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Abstract. The primary goal of this study was to investigate statistical properties
of'a mixed inheritance model for the localization of quantitative trait loci (QTL). This is
based on the analysis of phenotypic data for the amount of intramuscular fat (IMF)
scored on 305 individuals originating from a cross between Duroc and Norwegian
Landrace breeds. Marker genotype information is available for F1 and F2 generations.
Statistical procedures compared involve i) the interval mapping, ii) the composite inter-
val mapping, iii) a regression method, and iv) a mixed inheritance model accounting
for a random animal additive genetic effect and relationships between individuals.
The basic statistical properties of the latter approach are then assessed using Monte
Carlo simulations showing slight unconservativeness as compared to > o and reason-
able power to detect QTL of moderate effects. In the analysis of IMF data, the signifi-
cant evidence for the existing QTL is detected on chromosome 6. A chromosomal
region recommended for a second-step fine mapping analysis is identified between
markers SW1823 and S0228, based on three types of confidence intervals derived by
using: 1) the Jackknife algorithm, ii) the numerical variance approximation, and
iii) the LOD score approach. The Jackknife algorithm was additionally used to quantify
each family’s contribution to the test statistic and to the estimate of QTL position.
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Introduction

Experimental designs based on crossing inbred lines, which are divergent for
the trait of interest, provide the most informative (i.e. powerful) data structure
available for mapping quantitative trait loci (QTL) in livestock. Among the most
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important advantages of such designs are: i) high (or complete) heterozygosity of
QTL allowing for the differentiation between the effects of alternative alleles
on a quantitative trait, ii) high (or complete) heterozygosity of markers, which en-
ables the identification of recombination events along the chromosome, and
iii) strong linkage disequilibrium between markers and QTL (ANDER-
SSON-EKLUND et al. 1998, SILLANPAA, ARJAS 1998). However in practice, in-
stead of inbred lines, it is common to cross divergent outbred populations or
breeds. In such a case, one can still profit from the advantages of a special experi-
mental design, but the degree of heterozygosity and linkage disequilibrium are
lower. Furthermore, polygenic effects of individuals from the parental generation
belonging to the same breed (population) are no longer identical.

Several statistical approaches have been proposed for the modelling of such
experimental data. While the first models mapped QTL utilizing information from
one marker locus (SOLLER et al. 1976), the emphasis of a further development was
put on using genotypes of two, and later, of many markers simultaneously, utiliz-
ing more out of molecular genetic information available (LANDER, BOTSTEIN
1989, HALEY, KNOTT 1992, JANSEN 1993, ZENG 1994, SILLANPAA, ARJAS
1998). Further model enhancements comprise a multivariate analysis (JIANG,
ZENG 1995), accounting for genetic imprinting (DE KONING et al. 2000), includ-
ing family-specific estimates and nonzero covariances between observations (XU
1998), and the separation of polygenic and QTL components (RATHIJE et al. 1997,
PEREZ-ENCISO, VARONA 2000, SZYDA et al. 2000, NAGAMINE, HALEY 2001).

In the current study a new model for the analysis of a line cross data is pro-
posed. It is based on the regression approach of HALEY and KNOTT (1992) with
modifications comprising the introduction of a random animal additive genetic ef-
fect and covariances between related individuals. This method is applied to the de-
tection of a QTL responsible for the amount of intramuscular fat (IMF) using data
from a cross between Duroc and Norwegian Landrace breeds. Results are then
compared with those based on interval (LANDER, BOTSTEIN 1989, HALEY,
KNOTT 1992) and composite interval mapping (ZENG 1994) methods.

Material and methods

Data

Phenotypic data on IMF was collected for 305 individuals from the F2 generation.
This progeny originated from a cross between Duroc sires and Norwegian Land-
race dams in the parental generation, and then from backcrossing each of five F1
sires with eight Landrace-Yorkshire dams. This results in an F2 data structure
comprising five large paternal halfsib families, each divided into small (up to
eight sibs) fullsib families. For F1 and F2 individuals, marker genotypes at chro-
mosome 4 (11 markers, covering approximately 126 cM), chromosome 6 (9 mark-
ers, covering approximately 134 ¢cM), and chromosome 7 (9 markers, covering
approximately 137 ¢cM) were available. The detailed description of the experi-
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mental design and the molecular information can be found in GRINDFLEK et al.
(2000).

Preliminary analysis without marker information

In order to get better insight into the characteristics of the data, preliminary analy-
sis of phenotypic observations, ignoring the molecular information, was per-
formed. First, the frequency distribution, reflecting the probability density
function of IMF phenotypes, was visually checked for especially extreme depar-
ture from normality, as each of the method used for QTL mapping assumes a nor-
mal distribution of phenotypes. Furthermore, a sequence of linear regression
models was fitted to the data in order to identify which of the available effects:
sire, dam, sex, and slaughter weight, have a significant impact on the observed
phenotypic variation. Differences in the goodness of fit between particular models
were assessed using the likelihood ratio test with a number of degrees of freedom
corresponding to the difference in the number of parameters. A final step com-
prised the estimation of additive genetic variance of the analysed traits. Variance
components were estimated via restricted maximum likelihood, using the SAS
package (SAS 1996), based on the following model:

Vi = 1t sex; +s; + di + ey,

where: y; represents a quantitative trait value of ijk/-th individual, u is the overall
mean, sex; is a fixed effect of sex of individual i, s5; and d are random effects of sire
and dam respectively, and ¢; is the random error.

QTL detection

QTL mapping models

Four statistical models utilizing various amounts of the available information
were used for QTL mapping: Lander-Botstein model — LBM (LANDER,
BOTSTEIN 1989), Zeng model — ZM (ZENG 1994), Haley-Knott model — HKM
(HALEY, KNOTT 1992), and a mixed inheritance model (MIM) based on our mod-
ification of the HKM approach introduced by SZYDA et al. (2000). The first two
methods were implemented via the QTL-Cartographer package (BASTEN et al.
1994), the maximum likelihood of HKM and MIM was evaluated through
the SAS procedure MIXED (SAS 1996).

LBM is the simplest of all the models:

Vi=u Tt gxgnt qxg e,

where: y;, 4 and e; are as above, ¢; and ¢, denote respectively the fixed effects of
a heterozygous (say, Qq), and a homozygous (say, qq) QTL genotype, x,1;, and x;
represent appropriate elements of design vectors for ¢, and ¢, corresponding to
QTL genotype probabilities in F2 offspring. In the LBM approach double
recombinations within a marker interval are ignored, so that possible values
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of x,1;, and x,; are: 0, 1, —2- or (1 - ), wherer,,, and r,,,,,, respectively
r MM 2 rM M2

represent recombination rates between a marker (M,) and a putative QTL position

(Q) within a marker interval, and between flanking markers (M), M5).

ZM was especially designed for mapping of multiple linked QTL:

yi = lu + QIm qumi +q2qu2mi + Z(qlk quki + QkaqZki )+ei N

k#m

As this approach is based on LBM, it models QTL genotype probabilities in
the same way as above. Also the first three components of the model, correspond-
ing to a marker interval considered (m), have the same meaning, but an extra term
is added accounting for additional putative QTL located in the neighbourhood
of other available marker intervals (k).

HKM was originally formulated in terms of linear regression. To strike its cor-
respondence to LBM, here we describe HKM in the following form:

Vi=U+q,X,; +4,X,; te.

One of the most important developments implemented in HKM is to allow for
the double recombinations within a marker interval in calculating QTL genotype
probabilities, so that x,,, and x,,, become functions of recombination rates be-
tween both markers, as well as between each marker and a putative QTL position.

The MIM approach introduced in this study is related to HKM, but additionally
involves the incorporation of ; = a random additive genetic effect of animal i,
which accumulates the parental polygenic influence together with the Mendelian
sampling effect, and B = additional fixed effects representing nongenetic
covariates (in our model — sex):

Y =uta; +pBx, TG X TGy X Te

i

As above, x; ., and x;2 . represent appropriate elements of design vectors for ¢,
and ¢, accounting for double recombinants, while xp; is a design vector for sex ef-

fects in 3.
Assumptions in QTL mapping

The assumption underlying all the four above methods is that both paternal lines

in a cross are fully homozygous both for markers and a QTL. As a consequence,

F1 sires, providing information on putative QTL allele transmissions, are ex-

pected to be fully informative (i.e. heterozygous) for all the loci considered.

This is an ideal situation so that for the analysis of our real data from a backcross

experiment the following approximations are set:

1) possible alleles of a putative QTL are divided in two categories — favourable
and unfavourable, so that the practical analysis relies on a biallelic QTL,

i) all dams mated to F1 sires are homozygous at a putative QTL (say qq),

iii) based on the marker information on dams, offspring, and sires, the marker
haplotype phase of F1 sires is known without error,



QTL mapping with mixed inheritance model 73

iv) for a given F1 sire, a favourable QTL allele is assigned to the marker haplotype
associated with a higher phenotypic mean value of offspring, which obtained
this haplotype, the other haplotype is assigned an unfavourable QTL allele.

Following these assumptions, QTL genotype effects can be interpreted as

q, =E(Y\Qq) =u+d and g, =E(Y\ qq) = u—a, where d and a represent respec-

tively a dominance and an additive QTL effect, whereas corresponding QTL ge-

notype probabilities are equivalent to paternal QTL allele transmission
probabilities, so that:

Xoi = P(Qq‘MDQqSi’qui?r) = P(Q‘MananCIDnr) = P(Q‘Miar)P(QqSi)P(qui)»
X, =P(qq|M,,0q.,9q,.v) =P(qM,,0q.499 ,,,r) = P(q|M ,,r) P(Qq) P(qq,, )

where M; is the set of marker information for individual i comprising marker ge-
notype of a sire, a dam and individual's own genotype, QOgs; and gqp; are the as-
sumed genotypes at a putative QTL of a sire and a dam of individual i,
respectively, 7 is a set of recombination rates between both markers or between
a marker and a putative QTL. For LBM and ZM, P(Qgs;) = P(qqp;) = 1. It is how-
ever possible to relax the assumption that a given sire is heterozygous at a putative
QTL by modelling P(Qgs;). We explore this possibility while calculating appro-
priate transmission probabilities for HKM and MIM by assuming:

P(QQS;‘)Z 1 —Qpr s

where o, is a nominal type I error rate of a TDT test statistic (SZYDA et al.
1998) calculated for each marker interval separately comparing phenotypic means
of F2 individuals which obtained one of two possible nonrecombined marker
haplotypes from the sire.

(Co)variance structure

An additional feature introduced into MIM is the incorporation of information on
the relationship between individuals into the (co)variance matrix. While LBM,
ZM, and HKM assume no correlation between phenotypic observations y;, our ap-
proach models trait values of full- and half-sibs as correlated. This imposed corre-
lation is based on the similarities between polygenic effects of related individuals,
as described by a standard additive genetic relationship matrix.

Estimation

The estimation of model parameters in MIM is done through solving the mixed
model equations (HENDERSON 1984) assuming that the (co)variance matrix for
random animal polygenic effects is known. (Co)variance components are esti-
mated prior to the QTL detection, as described above. To test the hypothesis of
no QTL (i.e. Ho: g1 = g2 = 0), a likelihood ratio test statistic (A), comparing
the maximum of likelihood functions obtained under H,[L(f,)] and under

the unrestricted model [L(ﬁ )], was used:
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% ==2{[L(B )] - [LB )} =[y-E,(»] V' [y-E,(»)]-
—[y—E] (y)]TVil[y_El(y)] :

The components of A are defined as follows:

Eo(y)=y+/3xﬁ, El(y)z,u +/3xﬂ +q1x;1 +q2x:2 ,
LB,)=p exp{—;[y—Em W] v [r-E, (y)]} :

where: subscript m denotes the particular model (i.e. 0 or 1), V' represents
the phenotypic (co)variances, and the other components are defined as above.

The so-called likelihood profile, i.e. the values of A calculated for fixed map posi-
tions along the analysed chromosome region, gives the estimate of the most prob-
able QTL location.

Confidence intervals for QTL position

As the aim of the current analysis was not to map a QTL itself, but rather to local-
ize chromosomal regions responsible for a significant proportion of a quantitative
variation of IMF, which will be further explored in a second step fine mapping
study, we constructed confidence intervals (CI) for a putative QTL position along
the chromosome where additional markers should be genotyped. A standard
method for estimating 1— o confidence intervals, based on a normal approxima-
tion of the asymptotic distribution of maximum likelihood estimates, follows:

A

(9—zaaé<0<9+zﬂoé),
2 2

where: 6 is the estimate of 0, a is the probability of type I error, z, is the critical
2

value corresponding to % type I error rate based on the standard normal

distribution', and g, is the standard deviation of 6. In our case & was set to 0.05,6
represents a QTL position in cM from the leftmost marker, and the unknown o, is
replaced by an estimate.

Numerical approximation of o,

Following MEYER and HILL (1992), the variance of the estimate of QTL position
can be approximated numerically based on the values of the likelihood profile
(InL) in the vicinity of the estimate using:

! Assuming that @ follows a normal distribution.
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2 A

g - ~ x ~
“ InLB—-A)+InL(O+ A)-21nL(6)

with A set to 1¢cM.

Estimation o, of based on the Jackknife algorithm

Another approach towards estimating o, used in our study is the application
of the Jackknife algorithm, considering a paternal-halfsib family as a resampling
unit. The Jackknife variance of 0 is defined as:

N-1 - -
02 2(9—6/-)2,
j=1

o N

where: N is the number of paternal-halfsib families (i.e. 5) and ) ; 1s the estimate

of 6 based on data without halfsib family j (EFRON, TIBSHIRANI 1993).

Support interval

Support interval utilizes information on the whole shape of the available likeli-
hood profile, by comparing the difference between a maximal likelihood [In L (6)]

and likelihood values for other QTL positions along the chromosome [In L (é Dl

The 0.95 probability of a true position being within a support interval is approxi-
mated by the loglikelihood difference of 2 (LIU 1998):

InL(@®)—1InL(H,)<2.

Jackknife analysis

In order to get more insight into the influence of a particular sire on QTL mapping
results, Jackknife plots were constructed of a maximal value of A and of the cor-
responding estimate of a QTL position along the chromosome. Practically,
it means that an analysis was performed five times, but each time one of five pater-
nal halfsib families was removed from the data set. Corresponding values of A
and a QTL position were then compared on a plot, but without using any formal
test.

Significance levels for QTL detection

As pointed out by ZENG (1994), VISSCHER et al. (1996a), SCHELER et al. (1998),
and DUPUIS and SIEGMUND (1999), the H,, distribution of A depends on the sam-
ple size, the number of markers, intermarker distances and QTL effects. We ex-
press the significance of QTL analysis results using both nominal
and chromosomewise rates of type I error. A nominal type I error assessment is
based on def. for LBM and ZM and xidf. for HKM and MIM. A chromosomewise
type I error is obtained by permuting IMF phenotypes across individuals and re-
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calculating a likelihood ratio test profile (CHURCHILL, DOERGE 1994). After each
permutation the highest value of A found along the chromosome is scored. In or-

der to construct an empirical distribution of A such procedure was repeated 500
times for LBM, ZM and HKM, and 100 times for MIM.

Statistical properties of MIM

Power and type I error rate of MIM were assessed using 100 and 150 simulated
data sets, respectively. The simulated data was intended to resemble the real data
set in terms of: 1) the experimental design (five sires each mated to eight dams,
eight piglets per mating), ii) trait variation (phenotypic variance o ; =0.46, and
polygenic variance ¢ =0.18), and iii) molecular information (6 marker loci
equally spaced every 15 ¢cM). The same polygenic mean and variance were as-
sumed for sire and dam lines, so that for power calculations core differences be-
tween parental lines were based on their QTL effect, which were fixed for the
alternative alleles. Three different additive genetic effects of the favourable QTL
allele 0.50, , 0.30,, or 0.10,, and 5% type I error rate were considered. The com-
puted power can be regarded as a maximal power, because the ideal situation was
assumed that all marker genotypes in F, are informative.

Results

The frequency distribution of IMF did not show especially extreme departures
from normality. The additive genetic and phenotypic variance estimates of 0.18
and 0.46 respectively, result in the heritability of 0.39. This estimate, however,
corresponds with polygenic heritability without considering a QTL variation,
and due to the small sample size it is subjected to a large standard error. The pre-
liminary analysis of phenotypic records showed that sire, dam, and sex signifi-
cantly influence the phenotypic variation of the trait. Consequently, in HKM and
MIM sex was used as a covariate, while parental influence was modelled through
introducing (co)variances between related individuals in MIM.

Likelihood profiles for QTL position resulting from four different methods are
shown in Figure 1. All the methods point at the same marker interval
SW1823-S0003 as the most probable QTL location. The detailed results compris-
ing QTL position estimates in cM from the leftmost marker with corresponding
95% CI nominal and chromosomewise type I error rates are given in Table 1. Ac-
cording to the increasing amount of information utilized by four QTL mapping
models we observe an increase in the significance, so that the lowest nominal type
I error rate for LBM is 0.00134, whereas a corresponding value obtained for MIM
is much lower being equal to 0.000004. As the main goal of the current study is
the localization of chromosomal regions of interest for fine mapping, genomewise
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Figure 1. Likelihood profiles for IMF based on LBM, ZM, HKM, and MIM. Triangles
represent marker locations.

Table 1. QTL mapping results for IMF based on LBM, ZM, HKM, and MIM. Estimates of
QTL position in cM from the leftmost marker. 95% confidence intervals for 6 based on
i) a numerical approximation of o ; (superscript A), ii) the Jackknife estimate of o,
(superscript J), iii) and the support interval (superscript S). Likelihood ratio test values
with nominal (ay) and chromosomewise (¢ ) type I error rates

Confidence in-
tervals for QTL
position

62-80 *
LBM 71 60-82 10.28 0.00134 0.009
65-79°5

69-794
ZM 74 64-84° 16.12 0.00006 0.003
70-795

70-84 4
HKM 77 61-93" 21.20 0.00002 0.001
70-83°5

71-854
MIM 78 66-90" 24.86 0.000004 <0.01
70-83 5

Likelihood ratio
test value

QTL position

estimate [cM] N e

Method

Note on symbols — as above.
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Figure 2. Jackknife plots of the estimated QTL position
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Figure 3. Jackknife plots of the test statistics

significance levels are not reported here, since the precise assessment of signifi-
cance is not crucial on this stage. The QTL position from the leftmost marker esti-
mated by the four methods varies from 71 ¢cM for LBM to 78 cM for MIM, but
remains within the same marker interval. There is a considerable difference in
the length of CI between the three approaches applied. For all the four QTL map-
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ping methods, using the Jackknife estimate of o, resulted in the longest CI, cov-
ering on average 24.5 cM. The support intervals and CI based on the numerical
approximation of o, were of similar length with the average of 12.3 and 14.0 cM,
respectively. Although there were no striking differences in CI length between
QTL mapping methods, ZM always corresponded to the shortest estimate. In gen-
eral, SW1823-S0003-S0228 are the marker intervals included in most of the CI.

Jackknife plots (Figure 2) show variation in the estimates of QTL positions as
influenced by the sire family. All the methods show a similar pattern of changes
in the QTL position between Jackknife data sets. The differences between
the leftmost and the rightmost estimates of a QTL position are large, amounting to
3,7, 13, and 9 cM, respectively for LBM, ZM, HKM, and MIM. Jackknife plots
of the test statistic (Figure 3) visualize differences in the information content be-
tween halfsib families. Regardless of the applied statistical model, family 2 was
the most informative as its exclusion from the data set resulted in the largest drop
of . The opposite pattern is found for family 3. Still, the results remain highly sig-
nificant for almost each Jackknife data set. LBM and MIM are the most robust,
showing less variation in A as compared to ZM and HKM.

The distribution of A under the null hypothesis shows a slight unconservative
tendency as compared to the asymptotic y o distribution. For the assumed theo-
retical type I error probability of 0.05 the empirical type I error of 0.075 was ob-
tained. Even for a relatively small data set of 305 individuals, MIM possesses 0.71
power to detect a QTL of 0.5 0,. Whereas power of 0.44 for mapping a moder-
ate-sized QTL is still satisfactory, the identification of effects under 0.30, has
much lower probability (e.g. 0.12 for 0.10,). However, more simulation repeti-
tions are needed to provide estimates of type I error and power with greater accu-
racy.

Discussion

In the statistical analysis of line cross experiments the influence of polygenic ef-
fects was either ignored (e.g. LANDER, BOTSTEIN 1989, HALEY, KNOTT 1992)
or corrected prior to QTL mapping (e.g. DE KONING et al. 1999). Other models at-
tempt to incorporate the effects of other loci by using additional available markers
as cofactors (ZENG, 1994, SILLANPAA, ARJAS 1998). Further extensions are pro-
posed by XU (1998), who incorporates differences between families by introduc-
ing a family-specific QTL effect and models the error (co)variances accordingly.
Also the polygenic component is partially accounted for in this model through
a fixed family effect. Recently, PEREZ-ENCISO and VARONA (2000) proposed
a mixed model conceptually similar to MIM, as both models introduce (co)vari-
ances between individuals based on the polygenic component. While
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PEREZ-Enciso and VARONA model these (co)variances conditionally on the avail-
able marker information, separately for each of arbitrarily defined chromosome
segments, MIM uses values averaged over all polygenes, assuming that

sire

the polygenic variance in F, individuals is dm_ However, instead of fix-

ing the polygenic variance components at values estimated prior to QTL mapping
it would be more accurate in MIM to reestimate them at each step along the chro-
mosome. Preliminary analysis showed that both procedures give almost identical
likelihood values, but the methods differ considerably in computing time. Con-
trary to PEREZ-ENCISO and VARONA and similarly to the approach presented by
SZYDA et al. (2000), the estimation procedure used by NAGAMINE and HALEY
(2001) is based on the assumption that the polygenic (co)variance is independent
on the QTL position tested and thus the same estimates are used in the model
across the whole chromosome. The core difference between both approaches is
in terms of hypothesis testing, since NAGAMINE and HALEY (2001) use the F sta-
tistics and SZYDA et al. (2000) the likelihood ratio test. The F test involving only
one of the model parameters (o) is likely to provide biased results when & is bi-
ased, as shown in Table 5 of NAGAMINE and HALEY (2001). Thus, using 4 involv-
ing loglikelihood values related to all the model parameters seems to be more
robust towards inaccurate or biased estimation.

In the analysis of real data the most notable approximation underlying all
the models used is the assumption that both parental lines are fixed for alternative
QTL alleles. As already mentioned by DE KONING et al. (1999), departure from
this assumption in a real data set results in a lower power and biased estimates
of QTL effects. One should be aware that it might also affect the accuracy of
the estimated QTL position, as already indicated by Jackknife plots in Figure 2.
On the other hand, BIDANEL et al. (2001), while analysing growth and fatness data
from 1103 F2 individuals from outbred line cross, found that a line cross model re-
mains robust towards departures from the above assumption. In the current appli-
cation of HKM and MIM we try to account for such an unrealistic assumption by
the appropriate modelling P(Qgs;), as described above.

The power of the mixed model studied by PEREZ-ENCISO and VARONA (2000)
for a variety of inheritance modes was practically 1 (over 30 repetitions). This is
higher than the power of MIM obtained in the current study, but we assumed
fewer F; individuals and much lower QTL effects. The advantages of the incorpo-
ration of a polygenic component are well demonstrated by VISSCHER and HALEY
(1996b) who report elevated type I errors by fitting a major gene model to data
with a polygenic variation and reduced power by fitting a multiple QTL model us-
ing markers as cofactors to the data with a single QTL.

All the four methods used in our study are in agreement by indicating an inter-
val between markers SW1823 and S0228 as the most probable region for locating
a QTL for IMF. The difference in significance between the methods reflects dif-
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ferent amounts of information incorporated in the underlying models. QTL for
IMF on chromosome 6 have been reported in other crosses of outbred populations
in pigs (DE KONING et al. 1999, DE KONING et al. 2000, GERBENS et al. 2000,
OVILO et al. 2000). A genome scan in a cross between Chinese Meishan x com-
mercial Dutch pigs detected a putative QTL for IMF between markers S0003 and
SW2419, close to the telomere of the chromosome (DE KONING et al. 1999,
GERBENS et al. 2000). Another analysis of data from the same cross, including
more markers and using a different statistical model, indicates that the QTL is pa-
ternally expressed and has its most likely position in marker interval
S0220-S0121, i.e. closer to the centromere (DE KONING et al. 2000). The most
likely QTL position of DE KONING et al. (2000) is almost identical to the result of
our study. It is noteworthy that based on the data set available in our study it is
only possible to investigate the effect of putative QTL alleles transmitted from
sires, i.e. paternal QTL expression. A QTL for IMF on porcine chromosome 6 has
also been detected in a cross between Iberian x Landrace pigs (OVILO et al. 2000).
The most likely QTL position in their study was in marker interval
S0228-SW1881, which is telomeric in our results, but similar to the positions re-
ported by DE KONING et al. (1999) and GERBENS et al. (2000).

The accurate identification of the QTL position is not possible using the avail-
able marker map. However, our main goal was rather to identify CI marking
the area of SSC6, which is going to be subjected to fine mapping in a follow-up
study. Several approaches exist to determine CI for the QTL position. These can
be roughly categorized as: i) methods based on resampling techniques, i.e.
the bootstrap and the Jackknife, ii) methods extracting information from the cur-
vature of the likelihood profile in the neighbourhood of the most probable QTL
position, and iii) methods based on asymptotic properties of A. Based on the as-
ymptotic properties of the test statistic, DUPUIS and STEGMUND (1999) proposed
CI which are independent of QTL effects, but used an unrealistic assumption that
the QTL is located at the marker. A similar approach of CIERCO and MANGIN
(1996) incorporates the information on the distance between markers. Here we
construct CI based on the Jackknife, the numerical approximation and the support
interval approaches. We found that the CI based on Jackknife are the longest. This
may result from a poor approximation of the variance of a QTL position estimate
because of a halfsib family chosen as a resampling component, which is a rather
rough unit. Choosing a finer unit, e.g. a fullsib family, would result in a better ap-
proximation, but at the same time will be more computationally intensive. The nu-
merical approximation approach and support interval provide similar, shorter CI
and are very easy to compute. Comparing statistical properties of various CI,
DuPUIS and SIEGMUND (1999) also found support interval as the most exact ap-
proach, robust towards changes in sample size and a QTL position relative to
flanking markers.

As pointed out by DE KONING et al. (1999), the practical application of cur-
rently available methods based on the mixed inheritance model is very limited.
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We show here that MIM is well feasible to evaluate multimarker data sets, even
by using commonly available software such as the SAS and, at the same time, to
utilize more of the genetic information than, the classical interval mapping models
underlying LBM and HKM.
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