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Abstract

Our early work [4] has shown that by using a combina-
tion of mechanisms in a Diff-Serv domain: tagging algo-
rithms in boundary routers and a RIO algorithm in inte-
rior routers, we could create differentiations in through-
put among different TCP connections during periods of
network congestion. However, the effectiveness of such
schemes is limited by the impreciseness and biases in the
window-based congestion control algorithm of TCP. More
precisely, TCP’s window open-up algorithm has an intrin-
sic bias against longrtt connections, and TCP’s window
close down mechanism adapts to the perceived network
congestion optimal point only, which is not sufficient to
meet the underlying premise of Diff-Serv architecture.

In this paper, we propose a few mechanisms to TCP’s
congestion control algorithm, specifically tailored to the
Diff-Serv architecture. While preserving TCP’s “linear in-
crease and multiplicative decrease” principle, these mech-
anisms make TCP more robust and precise in adjusting its
sending rate to network congestion as well as to a pre-
defined service profile. Simulations are used to qualita-
tively demonstrate the results. In addition, we discuss de-
ployment issues.

The changes require only modifications to a TCP sender,
and a TCP with these changes is inter-operable with any
existing TCP implementations. The proposed mechanisms
are sufficiently general to be applicable to any window-
based congestion control algorithms, such as [?].

1 Introduction

In the general realm of providing Quality of Services
(QoS) to a large variety of applications on the Internet,
we have seen research efforts like Integrated Services, or
Int-Serv[5] and Differentiated Services, or Diff-Serv[2]. In
terms of services defined, Int-Serv aims to provide end-to-
end guaranteed or controlled load service on a per flow ba-
sis, whereas Diff-Serv is an architecture to provide coarser
level of service differentiation to a small number of traffic
classes. In terms of implementation, Int-Serv requires each
router to processper flow signaling messages and main-

rior routers. The edge routers classify packets into flows,
and apply some traffic conditioning mechanisms on pack-
ets – including metering, tagging, shaping and policing.
The packets are tagged with some patterns in the DS field
[17], which indicate to the interior routers which PHBs
should be applied to the packets. The interior routers do
not need to classify packets but treat packets as an aggre-
gate, and apply corresponding PHBs. The service provided
to a particular packet stream is a combination of the traf-
fic conditioning at edge routers (both ingress and egress
routers) and a series of PHBs in interior routers. With dif-
ferent PHBs and different traffic conditioning mechanisms,
Diff-Serv can provide differentiated services to traffic. By
pushing the complexity to the edge and maintains a simple
core, Diff-Serv is much more scalable than Int-Serv.

There are currently two PHBs defined in the Diff-Serv
architecture: the premium service [] and the assured ser-
vice []. The premium service provides the equivalent of a
dedicated link of fixed bandwidth between two edge nodes.
The assured service shares its root with the “best effort”
service model of the current Internet and provides only cer-
tain level of assurance, or expectations to applications [3].
We limit the following discussions to mechanisms applica-
ble to the “assured service” PHB only.

Instrumental to the Diff-Serv architecture is Service
Level Agreement (SLA) – a contract between a customer
and an ISP that specifies the forwarding service a customer
should receive. The technical part of SLA specifies clas-
sifier rules and any corresponding traffic profiles and me-
tering, tagging, shaping and dropping rules to be applied
to the traffic streams selected by the classifier. Thus, an
ISP is required to provision its network to meet the agreed
service requirements in SLA.

Diff-Serv architecture changes the premise underlying
the “best-effort” Internet service model. In the “best-
effort” service model, the allocation of resources is based
on equal and fair1 sharing of available resources among
all participating entities. For example, both RED[9] or
FRED[16] queuing algorithms have the goal of local fair-
ness in their design. In contrast, in the Diff-Serv archi-
tecture, resource allocation is based on some pre-defined
policies embodied in the SLAs. This change of premise re-
flects the commercialized nature of the Internet. High level
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among two types of packets in times of congestion, though
the high level service profiles embodying policies can be
of a wide range of throughputs.

In [4], we’ve shown that mechanisms can be deployed
within a Diff-Serv domain to create differentiations among
TCP connections: tagging algorithms (TSW) can be de-
ployed at edge routers for each entity with a service pro-
file and RIO algorithm can be deployed for each interior
router to create discriminations between IN and OUT pack-
ets during congestion. Using simulations, we’ve shown
that such mechanisms can create differentiations among
a wide range of TCP connections. However, the effec-
tiveness of such schemes is limited by the impreciseness
and biases in window-based congestion control algorithms
of TCP. More specifically, the rate adjustment scheme
in the current Internet depends on a feedback loop com-
pleted by both TCP’s congestion control algorithm and the
router’s congestion signals, thus, by changing mechanisms
in routers alone, the rate adjustment schemes are not very
effective or precise in achieving the targeted service pro-
files.

In this paper, we study a few mechanisms which, when
applied to current TCP’s congestion control algorithm, can
significantly improve TCP’s performance in meeting the
requirement of a service profile. We believe the “linear-
increase and multiplicative-decrease” principle in the cur-
rent TCP is a sound one and do not hope to change it. In
fact, we don’t introduce any additional state variables to
TCP’s machinery, but merely make the observations that
existing variables likecwndandssthreshcan be used more
effectively in meeting the requirements of service profiles.
Thus, our proposed mechanisms can be used to any con-
gestion control algorithms observing similar principles of
that of TCP, such as “Congestion Manager” [?].

The rest of the paper is organized as follows. Section
2 briefly describes mechanisms to be deployed in routers
within a Diff-Serv domain: RIO algorithms and tagging
algorithms. Section 3 describes the proposed mechanisms
to TCP congestion control algorithms and intuitions be-
hind those mechanisms. Section 4 presents simulation re-
sults to demonstrate the effectiveness of such mechanisms
qualitatively. Section 5 offers a discussion on how those
mechanisms interact with Diff-Serv mechanisms deployed
in routers. Section 6 offers a road-map for deployment and
discusses some complications we might encounter. Section
7 discusses related work, future work and concludes.

2 Mechanisms deployed in a Diff-
Serv domain

2.1 RIO algorithm to create differentiation
in routers

RIO algorithm is based on RED (Random Early
Drop) algorithm, and is created with two sets of
parameters for two types of packets: IN pack-
ets and OUT packets. The two sets of param-
eters are denoted as(min in,max in, Pmax in) and
(min out,max out, Pmax out). min in andmax in are
the low and high thresholds for IN packets, andPmax in is
the maximum probability with which to drop an IN packet.
Similarly, min out and max out are the low and high
thresholds for OUT packets, andPmax in is the maximum
probability with which to drop an OUT packet. The al-
gorithm works as follows: when a packet arrives, RIO
algorithm estimates two variables,avg in q, average IN
packet queue andavg q, averagetotal queue, respectively.
An arriving IN packet will contribute to the estimation of
avg in q, as well asavg q; an arriving OUT packet will
only contribute to the estimation ofavg q. A dropping
probability is calculated for each arriving packet depend-
ing on the current value ofavg in q or avg q. In the case
of an IN packet, a dropping probability is calculated as
p = Pmax in∗(avg in q−min in)/(max in−min in).
The intuition here is that an IN packet represents the traf-
fic that is to receive priority, therefore, whether it should
be enqueued is dependent on the amount of IN packets the
gateway received recently, and not affected by the OUT
packets or the total number of packets (both IN and OUT).
In the case of an OUT packet, a dropping probability is cal-
culated asp = Pmax out∗(avg q−min out)/(max out−
min out). Since an OUT packet represents the lower pri-
ority traffic, it should yield to IN packets in terms of queu-
ing, therefore, its dropping probability depends not only on
other OUT packets in the queue but also on the number of
IN packets in the queue, therefore, we useavg q, the av-
erage total queue, to calculate the probability for dropping
an OUT packet.

Graphically, RIO algorithm can be demonstrated in fig-
ure 1, RIO algorithm divides up the gateway’s conges-
tion state in four phases, depending on the average queue
length2

• Congestion free phase (phase 1)

2The X-axis is the number of packets ofavg q, the estimate of average
queue length. We also make themax in andmin out coincides for the
sake of explanation. In actual configuration, the two doesn’t have to.
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Figure 1: RIO algorithm

In this phase, the gateway is operating well: the
amount of IN and OUT packets are well below its ca-
pacity. It sees very short instantaneous queue and very
small average queue value. No packet is dropped.

• Congestion sensitive phase (phase 2)

In this phase, the gateway suspects that the queue
might be built up so it starts to drop packets as con-
gestion signals, however, it drops OUT packets only.
During this phase, the IN packets only see relatively
long instantaneous queue and they are never dropped.

• Congestion alarm phase (phase 3)

In this phase, all OUT packets are dropped, in addi-
tion, the gateway starts to drop IN packets as a means
to keep the queue length reasonable. This is an un-
desirable phase for ISP because it compromises the
ISP’s SLAs by dropping IN packets.

• Congestion control phase (phase 4)

In this phase, the system is congested. The gateway
drops both IN and OUT packets with probability 1.
In this phase, the gateway has switched its primary
goal from creating differentiations among two types
of packets to congestion control. The gateway de-
grades into a drop-tail gateway, which has other unde-
sirable consequences, e.g., dropping multiple packets
from the same TCP stream and global synchroniza-
tion, etc. If the gateway constantly operating in this
phase, it is a sure sign that either the system is well
under-provisioned or the parameters of traffic condi-
tioners/RIO are not set correctly.

Phase 2 is the ideal operating phase for a router because
in this case, both instantaneous and average queue is short

but the link is also highly utilized, the only dropped pack-
ets are OUT packets, which doesn’t compromise the ISP’s
SLAs. When operating in phase 1, the router sees little
congestion but the link capacity is not well utilized. When
the input traffic is predictable, ISP should try to configure
their system to avoid phases 3 and 4, and operate most in
phases 1 and 2.

2.2 Tagging schemes

In Diff-Serv architecture, traffic conditioners can be mod-
eled as logical entities sitting on the forwarding path of
an edge router. In an edge router, packets are first classi-
fied, and then feed through the corresponding traffic con-
ditioners, which can choose to 1) passively monitor packet
streams and tag packets, or 2) actively buffer and shape
packet streams to obtain certain traffic properties before
the packet streams enter the downstream Diff-Serv domain.
We consider the simpler case of tagging packets. [4] pro-
posed a tagging algorithm – Time Sliding Window (TSW)
– specifically tailored to TCP. A TSW tagger incorporates
a probabilistic function which can reduce the likelihood of
tagging consecutive packets within a window of packets,
thus, reduce the chances of multiple packet drops within a
window. This will keep TCP to operate in the “congestion
avoidance” phase, thus make the rate adjustment scheme
more controllable. Our simulation shows that when TCP
itself incorporates mechanisms suited to Diff-Serv archi-
tecture as proposed in the following section, the rate adjust-
ment scheme is less dependent on the intricacies of tagging
algorithms. In our simulation, we could use a simple To-
ken Bucket tagging scheme with a configured target rate
for each TCP connection. See Fang99 for more discussion
on tagging schemes.

3 Proposed Mechanisms to TCP’s
Congestion Control Algorithm

3.1 TCP’s congestion control mechanism

In today’s Internet, transport layer protocol TCP imple-
ments certain congestion control and avoidance mecha-
nisms which interpret to drops as congestion signals. The
mechanisms are based on [13], and have incorporated
much refinements since then [6, 12].

There are two phases in TCP’s window adjustment al-
gorithm: exponential increase phase and linear increase
phase, corresponding to the “slow start” and the “con-
gestion avoidance” phases [13], respectively. TCP keeps
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two variables for its congestion control algorithm: con-
gestion control window orcwnd and slow-start thresh-
old, or ssthresh. During the exponential increase phase,
TCP sender starts with a congestion window of one packet
and exponentially increase the congestion window,cwnd.
When the congestion window hits a threshold,ssthresh,
the sender switches into the “congestion avoidance” phase,
and increases the congestion window linearly, probing the
network capacity as it becomes available. TCP contin-
ues in the “congestion avoidance” phase until it receives
a congestion signal – typically a packet drop or an Explicit
Congestion Notification (ECN) in an acknowledgment – at
which point, the sender evokes a mechanism called “Fast
Retransmit and Fast Recovery” to recover the lost packet.
Additionally, TCP sets itsssthreshto be one half of the
congestion window prior to the packet loss, and resets its
cwndto be the same as the newssthresh.

In this scheme,cwnd indicates the amount of packets
currently outstanding, and the instantaneous sending rate
of TCP can be approximated ascwnd/rtt, wherertt is the
round trip time including queuing delays. The choice of
threshold reflects an estimation of the equilibrium operat-
ing point, i.e., a packet leaves the network as a sender puts
a packet into the network, is key to the performance of the
algorithm. The algorithm in adjustingcwnd reflects the
additive increase and multiplicative decrease rule which
will alleviate congestion and maintain stability in a system
[13, 14].

3.2 Proposed Mechanisms

3.2.1 Fair window open-up algorithms

In both “slow start” and “congestion avoidance” phases,
TCP opens up its window each round trip time (rtt). In
the “slow start” phase, TCP doubles its window size each
rtt, and during the “congestion avoidance” phase, TCP
increases its window by one packet eachrtt. When the
network system is operating in a stable state that TCP
mostly operates in the “congestion avoidance” phase with
occasional packet drops. Letri denotes nodei’s average
round trip time including queuing delays. In the conges-
tion avoidance phase of TCP, nodei’s window is increased
by roughly one packet everyri seconds. Thus, nodei’s
throughput is increased by1/ri packets/sec everyri sec-
ond, or by1/(ri)

2 packets/sec every second. Therefore, if
a packet is dropped each for two connections with different
rtts, it would take the long-rtt connection a significantly
longer time to recover to its previous throughput.

TCP’s bias towards longrtt connections has been

known and studied in [7]. TCP adopts the current win-
dow open up algorithm for its simplicity in algorithm and
implementation. As discussed elaborately in [7], such
increase-by-one window algorithm doesn’t meet either of
the three fairness measures: min-max fairness [10], the
fairness index proposed in [14], and the product measure,
a variant of network power [15]. Two alternative window
open-up algorithms, both fall in the categories of linear
window open-up algorithm, will meet the criteria of fair-
ness. In the first alternative, TCP will increasesc ∗ rtt
packets per round trip time. Using this scheme, a connec-
tion which goes through k bottleneck gateways will share
1/k of a bottleneck link bandwidth as a connection which
goes through one bottleneck gateway. This will meet the
criteria of fairness index proposed in [14] when the re-
source allocation is defined as throughput times the number
of gateways. In the second alternative, TCP will increase
c ∗ rtt2 packets per round trip time. Using this scheme,
whenn connections are sharing a single bottleneck gate-
way, the window open-up algorithm will allow all connec-
tions each share1/n of the bottleneck bandwidth, regard-
less of theirrtt. This will maximize the fairness index
when the resource allocation is defined as throughput of
individual connections.

In the Diff-Serv architecture, where each entity (poten-
tially at the finest granularity of a single TCP connection)
is associated with a “service profile” in which a target
throughput is defined. Though the “service profile” defini-
tion has not been finalized by the IETF Diff-Serv working
group, there are two potential definitions to choose from,
which meet the criteria of fairness index. First one, a “ser-
vice profile” includes both a target throughput as well as
a range ofrtts within which the target throughput can be
met. The longer thertt, the smaller the corresponding tar-
get throughput. This definition of “service profile” is an
interpretation of the fairness index if the underlying TCP
window open-up algorithm is chosen to increasec ∗ rtt
each round trip time. Alternatively, a “service profile” in-
cludes simply a target throughput, which implies that the
ISP is to assure the target throughput regardless of thertts
of the connection. This definition of “service profile” is an
interpretation of the fairness criteria if the underlying TCP
window open-up algorithm is chosen to increase window
linearly c ∗ rtt2 each round trip time. The related service
profile definitions and their corresponding window open-
up policy, fairness criterias are tabulated in Table 1

As we described above, the current TCP window open-
up algorithm fails to meet either of the above definition
of fairness. This helps to explain why in our early work,
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Table 1: Service Profiles and the corresponding TCP mechanisms
Strategy 1 Strategy 2

Service profile [BWtarget, (minrtt, maxrtt)] BWtarget

Window Algo. c ∗ rtt c ∗ rtt2

Fairness Critera Throughput X # of routers Throughput

the longrtt connections cannot meet the targeted service
profile throughputs when using the current TCP implemen-
tations. In other words, the RIO gateways with preferen-
tial dropping cannot compensate for the innate bias in TCP
when a long-rtt connection fails to open up quickly enough
after a packet loss. In contrast, the two proposed alter-
natives can alleviate this bias somewhat. However, even
with this proposed change, the current TCP can still be
biased against long-rtt connections during the exponential
window increase phase, in which, the TCP doubles its con-
gestion window eachrtt. A small-rtt connection will open
up its window quicker than a long-rtt connection. This begs
the question why we don’t propose changes to TCP’s win-
dow algorithm all the way, including exponential increase
phase to be absolutely fair. There are two reasons. First,
the “Slow-start” phase of TCP is relatively short because
after eachrtt, TCP doubles its window, so TCP can usually
recover to its newly adjustedssthresh in the “Slow-start”
phase quickly. From a performance perspective, the degra-
dation in sending rate really results from the timeout pe-
riod which typically proceeds the “Slow-start” phase, and
not from the “Slow-start” phase itself, thus, the benefits re-
sulted from making “Slow-start” phase fair is small. Sec-
ond, as we shall discuss in section 5.1 and 6.2, the choice
of c is a difficult one for policy and deployment reasons
so we recommend limiting any changes to the “congestion
control” phase.

It should be noted that both alternatives to the current
window algorithm of TCP still fall under the “linear in-
crease” rule. Only that the “linear increase” is byc packet
per rtt (the first alternative), or byc packets per second
(the second alternative).

3.2.2 Setting ssthreshfor TCP

As discussed in section 3.1, in the current TCP window
algorithm, the value ofssthreshreflects the perceived net-
work available bandwidth to a TCP.ssthreshis initially
set to a default value and is readjusted after each packet
drop to be one half of thecwnd before the packet drop.
A packet drop is recovered either through a mechanism

called “fast recovery and fast retransmit” or through a time-
out mechanism. When a single packet is lost, the “fast
recovery and fast retransmit” mechanism can recover the
lost packet successfully and bothcwndandssthreshare re-
duced to one half prior to the packet drop, then TCP con-
tinues to operate in the linear window increase phase with
a reducedssthresh. When multiple packets are dropped
within a window, current implementations of TCP usually
fail to recover all lost packets because the sender won’t be
able to put enough packets into the network to generate
sufficient duplicated acknowledgments to detect additional
packet loss. Upon each detected successive packet loss,
TCP reduces itsssthreshby one half so when eventually,
TCP recovers from packet loss via a timeout mechanism,
TCP operates with a much reducedssthreshthan that be-
fore the packet losses.

In the Diff-Serv architecture, bandwidth allocation is
based on service profiles. The underlying premise is that
each entity is assured of its target throughput specified in
its “service profile” when congestion is experienced and
can exceed such profiles when there is no congestion. With
the knowledge of those target throughputs, the ISP is sup-
posed to provision the network well so that all service pro-
files are satisfied. However, since Diff-Serv relies on sta-
tistical multiplexing of shared resources and not strict ad-
mission control (see section 5.2 on discussions of coarse
granularity admission control at the edge of the domain.),
there will be cases when either the ISP fails to provision
properly or certain routes will experience incipient con-
gestion. In the Diff-Serv domain, when a TCP connection
loses a packet, how shouldssthreshandcwndbe set? The
underlying Diff-Serv premise implies that the ideal behav-
ior of TCP is to reduce its sending rate when congestion is
experienced – the proper mechanism to evoke in a shared
environment –, but can recover to its target throughput ro-
bustly.

We propose the following change to reflect the change
in underlying premise from all purely “best-effort” service
model to a Diff-Serv model. We set the initial value of
ssthreshto be the minimum of the default value and the
byte equivalent of target rate as defined in its “service pro-
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file”. This also “gauges” the operating point of the TCP.
Additionally, we propose that TCP sets itsssthreshto be
byte equivalent of the target throughput, when congestion
is detected. TCP reducescwnd to be one half of the pre-
vious value before the packet drop, as it would in the cur-
rent implementations. This has the effect of reducing in-
stantaneous sending rate of TCP connections to alleviate
temporary congestion, but allows each TCP connection to
quickly throttle back to its target operating point.

It should be noted that the argument for modifying
TCP’s ssthreshvalue is different from that for modifying
TCP’s congestion window open-up algorithm. The argu-
ment for modifying TCP’s congestion window open-up al-
gorithm is essentially a “fairness” argument but only com-
pleted in the light of Diff-Serv architecture. As discussed
in [7], the current window open-up algorithm is not fair
by any particular fair index. Technical merits of two pro-
posed mechanisms have been discussed, but in absence of
a policy decision on the desired fairness goal in current net-
works, there is no reason to deploy them. In other words,
the proposed mechanisms arenecessarybut notsufficient
conditions for deployment. With the introduction of the
Diff-Serv architecture, the policies can be implicitly ex-
pressed in the service profiles. Thus, depending on how the
policies are defined, the appropriate and fair TCP linear-
increase window open-up algorithm can be deployed.

In contrast, the argument for setting thessthreshfor
TCP’s window both during the initial phase and the con-
gestion control phase is entirely a policy argument, and de-
pendent on the Diff-Serv architecture.

3.2.3 ECN-enabled TCP in Diff-Serv Domain

Some recent proposed changes to TCP include the use
of Explicit Congestion Notification (ECN) mechanisms in
both TCP and the RED gateway [8]. In this proposed
scheme, RED routers will mark an ECN bit in a packet’s
header in stead of dropping the packet, and TCP will re-
spond to the explicit congestion notifications in stead of
inferring congestion from duplicated acknowledgments.
This mechanism has the advantage in avoiding unneces-
sary packet drops and unnecessary delay for packets from
low-bandwidth delay-sensitive TCP connections. A sec-
ond advantage of ECN mechanisms is that TCP doesn’t
have to rely on coarse granularity of its clock to retransmit
and recover packet losses.

Similar mechanisms could be deployed in the Diff-Serv
architecture. In stead of dropping packets, the RIO gate-
way can also take advantage of the ECN mechanism by
marking them. RIO gateways can apply its preferential al-

gorithm in which, it marks an OUT packet as experienc-
ing congestion with a much higher probability than an IN
packet [4]. The ECN bit will be copied by the transport-
layer receiver and relayed back to the sender. TCP sender
has to be able to recognize the two types of packets (IN and
OUT), and respond to ECN bits in them differently.

When an OUT packet arrives back to the TCP sender
with the ECN bit marked, it indicates that the RIO gateway
operates in the “congestion sensitive” phase (Phase 2 in
section 2.1). It indicates that the gateway senses the con-
gestion as mostly incipient with only long instantaneous
queues. When a RIO gateway deploys ECN mechanism as
the only mechanism for notifying the transport-layer proto-
cols to retract its congestion window, the window reduction
should be no more aggressive the recommended guidelines
for ECN mechanisms [8]. We recommend that TCP re-
duces itscwnd to be one half of the currentcwndvalue,
and resetsssthreshto be the byte equivalent of the target
throughput. Depending on the value ofcwndandssthresh
prior to receiving the ECN signal, TCP can be operating in
either linear increase mode or exponential increase mode
again. In either case, the reduction in window size will
induce a temporary reduction in TCP’s sending rate to al-
leviate congestion but still keep TCP operating close in the
targeted operating point.

When an IN packet arrives back to the TCP sender with
the ECN bit marked, it indicates that the RIO gateway op-
erates in the “congestion control” phase (phase 4 in sec-
tion 2.1), in which, the gateway has seen persistent long
queues and is forced to mark both IN and OUT packets
with probability 1. When such packet is received, the TCP
sender should react to the congestion signal more drasti-
cally. We recommend that TCP reduces its reduce itscwnd
to be one packet, and resetssthreshto be the byte equiv-
alent of the target throughput. This is the same window
reaction as in the current implementation when a packet
has been dropped but TCP starts in its “Slow-Start” phase
with a configuredssthresh. This will cause a more drastic
reduction in TCP’s sending rate. But since the newssthresh
will be greater than the newcwnd, TCP will recover to the
target operating point using exponential increase window
increase algorithm quickly. Table 7 summarizes the rec-
ommended guidelines for ECN-enabled TCP responding
to IN and OUT packets.

4 Simulation Results

In this section, we will use simulation to compare the im-
pact of different mechanisms when they are deployed in-

6



dependently and incrementally.

4.1 Simulation setup

We use network simulatorns[1] to implement simulations.
We use a simple topology (Figure 2) to evaluate bulk-data
transfers. We use six ftp transfers with two sets ofrtts:
80ms and 30ms. Each simulation run has four different
phases. The first phase is the start-up phase in which all
six ftp/TCP connections reach their respective operating
points. The second phase is a congested phase, in which,
a constant bit rate (CBR) connection starts, running at1/4
of the bottleneck bandwidth. This will cause heavy con-
gestion in the router and TCP connections will back off
during this phase. The third phase is the recovery phase, in
which the CBR source stops and all ftp/TCP connections
will recover to their respective operating points. The fourth
phase is the “over-provisioned” case, during which, one
of the ftp/TCP connection (TCP1) stops sending, and the
available bandwidth is shared among the rest five ftp/TCP
sources. Each individual phase lasts for 25 seconds. All
packet size is set to 1000 bytes. We use TCP-reno imple-
mentations and TCP’s receiver’s window is set to be large
enough to not be a constrain on its congestion window.
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Figure 2: Simulation Topology

The parameters for RED gateways and RIO gateways
are set comparably3. The bottleneck speed is 8Mbps. The
low threshold (minth) for RED gateway is the byte equiva-
lent of 5ms of queue delay, and the high threshold (maxth)
is the byte equivalent of 10ms of queuing delay4 and the
dropping probability Pmax is 0.1. The comparable pa-
rameters for RIO are (5, 10, 0.5) for OUT packets, and
(10, 20, 0.02) for IN packets. To save space, we use tables
to represent the time average throughput of three represen-
tative connections during different phases. Each setup is
run three times with a different random seed, and the data

3See Fang99 for a discussion on setting RIO parameters.
4In simulations, we translate this in terms of the number of packets

queued.

Table 2: Configurations of TCP connections
RTT (ms) Rt (Mbps)

TCP0 80 2
TCP1 80 2
TCP2 80 1
TCP3 30 1
TCP4 30 0.6
TCP5 30 0.6
CBR 80 2

presented in the tables are averages of the three runs. For
each scenario, we will show the throughput of 1) a long-
rtt ftp/TCP (with and w/o a target throughput of 2Mbps);
2) a short-rtt ftp/TCP (with and w/o a target throughput
of 0.6Mbps); 3) a CBR connection with sending rate at
2Mbps during phase 2. The constantc in TCP’s window
open-up algorithm is chosen to be 100, which is equivalent
of increase one packet each 100ms.

The total allocated throughput is 7.2Mbps, or 90% of the
bottleneck link. The details of simulation set up are listed
in Table 2.

4.2 The impact of Diff-Serv mechanisms at
routers and endhosts

We separate mechanisms into two groups: Diff-Serv mech-
anisms to be applied in the endhosts (combinations of all
mechanisms proposed in section 3) and Diff-Serv mecha-
nisms to be applied in the router (RIO algorithm and Tag-
ging schemes in Section 2). We consider four different
scenarios: 1) standard TCP-reno algorithm with RED gate-
ways; 2) Diff-Serv enhanced TCP with RED gateways; 3)
standard TCP with RIO gateways; and 4) Diff-Serv en-
hanced TCP with RIO gateways. Table 3 lists the results
from four different scenarios.

Scenario 1 is our basis for comparison, representing the
current “Best-effort” model of allocating resources. It il-
lustrates two well-known behaviors: 1) short-RTT TCP
connections have advantage over long-RTT connections
when sharing the same bottleneck (first body row vs. sec-
ond body row); 2) A non-congestion controlled source will
create detrimental effect to TCP connections (second body
column). In this case, the CBR source gets almost all its
packets through a RED gateway at the expenses of other
TCP connections’ throughput.
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Table 3: Comparison of Diff-Serv mechanisms applied to routers and endhost TCP;
Modified TCP = Standard TCP + WinAdj + Ssthresh + ECN

Start-Up phase Congested PhaseRecovery Phase Over-provision Phase

Standard TCP0 (80ms) 0.676768 0.491638 0.723149 0.832894
TCP+RED TCP3 (30ms) 1.622382 1.126404 1.585279 1.804911
(1) CBR 1.978168

Modified TCP0 (80msRt=2Mbps) 1.86133 1.31369 1.81553 2.30319
TCP+RED TCP3 (30msRt=1Mbps) 1.11268 0.84987 1.12360 1.42987
(2) CBR 1.92003

Standard TCP0 (80msRt=2Mbps) 1.43707 1.32511 1.40382 1.49129
TCP+RIO TCP3 (30msRt=1Mbps) 1.05836 0.90249 1.11443 1.37187
+Tagging (3) CBR 1.78891

Modified TCP0 (80msRt=2Mbps) 2.02678 1.89689 2.02658 2.36111
TC + RIO TCP3 (30msRt=1Mbps) 1.04109 0.91049 1.04853 1.33992
+Tagging (4) CBR 1.00350

Scenario 2 illustrates the effect of Diff-Serv mechanisms
incorporated into TCP. With configured knowledge of tar-
get throughputs, TCP could robustly recover to its target
rate after packet losses. The proposed window open-up
algorithm also corrects the bias against long-RTT connec-
tions. However, in the presence of a non-congestion con-
trolled source, all TCP sources will suffer as a result. RED
gateway is not capable in discriminating against a “out-of-
profile” source.

Scenario 3 shows the results of applying Diff-Serv
mechanisms in the routers only. Compared to scenario
2, RIO algorithm can discriminate against “out-of-profile”
source to limit the detrimental effect OUT packets have
on IN packets during congestion. In this case, the CBR
source is getting 89% of its packets through vs. 96% of its
packets through in scenario 2. (By configuration, the bot-
tleneck link has enough available bandwidth to accommo-
date 50% of the CBR packets.) The service differentiation
among TCP connections with varying RTTs is the biggest
during congestion (body column 2). When the network is
well provisioned, the service discrimination effect of RIO
is damped by the TCP’s window algorithm. Short-RTT
connections will obtain most of the available bandwidth in
the over provisioned situation. In other words, when free of
congestion, the innate TCP biases can override the targeted
bandwidth allocation created by the Diff-Serv mechanisms
in routers.

Scenario 4 illustrates the effects of Diff-Serv mecha-
nisms in both endhost TCP and routers. Compared to sce-
nario 2, the improvement lies in the congested phase, in
which, RIO algorithm is able to shield IN packets from the

interference of OUT packets. In this case, the CBR source
is able to get 50% of its packets through (body column 2),
which is roughly what the router can accommodate besides
all its pre-allocated resources. Compared to scenario 3, the
improvement lies in allocation of bandwidth according to
each connection’s profile regardless it RTT and the network
conditions. When network is congested, each TCP receives
close to their targeted throughput; when network is well-
provisioned, the allocation of extra available bandwidth is
fair among all TCP connections.

4.3 Impact of individual host mechanisms

In this section, we isolate the effect of each of the host
mechanisms proposed above. We start with scenario 3
of Table 3, which has standard TCP-reno implementa-
tions and Diff-Serv mechanisms applied to routers (tag-
ging and RIO algorithm), and add each proposed mech-
anism to TCP implementations. We connotate the above
proposed mechanisms with the following abbreviations:
WinOptfor changing the window open-up algorithm with
c ∗ rtt2; Ssthreshfor configuring TCP’sssthreshwith the
target throughput;ECN for incorporating differential ECN
mechanisms into TCP. Table 4 lists the four stages of the
progressive changes. The first stage corresponds to sce-
nario 3 in Table 3, and the last stage corresponds to sce-
nario 4 in Table 3.

The second stage shows a slight improvement over stage
1: the longrtt connections gain more bandwidth than
in stage 1 and the shortrtt connections perform slight
less. However, the CBR source actually getsmorepackets
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Table 4: Comparison of individual endhost mechanisms applied to TCP
Start-Up phase Congested PhaseRecovery Phase Over-provision Phase

Standard TCP TCP0 (80msRt=2Mbps) 1.43707 1.32511 1.40382 1.49129
+Tagging+RIO(3) TCP3 (30msRt=1Mbps) 1.05836 0.90249 1.11443 1.37187

CBR 1.78891

TCP+WinAdj TCP0 (80msRt=2Mbps) 1.45106 1.46056 1.43349 1.58436
+Tagging+RIO TCP3 (30msRt=1Mbps) 1.02033 0.87470 1.08831 1.34318

CBR 1.86580

TCP+WinAdj TCP0 (80msRt=2Mbps) 1.77864 1.49092 1.8005 2.21291
+Ssthresh TCP3 (30msRt=1Mbps) 1.06224 0.94253 1.10739 1.35984
+Tagging+RIO CBR 1.43665

TCP+WinAdj TCP0 (80msRt=2Mbps) 2.02678 1.89689 2.02658 2.36111
+Ssthresh+ECN TCP3 (30msRt=1Mbps) 1.04109 0.91049 1.04853 1.33992
+Tagging+RIO(4) CBR 1.00350

through the gateway than stage 1. This is due to the follow-
ing subtle reason. We configure all TCP connections with a
new window open-up algorithm using a constantc of 100,
which is equivalent to the window open-up rate of 1 packet
each 100ms during the “linear increase” phase. This rate
is slowerthan the respective window open-up rates of TCP
connections in stage 1. In other words, the new window
open-up algorithm makes all TCP connectionsfair but all
lessaggressive relative to their counterparts in stage 1. As a
result, the CBR connection gains more bandwidth through
the gateway. This is similar to the problem discussed in de-
ploying such fairness mechanisms in a heterogeneous en-
vironment [11]. We will come back to this point in the
deployment section (Section 6.2).

The third stage shows improved throughputs for TCP
connections during all phases. When a packet drop occurs,
the standard TCP congestion control algorithm reduces its
window by one half. If two connections have the samertts,
but one with a higher target rate, it would take the high
target-rate connection a longer time to recover to its pre-
vious sending rate because thessthreshhas been reduced,
and it would take many RTTs to open it up. The second
mechanism we proposed remedies this bias. After a packet
drop, thessthreshis still set to be the byte equivalent of tar-
get rate, so TCP can quickly recover through “Slow-start”
phase, and throttle back to the target operating point.

The fourth stage shows significant improvement over the
third stage in terms of meeting each connection’s service
profile. This is because TCP benefits from two particular
effects: 1) when ECN mechanism is used, TCP reacts to
an ECN at most once per round trip time; 2) the configured
ssthreshkeeps TCP operating close to the targeted point.

4.4 Robust recovery from packet losses

In this section, we “zoom in” on the details of TCP’s win-
dow behaviors before and after incorporating Diff-Serv
mechanism. We illustrate the effects in Figure 3. The left
graph shows TCP0’scwndandssthreshthroughout the en-
tire 100 seconds of simulation (stage 1 setup in Table 4, in
which TCP uses standard Reno algorithm). The right graph
show TCP0’scwndandssthreshthroughout time (stage 4
setup in Table 4, in which TCP incorporates all three Diff-
Serv mechanisms). The most pronounced and visible dif-
ference lies in howssthreshis adjusted in the two graphs:
in the left graph,ssthreshadjustment is according to the
perceived network conditions and can be drastic and unpre-
dictable. For example, from time 25 to 50 seconds, when
there is a CBR source keeping the networks in a congested
state, the TCP sources usually detects this and operates in
a much reduced operating point. There are several cases
ssthreshis adjusted multiple times, each for a packet drop
within the same window. (Not visible given the granularity
of the graph.) From time 80 second and onwards, the net-
work is in a “over-provisioned” state, and the rate adjust-
ments (packet drops) are infrequent and thessthreshare
high. In contrast, in the right graph, thessthreshare set
by the targeted throughput, so after a packet drop, TCP’s
cwndis reduced but not thessthresh. (Thessthreshis ad-
justed if the estimated RTT changes, because thessthreshis
set to be byte equivalent of target-rate delay product. This
is shown in the graph as a few discreet values ofssthresh:
40, 45 and 50 packets, etc.) By keeping thessthreshnear
its target operating point, TCP can quickly recover from its
packet losses and not being affected by worsened network
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Figure 3: TCP window algorithm before and after incorporating Diff-Serv mechanism

conditions caused by non-congest control sources.
Another difference between the two graphs lies in the

rate at which TCP adjusts its window, or the slope of each
discrete segment of TCP window adjustments. It is not
visible given the granularity at which we present the two
graphs. (or Shall we present a finer granularity graph?) But
during the “congestion control” phase of window increase,
the enhanced TCP using a constantc of 100 is opening up
its window slower than its counterpart before incorporat-
ing the Diff-Serv mechanisms. The right graph appears to
have a fast rate of increase because most of the time, it op-
erates in the “Slow Start” phase after a packet drop because
ssthreshis greater thancwnd. (This is also a sign that TCP
is not meeting its targeted throughput.) On the other hand,
in the left graph, TCP operates in “congestion avoidance”
phase after a packet drop becausessthreshandcwndare
both readjusted.

5 Discussions

5.1 Choice of c in fair window open-up algo-
rithms

Another way of viewing the change in TCP’s linear win-
dow open-up algorithm is the following: in stead of open
up TCP’s congestion window by one packet each round
trip time, the proposed mechanism opens upcwndby one

packet for each standard unit ofrtt. If all TCP implemen-
tations adopt such algorithm, then they will all increase
their window at the same rate regardless of theirrtt. Thus,
the choice ofc, which determines the value of such stan-
dard unit ofrtt is a crucial one. For example, ifc is chosen
to be 100, then, the standard unit ofrtt is implicitly set
to be 100ms (100 ∗ (0.1)2 = 1pkt). In other words, all
TCP implementing the above proposed mechanism will be
opening up their congestion windows at the same rate as
a current TCP implementation with anrtt of 100ms. Es-
sentially, this algorithm make those TCP connections with
rtt less than 100ms less aggressive than the current imple-
mentations, and those withrtt greater than 100ms more
aggressive than the current implementations.

There are two potential problems arise from this. First
one, how to choose a value that can be universally agreed
upon. The technical merits of the proposed mechanism
have been argued for, but the ultimate choice lies in the
policies by which the choice ofc makes sense. One prob-
lem of choosing a relatively smallc (less than 100ms, for
example) is that for long rtt connections, the new algorithm
will result in an effective rate increase even greater than
that during the “Slow-start” phase. For example, if a 1sec
TCP connection uses the proposed algorithm, it means to
open up its window at the rate of one packet each 100ms,
which is 10 packets eachrtt. Depending on the current
number of packets outstanding, this rate can be greater
than that during the “Slow-start” phase. The problem with
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Table 5: Choice ofc in TCP fair window algo.
rtt range ConstantC Equivalentrtt

(0, 50ms) 1024 31.2ms
(50,100ms) 256 62.5ms
(100,200ms) 64 125ms
(200ms,∞) 4 500ms

choosing a relatively largec is that this makes TCP window
increase algorithm very slow and if this algorithm is uni-
versally adopted, it might result in low utilization of link
bandwidth immediately after a congestion epoch.

One possible solution is to define a set of inclusivertt
ranges, and within which, modified TCP connections will
open up their window at the same rate, but each range has
a different window open rate. A reasonable heuristic is that
the longerrtt, the slower the window increase rate is be-
cause the longer the connection, the more resources (buffer
space, or packets in the pipe) it would take. Such ranges
of rtts can be easily specified in the service profiles as the
ISP will set a lower expected throughput for longer con-
nections. The range ofrtts can be chosen to reflect actual
market concerns. For example, we could define four ranges
of RTTs, inclusive. (0, 50ms) for LANs and WAN range of
connections; (50ms, 100ms) for intra-continental connec-
tions; (100ms, 200ms) for inter-continental connections;
and (200ms,∞) for non-tether connections. Of course,
such policies have to be universally agreed upon and stan-
dardized. Those ranges define the particular algorithm and
the corresponding values forc.

Another problem with the choice ofc lies in incremental
deployment of such algorithm. When TCPs with different
implementations operate in a heterogeneous environment,
TCPs observing the fair algorithms might be at a disadvan-
tage. Fortunately, Diff-Serv mechanisms offer a solution
for migrating TCPs to the fair algorithms. See section 6.2
for a detailed discussion on this.

5.2 Limitations of RIO in shielding IN pack-
ets from OUT packets

Despite the fact that RIO algorithm can be configured
to create strong discrimination against OUT packets, the
power of RIO gateway is reduced when it operates in
phases 3 and 4, during which, arriving IN packets see long
instantaneous queues and are subjected to a probability of
dropping. In the above simulations, when the CBR source
is sending, the RIO gateway is operating in the “congestion
sensitive” phase (phase 2), in which only OUT packets are

dropped and no IN packets are dropped. One could easily
conceive a situation in which a RIO gateway is kept con-
gested with arriving OUT packets and will have to affect
the IN packets as well. This suggests that an admission
control at an aggregated level is needed. The aggregate of
all services profiles determine the amount of IN packets a
gateway should expect, in addition, the traffic conditioners
should control the amount of OUT packets admitted into
the network.

5.3 Interactions with Tagging Algorithms

Our early work proposed specific tagging algorithms for
entities using TCP as transport layer protocol, and used a
probabilistic function to reduce the likelihood of multiple
packets being tagged and dropped within a TCP window.
We find through our simulations that when TCP itself is
incorporated Diff-Serv mechanisms, the end-to-end perfor-
mance relies less on the intricacies and accuracies of tag-
ging algorithms. TCP would perform well without using
a probabilistic tagging function. This switches the role of
tagging schemes in edge routers from tagging a TCP con-
nection accurately to managing a number of connections
sharing a common service profile. This is the topic of our
future research.

6 Deployment issues

6.1 Backward compatibility

Among the above three proposed mechanisms, the first and
second mechanisms require only TCP sender to change its
window adjustment algorithm, and does not require TCP
receiver’s cooperation.

The second mechanism requires a signaling protocol for
communications between transport-layer at the end host
and the edge router, or policy servers, which keeps the in-
formation about service profiles. This information is used
to configure TCP with its initialssthreshvalue and the
ssthreshvalue after each packet drop.

The third mechanism requires TCP to be aware of the
IN/OUT bit (or TOS field) of the IP header. This mecha-
nism can be deployed the same time as ECN fields. The
mechanism works as follows: a TCP sender always sends
out packets with IN/OUT bit as “OFF”. A packet goes
through a traffic conditioner, which in turn will tag the
packet’s TOS field as either “ON” or “OFF”. A RIO and
ECN capable gateway will mark packets differentially, and
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turn on ECN field for those packets if necessary. The trans-
port layer at the receiver side has to copy both the ECN
field and the TOS field of the IP header in the due acknowl-
edgment packet. The sending TCP will react to a packet
with both ECN and TOS bits (an IN packet) set differently
from that with only ECN bit set (an OUT packet). The
behaviors of TCP sender, receiver and RIO gateways are
summarized in Table 7.

6.2 Deployment in a heterogeneous environ-
ment

Among the mechanisms we proposed, the first mechanism
has been studied in a context of improving fairness for TCP
connections with varyingrtts [11]. One important prob-
lem pointed out by [11] lies not in the algorithm itself, but
its interaction with the standard TCP algorithm when both
exist simultaneously in a heterogeneous network environ-
ment. As discussed before, the fair algorithm make all TCP
connections open up their windows at the same rate. With
a chosen constantc corresponding to some standard unit
of rtt, this algorithms makes any TCP connections with
rtt shorter than the standardrtt less aggressivethan their
current implementation, and any TCP connections withrtt
longer than the standardrtt more aggressivethan their cur-
rent implementations. As a result, if two TCP implementa-
tions co-exist in a heterogeneous network environment and
theirrtts are both shorter than the standard unit ofrtt, the
connection with current implementation will be more ag-
gressive than the connection with the fair algorithm imple-
mentation. Thus, this takes away any incentives for people
to deploy the fair algorithm. (Of course, connections with
rtt longer than the standard unitrtt will be more aggres-
sive than their current implementation, and there would be
incentives for people to deploy such algorithm).

The first half of the Table 6 illustrates this case. We in-
cludes another 30ms TCP connection (TCP5) in presenta-
tion. Scenario 1 is the case when all TCPs use the standard
algorithm and RED is used by routers as the queuing dis-
cipline. The two 30ms TCP connections have clear advan-
tage over the 80ms TCP connection, as expected from the
current TCP window algorithm. Scenario 2 illustrates the
case when TCP0 and TCP3 have upgraded to use the new
and fair window algorithm whereas TCP5 has remained the
same. The constantc is chosen to be 100, which makes
both TCP0 and TCP3 less aggressive than their counter-
parts in scenario 1. We see TCP0 and TCP3 achieve com-
parable results whereas TCP5 has gained advantage over
both. (TCP0 performs slightly better than its counterpart

in scenario 1 but TCP3 performs much worse.)
This confirms that the fairness argument for changing

TCP window open-up algorithm is anecessarybut notsuf-
ficientcondition. Fortunately, we find that Diff-Serv mech-
anisms in routers can be used to assist in such migration.
We find that when Diff-Serv router mechanisms are de-
ployed first and TCPs incorporate all three proposed mech-
anisms, the allocation of bandwidth is according their re-
spective service profiles (for those TCP which has a service
profile), and there is no clear advantage for standard TCP
over enhanced TCP. Scenarios 3 and 4 in Table 6 illustrate
this. In scenario 3, all TCPs have upgraded to incorpo-
rate the Diff-Serv mechanisms, and the allocation of re-
sources is according to their respective service profiles re-
gardless the state of the network. When the network is over
provisioned, the available bandwidth is equally distributed
among all connections. (When TCP1 stops sending during
the last phase, there is 2Mbps “extra” bandwidth shared
among five remaining connections.) In scenario 4, TCP4
(not shown) and TCP5 both use the standard TCP window
open-up algorithm. The results show that there is no clear
advantage of current TCP algorithm over the fair TCP al-
gorithm in the Diff-Serv environment. This preserves the
incentives for customers to update their TCP algorithms to
incorporate the fair algorithm.

7 Conclusions

The rate adjustment scheme in the current Internet re-
lies on congestion control mechanisms in both transport-
layer TCP and congestion signals in gateways. When the
premise of resource allocation has changed from “best-
effort” model in the current Internet to a “defined-service”
model in Diff-Serv architecture, the underlying mecha-
nisms have to be changed to support it as well.

Our early work focused on the mechanisms to be de-
ployed in gateways to provide differentiations among TCP
connections. A logical extension of that is to devise mech-
anisms to be deployed in transport-layer TCP to support
the change in premise. This is the focus of our paper.
Without introducing any new state variables to the exist-
ing TCP machinery, we propose three simple mechanisms
to make TCP operate significantly better in a Diff-Serv
domain. Those mechanisms preserve the “multiplicative
decrease and linear increase” principle of TCP congestion
control algorithm and can be applied to similar congestion
control algorithms preserving the same principle.

We use simulations to qualitatively verifying the ideas,
and discuss incremental deployment of those mechanisms.
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Table 6: Heterogeneous Deployment of TCP mechanisms
Start-Up phase Congested PhaseRecovery Phase Over-provision Phase

Standard TCP0 (80ms) 0.676768 0.491638 0.723149 0.832894
TCP+RED TCP3 (30ms) 1.622382 1.126404 1.585279 1.804911

TCP5 (30ms) 1.541346 1.122553 1.610749 1.850088
(1) CBR 1.978168

Mixed TCP TCP0 (80ms, new) 0.851694 0.499243 0.898498 0.90222
algorithms TCP3 (30ms, new) 0.950140 0.584215 0.792326 1.3719
+RED TCP5 (30ms, old) 1.893473 1.462454 1.845942 2.018788
(2) CBR 1.986283

Uniform TCP TCP0 (80msRt=2Mbps) 2.02678 1.89689 2.02658 2.36111
algorithms TCP3 (30msRt=1Mbps) 1.04109 0.91049 1.04853 1.33992
+Tagging TCP5 (30msRt=0.6Mbps) 0.659625 0.533941 0.629245 0.969653
+RIO(3) CBR 1.00350

Mixed TCP TCP0 (80msRt=2Mbps) 1.984425 1.917876 1.991106 2.18545
algorithms TCP3 (30msRt=1Mbps) 0.993548 0.924187 0.991756 1.182006
+ Tagging TCP5 (30ms,Rt=0.6Mbps,old) 0.602984 0.424578 0.591179 0.940206
+RIO (4) CBR 1.151985

A relevant and important issue is how an ISP can con-
figure and provision its network, given this set of mecha-
nisms. Future work also includes implementations of those
schemes in a testbed environment.

Appendix I: Summary of the proposed
mechanisms to TCP

• 1. Change TCP’s linear window increase algorithm to
bec ∗ rtt2 per round trip time, to correct bias against
long-rtt connections during the “congestion control”
phase. The value ofc is determined by the range of
estimatedrtt.

• 2. Initialize ssthreshto be byte equivalent of tar-
get throughput of TCP. Resetssthreshto be the same
value when a congestion signal is received. Set con-
gestion windowcwnduse the standard “Fast Retrans-
mit and Fast Recovery” algorithm.

• 3. If TCP is ECN-capable, TCP’s window reduction
algorithm will differ depending whether the packet
marked with ECN bit is an IN packet or an OUT
packet. An IN packet with ECN bit marked indicates
a more severe congestion and TCP should retract its
cwnd to one; an OUT packet with ECN bit marked
indicates a less severe congestion and TCP needs to

retract itscwndusing standard “Fast Retransmit and
Fast Reccovery” algorithm.
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