γ(Gj)}j∈[k]\{i} ≥ min{γ(Gj)}j∈[k] = γ.

By the Expander theorem (Theorem 1.1) we know that for every M ⊆ V ′
i↓v of fractional

size at most 1
2
,

|EGi↓v
(M, M)|

D · |M | ≥ γ

2

Claim 2.18. There exists a cut (M, M) of V ′
i↓v so that 1

100
≤ |M |

|V ′i↓v|
≤ 1

2
and every k-edge

connecting M to M is unsatisfied.

Proof. Consider the partition of V ′
i↓v according to the values of the assignment A projected

to v: V ′
i↓v=a1

, ..., V ′
i↓v=a|Σ| . Every k-edge e′ ∈ E(V ′

i↓v=a, V
′
i↓v=b), where a 6= b, is unsatisfied.

Let σ = APlur
i (v). As v is a red vertex,

|V ′i↓v=σ|
|V ′

i↓v|
≤ 99

100
. If 1

100
≤ |V ′i↓v=σ|

|V ′
i↓v|

then we are done

- by setting M to be the smaller of the two sets V ′
i↓v=σ and V ′

i↓v \ V ′
i↓v=σ.

Otherwise, as V ′
i↓v=σ is the largest of the |Σ| parts of V ′

i↓v, for every a 6= σ the part

V ′
i↓v=a is of fractional size at most 1

100
. We set M to be a union of a few of these parts so

that its fractional size is at least 1
100

and at most 2
100

.

Therefore, by taking M as guaranteed in the above claim, a random k-edge e′ ∈
EG′(V

′
i↓v) is unsatisfied with probability

Pi,v ≥
|E ′

i↓(v,v)|
|EG′(V ′

i↓v)|
· |M |
|V ′

i↓v|
· γ

2
≥ 1

2
· 1

100
· γ

2
=

γ

400

where
|E′

i↓(v,v)
|

|EG′ (V ′i↓v)| ≥
D·|V ′i↓v|
dk·|V ′i↓v |

≥ 1
2
.
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This already yields a lower-bound on the total number of pairs of k-edges e′ and vertex
v where e′ is unsatisfied due to the red vertex v (by multiplying γ

400
with number of k-edges

that contain a self-loop of a red vertices). However, this may be an over-counting for the
number of unsatisfied k-edges, as a k-edge may be unsatisfied due to more than one red
vertex. Let us consider a more accurate estimate.

We first give an upper-bound on the probability that a random k-edge (x′, y′) has more
than r red vertices in coordinates S ′ of U (where the parameter r is set later). For this
purpose it is more convenient to consider, from here on, only coordinates that do not have
too many red vertices.

Recall that αi is the fraction of red vertices in coordinate i (recall that ∀i ∈ S, δi

4
≤ αi ≤

1
2
). If

∑
i∈S αi ≤ 1 then let S ′ = S. Otherwise set S ′ ⊆ S to be such that 1

2
≤ ∑

i∈S′ αi ≤ 1.
Let R be a random variable corresponding to the number of red vertices of coordinates

S ′ in a random k-vertex. ER ≤ ∑
i∈S′ αi ≤ 1. Therefore (by Chernoff’s [Che52] bound,

Pr[R > (1 + α)ER] <
(

eα

(1+α)(1+α)

)ER

)

Pr[R > r] <

(
er−1

rr

)
<

(e

r

)r

Consider a random k-edge e′ = (x′, y′) ∈ E ′. The probability that it is unsatisfied due
to the red vertex v and that the number of red vertices is at most r (by choosing r = lg 800

γ
)

at least
Pi,v −

(e

r

)r

>
γ

400
− γ

800
=

γ

800

Therefore, the probability P1 that a random k-edge e′ ∈ E ′ is unsatisfied is

P1 ≥ 1

2r

∑

i∈S′
αi · γ

800
(2.1)

where the 2r in the denominator is due to the fact that we count every k-edge at most
2r times in the summation (at most r times for each of its two k-vertices). Therefore,

P1 ≥ γ

1600 · lg 800
γ

·
∑

i∈S′
αi (2.2)

as
∑

i∈S′ αi ≥ min(1
2
,
∑

i∈S
δi

4
) ≥ min(1

2
, 1

8
·∑i∈[k] δi), we have

P1 ≥ γ

1600 · lg 800
γ

·min(
1

2
,
1

8
·
∑

i∈[k]

δi) ≥ cγ ·min(1,
∑

i∈[k]

δi) (2.3)

as Claim 2.16 asserts, and we are done for case (1).

Claim 2.19. In case (2), A satisfies at most 1− 1
10

min(1,
∑

i∈[k] δi) fraction of U.
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Proof. We show that the red edges of coordinates S, together with the high consistency,
yield many unsatisfied k-edges.

Claim 2.20. For any i ∈ S there are at least δind
4

red edges at coordinate i that do not
touch red vertices of coordinate i.

Proof. There are δi
nd
2

edges that are red in coordinate i. There are at most αind ≤ δin
4

d

edges of G touching the red vertices of coordinate i. Therefore, there are at least δind
4

red
edges at coordinate i that do not touch red vertices of coordinate i.

We pick a subset of such edges of size δind
4

and call them orange edges.

Claim 2.21. If an edge (u, v) is orange (at coordinate i) then at least 98
100

of the set Ei↓(u,v)

—the k-edges that contain (u, v) at coordinate i— are not satisfied.

Proof. At most 1
100

of them disagree with APlur
i on either sides, as both u and v are not

red. Therefore, at least 98
100

of Ei↓(u,v) agree with APlur
i on both sides and therefore are

unsatisfied.

Let us now give an upper-bound on the probability that a random k-edge (x′, y′) has
more than r orange edges in coordinates S of U (where the parameter r is set later).
For this purpose it is more convenient to assume that there are not too many red edges
in coordinates S. If

∑
i∈S δi ≤ 1 then let S ′ = S. Otherwise let S ′ ⊆ S be such that

1
2
≤ ∑

i∈S′ δi ≤ 1.
Consider a random k-edge e′ ∈ Ei↓(u,v). Similarly to the previous claim, the probability

that e′ is both unsatisfied due to (u, v) at coordinate i and that e′ contains at most r orange
edges in coordinates S ′ is at least

98

100
−

(e

r

)r

Therefore, the probability that a random k-edge is unsatisfied is

P2 ≥
∑

i∈S′

δi

4
· ( 98

100
− (

e
r

)r)

r

where the r in the denominator is from the fact that we count every k-edge at most r times
in the summation.

Taking r so that 98
100

≥ 2 · ( e
r

)r
(e.g, r = lg 200

98
) , and as

∑
i∈S′ δi ≥ min(1

2
, 1

2

∑
i∈[k] δi)

we obtain

P2 ≥ 98

400
· 1

lg 200
98

min(
1

2
,
∑

i∈[k]

δi) ≥ 1

10
·min(1,

∑

i∈[k]

δi)

as the claim asserts.

By Claim 2.16 (case (1)) and Claim 2.19 (case (2)), A satisfies at most 1 − cγ ·
min(1,

∑
i∈[k] δi) fraction of U. Therefore, Lemma 2.13 follows.
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2.3.2 Noisy-Parallel-Repetition for Union of Disjoint Expanders.

We now prove the upper-bound of the main theorem for the case of union of disjoint
expanders.

Corollary 2.22. Let U = 〈G, Σ, C〉 be a ConstraintGraph instance. Assume that G is
a union of t disjoint expanders, each with eigenvalue gap at least γ, namely U =

⋃
i∈[t]{Ui}

where Ui = 〈Gi, Σi, Ci〉.
Set U⊗k = 〈G⊗k, Σk, C∧k〉.
Then U⊗k maximal satisfiability is at most 1− c′γ ·min(1, k · δ(U)), where c′γ = cγ

104 .

If the upper-bound for expanders instances had worked for any (arbitrarily small) con-
stant of success probability of the output instance, then this corollary would have been
immediate, by a weighted averaging of the success probability of the connected compo-
nents of U⊗k.

Unfortunately this is not the case. Therefore, the guarantee on the error probability
of some of the connected components of U×k is smaller than what it could have been
otherwise.

Proof. Lemma 2.12 cannot be used here, as G may be unconnected, therefore γ(U) may be
zero. Note however, that any connected component G′ of G⊗k, has γ(G′) ≥ γ. This is true
as every connected component G′ of G⊗k is a tensor product of k connected components of
G, each of them having eigenvalue gap γ(G′) ≥ γ(G). Therefore, we can use Lemma 2.13
instead of Lemma 2.12.

Let pi = |Gi|
|G| be the probability that a random vertex (or a random edge) falls inside

the component Gi. We have
∑

i∈[t] piδ(Ui) = δ(U) and
∑

i∈[t] pi = 1.

For s = (s1, ..., sk) ∈ [t]k denote by Gs the connected component Gs1 ⊗ ... ⊗ Gsk
. Let

ps =
∏

i∈s pi be its fractional size, and let δs =
∑

i∈s δi.
The probability P of a random k-edge of G⊗k to be unsatisfied is the probability of

a random k-edge to be in a certain connected component Gs times the probability that
a random k-edge of Gs is unsatisfied, summing over all connected components {Gs}s∈[t]k .
Namely,

P =
∑

s∈[t]k

ps · Pr
e′∈E(Gs)

[e′ is unsatisfied by A]

By Lemma 2.13, as each connected component Gs has γ(Gs) ≥ γ,

P ≥ cγ ·
∑

S∈[t]k

ps ·min (1, δs) (2.4)

As Esδs = kEiδi = k
∑

i∈[t] piδi = kδ(U), by Chernoff’s bound we have that

Pr [δs ∈ R] ≥ 45

100
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where R =
[

1
100
· kδ(U), 10 · kδ(U)

]
Therefore,

E [δs | δs ∈ R] ≥ kδ(U)

100
· 45

100

For k ≤ 1
δ(U)

, and for every δs ∈ R, the min(1, δs) expression in equation 2.4 reduces
the contribution of δs to the sum by a factor of at most 10. Therefore,

P ≥ cγ ·
∑

S∈[t]k | δs∈R

ps ·min (1, δs)

≥ 1

10
· cγ ·

∑

S∈[t]k | δs∈R

ps · δs

=
1

10
· cγ · E [δs | δs ∈ R]

≥ 10−4 · cγ · kδ(U)

For k > 1
δ(U)

, the satisfiability of U⊗k is at most the satisfiability of U⊗ 1
δ(U) . We therefore

have that for every k, U⊗k maximal satisfiability is at most 1− c′γ ·min(1, k · δ(U)), where
c′γ = cγ

104 .

We therefore have the main theorem for the case of union of disjoint expanders as well.
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2.3.3 Expanding-Parallel-Repetition for Non-Expanders Instances

We next consider the Expanding-Parallel-Repetition variation that yields an ”optimal”
amplification for every instance, up to some constant factor of success probability of the
generated instance, even for instances that may lack good expansion properties. This
variation, however, does not preserve the uniqueness property of the constraint. The proof
is simple, given the analysis for the Noisy-Parallel-Repetition.

We show that by choosing H so that γ(H) is large (say, a complete graph, or a constant
degree expander) and setting PH and Ploop to be constants this variant of Parallel-Repetition
is ”optimal”. Note that by choosing H to be a constant degree expander (rather than a
complete-graph) U is of constant degree (provided that U is).

The idea to use such ”expanderizing” technique already appears as a first step in Dinur’s
new proof of the PCP [Din07], though it is critical there that the added expander is of
constant degree.

Corollary 2.5 (Expanding-Parallel-Repetition) The Expanding-Parallel-Repetition
is a polynomial time reduction (that does not preserve uniqueness) from ConstraintGraphΣ

to ConstraintGraphΣk , so that for every k ≤ c

Gap-CGΣ- [1− α, 1− β] ≤p Gap-CGΣk-
[
(1− α)ck, (1− β)k

]

where c is some universal constant (that does not depend on the spectral-gap or the
alphabet size of the input instance ).

The Expanding-Parallel-Repetition is constructive, namely, given an assignment A to
the generated instance that satisfies 1 − δ fraction of its constraint for δ < c, one can, in
polynomial time, compute an assignment to the input instance that satisfies at least a 1− δ

c·k
fraction of the constraints.

Proof. Let U = 〈G = (V,E), Σ, C〉 be an instance of Gap-ConstraintGraph- [1− δ, 1− ε].
Let UH = 〈H, Σ, CH〉 where γ(H) = γ and the constraints CH are always satisfied. Let
Uloops = 〈(V, Eloops), Σ, Cloops〉 where Eloops are self-loop for every vertex, and the constraints
Cloops are the equality constraints. Set U ′ to be an instance constructed by combining the
instances UH , Uloops and U , with relative weights PH , Ploop and 1−PH −Ploop respectively.

We thus get an instance U ′ of Gap-ConstraintGraph-
[
1− δ

4
, 1− ε

4

]
with γ(U ′) = γ

4
.

Applying now the kth Parallel-Repetition, for k ≤ 4
δ
, yields, by the main theorem, an

instance U = (U ′)⊗k of Gap-ConstraintGraph-
[
1− cγ

4
· kδ

4
, 1− kε

4

]
.

The constructiveness also follows, as any good assignment to (U ′)⊗k can be efficiently
converted (by the main theorem) into a good assignment to U ′. This assignment is a good
assignment to U as well, up to a 1

1−Ploop−PH
multiplicative factor on the error probability.

As the analysis of the Expanding-Parallel-Repetition is an immediate result of the
analysis of the Noisy-Parallel-Repetition, any improvement of the latter (say, to hold for any
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k, not only for k ≤ 1
δ
) immediately translates to the same improvement for the Expanding-

Parallel-Repetition for arbitrary ConstraintGraph instances (again, without preserving
uniqueness property).

2.3.3.1 The Miss-Match Form

Feige and Kilian [FK00] introduce and discuss the miss-match form of the two-prover one
round proof system, and analyze the application of Parallel-Repetition to it.

In the miss-match form of proof-system, the verifier asks the first prover two questions,
and either applies a test only to the two answers of this prover, or asks the second prover
two questions —one of which is identical to one of the two questions already asked— and
also tests that the identical questions are answered with identical answers. The decision
whether to test the answers of the first prover only, or to test the consistency of the two
provers as well, may rely on the answer of the first prover.

Feige and Kilian show that in order to reduce the success probability of miss-match
form from 1 − ε to 1 − δ, one can apply the kth Parallel-Repetition with k = Poly(1

ε
, 1

δ
).

Their analysis works for any constants 0 < ε < δ < 1, and is independent of the alphabet
size.

They also show that any two-prover one round proof system can be reduced to the
miss-match form, such that the success probability changes by a constant factor at most.

Comparing their amplification to our Expanding-Parallel-Repetition in the context of
ConstraintGraph, both can be applied to arbitrary ConstraintGraph and both
amplification rates are independent of the alphabet size. Our amplification exceeds theirs
in the sense that in order to amplify 1 − ε error-probability to 1 − δ, one has to apply
the kth Parallel-Repetition with k linear in ε

δ
, while theirs is polynomial in this factor.

However, our analysis works only for δ that is lower-bounded by some universal constant,
while theirs works for any (arbitrarily small) constant δ.
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2.4 Algorithmic Applications

2.4.1 Approximating Algorithms via Optimal Parallel-Repetition

Let us now consider a simple algorithmic application of ”optimal” analysis for Parallel-
Repetition and the implication of constructiveness in such an analysis. The idea is to
use the Parallel-Repetition to convert an algorithm for 1 − ε0 satisfiable instances of
UniqueGameΣ0

(for some specific ε0 > 0 and Σ0 ) into an algorithm that performs well on
1− ε satisfiable instances of UniqueGameΣ for any ε ≤ ε0 and corresponding Σ.

Let us consider some applications for this technique.

2.4.1.1 Conditional Generalization for Approximations of UniqueGame.

By [GW95, CMM06]) on the one hand, and by [KKMO04] on the other hand we have a tight
threshold of approximability for almost completely satisfiable instances of UniqueGame
(and MaxCut).

That is, for every ε ≤ 1
lg |Σ| , given a 1 − ε satisfiable instance U = 〈G, Σ, C〉 of

UniqueGameΣ, finding an assignment that satisfies 1 − c
√

ε lg |Σ| of its constraints is
in P for some constant c, but it is UG-hard for any factor slightly smaller than c .

We next show that an algorithm with constant approximation factor guarantee for
ε = 1

lg |Σ| —combined with an optimal analysis for Parallel-Repetition— results in an ap-

proximation algorithms for all other ε < 1
lg |Σ| , with the above parameters.

Let U = U⊗k = 〈G⊗k, Σ′, C∧k〉 for k = 1√
ε lg |Σ| . Then Σ′ = Σk and U is 1−ε′ satisfiable

where ε′ = ε · k =
√

ε
lg |Σ| = 1

k lg |Σ| = 1
lg |Σ′| .

Given an assignment to U that satisfies Θ(1) of its constraints, By the “Optimal”
Parallel-Repetition conjecture we deduce an assignment to U that satisfies at least 1 −
O(

√
ε lg |Σ|) of its constraints.

2.4.1.2 Conditional and Unconditional Amplification of Approximations for
Expanders.

Consider UniqueGame instances where the underlying graph is an expander. Observe
that this is a special case of UniqueGame, and the optimal tradeoffs between error,
alphabet-size and approximation factor may be better than in the general case. In particular
one may come up with an approximation that does not depend on the alphabet size, but
only on the spectral-gap and the satisfiability of the instance.

Recently, Kolla and Tulsiani ([KT07], work in progress) suggested techniques that may
indeed achieve that goal. Their algorithm seems to find an assignment that satisfies a
constant fraction of the constraints for any 1− ε satisfiable UniqueGame instance U , as
long as ε ≤ γ2.
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This exciting result implies that UniqueGame for expander graphs is seemingly easier.
Which in turn implies that a general reduction from UniqueGame to UniqueGame
that is a good expander, would result in UniqueGame being in P, thus refuting the
UniqueGame-conjecture.

We next show how the the “Optimal” Parallel-Repetition conjecture may be utilized
to amplify an algorithm A that finds an assignment satisfying a (large enough) constant
fraction of the constraints into an algorithm A′ that obtains an assignment that satisfies
all but at most O( ε

γ2 ) fraction.
Let U be a 1 − ε satisfiable instance of UniqueGame, and let 1 − δ be the satisfied

fraction by A′. Let U = U⊗k for k = Θ(1
δ
). Then U is 1−Θ( ε

δ
) satisfiable. For δ = Θ( ε

γ2 ) U

is 1−γ2 satisfiable, then using A we can find an assignment that satisfies a constant fraction
of it. By the Noisy-Parallel-Repetition theorem for expanders, we deduce an assignment
to U that satisfies at least 1− Θ( ε

γ2 ) of its constraints (and assuming constructiveness we

can find it). Note that the constant factor of the algorithm of Kolla and Tulsiani has to be
large enough for this technique to work.

Similarly, if we use the Noisy-Parallel-Repetition theorem for expanders the if an algo-
rithm A guarantee a solution satisfying at least 1− cγ for 1− γ2 satisfiable instances, then
for every 1 − ε satisfiable instance, we can find a 1 − O( ε

γ2·cγ
) satisfying solution, as long

as ε ≤ γ2 (where cγ = γ

12800·lg 800
γ

).

2.4.2 A Note on the Efficiency of the Constructiveness.

As already mentioned, the constructiveness is obtained here simply by considering the k
plurality assignments. The trivial algorithm for this runs in time Poly(|U⊗k|), similar to
the running time of the (implicit [Raz07]) constructiveness of [Raz98, Hol07].

However, there is a simple Las-Vegas randomized algorithm that runs in expected time
O(k · |Σ| · |U |2), assuming an oracle access to the assignment A for U⊗k (which is probably
not the case for the analysis of Raz and of Holenstein [Raz07]).

This is done by sampling A (rather than reading it entirely) and computing the plural
value with high probability for every coordinate i ∈ [k]. The resulting k assignments can
then be checked to see whether any of them satisfy enough constraints of U .

Therefore, when considering expander instances, it may be preferable to use our con-
structiveness (rather than the one implicit in [Raz98, Hol07]) both because of time consid-
erations and because of the approximation ratio guarantee.
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2.5 Concluding Remarks and Open problems

We showed two variants of the Parallel-Repetition technique that perform ”optimally”, i.e,
the success probability decays exponentially fast with k, regardless of the alphabet size,
albeit only down to some constant.

The Noisy-Parallel-Repetition variant preserves the uniqueness property, but works only
for good expanders (or union of disjoint expanders). The Expanding-Parallel-Repetition
variant works well for any instance, but does not preserve the uniqueness property.

Considering the goal of proving MaxCut-hardness for UniqueGame, these two are
not sufficient. To achieve this goal, we would like (1) to obtain both results simultaneously,
i.e, to have no dependency on the spectral-gap while maintaining the uniqueness property;
and (2) to generalize this so it holds for arbitrarily small constant target success probability.

We next consider some possible techniques for addressing these problems.

Can the Soundness be Further Reduced? It is worth noting that our analysis does
not use the fact that we start with a MaxCut instance, or even that it is a UniqueGame
instance. It might be possible that such properties of the input can be utilized to obtain
a better analysis of the Parallel-Repetition, given that it is applied to MaxCut and to
UniqueGame instances.

2.5.1 Towards a Proof of the “Optimal” Parallel-Repetition con-
jecture

Feige, Kindler and O’Donnell discuss the task of proving the “Optimal” Parallel-Repetition
conjecture (see [FKO07], Section ”Strong Parallel-Repetition”). They show that an ”opti-
mal” analysis for the Parallel-Repetition implies a nontrivial lower-bound on the surface
area of high-dimensional periodic foam, which is a long standing open problem in geometry.

This holds even if we consider the “Optimal” Parallel-Repetition applied to MaxCut
only. In fact it is shown there to apply to MaxCut instances that are odd-cycles, and
therefore have very small spectral-gap γ. Note that the Expanding-Parallel-Repetition
preserves uniqueness, but handles well only instances with good expansion properties and
therefore does not apply to the odd-cycle example.

To better deal with instances of small spectral-gap, one may suggest a consistency
verification technique that does not rely on the spectral gap, but rather on Fourier analysis
(see below). Such a technique may also substitute techniques for decomposing graphs into
relatively good expanders (see [Tre05]).

2.5.1.1 Maintaining Consistency via Noise Sensitivity

Let us now consider an approach for analyzing Noisy-Parallel-Repetition, which might
achieve amplification that does not depend on γ(U) and works for every k, thus obtaining
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uniqueness preserving ”optimal” amplification for general ConstraintGraph.
In several cases (e.g, [H̊as01, DS02]) noise sensitivity of functions over the k-dimensional

cube is utilized for consistency verification. We consider the use of a generalization of this
technique.

Noise Sensitivity on {−1, 1}n. Recall the definition of noise sensitivity. Let f be a
Boolean function over the nth dimension cube, f : {−1, 1}n → {−1, 1}. The δ-noise
sensitivity of f is: NSδ(f) = Pr[f(x) 6= f(x′)], where x is chosen uniformly at random
from {−1, 1}n, and x′ is chosen by changing each coordinate xi of x with independent
probability δ into a random value in {−1, 1}. One can think of f as a Boolean function
over G⊗n where G is a single edge.

We say that f is a d-junta if there are d coordinates of f that determines its value
(regardless of the input in the other coordinates). We say that f is (d, ε)-junta, if there is
a d-junta g so that f is ε close to g, namely Prx[f(x) 6= g(x)] ≤ ε.

Bourgain showed [Bou02] that if f is a Boolean function over the n-dimensional cube

so that NSε(f) ¿ √
ε for sufficiently small ε then f is a ( cO( 1

ε )

ε
,
√

ε)-junta.

Noise Sensitivity on G⊗k. Consider a generalization of the noise-sensitivity definition
to arbitrary graphs, that may be of use for our purpose. Let f be a Boolean function
over the vertices of G⊗k, f : V k → {−1, 1}. The δ-noise sensitivity of f , NSδ(f) is
Pr[f(x) 6= f(x′)], where x is chosen uniformly at random from V k, and x′ is chosen by
changing each coordinate xi of x with independent probability δ into a random neighbor
of xi in G.

Observe that for U =Noisy-ParPloop
(U, k), the k-edges of a vertex x of U correspond to

the above k-edges for noise δ = 1− Ploop.
Note that, in contrast to the usual discussion of noise-sensitivity, here G may be much

larger than k.
The following is an immediate corollary of Claim 2.17 of Lemma 2.13 and is in-fact a

generalization of Bourgains’ theorem to G⊗k but only for good expanders.

Corollary 2.23. Let f be a Boolean function over G⊗k, where G contains self-loops of
weight 1

2
. Let Pmin = 1−|Ef |

2
. Then

NS 1
2
(f) = Ω(γ · Pmin)

We would like for a lemma that generalizes this corollary, and holds with no dependency
on γ.

One suggestion may be that either NSε(f) = Ω(Poly(Pmin)) or f is a (d(ε), ε)-junta.
This however is incorrect: let G be a union of two disjoint graphs G1 and G2 of equal size,
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with equality constraints on all edges, and self-loops of weight 1 − ε. Let f assign 1 to
each k-vertex of G⊗k that contains more than k

2
vertices of G1 and assigns −1 otherwise.

Then all vertices of a connected component of G⊗k are assigned the same value, therefore
NSε(f) = 0. But f is clearly not a junta.

We therefore suggest the following generalization of Bourgain’s theorem. Either NSε(f) =
Ω(Poly(Pmin)) or f is a (d(ε), ε)-junta, or there is a cut of each coordinate i (where its
smaller part is of fractional size pi) such that f is close to a function g over the product
distribution Upi

over the 2k cube.
These cut then resolve the example of odd-cycles in [FKO07], as the cuts in V give a

cut of Gk.
Then this might help as a substitute for the expansion properties.
Consider an assignment A to G⊗k. and let the functions fv correspond to the projected

assignment to v ∈ V (G). If A a large fraction of the constraints, then many of fv are
noise-insensitive. The possibility that fv is a junta might avoided by enforcing symmetry
over the k coordinates. Therefore either there are many unsatisfied k-edges between the
minority and majority assigned values v, or we can find a small cut of G⊗k which is a
product of small cuts of G, and we can remove its edges and recurse.

Such a generalized Bourgain lemma may have other interesting implications as well.
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2.6 Appendix

2.6.1 The NP -hardness of Approximating MinUnCut.

We next consider the NP -hardness for ε-solvable MinUnCut. By Trevisan et al. and
H̊astad [TSSW00, H̊as01] we know that for any arbitrarily small ε > 0,

Gap-MaxCut-

[
16

32
+ ε,

17

32
+ ε

]
∈ NP − hard

therefore

Gap-MinUnCut-

[
15

32
− ε,

16

32
− ε

]
∈ NP − hard

For every arbitrarily small ε′ > 0, this can be reduced to

Gap-MinUnCut-

[(
15

32
− ε

)
· ε′,

(
16

32
− ε

)
· ε′

]

Just add sufficient number of edges (on new vertices) that can always be satisfied.
Therefore, for every (arbitrarily small) ε′′ > 0, MinUnCut is NP -hard to approximate
better than 16

15
, even for instances that are ε′′ solvable.

Applying the exact same reduction to the NP -hardness of Gap-E2Lin2-
[

11
16
− ε, 12

16
− ε

]
[TSSW00, H̊as01] gives NP -hardness for

Gap-UniqueGame-

[(
4

16
− ε

)
· ε′,

(
5

16
− ε

)
· ε′

]

Therefore, for every (arbitrarily small) ε′′ > 0, DualUniqueGame2 (and DualUniqueGame
in general) is NP -hard to approximate better than 5

4
, even for instances that are ε′′ solvable.

2.6.2 Larger Spectral-Gap for MaxCut.

We next note that Gap-MaxCut- [1− δ, 1− ε] with arbitrary spectral-gap reduces to
Gap-MaxCut- [1− δ(2− ε), 1− 2ε] with spectral-gap γ = Ω(ε).

Let the input to the reduction be U = 〈G, {0, 1}, C〉, a 1 − ε solvable instances of
MaxCut with arbitrary spectral gap γ(U).

Let Uexp = 〈Gexp, {0, 1}, C2〉 be an instance on the same set of vertices, where the
constrains are ” 6=” and Gexp is a constant degree expander, namely, γ(Uexp) ≥ 1

10
.

Let U be the output of the reduction where U is the natural weighted combination of
U and Uexp with weights 1− ε and ε respectively.

Then γ(U) ≥ ε
10

. If U is at least 1 − ε solvable then U is at least (1 − ε)2 > 1 − 2ε
solvable. And if U is at most 1−δ solvable, then U is at most (1−δ)(1−ε)+ε = 1−δ(1−ε)
solvable.



Chapter 3

An Elementary Construction of
Constant-Degree Expanders

3.1 Introduction

All graphs considered here are finite, undirected and may contain self-loops and parallel
edges. Expanders are graphs, which are simultaneously sparse, yet highly connected, in
the sense that every cut contains (relatively) many edges. In this chapter we mostly work
with the notion of edge-expansion. A d-regular graph G = (V, E) is a δ-edge-expander
(δ-expander for short) if for every set S ⊆ V of size at most 1

2
|V | there are at least δd|S|

edges connecting S and S = V \ S, that is, e(S, S) ≥ δd|S|. For brevity, we say that a
graph is an [n, d, δ]-expander if it is an n-vertex d-regular δ-expander. Expanders are some
of the most widely used objects in theoretical computer science, and have also found many
applications in other areas of computer-science and mathematics. See the survey of Hoory
et. al. [HLW06] for a discussion of several applications and references. Another widely
used notion of expansion is based on algebraic properties of a matrix representation of the
graph. Let G = (V, E) be an n-vertex d-regular graph, and let A be the adjacency matrix
of G, that is, the n × n matrix, with Ai,j being the number of edges between i and j. It
is easy to see that 1n is an eigenvector of A with eigenvalue d, and that this is the only
eigenvector with this eigenvalue iff G is connected. We denote by λ2(G) the second largest
eigenvalue of A. It is easy to see that λ2(G) = max06=x⊥1n〈Ax, x〉/〈x, x〉. The following is
a well known relation between the expansion of G and λ2(G).

Theorem 3.1 ([Alo86], [AM85] ,[Dod84]). Let G be a δ-expander with adjacency matrix
A, let λ2 = λ2(G) be the second largest eigenvalue of A, and let its (normalized) spectral
gap be γ = 1− λ2

d
. Then,

γ

2
≤ δ ≤

√
2γ
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Our construction uses only the left-hand simple inequality, but for completeness, we
include a very short proof of the second direction of this theorem after the discussion.

The most useful expanders are those with constant degree. A priori, it is not clear that
constant-degree expanders even exist. Pinsker [Pin73] established their existence.

Theorem 3.2 ([Pin73]). There exists a fixed δ > 0, such that for any d ≥ 3 and even
integer n, there is an [n, d, δ]-expander, which is d-edge-colorable ∗.

One way to prove the above is to take a random d-regular bipartite graph. In most ap-
plications, however, one needs to efficiently construct constant degree expanders explicitly.
There are two notions of constructibility of d-regular expanders. The first (weaker) notion
requires the n-vertex graph to be constructible in polynomial time in its size. The second
(stronger) notion requires that given a vertex v and i ∈ [d] it would be possible to generate
the ith neighbor of v in time Poly(log n). Such an expander is said to be fully explicit. In
applications, where one needs to use the entire graph, it is often enough to use the weaker
notion. However, in such cases (e.g. in certain reductions) one frequently needs to be able
to construct a graph of a given size n. It has been observed by many that to this end it is
enough to be able to construct graphs of size Θ(n) (e.g., one can take a cn-vertex expander
and join groups of c vertices to get an n-vertex expander with positive expansion). In other
cases, where one needs only part of the expander (e.g., when performing a random walk
on a large expander) one usually needs the stronger notion of fully explicitness. However,
in these cases it is usually enough to be able to construct an expander of size Poly(n), as
what we are interested in is actually the logarithm of the size of the graph.

Margulis [Mar73] and Gabber and Galil [GG81] were the first to efficiently construct
constant degree expanders. Following was a sequence of works that culminated in the
construction of Lubotzky, Phillips and Sarnak [LPS88] and Margulis [Mar88] of Ramanu-
jan Graphs. These constructions rely (directly or indirectly) on estimations of the second
largest eigenvalue of the graphs, and some of them, rely on deep mathematical results. A
simpler, iterative construction was given by Reingold, Vadhan and Wigderson [RVW02].
This construction also relies on proving the expansion of the graphs by estimating their
eigenvalues, and is the first construction of constant degree expanders with relatively el-
ementary analysis. Additional algorithms for constructing bounded-degree expanders ap-
pear in [Ajt94] and [BLar], but these algorithms are not fully explicit in the sense described
above.

Our construction is based on the replacement product of two graphs G and H, which
is one of the most natural ways of combining two graphs. We start by defining this basic
operation.

Definition 3.3. Let G be a D-regular D-edge-colorable graph on n vertices and let H be a d-
regular graph on D vertices. Suppose G is already equipped with a proper D-edge-colorings.

∗That is, one can assign its edges d colors such that edges incident with the same vertex are assigned
distinct colors.
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The replacement product G ◦H is the following 2d-regular graph on nD vertices: We first
replace every vertex vi of G with a cluster of D vertices, which we denote Ci = {vi

1, . . . , v
i
D}.

For every 1 ≤ i ≤ n we put a copy of H on Ci by connecting vi
p to vi

q if and only if
(p, q) ∈ E(H). Finally, for every (p, q) ∈ E(G), which is colored t, we put d parallel edges
between vp

t and vq
t .

Note that if H is d-edge-colorable then G ◦ H is 2d-edge colorable: simply color the
copies of H within each set Ci using colors 1, . . . , d. As the edges between the sets Ci

form d parallel copies of a perfect matching on the vertices of G ◦ H, we can color any
set of d parallel edges using the colors d + 1, . . . , 2d. Already in the 80’s, Gromov [Gro83]
has analyzed the effect of (a slight variant of) this operation on the spectral properties
of graphs. Reingold, Vadhan and Wigderson [RVW02] considered the above variant, and
showed, via a reduction to their algebraic analysis of the zig-zag product, that if two graphs
are expanders then so is their product. Their argument is based on analyzing λ(G◦H) as a
function of λ(G) and λ(H). We analyze the replacement product directly via an elementary
combinatorial argument.

Theorem 3.4. Suppose E1 is an [n, D, δ1]-expander and E2 is a [D, d, δ2]-expander. Then,
E1 ◦ E2 is an [nD, 2d, 1

80
δ2
1δ2]-expander.

The proof of Theorem 3.4 is very simple; we show that e(X, X) has either many edges
within the clusters Ci or between them. Our main result is a new construction of constant-
degree expanders. The main idea can be summarized as follows: a simple special case
of one of the results of [AR94] gives a construction of [n,O(log2 n), 1

4
]-expanders. To get

expanders with constant degree we construct such an [n, O(log2 n), 1
4
]-expander and then

apply the replacement product with another similar expander in order to reduce the degree
to O(

√
log n) (in fact the degree could easily be further reduced, but this suffices to our

purpose). We now find a constant degree expander of size O(
√

log n), using exhaustive
search, and apply a final replacement product to get a constant degree. Note that here we
do not care much about the fact that the replacement product decreases the edge-expansion
as we only apply it twice. A suitable choice of parameters gives the following construction,
whose analysis relies solely on the easy part of Theorem 3.1, a simple special case of the
result of [AR94] and on the elementary analysis of the replacement product (Theorem 3.4).

The following theorem states the explicit constructiveness:

Theorem 3.5 (Main Result). There exists a fixed δ > 0 such that for any integer q = 2t

and for any q4/100 ≤ r ≤ q4/2 there is a polynomial time constructible [q4r+12, 12, δ]-
expander.

For completeness we prove all the necessary ingredients, thus obtaining a short and
self-contained construction of constant-degree expanders. It is easy to see that given n,
Theorem 3.5 can be used to construct an m-vertex expander with n ≤ m = O(n log n).
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3.1.1 Outline

The construction and its analysis appear in Section 3.2. In Section 3.3 we observe that
simple variants of Theorem 3.5 give a construction with Θ(n) vertices and a construction
which is fully explicit (albeit of size within some polynomially range). Section 3.3 contains
some remarks regarding the construction (e.g, how to improve the edge expansion).

3.2 The Construction

Let us start by describing the special case of [AR94] that suffices for our purposes. For any
q = 2t and r ∈ N, we define a graph LD(q, r) as follows. The vertices are all elements of
Fr+1

q , which can be thought of as all strings (a0, . . . , ar) ∈ Fr+1
q . A neighbor of a vertex a is

indexed by an element (x, y) ∈ F2
q. In this notation neighbor (x, y) of vertex a = (a0, . . . , ar)

is a + y · (1, x, x2, . . . , xr). LD(q, r) is clearly a q2-regular graph on qr+1 vertices. It is also
q2-edge-colorable as we can color the edges indexed (x, y) using the “color” (x, y) (note
that this is well defined as addition and subtraction are identical in F2t). The following
result is a special case of the result of [AR94]:

Theorem 3.6 ([AR94]). For any q = 2t and integer r < q we have λ2(LD(q, r)) ≤ rq.

Note that the above theorem, together with the left inequality of Theorem 3.1, imply
that if r ≤ q/2 then LD(q, r) is a [qr+1, q2, 1

4
]-expander. We first prove our main result

based on Theorems 3.4, 3.6 and the left inequality of Theorem 3.1. We then prove these
three results.

We next show a combinatorial analysis of the replacement product. The analysis here
is not tight and could be improved. Indeed, we do not try to present the strongest possible
bound, but rather to give one with a simple proof. Note that it suffices for our purpose, as
we apply it only a constant number of times.

Proof of Theorem 3.5: Given integers q and q4

100
≤ r ≤ q4

2
, we start by enumerating

all 3-regular graphs on q2 vertices until we find one which is a δ-expander and 3-edge
colorable (one exists by Theorem 3.2). This step can clearly be carried out in time qO(q2).
Denote by E1 the expander we find and define E3 = LD(q4, r), E2 = LD(q, 5) and set
E4 = E3 ◦ (E2 ◦ E1) to be our final graph. As E1, E2 and E3 are [q2, 3, δ], [q6, q2, 1

4
]

and [q4r+4, q8, 1
4
] expanders respectively, E4 is a [q4r+12, 12, δ′]-expander for some absolute

constant δ′ (here we rely on Theorem 3.4). Moreover, given E1 one can easily compute E4

in time polynomial † in the size of E4. As r ≥ q4/100, E4 is of size at least qq4/10, thus the
first step of finding E1 also takes time polynomial in the size of E4, as needed.

†Note that when constructing E2 and E3 we need representations of Fq and Fq4 . These representations
can be found using exhaustive search in time Poly(q4) that is much smaller than the size of E4 and thus
negligible.
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Proof of Theorem 3.4: Let E3 = E1 ◦ E2 and consider any set X of vertices in E3 of
size at most 1

2
nD. Note that we can view the vertex set of E3 as composed of n clusters of

vertices C1, . . . , Cn, each of size D. Our goal is to show that there are at least 1
80

δ2
1δ2 ·2d|X|

edges leaving X. We consider two cases. Either many of the vertices of X are in clusters
Ci which are sparsely populated by X, in which case many edges are leaving X within the
clusters Ci due to the expansion properties of E2. Or there are many of the vertices of X
which reside in densely populated clusters Ci, in which case there are many edges leaving
X between the clusters, due to the expansion properties of E1.

Set Xi = X ∩ Ci, let I ′ ⊆ [n] be the set of indices of the sets Xi, whose size is at
most (1 − 1

4
δ1)D and let I ′′ = {1, . . . , n} \ I ′. We first consider the contribution of the

sets Xi with i ∈ I ′. As E2 is a δ2-expander, there are at least 1
4
δ1δ2d|Xi| edges connecting

Xi and Ci \ Xi. Partition X into two sets X ′ and X ′′ according to I ′ and I ′′ as follows:
X ′ =

⋃
i∈I′ Xi and X ′′ =

⋃
i∈I′′ Xi. By the above, the number of edges connecting X ′ and

X is at least 1
4
δ1δ2d|X ′|. If |X ′| ≥ 1

10
δ1|X| then we are done, as this means that there are

at least 1
80

δ2
1δ2 · 2d|X| edges connecting X and its complement X.

Suppose then that |X ′| ≤ 1
10

δ1|X|, implying that |X ′′| ≥ (1 − 1
10

δ1)|X|. We now
consider the contribution of the edges leaving the sets Ci. As the sets Xi with i ∈ I ′′ have
size at least (1 − 1

4
δ1)D we infer that |X ′′|/D ≤ |I ′′| ≤ |X ′′|/(1 − 1

4
δ1)D. In particular, as

|X ′′| ≤ |X| ≤ 1
2
nD we have |I ′′| ≤ 2

3
n. Therefore, as E1 is an [n,D, δ1]-expander, there is

a set of edges M , where |M | ≥ 1
2
δ1D|I ′′|, connecting the vertices of I ′′ with the vertices

of I ′. Let us now consider the corresponding d|M | ≥ 1
2
δ1dD|I ′′| edges in the graph E3.

These edges connect vertices from
⋃

i∈I′ Ci with vertices from
⋃

i∈I′′ Ci. As each Xi with
i ∈ I ′′ is of size at least (1 − 1

4
δ1)D, we infer that at most 1

4
δ1dD|I ′′| of these d|M | edges

connect a vertex in Ci\Xi with a vertex of
⋃

i∈I′ Ci. Therefore, there are at least 1
4
δ1dD|I ′′|

edges connecting
⋃

i∈I′′ Xi with the vertices of
⋃

i∈I′ Ci. The number of these d|M | edges
that connect vertices from

⋃
i∈I′′ Ci with vertices of X ′ is clearly at most d|X ′|. As we

have |X ′| ≤ 1
10

δ1|X| ≤ 1
6
δ1D|I ′′| we infer that there are at most 1

6
δ1dD|I ′′| such edges. We

conclude that at least 1
12

δ1dD|I ′′| edges connect vertices of
⋃

i∈I′′ Xi (that belong to X)

with vertices of
⋃

i∈I′ Ci \Xi (that belong to X). As |I ′′| ≥ |X ′′|/D and |X ′′| ≥ 1
2
|X| this

means that there are at least 1
48

δ12d|X| edges connecting X and X, as needed.

Proof of Theorem 3.6: The proof follows by considering a Caley graph and its eigen-
vectors, which are the characters. Set F = F2t , n = 2t(r+1) and let M be the n×n adjacency
matrix of LD(2t, r). Let L : F→ {0, 1} be any surjective linear map ‡. Let us describe the
eigenvectors of M over R. We will use elements of Fr+1 in order to “name” these vectors
as well as to “name” entries of these vectors. For every sequence a = (a0, . . . , ar) ∈ Fr+1,
let va be the vector, whose bth entry (where b ∈ Fr+1) satisfies va(b) = (−1)L(

Pr
i=0 aibi).

It is easy to see that the vectors {va}a∈Fr+1 are orthogonal, therefore these are the only

‡For example, if we view the elements of F as element of {0, 1}t then we can define L(a0, a1, . . . , at−1) =
a0.
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eigenvectors of M . Clearly, va(b + c) = va(b)va(c) for any b, c ∈ Fr+1. Let us show that va

is indeed an eigenvector and en-route also compute its eigenvalue.

(Mva)(b) =
∑

c∈Fr+1

Mbc ·va(c) =
∑

x,y∈F
va(b+y(1, x, ..., xr)) =

( ∑

x,y∈F
va(y, yx, ..., yxr)

)
·va(b) .

Therefore λa =
∑

x,y∈F va(y, yx, ..., yxr) is the eigenvalue of va. Set pa(x) =
∑r

i=0 aix
i and

write

λa =
∑

x,y∈F
(−1)L(y·pa(x)) =

∑

{x,y∈F : pa(x)=0}
(−1)L(y·pa(x)) +

∑

{x,y∈F : pa(x)6=0}
(−1)L(y·pa(x)) .

If pa(x) = 0, then (−1)L(y·pa(x)) = 1 for all y, thus such an x contributes q to λa. If pa(x) 6= 0
then y · pa(x) takes on all values in F as y varies, and hence (−1)L(y·pa(x)) varies uniformly
over {−1, 1} implying that these x’s contribute nothing to λa. Therefore, when a = 0n we
have λa = q2. Otherwise, when a 6= 0n, pa has at most r roots, and therefore λa ≤ rq.

A proof of left inequality of Theorem 3.1: Let A be the adjacency matrix of G and
note that as A is symmetric we have λ2 = max0 6=x⊥1n〈xA, x〉/〈x, x〉. For a set S ⊆ V (G)
let xS be the vector satisfying xi = 1 when i ∈ S and xi = 0 otherwise, and note that
〈xSA, xS〉 = 2e(S) and 〈xSA, xS〉 = e(S, S). Set x = |S| · xS − |S| · xS and note that x⊥1n.
Therefore,

λ2(|S|+ |S|)|S||S| = λ2〈x, x〉 ≥ 〈xA, x〉 = 2|S|2e(S) + 2|S|2e(S)− 2|S||S|e(S, S). (3.1)

As G is d-regular we have e(S) = 1
2
(d|S| − e(S, S)) and e(S) = 1

2
(d|S| − e(S, S)).

Plugging this into (3.1), solving for e(S, S) and using |S| ≤ n/2, we complete the proof by
inferring that

e(S, S) ≥ (d− λ2)|S||S|/n ≥ 1

2
(d− λ2)|S| .

3.2.0.1 A proof of right inequality of Theorem 3.1

The following proof is not necessary for our construction and is given to have a complete
proof of the Theorem 3.1.

Let Q = dI − A be the Laplace matrix of G. Our goal is to prove that all but one
of the eigenvalues of Q are at least 1

2
δ2d (the one which is not corresponds to 1n). Let

z = (z1, z2, . . . , zn) be an eigenvector of Q with the smallest nontrivial eigenvalue λ, where
V (G) = {1, 2, . . . , n}. Recall that for every set U of at most half the vertices of G there are
at least c|U | edges between U and its complement, where c = δd is some positive constant.
Clearly

∑
i zi = 0. Without loss of generality assume that m ≤ n/2 of the entries of z are

positive, otherwise, replace z by −z (if z contains complex entries then consider z. It is
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an eigenvector with the same eigenvalues, then so is z + z which does not contain complex
entries). Assume also that z1 ≥ z2 ≥ . . . ≥ zm > 0 ≥ zm+1 ≥ . . . ≥ zn. Define xi = zi for
i ≤ m, and xi = 0 otherwise. Since xj = 0 for all j ≥ n/2,

∑
ij∈E

|x2
i − x2

j | =
∑

ij∈E,i<j

(x2
i − x2

j) ≥
∑

i:i<n/2

(x2
i − x2

i+1)ci = c

n∑
i=1

x2
i . (3.2)

Note that (Qz)i = λzi for all i and hence λ = 〈Qz,z〉
〈z,z〉 =

Pm
i=1(Qz)iziPm

i=1 z2
i

. However,

m∑
i=1

(Qz)izi =
m∑

i=1

(dz2
i−

∑
j,ij∈E

zizj) =
∑

i,j≤m,ij∈E

(zi−zj)
2+

∑
i≤m,j>m,ij∈E

zi(zi−zj) ≥
∑
ij∈E

(xi−xj)
2.

As
∑m

i=1 z2
i =

∑n
i=1 x2

i we conclude, using Cauchy Schwartz (twice) that

λ ≥
∑

ij∈E(xi − xj)
2

∑n
i=1 x2

i

=

∑
ij∈E(xi − xj)

2
∑

ij∈E(xi + xj)
2

∑
i x

2
i

∑
ij∈E(xi + xj)2

≥ (
∑

ij∈E |x2
i − x2

j |)2

∑
i x

2
i 2d

∑
i x

2
i

≥ c2

2d
,

where the last inequality follows from (3.2). Therefore, λ ≥ c2

2d
= 1

2
δ2d.
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3.3 Concluding Remarks and Open Problems

Expanders on Θ(n) vertices: Let us first show how to apply Theorem 3.5 in order to
construct for every large n, an expander on Θ(n) vertices. Let Nt be the set of integers of
the form q4r+12 where q = 2t and q4/100 ≤ r ≤ q4/2. By Theorem 3.5 we can generate an
expander of size n for every n ∈ ⋃∞

t=1 Nt in time poly(n). Note that for every t ≥ 2 we
have

max{Nt} = q4· q4

2
+12 = 2lg q(2q4+12) > 2(lg q+1)( 64

100
q4+12) = (2q)4· (2q)4

100
+12 = min{Nt+1} .

Therefore for every n ≥ 44· 44

100
+12 there exists a t such that n ∈ [min{Nt}, max{Nt}]. Hence,

for every such n there exists a q = 2t and q4

100
≤ r0 ≤ q4

2
such that n/q4 ≤ q4r0+12 ≤ n.

Now, given n let q = 2t and q4/100 ≤ r0 ≤ q4/2 be such that n/q4 ≤ q4r0+12 ≤ n
(as guaranteed by the previous paragraph). We start by using Theorem 3.5 to construct
a [q4r0+12, 12, δ]-expander E satisfying n/q4 ≤ q4r0+12 ≤ n. If n/32 ≤ q4r0+12 we return
E. Otherwise set t = bn/16q4r0+12c < q4 and use exhaustive search to find a 6-regular
expander E ′ on 12t vertices (which exists by Theorem 3.2). This step takes time qO(q4),

which is polynomial in the size of E because |E| ≥ q
1
25

q4
as r ≥ q4/100. We now replace

every edge of E with t parallel edges to get a [q4r0+12, 12t, δ]-expander E ′′. We then define
E ′′ ◦ E ′ to be the final 12-regular graph on m vertices with n/2 ≤ m ≤ n.

Fully explicit expanders: We now show that for every t we can construct a fully explicit
[2tb2t/tc, d, δ]-expander for some constants d, δ > 0. Thus, for every n we can construct such
an expander of size n ≤ m ≤ n2. The idea is to significantly reduce the degree (say,
to
√

lg lg n), so the innermost graph is fully explicit as it is very small. Then the entire
construction is fully explicit as well.

We use the previous argument to find an expander of size 22t ≤ m ≤ c22t. As noted
in Section 3.1 we can then turn it into a constant degree expander E1 of size precisely 22t.
This step takes time 2O(t). It is useful to “name” the vertices of E1 using pairs of elements
of F2t . Set E2 = LD(2t, b2t/tc − 3) and define E3 = E2 ◦ E1 as the final constant degree
expander on 2tb2t/tc vertices. To see that E3 is fully explicit, note that we can view a vertex
of LD(q, r) as composed of r+1 elements of Fq. Therefore, a vertex of E3 = E2 ◦E1 can be
viewed as r + 1 = b2t/tc − 2 elements (a0, . . . , ar) of F2t (representing a vertex of E2) and
another pair of elements x, y of F2t (representing a vertex of E1). Suppose the degree of
E1 is d′ in which case the degree of E3 is 2d′. Given r + 3 elements (a0, . . . , ar, x, y) of F2t

and i ∈ [2d′] we do the following. If 1 ≤ i ≤ d′ we return (a0, . . . , ar, x
′, y′), where (x′, y′)

is the ith neighbor of vertex (x, y) in E1. We can do so by generating E1 from scratch in
time 2O(t). If d′ + 1 ≤ i ≤ 2d′, we return the vertex (a′0, . . . , a

′
r, x, y), where a′i = ai + yxi.

To do so we use a representation of F2t that we find using exhaustive search in time 2O(t).
We finally note that one can easily adopt our arguments to get space efficient variants of
our constructions. We omit the details.
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Edge expansion close to 1
2
: The expanders we constructed have a positive edge expan-

sion. However, by applying Theorem 3.1 it is easy to see that for every ε we can raise the
graphs we construct to an appropriate power to get edge-expansion 1

2
− ε. In fact, to get

edge-expansion 1
2
− ε one needs the degree to be Poly(1/ε).

Vertex expansion: It is clear that if G is an [n, d, δ]-expander, then for any set of vertices
of size at most n/2, there are at least δ|S| vertices outside S that are connected to some
vertex of S. Our construction thus also supplies constructions of vertex-expanders with
expansion close to 1

2
. By adding loops and taking a power one can, in fact, obtain vertex

expansion close to 1.

Eigenvalue gap: As we have mentioned before all the previous constructions of bounded-
degree expanders did so via constructing a graph, whose second eigenvalue is bounded
away from d. Theorem 3.1 implies that if G is an [n, d, δ]-expander then its second largest
eigenvalue is at most d(1− 1

2
δ2). As we can construct expanders with edge expansion close

to 1
2
, these graphs have second largest eigenvalue at most roughly 7

8
d. By adding loops and

raising the resulting graphs to an appropriate power one can get expanders in which all
eigenvalues are, in absolute value, at most some fractional power of the degree of regularity.

Expanders with smaller degree: The expanders we construct have constant degree
larger than 3. In order to get a 3-regular expander one can take any constant degree d-
regular expander and apply a replacement product with a cycle of length d. Definition
3.3 implies that the new degree is 4, but it is easy to see that when d is a constant we
do not have to duplicate each edge of the “large” graph d times, as keeping a single edge
guarantees a positive expansion. This way we can get a 3-regular expander, which is clearly
the smallest possible degree of regularity.

Simple Combinatorial Proofs. It is interesting whether there exists a simple con-
struction of such constant degree expander, so that its analysis is entirely combinatorial,
but yet simple. In particular, it is interesting to come up with a construction for an
[n, Poly log n, 1

4
]-expander such that its analysis is both simple and combinatorial. Finding

simple combinatorial proofs for other building blocks useful in this context (e.g, graph-
powering) and for (near) Ramanujan graphs is, of course, a worthy goal.
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Chapter 4

On the Complexity of Approximating
k-Set Packing
and Related Problems

4.1 Introduction

Bounded variants of optimization problems are often easier to approximate than the general,
unbounded problems. The IndependentSet problem illustrates this well: it cannot be
approximated to within O(N1−ε) unless P = NP [H̊as99, Zuc07]. Nevertheless, once the
input graph has a bounded degree d, much better approximations exist (e.g, a d log log d

log d

approximation by [Vis96]). Another example is the bounded covering problem (hyper-
graph vertex-cover) which has been studied thoroughly [Hol02, DGKR05].

We next examine some bounded variants of the SetPacking problem and try to
illustrate the connection between the bounded parameters (e.g, sets size, occurrences of
elements) and the complexity of the bounded problem.

In the problem of SP , the input is a family of sets S1, ..., SN , and the objective is to
find a maximum packing, namely a maximum number of pairwise disjoint sets from the
family. This problem is often phrased in terms of Hyper-graphs: we have a vertex vx for
each element x and a hyper-edge eS for each set S of the family (containing all vertices
vx which correspond the elements x in the set S). The objective is to find a maximum
matching. Alternatively one can formulate this problem using the dual-graph: a vertex vS

for each set S and a hyper-edge ex for each element (vS is contained in all edges ex such
that x ∈ S). The objective is to find a maximum independent set (namely, a maximum
number of vertices, such that no two of them are contained in the same edge).

The general problem of SP has been extensively studied (for example [Wig83, BYM84,
BH92, H̊as99, Zuc07]). Quite tight approximation algorithms and inapproximability factors
are known for this problem. H̊astad [H̊as99] and Zuckerman [Zuc07] proved that Set-
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Packing cannot be approximated to within O(N1−ε) unless NP ⊆ ZPP and P 6= NP
respectively (for every ε > 0, where N is the number of sets). The best approximation
algorithm achieves an approximation ratio of O( N

log2 N
) [BH92]. In contrast, the case of

bounded variants of this problem seems to be of a different nature.

4.1.1 Bounded Variants of Set-Packing

For bounded variant it seems natural to think of SP using hyper-graph notions. One may
think of two natural bounds: the size of the edges (size of the sets) and the degree of
the vertices (number of occurrences of each element). For example, k-Set-Packing is this
problem where the size of the hyper-edges is bounded by k. If we also bound the degree of
the vertices by two this becomes the problem of maximum IndependentSet in k bounded
degree graphs denoted by k-IndependentSet(recall the dual-graph defined above).

Another natural bound is the colorability of the input graph. Consider the problem
of 3-DimensionalMatching. It is a variant of 3 − SP where the vertices of the input
hyper-graph are a union of three disjoint sets, V = V1 ∪· V2 ∪· V3, and each hyper-edge
contains exactly one vertex from each set, namely, E ⊆ V1 × V2 × V3. In other words, the
vertices of the hyper-graph can be colored using 3 colors, so that no hyper-edge contains
the same color twice. A graph having this property is called 3-strongly-colorable (in general
- k-strongly-colorable). Thus the color-bounded version of k-SetPacking, namely the
problem of k-DimensionalMatching, is

Definition 4.1 (k-DimensionalMatching ). k-Dimensional Matching
Input: A k-uniform k-strongly colorable hyper-graph H = (V 1, ..., V k, E).
Problem: Find a matching of maximum size in H .

These bounded variants of SP are known to admit approximation algorithms better
than their general versions, the quality of the approximation being a function of the bounds.
An extensive body of algorithmic work has been devoted to these restricted problems (for
example, [HS89]). Matching inapproximability results have also been studied (e.g, implicit
in [Tre01]).

With some abuse of notations, one can say that hardness of approximation factor of SP
is a monotonous increasing function in each of the bounded parameters: the edges size, the
vertices degree and the colorability (of edges and vertices). For example, inapproximability
factor for graphs of degree bounded by 3 holds for graphs with degree bounded by 4. We
next try to overview what is known regarding the complexity of this problem as a function
of these bounds.

4.1.2 Related Studies

2-DM is known to be solvable in polynomial time, say by a reduction to network flow
problems [Pap94]. Polynomial time algorithms are also known for graphs that are not
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bipartite [Edm65].
In contrast, for all k ≥ 3, k-DimensionalMatching is NP -hard [Kar72, Pap94].

Furthermore, for k = 3, the problem is known to be APX-hard [Kan91].
For large k values, we are usually interested in the asymptotic dependence of the ap-

proximation ratio (and inapproximability factor) on k. Currently, the best polynomial time
approximation algorithm for k-SetPacking achieves an approximation ratio of k

2
[HS89].

This is, to date, the best approximation algorithm for k-DimensionalMatching as well.
Alon et al. [AFWZ95] proved that for suitably large k, k-IS is NP -hard to approximate

to within kc−ε for some c > 0. This was later improved to the currently best asymptotical
inapproximability factor [Tre01] of k

2Ω(
√

ln k)
. All hardness factors for k-IS hold in fact for

(k + 1)-DM as well (by a simple reduction).
The best known approximation algorithm for k-IS achieves an approximation ratio of

O(k log log k/ log k) [Vis96].

4.1.3 Our Contribution

We improve the inapproximability factor for the k-SetPacking, and show:

Theorem 4.2. It is NP -hard to approximate k-SetPacking to within O
(

k
ln k

)

These results extend to k-DimensionalMatching and IndependentSet in (k+1)-
claw-free graphs ((k+1)-ISCFG) (see [Hal98] for definition of (k+1)-ISCFG and reduction
from k-SetPacking ). They do not hold, however, for k-IS.

4.1.4 Outline

Some preliminaries are given in section 4.2. Section 4.2.1 presents the notion of hyper-
graph-dispersers. Section 4.3 contains the proof of the asymptotic hardness of approxima-
tion for k-SetPacking. Section 4.4 extends the proof to hold for k-DimensionalMatching.
The existence of a good hyper-disperser is proved in section 4.5. The optimality of its pa-
rameter is shown in the same section. Section 4.6 contains a discussion on the implications
of our results, the techniques used and some open problems.

4.2 Preliminaries

Our main result in this chapter is derived by a reduction from the following problem.

Definition 4.3 (Linear Equations). MAX-3-LIN-q is the following optimization prob-
lem:
Input: A set Φ of linear equations modulo an integer q, each depending on 3 variables.
Problem: Find an assignment that satisfies the maximum number of equations.
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The following central theorem stems from an extensive line of research, using the PCP
theorem (see [AS92, ALM+98]) and the parallel repetition theorem [Raz98] as a starting
point:

Theorem 4.4 (H̊astad [H̊as01]). Gap-MAX − 3− LIN − q-
[

1
q

+ ε, 1− ε
]

is NP -hard

for every q ∈ N and ε > 0. Furthermore, the result holds for instances of MAX-3-LIN-q in
which the number of occurrences of each variable is a constant (depending on ε only).

We denote an instance of MAX-3-LIN-q by Φ = {ϕ1, ..., ϕm}. Φ is over the set of variables
X = {x1, ..., xn}. Let Φ(x) be the (multi) set of all equations in Φ depending on x (i.e. it
can be seen as all the occurrences of x). Denote by Sat(Φ, A) the set of all equation in Φ
satisfied by the assignment A. For an assignment A to an equation ϕ ∈ Φ(x), we denote
by A[ϕ]|x the corresponding assignment to x.

We next explain the reduction from Linear equations to our problem. The reduction
gives an inapproximability factor for k-SetPacking. We later amend it to hold for k-
DimensionalMatching too.

4.2.1 Hyper Dispersers

The following definition is a generalization of disperser graphs. For definitions and results
regarding dispersers see [RTS00].

Definition 4.5 ((q, δ)-Hyper-Edge-Disperser). We call a hyper graph H = (V, E)
a (q, δ)-Hyper-Edge-Disperser if there exists a partition of its edges: E = E1 ∪· ... ∪
· Eq , |E1| = ... = |Eq|, such that every large matching M of H is (almost) concen-
trated in one part of the edges. Formally, there exists i so that

|M \ Ei| ≤ δ|E|

Note that this generalizes the notion of dispersers: if we take two (of the q) parts of the
edges Ei, Ej and every vertex that appears in the intersection of an edge from Ei with an
edge of Ej, then the resulting graph is the dual of a δ-disperser graph. See section 4.5.1
for further discussion.

Lemma 4.6. For every q > 1 and t > 1 there exists a hyper-graph H = (V, E) such that

• V = [t]× [d], whereas d = Θ(q ln q).

• H is (q, 1
q2 )-hyper-edge-disperser

• H is d-uniform, d-strongly-colorable.

• H is q-regular, q-strongly-edge-colorable.
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We denote this graph by (t, q) − D and name its edges e[i, j] where j ∈ [q] is the color of
the edge by an arbitrary strong edge coloring (a coloring where no two edges of the same
color share a vertex) and i ∈ [t] is an arbitrary indexing of the t edges of each color. Note
that the t edges of any single color, exactly cover all the vertices of (t, q)−D.

For proof see section 4.5. Note that (t, 2)−D is the dual graph of a standard disperser.

4.3 Proof of the Asymptotic Inapproximability Factor

for k-SetPacking

This section provides a deterministic polynomial time reduction from MAX-3-LIN-q to
k-SetPacking. The constructed instance of k-SetPacking is a hyper-graph with a
hyper-edge for each equation and a satisfying assignment to it. In addition, the graph
will have common vertices for edges that correspond to contradicting assignments. Thus,
intuitively, a large matching should translate to a consistent satisfying assignment.

The sparsity and uniformity of the constructed graph ultimately relate to the quality of
the hardness result. In order to obtain a sparse graph with small edge size, but still retain
edge-intersection properties, we utilize a form of expander graphs defined in the previous
section.

4.3.1 The construction

Let Φ = {ϕ1, ..., ϕn} be an instance of MAX-3-LIN-q over the sets of variables X,where each
variable x ∈ X occurs a constant number of times cx (recall Theorem 4.4). We now describe
how to deterministically construct, in polynomial time, an instance of k-SetPacking -
the hyper-graph HΦ = (V, E).

For every variable x ∈ X we have a copy of a hyper-edge disperser (cx, q) − D (which
exist by lemma 4.6), which is denoted by Dx. The vertices of HΦ are the union of the
vertices of all these hyper-disperses (recall that d = Θ(q lg q)):

V = X × [cx]× [d]

as cx = |Φ(x)| we use ϕ ∈ Φ to denote an occurrence of a variable, namely,

V = {vx,ϕ,i | x ∈ X,ϕ ∈ Φ(x), i ∈ [d]}

The Edges of HΦ. We have an edge for each equation ϕ ∈ Φ and a satisfying assignment
to it. Consider an equation ϕ = x + y + z = a mod q, and a satisfying assignment A to
that equation (note that there are q2 such assignments, as assigning the first two variables,
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determines the third). The corresponding edge, eϕ,A, is composed of three edges, one from
the hyper-graph Dx, one from Dy and the last from Dz. Formally:

eϕ,A = ex,ϕ,A|x ∪· ey,ϕ,A|y ∪· ez,ϕ,A|z

Where A|x is the restrictions of the assignment A to the variable x, and ex,ϕ,A|x is the edge
e[ϕ,A|x] of Dx (and similarly for y and z). In other words, an edge e[i, j] of a hyper-edge-
disperser Dx (the ith edge of color j) is related to assigning j to x in its ith occurrence in
Φ(x); the vertices of e[i, j] are included in every edge that correspond to assigning j to x
in its ith occurrence in Φ(x).

The edges of HΦ are

E = {eϕ,A | ϕ ∈ Φ, A is a satisfying assignment to ϕ}
Clearly, the cardinality of eϕ,A is 3d (and note that each of the three composing edges
participates in creating q edges). This concludes the construction.

Notice that the construction is indeed deterministic, as each variable occurs a constant
number of times (see Theorem 4.4). Hence, the sizes of Dx is constant and its existence
(see lemma 4.6) suffices, as one can enumerate all possible hyper-graphs, and verify their
properties.

Claim 4.7. [Completeness] If there is an assignment to Φ which satisfies 1 − ε of its

equations, then there is a matching in HΦ of size
(

1−ε
q2

)
|E|.

Proof. Let A be an assignment that satisfies 1− ε of the equations. Consider the matching
M ⊆ E comprised of all edges corresponding to A, namely

M = {eϕ,A(ϕ) | ϕ ∈ Sat(Φ, A)}

Trivially, |M | =
(

1−ε
q2

)
|E|, as we took one edge corresponding to each satisfied equation.

To see that these edges are indeed a matching take any two edges of M . If they do not
relate to the same variables then they do not contain vertices from a joint hyper-edge-
disperser. On the other hand, if they do relate to a joint variable, then they relate to
different occurrences i1, i2, but the same assignment j ∈ [q] to it. Hence they contain
vertices of the same hyper-edge-disperser Dx, but from two distinct edges of the same color
(e[i1, j], e[i2, j]), so they do not share a vertex.

Lemma 4.8. [Soundness] If every assignment to Φ satisfies at most 1
q

+ ε fraction of its

equations, then every matching in HΦ is of size O
(

1
q3 |E|

)
.

Proof. Denote by Ex the edges of HΦ corresponding to equations ϕ containing the variable
x, namely,

Ex = {eϕ,A | ϕ ∈ Φ(x), eϕ,A ∈ E}
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Denote by Ex=a the subset of Ex corresponding to an assignment of a to x, that is,

Ex=a = {eϕ,A | eϕ,A ∈ Ex, A|x = a}

Let M be a matching of maximum size in HΦ. Let Amaj be the most popular assignment.
That is, for every x ∈ X choosing the assignment of x to be such that it corresponds to
maximum number of edges. Formally, choose

Amaj(x) ∈ [q] s.t. |Ex=a ∩M | is maximized

Let Mmaj be the set of edges in M that agree with Amaj, and Mmin be all the other edges
in M , namely

Mmaj = {eϕ,Amaj
}ϕ∈Φ

Mmin = M \Mmaj

As |Sat(Φ, Amaj)| ≤ 1
q

+ ε, we have |Mmaj| < (1
q

+ ε) E
q2 .

For every x ∈ X, Dx is a (q, 1
q2 )-hyper-edge-disperser. That is, in a subset of edges of Dx

which is a matching, all but at most 1
q2 of the edges are of one color. Clearly, if two edges e1

and e2 of Dx intersect, then so do any two edges containing e1 and e2 respectively. Hence,

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤ 1

q2
E(Dx)

Every edge of Dx is a subset of q hyper edges in Ex. However, no more than one of
these q edges may be taken to M (as M is a matching). Therefore,

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤ 1

q3
|Ex|

|Mmin| ≤
∑

x∈X,a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤ 1

q3

∑
x∈X

|Ex| = 3

q3
|E|

and thus

|M | = |Mmin|+ |Mmaj| ≤ (
4

q3
+ ε)|E|

By claim 4.7 and lemma 4.8 we showed that Gap-k − SetPacking-
[

4
q3 + ε, 1

q2 − ε
]

is

NP -hard. Since each edge is of size
k = 3d = Θ(q log q) it is NP -hard to approximate k-SetPacking to within O( k

ln k
).
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4.4 Extending the Proof for k-DimensionalMatching

The proof for k-DimensionalMatching follows the steps of the proof for k-SetPacking,
the difference being that we use three dispersers for each variable (instead of one) - a dif-
ferent disperser for each location in the equations. Denote by Φ(x, l) the subset of Φ(x)
where x is the l’th variable in the equation (clearly l ∈ [3]). Note that w.l.o.g. we may
assume that for every x ∈ X, Φ(x, 1) = Φ(x, 2) = Φ(x, 3) (as we can take three copies of
each equation, and shift the location of the variables).

For every variable x ∈ X and position l ∈ [3], we have a hyper disperser ( cx

3
, q)−D (as

stated in lemma 4.6), which is denoted by Dx,l.

V = X × V (Dx)× [3]

namely,
V = {vx,ϕ,i | x ∈ X,ϕ ∈ Φ(x), i ∈ [d]}

where the index i ∈ [q] is given by a strong-coloring of the edges with q colors (recall that
such a coloring exists as (t, q)−D is q-strongly colorable).

The Edges of HΦ. We have an edge for each equation ϕ ∈ Φ and a satisfying assignment
to it. Consider an equation ϕ = x + y + z = a mod q, and a satisfying assignment A to
that equation. The corresponding edge, eϕ,A, is composed of three edges, one from the
hyper-graph Dx,1, one from Dy,2 and the last from Dz,3. Formally:

eϕ,A = ex,ϕ,A|x ∪· ey,ϕ,A|y ∪· ez,ϕ,A|z

Where ex,ϕ,A|x is the edge e[ϕ,A|x] of Dx,1, ey,ϕ,A|y is the edge e[ϕ,A|y] of Dy,2 and ez,ϕ,A|z
is the edge e[ϕ, A|z] of Dz,3. The edges of HΦ are

E = {eϕ,A | ϕ ∈ Φ, A is a satisfying assignment to ϕ}
This concludes the construction for k-DimensionalMatching. We next show that

the graph constructed is indeed a k-DimensionalMatching instance:

Proposition 4.9. HΦ is 3d-strongly-colorable.

Proof. We show how to partition V into 3d independent sets of equal size. Let the sets be
Pl,i whereas i ∈ [d] and l ∈ [3]:

Pl,i = {vx,ϕ,i | x ∈ X,ϕ ∈ Φ(x, l)}
Pl,i is clearly a partition of the vertices, as each vertex belongs to a single part.
We now explain why each part is an independent set. Let Pl,i be an arbitrary part, and let
eϕ,A ∈ E be an arbitrary edge, where ϕ ≡ x + y + z = a mod q:

eϕ,A = ex,ϕ,A[ϕ]|x ∪· ey,ϕ,A[ϕ]|y ∪· ez,ϕ,A[ϕ]|z
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Pl,i ∩ eϕ,A may contain vertices corresponding only to one of the variables x, y, z, since
it contains variables corresponding to a single location (first, second or third). Let that
variable be, w.l.o.g, x. The edge ex,ϕ,A[ϕ]|x contains exactly one vertex from each of the
d parts, as the graph Dx,1 is d-partite. Therefore, the set Pl,i ∩ eϕ,A contains exactly one
vertex. Since |Pl,i ∩ eϕ,A| = 1 for every edge and every set Pl,i, the graph HΦ is 3d-partite-
balanced.

The completeness claim for k-SetPacking (claim 4.7) holds here too. The soundness
lemma for k-SetPacking holds with minor changes:

Lemma 4.10. [Soundness] If every assignment to Φ satisfies at most 1
q

+ ε fraction of its

equations, then every matching in G is of size O
(

1
q3 E

)
.

Proof. We repeat the soundness proof of k-SetPacking but the definition of the most-
popular assignment is slightly different, and takes into account the three different dispersers
per variable.
Denote by Ex,l the edges of HΦ corresponding to equations ϕ containing the variable x in
location l, namely,

Ex,l = {eϕ,A | ϕ ∈ Φ(x, l), A ∈ [q2]}
Denote by Ex=a,l the subset of Ex,l corresponding to an assignment of a to x, that is,

Ex=a,l = {eϕ,A | ϕ ∈ Φ(x, l), A[ϕ]|x = a}
Let M be a matching of maximum size. Let Amaj be the most popular of most popular
assignment. That is, for every x ∈ X choose the location (of equations of edges of M) in
which x appears maximum number of times,

l̂(x) ∈ [3] s.t. |Ex,bl(x) ∩M | is maximized (4.1)

Then choose an assignment for x such that it corresponds to maximum number of those
edges. Formally, choose

Amaj(x) ∈ [q] s.t. |Ex=a,bl(x) ∩M | is maximized

As before, let Mmaj be the set of edges in M that agree with Amaj, and Mmin be all the
other edges in M , namely

Mmaj = {eϕ,Amaj
}ϕ∈Φ

Mmin = M \Mmaj

For the exact same reasons as in the k-SetPacking proof, we have

|Mmaj| < (
1

q
+ ε)

|E|
q2

(4.2)
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and for every x,

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a,bl(x)| ≤
1

q3
|Ex,bl(x)| (4.3)

Therefore,

|M | =
∑

x,l

|M ∩ Ex,l|

≤
∑

x,l

|Mmaj ∩ Ex,l|+
∑

x,l,a6=Amaj(x)

|Mmin ∩ Ex=a,l|

by (4.1) we have

≤ 3 ·
∑

x

|Mmaj ∩ Ex,bl(x)| + 3 ·
∑

x,a 6=Amaj(x)

|Mmin ∩ Ex=a,bl(x)|

≤ 3 · |Mmaj| + 3 ·
∑

x,a6=Amaj(x)

|Mmin ∩ Ex=a,bl(x)|

thus by (4.2) and (4.3)

< 3(
1

q
+ ε)

|E|
q2

+
3

q3

∑
x

|Ex,bl(x)|

= (
12

q3
+ 3ε)|E|

By claim 4.7 and lemma 4.10 we showed that Gap-k −DimensionalMatching-
[

12
q3 + 3ε, 1

q2 − ε
]

is NP -hard, thus it is NP -hard to approximate k-DimensionalMatching to within
O( k

ln k
).

4.5 Hyper-Dispersers

In this section, we prove lemma 4.6. As stated before, these are generalizations of disperser
graphs. In section 4.5.1, we prove that these are the best (up to a constant) parameters
for a hyper-disperser one can hope to achieve.
Lemma 4.6 For every q > 1 and t > 1 there exists a hyper-graph H = (V, E) such that

• V = [t]× [d], whereas d = Θ(q ln q).

• H is (q, 1
q2 )-hyper-edge-disperser

• H is d-uniform, d-strongly-colorable.
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• H is q-regular, q-strongly-edge-colorable.

We denote this graph by (t, q)−D.

Proof. We follow the probabilistic method to prove that the probability that a randomly
generated graph is not a (t, q)−D graph, is strictly smaller then 1, from which follows the
existence of such graphs. Let

V = [t]× [d]

and denote Vi = [t]× {i}.
We next randomly construct the edges of the hyper-graph, so that it is d-uniform, q-regular.
Let St be all permutation over t elements, and let

Πi1,i2 ∈R St , (i1, i2) ∈ [q]× [d]

(that is, qd permutations, chosen uniformly from St). Define

e[i, j] = { (Πj,1(i), 1), (Πj,2(i), 2) , ..., (Πj,d(i), d) } (4.4)

and let
E = {e[i, j] | (i, j) ∈ [t]× [q]}

Hence |E| = tq. Define a partition of the edges as follows: Ej = {e[i, j] | i ∈ [t]}. Thus
|E1| = ... = |Eq| = t and each set of edges Ej covers every vertex exactly once. Therefore,
H is q strongly-edge-colorable. On the other hand, every edge contains exactly one vertex
from each set of vertices Vi. Thus H is d-strongly-colorable.

We next show that with high probability H has the disperser property, namely, every
matching M of H is concentrated on a single part of the edges, except for maybe 1

q2 |E| = t
q

edges of M . Denote by P the probability that H does not have the disperser property.

Definition 4.11. Let M be the family of all subsets M ⊆ E such that:

M = {M | M ⊆ E, |M | = t

q
+

t

q2
, ∃i, |M \ Ei| = t

q
}

Proposition 4.12. If all sets M ∈ M are not matchings, then H is a (q, 1
q2 )-hyper-edge-

disperser.

Proof. This follows from the downward monotonicity of the matching property. To be
more precise, suppose that H is not a (q, 1

q2 )-hyper-edge-disperser. Namely, there exists a

matching M ′ ⊆ E such that it is not concentrated on one color of edges: ∀i, |M ′ \ Ei| >
1
q2 |E| = t

q
. Let i be so that |M ′ ∩Ei| is maximal, and hence larger than t

q2 . As any subset
of a matching is a matching, we can remove edges of M ′ ∩Ei until we are left with exactly
t
q2 edges there, and remove edges from M ′ \Ei until we are left with exactly t

q
edges there.

But this new set is in M, thus cannot be a matching.
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Following the above proposition, we proceed with the proof considering only sets in M.
Denote by Pr[M ] the probability (over the random choice of H) that M is a matching. By
union bound,

P = Pr
H

[∃M ∈M, M is a matching ] ≤

≤
∑

M∈M
Pr[M ] ≤ |M|Pr[M̂ ] (4.5)

where M̂ ∈ M is the set which maximizes Pr[M̂ ]. Clearly (using the known inequality(
n
k

) ≤ ( en
k

)k),

|M| ≤ q

(
(q − 1)t

t
q

)(
t
t
q2

)
≤ q(eq2)

t
q (eq2)

t
q2 ≤ (eq)

3t
q (4.6)

We next bound Pr[M̂ ]. Let Mi = M̂ ∩ Ei. Let Bi,j be the event that the sets of edges Mi

and Mj do not share a vertex, and Ai = ∩j<iBi,j. Then

Pr[M̂ ] = Pr

[⋂
i

Ai

]
=

∏
i

Pr

[
Ai |

⋂

l<i

Al

]

Note however, that the event Ai is independent of the event
⋂

l<i Al as Ai is determined
by (the independently chosen permutations) {Πi,j | j ∈ [d]}, whereas

⋂
l<i Al is determined

by the permutations {Πl,j | l < i, j ∈ [d]}. Thus

Pr[M̂ ] =
∏

i

Pr [Ai] (4.7)

Let Ci,j be the event that there is no collision (common vertex) of Mi and
⋃

l<i Ml on the
subset of vertices Vj (clearly Ai =

⋂
j∈[d] Ci,j). Hence, as for j1 6= j2, Ci,j1 and Ci,j2 are

determined by independent sets of permutations (recall (4.4)) we have

Pr[Ai] =
∏

j∈[d]

Pr[Ci,j] = (Pr[Ci,1])
d ≤ (1− |Mi|

t
)d|Sl<i Ml∩V1| = (1− |Mi|

t
)d
P

l<i |Ml|

where the sum in the exponent of the rightmost expression is by assuming no collisions
between edges of

⋃
l<i Ml on Vj (which is implied by

⋂
l<i Al). Thus by equation (4.7) we

have ( as 1− x ≤ e−x ):

Pr[M̂ ] ≤
∏

i

(
1− |Mi|

t

)d
P

j<i |Mj |
≤ e−

d
t

Pq
i=2(|Mi|

Pi−1
j=1 |Mj |)
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Under the constraint that M̂ ∈M the sum
∑q

i=2(|Mi|
∑i−1

j=1 |Mj|) is minimized for |M2| =
|M3| = t

2q
hence

Pr[M̂ ] ≤ e
− dt

4q2 (4.8)

Therefore by equations (4.5),(4.6),(4.8),

P ≤ (eq)
3t
q e

− dt
4q2

Any d which guarantees that (eq)
3t
q e

− dt
4q2 ¿ 1 suffices (for example d ≥ 20q ln q) as P < 1,

thus there exists H with the disperser properties.

4.5.1 Optimality of Hyper-Disperser Construction

We now turn to see why the hyper-disperser from lemma 4.6 has optimal parameters. We
base our observation on a lemma from [RTS00]:

Definition 4.13. A bipartite graph G = (V1, V2, E) is called a δ-disperser if for every
U1 ⊆ V1, U2 ⊆ V2, |U1|, |U2| ≥ δ|V1| = δ|V2|, the subset U1 ∪ U2 is not an independent set.

Lemma 4.14. Every bipartite d-regular 1
k
-disperser must satisfy d = Ω(k ln k).

Proposition 4.15. Every d-uniform q-strongly-edge-colorable q-regular d-strongly colorable
(q, 1

q2 )-hyper-edge-disperser must satisfy d = Ω(q ln q).

Proof. We prove that if there exists such a hyper-graph which satisfies d = o(q ln q),
then there exists a bipartite o(q ln q)-regular 1

q
-disperser, in contrast to lemma 4.14. We

transform a d-partite d-uniform q-regular q-strongly-edge colorable (q, 1
q2 )-hyper-disperser

H = (VH , E1, E2, ..., Eq) into a bipartite d-regular 1
q
-disperser G = (V1, V2, EG) in the fol-

lowing way. Let
V1 = E1

V2 = E2

EG = {(e1, e2) | e1 ∩ e2 6= φ}
Obviously G is a bipartite d-regular graph (we allow multi-edges). In addition, suppose
two sets of fractional sizes:

S1 =
1

q
V1, S2 =

1

q
V2

are an independent set in G. Then the corresponding sets of edges in H are disjoint and
are of fractional size 2

q2 , thus contradicting the fact that H is a (q, 1
q2 )-hyper-disperser.
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4.6 Concluding Remarks and Open Problems

An interesting property of our construction (for both asymptotic and low bound values
results) is the almost perfect completeness. This property refers to the fact that the match-
ing proved to exist in the completeness claim 4.7 is an almost perfect matching, that is, it
covers 1− ε of the vertices. Knowing the location of a gap is interesting by itself and may
prove useful (in particular if it is extreme on either the completeness or the soundness pa-
rameters, see for example [Pet94]). In fact, applying our reduction on other PCP variants
instead of Max-3-Lin-q (e.g. parallel repetition of 3-SAT) yields perfect completeness for
k-DimensionalMatching (but with weaker hardness factors).

The ratio between the asymptotic inapproximability factor presented herein for k-
DimensionalMatching and k-SetPacking, and the tightest approximation algorithm
known, was reduced to O(ln k). The open question of where in the range, from 2

k
to

O( ln k
k

) is the approximability threshold is interesting by itself, as well as its implications
to the difference between k-DimensionalMatching and k-IS. The current asymptotic
inapproximability factor of O( ln k

k
) for k-DimensionalMatching approaches the tightest

approximation ratio known for k-IS, namely Ω
(

log k
k log log k

)
[Vis96]. Thus, a small improve-

ment in either the approximation ratio or the inapproximability factor will show these
problems to be of inherently different complexity.
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