
An Instrumentation and Control-Based Approach for
Distributed Application Management and Adaptation

D. Reilly, A. Taleb-Bendiab, A. Laws, N. Badr
Liverpool John Moores University

Byrom Street
Liverpool, L3 3AF

044 0151 231 2489

{d.reilly; a.talebbendiab; a.laws; cmsnbadr}@livjm.ac.uk

ABSTRACT
Distributed applications are notoriously difficult to develop and
manage due to their inherent dynamics and heterogeneity of
component technologies and network protocols. Middleware
technologies dramatically simplify the development of distributed
applications, but they still prove difficult to manage at runtime.
This paper considers the “on-going” development of a framework
that provides instrumentation and control services, which extend
core middleware services, to realize the runtime management and
adaptation of distributed applications. The instrumentation and
control services are used in conjunction with dependency
management utilities to measure performance, monitor behaviour
and resolve the runtime inconsistencies and conflicts that may
occur in distributed applications.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects, control structures, frameworks.

General Terms
Design, Management, Experimentation, Languages.

Keywords
Middleware, Instrumentation, Control, Dependency Management,
Jini Technology.

1. INTRODUCTION
Distributed component-based software applications consist of a
collection of software components that communicate via a
distributed middleware. Some components provide prescribed
functionality as services to other components, which adopt the

role of clients. Taken together, components operate in a peer-to-
peer fashion to coordinate their activities giving the impression of
a single, integrated computing facility. The distributed middleware,
or simply middleware, plays a crucial role by providing APIs and
support functions that effectively bridge the gap between the
network operating system and distributed components and
services.

The runtime management of distributed applications is difficult
because of the possible use of different component technologies
(DCOM, CORBA, Enterprise Java Beans (EJB)), different
network protocols (TCP/IP and UDP) and the dynamic behaviour,
inherent in distributed applications, that can give rise to
component reconfigurations that occur “on-the-fly”. These
problems can lead to runtime inconsistencies and conflicts, which
suggests a need for adaptation techniques to minimize or
completely rule-out their effects. Such adaptation can be realized
through the combination of instrumentation and control
techniques, which have a proven success record in the management
of conventional engineering systems.

For the combination to prove successful, where distributed
applications are concerned, the instrumentation and control
services need to be aware of the architecture and connectivity of
components and services. In short, they need to be aware of the
dynamic dependencies that exist between components and the
services they provide. Such dependencies occur when client
components discover and use services provided by other
components, thereby becoming dependent on their services until
they are no longer needed and can be discarded. This paper
considers how instrumentation and control techniques can use a
dependency model as the basis for the reasoning and decision-
making processes that are required to adapt a distributed
application to correct runtime inconsistencies and conflicts.

The remainder of the paper is structured as follows: section 2
provides a brief review of recent significant developments in self-
adaptive software, concluding with a statement of our
contribution. Section 3 provides an overview of software
instrumentation, software control and dynamic dependencies,
which feature as the main services in our framework. Section 4
considers the development of the framework, based on the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
Conference ’00, Month 1-2, 2000, City, State.

combination of these services. Section 5 describes a recent case
study conducted to evaluate the framework. Finally, section 6
draws overall conclusions and mentions future work.

2. SELF-ADAPTIVE SOFTWARE
Self-adaptive software can be seen as a new architectural style,
which extends the concepts of software control to adapt the
structural configuration and dynamic behaviour of an application.
Laddaga, [7], defines self-adaptive software as:

“Software that evaluates and changes its own behaviour when the
evaluation indicates that it has not accomplishing what it is
intended to do, or when better functionality or performance is
possible“.

Such an architectural style presents an attractive concept for
developing self-governing software that partially or fully
accommodates its own management and adaptation activities. In
line with our own approach, several researchers, active in this area,
have adopted control engineering concepts. The control
engineering approach is typified by Osterweil and Clarke, [10],
who present an architecture that uses a controller with a well-
specified control function with feedforward and feedback loops to
enable a target system to be monitored to regulate its operation in
accordance with its given control model.

The control theory based paradigm provides a framework for
designing software that supports self-control during the operation
of the software. According to Kokar et al., [6], the self-controlling
software model supports three levels of control: feedback,
reconfiguration and adaptation. Meng, [8], proposed a control
system for self-adaptive software based on a descriptive model of
a self-adaptive control system, which also employs the control
system concepts of feedforward and feedback. In Meng’s
approach, the feedforward process provides specifications of the
software and its behaviour and the feedback process gathers and
measures the software’s environmental attributes, which are used
as the basis for adaptation.

Robertson et al. [13], discuss the similarities between self-
adaptive and reflective architectures and the benefits that
reflection provides, but also highlight the difference between the
two architectural styles. Robertson et al. explain how self-
adaptive software uses a model of the computation against which
the current state and a desired goal state are compared and the
semantics of the computation are adjusted accordingly to minimize
any difference. Recently there has been an increasing research
trend focused on self-healing and self-repairing software that
provides the capability to modify structural and/or behavioural
models at runtime. Cheng et al. [2], describe an approach to self-
repair based on using an architectural model of the system, which
adopts a particular architectural style, as a parameter in the
monitoring/repairing framework.

We based our approach on several of these previous ideas, but
decided to use a dependency digraph as the architectural model to
provide reference points and goal states. The digraph provides a

model of the distributed computation that can be used by
instrumentation services to measure performance and monitor
behaviour and by control services for reconfiguration and hence
adaptation. The approach does however require that application
components satisfy one condition, which is that they must include
a reference to a dedicated manageable proxy object. The
manageable proxy, considered further in section 4, is used
primarily to represent dependency relationships, but also to
provide a separation of concerns by “factoring out” the code that
is referenced and used during adaptation strategies. The adaptation
is performed by a middleware-based combination of
instrumentation and control services that use dependency
relationships as a model of the computation. Overall, the approach
provides a practical yet effective solution that can be used, in
conjunction with core middleware services, to facilitate the
runtime management and adaptation of distributed applications.

3. FRAMEWORK SERVICES
Instrumentation and control services together with a dynamic
dependency model form the basis of our framework. Each of these
concepts are further explained below.

3.1 Software Instrumentation
Software instrumentation1 has been used for some time in
software engineering to debug and test software applications and
also for monitoring performance and producing runtime metrics.
Traditional, static instrumentation approaches involved the
insertion of additional software constructs at design-time (via
compiler directives), or when the system was off-line, during
maintenance, to observe specific events and/or monitor certain
parameters. Where distributed applications are concerned, the
limitations of static instrumentation have led to interests in
dynamic instrumentation that can be applied (and removed) as
required at runtime. Dynamic instrumentation makes use of
instruments such as gauges, probes and monitors (as used in
conventional engineering) that can be dynamically attached to
application components to measure specific runtime parameters
and monitor their behaviour.

The potential of dynamic instrumentation has been recognized by
the distributed computing community and the DARPA funded
initiative for Dynamic Assembly for System Adaptability,
Dependability and Assurance (DASADA) is a prime example of
this recognition. The DASADA programme consists of several
projects concerned with the use of software gauges and probes to
deduce component configurations and for runtime monitoring and
adaptation, as typified by Garlan et al. [4]. Also of interest is the
work of Diakov et al. [3], who use reflective techniques to monitor
distributed component interactions by combining CORBA’s
interceptor mechanism together with Java’s thread API to “peek”
into the implementation of CORBA components at runtime.

1 The term “instrumentation” is used henceforth to refer to software

instrumentation.

3.2 Software Control
Controller concepts and control services have recently gained
popularity amongst the self-adaptive software community (as
typified by Osterweil and Clarke in [10]) who use control services
to adapt the structural configuration and dynamic behaviour of an
application. Structural components can evaluate their behaviour
and environment against their specified goals with capabilities to
revise their structure and behaviour accordingly. Control services
make use of well-specified control functions with feedforward and
feedback loops to enable a target application to be monitored and
hence regulate its operation in accordance with its given control
model. Control services are based on the two tasks of monitoring
and diagnosis:

1. The monitoring task uses of a set of control rules against
which monitored behaviour and architectural configuration are
checked to detect conflicts.

2. The diagnosis task involves the execution of control rules,
activated by conflicts, which identify the causes of conflicts
and provide the basis for the selection of conflict resolution
and adaptation strategies.

As explained further in section 4, both instrumentation and control
services were implemented as Jini activatable services so as to
limit the overhead that they may impose on the application’s
middleware layer.

3.3 Dynamic Dependencies
Dynamic dependencies (considered further by Hasselmeyer in [5])
can be represented as the arcs or edges in a directed graph
(digraph) in which components (and their services) represent the
nodes. Conceptually, a dependency is a directed relationship
between a set of components, as shown in Figure 1, that can be
represented using the ideas of Hasselmeyer in [5] who defines the
relationship based on two roles: the dependent component (a
client) and the free or independent component(s) (service
provider(s)).

Figure 1. Dependency conceptualization.

Physically, we represent the directed dependencies of a dependent
component using a Java Vector object in which each element
represents a single dependency and each dependency provides
information such as component bindings and the type of service
provided by the independent component. Dependency vectors are
associated with a dependent component, via a manageable proxy
reference within the dependent component. As considered further
in section 4, the manageable proxy implements a manageable
interface through which dependency management utilities provide
an API. The dependency management API allows instrumentation
and control services to access individual dependency vectors or
even the complete dependency digraph for the reasoning and
decision-making processes prior to the reconfigurations of an
adaptation strategy. Essentially the dependency digraph provides
an architectural point of reference or goal state in that all
dependencies must be satisfied following an adaptation strategy.

4. DEVELOPMENT OF THE FRAMEWORK
This section considers the “on-going” development of the
framework, which has been implemented using Jini, the Java-based
middleware technology developed by Sun Microsystems, [14].
Essentially Jini, together with Java’s Remote Method Invocation
(RMI), allows distributed applications to be developed as a series
of clients that interact remotely with application components and
their services through proxies. Jini was chosen as the middleware
technology because of its rich support for service-oriented
development, but many of the principles apply equally to other
middleware technologies, particularly CORBA and Web Services.

C
or

e
M

id
dl

ew
ar

e
Se

rv
ic

es
Fr

am
ew

or
k

Se
rv

ic
es

 a
nd

 U
til

iti
es

A
pp

lic
at

io
n

C
om

po
ne

nt
s

J I N I S E R V I C E S

L o o k U p
Service

L e a s i n g
Service

 J A V A

Discovery
Service

I N S T R U M E N T A T I O N S E R V I C E S

A 1

A 4

A 3

A 2
C 1

C 2

A 1
A 2

A 3

C 1 C 2

 M O N I T O R S G A U G E S P R O B E S

D i a g n o s i n g

Monitoring

Ad a p t a t ion Strategies

R emote Event Util ity

Component Constraint
C h e c k e r

Except ion Handler Uti l i ty

C onflicts Resolution
Strategies

D E P E N D E N C Y M A N A G E M E N T

C O N T R O L S E R V I C E S

Figure 2. Framework architecture.

The framework architecture, shown in Figure 2, is based on a
three-layer model: the first layer contains the core Jini middleware
services, which include lookup, discovery and leasing. The second
layer, at the heart of the framework, contains instrumentation and
control services along with dependency management utilities, each
of which are explained below:

1. Instrumentation services: monitor and record client access of
application services including method invocations.
Instrumentation services (considered further in [11]) consist
of gauge services, probe services, monitor services and logger
and analyzer utilities.

2. Control services: examine information provided by the
instrumentation services together with dependency
relationships to resolve conflicts through reconfiguration and
adaptation. Control services (considered further in [1]) use
control rules, activated by conflicts, to identify the cause of a
conflict and select a conflict resolution or adaptation strategy.
Control services effectively adapt the application through
architectural reconfigurations that maintain dependency
relationships.

3. Dependency management: maintains the application digraph
to provide a faithful “up-to-date” representation of an
application’s component and service configuration at
runtime. Dependency management provides an API that
provides access to individual dependency relationships and
the dependency digraph as a whole. The API is used by
instrumentation and control services to reason about the
current state and configuration of an application in order to
assess the validity of an adaptation strategy.

The third layer contains the application components and their
services, which form the nodes of the dependency graph. As
mentioned previously, although the components can be developed
independently from the framework services layer they must
include a reference to a dedicated manageable proxy. Figure 3
demonstrates how a manageable proxy is attached to a
SimpleService application component. The reference is
provided through a Manageable interface that extends Jini’s
own Administrable interface as shown in Figure 3. The
Administrable interface was included in Jini’s API to allow
Java objects to be attached to components, at the discretion of the
developer, and accessed by a getAdmin() method. The
manageable proxy, represented as a ManageableProxy in
Figure 3, implements the Manageable interface to provide
access to the dependency relationships stored in a
DependencyVector.

During the development of the framework a design decision was
taken to implement the instrumentation services, control services
and dependency management utilities as Jini activatable services,
which subclass RMI’s Activatable class. An activatable or
“lazy” service, considered further in [14], registers with a Jini
lookup service, via a proxy, but after registration, when the
activatable service becomes idle, it is allowed to “die” or “sleep”,

thereby consuming no memory. RMI’s daemon, rmid, maintains
a reference to the dormant service so that it can be resurrected
when needed by a client. On first impression, activatable services
seem like an attractive option. However, the trade off with
activatable services is that although memory usage is reduced a
new Java Virtual Machine (JVM) needs to be started when an
activatable service is called into use (i.e. its methods are invoked),
which can prove detrimental to the performance of an application.
However, Jini provides facilities to create activation groups that
allow a group of related activatable services to share the same
JVM. This facility was used in the framework to create separate
activation groups for instrumentation services, control services
and dependency management utilities. Furthermore, our previous
experiments with the use of activatable services, considered
further in [11], justified the design decision to implement
instrumentation services, control services and dependency
management utilities as activatable services in order to minimize
the overhead that they may impose on the application’s
middleware layer.

public class SimpleService extends UnicastRemoteObject {
protected Manageable proxy;

public SimpleService() throws RemoteException {
}

public Object getManageableProxy() {
return new ManageableProxy(proxy);

}

}

public interface Manageable extends Administrable {

DependencyVector getDependencies();

ServiceID[] getBindings() throws java.rmi.RemoteException;

Object[] getTypes();

}

public class ManageableProxy implements Manageable {
protected Manageable proxy;
DependencyVector dependencies;

public ManageableProxy(Manageable proxy) {
this.proxy = proxy;

}

public Object getAdmin() {
return proxy.getAdmin();

}

// further methods to implement getDependencies,
// getBindings and getTypes

}

Figure 3. Manageable proxy attachment.

Essentially, the framework operates in a feedback controller
regime in that adaptation strategies, to be performed by control
services, are checked against the dependency digraph to assess
their validity. Adaptations, performed as architectural
reconfigurations (i.e. digraph modifications), may in turn cause
further conflicts that are fed back, via instrumentation, to the
control services. Through this feedback regime the framework
behaves as a self-monitoring system for which the performance
and behaviour are continually monitored to facilitate the stable
operation of the application.

5. CASE STUDY
As mentioned previously, the development of the framework is
ongoing, but, to date, the basic architecture underlying the
framework has already been implemented and tested on an existing
Jini application, namely EmergeITS2, [12]. The EmergeITS
application, shown in Figure 4, is intended to realize the concept
of intelligent networked vehicles , primarily for use by the
emergency fire service. Essentially EmergeITS allows emergency
fire service personnel to access a variety of application services,
from centralized corporate systems, through remote in-vehicle
computers and Palm and mobile phone devices. The EmergeITS
architecture (Figure 4) consists of a collection of service providing
components and a Service Manager responsible for registering
application components and managing their leases. Services are
discovered and used accordingly by one or more in-vehicle client
computers.

Figure 4. A simplified view of the EmergeITS architecture.

For conciseness we only consider the 3-in-1 Phone Service (right
of Figure 4), which allows a mobile phone or Palm device to be
used in one of three different modes, subject to the requirements
of the user and availability of a communication service provider.
For the evaluation trial, monitor instrumentation services and
control services were attached, dynamically, to monitor client
requests on the 3-in-1 phone service and control the successful use
of the service. This dynamic attachment (considered further in
[11]) is illustrated in Figure 5, which shows an Instrumentation
Factory that produces instrumentation monitor services, on
demand, that are attached to EmergeITS application services.

The instrumentation monitor services were used to monitor
method invocations made by clients (e.g. connect() /
disconnect() methods) and control service rules were
activated as a consequence of any exceptional behaviour.
Following such exceptional behaviour, control service rules used
the information gathered by monitor services together with
dependency relationships, to initiate a conflict resolution strategy
to correct the exceptional behaviour. As an example, the current

2 EmergeITS is a collaborative project between the School of

Computing and Mathematical Sciences at Liverpool John Moores
University and Merseyside Fire Service
<http://www.cms.livjm.ac.uk/emergeits>

state of the 3-in-1 phone service may indicate a dependency on a
WAP gateway and the invocation of the connect() method, on
the WAP gateway, may result in a
RemoteConnectionException due to the unavailability of a
WAP service.

Figure 5. Instrumentation of 3-in-1 phone service.

This exception is then checked by a control service rule resulting
in the activation of a suitable conflict resolution strategy. The
resolution strategy first attempts several connection retries,
followed by consecutive pauses. If the retries are unsuccessful, the
strategy then searches for an alternative WAP service provider.
The latter alternative can be regarded as an adaptation, which is
realized as an architectural reconfiguration for which the
dependency graph must be updated. Figure 6 shows the
specification of the rule that is activated by a
RemoteConnectionException. The specification of this
rule, and others, is based on the Design by Contract approach of
Meyer, [9], and the rule was implemented as a Jini service using
the Java 2 Standard Edition (J2SE).

6. CONCLUSIONS
In this paper, we have described a framework, based on the
combination of instrumentation and control services and a digraph-
based architectural dependency model. We have demonstrated the
application of the framework through a case study involving the
adaptation of a 3-in-1 phone service to correct runtime conflicts.
We feel that the main strength of our approach stems from its
ability to simplify adaptation by factoring out the
managerial/adaptation code. This alleviates the need to add
complex adaptation code to application components and allows
instrumentation and control services to concentrate on the
manageable proxy objects attached to application components.

In our future work, we intend to extend the portfolio of control
services to provide rules to deal with further conflicts including
web-server failure, or unavailability, and QoS and security-related
conflicts.

rule Three_In_1_Connection(Service s,
LookupList list) : Binding

tasks
Connect, Retry, Search

require
service_not_null: s not NULL
lookup_list_not_null: list not NULL

local
b : Binding := Binding.FREE
alternate_s : Service := Service.NULL

strategy
do

b := Retry(s) or
(alternate_s := Search(s, list)
ensure

not_null_service :
alternate_s not Service.NULL

then
b := Connect(alternate_s))

return b
end_do

end_rule

task Connect(Service s): Binding
require

service_not_null : s not NULL
max_connections:
s.num_connections < s.MAX_CONNECTIONS

local
b: Binding := Binding.FREE

do
b := s.connect()
return b

end_do
end_task

task Retry(Service s) : Binding
local

b : Binding := Binding.FREE
try : INTEGER := 1

do
loop

b := Connect(s)
pause(10)
try := try + 1

until
(try = 5) or
(b = Binding.CONNECTION)

return b
end_do

end_task

task Search(Service s,
LookupList list): Service

local
temp_l : Lookup := list.firstLookup()
temp_s : Service :=

temp_l.firstService()
do

ensure
temp_s.type not s.type

then
loop

loop
temp_s = temp_l.nextService();

until
(temp_s = Lookup.LAST_SERVICE) or
(temp_s.type = s.type)

temp_l := list.nextLookup ()
until

(temp_l = LookupList.LAST_LOOKUP) or
(temp_s.type = s.type)

return temp_s
end_do

end_task

Figure 6. 3-in-1 phone connection rule.

7. REFERENCES
[1] Badr, N., D. Reilly, and A. Taleb-Bendiab, A Conflict

Resolution Control Architecture for Self-Adaptive Software,
in Proceedings of the International Workshop on Architecting
Dependable Systems: WADS 2002 (ICSE 2002), Florida,
USA, 2002.

[2] Cheng, S., et al., Using Architectural Style as a basis for
System Self-Repair, in The Working IEEE/IFIP Conference
on Software Architecture, Montreal, 2002.

[3] Diakov, N.K., et al., Monitoring of Distributed Component
Interactions, in Proceedings of RM'2000: Workshop on
Reflective Middleware, New York, 2000.

[4] Garlan, D., B. Schmerl, and J. Chang, Using Gauges for
Architecture-Based Monitoring and Adaptation, in The
Working Conference on Complex and Dynamic Systems
Architecture, Brisbane, Australia, 2001.

[5] Hasselmeyer, P., Managing Dynamic Service Dependencies,
in 12th International Workshop on Distributed Systems:
Operations and Management (DSCOM 2001), France, 2001.

[6] Kokar, M., K. Baslawski, and Y. Eracar, Control Theory-
Based Foundation of Self-Controlling Software, IEEE
Intelligent Systems, Vol. , No. pp. 37-45, 1999.

[7] Laddaga, R., Active Software, in 1st International Workshop
on Self-Adaptive Software (IWSAS2000), Oxford, UK,
Springer-Verlag,2000.

[8] Meng, A.C., On the Evaluation of Self-Adaptive Software, in
1st International Workshop On Self-Adaptive Software
(IWSAS2000), Oxford, UK, Springer-Verlag,2000.

[9] Meyer, B., Object-Oriented Software Construction, 2nd ed,
Prentice Hall, New Jersey, 1997.

[10] Osterweil, L.J. and L.A. Clarke, Continuous Self-Evaluation
for the Self-Improvement of Software, in 1st International
Workshop on Self-Adaptive Software (IWSAS2000), Oxford,
UK, Springer-Verlag,2000.

[11] Reilly, D. and A. Taleb-Bendiab, Dynamic Software
Instrumentation for Jini Applications, in Proceedings of the
3rd International Workshop on Software Engineering
Middleware SEM 2002 (ICSE 2002), Orlando, Florida, USA,
Springer-Verlag,2002.

[12] Reilly, D. and A. Taleb-Bendiab, A Service-Based
Architecture for In-Vehicle Telematics Systems, in IEEE
Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS 2002)
WORKSHOPS - International Workshop of Smart Appliance
and Wearable Computing (IWSAWC 2002), Vienna, Austria,
2002.

[13] Robertson, P., R. Laddaga, and H. Shrobe, Introduction to the
1st International Workshop on Self-Adaptive Software, in
1st International Workshop on Self-Adapative Software,
Oxford, UK, Springer-Verlag, 2000.

[14] Sun Microsystems Inc., Jini Architecture Specification -
v1.1, http://www.sun.com/jini/specs, 2000.

