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ABSTRACT

As we increase the number of cores on a processor die, the on-
chip cache hierarchies that support these cores are getting larger,
deeper, and more complex. As a result, non-uniform memory ac-
cess effects are now prevalent even on a single chip. To reduce ex-
ecution time and energy consumption, data access locality should
be exploited. This is especially important for task-based program-
ming systems, where a scheduler decides when and where on the
chip the code segments, i.e., tasks, should execute. Capturing lo-
cality for structured task parallelism has been done effectively, but
the more difficult case, unstructured parallelism, remains largely
unsolved—little quantitative analysis exists to demonstrate the po-
tential of locality-aware scheduling, and to guide future scheduler
implementations in the most fruitful direction.

This paper quantifies the potential of locality-aware scheduling
for unstructured parallelism on three different many-core proces-
sors. Our simulation results of 32-core systems show that locality-
aware scheduling can bring up to 2.39x speedup over a random-
ized schedule, and 2.05x speedup over a state-of-the-art baseline
scheduling scheme. At the same time, a locality-aware schedule
reduces average energy consumption by 55% and 47%, relative to
the random and the baseline schedule, respectively. In addition, our
1024-core simulation results project that these benefits will only
increase: Compared to 32-core executions, we see up to 1.83x ad-
ditional locality benefits. To capture such potentials in a practi-
cal setting, we also perform a detailed scheduler design space ex-
ploration to quantify the impact of different scheduling decisions.
We also highlight the importance of locality-aware stealing, and
demonstrate that a stealing scheme can exploit significant locality
while performing load balancing. Over randomized stealing, our
proposed scheme shows up to 2.0x speedup for stolen tasks.
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1. INTRODUCTION

Limits on technology scaling highlights parallelism as the means
to obtain sustainable performance. More cores are being packed on
the same die, and the on-chip cache hierarchies that support these
cores are getting larger, deeper, and more complex. As a result,
non-uniform memory access (NUMA) effects are now common
even on a single chip [4, 21]. Avoiding the high latency to access
remote caches and main memory is increasingly critical for perfor-
mance. The same holds for energy efficiency: Moving a word of
data from a remote cache or from an off-chip memory requires 10
and 20 times, respectively, more energy than an arithmetic opera-
tion on that word [9]. Consensus exists [14, 7] that memory access
locality should be exploited to reduce execution time and energy.

This is especially important for task-based programming sys-
tems [12, 25, 17, 5, 8, 26], where a computation is broken down
into small code segments, tasks, and the underlying runtime sched-
ules these tasks across threads for execution. Specifically, a sched-
uler generates a task schedule by grouping tasks to execute on the
same thread, and by applying ordering across the tasks. For load
balancing, the runtime may employ stealing to redistribute tasks
from loaded threads to idle threads. To capture locality on a task-
based system, the scheduling algorithm should be locality-aware.

The exact scheduling logic, however, depends on the type of
parallelism exposed by the programming system: structured or un-
structured parallelism. For structured parallelism (i.e., task-parallel
programming systems [12, 31]), explicit data or control dependen-
cies exist across tasks, and the runtime can leverage this informa-
tion to exploit locality. A large body of work on capturing lo-
cality for structured parallelism exists [1, 13, 10, 29], and these
schemes typically focus on exploiting producer-consumer locality
(e.g., schedule consumer task close to producer).

On the contrary, for unstructured parallelism (i.e., data-parallel



programming systems [25]), for each parallel section, tasks are all
independent—they may execute on any thread at any time, and the
computation result will still be valid. While they represent a signif-
icant class of parallel applications, exploiting locality for unstruc-
tured parallelism has been quite difficult: First, the lack of depen-
dency information implies the scheduler must obtain additional in-
formation from the workload to synthesize locality structure. With-
out understanding what the crucial information is, run-time and
storage overheads for collecting the information can be significant.
Second, the larger degrees of freedom in scheduling increases al-
gorithmic complexity. Having many degrees of freedom implies
many grouping and ordering choices, and enumerating all combi-
nations is prohibitive. Third, the complexity of many-core cache
hierarchies makes the process all the more complicated. Group-
ing and ordering decisions must optimize locality across all cache
levels, whether the hierarchy being shared or private.

As aresult, capturing the locality of the applications utilizing un-
structured parallelism is not well understood. In fact, many runtime
systems retrofit the simple scheduling heuristics meant for struc-
tured parallelism (e.g., FIFO or LIFO [3]) to unstructured paral-
lelism, and hope that the schedule will capture significant local-
ity. More importantly, little quantitative analysis exists to demon-
strate the potential of locality-aware scheduling, and to guide fu-
ture locality-aware scheduler implementations in the most fruitful
direction. While some compiler efforts that map unstructured par-
allelism onto the cache hierarchy have been reported [18], they (1)
apply only to grid-based workloads, and (2) do not address stealing.

The contributions of our paper are as follows: (1) We provide
results that quantitatively demonstrate the potential of locality-
aware scheduling for unstructured parallelism. Specifically, we
develop a locality analysis framework and an offline scheduler that
takes workload profile information as input and generates schedules
that are optimized for the target cache hierarchy. We then evalu-
ate the effectiveness of the scheduler on three specific many-core
cache hierarchies that represent distinct and very different points
in the many-core design space. Our 32-core simulation results ver-
ify the importance of locality-aware scheduling, as we observe up
to 2.39x speedup over a randomized schedule and 2.05x speedup
over a state-of-the-art baseline scheduling scheme [6, 22]. By in-
creasing the hit rates in the caches closer to the cores, a locality-
aware schedule also saves energy: It reduces the average energy
consumption in the memory hierarchy beyond the L1 caches by
55% relative to the random schedule, and 47 % relative to the base-
line. We also perform 1024-core simulations to verify that the per-
formance advantages of locality-awareness only increase with more
cores, and see up to 1.83x additional performance improvement.

(2) To capture such potentials in a practical setting, we also per-
form a scheduler design space exploration to quantify the impact
of different design decisions. In particular, by selectively applying
task grouping and ordering, we show that proper grouping alone
brings up to 2.23x speedup over a random schedule, using a good
ordering gives up to 1.17x additional speedup, and applying group-
ing and ordering across multiple cache levels gives up to 1.52x
speedup over a single-level schedule. These results identify the
most crucial information necessary to develop practical locality-
aware schedulers.

Additionally, while the conventional wisdom says there exists
an inherent tradeoff between locality and load balancing, we show
load balancing can exploit significant locality. By honoring the
task grouping and ordering specified by the schedule as it transfers
tasks across threads, our locality-aware stealing implementation re-
duces task execution time for stolen tasks by up to a factor of 2.0x
over randomized stealing.

Listing 1: The core task-programming API.

// Initialize task queue library
taskQInit(num_threads, max_tasks);

// Specify the parallel section by providing
// (1) task function and (2) task space
taskQEnqueue (task_fn , num_dims, size_arr);

// Execute the section in parallel
taskQWait ();

// Finalize task queue library
taskQEnd ();

These results also demonstrate that application domains that tra-
ditionally refuted dynamic scheduling in favor of locality—e.g.,
high-performance computing—may employ dynamic task manage-
ment without losing significant locality. Even for a dedicated sys-
tem, interference due to shared resources on a large-scale many-
core chip (e.g., caches and memory controllers) can introduce sig-
nificant load imbalance [22], and statically orchestrating all com-
putation and communication will be increasingly challenging.

2. LOCALITY-AWARE TASK SCHEDULING

The key to obtaining the results summarized above is to decou-
ple workload locality analysis and schedule generation, to manage
complexity. We first perform a graph-based locality analysis to un-
derstand inherent workload locality, and then utilize the analysis
results to map computation onto a target cache hierarchy. This de-
coupling allows to generate schedules for various cache hierarchies
using a common framework, and to systematically alter scheduling
decisions to perform design space exploration.

2.1 Unstructured Parallelism: API and
Workloads

Listing 1 shows the core task-programming API we use in this
study, which assumes a task queue-based, software task manager [25,
22]. It shows one parallel section; a program may have many.
When the user application invokes taskQInit(), the manager spawns
worker threads in its thread pool, and creates a task queue for each
thread. A user then specifies the parallel section by providing the
task function and a rask space—a Cartesian space of integers—to
taskQEnqueue(). For each coordinate in the task space, the man-
ager bundles the task function with the coordinate to create a task,
and schedules it by enqueueing to one of the queues.

Calling taskQWait() triggers the parallel execution of tasks. At
first, each thread repeatedly dequeues a task from its own queue and
executes it by invoking the task function with the coordinate as the
argument. When its queue becomes empty, a thread tries to steal
tasks from another queue. When the taskQWait() function returns,
all the tasks have been executed, and the worker threads wait at the
pool. Finally, taskQEnd() releases the allocated resources.

Note that the task manager assumes no dependencies among the
tasks, and may arbitrarily group and order tasks across the queues;
therefore, a task should be enqueued only after its dependencies
have been satisfied. Since all the tasks in an unstructured parallel
section are independent, large number of tasks can be created and
enqueued in a single call to taskQEnqueue().

Table 1 summarizes the workloads we ported to the above API.
Most of them are real C/C++ workloads originally written to stress
test a commercial processor [28]; they are optimized to capture de-
cent intra-task locality. Variants appear in [22, 27, 20] as well. In
particular, notice that the applications utilize relatively fine-grained
tasks, and are not necessarily organized in a cache oblivious [11] or



Workload Description Task Tasks that share data Access pattern | # tasks | Task size Input
hj Probe phase of hash-join Performs  single row | Look up same hash bucket hash tables 4,096 157 4,460
lookup (clustered sharing)
bprj Reconstruct a 3-D vol- | Reconstructs a  sub- | Work on sub-volumes mapping 3-D traversal 4,096 415 3,650
ume from 2-D images volume to overlapping pixels (clus-
tered sharing)
gjk Collision detection Operates on sets of object | Work on overlapping object pointer access 384 4,950 940
pairs sets (clustered sharing)
brmap Map pixels in a 2-D im- | Maps pixels from a sub- | Work on sub-images mapping | trajectory-based 4,977 1,298 22,828
age to another 2-D image | image to overlapping pixels (struc-
tured sharing)
conv 2-D  convolution filter | Operates on square- | Operate on overlapping pixels grid-based 1,056 9,487 26,400
(5x5) on image shaped image block (structured sharing)
mmm Blocked  matrix-matrix | Multiplies a pair of sub- | Use common sub-matrix (clus- grid-based 4,096 49,193 | 344,064
multiplication matrices tered sharing)
smvm Sparse matrix-vector | Multiplies one row of ma- | Touch overlapping elements in sparse matrix 4,096 891 42,385
multiplication trix a vector (clustered sharing)
sp Scalar pentadiagonal | Solves a subset of equa- | Work on neighboring lattices grid-based 1,156 5,956 439
PDE solver tion lattice (structured sharing)

Table 1: Workloads used in this study. 7ask size is the average dynamic instruction count. /nput is the sum of all task footprints in KB.

recursive manner. As discussed, execution order of tasks in these
workloads does not affect the computation result.

2.2 Graph-Based Locality Analysis

A locality-aware schedule should map tasks to cores, taking into
account both locality and load balance. Two techniques to con-
struct such a schedule are task grouping and ordering. Executing
a set of tasks (a task group) on cores that share one or more lev-
els of cache captures data reuse across tasks. Similarly, executing
tasks in an optimal order minimizes the reuse distance of shared
data between tasks, which makes it easier for caches to capture the
temporal locality. Generating a locality-aware schedule depends on
understanding how task groups should be formed, and when order-
ing will matter.

To understand the inherent locality patterns of workloads, we de-
velop a graph-based locality analysis framework. The framework
proceeds as follows: (1) We first profile each workload to collect
data access traces at cache line granularity, and discard ordering in-
formation to obtain read and write sets for each task. (2) Using the
set information, we construct a task sharing graph. In a task shar-
ing graph G(V, E), a vertex represents a task, and an edge denotes
sharing. A vertex weight is the task size in terms of number of dy-
namic instructions, and an edge weight is the number of cache lines
shared between the two tasks connected by the edge. (3) We then
partition the graph to form task groups, and observe some metrics
to determine the ‘right’ task group size and the impact of ordering.

Even with profile information about each task’s read and write
sets, creating an ‘optimal’ set of task groups is an NP-hard prob-

lem. We therefore use a heuristic graph partitioning tool (METIS) [19]

to generate quality task groups. METIS divides the vertices from a
task sharing graph into a given number of groups, while trying to
(a) maximize the sum of edge weights internal to each group (i.e.,
data sharing captured by a task group), and (b) equalize the sum of
vertex weights in each group (i.e., balance load).

Table 2 shows the framework output for some of our workloads.
Using these results, we try to answer: (1) How should a task group
be formed? and (2) When does ordering matter? In addition, we
also discuss the implications of task size on locality. For now we
discuss locality assuming a single core with a single cache. We
later extend the analysis to multiple cores with complex, multi-level
cache hierarchies.

Q1: How should a task group be formed?

In Table 2, sum of footprint denotes the average sum of indi-
vidual task footprints for each task group, while union of footprint

denotes the average size of the union of individual task footprints
(i.e., shared lines are counted only once)'.

Intuitively, to maximize locality, a task group should be formed
so that the working set of the group fits in cache. In that regard, the
sum of footprint represents an upper bound on working set size (i.e.,
when a schedule fails to exploit any reuse across tasks), and the
union of footprint represents a lower bound. For a fully-associative
cache, the union of footprint should accurately track the working
set. However, due to conflict misses and unaccounted runtime ac-
cesses, the actual working set size should be between the union and
sum of footprint. Hence, to capture the working set, task groups
should be formed so that the cache size falls between the union and
sum of task footprints. For example, in Table 2, for smvm, when
generating a schedule for a 32 KB cache, a task group should con-
tain 8 tasks so that the cache size is between 21 KB (= union of
footprint) and 82 KB (= sum of footprint).

However, strictly following this rule may lead to other ineffi-
ciencies: For example, grouping too few tasks together might in-
troduce high scheduling overhead, and too many could introduce
load imbalance. Such issues can be avoided by performing multi-
level grouping, or by executing tasks within a task group in parallel
(see Section 2.3).

Q2: When does ordering matter?

We consider both task ordering and group ordering. Task order-
ing specifies the traversal order of vertices for a task group. As-
suming a task queue-based task management system, task order
denotes the dequeue order of tasks within the same group. Group
ordering specifies the execution order of task groups. Both task
ordering and group ordering can maximize temporal locality when
reuse distance is minimized.

To assess when ordering matters, we define two metrics, sharing
degree and cut cost, that dictate the importance of reuse distance
on certain data. In Table 2, given a shared cache line, the sharing
degree denotes the average number of tasks within a task group that
share it. The table reports normalized sharing degree, so a degree
of 1 means all the tasks within the task group share the cache line.

In terms of locality, sharing degree indicates the potential impact
of task ordering. Specifically, a high sharing degree implies that
data is shared by a large fraction of tasks. For example, in Table 2a,
it can be seen that for task groups that would fit in a 32 KB cache
(8 tasks per group), about 90% of the smvm tasks within a group

!Since read sharing is dominant in our workloads, we give equal
weight to read and write sharing in computing our metrics. It is
straightforward to assign different weights to reflect different costs
for read and write sharing.



Relative task group size 1 172 1727 [ 1725 [ 172 [ 1/2° [ 1725 [ 1727 [ 1728 | 1/2° | 1/2"°

# tasks / group 4,096 | 2,048 1,024 512 256 128 64 32 16 8 4

Sum of footprint (KB) 42385 | 21,192 | 10,596 | 5298 | 2,649 | 1,324 662 331 165 82 41

Union of footprint (KB) 4946 | 2,618 1,408 757 400 211 110 59 34 21 14

Sharing degree 0.03 0.03 0.04 | 006 | 011 021 | 038 | 058 | 0.5 0.90 0.99

Cut cost (E+07) 0.00 2.04 313 | 3.68 | 398 415 | 427 | 441 477 4.97 5.08

(a) Statistics collected for smvm.

[ Relative task group size [| 1] a2/ a/25 /2 [1/2% [ 1/2° [1/27 [ 1728 [ 1727 [ 1/2"77 ]
# tasks / group 4,096 | 2,048 | 1,024 512 256 128 64 32 6 8 4
Sum of footprint (KB) 3,650 | 1,825 912 456 228 114 57 28 14 7 3
Union of footprint (KB) 177 91 51 29 16 9 5 3 1 1 1
Sharing degree 0.01 0.01 0.02 | 004 | 007 0.13 | 022 038 | 058 | 078 0.92
Cut cost (E+06) 0.00 | 419 | 63I 737 | 791 819 | 836 848 | 8.6l 871 877

(b) Statistics collected for bprj.

Table 2: Framework output for smvm and bprj. Relative task group size of 1 denotes the case where all the tasks are grouped into a
single task group. Sharing degree of 1 means on average all the tasks within the task group share the cache line.
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Figure 1: Cut cost trend over different sizes of task groups. Cut
costs are normalized to fit within the interval [0, 1].

share any given shared cache line. Therefore, task ordering will
have little impact on the reuse distance of shared data. On the other
hand, when the sharing degree is low, task ordering could have a
significant impact on locality. For bprj with 32 tasks per group,
the sharing degree is 0.38, which is quite low compared to smvm.
‘We can conjecture bprj is more sensitive to task ordering.

Next, in Table 2, the cut cost represents the sum of the edge
weights for vertices in different groups (i.e., data sharing not cap-
tured within a single task group). Specifically, our workloads ex-
hibited two distinct cut cost patterns: clustered sharing and struc-
tured sharing—relative importance of group ordering depends on
this workload pattern.

Workloads with Clustered Sharing: When a task sharing graph
is drawn for these workloads, the graph exhibits disjoint clusters or
cliques of tasks that share the same data structure. For example,
groups of smvm tasks share the same vector region, and hj tasks
that access the same hash bucket.

Figure 1 plots the cut cost trend for the workloads of this type.
As can be seen, these workloads exhibit an abrupt increase in cut
cost—a knee—as we decrease the task group size. For some work-
loads, other cache lines are sporadically shared, so the knee is less
visually striking; we determine knees by manual code analysis.

The sudden increase in cut cost means that the task group size
became small enough that tasks sharing their key data structures
have been separated into different groups. Ordering those task
groups so that they execute consecutively will increase locality. For
these workloads, assuming we group tasks so that each group fits
in cache, the importance of group ordering depends on the relative
size of the cache to the task clique. For example, we find that a task
clique in hj exhibits a 128 KB footprint (where the knee is in Fig-

cache hierarchy

= [ 9
=n= L'l L2 grp
upper - u T
hierarchy 1
L2grp = L2grp
. , . ’
N N l
V. v
V\ ‘,V

task group hierarchy

L3grp

L3 grp —) L3grp

Figure 2: Generating recursive task groups. Different levels of
groups are sized to fit in a particular cache level. Colored ar-
rows denote the group order determined over task groups.

lower
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ure 1). On a 32 KB cache, hj would benefit from group ordering;
on a 256 KB cache, group ordering would be less important.

Workloads with Structured Sharing: These workloads exhibit
structured, regular sharing patterns. For example, for conv, a 2-
D stencil operation, a task shares cache lines with its nearest 4
neighbors in the 2-D task space. For these workloads, cut cost is
proportional to the number of groups, and no knee exists. Hence,
group ordering is important regardless of the cache size; but a sim-
ple group ordering, such as assigning consecutive task groups to
the same core, should capture reuse.

Now we discuss the implications of task size on a locality-aware
schedule. In short, task size indirectly changes the relative impor-
tance of task grouping and ordering. For example, when the work-
ing set of a single task is larger than the cache, grouping tasks has
little benefit, but ordering may help capture reuse from one task to
the next. In general, smaller tasks give the scheduler more free-
dom. If a programmer breaks a large task into smaller tasks, and if
the memory access pattern was originally suboptimal, better local-
ity may be achieved via proper grouping and ordering.

2.3 Mapping Computation to
Cache Hierarchy: Recursive Scheduling

We now leverage the framework analysis results to map compu-
tation onto an actual cache hierarchy. Specifically, we consider re-
cursive scheduling, which (1) matches task group working sets and
(2) applies ordering across all cache levels. The scheduling logic
can be generically applied to arbitrary memory hierarchies; and by
selectively applying task grouping and ordering, it can be used to
perform scheduler design space exploration (see Section 3).

Creating an optimal order for tasks, however, is also an NP-hard
problem. We therefore use a heuristic to provide high quality or-



dering. Specifically, we apply Prim’s algorithm to construct a max-
imum spanning tree (MST), and use the order that the vertices are
added to the MST. In architectural terms, Prim’s algorithm accu-
mulates the read and write sets of scheduled tasks, and picks the
task whose read and write sets exhibit the maximum intersection
with the cumulative sets as the next task to execute. To construct
a task order, we apply MST on a task sharing graph. To construct
a group order, we first map the task sharing graph to a task group
sharing graph, where each uber node represents a task group; we
then apply MST to the task group sharing graph.

Under recursive scheduling, to maximize the utility of every cache
level, we start from the bottommost: We first group tasks so that the
task group’s working set fits in the last-level cache, and apply or-
dering over those groups. We then recursively apply this approach
to each of the task groups, targeting one level up in the cache hier-
archy each time. Figure 2 illustrates the procedure.

In the figure, we first perform grouping on the full set of tasks
to create L3 groups, each of which matches the L3 size. Next, we
order the L3 groups. For each L3 group, we then decompose it into
tasks and create L2 groups to match the L2 size. Then we order the
L2 groups. We proceed in this fashion until we finally generate L1
groups, order them, and order their component tasks.

Generating a schedule in this fashion results in a hierarchy of
task groups. Moreover, since each task group also denotes a schedul-
ing granularity, all the tasks in a group will be executed consecu-
tively. Therefore, a task group will stay resident in its target cache
from beginning to end. The existence of a hierarchy among these
task groups guarantees that all the groups containing a given task
stay resident at their corresponding level in the cache hierarchy,
thus exploiting locality across all cache levels.

A slight complication arises when a system has private caches
or caches shared by a subset of cores. In such a case, we should
pre-group sets of task groups, so that groups with high sharing
are assigned to the same cache. Specifically, recursive scheduling
performs an additional operation whenever hitting a branch in the
cache hierarchy: It first pre-groups the set of tasks according to the
number of consumers one level above, and then performs grouping
for each partition. For example, in Figure 2, with two L2 caches,
before generating L2 groups it first divides the set of tasks in an L3
group into two partitions, one for each L2 cache. It then constructs
a task sharing graph for each partition, and uses the graphs to create
two sets of L2 groups. Each set of L2 groups is separately ordered.
Due to the pre-grouping, the task schedule generated ensures that
the tasks from a set of L2 groups go to the same L2—without this
property, group ordering would not be effective. Pre-grouping can
be done with the same graph partitioning algorithm that performs
task grouping.

3. EVALUATION OF LOCALITY-AWARE
TASK SCHEDULING

We now evaluate recursive schedules for specific many-core cache
hierarchies that represent distinct points in the many-core design
space, to quantify the potential of locality-aware scheduling and
perform design space exploration.

3.1 Experiment Settings

As described in Table 3, we simulate three different many-core
chip configurations®. The first configuration is a throughput com-
puting processor we refer to as Throughput Processor. Each core

2Instruction caches are modeled in all simulations. However, since
we pass function pointer, not the code, to schedule tasks, disruption
due to scheduling is minimal.

32 cores; dual issue in-order x86

16-wide 512-bit SIMD extensions

Core Core-private 32 KB 8-way L1, 1-cycle
Core-private 256 KB 16-way L2, 14-cycles
Directory slice for L2 coherence

Ring network connects L2s, directory slices,

Interconnect
and memory ctrls
Memory 4 memory ctrls, 120-cycles
(a) Throughput Processor Configurations
Core 32 cores; dual issue in-order SPARC v9
Core-private 32 KB 4-way L1, 1-cycle
4 cores per tile
Tile Tile-shared 4 MB 16-way banked L2, 10-cycles
Directory slice, memory ctrl, and L3 bank
L3 16 MB per bank 16-way, 21-cycles
Interconnect 2-D flattened butterfly connects tiles
Memory 158-cycles
(b) Tiled Processor Configurations
Core 32to 1Q24 cores; dual issue in-order x86
Core-private 32 KB 4-way L1, 1-cycle
1 core per tile
Tile Per-tile 512 KB 8-way L2, 12-cycles
Directory slice and memory ctrl
Interconnect 2-D mesh connects tiles
Memory 100-cycles

(c) Futuristic Processor Configurations
Table 3: Simulated system configurations.

has a private L1 and L2, so all caches are private. The combined L2
capacity is 8 MB, and coherence is maintained through a directory-
based protocol. The ISA includes 512-bit SIMD instructions, and
the applications have been tuned to use them; simple spatial locality
is already captured, and exploiting the remaining locality is more
challenging. For this configuration, we use an industrial simulator
that models a commercial processor [28].

The second configuration is a tiled many-core processor we refer
to as Tiled Processor. Each core has a private L1, and four cores
form a tile. Each tile has a 4 MB L2 shared among the cores on the
tile, and all tiles share a single L3 cache. We simulate this with the
MS simulator [2] coupled with the GEMS memory toolset [23].

In addition, to project the potential of locality-aware scheduling
as the number of cores continues to increase, we employ a third
configuration we refer to as Futuristic Processor. Each tile con-
tains a core, core-private L1 and L2, and the tiles are connected
through a mesh interconnect. We vary the number of cores from 32
to 1024. We model this configuration with a modified version of
the Graphite parallel simulator [24].

Due to ISA and toolchain issues, we evaluate the Throughput
Processor on all benchmarks except sp from Table 1, the Tiled Pro-
cessor on the bottom four benchmarks, and the Futuristic Processor
on all benchmarks except gjk.

As described in Section 2.1, we utilize a task queue-based soft-
ware task management system [25, 22, 27]. In particular, task
queues are pre-populated with offline-generated schedules right be-
fore the start of each parallel section. By default, randomized task
stealing [3] is performed across queues for load balancing. We fur-
ther study the implications of stealing on locality in Section 4.

By evaluating schedules from different scheduling policies, we
can quantify the impact of various scheduling decisions on locality.
Specifically, in addition to recursive schedules, we evaluate (a) ran-
dom and (b) baseline schedules. We obtain a random schedule by
assigning each task to a random core and then randomly ordering
the tasks for each core. We report the averages over 3 instances.

For the baseline schedule, we apply Parallel Depth First (PDF)
scheduling [6]. Originally developed for structured parallelism,
PDF hinges on the notion that many programs have been optimized
for good sequential cache performance. Therefore, when a core
completes a task, PDF assigns the task that the sequential program
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Figure 3: Performance summary. Shows the speedup over a random schedule. For each workload, from left to right are: (1) random,
(2) L1 grouping only, (3) L2 grouping only, (4) L1 and L2 grouping, (5) recursive schedule, and (6) baseline. Baseline represents the
state-of-the-art PDF scheduling [6], and (2)~(4) use random ordering (RO) instead of MST ordering.

W #L2 | Tasks/ | Tasks/ | Sharing L2 cut L1 cut
orkload

grps | L2grp | Llgrp degree cost cost
hj 32 128 16 091 | 4.0E+06 | 7.1E+06
bprj 32 128 32 0.38 | 8.2E+06 | 8.5E+06
gjk 32 12 12 0.36 20,010 20,010
brmap 128 39 5 0.53 22,609 61,099
conv 32 33 4 0.55 10,036 27,620
mmm 512 8 1 N/A | 1.3E+08 | 1.4E+08
smvm 32 128 8 0.90 | 4.2E+07 | 5.0E+07

Table 4: Task groups determined by the recursive scheduler and
per group statistics. Sharing degree is for L1.

L1 MPKI L2 MPKI

Workload . . . .

| random | recursive | baseline | random | recursive | baseline
hj 16.05 6.63 13.74 12.64 6.61 11.36
bprj 12.93 3.29 10.35 10.16 2.72 6.91
gjk 8.35 7.55 7.31 8.10 7.39 7.16
brmap 18.66 14.97 14.53 18.48 14.60 14.48
conv 8.54 7.73 7.62 8.37 5.30 6.47
mmm 28.37 17.05 28.38 27.08 14.29 26.07
smvm 136.30 132.22 133.86 52.93 23.29 48.46

Table 5: Measured MPKIs over different schedules. Bold fig-
ures denote where recursive schedule improves over baseline.

would have executed next. Since many parallel programming sys-
tems support both structured and unstructured parallelism [25, 5, 8,
26], the same schedule is often applied to unstructured parallelism.
For unstructured parallelism, PDF linearizes the task space along
the innermost loop, and then evenly divides the tasks into as many
chunks as cores, such that consecutive tasks fall in the same chunk.
The scheduler then assigns one chunk per core.

Throughout the section, to isolate locality measurements from
task management overheads, we use the sum of the execution time
of the tasks as our primary locality metric. Management over-
heads can be mitigated through proposed hardware or hybrid meth-
ods [22, 20, 27]. Since it uses a simpler cache hierarchy, we fo-
cus on the Throughput Processor performance results first. In Sec-
tion 3.3, we contrast the Tiled Processor results to highlight where
different memory hierarchies affect scheduling; in Section 3.4, we
project how locality benefits will scale with more cores.

3.2 Throughput Processor Performance Results

In this section, we first summarize the performance and energy
benefits of recursive scheduling. Then we isolate the benefits of
each feature of the recursive schedule. In particular, we answer the
following questions: (1) How much does locality-aware scheduling
matter? (2) How much does grouping matter? (3) How much does
ordering matter? (4) How does task size affect the schedule? (5)
How do single-level schedules compare?

For each workload, Table 4 shows the recursive scheduler’s task
groups for the Throughput Processor, and the corresponding statis-
tics. Table 2 also highlights L2 and L1 groups.

Q1: How much does locality-aware scheduling matter?

Figure 3a presents the speedup of various schedules over a ran-
dom schedule, measured in terms of the sum of the execution time
of the tasks. For each workload, from left to right, different sched-
ules activate different aspects of grouping and ordering, to arrive at
recursive schedule. Here we focus on the performance of recursive
schedules; we explain the rest in the following sections. Table 5
reports the measured misses per thousand instructions (MPKI).

The figure shows that a locality-aware schedule (i.e., from the
recursive scheduler) improves performance significantly. On av-
erage, the speedup over the random schedule is 1.60x, and over
the baseline is 1.43x. In particular, hj, bprj, and mmm see large
speedups of 1.96x, 2.39x, and 2.00x, respectively. Table 5 shows
that this speedup is obtained by improving the behavior at both
cache levels, verifying that multiple levels of scheduling is impor-
tant. conv and smvm also see significant speedups of 1.32x and
1.65x, respectively, from improved L2 behavior.

While gjk and brmap are fairly memory intensive (judging from
their MPKIs), they see little benefit from locality-aware schedul-
ing. These workloads have simple locality patterns that the baseline
schedule is able to capture—grouping consecutive tasks captures
most of the locality.

We now compare the energy consumption of different schedules.
Specifically, we compute the energy for the part of the memory hi-
erarchy beyond the L1s®, which includes the L2s, ring network, and
memory: For each schedule we measure the total L2 accesses, net-
work hops, and memory accesses, and use the model from [15] to
derive energy. Figure 4 shows the results. For each workload, the
first three pairs of bars show activity counts—L2 cache accesses,
on-die interconnect hops, and memory accesses—and the last pair
of bars shows energy consumption. Results are normalized to ran-
dom schedule.

As expected, locality-aware schedule significantly reduces all
three activity counts, and thus the energy consumption: On aver-
age, recursive schedule reduces energy by 55% relative to random
schedule, and 47% relative to the baseline. Recursive schedules re-
duce L2 accesses by reducing the L1 miss rate (see Table 5), and
likewise decrease on-die network and main memory activity by re-
ducing the L2 miss rate. This shows that locality-aware scheduling,
or placing computation near where data resides, could be a viable
alternative to reducing energy through migrating data [16, 15] to
the cores performing computation.

Q2: How much does grouping matter?

Recursive scheduling provides benefits through both grouping
and ordering. Here, we isolate the benefits of grouping by disabling
the ordering and pre-grouping parts of the recursive scheduler. We

3[30] reports that on the chip level, Intel many-core processors
spend 40% of its power on the uncore.
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Figure 6: Single-level schedule performance.

also isolate the benefits of the two levels of grouping by disabling
one of the two levels at a time.

Figure 3a shows the impact of various grouping policies. Com-
pared to random schedules, performing both L1 and L2 group-
ing with random ordering (L1 & L2 + RO)—recursive grouping—
provides 1.52x average speedup, capturing most of the benefit of
full recursive schedules (1.60x). This shows that grouping captures
significant locality, and ordering provides limited additional benefit
on top of recursive grouping.

Due to its private-only cache hierarchy, on the Throughput Pro-
cessor, applying only a single level of grouping can capture much
of the locality benefits of recursive grouping: L1 grouping with
random ordering (L1 + RO) or L2 grouping with random ordering
(L2 + RO) provides 1.36x and 1.49x average speedup, respectively.
Nevertheless, recursive grouping helps when different applications
favor different cache levels.

Q3: How much does ordering matter?

We first consider ordering alone, and then when it can provide
additional benefits over grouping. In a separate experiment where
we applied MST ordering to each of the 32 task chunks generated
by the baseline schedule, we observed 1.26x average speedup over
random. So while ordering by itself does provide performance ben-
efits, these are smaller than those from recursive grouping.

Next, in Figure 3a, comparing the performance of L1 and L2
grouping with random ordering (L1 & L2 + RO) against recur-
sive scheduling shows that three workloads see benefits from or-
dering on top of grouping—1.07x, 1.17x, and 1.12x speedup on
bprj, conv, and mmm, respectively.

Figure 5 shows bprj, mmm, and conv sensitivity to task, L1
group, and L2 group ordering. As can be seen, bprj benefits from

task ordering; mmm and conv on the other hand, benefit from or-
dering L2 groups. L1 group ordering is not as effective.

bprj benefits from task ordering since its first level working set is
slightly larger than expected (due to runtime accesses), and its shar-
ing degree is low (see Table 4). With task ordering, L1 MPKI for
bpr;j reduces from 4.97 to 2.27, while L2 MPKI reduces from 2.37
to 1.90. mmm is a clustered sharing workload—its task groups ex-
hibit affinity for a small number of other groups (see Section 2.2).
It also has high L2 cut cost (see Table 4), meaning the affinity be-
tween L2 groups is very strong. Therefore, it benefits from ordering
L2 groups. conv is a structured sharing workload—its task groups
exhibit stencil-like affinity. It thus benefits from L2 ordering.

Q4: How does task size affect the schedule?

For regular, grid-based workloads such as mmm and conv, task
size can be easily adjusted by changing blocking parameters. For
mmm, a single task actually overflows an L1. We shrink each
mmm task so that a dozen tasks can fit in a single L1 group. Like-
wise, we make each conv task smaller so that it fits in an L1. Fig-
ure 5 shows that the sensitivity to L2 ordering reduces for small
tasks (we label the modified versions of workloads with small task).
The workloads perform the same computation, independent of the
task size; hence, the locality to be captured should remain the same.
Task size then alters at which cache level the locality is captured.

Also, as discussed in Section 2.2, task size can affect perfor-
mance by changing the scheduler’s freedom to exploit locality. For
the experiment above, the performance improvement of recursive
scheduling over random increased from 2.00x to 3.08x as we de-
creased mmm task size. Since a task group amounts to a scheduler-
determined optimal task size, users should express their tasks in the
finest granularity possible to maximize scheduling freedom. Task
scheduling overheads may limit task granularity, but they may be
reduced with hardware or hybrid methods [22, 27].

Q5: How do single-level schedules compare?

A single-level schedule denotes performing grouping and order-
ing at a single level only: i.e., L1 or L2-sized task groups with MST
task ordering, but random ordering across groups. Figure 6 com-
pares the performance of L1 and L2 single-level schedules against
recursive scheduling. As expected, recursive scheduling provides
the best all-around performance. Specifically, for conv and mmm,
neither single-level schedule alone matches the performance of the
recursive schedule. For the other workloads, however, an L2 single-
level schedule is on par with the recursive schedule—due in part to
the flat cache hierarchy and L1 latency hiding through SIMD.

3.3 Tiled Processor Performance Results

In this section, we highlight where different cache hierarchies af-
fect a locality-aware schedule. Specifically, we ported conv, mmm,



# cores 32 64 128 256 512 1024

Cache-to-cache 124.32 | 13439 | 146.38 | 166.38 | 192.18 | 228.94
Mem-to-cache 184.61 | 186.70 | 199.13 | 208.93 | 220.83 | 246.30

Table 6: Cache-to-cache and memory-to-cache transfer latency
of a single cache line.

smvm, and sp to the Tiled Processor*, and conducted the same set
of experiments.

Figure 3b summarizes the results. Similar to the Throughput
Processor, recursive scheduling brings about a significant speedup:
On average, the speedup over random is 1.40x, and over baseline
is 1.35x. This demonstrates that a processor with a shared cache
organization has similar potential for locality-aware scheduling.

However, shared caches alter the relative importance of group-
ing and ordering. Similar to Figure 3a, Figure 3b compares dif-
ferent grouping schemes. In contrast to the Throughput Processor
where L2 grouping alone (L2 + RO) provided most of the group-
ing benefits, for the Tiled Processor neither L1 nor L2 single-level
grouping (i.e., L1 + RO and L2 + RO) consistently matches recur-
sive grouping. With a complex cache organization, matching the
task group hierarchy to the cache hierarchy becomes important.

For this hierarchy, we also see that ordering provides less benefit
over grouping—the performance of L1 and L2 grouping with ran-
dom ordering (L1 & L2 + RO) is very similar to recursive schedule.
In particular, conv and mmm, which exhibit sensitivity to order-
ing on the Throughput Processor, now barely benefit from order-
ing. This can be attributed to the increased importance of recursive
grouping: Recursive grouping amounts to applying coarse ordering
over smaller groups, limiting the benefits of additional ordering.

As on the Throughput Processor, the benefits of ordering alone
(i.e., applying MST to each task chunk generated by the baseline)
are significant, but smaller than grouping alone: 1.15x speedup
over random, compared to 1.37x.

3.4 Futuristic Processor Performance Results

As we add more cores on a processor die, the size of the on-die
network increases, which results in larger access latencies for re-
mote cache and memory. To quantify the impact of core scaling on
locality-awareness, we vary the number of cores on the Futuristic
Processor from 32 to 1024, and compare the performance of ran-
dom and recursive schedules. Workload inputs were re-adjusted to
fully utilize up to 1024 cores.

Table 6 first shows the measurements from a pointer-chasing mi-
crobenchmark; a producer core populates each cache line-wide en-
try of a list with a pointer to the next entry, then the consumer
core chases the chain of pointers. The table reports the average
latency to transfer a cache line from (1) one core’s L2 cache to an-
other core’s L1, and (2) memory to an L1, as we increase the core
count. Home nodes of the cache lines are spread uniformly, and the
cache-to-cache transfer is between the cores farthest apart. As can
be seen, remote cache access latency increases from 124 cycles at
32 cores to 229 cycles at 1024 cores. For the same configuration,
the memory access cost increases from 185 cycles to 246 cycles.

Such an increase in latency in turn amplifies the impact of locality-
aware scheduling. Figure 7 shows the speedup of recursive sched-
ules over random schedules across varying core counts. With 32
cores, recursive schedule provides 1.27x average speedup over ran-
dom (1.20x speedup over the baseline). As the number of cores in-
creases, the benefit of locality-awareness increases across all work-
loads (at 1024 cores, 1.61x average speedup over random).

However, the exact degree depends on the workload locality pat-
tern. In particular, for hj and smvm, which exhibit high L1 shar-

*Vector instructions were replaced by scalar loops.

W32 64 W128 m256 m512 m 1024 cores
(2.69.3.25,3.57)

| 183
1.65
121 1.08 1.17
]H[ ] ]'EI_l
hj

113
bprj brmap conv mmm smvm sp AVG.

2

speedup over
random schedule

.5
2
15
1
0.5
0

Figure 7: Performance scalability up to 1024 cores. At each core
count, speedup is over a random schedule. For each workload,
the number on the rightmost bar denotes the additional locality
benefits of 1024-core execution when compared to 32-core.

ing degree (see Table 4), random schedules’ poor task grouping
generate many cache-to-cache transfers; and as the transfer latency
increases, give recursive schedules significant performance advan-
tage (compared to 32-core executions, 1.83x and 1.65x additional
locality benefits with 1024 cores, respectively).

3.5 Summary: Guidelines for Practical
Locality-Aware Task Schedulers

Locality-aware task scheduling can provide significant perfor-
mance and energy efficiency improvements for unstructured paral-
lelism, both on private and shared cache organizations. The im-
portance of locality-awareness will only increase with larger core
count. The relative importance of task grouping and ordering, how-
ever, is a function of the workload and the underlying cache hierar-
chy. Nevertheless, if a locality-aware scheduler were to implement
only one scheme, it should be recursive grouping—recursively match-
ing task group working set size across all cache levels. For a pro-
cessor with (mostly) private cache hierarchy, a single-level sched-
ule at the last-level cache can capture most of the locality.

4. LOCALITY-AWARE TASK STEALING

Dynamic task management comprises two components: (1) task
scheduling, or initial assignment of tasks to threads, and (2) task
stealing, or balancing load by transferring tasks from a loaded thread
to an idle thread. In Sections 2 and 3, we explored locality-aware
task scheduling. Here, we explore locality-aware task stealing.

4.1 Motivation

Intuitively, task stealing will benefit most from being locality-
aware when many tasks are stolen. One major source of large load
imbalance is multiprogramming: Software threads from applica-
tions compete for hardware contexts, and potentially large number
of tasks may be stolen from a switched-out thread. Even for a ded-
icated system, interference due to shared resources on a many-core
chip (e.g., caches and memory controllers) can introduce signifi-
cant load imbalance [22].

Previously proposed stealing schemes, however, are locality-oblivious.

The most widely adopted scheme, randomized stealing [3], chooses
a victim at random, and steals one or more tasks (stealing multiple
amortizes stealing overheads). It provides good characteristics such
as even load distribution and theoretically bounded execution time,
but its randomness renders it inherently locality-oblivious. In fact,
if the task schedule is also locality-oblivious, we expect locality-
oblivious stealing to have little impact on cache behavior. However,
for a locality-aware schedule, this stealing policy may significantly
decrease the performance of stolen tasks.

We verity this by inducing large amounts of task stealing. Specif-
ically, we emulate context switching: After producing a task sched-
ule for 32 threads (on the Throughput Processor), we offline a sub-
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Figure 8: Impact of locality-oblivious stealing on a locality-
aware schedule. The numbers along the x-axis denote the num-
ber of threads offlined.

set of the threads, and rely on stealing to redistribute tasks from the
offlined threads.

Figure 8 shows the task performance trend of a random sched-
ule and a recursive schedule for two workloads, normalized to the
performance of a random schedule when no threads are offlined.
We use the same randomized stealing policy for both schedules—
it randomly selects a victim and tries to steal half of the victim’s
queue with a prescribed upper bound (an empirical value of 8§ was
used [22]). If it fails to steal anything, it visits the other potential
victims in a round-robin fashion.

The case where no threads are offlined is the same data presented
earlier. However, the benefit of recursive scheduling decreases as
more threads are offlined, since the locality captured in the sched-
ule is disrupted by randomized stealing. On the other hand, the
performance with a random schedule is independent of the number
of threads offlined. When tasks are scheduled in a locality-aware
fashion, locality-aware stealing becomes important.

4.2 Locality Analysis of Task Stealing

We approach task stealing using a similar analysis methodology
we used for scheduling. For this discussion, we assume a locality-
aware task schedule created from a recursive scheduler. We explore
the impact on locality of the two key design decisions for task steal-
ing: (1) Which tasks to steal? and (2) How many tasks to steal?

Q1: Which tasks to steal?

Random victim selection fails to capture the locality between
the tasks that have already executed and those that are to be stolen.
Assuming a multi-level memory hierarchy, it would be the best if
such locality is exploited through the highest-level cache (i.e., L1).
If no such tasks are available, victim tasks should be chosen among
those that will give sharing through the next level (i.e., L2), and so
forth. In essence, a thief should look for tasks in a top-to-bottom
fashion, so that stealing scope gradually increases as we lower the
cache level where sharing will take place.

Q2: How many tasks to steal?

The other locality to consider is the locality among the stolen
tasks. A natural steal granularity that would provide good locality
among victim tasks is a task group—after all, this is how recur-
sive scheduling constructs groups. Stealing a task group at a time
amortizes steal overheads, as well.

Stealing a fixed amount or portions of tasks each time may under-
or overshoot a task group boundary, to break the group. Stealing an
already-stolen task (i.e., secondary stealing) breaks locality within
stolen task groups as well; secondary stealing from a group with
strong internal sharing, e.g., an L1 group, may impair performance.

On the other hand, the level of task group stolen affects load bal-
ancing. Stealing a coarser granularity task group preserves more
locality among stolen tasks, but could increase load imbalance, as-
suming we prohibit secondary stealing. One way to emulate the
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Figure 9: Recursive stealing. The top-level queues (that hold
tasks) are not shown. Colored numbers indicate the order that
the leftmost core visits queues.

locality of stealing a coarser task group while maintaining flexibil-
ity is to steal smaller groups but enforce steal ordering: If a thread
steals again, it follows the specified group order.

4.3 Making Stealing Locality-Aware:
Recursive Stealing

In this section we present a reference locality-aware stealing scheme,
recursive stealing. Our discussion so far suggests that (1) steal-
ing scope should recursively expand through the memory hierar-
chy, and that (2) stealing should be performed at the granularity of
task groups. Figure 9 illustrates the scheme.

We maintain a hierarchy of queues, where a queue exists for each
cache; these queues may be implemented as software or hardware
components. A queue at a specific level holds task groups that fit in
the cache for that level: an L3 queue holds L3 groups, an L2 queue
holds L2 groups, etc. The order these task groups are stored reflects
the group order determined by the recursive schedule. Not shown
are the queues that hold actual tasks; for the example hierarchy,
one task queue exists per L1 queue. Once a task group is dequeued
and moved to an upper-level queue, it is logically broken down into
upper-level groups. For example, when an L2 group is transferred
to an L1 queue, it is decomposed into L1 groups.

To exploit as much locality as possible from the original recur-
sive schedule, recursive stealing interleaves regular dequeues and
steal operations. In our example (see Figure 9), tasks are replen-
ished as follows. Once a task queue is empty, a thread attempts to
dequeue from its L1 queue; if the L1 queue is empty, it attempts
to steal from the sibling L1 queue (i.e., before it tries a regular de-
queue from the L2 queue). We interleave steals with dequeues in
this example because the L2 caches are shared: If a thread steals
from a sibling L1 queue, it grabs an L1 group that shares data in
the L2 cache with (a) the tasks it just executed, and (b) the tasks the
sibling core(s) are currently executing; thus, we exploit the shared
cache. If the L2 queue is empty as well, it climbs down the hier-
archy and repeats the process: It attempts to steal from the sibling
L2 queue, and then visits the L3 queue. When stealing, a thread
grabs the task group at the tail of the victim queue, in the same way
randomized stealing operates [3].

In addition, we do not allow stealing across task queues: The
minimum steal granularity is an L1 group, and a stolen L1 group
cannot be stolen again. For our workloads, this does not impose
significant load imbalance, since a typical L1 group has 4 to 8 tasks.

In essence, recursive stealing exploits locality through two fea-
tures: (1) by performing recursive victim selection to exploit local-
ity across potentially multiple levels of shared caches, and (2) by
stealing at minimum a whole L1 group to guarantee locality among
the stolen tasks.
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4.4 Performance Results

We first present the performance summary, and then isolate each
feature of recursive stealing. In particular, we answer the follow-
ing questions: (1) How beneficial is locality-aware stealing? (2)
How much does victim selection matter? (3) How much does steal
granularity matter?

Q1: How beneficial is locality-aware stealing?

We implemented the recursive stealing scheme in Section 4.3 as
a software library for our Throughput Processor configuration, and
compared its performance against the baseline randomized stealing
(see Section 4.1). For a given workload, we use the same recursive
schedule in all experiments.

Figure 10 compares the performance of stolen tasks over vari-
ous stealing schemes, as we offline some threads. Looking at the
average, recursive stealing provides benefit across all numbers of
offlined threads, but the average benefit decreases as more threads
are offlined. When 4 threads are offlined, the average speedup over
randomized stealing is 1.27x. The reason for the speedup decrease
is that in general, executing the tasks on fewer cores (i.e., spreading
an application’s data across fewer caches) naturally captures more
sharing. This is especially true for applications with small working
sets. For this case, there is less potential for improving locality.

When we look at individual workload performance, we can see
that those workloads that benefit the most from recursive schedul-
ing, i.e., hj, bprj, and mmm, significantly benefit from recursive
stealing. hj and bprj’s L1 groups are significantly larger than 8
tasks (the upper bound for the baseline stealing scheme), so steal-
ing an L1 group at a time gives significant locality boost. When 28
threads are offlined, recursive stealing reduces the L1 miss rate by
1.28x and 1.39x, respectively. For mmm, however, an L1 group
contains only a single task. Recursive stealing exploits locality
through the L2 instead, and reduces the L2 miss rate by 1.56x (with
28 threads offlined). This verifies that both steal granularity and
victim selection contribute to the benefits of recursive stealing.

smvm presents an interesting case. The workload benefits sig-
nificantly from recursive scheduling, but the performance improve-
ment due to recursive stealing is not as profound. By coincidence,
random stealing’s upper bound of 8 tasks matches the number of
tasks within an L1 group. However, the baseline performs worse
due to secondary stealing—conv behaves similarly. On the other
hand, for gjk and brmap, which exhibit sharing through consec-
utive tasks, maintaining the task order is good enough to preserve
most of the locality.

The source of randomized stealing’s poor behavior is not that
it chooses its victims at random, but that its victim selection is
locality-oblivious. To demonstrate this, in Figure 10, we also show
the performance of a nearest-neighbor stealing scheme. This scheme
is the same as the baseline, except a thief always chooses its nearest-
neighbor as the first victim. As can be seen, the scheme, which is
also locality-oblivious, performs as poorly as randomized stealing.
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Q2: How much does victim selection matter?

To isolate the benefits from recursive victim selection, we imple-
ment a stealing scheme which (1) selects a victim at random, but
(2) steals an L1 group at a time. The random victim + L1 grp in
Figure 10 shows its performance.

Most of our applications see the same performance from the ran-
dom victim + L1 grp policy as recursive stealing. However, for
workloads exhibiting strong sharing through L2, recursive victim
selection is able to capture the locality. mmm shows this effect
strongly, since its L1 group amounts to a single task—locality must
be captured across L1 groups. In particular, as more threads are of-
flined, random victim selection exhibits deteriorating performance;
offlining more threads means more victims to choose from, making
it more likely that random victim selection fails to capture locality.
‘While the baseline also uses random victim selection, it steals 8
tasks at a time, and captures some locality through L2.

Q3: How much does steal granularity matter?

Intuitively, if load balance is not an issue, stealing larger chunks
of tasks will better exploit locality. Conversely, stealing a smaller
number of tasks will fail to preserve the locality specified in the
schedule. However, we find that sensitivity to steal granularity is
regulated by the degree to which thieves contend over victim tasks.

In Figure 11, the x-axis denotes normalized steal granularity,
where steal granularity of 1 denotes the case when a single L1
group is stolen at a time. The y-axis is the performance of a stolen
task, normalized to the same case. When multiple L1 groups are
stolen, they are stolen in an atomic fashion, and are not subject to
secondary stealing.

Figure 11a shows the performance under high contention. In this
configuration, 4 threads are offlined, and 28 online threads compete
over the tasks assigned to the 4 offlined threads. When the con-
tention is high, it becomes hard to preserve locality across multiple
steal operations from the same thread. Therefore, performance is
relatively sensitive to steal granularity. Specifically, we can see that



reducing steal granularity below an L1 group results in a significant
loss in locality, since the strong sharing within an L1 group is now
broken. Conversely, increasing the steal granularity beyond a sin-
gle L1 group gives sizeable locality improvements.

On the contrary, Figure 11b shows performance under low con-
tention, when only 4 threads are online. These threads rarely con-
tend over the tasks originally assigned to the 28 offlined threads,
and recursive stealing improves inter-steal locality by preserving
group order (see Section 4.2). In fact, recursive stealing effectively
collects smaller task groups to emulate the effect of executing a
larger granularity group. As a result, sensitivity to steal granularity
is much smaller than the high contention case.

4.5 Summary

To preserve the locality exploited in task schedules while load
balancing, task stealing should be made locality-aware. Two types
of locality need to be captured: (a) locality between the tasks that
have executed and that are to be stolen, and (b) locality among the
stolen tasks. By adhering to the task grouping and ordering spec-
ified by the original schedule while transferring tasks, a stealing
scheme can be made locality-compatible.

5. CONCLUSION

This paper provides a quantitative analysis of exploiting task lo-
cality for unstructured parallelism. Through a graph-based locality
analysis framework and a generic, recursive scheduling scheme,
we demonstrate that significant potential exists for locality-aware
scheduling. Specifically, our simulation results of three distinct
32-core systems show significant performance improvement (up to
2.05x over a state-of-the-art baseline) and energy reduction (47%
average reduction from the baseline). In addition, 1024-core simu-
lation results project that with an increasing number of cores, ben-
efits from locality-awareness will only increase (up to 1.83x addi-
tional benefits compared to 32-core executions). To capture this po-
tential, we also explore the scheduler design space in detail. While
we find the performance contributions of different scheduling deci-
sions to be the function of the workload and the underlying cache
hierarchy, matching the task group hierarchy to the cache hierar-
chy provides the most benefit. We also highlight the importance of
locality-aware stealing when the tasks are scheduled in a locality-
aware fashion, and demonstrate that a recursive stealing scheme
can effectively exploit significant locality while load balancing (up
to 2.0x speedup over randomized stealing).
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