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Abstract 
This paper presents a dynamic mixed discrete-continuous choice approach to modeling pedes-
trian travel and activity choice behavior in public facilities. The approach views revealed behav-
ior as a manifestation of pedestrians’ preferences by assuming that pedestrians choose the alter-
native that maximizes expected (subjective) utility, while taking into account the uncertainty in 
expected traffic conditions. The choice dimensions are trajectories between origin and subse-
quent destinations, areas where activities are performed (multiple vs. fixed destination), execu-
tion of discretionary activities, and finally activities completion times and order. 
The disutility of a trajectory determines the trajectory choice of the traveler. Destination area 
choice is included in the modeling by determining time-dependent and destination-specific arri-
val cost. Furthermore, penalties for not executing a planned activity are introduced into the 
modeling framework. The resulting modeling approach has a clear analogy with stochastic con-
trol theory and dynamic programming in continuous time and space. 

The main innovations presented here is the relaxation of the assumption that routes are discrete 
sets of travel links. The approach relaxes the need to build a discrete network, while routes (tra-
jectories) are continuous functions in time and space. At the same time, destination choice is in-
cluded in the modeling framework. 

Keywords 
Route choice, activity scheduling, pedestrians, International Conference on Travel Behavior Re-
search, IATBR 

Preferred citation 
S.P. Hoogendoorn (2003) Pedestrian Travel Behavior Modeling, paper presented at the 10th In-
ternational Conference on Travel Behavior Research, Lucerne, August 2003. 

 



10th International Conference on Travel Behaviour Research 
______________________________________________________________________________ August 10-15, 2003 

2 

Frequently used symbols 

2IRΩ ⊂  : Walking area in two-dimensional space 

Op ⊂ Ω : Origin area p 

Aij ⊂ Ω : Activity area j for activity I 
t0 : Departure time of traveler 
t1 : Fixed end time of traveler’s planning period 
Bm ⊂ Ω : Obstacle m 

Σ : Non-ordered set of activities i the traveler aims to perform 

Ξ : Set of feasible activity schedules, respecting compulsory activities and 
ordering constraints 

S ∈ Ξ : Activity schedule, i.e. ordered set of activities traveler aims to perform 

Ιj : Service set (set of activities that can be performed at activity area j) 

ϑi  :  Activity area set (set of activity areas where activity i can be performed) 

0[ , )t Tx  : Planned / expected continuous trajectory of traveler from x(t0) to x(T) 

0[ , )t Tξ  : Realized continuous trajectory of traveler from ξ(t0) to ξ(T) 

0[ , )t Tv  : Planned / expected continuous velocity trajectory of traveler  

ϒ  : Set of feasible velocity trajectories 
Ti : Expected completion time of activity I 
Τ : Set of feasible activity completion times 
C : Expected costs of choice for specific schedule S, velocity trajectory 

0[ , )t Tv , 

and activity complete times {Ti} 
Ji : Expected costs of sub trajectory (including cost of waiting and perform-

ing activity) between activity i-1 and I 
L : Running costs (cost along trajectory) 
φi : Terminal costs (cost / utility of performing activity) 

σ : Standard deviation, reflecting the level-of-uncertainty (probability that 
trajectory will be realized) 

Wi(t,x) : Minimal expected costs of traveling towards and performing activity i, 
starting from instant t at location x(t) = x 

( , )t xΓ  : Admissible velocities at instant t and location x 
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1. Introduction 

Planning and design of walking facilities, such as multi-modal transfer points, airports, and 
shopping malls are generally aimed at enabling efficient, comfortable and safe walking opera-
tions. This holds equally for timetable design for public transport services, or the planning of 
flight schedules for transferring airline travelers serving such transport interchanges. To this 
end, tools supporting architects, planners, and designers alike are needed.  

The differences between pedestrians and other modes of travel are numerous, and thus require 
development of dedicated theories and modeling tools for travel behavior in walking facilities. 
For instance, traveler flows in vehicle-based transportation systems are generally restricted to 
one-dimensional flows with a discrete number of decision points (nodes), travelers can only 
choose between a finite number of routes, justifying the application of network-based ap-
proaches. On the contrary, pedestrian’s freedom of movement in public spaces provides an in-
finite number of route alternatives through the facility. Consequently, network-based ap-
proaches are generally less applicable to pedestrian route choice modeling. 

Pedestrians generally have opportunities to perform discretionary activities (buying a news-
paper or a cup of coffee), and have more choice alternatives regarding the location, the time, 
and the order of compulsory activities (buying a train ticket, checking in luggage, etc.). As a 
result, activity-based approaches are preferred. Traditional theories and models of activity 
planning and travel choice are only applicable to discrete networks, are thus not appropriate to 
general pedestrian modeling.  

1.1 Pedestrian route choice modeling 

Several pedestrian modeling approaches have been proposed and tested (Helbing,1997). 
Gipps (1986), and Hamacher and Tjandra (2001) describe pedestrian route choice through the 
walking facility by determining a finite number of routes through the walking infrastructure 
and applying basic discrete choice modeling. Their models are choice-based: the main theo-
retical assumption is that pedestrians make a subjective rational choice between alternatives. 
The number of choice options is assumed finite. Verlander (1997) estimates discrete route 
choice models using household-based diary data.  

Notwithstanding the practicality of assuming only a limited number of route alternatives, in 
real life pedestrians can choose between an infinite (and in fact, non-countable) number of 
paths in the given space. Hughes (2002) accounts for this aspect, by describing the optimal 
walking direction to the destination (in terms of travel time) as a function of the current loca-
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tion x of the pedestrian by using potential functions. The approach prohibits including general 
path attributes, such as traveled distance or stimulation of the environment, as well as uncer-
tainty in the traffic conditions expected by the travelers. Beckmann and Puu (1985), and Puu 
and Beckmann (1999) have described continuous space modeling (only static case is consid-
ered); Yang et al. (1994) and Yang and Wong (2000) extended and applied the continuous 
space equilibrium approach for traffic assignment and determination of market areas of com-
petitive facilities.  

1.2 Activity scheduling approaches 

Activity-based approaches are more and more used as a basis for travel demand analysis. In 
general, these approaches aim at generating travel patterns of individual travelers and house-
holds. The main unit of analysis in these approaches is thus an activity schedule and the asso-
ciated trip chain; correctly modeling both choice processes is key to the success of activity-
based modeling. 

Roughly speaking, three major modeling streams can be identified (Arentze and Timmer-
mans,2000): choice-based model approaches, constraints-based models, and computational 
process models. In this contribution, the focus will be on the choice-based approaches, in 
which observed behavior is typically viewed as a manifestation of people’s preferences, and 
individuals are assumed to choose the alternative that maximizes their utility.  

Abdelghany and Mahmassani (2003) present an activity-based approach to micro assignment 
for motorized traffic, where drivers simultaneously determine their departure time, route, and 
sequence of their intermediate activities to minimize their perceived travel cost. Here, trip 
chain patterns are defined by the respective locations of activity areas in the chain, arrival 
times and these activity areas, and the activity duration at the intermediate destinations.  

1.3 Approach overview 

This contribution presents a choice-based model, conceptually similar to the model of Abdel-
ghany and Mahmassani (2003). In the approach, travelers simultaneously choose their trajec-
tory, the areas where activities are performed, whether discretionary activities will be per-
formed, and finally the order and instants (departure times for leaving activity area) at which 
these activities are executed.  

The paper generalizes the utility optimization model in line with the potential function ap-
proach of Hughes (2002). Pedestrians are assumed to optimize their decisions given con-
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straints from his or her activity agenda and risks involved in their decisions, while taking into 
account the uncertainty in the expected traffic conditions. This uncertainty reflects to among 
other things lack of experience, observability and randomness of future conditions, and thus 
pertains to non-deterministic route characteristics. For discrete networks, only a few exam-
ples of these so-called risk models have been proposed. An example is the work of Mirchan-
dani and Soroush (1987); also see Bovy and Stern (1990).  

In the considered approach, a route – or rather a trajectory – is defined by a continuous func-
tion in time and space. The trajectory determines the route through the walking facility, de-
fined by the projection of the trajectory on the xy-plane, the departure and arrival times of the 
pedestrians, and the walking time spend to traverse a certain distance. The trajectory choice is 
determined by a number of factors, such as the following: 

1. Temporal and spatial constraints of both compulsory and discretionary activities (depar-
ture of a train or an airplane, location of ticket offices). 

2. Presence of physical obstructions and special pedestrian infrastructure (stairs, escalators). 

3. Physical limitations, and preferences of the traveler; trip-purpose. 

Destination area choice is included in the modeling by determining time-dependent and desti-
nation-specific arrival cost. Furthermore, penalties for not executing a planned activity are in-
troduced into the modeling framework. These penalties describe the disutility of not perform-
ing an activity in time, and may be relatively moderate (in case of discretionary activities) or 
very high (in case of compulsory activities).  

1.4 Limitations 

The contribution mainly considers dynamic activity scheduling and trajectory choice in two-
dimensional space. We assume that pedestrians will schedule their activities from prior activ-
ity sets; determination of the latter is not discussed here. Moreover, pedestrian walking behav-
ior is also out of the scope of this paper (cf. (Hoogendoorn and Bovy,2002)).  

2. Notation and definitions 

Figure 1 shows an overview of the most important concepts described in this paper. In the 
remainder of this section, these concepts will be introduced.  
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2.1 Description of infrastructure 

Infrastructure is described by an area 2IRΩ ⊂  in which the travelers move. The travelers en-
ter the infrastructure at the origin areas Op ⊂ Ω, and perform activities at activity areas 
Aij ⊂ Ω. Both the origin and activity areas are described by closed sets. We assume that the 
time t0 the traveler enters the facility is fixed.  

Obstacles Bm ⊂ Ω reflect physical obstructions, around which travelers will have to move 
while travelling. Figure 1(b) shows an origin area O1, some activity areas Aij, and several ob-
stacles (ticket machines B1 and B3, and vendor B2). 

Besides obstacles, ‘special’ walking infrastructure needs to be considered. These among other 
things consist of stairs, escalators, ramps, etc. In general, walking infrastructure is also de-
scribed by areas for which special travelling conditions hold. These conditions may either re-
flect restricted walking directions, increased or decreased walking speeds, etc. 
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Figure 1  Hypothetical station layout (b) and three trajectory choice alternatives (a). 
Alternative 1 includes activities 1 (buying ticket), 2 (buying newspaper) and 3 
(boarding train at platform) and takes the longest time to complete, leaving 
least time for boarding. Alternatives 2 and 3 include only the mandatory 
activities 1 and 3, but activity 1 may be performed at different locations. 
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2.2 Activity sets and schedules 

An activity set Σ is a non-ordered set of activities i an individual aims to perform. These ac-
tivities can either be compulsory or discretionary, yielding 1) the set of compulsory activities 
Σ0, that need to be performed before the end of the planning period, and 2) the discretionary 
activity set Σ1 of activities that need not be performed, but will in general give some benefit to 
the traveler. Furthermore, some activities can only be performed in a certain order (e.g. “get 
money from ATM”, “buy newspaper at newspaper stand”).  

An activity schedule S is an ordered set of activities from the activity set Σ; a feasible activity 
schedule is an activity schedule that 1) contains all activities in the compulsory activity set 
and 2) respects aforementioned ordering constraints. The set of feasible activity schedules is 
described by Ξ. 

2.3 Activity areas 

Activities i can be performed at designated activity areas j. These activity areas are described 
by regions Aij ⊂ Ω in the facility at which specific activities may be performed (see Figure 1 
for some examples). Each area j can offer one or more services to the travelers, enabling the 
traveler to perform (type of) activity i. For each area j we can thus determine a set of activities 
Ιj = {i}, referred to as the service set of activity area j. At the same time, some activities may 
be performed at multiple activity areas. This is reflected by the activity area set ϑi = {j}, de-
scribing all activity areas j at which activity i can be performed.  

Figure 2 shows an example of an activity schedule of a traveler, consisting of a number of ac-
tivities that can be performed at multiple activity areas. In illustration: the activity “buying a 
regional trainticket” can be performed at a ticket machine and at a ticket office, together con-
stituting the activity area set. At a ticket office, a traveler can perform other activities. More 
specifically, the service set of a ticket office consists of the activities “buying a regional train-
ticket”, “buying an international trainticket”, and “buying a bus ticket”. 

In general, performing activities will take time, depending on the service time. Service times 
(e.g. boarding time, time needed to buy a ticket) are dependent on the type of activity area. 
Furthermore, in over saturated conditions, waiting time may be incurred. 
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Figure 2  Example of activity schedule, activities and activity areas. 
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buying an international  
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trainticket

boarding train

Activity schedule

boarding traintrain platform
 

2.4 Trajectories, velocities along trajectories, and paths 

An admissible trajectory is any possible movement through continuous time and space, 
mathematically defined by a parameterized curve 

 { }
0[ , ) 0( ) | , ( )t T mx x s t s T x s B= ∈Ω ≤ ≤ ∉  (1) 

where t0 denotes the fixed departure time and T denotes the free terminal time. The admissible 
trajectory does not necessarily comply with the location constraints that are put of the trajec-
tory given an activity schedule S.  

Feasible trajectories respect the location constraints inferred by the (feasible) activity sched-
ule S (a formal definition is given in section 2.5). Figure 1(a) and (b) depict an example of a 
feasible trajectory for schedule S = {1,2,3}, by showing two different projections. 

A physical requirement is that a trajectory is a differentiable function of t. In other words, the 
derivative of x to t exists and is finite. Note that a trajectory is not necessarily loop-less: under 
specific circumstances, a traveler may decide to come back to a location visited at an earlier 
time. Consider for instance a traveler waiting for a while at a certain location that provides 
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certain benefits, such as comfort, etc. If the traveler can wait there, while still reaching his / 
her destination in time, loops in the trajectory are possible.  

Rather than the trajectories, the velocities 
0[ , )t Tv  along the trajectories 

0[ , )t Tx  will be used as the 

main decision variable of the travelers, for mathematical convenience mostly. These velocity 
trajectories are defined by 

 { }
0[ , ) 0( ) ( , ( )) |t Tv v s s x s t s T= ∈ Γ ≤ <  (2) 

where Γ(t,x(t)) denotes the set of admissible velocities at instant t and location x(t). The set of 
admissible velocities describes the constraints both caused by the infrastructure (travelers 
cannot walk into an obstacle Bm, or in the direction opposite in the moving direction of an es-
calator), and by the flow conditions (traveler speeds are less or equal to a density-dependent 
speed limit). Clearly, the trajectory 

0[ , )t Tx  is determined uniquely by the velocity trajectory 

0[ , )t Tv  (and vice versa). In section 3.2 a further distinction is made between planned and real-

ized trajectories and velocity trajectories. 

2.5 Activity completion times and locations; feasible trajectories 

Activities are performed along the trajectory 
0[ , )t Tx . Given a feasible activity schedule S ∈ Ξ, 

the activity completion times Ti are defined by the expected instant at which activity i will be 
completed; the difference Ti – Ti−1 equals the sum of the expected walking time and the ex-
pected time needed to perform activity i. Since activity i can only be performed at an activity 
area in the activity area set ϑi, a feasible trajectory 

0[ , )t Tx  must satisfy: 

 ( )  such that  i i ijj x T A∃ ∈ϑ ∈  (3) 

for all i in the activity schedule, subject to 0 1 2 ... nt T T T T< < < < =  (see Figure 1(a) for exam-

ples). This implies that revealed activity area choices can be described by the feasible trajec-
tory 

0[ , )t Tx  and the activity completion times {Ti}. Formally, a feasible trajectory 
0[ , )t Tx  is thus 

defined for a feasible activity schedule S ∈ Ξ using the following constraints: 1) the trajectory 
is physically admissible and 2) we can find a set of completion times Ti, such that expression 
(3) holds. In the remainder of the paper, the set of feasible trajectories is denoted by ϑ; ϒ de-
notes the set of feasible velocity paths. Both sets are defined for a specific activity schedule 
S ∈ Ξ. The set of feasible activity completion times Τ is defined by the set of all feasible ac-
tivity times {T1,…,Tn}, given the pair 

0[ , ){ , }t TS v ∈ Ξ× ϒ . 
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Let us finally note that the activity completion times Ti partition the trajectory into a number 
of sub trajectories 

1[ , )i iT Tx
−

, describing the trajectory from activity i-1 to activity i (see Figure 

1(a) for an example). 

3. Activity-based choice theory 

The approach asserts that pedestrians choose the alternative that maximizes expected (subjec-
tive) utility, within the constraints of time, money, public transit schedules, etc. It is well 
known that normative choice theory will not fully cover real-life human choice behavior. It 
does however provide a very convenient and flexible framework for modeling human deci-
sion-making. Several empirical studies have shown the applicability of utility-based ap-
proaches to pedestrian route choice (Hill,1982), (Bovy and Stern,1990). Hence, its use in pe-
destrian behavior theory is considered.  

3.1 Choice dimensions  

It was stated that travelers need to make a decision regarding which activities are performed 
and in which order, where and when to perform these activities (activity area choice), and 
how to get from one activity area to the next (trajectory choice). Note that the location of ac-
tivity performance is determined uniquely by the instant at which the activity is performed, 
and the total trajectory of the traveler through the walking facility (the inverse is not necessar-
ily true!). This is why the activity area choice is not included explicitly in the decision vari-
ables. 

The considered choice dimensions thus pertain to the following aspects (choice of activity ar-
eas stem from combining aspects 2 and 3): 

1. Choice of the activity schedule S = {i} from the set of feasible activity schedules Ξ; recall 
that S describes which activities i ∈ Σ are performed and in which order.  

2. Choice of the velocity trajectory 
0[ , )t Tv  from the set of feasible velocity trajectories (or the 

trajectory 
0[ , )t Tx  through the facility). 

3. Choice of the activity completion instants Ti from the set of feasible activity completion 
times Τ at which activities i ∈ S are performed, such that constraint (3) is satisfied. 
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Figure 3 depicts an overview of these choice variables and their interrelations for a single 
traveler.  In the figure, we consider an individual arriving at instant t0 at location x0 in the 

walking facility 2IRΩ ⊂ , while aiming to perform activities from the subjective activity 
choice set Σ. This set consists of possible activities to perform in the facility, e.g. “buy a 
newspaper”, “buy a train ticket”, “wait at the train platform”, or “access the train”. The activi-
ties are generic, and reflect the purposes of the individual in the facility. 

The choice process is influenced by both external and internal factors. External factors typi-
cally reflect influences of the infrastructure, traffic (both pedestrians and other), weather and 
ambient conditions, etc. Internal or personal factors reflect the characteristics of the pedestri-
ans, such as gender, age, time-pressure and purpose of overall trip (commuting, shopping, 
etc.), attitudes, etc. 

Figure 3   Route choice process for individual traveler moving though walking facility. 

Route / destination 
choice

Scheduling

Activity time choice

Strategic level decisions

{ }0 0 1, , ,t x t Σ

{ }S i=

( )v ⋅

{ }i i S
T

∈

{ }* * *, ( ), iS x T⋅

Topology walking 
area
Environmental 
conditions

Timetable

Exogeneous 
factors

Trip purpose
Age, gender, 
attitude

Personal
factors

Expected traffic 
conditions

 

3.2 Modeling uncertainty 

The proposed theory entails that a pedestrian chooses the expected cost-minimizing triple 

{schedule, velocity path, activity completion times} = { }0[ , ), ,{ }t T i i SS v T ∈  from the set of feasi-

ble triples. Uncertainty may however also affect the traveler’s decisions.  

It is assumed that travelers predict the expected outcomes of chosen options. In doing so, a 
pedestrian is aware of the risk that the sub trajectories 

1[ , )i iT T−
ξ  that are actually realized may 
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be different from the planned sub trajectory 
1[ , )i iT Tx

−
, i.e. pedestrians use a mental prediction 

model to estimate the probability that a certain sub trajectory 
1[ , )i iT T−

ξ  will occur, given the 

planned sub trajectory 
1[ , )i iT Tx

−
. These probabilities are used to determine expected route costs.  

This concept can be formalized by the following stochastic differential equation: 

 1,  for id dx dw vdt dw s T −ξ = + σ = + σ ≥  (4) 

Eqn. (4) states that if a traveler has arrived at ( )tξ  at instant t, and intends to apply the veloc-

ity v(t), the location ( )t dtξ +  of the pedestrian at t + dt cannot be precisely predicted, and will 

be affected by random term. The white noise w reflects this uncertainty in the expected traffic 
conditions and the resulting effects on the traveler’s kinematics. The uncertainty reflects 
among other things lack of experience, observability and randomness of future conditions.  

3.3 Expected subjective cost minimization 

It is hypothesized that pedestrians act rationally, and choose the schedule, velocity trajectory, 
and activity completion times that will minimize the subjective expected costs C. These costs 
include costs of applying a velocity trajectory, performing an activity at a certain location and 
time, and performing the activities in a certain order. Without loss of generality, we can ex-
press the choice variables discussed in the previous sections: 

 ( )0[ , ) 0 0, ,{ } | ,t T i i SC C S v T t x∈=  (5) 

Subjective utility optimization yields that the traveler makes the following simultaneous 
choice  

 ( ) ( )0 0

* * *
[ , ) [ , ) 0 0, ,{ } arg min , ,{ } | ,t T i i S t T i i SS v T C S v T t x∈ ∈=  (6) 

When determining costs, it is assumed that pedestrians incorporate the uncertainty of realizing 
a certain trajectory given a certain planned velocity trajectory (see section 3.2), which will be-
come clear when specifying the cost function in the following section. 

3.4 En-route choice adaptation 

So far, the theory pertains to the pre-trip scheduling and planning, based on the expected wait-
ing times, service times, and traffic conditions. Without going into detail, it is noted that the 
approach may be extended in a rolling horizon framework, where travelers update their ex-
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pectations based on experienced travel times, waiting and service times. This extension is 
straightforward and left to the reader. 

4. Modeling subjective expected costs 

By assuming that travelers base their decisions by optimizing the subjective expected costs of 
the alternatives, specification of these costs becomes a very important issue. This section dis-
cusses the way in which these costs may be modeled. 

4.1 General costs expressions 

The expected disutility of the combined choice of a pedestrian entering the walking facility at 
instant t0 at location x0 stem from performing specific activities at certain locations, the order 
in which the activities are performed, and expected cost of walking between activity areas. 
We assume that the total disutility can be written as the sum of the sub trajectory costs Ji and 
the scheduling costs ψ(S): 

 ( ) ( )0 1[ , ) 0 0 [ , ) 1 1, ,{ } | , : , | , ( ) ( )
i it T i i S i T T i i ii S

C S v T t x J v T T x T S
−∈ − −∈

= + ψ∑  (7) 

In eqn. (7), the sub trajectory costs Ji is the weighted sum of costs due to: 

1. Walking from location x(Ti−1) ∈ Ai−1j to x(Ti) ∈ Aij where activity i is performed, and  

2. Waiting for and performing activity i at activity area Aij, reflected by utilities Uij 

Activity i may be performed at multiple activity areas Aij, yielding different utilities Uij. These 
differences reflect personal preferences / expectations for using a certain area (e.g. describing 
that pedestrians expect different waiting and service times at different ticket offices), and the 
objective differences in service levels provided at the areas.  

In the disutility framework described here, the difference between discretionary and compul-
sory activities is described by high penalties φi experienced when compulsory activity i is not 
performed, e.g. due to time-constraints. The order in which activities are performed generally 
depends on the directness (Helbing,1997). Directness is reflected by the cost stemming from 
the trajectory; ψ(S) is generally only used to describe that the activity order is restricted, im-
plying that some activities can be performed only once others are completed. 
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4.2 Sub trajectory cost factors 

In the remainder of the paper, a distinction is made between so-called running costs and ter-
minal costs (see eq. (8)). Whilst the former describes the cost along the sub trajectory, the lat-
ter pertains to costs or benefits that are incurred when waiting or performing an activity. The 
running cost part of disutility Ji of velocity sub trajectory 

1[ , )i iT Tv
−

 depends on (Chiolek,1978), 

(Gipps,1986): 

1. Distance or travel time between origin and destination. 

2. Proximity of obstacles or other physical obstructions; closeness to walls. 

3. Energy expenditure due to walking at a certain speed for a certain period of time. 

4. Expected number of interactions with other pedestrians (level-of-service). 

5. Stimulation of environment, and attractiveness (e.g. ambience conditions, shopping win-
dows, shelter in case of poor weather conditions, walking on special infrastructure). 

Empirical studies (Bovy and Stern,1990), (Guy,1987), (Senevarante and Morall,1986) have 
shown that these factors are mutually dependent, while their importance in route choice will 
vary between different (homogeneous) groups of pedestrians, depending on the purpose of 
their trips, time-pressure, gender, age, etc. Note that besides choosing the shortest route, pe-
destrians can influence their travel time by increasing their walking speed. It is well known 
that the speed also depends on personal characteristics of the pedestrians; e.g. commuting pe-
destrians on average walk at a speed of 1.49 m/s, shopping pedestrians have an average speed 
of 1.16 m/s (Weidmann,1993). For leisure related trips, stimulation of the environment is far 
more important. The speed at which pedestrians walk is a trade-off between to the optimal en-
ergy expenditure per unit distance walked (at around 1.32 m/s; see Weidmann (1993)) and 
time pressure. This also explains the preference for using the escalator instead of the stairs.  

Note that the effect of special walking infrastructure on route choice will be modeled by 
1) changes in the travel time due to the use of the special infrastructure; 2) changes in the en-
ergy expenditure, and 3) infrastructure specific constant. 
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4.3 Sub trajectory cost modeling 

Consider a pedestrian who has just finished activity i-1 at instant Ti-1. Consider the sub trajec-
tory 

1[ , )i iT Tx
−

 or equivalently the velocity sub trajectory 
1[ , )i iT Tv

−
. The expected subjective gener-

alized sub trajectory cost Ji is described as follows: 

 
1

1
1 1 [ , )( , ( ) | ) ( , ( ), ( )) ( , ( ))i

i i
i

T

i i i T T i i iT
J T x T v E L s s v s ds T T

−
−

− −
 = ξ + φ ξ  ∫  (8) 

s.t. eq. (4). In eq. (8) L and φi denote the so-called running cost and the terminal cost respec-
tively for pedestrians aiming to perform activity i at some area Aij. Note that this is a stochas-
tic model, the activity completion times are in fact also random variables. At this point, it is 
assumed that the activity completion times reflect the expected activity completion times and 
can thus be considered deterministic.  

Eq. (8) shows how the costs of a sub trajectory is determined by expected value of the cost, 
given the uncertainty in the realized sub trajectory. The level-of-uncertainty thus influences 
the cost via eq. (4).  

4.3.1 Running costs  

The running cost L(s,ξ(s),v(s)) reflects the costs incurred during a very small time period 
[s,s + ds), given that the traveler is at ξ(s) and is applying velocity v(s) to change his / her po-
sition. L express impacts of various attributes of the trajectory and the velocity needed to real-
ize it. We assume that L is linear-in-parameters, i.e.  

 ( , , ) ( , , )k kk
L t v c L t vξ = ξ∑  (9) 

where Lk denote the contribution of different route attributes k, and ck denote the relative 
weights (importance of the attributes). However, linearity is not required for application of 
the approach described in the remainder of this article. Note that not all weights can be 
uniquely determined from real-life observed behavior, since only the relative importance of 
the weights is relevant. The parameters ck will be different for different homogeneous groups, 
e.g. groups having different travel purposes, but also reflect differences amongst pedestrians 
according to their age, gender, physical health, etc. The different cost factors Lk are described 
in the ensuing sections; the numbers refer to the cost factors described in section 4.2. 
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Expected travel time (1) 

Expected travel time is included in the expected route cost by defining L1 as follows 

 1( , , ) 1L t vξ =  (10) 

Substitution of running cost (10) component yields the following contribution to (9) 

 ( ) [ ]
1 1

1 1 1 1, ( ), ( )i i

i i

T T

i iT T
E L s s v s ds E c ds c E T T

− −
−

   ξ = = −      ∫ ∫  (11) 

Eqn. (11) shows that the contribution of (10) equals the expected travel time Ti – Ti-1, multi-
plied by the weight c1, expressing time-pressure, depending on for instance the trip purpose.  

Discomfort due to walking too close to obstacles and walls (2)  

L2 is a monotonically decreasing function g of the distance d(ξ,Bm) between the location ξ of 
the pedestrian and the obstacle, e.g. 

 ( ) ( )2 ( , , ) ( , ) exp ( , ) /m m m m mL t v g d B a d B bξ = ξ = − ξ  (12) 

In Eqn. (12), am > 0 and bm > 0  are scaling parameters, describing the region of influence of 
obstacle m. Both am  and bm are dependent on the type of obstacle that is considered, e.g. they 
are different for building faces with and without a window, regular walls, trees, newsstands, 
etc. (HCM,2000). 

Walking at a certain speed (3) 

To describe that the planned walking speed ||v|| is a trade-off between the time remaining to 
get to the activity area in time and the energy use due to walking at a particular speed, we as-
sume that this kinetic energy consumption is a quadratic function of the pedestrian speed  

 21 1
3 2 2( , , ) || ||L t v v v v′ξ = =  (13) 

Discomfort due to crowding and level-of-service (4) 

In including the cost of the expected pedestrian interactions, we consider the function 
ζ =  ζ(t,ξ), describing the expected number of interactions with other pedestrians at (t,ξ). Note 
that for pedestrian flow operations, frequency and severity of interactions (or rather, physical 
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contact) relates directly to the definition of the level-of-service (HCM,2000). In the remainder, 
it is assumed that ζ(t,ξ) is some (nonlinear) function of the expected density k(t,ξ) 

 ( )4 ( , , ) ( , )L t v k tξ = ζ ξ  (14) 

Stimulation of the environment (5) 

Stimulating effects of the environment can be described by considering the benefit (or cost) 
γ(t,ξ) of walking at a certain location x at instant t. Note that these benefits has a negative sign 
(negative cost). We have 

 5 ( , , ) ( , )L t v tξ = γ ξ  (15) 

 
In substituting the contributions (10)-(15) into the running cost (9), we get 

 ( , ) / 1
1 2 3 4 52( , , ) ( , ) ( , )m md B b

mm
L t v c c a e c v v c t c t− ξ ′ξ = + + + ζ ξ + γ ξ∑  (16) 

The approach is easily adapted when considering a heterogeneous population with taste-
variation and differences in the physical abilities. In fact, these differences are the main rea-
sons for including the different cost factors: empirical research has indicated large differences 
in how different types of pedestrians value route attributes (Bovy and Stern,1990), 
(Hill,1982), (Senevarante and Morall,1986), and (Guy,1987). The pedestrian population is 
stratified into homogeneous groups, and route-choice and activity scheduling is solved for 
each group. The characteristics of each homogeneous group is characterized by the utilities 
Uij gained when performing activity i at Aij, the weights ck, and the maximum walking speed 
v0(t,x). For instance, when travel time is the dominant factor (e.g. for commuting pedestrians), 
c1 will be relatively large compared to c2, c4 and c5; when shopping, stimulation of the envi-
ronment will be a relatively important attribute, which is expressed by c5. Furthermore, the 
weights ck also depend on the situation: in case of an emergency, travel time (or distance) will 
be the dominantly important attribute. In the latter case however, the applicability of utility 
optimization approaches may be limited, depending on the evacuation situation. 

4.3.2 Terminal costs 

The terminal cost φij(Ti,ξ(Ti)) reflects the cost incurred by the traveler ending up at position 
ξ(Ti) at the end time Ti. It includes the following cost factors:  

1. Penalty that may be incurred when the traveler does not complete the activity in time (e.g. 
between arrival and departure of a train), for j∈Ji. 
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2. Utility ijU (Ti) of performing the activity at a certain area and time instant, including ex-

pected costs due to a) expected waiting time w
ijT  and b) expected service time s

ijT , and 

c) penalty when not performing the activity at the preferred time p
iT  (early or late arrival). 

In mathematical terms, point 1 is described by  

 1( , )ij it xφ = Φ  (17) 

where t1 denotes the fixed end time of the planning period1 (e.g. the departure time of the 
train), and where Φi denotes the penalty (e.g. of having missed the train).  

Point 2 is expressed mathematically by  

 1( , ) ( ) for ( )  and ij i ij i i ij iT x U T T A T tφ ξ= − ∈ <  (18) 

where Uj(T) denotes the utility of arriving at destination Aij at time Ti. Note that this mathe-

matical conduct allows also penalizing early arrival, e.g. arrival before the arrival time p
iT  of 

the train, e.g.  

 ( )0( ) max 0,ij i ij a iU T U T Tα= − −  (19) 

where 

 0
1 2

w s
ij ij ij ijU U T Tα α= − −  (20) 

denotes the utility, minus the costs due to waiting and being served. 

5. Operationalization of pedestrian behavior theory 

In the remainder, we will operationalize the outlined theory. We derive models by applying 
dynamic programming theory for dynamic stochastic control models. The operationalization 
is achieved by subsequently solving the following problems: 

1. Optimal (velocity) sub trajectory and activity completion time choice for single activity i, 
for given and fixed initial time Ti-1 and location ξ(Ti-1), including activity area choice. 

                                                
1  Note that the planning period reflects the period within which the traveller plans his or her trip. The end of 

the planning period is generally not equal to the pre-specified or actual arrival time.  



10th International Conference on Travel Behaviour Research 
______________________________________________________________________________ August 10-15, 2003 

20 

2. Optimal velocity trajectory and activity completion time choice for fixed schedule S (mul-
tiple activities, fixed order), based on the outcomes of 1 and constraints. 

3. Optimal velocity trajectory, activity completion time choice, and scheduling (multiple ac-
tivities, free order), based on the outcomes of 2 and constraints. 

Step 1 will be most involved (section 5.1); step 2 (section 5.2), and 3 (section 5.3) are very 
basic extensions of step 1. In all steps, uncertainty will be included in the modeling approach. 
The results of the different steps will be illustrated by several examples. Note that all involved 
factors are in principle time-dependent. 

5.1 Optimal sub trajectory choice model for single activity  

Let us first consider a pedestrian who has arrived at location ξ(t), t > Ti-1 at time instant t and 
is wants to perform activity i at one of the activity areas Aij with j ∈ ϑι. We aim to determine 
the planned velocity trajectory as well as the activity completion time.  

5.1.1 Modeling principle and problem formulation 

To derive the model, let us consider a pedestrian who at time t ≥ Ti-1 has arrived at location 
( )t zξ = , and aims to reach either of the activity areas with minimal costs from that point on-

ward. The subjective utility optimization paradigm implies that the pedestrian will choose the 
velocity sub trajectory [ , )it Tv  yielding the predicted route and used activity area that minimize 

the subjective expected cost for the remainder of the trip s.t eq. (4), i.e.  

 ( ) ( ) ( )*
[ , ) [ , )arg min , | , arg min , ( ), ( ) , ( )i

ii

T

t T i t T i i i it
v J v T t z E L s s v s ds T T = = ξ + φ ξ  ∫  (21) 

To solve the sub trajectory choice problem, let us define the so-called expected minimum per-
ceived disutility function W(t,z) (often referred to as the value function in optimal control the-

ory) by the expected value of the costs upon applying the optimal velocity *
[ , )it Tv  

 ( ) ( )* * *( , ) : , ( ), ( ) , ( )iT

i i it
W t z E L s s v s ds T T = ξ + φ ξ  ∫  (22) 

subject to 

 * * *  subject to  ( )d v dt dw t zξ = + σ ξ =  (23) 
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To derive the dynamic programming equation, consider a small period [t,t+h). According to 
Bellman’s optimization principle (Bellman,1957), we have 

 ( ) ( )* * *( , ) , ( ), ( ) , ( )
t h

t
W t z E L s s v s ds W t h t h

+ = ξ + + ξ +  ∫  (24) 

Eqn. (24) describes that the expected minimal cost of walking from ˆ( , )t x  to Aij equals the 

minimal expected cost of both walking from (t,z) to *( , ( ))t h t h+ ξ +  and walking from 
*( , ( ))t h t h+ ξ +  to Aij. For small h, the following approximation is valid 

 ( ) ( ) ( )2, ( ), ( ) , ( ), ( )
t h

t
E L s s v s L t t v t h O h

+ ξ = ξ +  ∫  (25) 

The random variate ξ(t+h) describing the predicted location at instant t + h subject to eqn. (4) 
can be expanded using a Taylor series 

 ( )3/ 2( ) ( )t h z hv t hw O hξ + = + + σ +  (26) 

where σh1/2w is a (0, )N h ′σσ  distributed random variate. We can rewrite the expected value 

of the second term of the right-hand-side of eqn. (24) 

 ( ) ( ) ( )
2

3/ 2( , ), ( ) , ( , )
2 klkl

k l

h W t zE W t h t h W t h z hv z v O h
x x

∂
+ ξ + = + + + Θ +   ∂ ∂∑  (27) 

where ( , ) : ( , ) ( , )z v z v z v′Θ = σ σ . Substitution of eqns. (25) and (27) into eqn. (24), using the 

appropriate Taylor series expansions, and taking the limit 0h →  yields the so-called Hamil-
ton-Jacobi-Bellman (HJB) or dynamic programming equation for decision making in con-
tinuous time and space under uncertainty 

 ( ) { }
2

( , ) , , ,   where  :kl
k l

WW t z H t z W W W
t z z

 ∂ ∂
− = ∇ ∆ ∆ =  ∂ ∂ ∂ 

 (28) 

for z ∈ Ω  and mm
z B∉U with terminal conditions (describing the minimal cost when a pedes-

trian has arrived at the end of the planning period at time t = t1) 

 1( , ) iW t z = Φ  (29) 

and boundary conditions, describing the cost when the pedestrian has arrived at either of the 
activity areas Aij before the end of the planning period: 
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 1( , ) ( ) for  and i ij i ij iW T z U T z A T t= − ∈ <  (30) 

The Hamilton function H is an auxiliary function, defined by 

 
2

( , )

1( , , , ) : min ( , , ) ( , )
2k klv t z k klk k l

W WH t z W W L t z v v z v
z z z∈Γ

 ∂ ∂
∇ ∆ = + + Θ ∂ ∂ ∂ 

∑ ∑  (31) 

Using terminal conditions (29) at t1, the HJB equation can be solved backwards in time, sub-
ject to boundary conditions (30). The solution ( , )W t z  describes the minimum expected cost 

to either of the activity areas for a pedestrian located at x̂  at instant t. From ( , )W t z , the opti-

mal route can be determined easily, as is shown in the following section. 

5.1.2 Optimal speed and direction 

Considering a pedestrian who has arrived at location z at instant t, the optimal velocity v* at 
that instant t satisfies 

 
2

* 1( , ) arg min ( , , ) ( , )
2k kl

k klk k l

W Wv t z L t z v v z v
z z z

 ∂ ∂
= + + Θ ∂ ∂ ∂ 

∑ ∑  (32) 

subject to *( , ) ( , )v t z t z∈Γ . Assume that the uncertainty level does not explicitly depend on v, 

i.e. Θij(z,v) = Θij(z). It can then be shown that for the running cost definition (16), we find 

 * * *( , ) ( , ) ( , )v t z V t z e t z=  (33) 

where the optimal speed V* and optimal direction e* are defined by 

 * *
0

3

( , ) ( , )( , ) : min , ( , )   and  ( , ) :
( , )

W t z W t zV t z v t z e t z
c W t z

 ∇ ∇
= = −  ∇ 

 (34) 

The partial derivatives ∇W are the marginal cost of the pedestrian location z: if z changes by a 
small amount zδ , the change in the total minimal cost ( , )W t z  equals ( , )W t z z∇ ⋅δ . Eqn. (34) 

shows how the optimal direction *( , )e t z  points in the direction in which the optimal cost de-
creases most rapidly. Upon walking into this direction, eqn. (34) shows that the optimum 

speed *( , )V t z  depends on the rate ||∇W|| at which the minimum cost W function decreases in 

the optimal direction e*, the relative cost c3 of walking at high speeds, and the maximum ad-
missible speed described by ( , )t zΓ : when the expected minimum perceived disutility func-

tion W decreases very rapidly, the pedestrian will walk at the maximum speed. When either 
W(t,z) decreases very slowly in the optimal walking direction, pedestrians tend to walk at a 
lower speed. This may be the case when the time pressure is low: in line with empirical ob-
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servations, where walking speed for pedestrians having higher time pressure (e.g. commuters) 
are farther from the ‘energy consumption-optimal’ walking speeds than in case the time pres-
sure is lower (e.g. shopping pedestrians). 

Note that W(t,z) describes the optimal direction and speed of a pedestrian that has arrived at z 
at instant t, irrespective of his or her origin. This formulation hence also provide the means to 
simply redetermine the optimal directions for pedestrians that have strayed from their optimal 
trajectory, for instance due conflicting pedestrian flows. This renders the approach especially 
useful in a micro simulation setting where the positions of pedestrians are determined not only 
by the optimal trajectory, but also by interactions with other pedestrians in the flow.  

5.1.3 Numerical solution approach 

The dynamic programming equation (28) can be solved by discretizing the area Ω into small 
δ×δ-cells, and considering approximate solutions on this lattice at fixed time instants tk = hk 
(i.e. δ is the spatial step size, and h is the temporal step size). We can show that the resulting 
problem is a Markov diffusion process in two dimensions with nearest-neighbor transitions 
that are determined by the stochastic differential eqn. (4) (Fleming,1993). Solving this (dis-
crete) stochastic dynamic programming problem is related to solving eqn. (28) by replacing 
the partial derivatives with the appropriate finite differences. For details, we refer to Hoogen-
doorn and Bovy (2003).  

Example 1 (Route choice and activity area choice for free-flow conditions in Schiphol Plaza) 
This example considers Schiphol Plaza, which is a multi-purpose multi-modal transfer station. 
Figure 4 shows a snapshot of the microscopic simulation model NOMAD described in (Hoo-
gendoorn and Bovy,2002). In this figure, exits E1-E5 indicate exits from Schiphol Plaza; es-
calators E6 and E7 indicate exits to the train platforms. V1 and V2 depict the locations of the 
newspaper vendors.  
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Figure 4  Snapshot from Schiphol Plaza simulation using the NOMAD model 
(Hoogendoorn and Bovy,2002). 
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Figure 5  Expected minimum perceived disutility functions W and example routes 
describing combined route-choice and activity area choice for a) leaving 
Schiphol Plaza via either of the escalators E6 and E7 to the train platforms 
and b) leaving Schiphol Plaza via either of the exits E1-E5. The numbers 
indicate the generalized walking time (in seconds). 
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Figure 5a and Figure 5b respectively show the expected minimum perceived disutility func-
tions W and example routes for pedestrians using the escalators E6 or E7 to get to the train 
platform and pedestrians using either of the exits E1-E5 to get outside. The expected mini-
mum perceived disutility functions have been determined using the numerical solution ap-
proach described in section 5.1.3, with running cost factor weights c1 = 1, c2 = 10, c3 = 1.5, 
c4 = c5 = 0, and am = 1 and bm = 0.1 (for all obstacles m). Eqn. (33) shows that the optimal 
routes are perpendicular to the iso-expected minimum perceived disutility function curves de-
picted in the figures. Figure 5a shows three exemplar routes that all lead to the escalator E6. 
In this case, combined route-choice / activity area choice yield different routes but the same 
activity area. Figure 5b shows three exemplar routes leading to the exits. Not all routes lead to 
the same exit in this case.  □ 

Example 2 (route choice under uncertainty) Let us reconsider the Schiphol Plaza case for pe-
destrians aiming to walk to either of the escalators E6 or E7. For this particular example, the 
level-of-uncertainty was constant, i.e. σ(x,v) = σ0. Figure 6a and Figure 6b show the com-
bined route choice and activity area choice behavior for different uncertainty levels. Figure 6b 
clearly shows that when future conditions are less certain, pedestrians are inclined to avoid 
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narrow passageways or walking close to obstacles, yielding different route / activity area 
choices.   □ 

Figure 6  Expected minimum perceived disutility functions for leaving Schiphol Plaza 
via escalators for uncertainty levels a) σ0 = 0.01 and b) σ0 = 0.25. Optimal 
paths are perpendicular to iso-expected minimum perceived disutility function 
curves. 
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5.2 Optimal choice behavior model for fixed schedule S 

The approach can be easily extended to a fixed-order activity schedule considering activity 
schedules S = {1,…,I}, where for each activity i ∈ S, several activity areas Aij may be consid-
ered. In assuming that pedestrians make a simultaneous trajectory-choice and activity area 
choice decision (compare to (Abdelghany and Mahmassani,2003)), in the modeling we need 
to consider the next activity i + 1 (and the respective activity areas Ai+1j for j ∈ ϑι+1) into the 
path and activity area choice associated with activity i. This is achieved by application of the 
dynamic programming principle due to Bellman (1957), claiming that at each moment of the 

control interval, the remaining optimal velocity trajectory 
1

*
[ , )is Tv

+
, with s ≥ Ti of an optimal ve-

locity trajectory 
1

*
[ , )i iT Tv

+
, is optimal with respect to the current state determined by the preced-

ing control actions. This implies that to determine the optimal velocity trajectory, we need to 
solve the problem backwards in time, starting by computing the expected minimum perceived 
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disutility function WI(t,x) for the final activity I in the fixed schedule S. Having determined 
Wi+1(t,x), we compute Wi(t,x) for activity i by solving the HJB equation  

 ( )( , ) , , ,i i iW t x H t x W W
t

∂
− = ∇ ∆

∂
 (35) 

using boundary conditions 

 1( , ) ( , ) ( ) for i i i i ij i ijW T x W T x U T x A+= − ∈  (36) 

Note that since we have assumed that activity i + 1 is completed, we need not impose an addi-
tional penalty for not being able to reach any of the activity areas Aij. 

Example 4 (Route choice in Schiphol Plaza for fixed activity schedules). Let us consider the 
following pedestrian groups: 

1. Pedestrian buying an item at either vendor V1 or V2 (see Figure 4) before using the esca-
lators E6 or E7 to get to the train platform. 

2. Pedestrians buying an item at either vendor V1 or V2 before exiting Schiphol Plaza using 
one of the exits E1-E5.  

Figure 7a and Figure 7b show that vendor 1 is more attractive to pedestrians continuing their 
trip by train than to pedestrians leaving Schiphol Plaza by foot. When pedestrians leave using 
either of the exit, they will be more inclined to buy a newspaper at vendor 2.  
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Figure 7  Combined route-choice and activity area choice for a) pedestrians buying an 
item before heading towards escalators E6, E7; b) pedestrians buying an item 
before leaving via either of the exits 
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5.3 Optimal choice behavior and scheduling model 

Consider a sequence of two fixed-order activities, where activity 2 follows activity 1. Let A1j 
and A2j denote the activity areas for activities 1 and 2 respectively. We hypothesize that a pe-
destrian will take into account both activities upon planning the route, i.e. in planning activity 
1, he will consider that activity 2 will need to be performed afterwards. To this end, we first 
solve the route choice problem for activity 2, yielding the expected minimum perceived dis-
utility function W2(t,x). Secondly, the pedestrian plans the primer activity by determining the 
path that is stipulated by W12(t,x), which is a solution of the HJB equation: 

 ( )12 12 12( , ) , , ,W t x H t x W W
t

∂
− = ∇ ∆

∂
 (37) 

with boundary / terminal conditions 

 12 1 12 12 12 2 12 1 12 1 1( , )   and  ( , ) ( , ) ( ) for  and j jW t x W T x W T x U T x A t t= φ = − ∈ <  (38) 

Clearly, the terminal conditions describe how the (optimal) cost W2 of walking to the second 
activity area are considered by the pedestrian when walking from any location x to the first 
activity area A1j. The approach may be easily extended when a sequence of more than two ac-
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tivities have to be considered. Note that in most practical situations, the number of activities 
that pedestrians take into account during planning is generally limited. 

The case, where the order of the activities is not fixed is equivalent to solving two fixed activ-
ity order problems and determining the minimum of W12(t,x) and W21(t,x). At any location 
x(t), min{W12(t,x),W21(t,x)} determines both the optimal direction and speed, as well as the 
optimal order of the activities 1 and 2. In case of three or more activities, we need to consider 
the minimum of all combinations of activity sequences. This implies that, although the ap-
proach is conceptually very straightforward, in practice the number of combinations can be-
come very large. 

Conceptually, the inclusion of discretionary activities is equally simple. In illustration, con-
sider the situation where activity 1 is mandatory, while activity 2 is discretionary. To deter-
mine the order of the activities as well as whether activity 2 will be performed or not, the pe-
destrian at x(t) will determine the minimum of W12, W21, and W1. If it turns out that if W1 is 
optimal, activity 2 is skipped. Note that it is also possible that from a certain starting location 
x(t0), a discretionary activity is performed, while for other starting positions, pedestrians will 
not consider that performing the activity is worthwhile. 

6. Applications of the model 

The approach describes pedestrian activity scheduling and route choice for different types of 
pedestrians with distinct perceptions of route attributes. Contrary to network-based ap-
proaches, routes are continuous in time and space. Applications of the model are manifold. 
For one, the approach is used to model choice behavior in the pedestrian micro simulation 
model NOMAD (Hoogendoorn and Bovy,2002). Stand-alone applications of the model are 
however also possible to predict route choice in infrastructure facilities, such as transfer sta-
tions and shopping malls. For planning purposes, dynamic user-equilibrium solutions of the 
pedestrian assignment problem can be used to forecast pedestrian flows. Such predictions are 
valuable to reveal bottlenecks in infrastructure design, to predict average transfer times (walk-
ing time from egress to access locations, given expected traffic conditions), or the optimal lo-
cation of a ticket machine or newspaper stand. For instance, the Schiphol Plaza example 
shows which vendor location is preferable from the viewpoint of passing pedestrian flows, 
given pedestrian origin-activity demands. This way, infrastructure design, platform allocation, 
timetables, etc. can be optimized. This pertains to regular circumstances, as well as to emer-
gency conditions (albeit different models are required to describe walking operations). Practi-
cal application of the models will require calibration (and validation) of the model. This can 
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be done by considering previous empirical studies showing the relative importance of differ-
ent route attributes for varying trip purposes, and subsequently estimating the relevant 
weights. Comparing (qualitatively) the resulting path flows and speeds with observations re-
veals whether changes in the weights are needed. Given the fact that distance (or travel time) 
is the most important route attribute, we expect that model calibration is relatively straight-
forward, at least for distinct groups of pedestrians (e.g. commuters). 

7. Summary and future research 

This article puts forward a new dynamic mixed discrete-continuous theory for activity sched-
uling and trajectory choice, based on the assumption that pedestrians are subjective utility 
maximizers: they schedule their activities, the activity areas, and the trajectories between the 
activities (which, on the contrary to other transportation networks, are continuous functions in 
time and space) simultaneously to maximize the predicted utility of their efforts and walking. 
The utility reflects a trade-off between the utility of completing an activity, and the cost of 
walking towards the activity areas. In turn, the latter results from different factors, such as the 
travel time, discomfort of walking too close to obstacles and walls, stimulation of the envi-
ronment, etc. Uncertainty pertaining to the predictability of the future conditions is included 
by assuming that the predicted routes are realizations of random processes. The effect of pre-
vailing traffic conditions on pedestrian choice behavior have been considered as well. To op-
erationalize the theory, different techniques from stochastic mathematical optimal control the-
ory have been applied successfully. The different concepts have been illustrated by examples. 

The main contribution of the article is the joint description of activity scheduling and route-
choice behavior under uncertainty, hypothesizing that the pedestrian can choose between an 
infinite number of candidate routes, which are continuous paths in time and space. In doing 
so, no (discrete) network needs to be defined.  

Future research is directed towards developing methods to efficiently solve the dynamic pe-
destrian assignment problem. Moreover, different applications of the approach will be consid-
ered, such as the routing control of Automated Guided Vehicles for container handling in ter-
minals, and partially autonomous drones (e.g. for garbage collection).  
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