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Special Issue on Practical Physical Layer Techniques for 4G Systems & Beyond 
 

Guest Editorial 
 

If one looks at the last thirty years and measures the rate at which technological innovation is impacting human life, 
then it can be safely concluded that we are living in extremely exciting times. Wide-spread adoption of Internet 
triggered an information revolution that has changed the human society in fundamental ways. Subsequent development 
of cellular communication systems and the resulting ubiquity of cellphones enabled people to communicate while on 
the go, and within a decade, “anytime-anywhere” communications has become a normal service for majority of people 
in both developed and developing nations. Ever increasing penetration of smart phones, tablets etc. in mass markets has 
given users a taste of “anywhere-ubiquitous” access to information & entertainment, and this too will soon become a 
must have, commodity service for everyone.  

Meeting these growing user demands requires next generation cellular networks to have vastly improved spectral 
efficiencies and coverage. Thus there is a constant need for fundamental as well as applied research on the components 
and algorithms for forthcoming 4G systems and beyond. The aim of this special issue is to collect and present a set of 
cutting edge research contributions that would hopefully be representative of the wide spectrum of on-going activities 
on the Physical layer front for these next generation cellular systems. 

To this end, we have identified nine high-quality publications after a thorough peer-review process. The papers can 
broadly be divided into three categories. The first category groups contributions that present system level performance 
analysis of PHY techniques that have been recently proposed in the research literature. This category is quite important 
from a practical point of view because it tries to vet theoretically promising techniques by quantifying their real impact 
on a deployed system through simulations. Any research idea that aspires to be part of a 4G standard has to pass 
through such system level evaluations.  The second category focuses on resource management algorithms and 
mechanisms for LTE/OFDMA systems. The selected papers either present algorithms extending state of the art, or 
provide a better understanding of existing interference coordination mechanisms in LTE.  The third category consists of 
papers aiming to improve the power efficiency of cellular networks. The accepted contributions range from a paper 
proposing new power efficient PHY coding techniques, to a forward looking article comparing the efficiency or relay 
assisted networks versus user cooperation, and culminate with an invited survey article on green communications. In the 
paragraphs that follow, we will briefly summarize the basic ideas presented in each paper from this issue.   

The first three papers evaluate multi-user (MU) multiple-input multiple-output (MIMO) technique in the context of 
cellular networks. The first paper, “System-Level Impact of Multi-User Diversity in SISO and MIMO-based Cellular 
Systems” by R. Pupala, L.J. Greenstein, and D.G. Daut, considers several parameters in wireless multi-cell systems and 
evaluate their impacts on aggregate throughputs with different schedulers. This work attempts to quantify the benefits of 
multiuser diversity and excess degrees of freedom from multiple receive antennas. The second paper “Downlink System 
Throughput Statistics for Various MEA Configurations” by R. Pupala, Y. Yuan, Q. Bi, and L.J. Greenstein, investigates 
the merit in modifying a SISO link with added antenna elements at one or both ends. Practical considerations such as 
channel estimation overhead are considered to evaluate relative merits of various multi-antenna configurations. The 
third paper “Coverage Analysis for Multiuser MIMO Broadcast Systems” by L.C. Wang and C.J. Yeh, investigates the 
diversity gain and coverage of zero-forcing beamforing (ZFB) and zero-forcing dirty paper coding (ZF-DPC) 
techniques with/without the consideration of multiuser scheduling for multiuser MIMO broadcast channels. The 
proposed work shows that the use of multiuser scheduling can act as soft coverage enhancement technique without 
requiring additional transmit power.  

Next three papers focus on resource management algorithms and mechanisms for LTE/OFDMA systems. In the 
fourth paper, “A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission” 
by L. Li, G. Wu, H. Xu, G. Li and X. Feng, the authors propose a novel resource allocation method for LTE uplink to 
reduce inter-cell interference. This paper investigates joint power control and resource allocation techniques for LTE 
uplink and proposes an efficient way to improve system performance, especially for cell edge users. In the next paper 
“Impact of CSI on Radio Resource Management Techniques for the OFDMA Downlink” by L. Sivridis, X. Wang and J. 
Choi, the authors propose sub-carrier allocation algorithm for OFDMA downlink. This work improves upon a 
previously known algorithm by reallocating the subcarriers of users who will not be able to meet their quality of service 
(QoS) requirements. The sixth paper “Understanding Static Inter-Cell Interference Coordination Mechanisms in LTE” 
by A. Mills, D.R. Lister, and M.D. Vos, considers modulation and coding scheme (MCS) based soft frequency reuse 
issue in cellular systems. Based on this metric the paper challenges the idea that cell edge users should have a high 
reuse factor.  

The remaining three papers focus on power-efficient system architectures and PHY techniques for cellular systems. 
The paper “Power-efficient Irregular Repeat-Accumulate Encoded BICM-ID for 16-ary Signal Constellations” by W.K. 
Han, S. Y. L. Goff, B. Sharif, and A. J. Al-Dweik presents novel results on the application of bit-interleaved coded 
modulation (BICM) along with irregular repeat accumulate and low-density parity-check codes to improve bit error rate 
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(BER) performance over Rayleigh fading channels. The next paper “Dedicated-Relay vs. User Cooperation in Time-
Duplexed Multiaccess Networks” by L. Shankar, G. Kramer, and N. Mandayam, investigates the performance trade-
offs of cooperation in a multi-user uplink network. Two basic modes of cooperation are considered: user cooperation, in 
which users forward each other's messages, and dedicated relaying, in which a single dedicated relay forwards users' 
messages. This work explores whether user cooperation or dedicated relaying is more energy efficient, as measured by 
outage probability versus total transmit and processing power. Environmental impact and power usage are major 
concerns for next generation networks. An He et al., provide a survey of energy efficient advances in renewable and 
alternative energy resources for base stations in the ninth paper “Green Communications: A Call for Power Efficient 
Wireless Systems”. This paper is of tutorial nature and presents an interesting overview of technology and economics 
that could affect green communication systems.  

We feel that this special issue succeeds in its attempt to give readers an insight into on-going activities on 
fundamental as well as applied research on the Physical layer algorithms and system level design for forthcoming 4G 
systems and beyond. We would like to thank all the authors who submitted their work for consideration for this issue, 
and the reviewers for their timely and constructive feedback. We also thank the staff at the JCM Academy Publisher for 
their help in handling the manuscripts. Lastly, we would like to extend our sincere appreciation to Dr. Linda Xie, Editor 
of the Journal of Communications, for her great support, and Dr. Haohong Wang, Editor-in-Chief of the Journal of 
Communications for providing us the opportunity to organize this special issue. 
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Abstract— We quantify cell-wide mean throughputs
of single-input-single-output (SISO) and multiple-input-
multiple-output (MIMO)-based cellular systems which em-
ploy multi-user diversity (MuD). Our study considers several
practical and useful system-level design dimensions, includ-
ing: number of transmit/receive antennas; antenna-pattern
(omni-directional or sectorized); degree of error-protection
(Shannon coding, no coding or intermediate coding strate-
gies); allowable constellation size; Rician κ-factor; number
of users and schedluling algorithm (Greedy (i.e. MAX C/I),
Proportional Fair, or Equal Grade of Service) in single-
cell (noise-limited) and multi-cell (co-channel-interference-
limited) environments.

We also provide a comparison between single-user systems
having excess receive antennas and multi-user diversity
systems with no excess receive antennas. Both strategies
improve signal quality. Since economic costs of RF chains,
mobile size and form factor limit the number of antennas
a mobile receiver can have, multi-user diversity can be a
more practical option. We observe that MuD with only a
few scheduled users leads to comparable throughputs as
receivers with excess receive antennas. By quantifying the
average throughput gains that accrue from using multi-user
SISO and MIMO-based cellular systems, this study serves
the needs of operators to assess these promising technologies.

Index Terms— MIMO, MMSE, multipath fading, shadow
fading, co-channel interference, cross-stream interference,
interference cancellers, multi-user diversity, MAX, PF, EGoS

I. INTRODUCTION

Since the publication of seminal papers [1], [2] a decade
ago, multi-element antenna (MEA) systems has been

an area of considerable interest to the wireless commu-
nications community. Commercial interest in multiple-
input-multiple-output (MIMO) systems, which employ
multiple antennas at both ends of the link, grew after
the successful laboratory implementation of the well-
known vertical Bell-Labs layered space-time architecture

Manuscript received February 15, 2011; revised May 15, 2011;
accepted June 15, 2011.

(VBLAST) [3]. VBLAST demonstrated the feasibility of
the MIMO concept, delivering spectral efficiencies of
20–40 bps/Hz under indoor conditions. Later research
demonstrated the different ‘modes’ of MIMO systems,
notably, Diversity and Spatial Multiplexing. The diversity
mode improves signal quality using the spatial resources
[4]–[6]; the multiplexing mode, a chief reason for the
industry’s interest in MIMO systems, increases the data
rate that can be pumped through a given bandwidth. By
appropriate signal processing at the transmitter and/or the
receiver, several de-coupled parallel single-input-single-
output (SISO) channels can be created, which greatly
enhances link capacity of the MIMO channel [1], [2],
[7]–[13]. A tradeoff between these modes has been es-
tablished [14], and linear codes that use a combination of
both modes have been discovered [15]. Relevant defini-
tions pertaining to MIMO/MEA1 systems appear in the
Appendix A.

In much of previous MEA/MIMO research, a link-level
view, that of point-to-point communication, is taken. More
recently, a network-level view of a cellular system has
been adopted, which permits a new form of diversity
— Multi-user Diversity (MuD) [16]–[20]. MuD can be
viewed as a form of selection diversity (SD), in which
the base station (BS) transmits to (or receives from) a
mobile station (MS) with a good channel. Diversity is
possible since all users are subject to independent fading,
and in a system with sufficient number of users, a ‘good’
user exists with high probability. MuD is suitable for
delay-elastic applications, i.e., those applications that can
tolerate reasonable delays, such as data (but not voice).
The implication of the network view was a paradigm shift
in exploiting MEA/MIMO techniques: the multi-antenna
link could now be used in multiplexing mode to extract
maximal rate benefit, while diversity would come from

1MEA links are assumed to have n transmitters and m receivers.
They are denoted as MEA (n, m) or simply (n, m).
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the network itself [18], [21].
Most MuD performance studies (e.g., [18], [21]–[25])

focus only on a particular link between the transmitter and
the receiver. Performance measures such as bit error rate
(BER) or throughput (TP) are determined with signal-to-
noise ratio (SNR) treated as a parameter, with external
factors such as co-channel interference (CCI) ignored
or indirectly treated using the signal-to-interference-plus-
noise ratio (SINR) in place of the SNR. Some work on
SISO/MEA (but not MuD) systems has been reported,
however, that takes a broader view (e.g., [8]–[13]). This
work determines the distribution of performance over a
coverage area, e.g., the cumulative distributive function
(CDF) of TP over the randomness of user location and
shadow fading, which jointly specify the SNR value.
Furthermore, in the case of multi-cell environments, it
also means taking into account the CCI produced by co-
channel users in other cells.

In this study, we extend the latter work to the
multi-user scenario with scheduling. We quantify cell-
wide mean throughputs of SISO and MIMO-based cel-
lular systems which employ multi-user diversity, and
we do so over several useful system-level design di-
mensions: number of transmit/receive antennas; antenna-
pattern (omni-directional or sectorized); degree of error-
protection (Shannon coding, no coding or intermediate
coding strategies); allowable constellation size; Rician
κ-factor2; number of users and scheduling algorithm
(Greedy, Proportional Fair or Equal Grade of Service)
in single-cell (noise-limited) and multi-cell (CCI-limited)
environments. In this connection, we note that the greedy
(also popularly known as MAX C/I) and the equal grade-
of-service scheduling algorithms define upper and lower
bounds on throughput that any useful scheduler can offer;
the proportional fair scheduler is considered owing to its
popularity both in industry and in academic communities.

We also provide a comparison between single-user
systems having excess degrees of freedom (SU-EDoF)
and multi-user diversity systems having no excess degrees
of freedom (MuD-wo-EDoF). Both mechanisms attempt
to improve received signal quality, as measured by the
post-processing SINR. In SU-EDoF, a receiver does so by
using excess receive antennas to obtain diversity and/or
null one or more interfering co-channel streams on an
optimal basis [26]. By contrast, MuD-wo-EDoF improves
signal quality by scheduling the user with the best signal
(and weakest interference), i.e., interference avoidance is
an inherent feature. Since costs of RF chains, mobile
size, device form factor and other practical considerations
limit the number of antennas a receiver can have, multi-
user diversity may be a more practical and cost-effective
option. Studying the tradeoffs between SU-EDoF and
MuD-wo-EDoF enriches our ability to make engineering
value-judgements, while designing practical systems that
use these promising technologies.

For single-user scenarios, cell-wide average throughput

2Normally, K is used instead of κ, but, we use K here for the number
of users sharing the channel.

per-user is typically used as a performance metric. For
multi-user scenarios, wherein a channel is shared over
many simultaneous users, a more appropriate metric is
cell-wide average throughput per-channel. For the single-
user case, ‘channel’ and ‘user’ are synonymous, and the
metric continues to remain relevant3. We do not consider
specific and precise metrics for fairness and stability. Even
so, these considerations do enter our discussion, since
they are prevalent in the literature. Essentially, when the
throughput per-channel differences between the various
scheduling algorithms are small, a sub-optimal scheduler
may be used, trading a small throughput loss for greater
‘fairness’ or ‘stability’.

This paper is organized as follows. The system model
and simulation platform are discussed in Section II, and
numerical results are presented in Section III. Section IV
offers a comparison between excess receive antennas
and multi-user diversity, while Section V summarizes our
work and presents some key conclusions.

II. SYSTEM MODEL AND SIMULATION PLATFORM

We have developed a system-level simulation platform
for computing the throughputs of multi-user SISO/MEA
cellular systems which employ network scheduling. The
test-bed is sufficiently general to allow us to work with
the several key system-level parameters noted earlier.

A. Network-level Description: Base Station Viewpoint
(MAC-layer)

Figure 1. A multiuser scheduling system with n transmit antennas at the
BS and m receive antennas at each MS. The scheduler can employ any
user selection algorithm. In this study, the Greedy (MAX), Proportional
Fair (PF) and the Equal Grade of Service (EGoS) schedulers are
considered.

Fig. 1 shows a wireless system with a base station
serving K downlink mobile stations. Each user MS tracks
its individual channel from the BS, and sends a measure
of the channel quality index (CQI) to the BS. The BS
schedules any one user in a given time slot depending

3The reader is cautioned against attempting conversion from the per-
channel metric to an ‘equivalent’ per-user metric (e.g., by dividing the
per-channel metric by the number of users). MuD leads to gains that are
logarithmically proportional to the number of users. Since, the per-user
metric normalizes this figure by the number of users, it will cast multi-
user diversity in poor light. We take the view that such a conversion
is inappropriate, since multi-user diversity applies only for delay-elastic
applications. Users are willing to wait, and are scheduled only when a
channel becomes available.
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on the present CQI, past transmissions to all users, and
fairness/latency requirements.

In this study, perfect and instantaneous feedback of
the CQI from each MS to the BS is assumed. The full-
buffer traffic model is used; i.e. users always have data to
receive, and all transmissions are initiated at the start of
the simulation (i.e., users cannot ‘enter’ or ‘leave’ a set
of users being serviced by the BS).

Three scheduling algorithms are considered — Greedy
(MAX), Proportional Fair (PF) and Equal Grade of
Service (EGoS). By evaluating the performance of two
extreme schedulers (MAX, EGoS), we attempt to obtain
a perspective on the performances realized by a range
of useful schedulers. The PF scheduler is considered as
a representative and widely popular example. In what
follows,
• CQI(k, t) denotes the vector CQI for user k at time

instant t. Achievable substream-throughput vector (if
k is scheduled at time t) is used for CQI4.

• SCQI(k, t) denotes the user’s sum-CQI (the sum-
mation is over all sub-streams), and is a scalar
quantity.

• TP (k, t) denotes the throughput of user k at
time instant t. Note that TP (k, t) differs from
SCQI(k, t), since only 1 of K users is scheduled at
every time instant.

1) MAX: Schedules the user with maximum SCQI.
Thus,

k∗ (t) = arg max
k

SCQI(k, t) k = 1, 2, · · · ,K
(1)

where k∗ (t) denotes the user selected at time t. MAX
is optimum from a throughput standpoint, in that no
other algorithm can achieve more throughput. However,
it ignores the past transmission history of all users, and
hence, is unfair and biased in that aspect.

2) EGoS: Schedules that user who has been relatively
starved throughput-wise over a time-window that extends
to the indefinite past. Thus,

k∗ (t) = arg min
k

∑
t

TP (k, t) k = 1, 2, · · · ,K

(2)
EGoS can be considered to be the ultimate throughput-
fair scheduler, since it allows each user to catch-up with
other users, regardless of their channel conditions.

3) PF: All other schedulers will lead to performances
that will be bracketed by the above two schedulers. We
use the well-known PF scheduler [17], [20] as an example
of one that attempts a better balance between throughput
performance and fairness. Thus,

4We note that, although a single scalar quantity such as the total link-
capacity would suffice as CQI information for user scheduling, a vector
CQI is needed for adaptive transmission reasons. See Appendix B.

k∗ (t) = arg max
k

SCQI(k, t)

TP (k, t)
k = 1, 2, · · · ,K

(3)
where TP (k, t) is a measure of the mean throughput of
link k over a window extending from t back to the in-
definite past5. TP (k, t) is updated using an exponentially
weighted Infinite Impulse Response (IIR) filter as

TP (k, t+ 1) = β ∗ TP (k, t) + δ(k∗, k) ∗ SCQI(k, t)

(4a)

δ(k∗, k) =

{
1 k∗ = k

0 else
(4b)

where, δ is the Kronecker delta (sifting) operator, and β is
the decay rate (or forgetting factor). We use β = 0.98 in
the simulations, corresponding to an effective averaging
window of 50 transmissions. This is a reasonable number
for getting an accurate running mean.

We add that Round-Robin (RR) is another plausible
scheduler. RR is a fair scheduler from a service-time
perspective. However, it is known that for users with
independent and identically distributed (i.i.d.) fades, the
benefit of multi-user diversity is lost when RR is em-
ployed [21]. On the other hand, it is also known that PF
best balances between the conflicting tradeoffs — offering
service-time fairness to all users (in the asymptotic sense),
while optimizing user performance at the same time [20],
[27].

B. Link-level Description: Mobile Station Viewpoint
(PHY-layer)

While the simulation platform developed in this study
is quite general with respect to system and channel
parameters, most numerical results were obtained
using the parameters detailed in Table I. The various
assumptions invoked in developing the platform are
outlined here.

1) Channel Model: We consider three cases for Rician
κ-factor, namely, κ = 0 (Rayleigh fading, i.e., only
the scatter component); κ = 10 (dominant specular
component); and κ a function of distance. The κ-factor
typically decreases as the MS moves farther away from
the BS, and the variation of κ with distance assumed here
for the third case is given in Table II.

The complex baseband channel gain between the jth
transmit antenna of a given base station and the ith receive
antenna of a given user-terminal is modeled by

hij =

√
A

(
d0

d

)Γ

s

[√
κ

κ+ 1
ejφ +

√
1

κ+ 1
zij

]
(5)

where,

5Our averaging formula for TP (k, t) is slightly different from the
formula introduced in [17], [20].
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TABLE I.
PARAMETER VALUES USED IN THE SYSTEM SIMULATIONS.

Cell Geometry Hexagonal Array with side R = 1000 m

Carrier Frequency fc = 2 GHz

System Bandwidth W = 5 MHz

Path Loss Exponent Γ =

{
2 30 ≤ d ≤ 100m

3.7 else

Shadow Fading Lognormal, with Standard Deviation σ = 8 dB

Multipath Fading Rician, with κ-factor = 0 (Rayleigh), 10,

or a function of Transmit-Receive (T-R) distance (see Table II)

Antenna Pattern Omnidirectional, or Uniform over 120◦

Thermal Noise Density N0 = −174 dBm/Hz

Mobile Terminal’s Noise Figure NF = 8 dB

Transmit Power PT = 5 W

Median cell-boundary SNR ρ = 20 dB

TABLE II.
VARIATION OF RICIAN κ-FACTOR AS A FUNCTION OF BS-MS SEPARATION DISTANCE (PERCENTAGES SPECIFY THE DISTANCES RELATIVE TO

THE CELL RADIUS).

Distance % 0-5 5-15 15-25 25-35 35-45 45-55 55-65 65-75 75-85 85-100

Rician κ 10 9 8 7 6 5 4 3 2 0

• d is the link length, Γ is the path loss exponent, and
A is the median of the path gain at reference distance
d0 (d0 = 100 m in the simulations).

• s = 10S/10 is a log-normal shadow fading variable,
where S is a zero-mean Gaussian random variable
with standard deviation σ dB.

• κ is the Rician κ-factor for the given base-to-mobile
path.

• φ = 2πd/λ is the phase shift of a line-of-sight (LOS)
plane wave from the transmitter to the receiver.
λ = c/fc is the wavelength. We assume that for a
given transmit-receive pair, all LOS paths have the
same length.

• zij represents the phasor sum of scattering com-
ponents for the (i, j) path which are assumed to
be zero-mean, unit-variance, i.i.d. complex Gaussian
random variables.

We assume a base station height of h = 30 m above
ground. For receivers located close to the ground, the
direct path has a length d = [r2 + h2]1/2, where r is the
distance along the ground from the receiver to the base
station. This implies that all Transmitter-Receiver (T-R)
distances are 30 m or greater. We use a loss exponent
of 2.0 (free space loss) for distances close to the base
station (30 − 100 m), and 3.7 for distances beyond
100 m. We also apply shadow fading regardless of the
T-R distance. This has been shown to be an empirically
reasonable model [28]. For antenna sectoring, perfect
beams are assumed instead of shaped antenna patterns.

2) Simplifying System Assumptions: We invoke as-
sumptions often made in conjunction with MEA sys-
tems [1], [2]: (i) narrowband signaling, (ii) quasi-static
(block) fading, (iii) long burst interval, and (iv) indepen-
dently faded complex Gaussian path gains. This permits

a mathematical representation for the SISO/MEA cellular
system6 as follows

Y = HX + Z, (6)

where X ∈ C7n,Y ∈ Cm, are transmit (serving and
interfering) and receive signal vectors, H ∈ Cm×7n is
the channel gain matrix, and Z ∈ Cm is a thermal
noise vector, that is Gaussian distributed with zero-mean
and one-sided power spectral density (PSD) N0. Since
the noises corrupting the different receive antennas are
independent, Z has an autocorrelation matrix N0Im×m,
with Im×m being the identity matrix.

We assume only one tier of interferers around the
serving BS (Fig. 2). This assumption is made to simplify
the simulations and is slightly optimistic. However, the
rapid decay of signal power with distance makes this
assumption reasonable. Moreover, we offset it with the
pessimistic assumption that all co-channel interferers are
transmitting all the time. (In the single-cell case co-
channel interferers are not present, and H ∈ Cm×n).

We assume an adaptive transmission algorithm that
perfectly adapts the transmission on each transmit antenna
(via the constellation size) according to the instantaneous
radio channel and interference conditions. It is possible
for different transmit antennas to choose different bit rates
(constellation sizes), although all transmissions operate
at the same symbol rate. The procedure to compute the
optimum size of the transmit constellations appears in the
Appendix B.

Since cell-site (macro) diversity has been shown to
have minimal impact on mean throughput calculations

6Following explanation offered in the Introduction, configurations
employing Transmit Diversity are not considered. Hence, configurations
that have more transmit than receive antennas (n > m) are excluded
from this study.
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Figure 2. Plot of an interference-limited system, showing the serving
and co-channel base stations. Regular hexagonal geometry with side
R = 1000 m is assumed.

[9], [10], it is not used in the simulations, i.e., for
simplicity, we assume that users communicate with
the base station that is the nearest, not necessarily
the strongest. Finally, perfect channel estimation,
perfect T-R synchronization, and perfect instantaneous
feedback are also assumed. These simplifications focus
the problem on the essential issues we wish to investigate.

3) Array Processing: Depending on the availability
of channel state information (CSI) at the transmitter,
it is possible to design transmit-adaptation (e.g. eigen-
beamforming) and receive-adaptation (e.g., minimum
mean-square error) array processing strategies. Since we
assume CQI but not CSI feedback to the transitter, only
the receive-adaptation scheme is discussed here. The min-
imum mean-square error (MMSE) scheme uses uniform
power allocation among the n transmit antennas. To
analyze MMSE reception, the analyst takes into account
the path gains from all BSs — serving and interfering —
in the channel gain matrix (H ∈ Cm×7n). Received data
streams are separated by computing a linear combination
of the received signals using a set of weights that achieves
the minimum mean-square error between the output esti-
mate and the true signal sample. Thus, we have that

X̂ = WHY. (7)

The performance index for a given weight matrix is

ζ(WH) , E

 n∑
j=1

|εj |2
 = E

 n∑
j=1

|xj − x̂j |2
 (8)

where xj is the jth transmitted signal. The expectation in
(8) is taken with respect to the noise and the statistics of
the data sequences. The weight matrix W that yields the

minimum mean-square error is [10]

W = A−1H, (9a)

A = HHH +
σ2

PT /n
Im×m. (9b)

The post-processing SINR on the jth decoded stream can
be shown to be [8], [10]

γj = (H)Hj R−1
j (H)j , j = 1, 2, . . . , n (10)

where

Rj =

7n∑
l=1, l 6=j

(H)l(H)Hl +
σ2

PT /n
Im×m (11)

and (H)j is the jth column of H. (For the noise-only
(single-cell) case, the summation will have n terms,
instead of 7n).

4) Link Throughput Bounds: The per-user data
throughput is the sum of the throughputs of the sub-
streams. We determine the throughput Tj of sub-stream j
for two extreme cases:

• Ideally Coded Signals – The throughput is upper-
bounded by the Shannon capacity,

Tj = log2 (1 + γj) . (12)

• Uncoded Signals – Assuming error detection in each
block, the throughput is

Tj(Mj) = (1−BLERj) log2(Mj)

= (1−BERj)L log2(Mj) (13)

where log2(Mj) is the number of bits per symbol in
stream j, BERj is the bit error rate for stream j, and
BLERj is the corresponding block error rate for L-bit
blocks. In this study L = 500 bits is assumed, though the
results are robust for values of L over a wide practical
range [10].

We wish to simplify (13) to the form of (12) for conve-
nience of calculation. Under the simplifying assumption
that the channel undergoes quasi-static block fading, it is
possible to regard the channel as AWGN conditioned on
the instantaneous gains. For QAM modulation, we can
then use the procedure in [9]–[11] to bring this to the
form

Tj = max Tj(Mj) ≈ log2

(
1 +

γj
6.4

)
. (14)

Thus, the curve for uncoded transmission is 8 dB
(= 10 log10(6.4)) shifted from the curve for perfectly-
coded (Shannon) transmission. A variety of practical
coding strategies can then be modeled by using other
shifts less than 8 dB.
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5) Simulation Trials: For the purpose of averaging
throughput over a cell, we conduct 500 trials in a sim-
ulation. In any given trial, K users are distributed at
random locations uniformly over the cell/sector. A given
trial assigns a location, shadow-fade combination to each
user, and user locations are uncorrelated. In each trial,
users experience 1000 different multipath fades7. Thus,
there are 500, 000 quasi-static-block-fade transmission
intervals in all. In this study, we consider both limited and
unlimited constellation sizes. For the limited constellation
case, modulations up to 16-QAM (leading to a symbol
rate of up to 4 bits/symbol) are considered. This maximum
is practical for present-day cellular implementations8.

III. NUMERICAL RESULTS

Figs. 3–6 show the cell-wide average throughputs that
are offered by MMSE systems for the many dimensions
we considered. We show only a sample listing, instead
of presenting throughputs over all dimensions, to keep
the discussion useful and concise. Our initial discussion
refers to the case of a Rician κ-factor of κ = 0 and omni-
directional antennas. Any deviations we make from this
baseline case in subsequent paragraphs will be so noted.

We have organized our figures as follows: Figures
3 and 4 consider the single- and multi-cell cases
respectively for the (1, 1) configuration; while figures 5
and 6 do the same for the (3, 3). Figures 7 and 8 refer
to (3, 3) with sectorized antenna patterns.

Figure 3. Mean throughput as a function of number of users for the
(1, 1) system, single-cell environment, κ = 0, and omni-directional
antennas. Throughputs are plotted for all three scheduling algorithms, for
both unlimited constellation (with ideal coding) and limited constellation
size (16-QAM).

Effect of Number of Users and Scheduling Algorithm:
It is known that at the link-level, multi-user diversity with
network scheduling leads to gains that grow as O (logK).
Referring to Figs. 3–6, we see that this is also the case for
system-level simulations for unlimited constellation sizes
(although the scalar multipliers, and lower order terms,
are different for different scheduling algorithms).

7Since Rayleigh fading has significant density at the tail, 1000
realizations are needed for statistical stability.

8The state-of-art is 16-QAM for mobile wireless systems, and 64-
QAM for fixed wireless systems.

It is clear that MAX leads to higher gains with in-
creasing K, while EGoS leads to limited gains. In some
cases (the multicell scenarios), EGoS leads to throughput
loss rather than gain. This is readily explained by the
fact that EGoS is a “poor man’s” scheduling algorithm. It
penalizes users with better channels to allow users with
poor channels to catch up. This leads to a situation in
which users with weak channels determine the overall
scheduler performance.

The PF scheduler, in contrast to the EGoS scheduler,
always leads to gains with increasing number of users. It
is also evident from the figures that PF with β = 0.98
leads to curves parallel to those for EGoS in the mid-to-
high region of K. Different values of β can lead to a range
of ‘tunable’ PF schedulers, although, 0.90 ≤ β < 1.00 is
a practical range9.

As explained earlier, MAX leads to very good gains as
compared to EGoS and PF. However, it is a biased/greedy
algorithm, which may not serve well for environments
having quality of service (QoS) requirements. EGoS
attempts throughput fairness, while PF attempts to strike
a balance between cell-wide throughput and fairness.
However, as will be seen shortly, EGoS can also be
useful under practical circumstances.

Figure 4. Mean throughput as a function of number of users for the
(1, 1) system, multi-cell environment, κ = 0, and omni-directional
antennas. Throughputs are plotted for all three scheduling algorithms, for
both unlimited constellation (with ideal coding) and limited constellation
size (16-QAM).

Effect of Co-Channel Interference: In the single-cell
scenario, multi-user diversity improves the signal (chan-
nel) quality, while in the multi-cell case, it has room
to perform an additional function: that of interference
avoidance [20]. This means that we can expect better
gains with increasing K for the multi-cell case. This is
indeed so, as evidenced by a comparison between Fig’s.
3 and 4 or 5 and 6; i.e.,

TPsingle−cell,K=25

TPsingle−cell,K=1
<
TPmulti−cell,K=25

TPmulti−cell,K=1
.

SINRs in the single-cell case (20 dB to 60 dB) are
much higher than those in the multi-cell case (−5 dB to

9With 0.90 ≤ β < 1.00, the effective averaging window is 10
transmissions or greater, which is sufficient for averaging purposes. For
β < 0.90, exponential averaging will have an extremely short memory.
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25 dB), leading to correspondingly lower throughputs for
the latter. MAX and EGoS curves display more or less
similar trends for the single and multi-cell cases, whereas
PF yields better gains (the PF curve moves away from
EGoS, closer to the MAX curve) for the multi-cell case.

Effect of Degrees of Freedom: In a (1, 1) system, multi-
user diversity improves the operating SINR. In a (3, 3)
system, multi-user diversity improves both the operating
SINR, as well as the available degrees of freedom of
the system. In other words, the entire channel subspace
structure (the number, as well as values of the eigen-
space) is improved [18].

Note that neither the SISO (1, 1), nor the MIMO (3, 3)
system have excess degrees of freedom. It is clear that,
although we see a substantial increase in mean through-
put for the MIMO (3, 3) system as compared to the
SISO (1, 1) system, we cannot expect the increase to
be three-fold, despite the creation of three parallel de-
coupled streams at the receiver. This is because the
available degrees of freedom (receive antennas) are used
to combat cross-stream interference (XSI), even at the
cost of noise enhancement. Also, each transmit antenna
in the (3, 3) system now uses only 1/3 the total transmit
power as compared to the SISO system.

Similar trends are seen for both single and multi-cell
cases. Note the change in scale of the y-axis for the
(3, 3) configuration (Figs. 5, 6) as compared to the (1, 1)
configuration (Figs. 3, 4).

Figure 5. Mean throughput as a function of number of users for the
(3, 3) system, single-cell environment, κ = 0, and omni-directional
antennas. Throughputs are plotted for all three scheduling algorithms, for
both unlimited constellation (with ideal coding) and limited constellation
size (16-QAM). (Note the change in the vertical scale relative to Figures
3 and 4).

Effect of Antenna Sectorization: Antenna sectorization
is an interference suppression technique. Co-channel in-
terference is reduced by using antenna beam patterns
and frequency coloring [29], [30]. By contrast, multi-user
diversity is an interference avoidance technique, which
also improves channel subspace structure (by avoiding ill-
conditioned channels). Since antenna sectorization cannot
improve channel structure, it is clear that multi-user di-
versity is the superior technique, particularly for a system
with many users. Antenna sectorization and multi-user

diversity can be used in conjunction, since their goals are
not necessarily conflicting. It stands to reason that as the
number of users increases, the combined gain will have
diminishing benefit, with multi-user diversity playing an
increasingly major role.

From Figs. 6 and 7, for a reuse factor of 1, using sec-
torized antennas leads to about a two-fold improvement in
throughput over omni-directional antennas for the single-
user case10.

As the number of users is increased, the benefit due
to antenna sectorization gradually decreases for all three
schedulers, as was expected. As a percentage, sectoriza-
tion leads to far more improvement in EGoS performance
as compared to MAX and PF.

Figure 6. Mean throughput as a function of number of users for the
(3, 3) system, multi-cell environment, κ = 0, and omni-directional
antennas. Throughputs are plotted for all three scheduling algorithms, for
both unlimited constellation (with ideal coding) and limited constellation
size (16-QAM). (Note the change in the vertical scale relative to Figures
3 and 4).

Effect of Rician κ-Factor: It is known that, in the
presence of a strong specular component (κ ∼ 10) the
mean throughput of SISO (1, 1) systems increases [1], [9],
[11], [22]. Adding users and scheduling algorithms results
in the following changes: mean throughput increases
slightly (∼ 3%) for the MAX scheduler, decreases slightly
(∼ 5%) for PF, and decreases moderately (∼ 9%) for
EGoS, over all K. Similar trends hold for the single- and
multi-cell cases.

For the MIMO (3, 3) system, going from κ = 0 to
κ = 10 leads to a substantial decrease in capacity [1], [9],
[11], [22]. However, as the number of users is increased,
the losses are reduced. This can be explained by the
inherent property of multi-user diversity to choose the
relatively best channel. Loss reduction with increasing
number of system users is the highest in MAX, followed
in order by PF and EGoS.

Mean throughput values for Rician fading with
κ-factor a function of distance (Table II) are bracketed
those obtained for κ = 0 and κ = 10, closer to those
obtained using κ = 10.

10This is consistent with results from conventional systems (using
three-sector antennas enables cellular system planners to bring down
the reuse factor from 12 to 7, which amounts to a similar throughput
increase [30, Ch. 3]).
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Effect of Coding: For the single-cell case, for both
(1, 1) and (3, 3) systems, the reduction in throughput at
K = 1, for uncoded signals relative to Shannon coded
signals is about 20% [11], [31]. As the number of users is
increased, we experience a decrease in the throughput loss
for uncoded transmission. Throughput loss at K = 25 is
about 15% for the MAX scheduler, 22% for PF and 25%
for EGoS.

For the multi-cell case, the coding loss at K = 1 for
both (1, 1) and (3, 3) systems is about 40−50% [11], [31].
At K = 25, the losses are about 25%, 45% and 50%, for
MAX, PF and EGoS respectively.

Thus, at higher K, there is improvement for MAX, but
not for PF and EGoS in both the single- and multi-cell
cases.

This can be explained as follows: Loss due to uncoded
transmission depends on the operating SINR. For the
single-cell case, the operating SINR is high, hence the
throughput loss is comparatively low, and comparable
percentage losses are recorded by all three schedulers. On
the other hand, operating SINRs are significantly lower
for the multi-cell case, hence throughput losses are higher.
Multi-user diversity has the inherent property of seeking
users with good SINRs; however, this applies to the MAX
scheduler more than to the PF and EGoS schedulers.
Depending on past transmission history, PF and EGoS
schedulers may not be able to choose the best user. Hence,
they lead to correspondingly less improvement.

For sectorization, SINRs, and hence coding losses
observed, will be bracketed by the single-cell and
multi-cell cases above.

Effect of Limited Constellation Sizes: Whereas unlim-
ited constellation size provides insight to the potentially
achievable throughputs the system can offer, it is also
necessary to look into throughputs that practical systems
can actually realize. Figs. 3–6 give some illustrative
results. Limiting the transmit alphabet size to 16-QAM
amounts to capping throughput at 4n bps/Hz. The effect
is to reduce the potential benefit from increasing number
of users in the system, particular choice of scheduling
algorithm, and antenna sectorization.

Compared to the case of unlimited constellation sizes,
we notice a substantial throughput loss for both (1, 1)
[Fig. 3 for single-cell, Fig. 4 for multi-cell] and (3, 3)
systems [Fig. 5 for single-cell, Fig. 6 for multi-cell].
Throughput saturation (due to constellation size capping)
is almost immediate (K = 3) for the single-cell case.
For the multi-cell case, throughput leveling occurs at
K = 7 for PF and EGoS, and the differences between
the throughputs offered by the scheduling algorithms are
substantially reduced.

Since throughput per-cell differences between the var-
ious schedulers are negligible for the single-cell case,
and significantly reduced even for the multi-cell case,
it becomes reasonable to view these findings through
the prism of other metrics. In this context, we note
the following: EGoS can be more suitable than MAX

and PF for the single-cell case [Figs. 3 and 5] since it
is the ultimate throughput-fair scheduler; MAX may be
unsuitable since it is biased, while PF may be unsuitable
since it is not stable11 [32]. For the multi-cell case,
PF may be more suitable than MAX, depending on
QoS requirements [Figs. 4 and 6]. This observation has
important implications for current state-of-the-art systems
that can support signal constellations up to 16-QAM.

IV. MULTI-USER DIVERSITY SYSTEMS WITH NO
EXCESS DEGREES OF FREEDOM VS. SINGLE-USER
SYSTEMS WITH EXCESS DEGREES OF FREEDOM

We now provide a brief comparison between single-
user systems employing excess degrees of freedom (SU-
EDoF), and multi-user diversity systems having no excess
degrees of freedom (MuD-wo-EDoF). Both mechanisms
attempt to improve received signal quality, as measured
by the post-processing SINR, and use of one technique
does not preclude using the other (i.e., it is possible
to combine multi-user diversity with excess degrees of
freedom (MuD-EDoF)).

In SU-EDoF, a receiver uses excess antennas achieving
diversity to combat fading, or to suppress one or more co-
channel interference streams, or a combination of both
[26]. SU-EDoF is a radio-layer technique, and can be
used for all application types (delay-elastic, as in data
applications, or delay-intolerant as in voice applications).
By contrast, multi-user diversity schedules the user with
the best signal quality, i.e., interference avoidance is inher-
ently achieved. However, multi-user diversity (both MuD-
EDoF and MuD-wo-EDoF) is applicable only to delay-
elastic applications, wherein the scheduler selects one user
for transmission. Viewed from this perspective, multi-user
diversity may be considered as a cross-layer technique
in which the radio (PHY)-layer continually educates the
medium access control (MAC)-layer. Since multi-user
diversity is able to improve the channel subspace structure
(by avoiding ill-conditioned channels), a capability which
SU-EDoF does not have, it can be the superior technique,
particularly in a system having many users.

We now discuss how MuD-wo-EDoF may be used in
lieu of SU-EDoF, thereby leading to a reduction in the
number of receive antennas, while offering comparable
or greater throughput12. We have seen previously that,
EGoS leads to small gains for the single-cell scenario,
and moderate loss for the multi-cell scenario, as a function
of number of users K. Hence, EGoS cannot be used as
a scheduler in MuD-wo-EDoF to compete against SU-
EDoF. Similarly, we have seen that the PF scheduler has
curves that are nearly parallel to those of EGoS with
higher multi-user diversity gains. This implies that the PF
scheduler can be used with MuD-wo-EDoF to compete
against SU-EDoF wherein the excess degrees of freedom
in SU-EDoF are few (e.g. one). When excess degrees of

11A stable algorithm always results in bounded queue lengths under
any conceivable traffic scenario.

12Since there is a reduction in the number of receive antennas, there
is considerable impact, since it affects all mobiles.
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freedom in SU-EDoF are many, e.g. MIMO (3, 6), the
MAX scheduler should be used.

Figure 7. Mean throughput as a function of number of users for the
(3, 3) system, with unlimited constellation sizes and ideal coding, multi-
cell environment, κ = 0, and sectorized antennas. Throughputs for all
three scheduling algorithms are plotted. The upper horizontal line is for
the single-user MIMO (3, 6) system (no multi-user diversity), while the
lower horizontal line is for the single-user MIMO (3, 4) system.

Fig. 7 illustrates a representative example, where the
upper horizontal line indicates the performance of the
single-user MIMO (3, 6) system, and the lower horizontal
line indicates the performance of the single-user MIMO
(3, 4) system. These systems are able to suppress up to
3 and 1 interfering streams, respectively. We see that a
MuD-wo-EDoF system incorporating the MAX scheduler,
with 2 or more users can offer equal or better performance
than the single-user MIMO (3, 4) system, while 4 or
more users are needed to achieve performance equal to
or better than that for single-user MIMO (3, 6). With a
MuD-wo-EDoF system incorporating a PF scheduler, 10
or more users are needed to compete with a single-user
MIMO (3, 4) system. A PF-based MuD-wo-EDoF system
cannot compete with a single-user MIMO (3, 6) system,
no matter how large K is.

The above comparisons hold even for the case of
limited constellation sizes, as seen in Fig. 8. In this case,
however, the differences, in terms of design choices and
their consequences, are markedly reduced.

Figure 8. Mean throughput as a function of number of users for
the (3, 3) system, with limited constellation size (16-QAM), multi-cell
environment, κ = 0, and sectorized antennas. Throughputs for all three
scheduling algorithms are plotted. The upper horizontal line is for the
single-user MIMO (3, 6) system (no multi-user diversity), while the
lower horizontal line is for the single-user MIMO (3, 4) system.

V. SUMMARY AND CONCLUSIONS

We have evaluated the throughput performance of SISO
and MIMO-based cellular systems which employ multi-
user diversity over several useful system-level design di-
mensions. By evaluating the performance of two extreme
schedulers (MAX, EGoS), we have been able to obtain a
perspective on the performances realized by a variety of
useful schedulers. The PF scheduler was also considered
as a representative and widely popular example. Our chief
observation is that, although the various dimensions are
important considerations for SISO and MEA systems, the
potential benefits need to be weighed in the context of
limited signal constellations that are prevalent in present
day practical systems. Since per-channel throughput dif-
ferences were negligible for the single-cell case, and
dramatically reduced for the multi-cell case, other metrics
(fairness and stability) were employed to get another
perspective on the findings. There, EGoS seemed a rea-
sonable choice for the single-cell case, and PF seemed
reasonable in multi-cell scenarios when delay tolerance
was allowed.

We also compared single-user MIMO systems that use
excess degrees of freedom (SU-EDoF) and those that use
multi-user diversity without excess degrees of freedom
(MuD-wo-EDoF). Here, among scheduler choices, it is
clear that EGoS is not a viable candidate; that PF has
limitations in the number of excess receive antennas it
can compete against in SU-EDoF based systems; and, that
MAX is the best option in terms of cell-wide throughput.

In general, for applications that are delay-tolerant, a
MuD-wo-EDoF system with a large number of users can
deliver substantially higher throughputs than SU-EDoF
links. This is especially when using SU-EDoF with only
one extra antenna, but applies even to the case of up to
three. Finally, the amount of improvement using MuD-
wo-EDoF instead of SU-EDoF decreases with increasing
limits on constellation size.

APPENDIX A DEFINITIONS

1) Array processor: the unit at the receiver, which
attempts to separate the received streams in the face
of cross-stream interference (XSI) and co-channel
interference (CCI) as optimally as possible.

2) Degrees of Freedom: the number of decomposable
parallel SISO channels that can be created after
array processing. It equals the rank of the channel
gain matrix H, and is upper-bounded by min (n,
m).

3) Excess Degrees of Freedom: the excess number
of receive elements over transmit elements, i.e.,
m − n. When the receive array has at least as
many antenna elements as the transmit array, we
can receive all of the transmitted streams at the
receiver after array processing.
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APPENDIX B SIMULATION APPROACH

The intention in this study is to compute through-
put statistics of several SISO/MIMO configurations in a
multi-user scenario (employing network diversity schedul-
ing) for various design options. Highlights of the steps
involved are as follows:

1) Distribute K MSs in cell (uniform random uncor-
related locations), and generate channel matrices
H1, · · · ,HK as given by (5).

2) ∀ k, compute post-processing SINR for each sub-
stream j, assuming MMSE reception ((10)-(11)).

3) ∀ k, compute the throughput for each substream j
((12), (14)). This is the vector CQI for user k.

4) ∀ k, compute SCQI =
∑
substreams CQI .

5) Schedule user k∗(t) (Equations (1), (2), (3)), and
update his cumulative throughput (

∑
t TP (k∗, t)).

6) Update the averages ((4)) of all users.
7) Compute the average cell-wide multi-user through-

put over 500 locations (each with lognormal shadow
fading) and 1000 multipath fades per location.

At the beginning of each block-fade interval, pilot signals
are transmitted to estimate the receiver array weights. The
receiver then determines the constellation size (M ) from
the substream post-processing SINRs, and communicates
this information to the transmitter. Based on CQI, past
transmission history, delay/latency constraints and the
particular scheduling algorithm in use, a particular user is
selected for transmission. Adaptive modulations at each
transmit antenna then quickly select the corresponding
optimal QAM constellation. The channel remains known
throughout, since estimation-feedback-adaptation occurs
within the block fade interval. By assumption, we ex-
clude all overheads (pilot signaling, channel estimation
at receiver, feedback and signal-adaptation) from our
throughput computation procedure.
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Abstract— The advent of applications that need higher
throughputs motivates wireless service providers and cellu-
lar operators to embrace newer technologies that can meet
these demands. Multiple-input-multiple-output (MIMO) sys-
tems have shown promise in their ability to deliver high
throughput per bandwidth with reasonable constellation
sizes. Adding antennas at the base station (BS) is practical
due to reasons of size and cost amortization over users.
However, adding antennas at the mobile station (MS), which
does not have similar advantages, needs to be carefully
evaluated. We therefore consider the more general class of
techniques involving a multiple-element antenna (MEA) at
one or both ends of the link (MIMO corresponding to the
case of both).

From a commercial standpoint, one needs to address the
following questions: (i) What is the benefit of a second
antenna at the BS or the MS relative to the single-input-
single-output (SISO) case? (ii) What is the added value of
a second antenna at both ends? (iii) If a second antenna is
indeed used at both ends, which mode of operation — spatial
multiplexing (SM) or diversity (Div) — is the preferred one?
Using (n,m) to denote a link with n BS transmit elements
and m MS receive elements, we compare the downlink
throughput performance of the SISO link with that of four
MEA configurations: (1, 2), (2, 1), (2, 2) with Div and (2, 2)
with SM. Our results indicate that, in the context of adaptive
modulation with practical limits on constellation size, (1, 2)
is the preferred configuration. We also show this finding to
be robust to assumptions used in the study.

Index Terms— SISO, MIMO, MEA, MMSE, multipath fad-
ing, shadow fading, co-channel interference, cross-stream
interference, interference cancellers

I. INTRODUCTION

MULTIPLE-INPUT-MULTIPLE-OUTPUT (MIMO) sys-
tems have been accepted as a significant break-

Manuscript received February 15, 2011; revised May 15, 2011;
accepted June 15, 2011.

through in modern digital communications, due to their
ability to deliver higher spectral efficiencies with rea-
sonable constellation sizes, as compared to single-input-
single-output (SISO) systems [1]–[3]. A laboratory imple-
mentation of the so-called vertical Bell Labs layered space
time architecture (VBLAST) demonstrated the feasibility
of the MIMO concept, delivering spectral efficiencies of
20–40 bps/Hz under indoor conditions [4]. Not surpris-
ingly, MIMO’s potential is being tapped for commercial
wireless products and networks such as wireless local
area networks (WLANS), third-generation (3G) cellular
networks, WiMAX, and future Internet-intensive wireless
networks (including 4G networks).

A multi-element antenna (MEA) link (of which MIMO
is a special case) employs a multi-element array at one or
both ends. When only one end of the link uses an MEA,
diversity can be achieved; this improves quality and thus
enables higher throughput via larger signal constellations.
When both ends use an MEA — the MIMO case —
it is possible to enhance throughput via either diversity
(Div), as above; spatial multiplexing (SM), whereby the
receiver can de-couple multiple parallel streams sent by
the transmitter; or a combination of both [5].

We will study and compare the performance of SISO
links and several kinds of MEA links. Application type
determines which aspect of performance matters most.
For some applications (e.g., data), higher throughput,
even if over intermittent connections or over smaller
separation distances will be deemed as “good”, while
other applications (e.g., voice, streaming) may prefer to
trade throughput for sustained connections and/or a wider
coverage area. It is thus clear that no single performance
metric will suffice. Accordingly, we study the following
metrics: (i) the mean, over the cell, of the per-link

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 4, JULY 2011 285

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcm.6.4.285-292



TABLE I.
3GPP2 SIMULATION PARAMETER SUMMARY

1 Cell Geometry Regular array of hexagonal cells, with site-to-site distance 2.5 km (i.e., cell radius of
1.4434 km).

2 Number of Cells 1 tier-ring, 3 sector system (21 sectors total).

3 Antenna Horizontal Pattern (sectoring) 70◦ (–3 dB), with 20-dB front-to-back ratio (see Note 1 below).

4 Antenna Orientation 0◦ azimuth is North (main lobe). No loss is assumed on the vertical dimension.

5 Propagation Model 28.6+35 log10(d) dB, d in meters. Modified Hata Urban Propagation Model @ 1.9
GHz (COST 231). Min. separation of 35 m between MS and BS.

6 Lognormal Shadowing Standard Deviation σ = 8.9 dB (see Note 2 below).

7 Base Station Correlation 0.5 (see Note 2 below).

8 Mobile Noise Figure 10 dB.

9 Thermal Noise Density −174 dBm/Hz.

10 Carrier Frequency 2 GHz.

11 System Bandwidth 5 MHz.

12 BS Antenna Gain 15 dB total from 17 dB BS gain; 2-dB cable loss.

13 Other Losses 10 dB.

14 Fast Fading Model Rician (see Table 2).

15 BS maximum PA Power 20 W.

16 Maximum C/I achievable 13 dB for typical IS-95 and cdma2000 1x systems and 18 dB for 1xEV-DV and
1xEV-DO systems.

throughput and (ii) 30th percentile of the link throughput.
Mean throughput provides a measure of the data vol-

ume an operator can deliver, in that this quantity times
the number of channels per cell is a good approximation
to the total throughput per cell. The 30th percentile of
throughput is a useful measure of user perception, in
that the vast majority of users (70%) will experience this
throughput or more. Each metric thus has value from one
perspective or another.

The essential aim of this study is to decide the merit
in modifying a SISO link with added antenna elements
at one or both ends. We denote a general downlink
configuration by (n,m), where n is the number of base
station (BS) transmit elements and m is the number
of mobile station (MS) receive elements. Considering
present-day technology and economics, we limit our study
to the possibility of at most two antenna elements at each
end. Thus, we investigate five configurations in all: (1, 1),
which is SISO; (2, 1), MISO with transmit diversity;
(1, 2), SIMO with minimum-mean-square-error (MMSE)
receiver; (2, 2) with Div; and (2, 2) with SM. Computing
the performances of these configurations, based on the
metrics cited above, the differences can be used to decide
whether (and where) addition of antenna elements is
justified. By studying the performance of particular MEA
configurations1 for a specific standard (3GPP2), we are
augmenting our knowledgebase in [6]–[9].

Systems engineers from several commercial companies
have performed similar studies, for both High Speed
Packet Access (HSPA) and Long Term Evolution (LTE)

1For configuration (1, 2), we can employ either the maximal ratio
combiner (MRC) or the minimum mean square error (MMSE) receiver
structure. Of the two, MMSE is higher performing, as it offers an optimal
balance between diversity and co-channel interference suppression,
leading to higher throughput. MRC on the other hand offers only a
diversity benefit.

networks. Their contributions feed into the knowledge-
base maintained by the standards bodies (3GPP, 3GPP2),
and can be found in [10]. A sampling of academic
investigations for MIMO capacities is [11]–[13]. The
rest of this paper is organized as follows. We discuss
the simulation platform in Section II, and the results in
Section III. Section IV summarizes our work, and presents
some key conclusions.

II. SIMULATION PLATFORM

We developed a system-level simulation platform for
computing the throughputs of MEA cellular systems.
The test bed is sufficiently general to allow us to work
with several key system-level parameters, namely, size of
the transmit and receive MEAs; frequency reuse factor;
antenna pattern (omni or sectorized); degree of error pro-
tection (perfect coding, no coding, or intermediate coding
strategies); maximum constellation size; and, Rician K-
factor.

A. MIMO System Model

In our MIMO cellular data environment, a given cell,
consisting of a serving BS and a MS on every frequency
channel, is surrounded by one contiguous tier of six
cells. Our platform incorporates aspects of the 3GPP2
environment, as detailed in Table I.

NOTES
1. The base station antenna pattern used for each sector,
is specified by

G(θ) = −min

[
12

(
θ

θ3dB

)2

, Am

]
dB, −180 ≤ θ ≤ 180,

where θ3dB is the 3-dB azimuth beamwidth and
Am = 20 dB is the maximum attenuation.
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TABLE II.
VARIATION OF RICIAN K-FACTOR AS A FUNCTION OF BS-MS SEPARATION DISTANCE (PERCENTAGES SPECIFY THE DISTANCES RELATIVE TO

THE CELL RADIUS).

Distance % 0-5 5-15 15-25 25-35 35-45 45-55 55-65 65-75 75-85 85-100

Rician K 10 9 8 7 6 5 4 3 2 0

2. The random shadow fading xk between a MS and
a BSk (whether serving or interfering) is the weighted
sum of a component z common to all cell sites and
a component zk which is independent of z and from
one cell site to the next. Both components are Gaussian
distributed with zero mean and standard deviation σ.
Thus, xk = az+ bzk, k = 0 . . . 6, where a2 + b2 = 1. In
this study, we assume a2 = b2 = 1/2, meaning that xu
and xv , u 6= v, are 50% correlated.

The complex baseband channel gain between the jth
transmit antenna and the ith receive antenna is modeled
by

hij =
√
G(θ)

√
A

(
d0

d

)Γ

s

[√
K

K + 1
ejφ +

√
1

K + 1
zij

]
,

(1)
where
• θ is the angle between the 0◦ azimuth, and the BS-

MS link.
• d is the link length, Γ is the path loss exponent, and
A is the median path gain at reference distance d0.

• s = 10S/10 is a log-normal shadow fading variable,
where S is a zero-mean Gaussian random variable
with standard deviation σ dB.

• φ = 2πd/λ is the phase shift of a plane wave from
the transmitter to the receiver. We assume that for
a given transmit-receive pair, all link-paths have the
same length.

• zij represents the phasor sum of scattering com-
ponents for the (i, j) path. These are assumed to
be zero-mean, unit-variance, i.i.d. complex Gaussian
random variables.

• K is the Rician K-factor.

Using appropriate parameter values in (1), the path-loss
portion of the channel gain formula (first square root term
outside the brackets) is made to follow the propagation
model specified in Table I (Item 5). The Rician K-factor
typically decreases as the MS moves farther away from
the BS. The assumed variation of the K-factor with
distance is given in Table II.

B. System Model Assumptions
We invoke the assumptions often made in conjunction

with MIMO systems [1], [3]: (i) narrowband signaling,
(ii) quasi-static (block) fading, (iii) long burst interval,
and (iv) independently faded Rayleigh/Rician path gains.
This permits a mathematical representation for the MIMO
cellular system as follows:

Y = HX + Z, (2)

where X ∈ C7n,Y ∈ Cm, are transmit (serving and
interfering) and receive signals, H ∈ Cm×7n is the chan-
nel gain and Z ∈ Cm is thermal noise, that is Gaussian
distributed with zero mean and power spectral density
(PSD) N0. Since the noises corrupting the different re-
ceive antennas are independent, Z has an autocorrelation
matrix N0Im×m, with Im×m being the identity matrix.

We assume only one tier of interferers around the
serving BS. This assumption is made to simplify the simu-
lations and is slightly optimistic; however, the rapid decay
of signal power with distance makes this assumption
reasonable. Moreover, we offset it with the pessimistic
assumption that all co-channel interferers are transmitting
all the time.

We assume an algorithm that perfectly adapts the
transmission (via the constellation size2) according to the
instantaneous radio channel and interference conditions.
For (2, 2) SM, it is possible for different transmit antennas
to choose different constellation sizes.

The transmit power per antenna element is P/n so
that the total power transmitted on each link is the
same regardless of n. Additionally, since cell-site (macro)
diversity has been shown to have minimal impact on mean
throughput calculations [14], [15], we do not use this in
our simulations, i.e., for simplicity, we assume that users
communicate with the base station that is the nearest, not
necessarily strongest.

C. Array Processing Schemes
1) Transmit Diversity via Alamouti Coding: The

Alamouti scheme is an optimal transmit diversity scheme.
It is optimal in the sense that it offers the maximum
code rate (r = 1) and does not suffer from any loss of
performance as compared to an MRC diversity scheme
[16], [17]. Specific engineering aspects of this scheme
are detailed in [18].

Under the assumption that noise plus co-channel inter-
ference (CCI) can be treated as complex Gaussian, the
Alamouti scheme on a (2,m) link has the same perfor-
mance as the (1, 2m) MRC receiver at half the transmit
power of the (2,m) MIMO configuration [18]. This
enables an easy computation of the signal-to-interference-
plus-noise-ratios (SINRs):

γi =
|hi0|2(P/2)

σ2 +
∑
k CCIik

, i = 1, 2, . . . , 2m, (3)

γalamouti =
∑
i

γi, i = 1, 2, . . . , 2m, (4)

2The procedure to compute the optimum size of the transmit con-
stellations for all five configurations will be made explicit later (see
Appendix).
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TABLE III.
OFFSETS FROM THE SHANNON CURVE FOR THE CONFIGURATIONS UNDER CONSIDERATION.

Configuration (1, 1) SISO (2, 1) Div (1, 2) MMSE (2, 2) Div (2, 2) SM

Offset (dB) 3.5 4 4 5 6

where:
• hi0 is the instantaneous signal gain from the serving

BS to the ith receive antenna.
• P is the total transmitter power.
• CCIik is the instantaneous power from the kth inter-

fering BS at the ith receive antenna.
• γi is the input SINR at the ith branch of the MRC

receiver.
• γalamouti is the SINR at the receiver output.

Equation (4) is the well known result that the SINR of
an MRC receiver is equal to the sum of SINRs of its
individual branches.

2) The Minimum Mean-Square Error (MMSE) Re-
ceiver: MIMO permits the creation of several parallel
transmission streams, i.e., spatial multiplexing. These
streams interfere at each receive antenna, which the
receiver array processor separates by using an appropriate
set of weights. In this study, we assume use of the
MMSE processor to implement spatial de-multiplexing.
Other possible receiver array processors are zero-forcing
(ZF), successive-interference-cancellation (SIC), ordered-
SIC (OSIC) and OSIC-MMSE [14].

The MMSE array processing scheme separates the
received signals by computing a linear combination of the
received signals using a set of weights that achieves the
minimum mean-square error between the output estimate
and the true signal sample. Thus,

X̂ = WHY. (5)

The performance index is,

ζ(WH) , E

 n∑
j=1

|εj |2
 = E

 n∑
j=1

|xj − x̂j |2
 , (6)

where xj is the jth transmitted signal. The expectation in
(6) is taken with respect to the noise and the statistics of
the data sequences. The desired weight matrix that yields
the minimum mean square error is given as [14]

W = A−1H, (7)

where,

A = HHH +
σ2

P/n
Im×m. (8)

The post-processing SINR on the jth decoded stream can
be shown to be [14], [19],

γj = (H)Hj R−1
j (H)j , j = 1, 2, . . . , n, (9)

where

Rj =

7n∑
l=1, l 6=j

(H)l(H)Hl +
σ2

P/n
Im×m, (10)

and (H)j is the jth column of H.

D. Link Throughput

For AWGN channels, achievable throughput is upper-
bounded by the Shannon limit

Tj = log2 (1 + γj) , (11)

where Tj is the sub-channel throughput. The per-user data
throughput is

∑
j Tj .

For practical systems, it is known that link throughput
can be approximated by using curves shifted by SINR
“offsets” from the Shannon curve [20]. The exact offset
used depends on the link configuration (SISO, MEA), the
receiver structure, etc. We can thus write

Tj = log2

(
1 +

γj
10x/10

)
. (12)

The authors in [20] report that a 3-dB offset from
the Shannon curve is needed to take into account finite
alphabets and imperfect channel coding (especially when
the block size is not very large), and overhead. For the
SISO configuration, the channel estimation SINR penalty
— from the overhead of the pilot signals and from non-
ideal demodulation using the noisy channel estimate —
is about 0.5 dB. This leads to an overall 3.5-dB offset for
the SISO configuration.

When two transmit antennas are employed, the trans-
mit power of the pilot has to be split evenly between
them; and when two receive antennas are employed, the
operating point of each receive antenna is lowered by 3
dB. In either case, the channel estimation penalty gets
worse by about 0.5 dB as compared to SISO. When two
transmit and two receive antennas are employed, the offset
used is 1.5 dB — which is more than the cumulative
effect of using either two transmit antennas or two receive
antennas. Moreover, in (2, 2) SM, there is an additional
1-dB penalty in channel estimation, since the MMSE
receiver needs to invert the channel gain matrix as part of
the channel estimation procedure. This leads to the offsets
from the Shannon curve, Table III.

We will use these SINR offsets in our computations.
To confirm the robustness of our conclusions, however,
we will also consider the case where all offsets are the
same, as we discuss next.

III. SIMULATION RESULTS

We computed throughputs of all five configurations
cited above, both where the SINR offsets are non-uniform,
as given by Table III, and where they are all the same. In
the latter case, we use a 6-dB offset.
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TABLE IV.
MEAN THROUGHPUT OBTAINED FOR THE VARIOUS CONFIGURATIONS.

System (1, 1) SISO (2, 1) Div (1, 2) MMSE (2, 2) Div (2, 2) SM

Diff. Est. Offsets (bps/Hz) 2.50 2.58 3.17 2.87 3.06

Unif. Est. Offsets (bps/Hz) 2.24 2.37 3.00 2.77 3.06

TABLE V.
30TH PERCENTILES OF THE MULTIPATH-AVERAGED THROUGHPUTS OBTAINED FOR THE VARIOUS CONFIGURATIONS.

System (1, 1) SISO (2, 1) Div (1, 2) MMSE (2, 2) Div (2, 2) SM

Diff. Est. Offsets (bps/Hz) 0.64 0.66 1.60 0.97 0.52

Unif. Est. Offsets (bps/Hz) 0.43 0.47 1.26 0.83 0.52

Trying many possible combinations of offsets for the
various configurations is too expensive an undertaking
for gauging the sensitivity of conclusions to the chosen
SINR-offsets. The search space is considerably reduced
by investigating reasonable offsets that will likely “stress
test” our conclusions. This is best brought about by
using offset values that benefit the (2, 2) configurations
or degrade the performance of the others. A uniform 6-
dB offset for all configurations is one such example.

For the purpose of averaging, we distribute the MS
with uniform randomness at 1000 locations over a given
sector. To accommodate the fact that shadow fading
and multipath fading are random, we allow each MS
to experience 100 different shadow fades at a given
location, and 1000 different multipath fades for each
location-shadowing combination.

In this study, we permit only a small, discrete set
of constellation sizes — BPSK and 4/8/16-QAM (cor-
responding, respectively, to symbol rates of 1/2/3/4
bits/symbol). These sizes are practical for present-day
implementations. We now address the main questions
motivating this study:
(i) What is the benefit of a second antenna at the BS or
MS relative to the SISO case?
(ii) What is the added value of a second antenna at both
ends?
(iii) If a second antenna is indeed used at both ends,
thereby creating a MIMO (2, 2) system, which mode of
operation — SM or Div — is the preferred one?

We shall answer these questions by measuring how
each configuration fares for each metric defined earlier.
Our results are summarized next.

A. Metric 1: Mean Throughput
This metric gives the average of the link throughput,

Table IV.
From this table, we conclude the following:
• (1, 2) MMSE is the best configuration for the case of

differential SINR-offsets, and is very close to the best
configuration for the case of uniform SINR-offsets.
Hence neither (2, 2) configuration is attractive, con-
sidering receiver complexity and costs.

• (2, 1) Div is only slightly better than (1, 1), and is
within approximately 0.6 bps/Hz of (1, 2) MMSE.

• (2, 2) SM is slightly better than (2, 2) Div.
• The performance gap among configurations narrows

for the more realistic case of differential offsets as
compared to the case of uniform offsets.

B. Metric 2: 30th Percentile of User Throughputs Cell-
Wide

This metric gives the throughput achieved or exceeded
on 70% of all links, taken over location and fading state,
Table V. From this table, we draw conclusions similar
to those above except that in this case (2, 2) Div fares
slightly better than (2, 2) SM.

(2, 2) SM produces lower multipath-averaged
throughputs for its 30th percentile users than (2, 2)
Div (Table V), but produces higher mean throughput
(Table IV). Since both configurations see the same set of
users statistically, it is the receiver structure that results
in the creation of these differences. The implication is
that stream decoupling/cross-stream interference (XSI)
in SM works against some set of users, while enhancing
a favored set of users. Div, on the other hand, attempts
throughput improvement over all users. These differences
will likely further exaggerate for higher-order MEAs.

Figure 1. Scatter plot of the five configurations for Metrics 1 and 2.
Both cases, uniform (smaller markers) and differential offsets (larger
markers), are shown. For the (2, 2) SM case, the values overlap (See
the last column in Tables IV and V).

Fig. 1 shows a scatter plot ranking all five configura-
tions for both Metrics 1 and 2. The plot enables us to see
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two perspectives simultaneously. From both perspectives,
and for either offset case, (1, 2) MMSE is more attractive
than the others, confirming previous conclusions.

Figure 2. Mean throughputs of 10 rings of equal user population with
differential SINR offsets.

Fig. 2 shows the mean throughputs of 10 concentric
rings of equal user population. Ring 1 consists of the 10%
of users closest to the BS. The throughput is averaged
over multipath fading, shadowing, and location (the users
in the ring). Examining Fig. 2, we see that:
• For users closest to the BS, (2, 2) SM offers a high

average throughput.
• For other users, all configurations except (1, 2)

MMSE provide comparable performance, with (2, 2)
SM doing slightly better than (2, 2) Div for ring 10.

Figure 3. Mean throughputs of 10 rings of equal user population with
uniform SINR offsets.

Fig. 3 shows the same plot for the case of uniform
SINR-offsets. As expected, the curves diverge, since
higher-order MEAs benefit from a lower relative offset
penalty. However, the divergence is small. Moreover,
except for populations closest to the BS, (1, 2) MMSE
remains the most attractive configuration.

We have established that, although both SINR-offset
cases result in minor differences in throughputs of the
configurations, they do not change the overall conclu-
sions. Therefore, we drop the case of uniform SINR-
offsets from further consideration, opting to use the more
realistic case of differential SINR-offsets from this point
on.

Figure 4. Fast-fading-averaged cell-wide distribution of throughput for
all five configurations (differential offsets).

Fig. 4 shows another throughput statistic: the distri-
bution of multipath-averaged user throughputs on a cell-
wide basis. The following salient points should be noted:
• All configurations, with the exception of (2, 2) SM,

operate with only one transmit stream and hence
have a peak rate of 4 bps/Hz. (2, 2) SM operates
with two streams, thus it can offer up to 8 bps/Hz.

• (2, 2) SM appears lucrative only for throughput re-
quirements exceeding 4 bps/Hz. In fact, for through-
puts less than 4 bps/Hz, it is the worst configuration.

• In the mid-region, the curves are about parallel to
one another. It is for this reason that the value of
the percentile chosen (lowest 30th) for Metric 2 is
arbitrary.

IV. SUMMARY AND CONCLUSIONS

The objective of this study was to quantify and compare
the throughput performance of five link configurations
involving one or two antenna elements at each end.

Our results indicate that, in the context of a limited
number of constellation sizes, and for the case of differ-
ential SINR-offsets, (1, 2) MMSE is the configuration of
choice for both metrics considered. The other four are
comparable in performance with each other. The main
reasons why (1, 2) MMSE scores best are: relatively low
channel estimation penalty, the absence of cross-stream
interference at receive antennas, and an excess receive
antenna to suppress CCI.

For the case of uniform offsets, the throughput results
change by small amounts, but the main conclusions do not
change from those for differential offsets. This reinforces
our findings and shows them to be robust to assumptions
used in the study.

The MMSE receiver assumed here for (2, 2) SM is
one example of the many receivers that can decouple the
SM streams; ZF, SIC, OSIC, and OSIC-MMSE receivers
are some others. Since changing the particular receiver
amounts to changing the SINR offset, against which our
conclusions are found to be stable, we claim that (1, 2)
MMSE is the preferred configuration regardless of the
particular receiver chosen by (2, 2) SM to de-couple its
streams.
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APPENDIX A PROJECT DESCRIPTION SUMMARY

It is clear that we intend to compute throughput statis-
tics of the five configurations. For the benefit of the reader,
we list the steps involved:
• Distribute MSs in cell.
• Generate channel matrix H as given by (1). The size

of H is given by (2).
• Compute post-processing SINR of substream j [(3)

and (4) for Div, (9) and (10) for SISO, MMSE and
SM].

• Compute throughputs for substream j [(12) and
Table III].

• The “MEA throughput” is sum of the throughputs of
the individual substreams.

At the beginning of each block-fade interval, pilot
signals are transmitted to estimate the receiver array
weights. The receiver then determines the constellation
size (M) from the substream post-processing SINRs, and
communicates this information to the transmitter. Adap-
tive modulations at each transmit antenna then quickly
select the corresponding optimal QAM constellation. The
channel remains known throughout, since estimation-
feedback-adaptation occurs within the block fade interval.
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Abstract— In this paper, we present the closed-form
expressions for the link outage and coverage of the zero-
forcing beamforming (ZFB) and zero-forcing dirty-
paper coding (ZF-DPC) multiuser multi-input multi-
output (MIMO) broadcast systems. We find that the
ZF-DPC MIMO broadcast system has a larger diversity
order and better coverage compared with the ZFB
MIMO broadcast system. Furthermore, it is observed
that the ZFB MIMO broadcast system with round-
robin scheduling has only the diversity order of one
and its cell coverage can only approach to that of
the weakest link of the ZF-DPC MIMO broadcast
system. By selecting the best group of users, multiuser
scheduling can function as a soft coverage enhancement
technique without increasing the extra transmission
power in the physical layer. Our analytical formula can
estimate to what extent the coverage performance of
the ZF-DPC MIMO broadcast system can be improved
as the number of users increases. Hence, the effect
of increasing the number of antennas on the coverage
performance of the ZF-DPC MIMO broadcast system
can be quantitatively analyzed subject to the same
transmission power from each base station.

Index Terms— MIMO systems, zero-forcing beam-
forming, zero-forcing dirty-paper coding, coverage,
MIMO broadcast channels, outage probability, diver-
sity order.

I. Introduction

Multiple-input multiple-output (MIMO) systems can
significantly increase spectral efficiency by exploiting the
degree of freedom in the spatial domain created by multi-
ple antennas. In the point-to-multipoint multiuser MIMO
broadcast channels, even with only one single receive
antenna at the user end, the spatial multiplexing gain
can be also achieved by sending precoded data across
multiple transmit antennas to a group of users simultane-
ously [1]. With complete channel state information (CSI)
available at the transmitter, the maximum sum rate of
MIMO broadcast systems can be achieved by dirty paper
coding (DPC) [1]. However, computational complexity and

Manuscript received February 15, 2011; revised May 15, 2011;
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IEEE 67th Vehicular Technology Conference (VTC2008-Spring), 11
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Li-Chun Wang is with the Department of Electrical Engineering,
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the requirement of full CSI at the transmitter limit the
applicability of DPC.

In the literature, the new lines of research from mul-
tiuser MIMO broadcast systems are classified into three
categories:

• First, rather than using the optimal DPC, the subop-
timal but more practical MIMO broadcast schemes
were proposed [2]–[6], such as the zero-forcing dirty-
paper coding (ZF-DPC), zero-forcing beamforming
(ZFB), block-diagonalization (BD), orthogonal ran-
dom beamforming, and receive ZF beamforming [7]–
[10]. These suboptimal schemes can asymptotically
achieve the same throughput of DPC when the num-
ber of users approaches to the infinity.

• Second, another important research direction for
MIMO broadcast systems is to investigate the impacts
of limited CSI due to the finite-rate or erroneous CSI
feedback [11]–[17]. For example, [12] showed that the
feedback load per user must be scaled together with
both the number of transmit antennas as well as the
system SNR to achieve the full multiplexing gain with
the near-perfect CSI.

• Third, MIMO broadcast transmission strategies were
also applied to the multi-cellular scenario to can-
cel the inter-cell interference for improving spectral
efficiency [18]–[20]. For example, the network base
station (BS) coordination conception is proposed
based on ZFB and ZF-DPC schemes in [19], [20].
In This concept is also called the coordinated multi-
point (CoMP) transmission in the third Generation
Partnership Project (3GPP) Long-Term Evolution-
Advanced (LTE-A) and the collaborative MIMO (Co-
MIMO) transmission in the IEEE 802.16m Worldwide
Interoperability for Microwave Access (WiMAX), re-
spectively [21]–[23].

Although the capacity issues of MIMO broadcast sys-
tems have been extensively investigated, to our knowledge,
the studies on the coverage performance of MIMO broad-
cast systems are rarely seen in the literature. From the
perspective of tradeoff between multiplexing and diversity
for a MIMO system [24], the transmit MIMO broadcast
systems may be a diversity-deficient scheme due to it
realizes spatial-multiplexing personalized transmissions. In
this paper, we derive the analytical closed-form expres-
sions for the link outage probability, link diversity order,
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and the reliable coverage radius of a multiuser MIMO
broadcast system. It is found that multiuser scheduling
can function as a link diversity compensation and soft
coverage extension technique for the MIMO broadcast
systems. The concept of soft coverage extension by mul-
tiuser scheduling was suggested for point-to-point MIMO
systems in [25] since multiuser scheduling can improve the
coverage of MIMO broadcast systems without increasing
transmission power in the physical layer. In [26], the
authors derived the closed-form expressions for the outage
and error rate performances in a single-user ZF-MIMO
system with imperfect channel feedback. However, both
[25], [26] only considered the single-user MIMO system
that serves one single user at any time instant, rather
than the MIMO broadcast systems that serves a group of
users simultaneously. Our developed analytical framework
can evaluate to what extent the multiuser scheduling can
improve the coverage performance of the multiuser MIMO
broadcast systems.

In this paper, we focus on two famous precoding
schemes, ZF-DPC and ZFB, to address the link and cover-
age performance of a MIMO broadcast system. Different
from the results in [27], we have further provided some
other works to make the link performance issue of MIMO
broadcast systems more complete. The additional works
can be summarized as follows:

• We derived the link diversity order of MIMO broad-
cast systems with ZF-DPC and ZFB transmission
precoding schemes. We find that the diversity order of
the i-th link for an Nt-link ZF-DPC broadcast system
without scheduling and ordering is Nt−i+1 and that
of the ZFB broadcast system without scheduling is
one, where Nt is the number of transmit antennas.
Taking the strongest link of ZF-DPC as an example.
The diversity order becomes KNt instead of Nt when
combining with K-user greedy scheduling. In [27], we
have observed this phenomenon via simulations but
not provided theoretical proofs.

• We consider the coverage extension issue with differ-
ent number of users K and antennas Nt when taking
advantage of multiuser scheduling. We demonstrate
a soft coverage enhancement technique for MIMO
broadcast systems by taking advantage of multiuser
scheduling.

The rest of this paper is organized as follows. Section
II introduces the ZF-DPC and ZFB MIMO broadcast
systems. In Section III, we define the link outage prob-
ability, diversity order, and reliable coverage radius in
MIMO broadcast systems. In Sections IV and V, we
derive the analytical expressions of these coverage related
performance metrics for the ZF-DPC and ZFB MIMO
broadcast systems. Numerical results are shown in Section
VI. We give our concluding remarks in Section VII.

II. Background

A. System Model
Consider a single-cell multiuser MIMO broadcast sys-

tem with a BS and K users. The BS is equipped with

Nt transmit antennas, but each of K user terminals has
only one receive antenna. Thus, Nt users are selected
from K users for simultaneous transmission with different
data streams. The subset of users’ indices to which a BS
intends to transmit different information is denoted by
S ⊂ {1, . . . , K}, |S| = Nt.

The beamforming weight matrix at the transmit-
ter is denoted by W = [w1 . . .wNt

], where wi ∈
C

Nt×1 and the input signal vector is denoted by u =
[
√

P1u1, . . . ,
√

PNtuNt ]
T . Here ui and Pi represent the

uncorrelated unit-power signal symbol and the power of
the symbol associated with user i, respectively. Then, the
transmitted signal vector x is written as x = Wu =
Nt∑
i=1

√
Piwiui ∈ C

Nt×1. Let y ∈ C
Nt×1 be the received

signal vector, and G(S) be the Nt × Nt channel matrix
corresponding to S. Denote n ∈ C

Nt×1 as the complex
Gaussian noise vector with E[nnH ] = σ2INt , where (·)H

denotes conjugate transpose. Then, the received signal can
be expressed as

y = G(S)x + n = gH(S)x + n , (1)

where g is an Nt × Nt diagonal matrix with g =
diag{√g1,

√
g2, . . . ,

√
gNt} and gi depicts the path loss

between the BS and user i. For a user at a distance of
R from the BS, gi can be written as [28]

10 log10 gi = −10µ log10 R + g0 [dB] , (2)

where µ is the path loss exponent and g0 is a constant
subject to certain path loss models 1. Assume that all
users experience independent flat Rayleigh fading and the
transmission power is constrained by E[xHx] = PT .

B. Zero-Forcing Dirty-Paper Coding (ZF-DPC)

Based on QR-type decomposition, a suboptimal solution
of W was found in [1]. Let H(S) = LQ be the QR-type
decomposition of H(S), where L is a lower triangular
matrix and Q is a unitary matrix. With W = QH , the
corresponding system model in (1) can be written as

yi = li,i
√

giPiui +
∑
j<i

li,j
√

gjPjuj + ni , i = 1, . . . , Nt.

(3)
Note that W = QH can cancel the interference from
users with indices j > i. The remaining interference terms
with indices j < i are taken care of by applying DPC
successively. For simplicity, we consider the equal power
allocation, that is, Pi = PT /Nt, where i = 1, . . . , Nt. The
rate of the ith link for ZF-DPC is log2(1 + |li,i|2ρi/Nt) =
log2(1+γi), where ρi is the average received signal-to-noise
ratio (SNR), γi is the effective received SNR, and the term

1For example, in a macro-cell environment, the path loss model
of modified COST-231 Hata urban and suburban models are respec-
tively −35 log10 R− 31.5 [dB] (i.e., µ = 3.5 and g0 = −31.5 dB) and
−35 log10 R−34.5 [dB] (i.e., µ = 3.5 and g0 = −34.5 dB) [29], where
the antenna height of the base station is 32 m, the antenna height of
the user terminal is 1.5 m, and carrier frequency is 1.9 GHz.
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|li,i|2 can be viewed as the effective channel gain at the ith
link. Specifically, ρi can be represented as

ρi =
PT gi

σ2
=

PT 10g0/10

σ2Rµ
i

. (4)

C. Zero-Forcing Beamforming (ZFB)

The ZFB scheme [1] aims at inverting the channel ma-
trix to create orthogonal channels between the transmitter
and the receiver. By choosing the weight matrix W =
H(S)H(H(S)H(S)H)

−1
, the corresponding system model

in (1) can be written as

y = gH(S)H(S)H(H(S)H(S)H)−1u + n = gu + n ,
(5)

and the ith received signal is given by yi =
√

giPiui + ni.
Due to the transmit power constraint E[xHx] ≤ PT , we
have the following relation:

‖w1‖2P1 + . . . + ‖wNt‖2PNt ≤ PT , (6)

where ‖wi‖2 = [(H(S)H(S)H)−1]i,i. In (6), it implies
that ZFB incurs an excess transmission power penalty
due to the required interference cancellation power on W.
According to (6), power loading is ‖wi‖2Pi = PT /Nt,
where i = 1, . . . , Nt. As a result, the data rate at the ith
link of ZFB is

log2

(
1 +

giPi

σ2

)
= log2

(
1 +

biρi

Nt

)
= log2(1 + γi) ,

(7)

where bi = 1/‖wi‖2 is the effective channel gain.

III. Performance Metrics

A. Link Outage Probability

We first define the link outage probability to reflect what
extent a MIMO broadcast system can reliably support the
corresponding link quality. For a single-input single-output
system (SISO), link outage [30] is usually defined as the
probability of the effective received SNR is less than a
predetermined value γth, i.e., Pout = Pr{γ < γth}. As
for the MIMO broadcast systems, all the data links serve
different individual users. Thus, we can define the link
outage probability of the ith link the same as in the SISO
case, i.e., P i

out = Pr{γi < γth}.

B. Diversity Order

Let link outage probability Pout(·) be a function of SNR.
Then, the link diversity order Dorder is defined as [31]

Dorder � − lim
ρ→∞

log Pout(ρ)
log ρ

, (8)

where ρ is the receive SNR. The metric can provide an
intuitional observation on link performance.

Reliable coverage R

out(1 )P link reliability associated 

with the required SNR 
th

Fig. 1. Illustration of link reliability and reliable coverage.

C. Link Coverage Reliability
Referring to the link outage probability Pout, we further

define (1 − Pout) as the link coverage reliability for its
corresponding link radius associated with the required
SNR as shown in Fig. 1. Specifically, the link coverage
reliability (1 − Pout) represents the probability of the
effective received SNR being higher than γth. Therefore,
the link radius associated with the required SNR and
(1− Pout) reliability is defined as the reliable coverage.
Typically, 90% link reliability is required for most wireless
systems.

IV. Analysis of MIMO Broadcast Systems
Without Scheduling

A. ZF-DPC without Scheduling
At first we analyze the coverage performance of ZF-

DPC MIMO broadcast systems without user selection,
i.e., based on round-robin scheduling. Clearly, selecting
users randomly cannot result in multiuser diversity gain.
By Lemma 2 in [1], di = |li,i|2 is independent central
Chi-squared random variable X 2

2(Nt−i+1) with 2(Nt − i +
1) degrees of freedom. The probability density function
(PDF) of a Chi-squared random variable X 2

2a is f(z) =
za−1e−z/(a−1)! for z > 0. Thus, the PDF of the effective
channel gain di can be written as

fdi(z) =
zNt−ie−z

(Nt − i)!
for i = 1, . . . , Nt , (9)

where i = 1 and i = Nt represent the strongest and
the weakest links in the statistics, respectively. The cor-
responding cumulative distribution function (CDF) of di

can be written as

Fdi(z) = 1 − Γ(Nt − i + 1, z)
Γ(Nt − i + 1)

= 1 − ΓR (Nt − i + 1, z) ,

(10)

where Γ(a) =
∫∞
0

ta−1e−tdt is the complete gamma
function, Γ(a, x) =

∫∞
x

ta−1e−tdt is the upper incomplete
gamma function, and ΓR(a, x) = Γ(a,x)

Γ(a) is the regularized
gamma function. The CDF of the effective received SNR
γi = diρi/Nt for the ith link is

Fγi(γ) = Fdi

(
Ntγ

ρi

)
= 1 − ΓR

(
Nt − i + 1,

Ntγ

ρi

)
.

(11)
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Thus, for a given threshold γth > 0, the link outage prob-
ability for the ith link of the ZF-DPC MIMO broadcast
system is

P i
out = Fγi

(γth) = 1 − ΓR

(
Nt − i + 1,

Ntγth

ρi

)
. (12)

The following shows the analysis of the link diversity order.

Theorem 1: The diversity order of the ith link for
an Nt-link ZF-DPC MIMO broadcast system without
scheduling and ordering is Nt − i + 1.

Proof: To ease analysis, we define a function Zi(s) as

Zi(s) =
log (1 − ΓR(Nt − i + 1, Ntsγth))

log s
=

Numi(s)
Deni(s)

,

(13)
where s = ρ−1

i . When ρi → ∞, s → 0. Thus, we can have

Di
order = − lim

ρi →∞
log P i

out(ρi)
log ρi

= lim
s→ 0

Zi(s) . (14)

Note that lim
s→ 0

Numi(s) = −∞ and lim
s→ 0

Deni(s) = −∞
and according to the L’Hôpital’s rule, we can obtain

Di
order = lim

s→ 0

Num′
i(s)

Den′
i(s)

= lim
s→ 0

[
(Ntsγth)Nt−i+1 e−Ntsγth

Υ(Nt − i + 1, Ntsγth)

]
, (15)

where Υ(a, x) =
∫ x

0
ta−1e−tdt is the lower incomplete

gamma function. With the property Υ(a, x)/xa → 1/a as
x → 0, we can obtain the diversity orider Di

order = Nt−i+1
for an Nt-link ZF-DPC MIMO broadcast system without
scheduling and ordering.

This theorem provides a surprising result that the ZF-
DPC MIMO broadcast system can support extra diversity
gains for Nt−i links instead of traditional diversity order of
one in the spatial multiplexing based MIMO systems. For
example, the link diversity orders are respectively order
three for i = 1, order two for i = 2, and order three for
i = 3 as Nt = 3. The first two links obtain extra diversity
gains under the ZF-DPC MIMO broadcast transmissions.

To derive cell coverage Ri
ZFDPC from (12), we first in-

troduce the inverse of the regularized incomplete gamma
function as follows:

x = ΓR(a, z) ⇒ z = Γ−1
R (a, x) . (16)

By substituting (4) and (16) into (12), the link coverage
can be written as

Ri
ZFDPC =

[
PT 10g0/10

Ntγthσ2
Γ−1

R

(
Nt − i + 1, 1 − P i

out

)] 1
µ

, i = 1, . . . , Nt . (17)

B. ZFB without Scheduling
Alternately, we analyze the coverage performance of

the ZFB MIMO broadcast system without user selection.
In this case, all the elements in each channel vector are
Rayleigh faded. Due to the same statistics, we can view the
system as an point-to-point Nt × Nt (single user) MIMO
system with a ZF receiver. The PDFs of the effective
channel gain {bi}Nt

i=1 can be obtained through the PDFs
of the ZF receiver’s substream SNRs. According to [32],
the distribution of the substream SNRs {γi}Nt

i=1 for an
Nt × Nr MIMO system with ZF receiver under equal
power allocation are identically distributed X 2

2(Nr−Nt+1).
In the case of Nt = Nr, the PDF of unordered {bi}Nt

i=1 can
be obtained from (9) by letting i = Nt, which result in
exponentially distributed random variable with parameter
one.

Therefore, the link outage probability and the coverage
performance of the ZFB MIMO broadcast system can be
obtained from (12) and (17) with i = Nt. Clearly, under
the same link outage requirement, all ZFB substream
links equal the ZF-DPC’s weakest link and has the
diversity order of one.

Corollary: The link diversity order of the ZFB MIMO
broadcast system without scheduling is one.

V. Analysis of MIMO Broadcast Systems with
Scheduling

A. ZF-DPC with Greedy Scheduling
Now we consider the effects of multiuser scheduling in

the MIMO broadcast systems. We focus on the strongest
stream link which has the largest radius to determine
the cell range. In [33], the authors proposed a greedy
scheduling algorithm to select Nt users out of K users to
form H(S) and ordering those selected channel row vectors
in the Gram-Schmidt orthogonalization to maximize the
system throughput.

The strongest link can be determined by the first se-
lected user’s channel row vector hk ∈ C1×Nt for k =
1, . . . ,K. According to the greedy selection algorithm, the
selected user k∗ is

k∗ = arg max
k∈{1,...,K}

d1,k , (18)

where d1,k = hkh∗
k. Note that d1,k is the sum of Nt squared

magnitudes of circularly symmetric, zero-mean, unit-
variance complex Gaussian random variables. Therefore,
d1,k ∼ X 2

2Nt
with PDF fd1,k

(z) = zNt−1e−z/(Nt − 1)!. The
effective channel gain of the strongest link for the greedy
scheduling algorithm is d̃1 = d1,k∗ of which PDF can be
obtained by the order statistics analysis as follows:

fd̃1
(z) = K[Fd1,k

(z)]K−1fd1,k
(z) . (19)

Hence the link outage probability is

P 1
out = Fγ̃1(γth) = Fd̃1

(
Ntγth

ρ1

)

=
(

1 − ΓR(Nt,
Ntγth

ρ1
)
)K

. (20)
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The following theorem gives the diversity order of the
strongest link in the ZF-DPC MIMO broadcast system.

Theorem 2: The diversity order of the strongest link for
the Nt-link ZF-DPC broadcast system with K-user greedy
scheduling is KNt.

Proof: Similar to the proof of Theorem 1, we define
Z̃1(s) as

Z̃1(s) =
log
(
[1 − ΓR(Nt, Ntsγth)]K

)
log s

=
˜Num1(s)

D̃en1(s)
, (21)

where s = ρ−1
1 . Thus, the diversity order is

D̃1
order = − lim

ρ1 →∞
log P 1

out(ρ1)
log ρ1

= lim
s→ 0

Z̃1(s)

(a)
= lim

s→ 0

˜Num
′
1(s)

D̃en
′
1(s)

= lim
s→ 0

[
K(Ntsγth)Nt e−Ntsγth

Υ(Nt, Ntsγth)

]

(b)
= KNt , (22)

where (a) follows L’Hôpital’s rule with lim
s→ 0

˜Num1(s) =

−∞ and lim
s→ 0

D̃en1(s) = −∞ and (b) comes from the
property Υ(a, x)/xa → 1/a as x → 0.

To derive the link coverage R̃1
ZFDPC of the strongest link

from (20), we use the inverse of the regularized incomplete
gamma function to obtain

R̃1
ZFDPC =

[
PT 10g0/10

Ntγthσ2
Γ−1

R

(
Nt, 1 − K

√
P 1

out

)] 1
µ

. (23)

1) Effect of user ordering: Even with random user selec-
tion, the ZF-DPC MIMO broadcast system can still take
advantage of users ordering. This case is similar to the
multiuser MIMO broadcast system with K = Nt users.
The benefit of pure user ordering (not combined with users
selection) will be shown in the section of numerical results.

2) Soft coverage extension by scheduling: To examine the
benefits of multiuser scheduling, we define the coverage
extension ratio η1

ZFDPC as

η1
ZFDPC =

R̃1
ZFDPC

R1
ZFDPC

=

⎡
⎣Γ−1

R

(
Nt, 1 − K

√
P 1

out

)
Γ−1

R (Nt, 1 − P 1
out)

⎤
⎦

1
µ

, (24)

where η1
ZFDPC is a function of {Nt,K, P 1

out, µ} and can be
used to examine how Nt and K affect the reliable coverage
range of the MIMO broadcast system. Here we take the
strongest link of ZF-DPC MIMO broadcast system (i =
1) as an example to address the coverage extension issue.
We will show that the reliable coverage increases as the
number of users increases and decreases as the number of
antennas increases in the numerical results.

For the other links (i = 2, . . . , Nt) of ZF-DPC MIMO
broadcast system with greedy scheduling, per link analysis
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Fig. 2. Link outage probability performance against the transmit
power PT when path loss exponent µ = 3.9 and 4 for both the ZF-
DPC and ZFB MIMO broadcast systems, where Nt = 3, σ2 = −103
dBm, R = 1 km and γth = 2 dB.

is more difficult than no scheduling case. Although, the
equation (46) in [2] provides the PDF of effective channel
gains of ZF-DPC with greedy scheduling for i = 2, . . . , Nt,
this formula is complicated and intractable to derive its
closed-form expression for link outage and coverage of ZF-
DPC MIMO broadcast system with greedy scheduling so
that the exact coverage extension gain can not be found
easily.

B. ZFB with Scheduling
For the ZFB MIMO broadcast system with scheduling,

some suboptimal user selection algorithms [2] [3] were pro-
posed to reduce the complexity of the exhaustive search.
However, it is difficult to find the exact per link closed-
form expression for the ZFB MIMO broadcast system
with scheduling. To compare with the ZF-DPC MIMO
broadcast system, we will show the simulation results of
the ZFB MIMO broadcast system based on exhaustive
search in Section VI.

VI. Numerical Results

In this section, we illustrate the achievable link outage
and link coverage performances of both the ZF-DPC and
ZFB MIMO broadcast systems. Assume that the prede-
termined value γth = 2 dB, σ2 = −103 dBm, g0 = −32
dB, µ = 4 and Nt = 3.

Figure 2 shows the simulative and analytical link out-
age performances of both the ZF-DPC and ZFB MIMO
broadcast systems without scheduling when user terminals
are at the distance of R = 1 km from BS and path loss
exponents µ = 3.9 or 4. Clearly, the link outage probability
becomes higher for a larger path loss exponent. Note that
µ = 2 is for free space, and µ = 3.5 � 4 is for two-path
model of an urban radio channel. The diversity orders of
different links match our analytical results in Theorem 1.
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Fig. 3. Link outage probability performance against the transmit
power PT for the strongest links of both the ZF-DPC and ZFB MIMO
broadcast systems with and without scheduling when Nt = 3, σ2 =
−103 dBm, µ = 4, R = 2 km, K = 5 and γth = 2 dB.

For example, the strongest link i = 1 has the diversity
order of three, the link i = 2 has the diversity order of
two, but the weakest link i = 3 has only the diversity order
of one. Clearly, the ZF-DPC MIMO broadcast system can
support extra diversity gains for Nt − 1 links instead of
traditional diversity order of one in a spatial multiplexing
based MIMO system. However, the broadcast system with
ZF precoding has merely diversity order of one.

Figure 3 shows the link outage for the strongest links
of both the ZF-DPC and ZFB MIMO broadcast systems
with and without scheduling for five users (K = 5) at
the distance of R = 2 km from BS. In the figure, it is
shown that the multiuser diversity gain is still significant
even if the degree of freedom is merely K = 5. From this
figure, the curve of ZF-DPC with greedy scheduling tends
to have the diversity of order KNt = 15. As a result, the
deficient diversity of the spatial multiplexing based MIMO
broadcast system can be compensated by taking advantage
of multiuser scheduling.

Figure 4 shows the corresponding link coverage per-
formance of Fig. 3 in which we set the link reliability
as 0.9 under γth = 2 dB. Clearly, coverage is extended
in both the ZF-DPC and ZFB MIMO broadcast systems
with scheduling even with K = 5. For example, it can
only maintain 90% link reliability as far as about 1.6
km radius without scheduling, but can extend to 2.1 km
with scheduling for the ZF-DPC MIMO broadcast systems
when PT = 0 dBW, i.e. the achievable coverage increases
31.25% by the help of multiuser scheduling.

Figure 5 shows the coverage improvement for a differ-
ent numbers of users in the ZF-DPC and ZFB MIMO
broadcast systems when PT = 0 dBW. The benefit of
user ordering can be clearly observed from the coverage
enhancement of ZF-DPC’s strongest link at K = Nt = 3.
Specifically, the cell radius is improved from 1.46 km to
1.8 km.

−10 −5 0 5 10
0

500

1000

1500

2000

2500

3000

3500

4000

Transmit Power (dBW)

C
ov

er
ag

e 
(m

)

Simulation
Analysis

ZF−DPC  ( i = 1, strongest link) 
with greedy scheduling

ZF−DPC  ( i = 1, strongest link) 
without scheduling

ZFB  (ordered strongest link) 
with exhaustive search

ZF−DPC  ( i = 2 )

Fig. 4. Link coverage performance against the transmit power PT for
different stream links of both the ZF-DPC and ZFB MIMO broadcast
systems when Nt = 3, σ2 = −103 dBm, µ = 4, Pout = 0.1, K = 5
and γth = 2 dB.
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Fig. 5. Link coverage performance against the number of users K for
different stream links of both the ZF-DPC and ZFB MIMO broadcast
systems when Nt = 3, σ2 = −103 dBm, µ = 4, Pout = 0.1, PT = 0
dBW and γth = 2 dB.

Figure 6 shows the coverage extension gain with dif-
ferent Nt and K according to (24). One can see that
the benefit of multiuser scheduling is significant as K
increases. However, the multiuser scheduling gain will
reduce as more antennas are employed at the BS, i.e., for
a larger Nt. From the above numerical results, we know
that soft coverage enhancement can be achieved by ap-
plying multiuser scheduling techniques without increasing
transmission power. That is, link quality is improved by
multiuser diversity so that the reliable coverage can be
extended. As the number of antennas equipped at a base
station increases, transmit power allocated to each link
will decrease under the same transmit power constraint. As
a result, it will be hard for the MIMO broadcast system to
maintain the same reliable coverage with a predetermined
SNR requirement.
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Nt = 2, 3, and 4.

VII. Conclusion

In this paper, we have analyzed the link outage, diversity
order, and link coverage performance for the multiuser
MIMO broadcast systems. We derive analytical closed-
forms of the link outage probability, diversity order and re-
liable link coverage for both the ZF-DPC and ZFB MIMO
broadcast systems. We define the coverage extension ratio
to demonstrate how multiuser scheduling can improve the
reliable coverage of the MIMO broadcast system without
increasing BS transmission power. From our analysis, the
reliable coverage can be extended significantly as the
number of users increases, but the performance gain due to
multiuser scheduling is reduced as the antennas installed
at a BS increase.
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A Practical Resource Allocation Approach for
Interference Management in LTE Uplink

Transmission†
Liying Li∗, Gang Wu, Hongbing Xu, Geoffrey Ye Li, and Xin Feng

Abstract—In this paper, we investigate power control
and resource allocation for long-term evolution (LTE)
uplink. We develop an efficient way to improve system
performance, especially for those users at the edge of a
cell, by taking interference to and from adjacent cells into
consideration. Simulation results show that the spectrum
efficiency for edge users is improved by about 20% over
the independent resource allocation and by about 10% over
the soft frequency reuse scheme.

I. INTRODUCTION

The aim of long term evolution (LTE) standardized for
3rd Generation Partnership Project (3GPP) is to satisfy
the requirements on high data rate, quality-of-service
(QoS), and infrastructure [1]. LTE uses single-carrier
frequency division multiple access (SC-FDMA) for the
uplink transmission. SC-FDMA can be viewed as a fast
Fourier transform (FFT)-precoded version of OFDMA,
however, achieves lower peak-to-average-power ratio
(PAPR) compared with OFDMA [3]. It transmits infor-
mation symbols sequentially rather than in parallel as
in OFDM while still keeping orthogonal transmission
among intra-cell users. Therefore, there is no intra-cell
interference in LTE uplink systems. Since all or part
of the spectrum is reused in adjacent cells, inter-cell
interference exists, especially when two or more edge
users in adjacent cells use the same band. Inter-cell
interference limits the performance of the system.

Inter-cell coordination allows the adjacent cells to
manage the spectrum coordinately to minimize the inter-
cell interference. To date, three schemes, fixed-frequency
reuse (FFR), soft-frequency reuse (SFR), and adaptive
SFR, have been proposed to reduce inter-cell interfer-
ence. FFR allows each of the adjacent cells to use part
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of the spectrum so that spectrum allocated to the users
in the adjacent cells are orthogonal. SFR [4] divides
the spectrum and users into two groups for the cell-
edge users and cell-center users, respectively. In [5], an
adaptive SFR has been developed to deal with inter-
cell interference for different cell loads by allowing the
edge users to borrow the center spectrum under certain
situations.

In LTE, the minimum resource unit is a physical
resource block (PRB), which consists of 12 subcarriers
within one transmission time interval (TTI). SC-FDMA
has two types of subcarrier mapping: localized FDMA
(L-FDMA) and interleaved FDMA (I-FDMA). For L-
FDMA, consecutive PRBs are assigned to the same user
while PRBs are distributively allocated over the entire
spectrum for I-FDMA. LTE adopts L-FDMA for uplink
transmission. An optimal and a greedy algorithm for
resource allocation in LTE uplink systems have been
introduced [9]. Since resource allocation is performed
independently in each cell and ignores inter-cell interfer-
ence, the spectrum efficiency is not good. In this paper,
we will develop a spectrum allocation scheme to improve
both the average cell throughput and the cell edge
throughput only at the expense of only limited signaling
overhead between the coordinated base stations.

It has been shown in [8] that combining adaptive
modulation and power control can lead to a significant
throughput improvement compared with the case with
power control only. In this paper, we will further con-
sider the adaptive modulation and coding scheme (MCS)
selection to improve the system performance.

In the rest of this paper, we will first describe the sys-
tem model in Section II. In Section III, we will develop
a novel resource allocation scheme to mitigate inter-
cell interference and improve the throughput of those
users at cell edge. We will present simulation results
to demonstrate performance improvement in Section IV
and conclude our paper in Section V.
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Fig. 1. The system model.

II. SYSTEM MODEL

Consider a system shown as in Figure 1, each cell is
divided into three sectors and each sector is covered by
a 120-degree directional antenna. Therefore, each sector
has two adjacent ones. We assume that there are 𝑀 users
in a sector and they share 𝐿 PRBs for data transmission.
Each user can be only allocated to consecutive PRBs as
required by L-FDMA in LTE uplink.

In LTE uplink, the overall transmission power is
uniformly distributed among the subcarriers allocated to
the same user. Denote 𝑃𝑚 and 𝒦𝑚 to be the overall
transmission power and the set of consecutive PRBs
assigned to user 𝑚, respectively. Then the transmission
power of each subcarrier for user 𝑚 is 𝑃𝑚,𝑖 =

𝑃𝑚

12∣𝒦𝑚∣ ,
where ∣𝒦𝑚∣ is the number of PRBs in the set of 𝒦𝑚. The
SINR at the 𝑖th subcarrier of the 𝑛th PRB corresponding
to user 𝑚 will be

𝛾
(𝑚)
𝑖,𝑛 =

𝑃𝑚,𝑖𝐺𝑚,𝑖𝐺(𝜃)

𝐼
(𝑚)
𝑖,𝑛 + 𝑃𝑁

, (1)

where 𝐺𝑚,𝑖 is the channel gain from user 𝑚 to its base
station, including pathloss, shadowing, and multipath
fading, 𝐺(𝜃) is the antenna gain from user 𝑚 to its
service base station. 𝐼

(𝑚)
𝑖,𝑛 is the power of interference

from users in other sectors using the same PRB as user
𝑚, and 𝑃𝑁 is the power of additive white Gaussian noise
(AWGN).

The transmission data rate of user 𝑚 can be expressed
as

𝑅 (𝑃𝑚,𝒦𝑚) = 𝐵 ∣𝒦𝑚∣ log2
(
1 +

𝛾 (𝑃𝑚,𝒦𝑚)

Γ

)
, (2)

where 𝐵 is the effective bandwidth of each PRB, Γ
is the SINR gap to satisfy block-error rate (BLER)

requirement, 𝛾 (𝑃𝑚,𝒦𝑚) is the effective SINR for user
𝑚. From [7], the effective SINR can be expressed as

𝛾 (𝑃𝑚,𝒦𝑚) = −𝛽 ln

(
1

12 ∣𝒦𝑚∣
∑

𝑛∈𝒦𝑚

12∑
𝑖=1

𝑒−𝛾
(𝑚)
𝑖,𝑛 /𝛽

)
,

(3)
where 𝛽 depends on modulation order and coding rate.

If we consider independent proportional fairness re-
source allocation for each sector, then the objective can
be expressed as

{(𝑃1, ..., 𝑃𝑀 ), (𝒦1, ...,𝒦𝑀)}=argmax

𝑀∑
𝑚=1

ln𝑅(𝑃𝑚,𝒦𝑚),

(4)
subject to

𝒦𝑖 ∩ 𝒦𝑗 = ∅ ∀𝑖 ∕= 𝑗, 𝑖, 𝑗 ∈ {1, 2, ...,𝑀}, (5)

𝑃𝑚 ≤ 𝑃𝑚𝑎𝑥, (6)

where 𝑃max is the power threshold for each user. Con-
straint (5) indicates that each PRB can only be allocated
to one user in a sector.

III. JOINT POWER CONTROL AND RESOURCE

ALLOCATION

In this section, we will first introduce the fractional
power control in LTE uplink and then present our pro-
posed resource allocation scheme.

Fractional power control is suggested by LTE working
groups, which can be expressed as [2]

𝑃𝑚=min{𝑃max, 𝑃0+𝛼𝑃𝐿+10 log10 ∣𝒦𝑚∣+Δ𝑚𝑐𝑠+𝑓(Δ𝑖)},
(7)

where 𝑃0 is a cell-specific parameter decided by the
higher layers, 𝛼 is a compensation parameter that is cho-
sen from set {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and decided
by the base station of the serving cell, 𝑃𝐿 is the pathloss
from user 𝑚 to its base station, Δ𝑚𝑐𝑠 is a transport
format (TF) dependent offset used to consider differ-
ent SINR requirements for various MCSs, and 𝑓(Δ𝑖)
represents the correction value provided by close-loop
power control. The objective of the power control in LTE
uplink is to limit inter-cell interference and to maintain
SINR requirements based on the QoS constraint, cell
load, and user equipment power capabilities. In general,
power control in uplink determines the average SINR
range a user is operating at.

Using fractional power control to limit interference
with other sectors can simplify the resource allocation
for cellular systems. However, the inter-cell interference
is still very strong since resource allocation is performed
without considering adjacent sectors, especially when
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two or more edge users in adjacent sectors are using
the same PRBs. In this paper, we develop an adaptive
PRB allocation method that will adjust the PRBs used
by cell-edge users with the help of information on the
allocated PRBs and users’ positions in adjacent cells
obtained through X2 interface.

Each sector first performs resource allocation inde-
pendently based on proportional fairness introduced in
Section II while fractional power control is used. PRBs
for the adjacent edge users are jointly adjusted based
on users’ position and initial PRB allocation. Users’
position can be obtained at the base station side. As
the shadow area in Figure 1, we assume that there is
a primary sector among every three adjacent sectors
of different cells. The primary sector will collect in-
formation of resource allocation and users’ position of
the coordination sectors and perform PRB rescheduling.
Since PRB adjustment may change interference environ-
ment of the center users, we will finally re-allocate the
transmission power for center users.

There will be severe inter-cell interference if the same
PRB is used by two or three edge users in adjacent
sectors who have different closest adjacent base stations.
For example, user equipment (UE) 1′ in Sector 2 is
close to Sector 1 and UE 3′′ in Sector 3 is close to
Sector 2 in Figure 1. If UEs 1′ and 3′′ use the same
band, there will be severe interference. UE 3′′ will cause
severe interference to UE 1′′. Therefore, PRBs in this
case need to be re-allocated. We assume that two edge
users at adjacent sectors with different base stations may
use the same PRB simultaneously if there is no severe
interference with each other, as UE 1′′ and UE 1′ in
Figure 1.

After PRB reallocation and power control, we will
further consider MCS adaption in each sector. Each
sector will choose an MCS to maximize the throughput
based on the SINR. The throughput is determined by the
initial BLER (IBLER) for the UE with allocated PRBs
and transmission power and can be expressed as,

max
𝑖

𝑇 (𝑖) = 𝑅(𝑖)(1− 𝑃 (𝑖, 𝛾𝑒,𝑖)), (8)

where 𝑖 is the MCS index in LTE, 𝑅(𝑖) is the data rate
achieved by using MCS 𝑖, 𝛾𝑒,𝑖 is the exponential effective
SINR achieved by using MCS 𝑖 as expressed in Equation
(3), 𝑃 (𝑖, 𝛾𝑒,𝑖) is the IBLER for the used blocks. From
[10], the IBLER for each block can be approximated by

𝑃𝑏(𝑖, 𝛾𝑒,𝑖) =
1

2
erfc

(
𝛾𝑒,𝑖 − 𝑏𝑖√

2𝑐𝑖

)
, (9)

where 𝑏𝑖 and 𝑐𝑖 are parameters obtained by curve-fitting
corresponding to MCS 𝑖. Consequently, the IBLER for

the user with MCS 𝑖 can be expressed as

𝑃 (𝑖, 𝛾𝑒,𝑖) = 1− (1− 𝑃𝑏(𝑖, 𝛾𝑒,𝑖))
∣𝒦𝑚∣.

The proposed scheme can be summarized as follow-
ing.

∙ Step 1: Each sector performs independent power
control and resource allocation. For example, three
sectors in shadow area shown in Figure 1 perform
independent power control and resource allocation
based on proportional fairness introduced in Section
II.

∙ Step 2: Exchange information on resource allocation
and users’ position of the sectors to the primary
sector. For example, Sectors 2 and 3 send the
information on PRB allocation and users’ position
to Sector 1.

∙ Step 3: The primary sector re-allocates the PRBs
based on the information and sends back the final
resource allocation information to the other two
sectors. For example, Sector 1 re-allocates the PRBs
based on the information received from Sectors
2 and 3 and sends the adjusted PRB allocation
information to these two sectors. The detailed re-
allocation algorithm is shown in Table 1. The PRB
allocation matrix is the index of PRBs allocated to
each user in the sectors. Users’ position matrix is
about the position of users in each sector. From this
matrix we can know the closest interference sector
of each user.

∙ Step 4: The coordinate sectors adjust the trans-
mission power of their center users based on the
information from the primary sector.

∙ Step 5: All sectors perform adaptive MCS allocation
and the users transmit data based on the information
from their base stations.

IV. SIMULATION RESULTS

In this section, we will compare performance of
our scheme with independent resource allocation with
fractional power control and SFR [4]. For SFR, the
transmission power for the edge users is larger than that
of the center users. We consider the system as shown
in Figure 1, where a half of sector users are randomly
distributed at the edge and the other half are randomly
distributed in the center. The edge area is assumed to be
the outer one third of the whole sector area. The major
simulation parameters are summarized in Table 2.

Since each user can only use consecutive PRBs in LTE
uplink, the optimal algorithm for resource allocation is
an NP-hard problem [6]. There are several sub-optimal
algorithms with only a little performance degradation but
with much lower complexity. It has been shown in [6]
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TABLE I
RE-ALLOCATION ALGORITHM

Algorithm Re-allocation
Input: PRB allocation matrix 𝐽 and users’ position

matrix 𝑃
Output: PRB re-allocation matrix 𝐽𝑛
1. Get the matrix of closest adjacent sector number 𝑁

for each user based on 𝑃 (𝑁𝑖 for user 𝑖)
2. for sector=1 to 3 do
3. find PRBs used by two edge users 𝑖 and 𝑗
4. if 𝑁𝑖 ∕= 𝑁𝑗

5. switch the PRB of user 𝑖 with a PRB
used by its center user

6. end if
7. end for
8. return 𝐽𝑛

TABLE II
MAIN SIMULATION PARAMETERS

Parameter Value
Bandwidth 10 MHz

Carrier frequency 2 GHz
Total number of PRBs 48 PRBs (PUSCH)

Cell radius 500 m
Ratio of cell edge area 1/3

Distance-dependent pathloss 128.1+37.6𝑙𝑜𝑔10(𝑑) d in Km
Shadowing standard deviation 8 dB

PSD of thermal noise −174 dBm/Hz
𝑃0 -80 dBm
𝛼 0.7

that grouping algorithm, which allocates equal number of
consecutive PRBs to each user, performs the best among
these suboptimal ones. Hence, we will use it to allocate
PRBs in our simulation. Fractional power control is used
for independent resource scheduling. We assume the cell
load is larger than 80%, and all the users in a sector are
allocated the same number of PRBs, which is consistent
with the grouping algorithm.

Figure 2 demonstrates spectrum efficiency of the three
schemes versus the power spectral density (PSD) of
channel noise when there are 6 users and 8 users, re-
spectively. We assume that there are six users in a sector
with three on the edge. From the figure, our scheme
improves both the spectrum efficiency for the edge users
and overall spectrum efficiency. It increases 20% over
the independent resource allocation and about 10% over
SFR for edge users’ spectrum efficiency. We can also
see that the proposed scheme performs better when the
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Fig. 2. Spectral efficiency of different schemes versus noisy density
for different number of users.

system is interference dominant, which corresponds to
the case with lower noise PSD in the figure.

Figure 3 shows spectrum efficiency versus the number
of users with noise PSD of −174 dBm and −185 dBm,
respectively. From the figure, the performance gain of
our scheme increases with the number of users. It can
be easily seen that the information exchanged between
sectors is pretty limited, only several hundred bits for 10
users in a sector. For example, if using 6 bits for user
index, information exchanged for 48 PRBs will be 288
bits.

V. CONCLUSION

In this paper, we have introduced a resource allocation
scheme for LTE uplink systems. The proposed scheme
first allocates PRBs in each cell independently, then
adjusts the PRBs and perform power control for the
center users based on information on PRB allocation and
users’ position among adjacent cells. Simulation results
have indicated that our scheme can improve spectrum
efficiency for edge users and overall spectrum efficiency
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Fig. 3. Spectral efficiency comparison of different schemes for
different numbers of users.

compared with independent resource allocation and SFR.
Since we have considered all constraints in LTE uplink,
the proposed algorithm is ready to be used in real
systems for performance improvement.
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Abstract—Adaptive resource allocation can drastically increase
the throughput of an Orthogonal Frequency Division Multiple
Access (OFDMA) system when the Channel State Information
(CSI) is accurately known. Unfortunately, in practice, perfect
CSI is rarely possible. In this paper, we consider adaptive sub-
carrier assignment for downlink multiuser OFDMA systems,
where the transmitter has no knowledge of the instantaneous
channel realizations. The problem we address is maximizing the
sum-capacity of the system subject to user Quality of Service
(QoS) requirements. A heuristic algorithm presented in [1] is
modified in order to provide an enhanced sub-optimal solution.
Numerical results show that resources can be adaptively allocated
using statistical CSI (SCSI) and that such an approach allows
for an important number of user QoS requirements to be
met. Comparisons between the instantaneous CSI (ICSI) and
SCSI based resource allocation schemes demonstrate that their
performance difference is highly dependent on the number of
active users present in the cell, the QoS constraint, and the
transmit power.

I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA)
is based on Orthogonal Frequency Division Multiplex
(OFDM); and thus, inherits its key benefits while allowing
for multiuser diversity to be exploited [2]. This leads to
more efficient radio resource management (RRM) as spectrum
can be allocated to users with better channel conditions.
For these reasons, RRM solutions for OFDMA systems have
attracted significant interest. The research in this area can be
broadly divided into two categories, namely margin-adaptive
and rate-adaptive. Margin adaptation is the minimization of
the transmit power subject to minimum Quality of Service
(QoS) requirements for each user [3]. Examples of such
work are [4] and [5]. Rate adaptation is the maximization
of the data-rates subject to QoS constraints [3]. An example
of rate adaptation is presented in [1]. The solution to these
problems depends on the availability of accurate Channel State
Information (CSI) at the transmitter. There are a number of
reasons that lead to unavailable user CSI at the transmitter.
Under significant user mobility, the small coherence time
makes channel estimation procedures less accurate. Other
reasons that contribute towards unavailable instantaneous CSI
are prediction errors as well as feedback/processing delays.
Therefore, in some cases, it is more reasonable to send back
channel distribution information. We refer to knowledge of
the channel distribution at the transmitter as statistical CSI
(SCSI). Under SCSI based resource allocation, users only need

to feed back the mean of the channel SNR distribution. This
leads to fewer wireless resources such as transmit power and
bandwidth being consumed for feedback purposes.

In this paper, we solve a rate-adaptation problem for users
whose instantaneous channel realizations are unavailable at
the transmitter but perfectly known by the receiver. The
optimum data-rate with which each sub-carrier can be loaded
is computed by using a relationship between the average user
signal-to-noise ratio (SNR) and the Lambert-W function. To
further enhance the performance of the system, a well-known
heuristic algorithm presented in [1] is extended. Using this
approach, it is shown that a significant number of user QoS
constraints can be met. However, comparisons between the
instantaneous CSI (ICSI) and SCSI based RRM schemes show
that the lack of accurate CSI causes a significant degradation
on the overall system performance. The incurred losses heavily
depend on the number of active users present in the cell, the
QoS constraint, and the transmit power.

II. SYSTEM MODEL

A downlink OFDM system with K users and N sub-carriers
is considered. Each sub-carrier n has a total bandwidth equal
to B. The kth user’s minimum bit-rate is denoted by Rk.
Resource allocation is performed for each sub-carrier, and
sub-carriers cannot be shared between users. An assignment
indicator ckn is defined for the kth user and the nth sub-
carrier. Therefore, ckn = 1 when carrier n is allocated to user
k and 0 otherwise. When the instantaneous channel conditions
are unknown by the transmitter but known at the receiver side,
the capacity of each sub-carrier is viewed as a random variable
and is

C(ν) = B log2(1 + ν
Pt

No

), (1)

where ν is exponentially distributed as Rayleigh fading is
considered. Here, Pt is the transmit power and No is the noise
spectral density. Under these conditions, there is a non-zero
probability that the actual channel conditions cannot support
an assigned rate ρ. This value is given as [6]

Pout = Pr(
C(ν)

B
< ρ)

= 1− exp[−(γ̄−1)(2ρ − 1)]. (2)

A useful measure for resource allocation purposes is the
goodput which is defined [7] as the average successfully
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transmitted rate. For user k and sub-carrier n it is expressed
as

Gk,n = ρk,n(1− Pout(k, n)), (3)

Each sub-carrier can be optimally loaded by selecting the
value of ρk,n which maximizes Gk,n. This value is

ρkn =
W ( ¯γkn)

ln(2)
, (4)

where W denotes the Lambert-W function, the solution to the
transcendental equation W (x)eW (x) = x. A derivation of (4)
is presented in Appendix A. Using (4), the maximum goodput
user k can achieve on sub-carrier n is

Gk,n =
W ( ¯γkn)

ln(2)
(exp[−(γ̄−1

kn )(2
W (γ̄kn)

ln(2) − 1)]). (5)

When the transmitter knows the ICSI there are no outages,
and each sub-carrier is loaded with a bit-rate equal to the
Shannon capacity.

III. PROBLEM FORMULATION

The objective of this problem is to maximize the sum-
goodput of the OFDMA downlink under minimum user data-
rate requirement constraints. Equal power allocation across all
sub-carriers is assumed as this reduces the complexity of the
problems and minimally decreases the data throughput of a
multiuser OFDM system [8]. This is due to the nature of
OFDMA systems, where sub-carriers are commonly assigned
to the users with the best channel gains. For the SCSI based
scheme, the problem can be mathematically formulated as
follows:

P1 : max
ckn

K∑
k=1

N∑
n=1

cknGk,nB (6)

Subject to :

C1 :

N∑
n=1

cknGk,nB ≥ Rk, ∀k

C2 : If ck′n = 1, then ckn = 0 ∀ k �= k′.

Note that the first constraint, C1, ensures that the QoS
requirement is met for all users k, while the second constraint
ensures that a single carrier is not shared between different
users. The equivalent problem can be formulated for the case
of ICSI by replacing the goodput with the Shannon capacity
in P1. That is:

P2 : max
ckn

K∑
k=1

N∑
n=1

ckn log2(1 +
νPt

No

)B (7)

Subject to :

C1 :
N∑

n=1

ckn log2(1 +
νPt

No

)B ≥ rk, ∀k

C2 : If ck′n = 1, then ckn = 0 ∀ k �= k′.

A. Complexity of the Problem

In P1, both the goodput and the Shannon capacity can be
treated as constants. Therefore, P1 is converted into an integer
linear programming problem which is one of the earliest
members of the NP-hard class [9]. There are now KN integer
variables and K + N constraints, where the number of sub-
carriers is high (i.e N= 1024 used in our simulations). As
the complexity of the problem grows exponentially with KN

and K+N [10], it cannot be solved by using standard integer
linear programming methods such as Branch and Bound. Thus,
a heuristic needs to be developed. In [1], an algorithm which
exhibited excellent sub-optimal properties was proposed to
solve a problem of the same nature. However, its use may
lead to carriers being allocated to users who are unable to
meet their QoS constraints. In this paper, we use an extended
version of that algorithm in order to mitigate this problem.

B. Heuristic Subcarrier-Bit Allocation Algorithm

The algorithm used in [1] first allocates sub-carriers to
the users who can transmit the highest amount of data on
them. As this process does not guarantee fairness, they are
then re-allocated to the users whose constraints have not been
met by using a cost function. This cost function ensures that
any reallocations cause a small reduction in the overall sum-
capacity of the system, and that the running time of the
algorithm is minimized. Any remaining sub-carriers are then
assigned to the users with the better channel gains. Here,
we extend the algorithm as when carriers are allocated to
users who do not meet C1, their requests will be rejected,
and any carriers allocated to them will be wasted. Consider
X ⊆ {1, 2, ....,K} to be the set of users who have not had
their QoS constraints satisfied following the execution of the
algorithm proposed in [1]. The cardinality of this set equals l.
It is expected that a number of these users will still have been
allocated some sub-carriers. The data-rates allocated to these
l users by [1] are given in vector y=[y1,...,yl] whereas their
associated QoS constraints are z=[t1,....,tl]. Furthermore, it is
assumed that W ⊆ {1, 2, ...., N} is the set of sub-carriers
that have been allocated to these l users through [1]. In order
to improve the overall performance, the following extension
is proposed:

Algorithm 1 Proposed extension

1: Initialize : W ⊆ {1, 2, ...., N}, X ⊆ {1, 2, ....,K}, y, z
2: ∀ users u∈ X
3: Calculate r(u) = z(u)− y(u)
4: u∗ = argmin

u
r(u) //find the user u∗ closest to meeting

his QoS requirement
5: yu∗ = yu∗ + ρu∗iB // give sub-carrier i ∈ W to u∗

6: W = W − i // remove sub-carrier i from W
7: if yu∗ > tu∗ then
8: X = X − {u∗} // remove u∗ from X
9: end if

In Algorithm 1, ρu∗i is the optimum goodput user u∗ can
achieve on carrier i. The use of this extension enables any
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unused sub-carriers to be assigned to the users closest to
meeting their data-rate requirements. Therefore, the number
of utilized sub-carriers increases, and a higher overall system
performance can be achieved. Moreover, the number of satis-
fied users grows.

C. Sub-Optimal Properties of Heuristic Algorithm

The sub-optimal properties of the heuristic algorithm are
demonstrated in Fig. 1. The results of the algorithm are
compared with the optimal results obtained through a brute-
force search. The algorithm efficiency is defined as the ratio
of the goodput achieved through the use of the sub-optimal
algorithm to the goodput that can be achieved through a brute-
force search.

Due to the long computational time, only eight sub-carriers
and three users are considered. The QoS constraint is set to
4000 bits . Fig.1 shows that the algorithm exhibits excellent
sub-optimal properties when SCSI is used to perform RRM.
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Fig. 1. Performance comparison between brute-force search and sub-optimal
algorithm used to perform resource allocation

D. Impact of Extension to Original Algorithm

In order to present the importance of the final part of the
algorithm, a throughput gain factor is defined as the ratio of the
goodput achieved with the original version to the goodput that
can be achieved using the extended version. Assume that their
are 4 users in a cell and 8 sub-carriers that can be assigned to
them. Fig.2 shows that when the QoS constraint is high and
SCSI is used for resource allocation, an important increase
in throughput occurs. As the user QoS requirements grow, it
becomes increasingly difficult for the SCSI based scheme to
meet these demands. Therefore, a higher number of unsatisfied
users will be realized. With the original algorithm, any sub-
carriers allocated to them would be discarded.

10 15 20 25
0.99

1

1.01

1.02

1.03

1.04

1.05

QoS constraint (kbps)
T

h
r
o
u
g
h
p
u
t

g
a
i
n

f
a
c
t
o
r

SCSI
ICSI

Fig. 2. Impact of the proposed extension to the original algorithm

IV. SIMULATION RESULTS

In this section, the significance of accurate CSI on RRM
techniques for OFDMA systems is presented. In order to
measure the impact of ICSI knowledge, a capacity gain factor
is defined. This is the ratio of the optimum sum-capacity
of a system where the user ICSI is known to the optimum
sum-goodput of that same system when only the user SCSI
is available. In the first subsection, the effect of a varying
transmit power on the performance difference between SCSI
and ICSI based adaptive RRM is presented. Then, the signifi-
cance of a varying QoS constraint is analyzed. The simulation
parameters used are listed in Table I. The environment is
assumed to be variable, which is modeled by a fast fading
with independently fading Rayleigh processes, whose power
delay profile is described by the ITU Vehicular A model.
The performances are evaluated using simulations over 10,000
instances of independent channel realizations. When averaging
over a large number of channel realizations it is possible to
accurately compare the ICSI and SCSI resource allocation
schemes.

TABLE I
TABLE I:SIMULATION PARAMETERS USED

Parameter Value
Number of sub-carriers 1024
Tx Power 8 → 35mW per sub-carrier
Noise power density 10−10W/Hz
Channel Model ITU Vehicular A
Bandwidth 10MHz
QoS constraint 1Mbps, 0 → 1.6Mbps

A. Impact of Transmit Power

It is worthwhile to investigate the significance ICSI knowl-
edge has on the probability of satisfying the user QoS con-
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straints. In Fig. 3, we notice that an important number of QoS
constraints can be met by using SCSI. However, when the
instantaneous channel realizations are known, nearly all of the
user data-rate requirements are satisfied. A further comparison
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Fig. 3. Probability of user QoS requirements being met versus SNR per
subcarrier for the SCSI and ICSI based resource allocation schemes

between the SCSI and ICSI based resource allocation schemes
is made in Fig. 4. Here, it is observed that approximately 6dB
more power per sub-carrier is required when the transmitter
does not know the ICSI.
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Fig. 4. Maximized sum-capacity versus average SNR per subcarrier

Fig. 5 presents the variation of the capacity gain factor

with SNR per subcarrier for 4 users without QoS constraints.
For comparison purposes, a curve corresponding to the same
amount of users each requiring 1Mbps is also given. As the
SNR per subcarrier increases, the performance difference be-
tween the two cases is reduced because more QoS constraints
can be met using SCSI . Also, the actual value of the capacity
gain factor decreases as the power grows. In Appendix B,
we show that as the SNR approaches infinity, the value of
the capacity gain factor will be equal to one. In general the
figures show that the performance difference between the ICSI
and SCSI based resource allocation schemes is small. This is
attributed to the Lambert-W approach which optimally loads
the subcarriers in a Rayleigh environment. Optimal loading
of subcarriers will lead to an improved performance when
the channel gains are distributed according to a different p.d.f
(i.e Ricean). However, closed form expressions that relate the
optimum goodput with the data rate need to be developed.
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Fig. 5. Impact of SNR per subcarrier on the capacity gain factor

B. Impact of QoS constraint

The user QoS constraint in P1 plays an important role on
the performance difference between the SCSI and ICSI based
resource allocation schemes. Fig. 6 shows the variation of
the capacity gain factor with the user QoS requirement. The
transmit power equals 10mW (SNR per subcarrier is equal
to 0dB). A close observation of this figure indicates that the
value of this factor grows with the QoS constraint. As the
user demands increase, the number of sub-carrier realloca-
tion operations required to satisfy users whose instantaneous
channel realizations are unavailable grows. This process has a
negative impact on the optimum sum-goodput of the SCSI
based scheme. Moreover, multiuser diversity has a strong
effect on the results of Fig. 6. When the users’ ICSI is known
by the transmitter, it is easier for multiuser diversity to be
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exploited. However, when SCSI is used to perform RRM,
the benefits of multiuser diversity outweigh the drawbacks
of sub-carrier reallocation only when the QoS constraint is
low (i.e < 0.1Mbps in our simulations). It is important to
further investigate the significance of multiuser diversity on
these results. In Fig. 7, we notice that when the user QoS
requirement is equal to 0.1Mbps and the SCSI based RRM
scheme is used, the overall system throughput increases with
the number of users. However, when the user ICSI is unknown,
it becomes increasingly difficult to exploit multiuser diversity
as the QoS requirements grow. In this case, the effects of sub-
carrier reallocation counteract multiuser diversity even when
a relatively low number of active users are present in the cell.
On the other hand, using ICSI based RRM enables multiuser
diversity to be utilized much more efficiently when the QoS
demands are high.

V. CONCLUSION

In this work, adaptive resource allocation has been per-
formed for users whose instantaneous channel realizations are
unavailable at the transmitter but known by the receiver. Sub-
carriers were optimally loaded by using a relationship between
the average SNR and the Lambert-W function. To further
enhance the overall spectral efficiency, a well-known sub-
optimal algorithm was extended. Using the proposed approach,
numerical results showed that a significant number of user QoS
requirements could be met using SCSI. However, an important
loss in performance was observed when a performance com-
parison between the SCSI and ICSI based resource allocation
scheme was made. This degradation was dependent on the
number of active users present in the cell, the QoS constraint,
and the transmit power.
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VI. APPENDIX A PROOF OF (4)

The goodput is written as

G(ρ) = ρ(exp[−(γ̄−1)(2ρ − 1)]) (8)

In order to find the value of ρ that yields the maximum
values of G derivative of G with respect to ρ is set to zero. If
we set g(ρ) = −(γ̄−1)(2ρ − 1) this can ber written as:

dG

dρ
= exp(g(ρ)) + ρ exp(g(ρ)) ∗ ln(2)g(ρ) = 0 (9)

This reduces to

1 + ln(2)ρg(ρ) = 0 (10)

By replacing g(ρ) with its original value we obtain

γ̄

(2ρ) ln(2)ρ
= 1 (11)

Using 2ρ = exp(ln(2)ρ) this can be written as

γ̄

(exp(ln(2)ρ)) ln(2)ρ
= 1 (12)

By setting y = ln(2)ρ (12) can be written in the form
y exp(y) = γ̄. By applying the Lambert W function we get
y = W (γ̄). Replacing with the original value of y will result
in (4).

VII. APPENDIX B CALCULATION OF THE CAPACITY GAIN

FACTOR LIMIT

In this appendix, we prove that when the SNR approaches
infinity, the capacity gain factor becomes 1. After averaging
over a large number of channel realizations, the values of γ̄
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and γ can be considered equal. The limit can therefore be
written as:

lim
γ→∞

exp

[
− (γ−1)(2

W (γ)
ln(2) − 1)

](
W (γ)

ln(2)

)(
1

log2(1 + γ)

)

Using the Lambert function identity, this can be written as:

lim
γ→∞

exp

[
−

expW (γ) −1

γ

](
W (γ)

ln(γ)

)(
ln(γ)

ln(1 + γ)

)

Simple algebraic manipulations and application of
Del’Hospital’s rule to the second and third factor yield:

lim
γ→∞

exp

[
−

1

W (γ)
−

1

γ

](
W (γ)

1 +W (γ)

)(
γ + 1

γ

)
= 1
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Understanding Static Inter-Cell Interference
Coordination Mechanisms in LTE

Ashley Mills, David Lister, and Marina De Vos

Abstract—This work identifies the factors which determine
the behaviour of static interference avoidance schemes: SINR
distribution shift, MCS mapping, and proportional MCS usage.
The work goes on to challenge the common assumption that it is
“best” to give resources with a high reuse factor to those at the
cell-edge, by showing for a fixed rate service class, that it is best
to be greedy and give these resources to those at the cell-centre.
The work is performed using monte-carlo simulations, only in
the downlink direction, on a London scenario with realistic path
loss and network data. All work is statistically quantified using
appropriate tests.

Index Terms—LTE, Interference Coordination, Soft Frequency
Reuse.

I. INTRODUCTION

THE next generation wireless technology, Long Term
Evolution (LTE), has been designed to deliver higher

spectral efficiency and increased cell-edge throughputs relative
to HSPA [1]. It is expected that LTE will be deployed in a
reuse one configuration, in which all frequency resources are
available to use in each cell. Although LTE can operate at
SINRs as low as -6.5dB [2], concern still persists over cell-
edge performance.

This has led to the proposal of numerous inter-cell interfer-
ence coordination mechanisms. A large number of these are
dynamic in nature and usually assume communication between
basestations [3]–[15]. These schemes have tended toward
taking more and more cells into account, and it would appear
that the industry is converging toward multi-cell processing
with a centralised RAN architecture [16], [17].

Despite this progress and innovation, interest still persists
in static schemes that it is assumed can be deployed within
LTE without modification of the extant standards and without
significant modification of extant equipment.

Static schemes usually fall into one of three broad cate-
gories: traditional hard frequency reuse, soft frequency reuse
[18], and partial frequency reuse [19]. Notwithstanding vari-
ants and other techniques that do not fit the classification, this
taxonomy will serve the argument advanced here.

A. Soft Frequency Reuse

Soft Frequency Reuse was proposed by Huawei in [18];
supplemented in [20]. This proposal is effectively reiterated by
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Group Services Limited, The Connection, Newbury, Berkshire, RG142FN,
UK

Marina De Vos is with The University of Bath, UK
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Ericsson in [21] and by LG Electronics in [19] although the
latter augments the description with a priority based frequency
planning scheme. Alcatel propose a method very similar to soft
reuse in [22], albeit with a reuse factor higher than three at
the cell edge. Semi-static variants of soft reuse are proposed
in [23]. Soft frequency reuse is usually portrayed as depicted
in Figure 1.
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Fig. 1. Soft frequency reuse as conventionally presented

The left side of Figure 1 shows a hexagonal configuration
of cells, colour coded and labelled according to a tessellating
pattern to indicate which parts of the frequency band are
allowed in each part of each cell. The right of the figure shows
the frequency-power transmit profiles for each of the three
types of cell that arise.

The general concept is that BSs transmit at reduced power
over the whole transmission band, to create spatially separated
cell centres that do not interfere with each other. At the cell
edges, a boosted reuse three pattern is used so that received
signals are orthogonal between otherwise interfering cell-edge
UEs.

The mean cell throughput under soft reuse for the downlink
is examined in [24]. It is claimed that 5th percentile throughput
can be improved relative to reuse one in trade off for a
reduction in total cell throughput by applying soft reuse. Since
the work only examines the mean cell throughput, it provides
no insight into the behaviour of more realistic schedulers.

Partial reuse differs from soft reuse in that the tessellated
part of the spectrum is kept disjoint from the reused part of
the spectrum [19].

B. Conflicting Results

Examining results on soft and partial reuse [14], [18], [22],
[25]–[30] reveals some conflicting statements.
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For example both [26] and [30] claim that partial reuse,
relative to reuse one, gives improvements in throughput at
the 5th percentile point, yet [29] concludes that “the basic
partition-reuse scheme studied was not capable of improving
the rate at the 5% CDF point”.

And [27] claims that soft reuse provides gains in both cell-
edge and total throughput when compared with reuse one
yet [28] concludes that “With the expected link performance
no improvement can be found with static downlink reuse
schemes.”. Furthermore [26] shows completely the opposite:
losses in both cell-edge and total throughput for some scenar-
ios.

The discussions in [29] and [28] go some way to explain,
for their own results in isolation from others, why they turn
out the way they do, yet no general explanation is proffered.

We contribute to this body of work in two ways: firstly
we statistically quantify our results to provide confidence in
them, something that none of the cited works do, and secondly:
we explain clearly how different results can manifest from the
application of the same or very similar schemes by identifying
the principal factors involved and explaining their interactions
(Section IV).

C. Challenging a common assumption

A common assumption in the works cited above, is that
it is better to give the resources with a higher reuse factor
to the UEs at the “cell-edge”. This is evidenced by the
observation that none of the work suggests doing the opposite.
And although in [31] a convincing mathematical argument is
advanced as to why the cell edge may benefit more from inter-
ference coordination than the “cell-centre”, this says nothing
of the trade-off in general.

Without strong empirical support, it is far from clear that
giving the better resource to the cell-edge UEs is always
the best scheduling strategy. And it must be observed that
subbands with higher reuse factors offer improved SINR to
all UEs, not just cell-edge UEs. So it isn’t clear apriori what
the best scheduling strategy is for a given performance metric.

Against this backdrop we decided to examine scheduling
strategies that favour high SINR UEs even when a soft reuse
scheme has been applied, and were surprised to find, contrary
to intuition, that a net gain in number of satisfied UEs could be
obtained. This is explained with reference to the determinant
factors identified in Section IV.

D. Document outline

The rest of this document is organised as follows. In
Section II, the soft reuse terminology used here is defined.
Experimental assumptions are explained in Section III. In
Section IV, the factors complicit in causing static reuse results
to differ are drawn out and explained through the medium of
mean-rate experiments. In Section V, a feasible scenario is
examined where favouring the cell-centre UEs gives a better
outcome than favouring the cell-edge UEs. The implications
of the presented results are discussed in Section VI and
Section VII draws the work to a close with the conclusion.

1.3

TABLE I
RELATIVE TX POWER PER VRB ON THE ASB AND BSB.

Index 1 2 3 4 5 6 7 8 9 10

ASB TX 0 1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

1

BSB TX 3 25
9

23
9

21
9

19
9

17
9

15
9

13
9

11
9

1

II. SOFT REUSE

A problem with the presentation in Figure 1 is that it
confounds the physical aspects of soft frequency reuse with
the virtual aspects of resource allocation by implying that the
boosted resource should be given to the “cell edge” UEs.

Since this work looks at giving the boosted resource to
the “cell-centre” UEs, soft reuse is presented neutrally as a
tessellating pattern with a boosted part and an attenuated part,
in the manner of Figure 2.

Fig. 2. Soft Frequency Reuse Configuration. The band is divided into atten-
uated and boosted regions. The scheduler decides which UEs are allocated to
which regions.

The available bandwidth is partitioned into an Attenuated
Sub Band (ASB) and a Boosted Sub Band (BSB) in the propor-
tion of 2:1. The position of the BSB third in the overall band
is changed on a per cell basis to create a tessellating pattern.
The only difference from Figure-1 is that cell geography is
not shown since we wish to avoid communicating apriori
geographical biases on the usage of the ASB or BSB.

The relative transmit powers of the ASB and BSB determine
how “soft” the overall reuse factor is. The power ratios shown
in Table-I were examined in this work.

This range of soft reuse power ratios is bounded by two end
points: reuse three at index 1, and reuse one at index 10. The
points in between linearly interpolate across the space defined
by these end points.

Observe that for Index 1, since the TX power on the ASB is
0, all UEs are assigned to the BSB. The BSB in this case uses
1/3rd of the total bandwidth at 3 times the transmit power.

In the following sections, the impact of applying each of
these soft reuse power ratios is examined. Different scheduling
strategies are considered to demonstrate the interaction be-
tween soft reuse power ratio and scheduling strategy. The cell
performance is measured for each condition, to understand, if
at all, where each soft reuse power ratio performs best.

III. EXPERIMENTAL METHODOLOGY

A. Overview

A realistic central London scenario is used to assess the
gains of applying the static soft reuse power ratios shown
in Table-I. The gains are measured in terms of scheduling
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performance for two scheduling approaches: mean rate, and
fixed rate.

B. LTE System Assumptions

The left of Figure 3 illustrates the essential components
of a 10MHz LTE DL frame. In time, the frame consists of
10 subframes which each last 1ms. Half of a subframe is
called a slot. In frequency, each subframe is split into 50
Virtual Resource Blocks (VRBs). Each VRB is comprised of
a pair of physical resource blocks (PRBs). One VRB is the
smallest unit of allocation in LTE [32]. Each PRB spans 12
subcarriers in frequency and 7 symbols in time (shorter cyclic
prefix was used). Each element of a PRB is called a Resource
Element (RE). An RE spans one subcarrier in frequency and
one symbol in time. An RE has a frequency width of 15kHz
and lasts approximately 70µs.

S 0 S 1 S 2 S 3 S 10

VRB 0

VRB 1

VRB 2

VRB 49 VRB

PRB PRB

10Mhz LTE Frame

10 subframes (1ms each)

5
0

 V
R

B
s

Resource

Elements (REs):

Fig. 3. The essential components of a DL LTE frame.

The right of the figure shows a VRB in detail, containing the
RE types modelled here. Primary and secondary synchronisa-
tion, and broadcast channels, only occur on the three VRB
either side of the central carrier. The former only occur in
frames 0 and 5 and the latter only in frame 0. Their detailed
action is not modelled: the channels only consume space that
would otherwise be occupied by data REs. In the majority of
the frame, only pilot, control, and data REs are present.

Pilot symbol positions and associated RSRP computation is
modelled accurately according to [32]. Control channels are
assumed to consume the first 3 symbols of every subframe,
their action is not modelled, and they only consume space that
would otherwise be occupied by data symbols. The average
number of data REs per VRB was computed as 124.8720. This
number is at the root of all throughput computations.

C. MCS Codeset

To map SINR to throughput, a lookup curve obtained from
Vodafone Group [33] was used. Figure 4 shows the curve
relative to the 3GPP reference curve which uses a single
antenna (SISO) transmit/receiver [2]. The Vodafone curve uses
2x2 MIMO and assumes optimal switching between STBC and
spatial multiplexing. The fading at the link level was based on
the ITU Pedestrian B channel at 3km/h [34].

D. Deployment scenario

A realistic London scenario was used for all simulations.
The data represents an area of central London. Antenna
settings and terrain data reflect the actual network settings used
in 2004 for the Vodafone UMTS macro deployment. Figure 5
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Fig. 4. SINR to MCS bitrate lookup curve used here in comparison to
Shannon and a 3GPP reference curve.

Fig. 5. Atoll predictions and antenna locations for the London scenario
scenario used in all simulations. Circled antennas were excluded from results
collection.

shows the London area studied along with generated pathloss
predictions.

Pathloss was calculated at a resolution of 10m2 using the
Pace3D ray tracing software module in Atoll [35]. Pace3D
accurately models the effects of building penetration losses,
reflection, and refraction effects and provides a realistic picture
of the actual pathloss variation experienced in each cell. To
mitigate border simulation affects, results were not collected
for the circled cells in Figure 5.

In all experiments, each cell transmits continuously, so that
the worst case interference scenario is represented.

IV. MEAN RESULTS

To generate mean cell results the following procedure was
used:

ForEach ( S o f t Reuse Power Ra t i o ) : Do
ForEach ( C e l l ) In ( S c e n a r i o ) : Do

ForEach ( Square i n C e l l Area ) : Do
A <− ASB B i t r a t e
B <− BSB B i t r a t e
C <− Mean : 2 / 3 ∗ A + 1 /3 ∗ B

Done
Compute mean of A, B ,C over S qua r e s
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Done
Compute mean of A, B , C over C e l l s
Record A, B ,C f o r S o f t Reuse Power Ra t i o

Done

In the first line, the transmit power profile is applied to
the network. This means every cell transmits at exactly the
power specified in the profile on each VRB. A full interference
model is examined which means all cells are simultaneously
transmitting on all VRBs. The algorithm then iterates over all
cells in the scenario, and averages the measures A, B, and C
for each cell at a resolution of 10m2. This is the meaning of
“Square” in the algorithm. The algorithm ends by averaging
the results across all cells.

Figure 6 plots the mean cell throughput as a function of soft
reuse power ratio.
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Fig. 6. Mean cell throughput

The general trend observed is a decline in throughput when
moving away from reuse one toward reuse three. To compare
the two extremes: mean throughput is ≈ 40% greater under
reuse one than it is under reuse three. This difference is signif-
icant with p < 1× 107 under a right tailed, unequal variance,
ttest (Satterthwaites approximation was used to address the
Behrens Fischer problem [36]).

It is desired to understand exactly why this result is ob-
served. It is straightforward to examine the two end points:
reuse three and reuse one. The question is why the reduction
in bandwidth in the reuse three case is not “compensated”,
to borrow terminology from [37], by the improved SINR
conditions.

To see why, consider the SINR distributions under reuse
three and reuse one, as illustrated in Figure 7.

The SINR distribution is right-shifted under reuse three
compared to reuse one. For any monotonically increasing MCS
lookup curve, improved SINR results in improved bitrate. Yet
since bandwidth is reduced by a factor of three the effective
bitrate observed will be reduced by a factor of three. For a
given UE to benefit, it must thus obtain more than a factor
three improvement in bitrate.
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Fig. 7. Cell SINR CDFs under reuse three and reuse one.

Figure 8 illustrates which parts of the cell obtain such an
improvement when switching from reuse one to reuse three
and which do not. The figure plots the effective bitrate under
reuse three, for sets of UEs defined by MCS index under reuse
one. To make this clear, consider MCS index 10. The reuse
one rate plotted is simply the rate for that MCS scheme. The
reuse three rate, is the effective mean bitrate of all UEs under
reuse three, that under reuse one were served by MCS index
10. A way to think of this is that each MCS serves an area
of the cell under reuse one, and the plot shows how the mean
bitrate changes over each MCS-area when switching to reuse
three.
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Fig. 8. Effective change in bitrate index when switching from reuse one to
reuse three.

The points labelled with up arrows are those which result in
an effective bitrate improvement and those labelled with down
arrows an effective bitrate loss. As can be seen, some parts
of the cell, namely those defined by low index MCS schemes,
do benefit from switching to reuse three. It follows that the
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mean cell result is determined by the relative proportional use
of each MCS scheme. Figure 9 plots the relative proportional
use of each MCS scheme under reuse one.
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Fig. 9. Frequency of MCS use under reuse one.

When the MCS distribution shown in Figure 9 is considered
against the effective bitrate changes shown in Figure 8, the
outcome is that approximately 50% of the UEs gain from
switching to reuse three, and approximately 50% do not gain.
When reuse three wins out, a mean improvement of ≈ 0.13
bits per symbol is obtained, whereas when reuse one wins out,
a mean improvement of ≈ 1.88 bits per symbol is obtained.
The overall result is that reuse one wins out when the whole
cell is taken into account, as was illustrated in Figure 6. It
should now be clear that the mean cell result is determined by
three items:

1) The change in SINR distribution bought about by the
coordination of interference.

2) How this corresponds to a change in MCS schemes used
due to the gradient of the MCS lookup curve.

3) The relative proportional use of each MCS scheme
before coordination.

Clearly then, these items are critical, and anything that
changes them can change the outcome of the competition
between reuse three and reuse one, or in general reuse one
and some other interference scheme such as soft reuse that
improves SINR. From this it follows that scheduling policy
plays a crucial role in determining whether a given interference
coordination scheme brings about a benefit or not. The sched-
uler decides which UEs receive resources, and thus modifies
the relative proportional use of MCS schemes, which is the
third item above.

For schedulers which bias the resource allocation to low
SINR UEs, or for cells which have a very large percentage of
low SINR UEs, there is likely to be a benefit from statically
applied soft reuse schemes. In other cases, there will not
be. However, the exact scheduling strategy and exact UE
distribution will determine the overall result and should be
examined on a case by case basis.

To summarise: in the mean, no net benefit is obtained

from the application of any soft reuse scheme tested. The
reason for this has been clearly explained in terms of the
interaction between SINR distributions, MCS lookup curve,
and proportional use of MCS schemes.

In the next section soft reuse is applied to a fixed rate
scheduler to get some idea how in practise, scheduling shifts
the relative proportional use of MCS schemes, and whether or
not this results in an overall benefit under soft reuse.

V. FIXED RATE RESULTS

In this section a semi-realistic scheduler is examined whose
goal is to satisfy as many UEs as possible, where each UE
has the same fixed bitrate target. The scheduler operates as
described below:

ForEach (UE i n S chedu l i ng Order ) : Do
A l l o c a t e VRBs from t h e BSB U n t i l :

No VRBs remain
OR UE i s s a t i s f i e d .

A l l o c a t e VRBs from t h e ASB U n t i l :
No VRBs remain
OR UE i s s a t i s f i e d .

Update s a t i s f i e d UE coun t a c c o r d i n g l y
Done

The scheduler always allocates the best resource, the BSB,
first. This means that the scheduling order is important. To
investigate the impact of which UEs get preference for the
BSB, three scheduling orders were considered:

1) Greedy - The UEs are scheduled according to wideband
SINR in descending order from best to worst.

2) Random - The UEs are scheduled in random order.
3) Leftist - The UEs are scheduled according to wideband

SINR in ascending order from worst to best.

Note that the third of these is the approach which is usually
promoted in the literature (see for example [18], [26], [38],
[39]), namely that the boosted part of the spectrum should be
given to the “cell-edge” UEs.

The complete process for obtaining results, which is exe-
cuted for each fixed rate target, and each scheduling strategy,
is as follows:

ForEach ( S o f t Reuse Power Ra t i o ) : Do
ForEach ( C e l l ) In ( S c e n a r i o ) : Do

ForEach ( Random seed i n 1 t o 1000 ) : Do
Drop 25 UEs a t random
Schedu le t h e UEs
Record number of s a t i s f i e d UEs

End
Compute mean over a l l UE drops

End
Compute mean over a l l c e l l s

End

Figure 10 plots the number of satisfied UEs, under the best
soft reuse power ratio, for each bitrate target, and for each of
the scheduling strategies.

The results are surprising and show that giving the BSB to
the “cell-edge” UEs, actually results in the worst performance.
It turns out that it is always best to be greedy and give
the BSB to the best SINR UEs, at least for the scheduler
examined. Note that the number of UEs satisfied never reaches
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Fig. 10. Number of satisfied UEs under the best performing soft reuse power
ratio, for each bitrate target.

the maximum 25, this is because the Monte Carlo simulation
samples some areas which cannot receive any throughput
under the MCS lookup curve used. In practise however, time
dependent variation, and partial loading, should allow all UEs
to be satisfied for reasonable bitrate targets.

Figure 10 plots the number of satisfied UEs under the best
soft reuse power ratio for each fixed rate target. It does not
specify which soft reuse power ratio is best for each fixed
rate target. For the greedy scheduler, the only scheduler of
interest given the above results, the answer is as follows: for
bitrate targets 500 down to 200, reuse one satisfies the greatest
number of UEs, and for bitrate targets 150 and below, reuse
three satisfies the greatest number of UEs.

Thus, no intermediate soft reuse scheme ever does better
than either reuse one or reuse three in this scheduling scenario.
Given that either reuse one or reuse three satisfies the greatest
number of UEs, Figure 11 plots the ratio of the number UEs
satisfied under reuse three, to the number satisfied under reuse
one.

When 25 UEs are trying to get 500kbps each, the system
is overloaded, and in this case reuse one satisfies upto 10%
more UEs than reuse three. For the lower load and saturation
states, reuse three satisfies upto 4% more UEs than reuse one.
The former gain comes about because the greedy scheduler
prioritises UEs with a high MCS which benefit most from
having the full resource available to them. The latter gain
comes about because reuse three is able to serve UEs which
cannot be served under reuse one due to the cut-off point in
throughput caused by the lookup curve. In practise this gain
is likely to be diminished because time-dependent fading will
periodically bring cut-off UEs into service.

Furthermore, given the results of Section IV, it will be
observed that any reuse three gain will come at the cost of
reduced mean rate, and will only be apparent for low bitrate
targets. Thus it is unlikely in practise that any significant
gain in fixed rate satisfaction would be observed from the
application of soft-reuse in the general case.
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Fig. 11. Ratio of satisfied UEs under reuse three to satisfied UEs under reuse
one, for each bitrate target.

VI. DISCUSSION

A. Summary

The conditions under which soft reuse can be expected to
benefit have been clearly enumerated: SINR distribution shift
under ICIC, SINR to MCS mapping, and proportional usage
of each MCS scheme before and after ICIC. In addition, the
intuitive notion that the “cell-edge” UEs should receive the
boosted part of the spectrum has been demonstrated false in
the case of a fixed bitrate service class presented.

B. Scope of results

It may be argued that the results presented here are too
specific, and that they “overfit” the particular London scenario
examined. Given this possibility, the experiments presented
were repeated for a 57 cell hexagonal environment and re-
peated again for the 3GPP codeset shown in Figure 4.

In the hexagonal case, there are greater benefits from coordi-
nation, but overall the mean rate still favours reuse one, and the
fixed rate scheduling outcome shows the same trends described
here. Using the 3GPP codeset, the only differences observed
are expected lower throughputs, but no diversion from the
trends. In summary, there are no qualitative differences in the
results or the implications of the results. Note however that
the degradation observed when switching from hexagons to
the London scenario is likely to be even greater for femtocells
and highly irregular networks. This is because the spatial
orthogonality on which static reuse schemes depend, will be
eroded.

C. Contributions of this paper

The novel contributions of this work are threefold:

• The primary factors which manifest static reuse results
are illustrated through a simple example. These are: SINR
distribution shift under ICIC, SINR to MCS mapping, and
proportional usage of each MCS before and after ICIC
due to user distribution and scheduling strategy. Different
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scheduling strategies may manifest fundamentally differ-
ent outcomes for a given ICIC approach.

• Simulations are performed for a realistic London deploy-
ment, and all results are quantified statistically. This is in
contrast to former work cited.

• The assumption that the cell-edge UEs should be assigned
the best resources, implied by former work, is challenged
and demonstrated false for the traffic class examined.

VII. CONCLUSION

We propose examining results in terms of relative MCS
improvement curves given the scheduler examined as we have
done here, rather than solely in terms of CDF shifts due to
the soft reuse scheme applied. The former approach captures
the important interactions between UE distribution, scheduling
strategy, and MCS codeset, whereas the latter only reflects the
SINR change independent of these.

The notion that it is better to give “cell-edge” UEs the
resources having a high reuse factor has been demonstrated
false in the case examined here.
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Abstract— The design of power-efficient forward error 

correction techniques over additive white Gaussian noise 

(AWGN) and frequency non-selective fading channels is 

considered in this work. The aim of this paper is to 

investigate the application of BICM with iterative 

demodulation and decoding (BICM-ID) system with 

irregular repeat-accumulate (IRA) codes to minimize the bit 

error rate (BER) and determine the most suitable 

constellation and mapping pairs for designing power-

efficient BICM-ID systems over AWGN and Rayleigh 

fading channels using the concept of channel capacity limit. 

Simulation results have confirmed that a remarkable BER 

improvement can be achieved using the proposed design 

criterion. Based on the IRA-encoded BICM-ID technique 

considered, the BER improvement gained is exhibited either 

as an additional coding gain, error floor elimination, or 

both. The code components include the IRA codes, irregular 

low-density parity-check (ILDPC) codes and convolutional 

codes (CC). The modulation technique considered is the 

widely-used 16-ary constellations with various bit mappings.

Index Terms— channel capacity, coded modulation, error 

correction codes, iterative decoding, OFDM, LTE

I. INTRODUCTION

Trellis-coded modulation (TCM) [1] achieves good 

performance over additive white Gaussian noise
(AWGN) channel by maximizing the free Euclidean 

distance using set partitioning (SP). For fading channels, 

the TCM code performance is dominated by the 

minimum Hamming distance between the coded symbol 

sequences rather than the minimum Euclidean distance. 

As a consequence, a new approach called bit-interleaved 

coded modulation (BICM) was developed by Zehavi [2] 

to increase the time diversity of the coded modulation at 

the expense of reducing the free squared Euclidean 

distance (FED), resulting in degradation over AWGN 

channels [2], [3]. BICM is a spectrally efficient coded 

modulation technique and it is well-suited for bandwidth 

efficient transmission over fading channels. The optimum 

receiver of the BICM is composed of a joint demapper 
and decoder. However, due to the high complexity of the 

optimum receiver, a low complexity receiver can be 

constructed when the demapping and decoding are 

decoupled. BICM with iterative demodulation and 

decoding (BICM-ID) achieves a turbo-like performance 

using 8-PSK and 16-QAM modulation over both AWGN 

and fading channels [4]-[6].

The optimised selection of the channel code and 

mapping leads to near capacity performance [7]. The 

selection process includes combinations of Gray mapping 

with powerful channel codes [7], [8] such as turbo codes 

[9], low-density parity-check (LDPC) codes or repeat-

accumulate (RA) codes [10], and combinations of non-

Gray mapping with less powerful channel codes [8] such 

as the simple convolutional codes (CC). For turbo codes, 

it is well-known that the 16-QAM combined with Gray 

mapping are very well-matched for BICM schemes [7], 
[11]. However, some constellations have been reported to 

outperform the 16-QAM over both AWGN and fading 

channels [12], [13]. Hence, these constellations can be 

used to design BICM-ID schemes. Motivated by the 

performance improvement gained by combining turbo 

codes with BICM schemes, this paper investigates the 

application of irregular RA (IRA) codes in BICM-ID 

systems to improve the error performance [14], [15]. The 

encoding efficiency of LDPC codes is quadratic in the 

block length since encoding requires multiplication by the 

generator matrix which is not sparse. On the other hand, 

the generator matrix for IRA codes is sparse. Similar to 

RA codes, IRA codes can be represented as a class of 

"turbo-like" codes and a class of LDPC codes. The aim of 

this paper is to investigate the application of BICM-ID 

system with IRA codes and determine the most suitable 

combinations of 16-ary constellations and mappings for 
designing power-efficient BICM-ID systems for AWGN 

and Rayleigh fading channels.
Manuscript received September 09, 2010; revised April 27, 2011;

accepted June 25, 2011.
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The BICM and BICM-ID schemes can be designed by 

employing any two-dimensional constellation. In this 
paper, we consider the design criterion of finding the best 

signal constellation and mapping pairs to construct 

power-efficient BICM and BICM-ID schemes, over 

AWGN and fading channels, by using the concept of 

channel capacity limit. The capacity limit of BICM for 

various 16-ary signal constellations is then evaluated. It is 

worthwhile to note that the channel capacity of a BICM 

system is defined regardless the channel code used and 

the existence of iterative decoding [16]. The idea of 

evaluating capacity limits to find the best signal 

constellation and mapping pair comes from the fact that 

power-efficient BICM and BICM-ID schemes usually 

employ state-of-the-art codes, and are thus capable of 

achieving near-capacity performance. For illustrating the 

obtained results, the BER performance of BICM and 

BICM-ID systems using various signal constellation and 

mapping pairs with other selected error-correcting codes 
influencing the error performance of BICM and BICM-

ID schemes is investigated via computer simulations.

The rest of the paper is organised as follows. Section II

provides a background of the generic structure of BICM-

ID and the IRA codes. Section III provides a design 

criterion for choosing the best parameters for BICM-ID 

schemes by evaluating capacity limits of various 16-ary 

constellation-mapping pairs to determine the optimum 

pair. Section IV is devoted for computer simulation 

results obtained for several BICM and BICM-ID schemes 

comprised of selected error-correcting codes with various 

signal constellations and mappings. Section V describes 
combination of BICM and OFDM in the context of 4G 

standards. Finally, Section VI concludes the paper.

II. OVERVIEW OF BICM-ID AND IRA CODES

A. BICM-ID with soft-decision feedback

A BICM-ID transmission system can be modelled as 

an interleaved concatenation of an encoder and a symbol 

mapper as shown in Fig. 1. Consider a 2m
b-ary modulation 

represented by a two-dimensional signal constellation 

where | | = 2
m

b = M . Let cj = {cj,1, ..., cj,mb} {0,1)
m

b, 1 

j mb, denote a set of mb bits at the modulator input, N
denotes the length of the codeword, cj,1 is the most 

significant bit (MSB), and cj,mb is the least significant bit 

(LSB). A bit-reliability mapping [17] is employed where 

the systematic bits of a codeword are mapped to the more 

significant bits of the signal constellation and the parity-

check bits are mapped to the less significant bits. In this 

paper, both AWGN and Rayleigh fading channel models 
are considered. The received complex symbol is rj = hjsj

+ nj, where nj is a Gaussian noise sample with zero mean 

and variance 
2

= N0/2, N0 being the one-sided power 

spectral density of white Gaussian noise and hj is the 

complex time-invariant fading gain whose fading 

coefficients are normally distributed with zero mean and 

variance 1/2. It is worthy to note that hj =1 for AWGN 

channels. In this paper, perfect channel state (CSI) is 

assumed. For Rayleigh fading channels, the fading 

coefficients are normally distributed with zero mean and 

variance 1/2. At the receiver side, the channel outputs and 

the a priori log-likelihood ratios (LLRs) aj,l obtained 

from the decoder feedback are processed by the 

demapper to obtain the extrinsic LLRs ej,l for l = 1, ..., mb.

The a priori and extrinsic LLRs are defined as,
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where
t
denotes the signals sj whose labels have the 

value t {0, 1}. There is no feedback from the decoder 

to the demapper during the initial demapping, hence the a

priori LLRs aj,l are set to zero. For subsequent iterations, 

the extrinsic information from the decoder is fed back as 

a priori information at the demapper.

B. Systematic IRA codes

The selection of the channel coding scheme can 

improve the BER performance of BICM and BICM-ID 

systems. Error floors can be reduced or eliminated by 

employing turbo-like codes (LDPC, RA) instead of CC. 

In this section, we consider the construction of IRA 
codes. The idea of jointly iterative detection and decoding 

has been proposed in [18]-[20]. The encoding of IRA 

codes is achieved by randomly generating its parity check 

matrix using the simple bit-filling algorithm [21] without 

any optimisation performed to the degree distributions of 
the IRA codes.

A systematic IRA code can be considered as an LDPC 

code which can be represented using a parity-check 

matrix H,

                                  H = [H1 H2].                               (3)

As shown in Fig. 2, the matrix H1 is an M × K matrix 

with column weights q1, ..., qK and row weights p1, ..., pM,

the matrix H2 is an M × M matrix. The location of the 

nonzero entries is determined by the interleaver. An 

example illustrating an IRA code of length 15 with a 

parity-check matrix as described by (3) and Tanner graph 

is depicted in Fig. 2.

Figure 1.  Structure of a BICM-ID transmission system. The dashed 

arrows represent iterations between RA decoder and the symbol-to-

bit metric calculator.
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For IRA codes, the variable node degree distribution in 

the code's Tanner graph is represented by (x) = i ix
i-1

and the check node degree distribution is given by (x) = 

i ix
i-1. The coefficient i is the fraction of the Tanner 

graph edges connected to variable nodes of degree i. The 

row degrees are similarly represented by (x). Hence, the 

number of variable nodes and check nodes of degree i are
given by

                    ,
/

/
)(

k k
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i
NiN                           (4)  
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To construct systematic IRA codes, there must be at 

least M nodes of degree-2 required by the accumulator. 

Moreover, short cycles involving only degree-2 variable 

nodes are avoided by setting N (i) = M - 1 [22]. Similar 
to IRA codes, parity-check matrix of an irregular LDPC 

(ILDPC) code can be represented in the form of (3). The 

systematic generator matrix G for the parity-check matrix 

from (3) of a systematic IRA code is represented by (6) 

where I is the K × K identity matrix and P is of 

dimension K × M.

                         G = [I P] = [H1 H2].                              (6) 

The decoding of IRA codes employs the message 

passing algorithm which is an efficient iterative decoding 

algorithm used also for the decoding of LDPC codes [23], 

[24]. The message passing algorithm comprises two 

stages which are the initialisation and iteration. Let Mn be
defined as the set of check nodes connected to variable 

node n and let Nm be expressed as the set of variable 

nodes connected to check node m. Mn,m represents the set 

Mn, excluding check node m and Nm,n describes the set Nm

excluding variable node n. During the initialisation stage, 
each bit node computes its message defined in (7) and 

sends it to Mn.

.1,
0|

1|
ln]0[ NneL
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eP
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nn

nn
n

      (7)

The symbols , en and vn correspond to the decoding 

iteration number, the extrinsic LLRs from the demapper

defined in (2) and systematic codeword, respectively. The 

channel reliability Lc = 2 Ec/
2

where Ec and
2 

denote

the energy per coded bit and the variance of the channel 

noise respectively. Each iteration has two different phases 

known as the check node update and variable node update 

which are described in (8) and (9), respectively.
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Equation (9) refers to the message that the bit node n

sends to its check node m [25]. The intrinsic term Lcen is

determined by the measurement en influencing the bit cn.

The extrinsic term m,n is determined by the information 

given by all other observations and the code structure 

where m,n is referred to as the message which is passed 

from the check node m to the bit node n during the -th

iteration. These messages iterate among the variable 
nodes and check nodes to compute the a posteriori LLR

for each variable node [4]. The LLR for each variable 

node is given by (10) where E = [e1, e2, ..., eN] is the 

received extrinsic LLRs from the demapper.

.
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III. CONSTELLATION-MAPPING PAIRS DESIGN CRITERION

FOR BICM-ID SCHEMES

The selection of the best signal constellation and 

mapping pairs for BICM-ID schemes can be achieved 

based on the concept of channel capacity limit which is a 

computationally efficient technique. The 16-ary signal 
constellations are focused because they are widely used 

in many standards and practical systems such as WLAN, 

DVB, DAB, WiMAX, and coherent optical

communication systems. The 16-ary constellations 

considered are the rectangular 16-QAM, optimum, (1, 5, 

10) and (5, 11) which have been found to be the most 

power-efficient constellations for coded and uncoded 

systems over AWGN and fading channels [7], [11]-[13]. 

The exact locations of the signal points in (1, 5, 10) and 

(5, 11) are reported in [13]. Since the channel code and 

the mapping should be well-matched to achieve near 

capacity performance, various types of mappings are 
considered in this paper. This includes the Gray, 

Schreckenbach (Schrec), modified set partitioning (MSP) 

Figure 2.  Parity-check matrix and Tanner graph representation of an 

IRA code of length 15 with q =[3,3,3,5,5,5], p =[2,3,3,3,3,3,2,2,3] and 

interleaver pattern =[10,15,4,7,20,1,11,16,5,17,21,8,12,22,2,6,18,13,

23,3,9,14,19,24].

T T

[ ]
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and maximum squared Euclidean weight (MSEW). The 

Schreckenbach mappings optimised for AWGN and 
Rayleigh fading channels are represented by M16

a
and

M16
r
, respectively and are obtained using the binary 

searching algorithm (BSA) [26]. However, for the 16-ary 

non-square constellations, some of these mappings are 

not applicable due to the structure of such constellations.

Mapping by set partitioning was originally proposed 

for TCM systems, hence it might not lead to optimum 

results for BICM-ID. It is shown in [6], [27] that the 

improvement of error performance for a BICM-ID 

scheme with SP mapping is not significant. As a result, 

quasi-Gray, quasi-MSP and quasi-MSEW mappings are 

used which are as close as possible to their respective 

mappings. The best combinations of rectangular and non-

rectangular 16-ary signal constellations with mappings 

(Fig. 3) for error-correcting codes considered in this 

paper are selected based on the BICM capacity limit, 

which is discussed in the next paragraph.

The expression of the BICM capacity limit over 

AWGN channels is evaluated to determine the most 
suitable constellation-mapping pairs. Consider a two-

dimensional constellation of size | | = 2
m

b. Based on 

the general results reported in [3], we can demonstrate 

that, under the constraint of uniform-input distribution 

and assuming ideal bit-by-bit interleaving, the capacity C

of a BICM system using 2
m

b-ary constellation is 

expressed over AWGN channels as
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where P(rj|zj) denotes the transition probability density 
function of the AWGN channel, Ecj,rj denotes the 

expectations with respect to cj and rj, and i,cj,i designates 

the subset of all the signals zj whose labels have the 

value cj,i {0, 1} in position i. The capacity is expressed 

in information bits per channel use (bit/channel use) here, 

where each channel use corresponds to the transmission 

of a complex signal zj . Assuming an AWGN channel 

and performing some minor modifications, we finally 

obtain
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where drj,zj is the Euclidean distance between the signals 

rj and zj. A general expression for representing the BICM 

capacity C for both AWGN and Rayleigh fading channel 
is given by
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Moreover, (13) is used to evaluate the capacity when the 

mapping method is taken into consideration.

The capacity of a BICM is defined regardless of the 

channel code used as well as the presence of iterative 
demodulation and decoding [16]. Hence, the capacity for 

both BICM and BICM-ID can be defined using (13) for 

any mapping method. It is well known that for both 

turbo-like codes such as IRA codes and irregular LDPC 

(ILDPC), the sparse random parity check matrices were 
employed to establish promising distance properties. Both 

turbo-like codes have good minimum distance and 

possess a very small average number of nearest 

neighbour codewords (provided that the girth is greater 

than 4 [25]). The girth is known as the length of the 

smallest cycle in a Tanner graph. That is why the turbo-

like codes achieve excellent BER performance at low 

SNR. Hence, in order to design a power-efficient BICM 

and BICM-ID schemes at moderate BERs, a modulation 

scheme optimised for operation at low SNR should be 

employed. The optimisation by Gray mapping, mainly 

consisting of minimizing the average number of nearest 
neighbours of the modulation, shows a profound impact 

on the error performance of BICM [7] and BICM-ID [28] 

schemes. Hence, for the case of powerful channel codes 

Figure 3.  Optimal combinations of 16-ary signal constellations with 

mappings considered in this work. (a) 16-QAM signal constellation 

with Gray mapping, (b) optimum signal constellation with quasi-Gray 
mapping, (c) (5,11) signal constellation with quasi-MSEW mapping, 

(d) 16-QAM signal constellation with M16a mapping, (e) 16-QAM 

signal constellation with M16r mapping.
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such as IRA codes, combined with Gray or quasi-Gray 

mapping is required to obtain high coding gain through 
iterative demodulation and decoding. To determine the 

optimal combination of 16-ary signal constellations with 

various Gray and quasi-Gray mappings for powerful 

channel codes, the BICM capacity C defined in (13) is 

evaluated for both AWGN and Rayleigh fading channels.

Fig. 4 shows the BICM capacity C versus SNR for 
various 16-ary signal constellations with Gray or quasi-

Gray mappings over AWGN and Rayleigh fading 

channels. The SNR is defined as Es/N0, where Es is the 

average energy per symbol. By utilising Fig. 4, the 

capacity limit of BICM scheme for a required spectral 

efficiency (Seff = 2-bit/s/Hz) can be attained for both 

AWGN and Rayleigh fading channels. Table I shows the 

capacity limits or SNRs required to achieve error-free 

communications with a BICM scheme using various 16-
ary signal constellations over AWGN and Rayleigh 

fading channels by employing Gray or quasi-Gray 

mappings. From Fig. 4, it can be noted that the best 

performance is achieved by the combination of 

rectangular 16-QAM signal constellation with Gray

mapping over the entire SNR range considered for both 

AWGN and Rayleigh fading channels. For each of the 

non-Gray mappings, the best 16-ary signal constellation 

is selected and compared among the non- Gray mappings 

as shown in Fig. 5 for both AWGN and Rayleigh fading 

channels. From Table II, it is observed that for the case of 

non-Gray mappings, the combination of (5,11) signal 

constellation with quasi-MSEW mapping provides the 

best performance.

IV. SIMULATION RESULTS AND DISCUSSIONS

All the computer simulations consider the same codes 
having rate R = 1/2 and information block length K = 

2000 bits. An interleaver block size of 4000 bits is used. 

The fading channels considered in this paper are 

frequency non-selective and frequency selective Rayleigh 

fading channels. The channel state information (CSI) is 
assumed to be known perfectly at the receiver side. A 

maximum of 10 iterations are performed between the 

decoder and demapper during iterative demodulation and 

decoding. For decoders using the message passing 

algorithm, a maximum of 100 decoding iterations are 

performed. The BER performance is investigated for 
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TABLE I.

CAPACITY LIMIT OF 2-BIT/S/HZ BICM FOR DIFFERENT 16-ARY 

SIGNAL CONSTELLATION SETS WITH GRAY OR QUASI-GRAY 

MAPPINGS.

Channel
Signal

Constellations

Mapping

Scheme
Es/N0 (dB) Eb/N0 (dB)

AWGN 16-QAM Gray 5.26 2.25

AWGN optimum quasi-Gray 5.84 2.83

AWGN (1,5,10) quasi-Gray 6.45 3.44

AWGN (5,11) quasi-Gray 6.57 3.56

Rayleigh 16-QAM Gray 7.06 4.05

Rayleigh optimum quasi-Gray 7.78 4.77

Rayleigh (1,5,10) quasi-Gray 8.41 5.40

Rayleigh (5,11) quasi-Gray 8.45 5.44

TABLE II.

CAPACITY LIMIT OF 2-BIT/S/HZ BICM FOR DIFFERENT 16-ARY

SIGNAL CONSTELLATION SETS WITH NON-GRAY MAPPINGS.

Channel
Signal

Constellations

Mapping

Scheme
Es/N0 (dB) Eb/N0 (dB)

AWGN optimum M16a 8.91 5.90

AWGN optimum quasi-MSP 8.77 5.76

AWGN (5,11)
quasi-

MSEW
8.67 5.66

AWGN 16-QAM M16a 9.28 6.27

Rayleigh optimum M16r 11.08 8.07

Rayleigh optimum quasi-MSP 10.62 7.61

Rayleigh (5,11)
quasi-

MSEW
10.51 7.50

Rayleigh 16-QAM M16r 11.73 8.72
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several 2-bit/s/Hz coded modulation schemes using 

optimal combinations of 16-ary constellations with 
various mappings. Table III presents the types of channel 

codes, signal constellations and mappings used in the 

simulations. The parameters dv and dc in Table III

correspond to the variable node and check node degrees, 

respectively. The channel codes considered in this work 

are IRA codes, ILDPC codes and CC. Both IRA and 

ILDPC codes are constructed free of 4-cycles using the 

bit-filling algorithm. It is worthwhile to note that in the 

context of this paper, we use RA codes to represent an 

extended class of ILDPC codes [22], thus the encoding 

complexity of both IRA and ILDPC codes are low. The 

irregular LDPC code for the simulations listed in Table 

III has weight-2 columns in its parity-check matrix, 

which is prone to error floors even for BPSK over 

AWGN channels. Hence, the error floors occurring in the 

simulations is due to the LDPC code itself. CC are 

constructed from a 4-state recursive systematic
convolutional (RSC) codes with generator polynomials 

(7,5). Similar to turbo codes, BICM-ID can be added to 

RA/LDPC encoded BICM to achieve additional coding 

gain [6]. The effects of signal constellation and mapping 

combination from Fig. 3 on the BER performance for 

several BICMs and BICM-IDs are shown in Figs. 6 to 13.

Each combination set of signal constellation and mapping 

is denoted by a different condition. A total of five 

conditions are provided in Table IV.

The decoding algorithms employed by all the codes 

considered in this work are the message passing 

algorithm and BCJR algorithm. The BCJR algorithm is 

also known as a message passing algorithm [29]. On the 

other hand, the encoding complexity of IRA codes and 
ILDPC codes are lower than some LDPC codes, which 

make them good alternatives for some LDPC codes. Both 

IRA codes and ILDPC codes have comparatively low 

encoding complexity as CC, but the coding gain achieved 

at BER of 10
-5

using CC is much lower in comparison 

with IRA codes and ILDPC codes. Both IRA codes and 

ILDPC codes give comparable performance with IRA 

codes achieving the overall best performance at a BER of 

10-5 over both AWGN and fading channels.

A.  Performance of BICM/BICM-ID Schemes over AWGN 

Channels

In Fig. 6, for the case of rectangular 16-QAM signal 

constellation, it can be seen that IRA codes with 

condition A provide the best BER performance using 

BICM and BICM-ID systems. Moreover, pertaining to 

condition A, the performance gain with feedback is small 

for both IRA and ILDPC codes as the BICM-ID and 

BICM schemes give comparable BER performance using 

the same type of iterative decodable codes at a BER of 

10
-5

. In Fig. 6, for BICM-ID schemes, IRA codes (with 

condition A) outperform ILDPC codes (with condition A) 

and CC (with condition C) by approximately 0.3 dB and 

0.81 dB, at a BER of 10
-5

.

The non-rectangular 16-ary signal constellations with 

BICM schemes employing IRA and ILDPC codes with 

condition B provide comparable performance at a BER of 

10
-5

as depicted in Fig. 7. In addition, by considering 

condition B, the performance gain with feedback is 

moderate for both IRA and ILDPC codes. The BER 

performance gains between BICM-ID and BICM 

schemes using the same channel codes with condition B 

are approximately 0.88 dB and 1.18 dB for both IRA and 

ILDPC codes respectively, at a BER of 10-5. Unlike the 

case of 16-QAM signal constellation, BICM-ID schemes 
using CC with condition E provide a comparable 

TABLE III.
PARAMETERS CONSIDERED FOR THE SIMULATIONS. THE CODEWORD AND 

INTERLEAVER BLOCK SIZES USED FOR ALL CHANNEL CODES ARE 4000 BITS

FOR R = 1/2. NOTE THAT THE NOTATION 'N/A' IN THE TABLE INDICATES 

THAT THE CC IS NOT DEFINED USING dv AND dc.

Channel Codes dv dc

Signal

Constellations

Mapping

Scheme

AWGN/Ray ILDPC 2,3 4,5 16-QAM Gray

AWGN/Ray ILDPC 2,3 4,5 optimum quasi-Gray

AWGN/Ray IRA 2,3,4,5,7,8 5,6 16-QAM Gray

AWGN/Ray IRA 2,3,4,5,7,8 5,6 optimum quasi-Gray

AWGN CC N/A N/A 16-QAM M16a

Ray CC N/A N/A 16-QAM M16r

AWGN/Ray CC N/A N/A (5,11)
quasi-

MSEW

TABLE IV.

COMBINATIONS OF 16-ARY SIGNAL CONSTELLATIONS WITH DIFFERENT

TYPES OF MAPPINGS FOR BOTH AWGN AND RAYLEIGH FADING 

CHANNELS.

Channel
Signal

Constellations

Mapping

Scheme
Condition

AWGN/Ray 16-QAM Gray A

AWGN/Ray optimum quasi-Gray B

AWGN 16-QAM M16a C

Ray 16-QAM M16r D

AWGN/Ray (5,11) quasi-MSEW E
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Eb/N0 (dB)

B
E
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BICM (ILDPC), Gray

BICM-ID (ILDPC), Gray

BICM (IRA), Gray

BICM-ID (IRA), Gray

BICM-ID (CC), Schrec

Figure 6.  Performance comparison over AWGN channels among 2-

bit/s/Hz BICM/BICM-ID schemes using channel codes and selected 

optimal combinations of rectangular 16-QAM signal constellations with 

mappings.
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performance to that of IRA and ILDPC codes with 

condition B.
The effects of rectangular and non-rectangular 16-ary 

constellations on BICM and BICM-ID schemes are 

shown in Figs. 8 and 9. For BICM schemes employing 

iterative decodable codes such as IRA and ILDPC codes, 

rectangular 16-QAM achieves a better BER performance 

than non-rectangular 16-ary constellations and IRA codes 

provide the best performance. For BICM-ID schemes, 

both rectangular and non-rectangular 16-ary 

constellations give comparable performance using IRA 

and ILDPC codes with IRA codes giving the best 

marginal BER performance, at a BER of 10
-5

. Moreover, 

for 16-QAM signal constellation over AWGN channels 

as depicted in Fig. 6, the performance gain is minimal 

with iterative demodulation and decoding. However, 

error floors were lowered with iterative demodulation and 

decoding over the same AWGN channels by using 

powerful turbo-like codes and non-rectangular 16-ary 
signal constellations as shown in Fig. 7. Furthermore, it 

can be seen that BICM-ID employing IRA codes with 16-

QAM and Gray mapping performs best over AWGN 

channels for spectral efficiency of 2-bit/s/Hz at low SNR 

as shown in Fig. 9. These results agree with those 

provided by Tables 1 and 2. The channel capacity limit 

for 2 bit/s/Hz 16-QAM BICM on AWGN channels is 

2.25 dB. At a BER of 10
-5

, the gap between the capacity 

and the performance of BICM-ID employing IRA codes 

with 16-QAM Gray mapping is 1.72 dB for AWGN

channels.

The effect of channel codes on BICM-ID schemes is 

show in Fig. 9. For BICM-ID employing rectangular 16-

ary signal constellations, IRA codes outperforms CC at a 

BER of 10
-5

. In addition, for BICM-ID employing non-

rectangular 16-ary signal constellations, turbo-like codes 

such as IRA codes consistently perform better than CC, at 

a BER of 10-5. Overall, computer simulation results 

indicated that, at a BER of 10
-5

, the best performance for 
BICM-ID scheme in AWGN channels is provided by 

IRA codes employing rectangular signal constellation 

with Gray mapping.

It is interesting to note that for BICM-ID schemes, CC 

with condition E achieves a comparable BER 

performance with both IRA and ILDPC codes. For 

BICM-ID schemes employing CC, nonrectangular 16-ary 
signal constellation (condition E) has approximately 0.63 

dB performance gain over 16-QAM constellation 

(condition C) as depicted in Fig. 9. Error-floor occurs at 

BER level below 10-5 as shown in Fig. 8. Table V 

summarises the SNR required at BER = 10
-5

for various 

channel codes considered and their best combinations of 

signal constellations and mappings in AWGN channels.
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BICM (IRA), quasi-Gray

BICM-ID (IRA), quasi-Gray

BICM-ID (CC), quasi-MSEW

Figure 7.  Performance comparison over AWGN channels among 2-
bit/s/Hz BICM/BICM-ID schemes using channel codes and selected 

optimal combinations of non-rectangular 16-ary signal constellations with 

mappings. Both ILDPC and IRA codes employ optimum constellation 

while CC uses (5,11) constellation.
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Figure 8.  Performance comparison over AWGN channels among 2-bit/s/Hz 

BICM schemes using channel codes and selected optimal combinations of 

rectangular and non-rectangular 16-ary signal constellations with mappings.
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Figure 9.  Performance comparison over AWGN channels among 2-bit/s/Hz 

BICM-ID schemes using channel codes and selected optimal combinations of 

rectangular and non-rectangular 16-ary signal constellations with mappings.
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B.  Performance of BICM/BICM-ID Schemes over 

Rayleigh Fading Channels

The influence of rectangular and non-rectangular 16-

ary constellations with optimised mappings are shown in 
Figs. 10 and 11. In Fig. 10, IRA codes with rectangular 

16-QAM constellation consistently provide the best 

coding gain in both BICM and BICM-ID systems at BER 

of 10
-4

, which agrees with the results obtained for the 

AWGN channel. Moreover, BICM-ID schemes

employing IRA and ILDPC codes with non-rectangular 

16-ary constellations provide comparable performance at 

a BER of 10
-4

. The BER performance of rectangular and 

non-rectangular constellations are evaluated and 

presented in Figs. 12 and 13 for BICM and BICM-ID 

schemes, respectively. It is observed that for the case of 

BICM schemes using iterative decodable codes, condition 
A outperforms condition B. Moreover, in BICM schemes, 

it can be seen that for both conditions A and B, IRA 

codes achieve a marginal performance gain over ILDPC 

codes at a BER of 10
-4

as shown in Fig. 12. For the case 

of BICM-ID schemes using iterative decodable codes 
considered in this paper, the performance gain with 

feedback is moderate for both rectangular and non-

rectangular constellations at a BER of 10
-4

as depicted in 

Fig. 13. Moreover, similar to AWGN channels, 16-QAM 

constellation consistently outperforms the non-

rectangular 16-ary constellations over Rayleigh fading 

channels for BICM-ID schemes using iterative decodable 

codes. In addition, for BICM-ID schemes using channel 

codes considered in this work, the BER performance 

gives comparable results at low SNR. In Rayleigh fading 

channels, BICM-ID employing IRA codes with 16-QAM 

and Gray mapping consistently performs best for spectral 
ef_ciency of 2-bit/s/Hz at low SNR. The channel capacity 

limits for 2-bit/s/Hz 16-QAM BICM on Rayleigh fading 

channels are approximately 4 dB. The gap between the 

capacity and the performance of BICM-ID employing 

IRA codes with 16-QAM Gray mapping is 1.83 dB for 

Rayleigh fading channels, at a BER of 10-5.

Similarly, the effect of channel codes on BICM-ID 

schemes is shown in Fig. 13 for Rayleigh fading 

channels. For BICM-ID employing rectangular 16-ary 

signal constellations, IRA codes achieves a better 

performance gain than CC at a BER of 10-5. For BICM-

ID employing nonrectangular 16-ary signal

constellations, IRA codes consistently outperform CC at 

a BER of 10-5. Computer simulation results show that 

BICM-ID scheme employing IRA codes with optimal
combination of rectangular signal constellation and Gray 

mapping offers the best performance in Rayleigh fading 

channels at a BER of 10
-5

.

In addition, for Rayleigh fading channels, errors floors 

are eliminated with iterative demodulation and decoding 

for turbo-like codes in both rectangular and non-
rectangular 16-ary constellations as depicted in Figs 10 

and 11. In Fig. 13, it can be seen that although BICM-ID 

scheme using CC (with condition E) experiences an early 

convergence than IRA codes (with condition A); it 

suffers a large error floor. The same observation as 

AWGN channels is noted for BICM-ID employing CC 

over Rayleigh fading channels; non-rectangular 

TABLE V.

SIGNAL-TO-NOISE RATIO COMPARISON (SNR) AT BER = 10-5
BETWEEN

SEVERAL 2-BIT/S/HZ 16-ARY BICM-ID SCHEMES. NOTE THAT THE 

NOTATION 'N/A' IN THE TABLE INDICATES THAT THE SNR REQUIRED FOR 

BER = 10-5
IS OUT OF THE CONSIDERED SNR RANGE.

Channel Codes
Signal

Constellations

Mapping

Scheme
Eb/N0 (dB)

AWGN IRA 16-QAM Gray 3.97

AWGN ILDPC optimum quasi-Gray 4.06

AWGN CC (5,11) quasi-MSEW 4.15

Rayleigh IRA 16-QAM Gray 5.83

Rayleigh ILDPC 16-QAM Gray 5.93

Rayleigh CC (5,11) quasi-MSEW N/A
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Figure 10.  Performance comparison over Rayleigh fading channels among 

2-bit/s/Hz BICM/BICM-ID schemes using channel codes and selected 

optimal combinations of rectangular 16-QAM signal constellations with 

mappings.
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Figure 11.  Performance comparison over Rayleigh fading channels among 

2-bit/s/Hz BICM/BICM-ID schemes using channel codes and selected 

optimal combinations of non-rectangular 16-ary signal constellations with 

mappings. Both ILDPC and IRA codes employ optimum constellation 

while CC uses (5,11) constellation.
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constellation (condition E) has a performance 

improvement over rectangular constellation (condition D) 
by approximately 0.7 dB, at a BER of 10

-4
. BICM-ID 

schemes using IRA codes with 16-QAM signal 

constellation and Gray mapping provide the best 

performance over Rayleigh fading channels, at BER level 

below 10
-5

. Again, all results agree with those reported in 

Tables I and II.

Figs. 9 and 13 show that with iterative demodulation 
and decoding, convolutional coded BICM with condition 

E provides comparable performance to that of turbo or 

LDPC/RA coded modulation over both AWGN and

Rayleigh fading channels for moderate block size. This 

agrees with [27].

However as the codeword size increases to a very large 

value, turbo or LDPC/RA coded systems will be better 

[30] since the convolutional coded BICM with iterative 

demodulation and decoding does not have any 

interleaving gain as codeword size increases to a large 
value. Error-floor effects occurring at BER level below

10
-3

can be noticed as shown in Fig. 12. Similarly, Table 

V summarises the SNR required at BER = 10
-5

for

various channel codes considered and their best 

combinations of signal constellations and mappings in 

Rayleigh fading channels.

V. BICM AND 4G

BICM is currently the most popular coded modulation 

for both fading and non-fading channels. BICM is a 

promising method to achieve high spectral efficiency 

over wireless communication links. BICM has been 
adopted in many commercial systems such as wireless 

and wired broadband access networks, 3G and 4G 

telephony, ultra-wideband (UWB) transceivers, as well as 

DVB, imposing itself as the de facto standard for current 

wireless telecommunications systems. BICM is expected 

to form the basis of future communication standards [31]-
[35].

The combination of Orthogonal Frequency Division 

Multiplexing (OFDM) and BICM can be found in many 

standards such as IEEE 802.11 WLAN, IEEE 802.16 

WiMAX, UMTS Long Term Evolution (LTE) and 4th 

generation mobile communication systems. Both LTE 

and WiMAX 4G technologies uses OFDM as the 

modulation scheme. In this section, single-input single-

output (SISO) wireless systems are considered. The same 

simulation parameters and conditions are extended to 

BICM-ID-OFDM system. Fig. 14 depicts the BER 

performance of BICM-ID-OFDM scheme for two types 
of channel codes (IRA, CC) over quasi-static frequency-

selective Rayleigh fading channels. It can be observed 

that powerful channel codes (IRA) achieve significant 

performance improvement as compared to the less 

powerful channel codes (CC), at a BER of 10
-5

. It is 
worthy to note that for BICM-ID-OFDM (IRA), no errors 

were observed for Eb/N0 greater than 16 dB within 10
7

simulated information bits.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5 7.75

Eb/N0 (dB)

B
E

R

ILDPC, Gray, 16-QAM

ILDPC,quasi-Gray, optimum

IRA, Gray, 16-QAM

IRA, quasi-Gray, optimum

Figure 12.  Performance comparison over Rayleigh fading channels among 

2-bit/s/Hz BICM schemes using channel codes and selected optimal 

combinations of rectangular and non-rectangular 16-ary signal 

constellations with mappings.
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Figure 13.  Performance comparison over Rayleigh fading channels 

among 2-bit/s/Hz BICM-ID schemes using channel codes and selected 

optimal combinations of rectangular and non-rectangular 16-ary signal 

constellations with mappings.

Figure 14.  Performance comparison over frequency selective Rayleigh 

fading channels among 2-bit/s/Hz BICM-ID-OFDM schemes using 

channel codes considered (IRA, CC) and 16-QAM with mappings. 
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VI. CONCLUSION

Applications of BICM and BICM-ID systems with 
selected error-correcting codes and optimised 

combinations of 16-ary constellations with mappings to 

improve the error performance over AWGN and Rayleigh 

fading channels are considered in this paper. The BICM 

capacity for various 16-ary signal constellations has also 

been evaluated to determine the optimised signal 

constellation and mapping pair when combined with 

powerful error-correcting codes such as IRA codes. It has 

been shown that for the case of 16-ary constellations, the 

most attractive signal set for IRA codes is rectangular 16-

QAM signal constellation with Gray mapping. Moreover, 

simulation results have demonstrated that the coding 

gains and error floors are remarkably affected by the 

selection of the signal constellation and bit mapping. The 

optimised selection of the such parameters can be used to 

avoid the severe performance degradation that is obtained 

when error floors occur. The powerful combinations of 
BICM-ID, OFDM and channel codes (turbo codes, LDPC 

codes, CC) are widely adopted in 3G/4G Wireless 

Systems.
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Dedicated-Relay vs. User Cooperation in
Time-Duplexed Multiaccess Networks
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Abstract— The performance of user cooperation that results
when users forward packets for each other in a multiaccess
network is compared to that of dedicated-relay cooperation which
results from using a dedicated wireless relay when the users do
not cooperate. Using the total transmit and processing power
consumed at all nodes as a cost metric, the outage proba-
bilities achieved by dynamic decode-and-forward (DDF) and
amplify-and-forward (AF) are compared for the two networks.
A geometry-inclusive high signal-to-noise ratio (SNR) outage
analysis in conjunction with area-averaged numerical simulations
shows that in a K-user time-duplexed multiaccess network, user
and dedicated-relay cooperation achieve a maximum diversity
per user of K and 2, respectively, under both DDF and AF.
However, when accounting for energy costs of processing and
communication, dedicated-relay cooperation can be more energy
efficient than user cooperation, i.e., dedicated-relay cooperation
achieves coding (SNR) gains, particularly in the low SNR regime,
that override the diversity advantage of user cooperation.

I. INTRODUCTION

Cooperation results when nodes in a network share their
power and bandwidth resources to mutually enhance their
transmissions and receptions. Cooperation can be induced
in several ways. We compare two approaches to inducing
cooperation in a multiaccess channel (MAC) comprised of
K sources (users) and one destination. In the first approach,
we allow source nodes to forward data for each other and in
the second approach, we introduce a dedicated wireless relay
node to forward data from the sources assuming cooperation
between the source nodes is either undesirable or impossible.
We refer to networks employing the former approach as user
cooperative (UC) networks and those employing the latter as
dedicated-relay cooperative (RC) networks. Our motivation for
this terminology is that although users act as relays for one
another in the UC network, they are primarily interested in
transmitting their own data, while in contrast, the dedicated-
relay node in the RC network is dedicated to relaying packets
for the sources.
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G. Kramer was partially supported by the Board of Trustees of the University
of Illinois Subaward No. 04-217 under NSF Grant No. CCR-0325673 and
by the Army Research Office under the ARO grant W911NF-06-1-0182. The
material in this paper was presented in part at the IEEE International Sympo-
sium on Information Theory, Adelaide, Australia, Sep. 2005; and at the 45th

Annual Allerton Conference on Communications, Control, and Computing,
Monticello, IL, Sep. 2007. L. Sankar is with Princeton University. G. Kramer
was with Bell Labs, Alcatel-Lucent, Murray Hill, NJ, and with USC, Los
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There are important differences between UC and RC net-
works that are not easy to analyze from a communication-
theoretic point of view. For example, in UC networks
one likely needs economic incentives to induce cooperation
amongst users. On the other hand, RC networks incur relay
infrastructure costs. While incentives and infrastructure costs
are important issues, we use the total transmit and processing
power consumed as a cost metric for our comparisons. To this
end, ignoring technology-dependent limitations on processing,
we model the processing power as a function of the transmis-
sion rate, and thereby the transmit signal-to-noise ratio (SNR).
We also introduce processing scale factors to characterize the
ratio of the power costs of processing relative to that for
transmission. While the processing (power and chip density)
costs for encoding and decoding are complex functions of the
specific communication and computing technologies used, the
scale factors allow us to parametrize and study the impact of
such processing costs.

We motivate the need for this analysis with examples of
processing and transmission costs for wireless devices serving
three different applications. Consider a Motorola RAZR GSM
mobile phone. This device has a maximum transmit power
constraint of 1 (2) W in the 900 (1900) MHz band. With a
3.7 V battery rated at 740 mAh it has a capacity of almost
10 kJ of energy resulting in an average talk time of 4 hours.
On the other hand, consider the 802.11 wireless local area
network (WLAN) interface. An Atheros whitepaper [1] found
that typical WLAN interfaces consume 2 to 8 W for active
communications. In contrast, the transmit power for this device
in the range of 20 to 100 mW is only a small fraction of the
processing costs. Finally, consider low-power sensor devices
such as the Berkeley motes. The authors in [2] model the
energy cost per bit for a reliable 1 Mbps link over a distance
d and path-loss exponent α by a transmitter cost of Etx =
Et + Epadα where Et = 0.36 J/MB is the energy dissipated
in the transmitter electronics and Epa = 8 × 10−5 J/m2/MB
scales the required transmit energy per bit. Accounting for
the signal processing costs at the receiver as Erx = 1.08
J/MB, they show that for distances less than the transition
distance of d =

√
Et/Epa = 67 m, processing energy cost

dominates transmission cost and vice-versa. In general, the
ratio of processing to transmission power depends on both
the device functionality (long distance vs. local links) and the
application (high vs. low rate) supported. Thus, accounting
for both the transmit and processing power (energy) costs in
our comparisons allows us to identify the processing factor
regimes where cooperation is energy efficient.

We consider single-antenna half-duplex nodes and constrain
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all transmitting nodes in both networks to time-duplex their
transmissions. Thus, in the RC network each source cooperates
with the dedicated relay over two-hops where in the first
hop the source transmits while the dedicated relay listens
and in the second hop both the source and the dedicated
relay transmit. For the UC network, for K > 2 we consider
the cooperative schemes of two-hop, where the set of users
cooperating with any source transmit in the second hop, and
multi-hop, where the cooperating users transmit sequentially
in time. We assume that transmitters in both networks do
not have transmit channel state information (CSI). Under this
assumption, we develop geometry-inclusive upper and lower
bounds on the outage probabilities of each network for the
cooperative strategies of dynamic decode-and-forward (DDF)
[3] and amplify-and-forward (AF). This allows us to compare
the outage performance of each cooperative strategy for the
two networks via both the diversity gain and a coding (SNR)
gain [4]. Our approach of accounting for the power involved
in data processing and transmission enables us to compare the
outage performance of the two types of cooperative networks
despite differences in the total number of nodes and coopera-
tive strategies.

For single-antenna nodes, the maximum DDF and AF
diversity for two-hop relaying is 2 [3] and our geometry-
inclusive analysis demonstrates the same. For the two-hop
UC network, we show that, if relay selection is allowed, AF
achieves a maximum diversity of 2 for all K ≥ 2. For the
same network, we also show here that, except for a clustered
geometry where the maximum diversity approaches K, DDF
also achieves a maximum diversity of 2. On the other hand,
when users cooperate using a K-hop scheme, our bounding
analysis agrees with the earlier diversity-multiplexing results
that both DDF [3] and AF [4] achieve a maximum diversity
of K.

The coding gains achieved are in general a function of the
transmission parameters and network geometry. In an effort to
generalize such results, we present an area-averaged numeri-
cal comparison. Specifically, we consider a sector of a circular
area with the destination at the center, a fixed dedicated-
relay position, and the users randomly distributed in the sector
which models wireless LAN, cellular, and sensor networks.
Our results are summarized by the following observations:
i) user cooperation can achieve higher diversity gains than
dedicated-relay cooperation but at the expense of increased
complexity and ii) dedicated-relay cooperation can achieve
larger coding gains when we account for the energy costs of
cooperation, thus diminishing the effect of the diversity gains
achieved by user cooperation.

This paper is organized as follows. In Section II, we present
the network and channel models and develop a power-based
cost metric. In Section III, we present outage approximations
for DDF and AF strategies for both networks. In Section IV,
we present the numerical results. We conclude in Section V.

II. CHANNEL AND NETWORK MODELS

A. Network Model

Our networks consist of K users (source nodes) numbered
1, 2, . . . , K and a destination node d. In the absence of any

form of cooperation, this network is modeled as a K-user
multiple access channel (MAC). For the RC network there is
one additional node, the dedicated-relay node r. We impose
a half-duplex constraint on every node, i.e., each node can be
in one of two modes, listen (L) or transmit (T). We write
K = {1, 2, . . . , K} for the set of users and T = K∪{r}
for the set of transmitters in the RC network. Let Xk,i be
the transmitted signal (channel input) at node k at time i,
i = 1, 2, . . . , n. We model the wireless multiaccess links
under study as additive Gaussian noise channels with fading.
For such channels, the received signal (channel output) at node
m at time i is

Ym,i =

⎧⎪⎨
⎪⎩

( ∑
k �=m

Hm,k,iXk,i

)
+ Zm,i Mm,i = L

0 Mm,i = T

(1)

where the Zm,i are independent, proper, complex, zero-mean,
unit variance Gaussian noise random variables, Mm,i is the
half-duplex mode at node m, and Hm,k,i is the complex fading
gain between transmitter k and receiver m at time i. Note that
for both networks as well as the MAC, Md,i = L, for all i.
Further, for the RC network and the MAC, since the sources
do not cooperate, and hence do not listen, we have Mk,i = T ,
for all i and for all k ∈ K. We assume that the transmitted
signals in both networks are constrained in power as

n∑
i=1

E
[
|Xk,i|

2
]
≤ nPk, k ∈ T (2)

where Pk is the average power constraint at transmitter k.
Throughout the sequel we assume that all transmitters use
independent Gaussian codebooks with asymptotically large
codelengths and the total transmission bandwidth is unity. We
also assume that due to lack of transmit CSI, the transmitters
do not vary power as a function of channel states. Further,
we assume that the modes Mk,i are made available to all
nodes. We will clarify our motivation for this assumption in
the sequel. Finally, we use the usual notation for entropy and
mutual information [5] and take all logarithms to the base 2
so that our rate units are bits/channel use. We write random
variables (e.g. Hk) with uppercase letters and their realizations
(e.g. hk) with the corresponding lowercase letters and use the
notation C(x) = log(1+x) where the logarithm is to the base
2. Finally, throughout the sequel we use the words “user” and
“source” interchangeably.

B. RC Network

The RC network has K + 1 inputs Xk,i, k ∈ T , and
two outputs Yr,i and Yd,i [6], [7]. We consider a time-
duplexed dedicated-relay cooperative (TD-RC) model where
each source transmits over the channel for a period TP =
1/K of the total time. Further, the transmission period of
source k, for all k, is sub-divided into two slots such that
the dedicated relay listens in first slot and transmits in the
second slot. We denote the time fractions of the first and
second slots as θk and θk = 1 − θk, respectively, for user
k and note that the duration θk of the dedicated relay mode
Mr can be different for different k. The time-duplexed two-
hop scheme for the RC nework is illustrated in Fig. 1(a) for
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Fig. 1. Time-duplexed transmission schemes for the user cooperative and relay cooperative MACs.

user 2. Time-duplexing simplifies the analysis for each user to
that of a single-source relay channel in each period TP . We
assume that the dedicated relay uses negligible resources to
communicate its mode transition to the destination. We also
assume that, due to the lack of transmit CSI, the transmitters
use all available power for transmission subject to (2) in
every channel use. Thus, in the kth time period, for all k,
user k and the dedicated-relay transmit at power P k = KPk

and P r = Pr/θk, respectively, where θk = 1 − θk. Finally,
throughout the analysis we assume that Pr is proportional to
Pk.

C. UC Network

In a user cooperative (UC) network, there is a combinatorial
explosion in the number of ways one can duplex K sources
over their half-duplex states. We present two transmission
schemes which allow each user to be aided by up to K − 1
other users. In both schemes the users time-duplex their trans-
missions, thereby resulting in time-duplexed user cooperation
(TD-UC); the two schemes differ in the manner the period
TP is further sub-divided between the transmitting and the
cooperating users.

We first consider a two-hop scheme such that the period over
which user k, for all k, transmits is sub-divided into two slots.
In the first slot only user k transmits while in the second slot
both user k and the set Ck ⊆ K\{k} of users that cooperate
with user k transmit. This is shown in Fig. 1(b) for user 2
and C2 = {3, 4}. We remark that this scheme has the same
number of hops as the TD-RC network except now user k
can be aided by more than one user in Ck. We write θk and
1 − θk to denote the time fractions associated with the first
and second slots of user k.

We also consider a multi-hop scheme where the total
transmission time for source k is divided into Lk slots, 1 ≤
Lk ≤ K, where Lk = |Ck|+1. Specifically, in each time-slot,
except the first slot where only user k transmits, one additional
user cooperates in the transmission until all Lk users transmit
in slot Lk. When the cooperating users decode their received
signals, we assume that the users are ordered in the sense that
the new user that cooperates in the lth time fraction is the first
user that can decode the message when the l cooperating users
are transmitting. We denote the lth time fraction for user k as
θk,l, l = 1, 2, . . . , L (see Fig. 1(c) for user 2 with C2 = {3, 4}).
We henceforth refer to the two schemes as two-hop TD-UC
and multi-hop TD-UC.

User k transmits at power

P k = Pk · K /(Nk + 1) (3)

where Nk ≤ K − 1 is the total number of users whose
messages are forwarded by user k. For the two-hop scheme,
in those sub-slots where user k acts as a cooperating node, its
transmission power in (3) is scaled by the appropriate θk. For
the multi-hop scheme, let πk (·) be a permutation on Ck such
that user πk (l) begins its transmissions in the fraction θk,l,
for all l = 2, 3, . . . , Lk, and πk (1) = k. When user k acts as
a cooperating node for user j, j �= k, such that πj(l) = k for
some l > 1, its power P k in (3) is scaled by the total fraction
for which it transmits for user j, i.e.,

∑Lj

m=lθj,m. Recall that
the modes Mk,i are available at all nodes; so we assume that a
cooperating node or a dedicated relay uses negligible resources
to communicate its transition from one mode to another to
the destination and to other cooperating nodes. For AF we
assume equal length slots and consider symbol-based two-hop
and multi-hop schemes.

It is in general not possible to know a priori the number
of users Nk whose messages are forwarded by user k. A
decentralized scheme is to have all users forward packets for
each other. Alternatively, for low mobility environments, the
set Ck for user k can be chosen as the set of proximal users
(see, for e.g., [8], [9] and the references therein).

D. Cost Metric: Total Power

We use the total power consumed by all the nodes as a
cost metric for comparisons. We model the total power to
account for both transmission and processing power costs
motivated by the observation that wireless devices operate
at different regimes of transmission and processing power
requirements which in turn can affect their cooperative (pro-
cessing and forwarding) capabilities. For instance, in addition
to its transmit power a node also consumes processing power
to encode and decode its signals. Furthermore, a node that
relays consumes additional power in encoding and decoding
packets for other nodes. We model these costs by defining
encoding and decoding variables ηk and δk, respectively, and
write the power required to process the transmissions of node
j at node k as

P proc
k,j = P proc

k,0 +
(
ηkIenc

k (j) + δkIdec
k (j)

)
· f (Rj)

for all k ∈ T , j ∈ K (4)
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where P proc
k,j is the power required by node k to cooperate

with user j, Ienc
k (j) and Idec

k (j) are indicator functions that
are set to 1 if node k encodes and decodes, respectively,
for user j, P proc

k,0 is the minimum processing power at node
k which is in general device and protocol dependent, and
f(Rj) is a function of the transmission rate Rj in bits/sec
at user j (see also [10, (3)-(6)]). For example, a relay node
that uses DDF consumes power for overhead, encoding, and
decoding costs while a relay node using AF only has overhead
costs. The unitless variables ηk and δk quantify the ratio of
processing to transmission power at user k to encode and
decode a bit, respectively. For example, η � 1 and δ � 1
for cellular devices in which transmission costs dominate,
η � 1 and δ � 1 for the wireless LAN cards for which
processing costs dominate, and η and δ are determined by
the operational parameters for sensor-like devices. In general,
the processing cost function f depends on the encoding and
decoding schemes used as well as the device functionality. For
simplicity, we choose f as

f (Rk) = Rk for all k. (5)

This choice fits the scenario where processing power is pro-
portional to device throughput. Finally, we assume that the
destination in typical multiaccess networks such as cellular
or many-to-one sensor networks has access to an unlimited
energy source and ignore its processing costs. We write the
total power consumed on average (over all channel uses) at
node k, k ∈ T , as

Pk,tot =

⎧⎨
⎩

Pk + P proc
k,k +

∑
j∈K,j �=k

Ik(j)P proc
k,j k ∈ K

Pk + P proc
k,k +

∑
j∈K

Ik(j)P proc
k,j k = r

(6)
where Ik(j) is an indicator function that takes the value 1 if
node k cooperates with node j. For user k, the first P proc

k,k term
in (6) accounts for the power used to process its own message
while the second summation term accounts for the power node
k incurs in cooperating with all other source nodes. Note
that at high SNR, i.e., high Pk for all k, the dominating
term in (6) is Pk since P proc

k,k is usually a constant and Rj

increases logarithmically in Pj , for all k, j ∈ K. The total
power consumed by all transmitting nodes in each network is
given as

Ptot =
∑

k∈A Pk,tot, A =

{
K TD-MAC or TD-UC
T TD-RC

(7)

E. Fading Models

We model the fading gains as Hm,k,i = Am,k,i

/
d

γ/2
m,k

where dm,k is the distance between the mth receiver and the
kth source, γ is the path-loss exponent, and the Am,k,i are
jointly independent identically distributed (i.i.d.) zero-mean,
unit variance, proper, complex Gaussian random variables.
We assume that the fading gain Hm,k,i is known only at
receiver m. We also assume that Hm,k,i remains constant
over a coherence interval and changes independently from one
coherence interval to another. Further, the coherence interval is

assumed large enough to apply information-theoretic quantities
such as mutual information. Finally, we also assume that the
fading gains are independent of each other and independent
of the transmitted signals Xk,i, for all k ∈ T and i.

III. GEOMETRY-INCLUSIVE OUTAGE ANALYSIS

We first compare the outage performance of the UC and
RC networks via a limiting analysis in SNR of the outage
probabilities achieved by DDF. We later do the same for both
networks for AF. In [4], Laneman develops bounds on the
DF and AF outage probabilities for a relay channel where the
source and the relay transmit on orthogonal channels to the
destination. In [3], the authors introduce a DDF strategy for a
half-duplex relay channel where the relay remains in the listen
mode until it successfully decodes its received signal. Fur-
thermore, the authors show that for both two-hop and multi-
hop relay channels, DDF achieves the diversity-multiplexing
tradeoff (DMT) performance [11] of an equivalent MIMO
channel for small multiplexing gains.

In an effort to quantify both the diversity and the effect
of geometry, we present geometry-inclusive upper and lower
bounds on the DDF and AF outage probabilities for the TD-
RC and the TD-UC networks. We summarize the results here
and develop the detailed analyses in the Appendices. Under
DDF, a cooperating node (resp. dedicated-relay) in the TD-
UC (resp. TD-RC) network can indicate its mode change
following successful decoding via a one bit feedback signal
that is assumed available to all nodes. This in turn allows user
k, for all k, to determine the order of its cooperating DDF
users in the multi-hop TD-UC network. For the multi-hop TD-
UC network, the difference θk,l − θk,j for two cooperating
users l, j ∈ Ck may be smaller than the symbol time in which
case user k could choose arbitrarily between the two users. On
the other hand, for an AF-based multi-hop TD-UC network,
the node order could be determined a priori based on the
proximity of sources.

A. Dynamic-Decode-and-Forward

1) TD-RC: In general, obtaining a closed form expression
for the outage probability of each user is not straightforward.
Suppose that Pr = λP k for some constant λ and recall
that P r = Pr/ θk. In Appendix II, we develop upper and
lower bounds on the DDF outage probability P

(k)
o of user k

transmitting at a fixed rate Rk, for all k, as (see (36))

Po,2×1 ≤ P (k)
o ≤

[
(2Rk/θ

∗

k − 1)2θ
∗

k

(2Rk − 1)2
+

2dγ
r,k(2Rk/θ∗

k − 1)2

dγ
d,r(2

Rk − 1)2

]

·
(2R − 1)2dγ

d,kdγ
d,r

2λ
(
P k

)2 + O
((

P k

)−3
)

(8)

where Po,2×1 is the outage probability of a 2 × 1 distributed
MIMO channel whose ith transmit antenna is at a distance
dd,i, i = k, r, from the destination and θ∗k ∈ (0, 1) is a fraction
chosen to upper bound P

(k)
o . The notation O (x) in (8) means

that there is a positive constant M and a real number x0 such
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that the O (x) term is upper bounded by M |x| for all x ≥ x0.
In Appendix II, we show that

Po,2×1 = (2Rk − 1)2dγ
d,kdγ

d,r

/
2λ
(
P k

)2
+ O

((
P k

)−3
)

.

(9)
Thus, from (8) and (9) we see that for a fixed rate transmission,
the maximum diversity (negative exponent of P k) achieved by
DDF is 2, as predicted by the DMT analysis for DDF in [3,
Theorem 4]. Comparing (8) and (9), we further see that the
bracketed expressions on the right side of the inequality in (8)
upper bounds the coding gains by which P

(k)
o differs from the

MIMO lower bounds.
2) TD-UC – Two-Hop: The outage analysis for the two-

hop TD-RC network can be extended to the two-hop TD-UC
network with the observation that θk is now determined by the
cooperating user that takes the longest to decode. In Appendix
II, for sufficiently large power Pk, we bound P

(k)
o as (see (38)

and (43))

Po,Lk×1 ≤ P (k)
o ≤ K2 ·

(
2Rk − 1

)Lk
∏

j∈Sk
dγ

d,j

(Lk!)
(
P k

)Lk ∏
j∈Sk

λj

+ O
((

P k

)−Lk−1
)

(10)

where λj = P j/P k for all j ∈ Sk = Ck ∪ {k}, θ∗k ∈ (0, 1),
Po,Lk×1 is the outage probability of a Lk × 1 distributed
MIMO channel whose ith transmit antenna is at a distance
dd,i, i = 1, 2, . . . , Lk, from the destination such that

Po,Lk×1 =

(
2Rk − 1

)Lk

(Lk!)
(
P k

)Lk

∏
j∈Sk

dγ
d,j

λj
+O

((
P k

)−Lk−1
)

(11)

and

K2 =

⎡
⎢⎣
(
2Rk/θ

∗

k − 1
)Lk

(
θ
∗

k

)Lk−1

(2Rk − 1)
Lk

+

(2Rk/θ∗
k − 1)2

(∑
j∈Ck

dγ
j,k

)
(Lk!)

(
P k

)Lk−2

(2Rk − 1)
Lk

(∏
j∈Ck

dγ
d,j/λj

)
⎤
⎦ . (12)

Note that for Lk = 2, our analysis simplifies to the outage
analysis for the TD-RC network. For Lk > 2, comparing (10)
and the two terms in square brackets in (12), one obtains a
lower bound on the diversity from the first and second terms in
(12) as Lk and 2, respectively. In fact, the first term dominates
only when
⎛
⎝∑

j∈Ck

dγ
j,k

⎞
⎠ ≤

(
2Rk/θ

∗

k − 1
)Lk−2

(Lk!)
(
P k

)Lk−2
·

(∏
j∈Sk

dγ
d,j/λj

)
dγ

d,k

.

(13)
For a given Pk, for all k, achieving the maximum diversity
Lk requires that user k and its cooperating users in Ck are
clustered close enough to satisfy (13). Thus, the maximum
DDF diversity for a two-hop cooperative network does not
exceed that of TD-RC except when user k and its cooperating
users are clustered, i.e., the inter-node distances satisfy (13).
We illustrate this distance-dependent behavior in Section IV.

3) TD-UC – Multi-Hop: Recall that πk (·) is a permutation
on Ck such that user πk (l) begins its transmissions in the frac-
tion Θk,l, for all l = 2, 3, . . . , Lk, and πk (1) = k. Unlike the
two-hop case where Θk is dictated by the node with the worst
receive SNR, the fraction Θk,l, for l = 1, 2, . . . , Lk − 1, is
the smallest fraction that ensures that at least one cooperating
node, denoted as πk (l + 1), decodes the message from user
k. In general, developing closed form expressions for P

(k)
o is

not straightforward. In Appendix III, we lower bound P
(k)
o by

the MIMO outage probability, Po,Lk×1 and use the CDF of
Θk,l, for all l, to upper bound P

(k)
o for any 0 < θ∗k,l < 1, for

all l, as (see (56))

P (k)
o ≤

(
2Rk − 1

)Lk

(Lk!)
(
P k

)Lk

⎛
⎝ Lk∏

j=1

dγ
d,πk(j)

λπk(j)

⎞
⎠ · [Kc + Kd]

+ O
((

P k

)−Lk−1
)

(14)

where the constants Kc and Kd are given by (57) in Appendix
III. Our analysis shows that DDF achieves a maximum diver-
sity of Lk for a Lk-hop TD-UC network.

B. Amplify-and-Forward

A cooperating node or a dedicated relay can amplify its
received signal and forward it to the destination; the resulting
AF strategy is appropriate for nodes with limited processing
capabilities. We present the outage bounds for two-hop TD-
RC and TD-UC and Lk-hop TD-UC networks. We assume
θk = 1/2 and θk,l = 1/Lk, l = 1, 2, . . . , Lk, for the two-hop
and Lk-hop schemes, respectively.

1) TD-RC and TD-UC – Two-hop: We first consider a
two-hop AF protocol where only user k transmits in the first
fraction and both user k and its cooperating users (TD-UC)
or dedicated relay (TD-RC) transmit in the second fraction.
User k transmits with a different codebook in the first and
second fractions. The other users transmit Xl,2 = clYl,1 where
Xl,2 represents a symbol in the second time fraction, cl is a
complex constant, and Yl,1 represents a symbol in the first
time fraction. The outage analysis for the two-hop TD-RC
network, i.e., |Ck| = 1, is the same as that developed for
the half-duplex relay channel in [12]. For the TD-UC two-
hop network, i.e., Lk ≥ 2, in which all Lk − 1 cooperating
nodes amplify and forward their received signals in the second
fraction, the destination receives a signal from user k in the
first fraction and receives a sum of signals from user k and
the amplified signals from the Lk − 1 cooperating users. The
resulting outage P

(k)
o is given as

P (k)
o = Pr

(
1

2
C (G) < Rk

)
(15)

where

G = |Hd,k|
2
P k

(
1 +

1

c2
s

)
+

P k

c2
s

∣∣∣∣∣∣
∑
j∈Ck

cjHd,jHj,k

∣∣∣∣∣∣
2

, (16)

the pre-log factor of 1/2 is a result of θk = 1/2, |cj | =

(2P j/
/
|Hj,k|

2
P k + 1)1/2, and c2

s = 1 +
∑

j∈Ck
|cjHd,j |

2
.
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We can lower bound P
(k)
o by the outage probability of a Lk×1

MIMO channel where all the relaying antennas transmit the
same signal, i.e.,

P (k)
o ≥ Pr

(
C

(
|Hd,k|

2
P k + P k

∣∣∣∑j∈Ck
Hd,j

∣∣∣2
)

< Rk

)

(17)

=

(
2Rk − 1

)2
dγ

d,k

2
(
P k

)2 (∑
j∈Ck

1/dγ
d,j

) + O
((

P k

)−3
)

. (18)

Thus, the maximum diversity of two-hop AF is bounded by
2. Further, since AF achieves a maximum diversity of 2 with
one cooperating node or dedicated relay [4], allowing selection
of one cooperating node with the smallest outage allows us
to achieve diversity 2. Finally, using the fact that P

(k)
o for a

non-orthogonal relay channel is at most that of the orthogonal
relay channel, we bound P

(k)
o using the bound developed for

the orthogonal case in [4] as

P (k)
o ≤

(
22Rk − 1

)2
dγ

d,k maxj∈Ck

(
dγ

j,k + dγ
d,j

)

2
(
P k

)2 . (19)

Thus, the maximum diversity achievable by a two-hop AF
scheme is at most 2 and is independent of the number of
cooperating users in Ck.

2) TD-UC – Multi-hop: We consider an Lk-hop cooper-
ative AF protocol where only user k and user πk (l), l =
1, 2, . . . , Lk, transmit in the lth fraction, i.e., user πk (l)
forwards in the fraction θk,l a scaled version of the signal it
receives from user k in the first fraction. User k transmits with
a different codebook in each fraction. Note that πk (1) = k
and θk,l = 1/Lk for all l. We write the received signal, Yd,l,
at the destination in the lth fraction as

Yd,l =

{
Hd,kXk,l + Zd,l l = 1
Hd,kXk,l + Hd,πk(l)Xπk(l),l + Z ′

d,l l = 2, . . . , Lk

(20)
where the signal transmitted by user πk (l) in the lth fraction
is Xπk(l),l = cπk(l)Yπk(l),1 such that cπk(l)is as given for
the two-hop case earlier with Ck = {πk (l)}. We can write
(20) compactly as Y d = HXk + Z, where the Lk entries
of Y d and Xk are related by (20) and H is the resulting
channel gains matrix. The destination decodes after collecting
the received signals from all Lk fractions. Choosing Xk,l,
for all l, as independent Gaussian signals, we have P

(k)
o =

Pr
(
log
∣∣∣I + P kHH†

∣∣∣ < LkRk

)
where H† is the conjugate

transpose of H. We lower bound P
(k)
o with the outage proba-

bility of a Lk × 1 MIMO channel in (11). On the other hand,
one can upper bound P

(k)
o by the outage probability of an

orthogonal AF protocol in which user k and its cooperating
users transmit on orthogonal channels, i.e., only user πk (l)
transmits in the fraction θk,l, as developed in [4]. Thus, we
have

Pout ≤

(
2LkRk − 1

)Lk dγ
d,k

∏
j∈Ck

(
dγ

d,j + dγ
j,k

)

Lk!
(
P k

)Lk
. (21)
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Fig. 2. Sector of a circle with the destination at the origin and 100 randomly
chosen locations for a three-user MAC.

Comparing (11) and (21), we see that the Lk-hop AF scheme
can achieve a maximum diversity of Lk in the high SNR
regime at the expense of user k repeating the signal Lk times.

IV. ILLUSTRATION OF RESULTS

We consider a planar geometry with the users distributed
randomly in a sector of a circle of unit radius and angle π/3.
We place the destination at the center of the circle and place
the dedicated relay at (0.5, 0) as shown in Fig. 2. The K
users are distributed randomly over the sector excluding an
area of radius 0.3 around the destination. We consider 100
such random placements and for each such random placement,
we compute the outage probabilities Pout for the TD-RC, the
TD-UC, and the TD-MAC network as an average over the
outages of all the time-duplexed users in each network. Finally,
we also average Pout over the 100 random node placements.
We consider a three-user MAC. We assume that all three
users have the same transmit power constraint, i.e., Pk = P1

for all k. For the dedicated relay we choose Pr = fr · P1

where fr ∈ {0.5, 1}. We set the path loss exponent γ = 4
and the processing factors ηk = δk = η for all k. We plot
Pout as a function of Ptot for η = 0.01, 0.5, and 1 thereby
modeling three different regimes of processing to transmit
power ratios. We consider a symmetric transmission rate, i.e.,
all users transmit at R = 0.25 bits/channel use. We first plot
Pout as a function of the transmit SNR P1 in dB obtained by
normalizing P1 by the unit variance noise. We also plot Pout

as a function of Ptot in dB where Ptot is given by (6) and (7).
For user cooperation, we plot the outage for both the two-hop
and three-hop schemes.

A. Outage Probability: DDF

We compare the DDF outage probability in Figs. 3 and 4.
The plots validate our analytical results that DDF does not
achieve the maximum diversity gains of 3 for the two hop
TD-UC network (denoted Coop. 2-hop in plots). For the three-
hop TD-UC network (denoted Coop. 3-hop), the slope of Pout

approaches 3. Further, relative to DDF performance for the
TD-RC network, DDF for this 3-hop TD-UC network achieves
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coding gains only as the SNR increases. This difference
persists when the energy costs of cooperation are accounted
for in sub-plot 2 and Fig. 4 by plotting Pout as a function
of Ptot. This difference in SNR gains between UC and RC
is due to the fact that UC increases spatial diversity at the
expense of requiring users to consume power for cooperative
transmissions. Observe that with increasing η, the outage
curves are translated to the right. In fact, for a fixed R, the
processing costs increase with increasing η, and thus, we
expect the SNR gains from cooperation to diminish relative
to TD-MAC, particularly in lower SNR regimes.

B. Outage Probability: AF

In Figs. 5 and 6 we plot the two user AF outage probability
for all three networks. As predicted, both TD-RC and TD-
UC networks achieve a maximum diversity of 2 for the two-
hop scheme. The TD-UC three-hop scheme has a maximum
diversity approaching 3. However, it achieves coding gains
relative to the TD-RC network only as the SNR increases.
These gains are a result of the model chosen for front-
end processing and amplification costs, and thus, the total
processing power will scale proportionate to the number of
users that a node relays for. Observe that AF outperforms
DDF for large processing factors η because AF requires little
processing.

The numerical analysis can be extended to arbitrary dedi-
cated relay positions. In general, the choice of the dedicated-
relay position is a tradeoff between cooperating with as many
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(sub-plot 2) and K = 3.
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users as possible and being, on average, closer to the users than
the destination is. Placing the dedicated relay at the symmetric
location (0.5, 0) seems to be a reasonable tradeoff.

V. CONCLUDING REMARKS

We compared the outage performance of user and dedicated-
relay cooperation in a time-duplexed multiaccess network
using the total transmit and processing power as a cost
metric. We presented geometry-inclusive upper and lower
bounds on the outage probability of DDF and AF to facilitate
comparisons of diversity and coding gains achieved by the two
cooperative approaches. Using area-averaged numerical results
that account for the costs of cooperation, we demonstrated
that the TD-RC network achieves SNR gains that diminish
the diversity advantage of the TD-UC network.

In conclusion, we see that user cooperation is desirable only
if the processing costs associated with achieving the maximum
diversity gains are not prohibitive, i.e., in the regime where
user cooperation achieves positive coding gains relative to
the dedicated-relay cooperative and non-cooperative networks.
The simple processing cost model presented here captures the
effect of transmit rate on processing power. One can also tailor
this model to explicitly include delay, complexity, and device-
specific processing costs.
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APPENDIX I
DISTRIBUTION OF WEIGHTED SUM OF EXPONENTIAL

RANDOM VARIABLES

Consider a collection of i.i.d. unit mean exponential random
variables El, l = 1, 2, . . . , L. We denote a weighted sum of
El, for all l, as H =

∑L
l=1 clEl where cl > 0 and cm �= ck

for all l and m �= k. The following lemma summarizes the
probability distribution of H [13, p. 11].

Lemma 1: The random variable H has a distribution given
as

pH (h) =

{ ∑L
l=1

Cl

cl
e−h/cl h ≥ 0

0 otherwise
(22)

where the constants Cl, for all l, are

Cl =

{
1 L = 1

(−cl)
L−1

QL
j=1,j �=l(cj−cl)

L > 1.
(23)

The cumulative distribution function of H is

FH (η) =
L∑

l=1

Cl

(
1 − e−η/cl

)
(24)

and the first non-zero term in the Taylor series expansion of

FH (η) about η = 0 is ηL

/(
L!

L∏
l=1

cl

)
.

APPENDIX II
DDF OUTAGE BOUNDS

A. Two-Hop Relay Cooperative Network

For a DDF dedicated relay, the listen fraction is the random
variable (see [3, (13), pp. 4157])

Θk = min

(
1, Rk

/
log

(
1 +

|Ar,k|
2
P k

dγ
r,k

))
. (25)

Θk is a mixed (discrete and continuous) random variable with
a cumulative distribution function (CDF) given as

F
(r)
Θk

(θk) =

⎧⎪⎪⎨
⎪⎪⎩

0 θk ≤ 0

exp

[
−

(2Rk/θk−1)dγ
r,k

P k

]
0 < θk < 1

1 θk = 1.

(26)

The mutual information collected at the destination over both
the listen and transmit fractions is (see [3, Appendix D])
IDF
2 = ΘkG1 + ΘkG2 where Θk = (1 − Θk), P k =

KPk, P r = Pr/Θk, G1 = C(|Hd,k|
2
P k), and G2 =

C(|Hd,k|
2
P k + |Hd,r|

2
P r). The outage probability for user

k transmitting at a fixed rate Rk is then given as P
(k)
o =

Pr
(
IDF
2 < Rk

)
. From (25), Θk = 0 only for dr,k = 0, i.e.,

only when user k and the dedicated relay are co-located, and
for this case P

(k)
o simplifies to the 2×1 MIMO channel outage

probability given by

Po,2×1 =
(2Rk − 1)2dγ

d,kdγ
d,r

2λ
(
P k

)2 + O
((

P k

)−3
)

. (27)

where we let Pr and P k scale such that Pr/P k = λ is a
positive constant. Using (24), we have Po,2×1 is a lower bound

on P
(k)
o because G2 ≥ G1. On the other hand, for any θk,

P
(k)
o (θk) can be upper bounded as

P (k)
o (θk) ≤ Pr (θkG1 < Rk) = P

(k)
o,1 (θk), and (28a)

P (k)
o (θk) ≤ Pr

(
θkG2 < Rk

)
= P

(k)
o,2 (θk) (28b)

Thus, we have

P (k)
o = EP (k)

o (Θk) ≤ E min(P
(k)
o,1 (Θk), P

(k)
o,2 (Θk)) = P

(k)
UB

(29)
Let η = 2Rk/θk − 1, c1 = P k

/
dγ

d,k , and c2 = P r

/
dγ

d,r .

From (23), we have C1 = c1 /(c1 − c2) and C2 =
c2 /(c2 − c1) . Using Lemma 1, we have

P
(k)
o,1 (θk) = Pr

(
G1 <

Rk

θk

)
= 1 − exp

[
−(2Rk/θk − 1)dγ

d,k

P k

]

(30a)

≤
(2Rk/θk − 1)dγ

d,k

P k

(30b)

P
(k)
o,2 (θk) = Pr

(
G2 <

Rk

θk

)
=

2∑
l=1

Cl

(
1 − e−η/cl

)
(31a)

=
(2Rk/θk − 1)2θkdγ

d,kdγ
d,r

2λ
(
P k

)2 + O
((

P k

)−3
)

(31b)

where the bound in (31) follows from expanding and sim-
plifying the exponential functions. From (31), we see that
for a fixed P k and dj,k for all j, k, the minimum in (29)
is dominated by P

(k)
o,2 (θk) for small θk and by P

(k)
o,1 (θk) as

θk approaches 1. Finally, we have Po,2×1 = P
(k)
o,2 (θk = 0).

In general, P
(k)
UB is not easy to evaluate analytically. Since we

are interested in the achievable diversity, we develop a bound
on P

(k)
UB for a fixed Rk. We have, for any θ∗k, 0 < θ∗k < 1,

P
(k)
UB =

∫ 1

0

PΘk
(θk) min

(
P

(k)
o,1 (θk), P

(k)
o,2 (θk)

)
dθk (32)

≤

∫ θ∗
k

0

PΘk
(θk) P

(k)
o,2 (θk)dθk (33)

+

∫ 1

θ∗
k

PΘk
(θk)P

(k)
o,1 (θk)dθk

≤ FΘk
(θ∗k) P

(k)
o,2 (θ∗k) + (1 − FΘk

(θ∗k)) P
(k)
o,1 (θ∗k) (34)

≤ P
(k)
o,2 (θ∗k) +

(2Rk/θ∗
k − 1)dγ

r,k

P k

· P
(k)
o,1 (θ∗k) (35)

≤

[
(2Rk/θ

∗

k − 1)2θ
∗

k

(2Rk − 1)2
+

2dγ
r,k(2Rk/θ∗

k − 1)2λ

dγ
d,r(2

Rk − 1)2

]
(36)

·
(2Rk − 1)2dγ

d,kdγ
d,r

2λ
(
P k

)2 + O
((

P k

)−3
)

where the equality in (33) holds when P
(k)
o,2 (θk) < P

(k)
o,1 (θk)

for θk < θ∗k and vice-versa, and (34) follows because P
(k)
o,1 (θk)

and P
(k)
o,2 (θk) decrease and increase, respectively, with θk and

(35) follows from using (26) to bound 1 − FΘk
(θ∗k). Finally,
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we note that for any fixed 0 < θ∗k < 1, for fixed inter-node
distances, the term in square brackets in (36) is a multiplicative
constant separating the upper bound (36) and the lower bound
(27) on P

(k)
o .

B. Two-hop User Cooperative Network

The above analysis extends to the two-hop TD-UC network.
Recall that a DDF cooperating node remains in the listen
mode until it successfully decodes its received signal from
the source. Thus, for the two-hop TD-UC network, the listen
fraction for each cooperating node j, for all j ∈ Ck, is given
by (25) with the substition r = j. Further, since the listen
fraction Θk is now the largest among all j, from (25) we have

Θk = min
(
1,maxj∈Ck

{
Rk

/
C
(
|Aj,k|

2
P k

/
dγ

j,k

)})
(37)

where the transmit power P k, for all k ∈ K, satisfies (2)
and is given by (3). Let F

(j)
Θk

(θk) be the CDF F
(r)
Θk

(θk) in
(26) with the index r replaced by j. From the independence
of Aj,k for all j ∈ Ck, the CDF of Θk is FΘk

(θk) =∏
j∈Ck

F
(j)
Θk

(θk) which in turn is given by F
(r)
Θk

(θk) evaluated
at dr,k =

∑
j∈Ck

dγ
j,k. The destination collects information

from the transmissions of user k and all its cooperating nodes
in Ck over both the transmit and listen fractions. The resulting
mutual information achieved by user k at the destination
is (see [14]) Ic

2,DF (Θk) = ΘkG1 + ΘkG2 where Θk =

1 − Θk, G1 = C(|Hd,k|
2
P k), and G2 = C(|Hd,k|

2
P k +∑

j∈Ck
|Hd,j |

2
P j

/
Θk ).The DDF outage probability for user

k transmitting at a fixed rate Rk in a two-hop TD-UC network
is thus given as P

(k)
o = Pr

(
Ic
2,DF < Rk

)
. Analogously to the

two-hop TD-RC analysis earlier, we can lower bound P
(k)
o by

the outage probability, Po,Lk×1, of a Lk×1 distributed MIMO
channel using (24), and scaling P j and P k such that P j/P k =
λj is a constant, for all j, as

Po,Lk×1 =
(2Rk − 1)Lkdγ

d,k

(Lk!)
(
P k

)Lk
·

⎛
⎝∏

j∈Sk

dγ
d,j

λj

⎞
⎠+O

((
P k

)−Lk−1
)

(38)
where we enumerate the (Lk − 1) cooperative nodes in Ck as
l = 2, 3, . . . , Lk, and write Sk = {k}∪Ck. Let η = 2Rk/θk−1,

c1 = P k

/
dγ

d,k , and cl = P l

/
dγ

d,lθk , l = 2, 3, . . . , Lk,

where the θk in cl is due to the definition of P l in (3). The
Cl, for all l = 1, 2, . . . , Lk, are given by (23). For a fixed Rk,
we upper bound P

(k)
o using (28) as

P (k)
o = EP (k)

o (Θk) ≤ E min(P
(k)
o,1 (Θk), P

(k)
o,2 (Θk)) = P

(k)
UB .
(39)

We upper bound P
(k)
o,1 (θk) using (30) and compute

P
(k)
o,2 (θk) =

(
2Rk/θk − 1

)Lk (
θk

)Lk−1

(Lk!)
(
P k

)Lk

⎛
⎝∏

j∈Sk

dγ
d,j

λj

⎞
⎠

+ O
((

P k

)−Lk−1
)

. (40)

Analogous to the steps in (32)-(36) for the TD-RC case, for
any θ∗k, 0 < θ∗k < 1, we can upper bound P

(k)
UB by

P
(k)
UB ≤ FΘk

(θ∗k) P
(k)
o,2 (θ∗k) + (1 − FΘk

(θ∗k)) P
(k)
o,1 (θ∗k) (41)

≤ P
(k)
o,2 (θ∗k) +

(2Rk/θ∗
k − 1)

(∑
j∈Ck

dγ
j,k

)
P k

· P
(k)
o,1 (θ∗k)

(42)

which simplifies to the expression

⎡
⎢⎣ (2Rk/θ

∗

k − 1)Lk

(
θ
∗

k

)Lk−1

(2Rk − 1)Lk
+

(Lk!)

( ∑
j∈Ck

dγ
j,k

)(
P k

)Lk−2
(2Rk/θ∗

k − 1)2

(∏
j∈Ck

dγ
d,j/λj

)
(2Rk − 1)Lk

⎤
⎥⎥⎥⎥⎦

·

⎡
⎣ (2Rk − 1)Lk

(Lk!)
(
P k

)Lk

⎛
⎝∏

j∈Sk

dγ
d,j

λj

⎞
⎠
⎤
⎦+ O

((
P k

)−Lk−1
)

(43)

APPENDIX III
MULTI-HOP COOPERATIVE NETWORK – DDF OUTAGE

ANALYSIS

The DDF outage probability of user k transmitting at a
fixed rate Rk in a multi-hop user cooperative network is
P

(k)
o = Pr

(
Ic
2,DF < Rk

)
where Ic

2,DF (Θk) =
∑Lk

l=1 Θk,lGl.
The function Gl is given by

Gl = C

(∑l
j=1

∣∣Hd,πk(j)

∣∣2 P πk(j)

Θk,j

)
l = 1, 2, . . . Lk,

(44)
where P k is given by (3) and

Θsum
k,l

�

=
∑l−1

j=1 Θk,j , for l = 1, 2, . . . , Lk, and (45)

Θ
sum

k,l
�

= 1 − Θsum
k,l (46)

with Θ
sum

k,Lk
= Θk,Lk

and Θk,−1 = 0 such that Θ
sum

k,1 = 1.
Recall that πk (·) is a permutation on Ck such that user
πk (l) begins its transmissions in the fraction Θk,l, for all
l = 2, 3, . . . , Lk. Furthermore, πk (1) = k and we write
πk (i : j) = {πk(i), πk(i + 1), . . . , πk(j)}.

We write Θk to denote a (Lk − 1)-length random vector
with entries Θk,l, l = 1, 2, . . . , Lk − 1, and λπk(j) =

Pπk(j)/P k for all πk (j) ∈ Ck. Further, we write Θ
(l)
k to

denote the vector of the first l entries of Θk. The fraction
Θk,l, l = 1, 2, . . . , Lk − 1, is the smallest value such that
at least one new node, denoted as πk (l + 1), decodes the
message from user k. The analysis for this problem seems
difficult; so we replace it by analyzing a simpler strategy where
node πk (l + 1) collects energy only in fraction Θk,l from the
transmissions of user k as well as the users in πk (1 : l). For
this strategy, we have

Θk,l = min

{
Θ

sum

k,l , min
πk(l+1)∈Ck\πk(1:l)

f (πk (l + 1))

}
(47)
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where f (πk (l + 1)) is given by

Rk

C
(∑l

m=1

∣∣Aπk(l+1),πk(m)

∣∣2 Pπk(m)

/
dγ

πk(l+1),πk(m)

) .

(48)
Applying Lemma 1, the CDF of Θk,l conditioned on Θl−1

k =
θl−1

k simplifies to

FΘk,l|Θ
l−1
k,1

(θk,l|θ
l−1
k ) =

⎧⎨
⎩

0 θk,l ≤ 0

1 − F̃ 0 < θk,l < θ
sum

k,l

1 θk,l = θ
sum

k,l .

(49)

where

F̃ =
∏

j∈Ck\πk(2:l)

[
FHsum

j,l
(2Rk/θk,l − 1)

]
(50)

and from (47), Hsum
j,l

�

=
∑l

m=1 cm

∣∣Aj,πk(m)

∣∣2 with cm =

λπk(m)P k

/
dγ

j,πk(m) for all m = 1, 2, . . . , l, and θk,l is given
by (45). The dominant term of each FHsum

j,l
is proportional

to
(
P k

)−l
, and thus, the dominant term of 1 − FΘk,l|Θ

l−1
k

is

proportional to
(
P k

)−l(Lk−l)
.

For a fixed Rk, we lower bound P
(k)
o by the outage

probability Po,Lk×1 of a Lk × 1 distributed MIMO channel
in (38). Generalizing the analyses in Appendix II, we upper
bound P

(k)
o as

P (k)
o ≤ E min

l∈K
(P

(k)
o,l (Θk)) = P

(k)
UB (51)

where we use Lemma 1 to write

P
(k)
o,l (θk)

�

= Pr

(
Gl <

Rk

θk,l

)
(52)

=

(
2Rk/θk,l − 1

)l
(l!)

(
P k

)l
⎛
⎝ l∏

j=1

dγ
d,πk(j)θ

sum

k,j

λπk(j)

⎞
⎠+ O

((
P k

)−l−1
)

.

(53)

The probability P
(k)
UB is given as (see (45))

P
(k)
UB =

∫ 1

θk,1=0

. . .

∫ θ
sum
k,Lk−1

θk,Lk−1=0

PΘk
(θk) min

l∈K
(P

(k)
o,l (θk,l))dθk.

(54)
For any 0 < θ∗k,l < θ

∗

k,l, 1 ≤ l < Lk, the integral in (54) over
the (Lk − 1)-dimensional hyper-cube can be written as a sum
of 2Lk−1 integrals, each spanning (Lk − 1)-dimensions, such
that there are

(
Lk−1

j

)
integrals for which j of the (Lk − 1) θk,l

parameters range from 0 to θ∗k,l, j = 0, 1, . . . , Lk−1 while the

remaining range from θ∗k,l to 1. Thus, we upper bound P
(k)
UB

in (54) by

∫ θ∗
k,1

0

∫ θ
sum
k,2

0

. . .

∫ θ
sum
k,Lk−1

0

PΘk
(θk) P

(k)
o,Lk

(θk)dθk+

∫ 1

θ∗
k,1

∫ θ
sum
k,2

0

. . .

∫ θ
sum
k,Lk−1

0

PΘk
(θk) P

(k)
o,1 (θk)dθk (55)

where the dominant outage terms for θk,1 ≤ θ∗k,1 and θk,1 >

θ∗k,1 are bounded by P
(k)
o,Lk

(θk) and P
(k)
o,1 (θk), respectively.

Furthermore, using the monotonic properties of P
(k)
o,l , the first

term in (55) is bounded by P
(k)
o,Lk

(θ∗k) and the second term

is bounded by
(
1 − FΘk,1

(
θ∗k,1

))
P

(k)
o,1 (θ∗k). From (49) and

(52), using the fact that P
(k)
o,1 (θ∗k) has the smallest absolute

exponents of P k, namely 1, and
(
1 − FΘk,1

(
θ∗k,1

))
P

(k)
o,1 (θ∗k)

scales as
(
P k

)−Lk , P
(k)
UB can be upper bounded by

P
(k)
o,Lk

(θ∗k) +
(
1 − FΘk,1

(
θ∗k,1

))
P

(k)
o,1 (θ∗k)

≤

(
2Rk − 1

)Lk

(Lk!)
(
P k

)Lk

⎛
⎝ Lk∏

j=1

dγ
d,πk(j)

λπk(j)

⎞
⎠ [Kc + Kd]

+ O
((

P k

)−Lk−1
)

(56)

where Kc =

(
2Rk/θ∗

k,Lk − 1
)Lk

(∏Lk

j=1

(
θ

sum

k,j

)∗)

(2Rk − 1)
Lk

, and

(57)

Kd =

(
2Rk/θ∗

k,1 − 1
)Lk

(Lk!)

(2Rk − 1)
Lk

·

Lk∏
j=2

dγ
πk(j),πk(1)

λπk(j)
.

(58)

Combining (56) and (38), the maximum achievable diversity
is Lk.
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Abstract—Telecommunication usage has skyrocketed in 
recent years and will continue to grow as developing world 
reaches to wireless as the communication medium of choice. 
The telecommunications world is only now addressing the 
significant environmental impact it is creating as well as the 
incredible cost on power usage. This realization has led to a 
push towards Green Communications that strives for 
improving energy efficiency as well as energy independence 
of telecommunications. A survey of existing metrics for 
energy efficiency is discussed with specific adaptations for a 
communication centric viewpoint. This paper reviews recent 
energy efficient advances made at specific point within the 
communications cycle such as components, network 
operation and topology, and incorporating renewable and 
alternative energy into base stations. We further survey 
several holistic approaches that illustrate the dependencies 
between layers of the communications stack and 
operation/deployment. These approaches include cross layer 
design, cognitive radio, and wireless distributed computing.  
 
Index Terms—green communications, wireless, energy 
efficiency, metrics 
 

I. INTRODUCTION 

The intersection of two undeniable trends, the 
escalating energy costs and the meteoric growth in 
communications usage, creates an urgent need to address 
the development of energy efficient communications. The 
cellular network is the largest factor contributing to the 
mobile industry’s environmental impact [1] with the 
emissions from the telecommunications business sector 
estimated at between 0.5% [2] and 1% of the entire 
world’s carbon footprint [3]. While this may sound 
paltry, the true seriousness of the issue is more apparent 
from the perspective of energy costs. In some 
telecommunications markets, energy-related costs 
account for as much as half of a mobile operator’s 
operating expenses [4, 5]. The expectation that energy 
costs may rise three fold over the next seven years is 
great cause for concern [2]. 

Recently, the term ‘Green Communications’ has been 
marketed and sloganized as a solution to addressing the 
growing cost and environmental impact of 
telecommunications. However, there is a lack of explicit 
energy efficiency definitions and metrics for wireless 
telecommunications to provide a sound foundation for 
assessing overall improvement and quantifying Green 
Communications. 

Fig. 1 highlights the relative power consumption of 
various components and operational aspects of a base 
station (BS) [6]. In this figure, the total power 
consumption of signal processing & control unit (30%) 
and RF conversion & power amplifier (70%) is used as 
the normalization baseline. From this figure, the top three 
power consuming components are feeder network, RF 
conversion & amplification, and climate control (e.g., air 
conditioning).  

 
Figure 1.  Energy consumption at a typical macro BS 

(normalized) [6]. 

Several hurdles must be overcome in order to 
significantly improve energy efficiency in 
communications. The current design paradigm focuses on 
separation between individual levels within the network 
protocol stack. Additionally, deployment, operations, and 
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peripheral elements such as air conditioning and fuel 
transportation are further disconnected from the original 
component and system design cycle. This 
compartmentalized thinking severely limits truly 
transformational benefits. Currently, most advancements 
in energy efficient communications focus on a narrowly 
defined aspect of the communications cycle such as 
power amplifiers or incorporating renewable energy 
sources. This paper contends that energy efficient 
communications must be analyzed from an overall 
holistic system perspective rather than at singular levels. 

In this paper, we strive to add a level of formalization 
to the term Green Communications and address 
fundamental hurdles to realizing overall improvements. 
Specifically, we survey and contrast existing definitions 
and metrics in energy efficiency and their applications 
towards communications. We collate advancements in 
energy efficiency from different layers within the 
communications cycle to provide a perspective of the 
current state of energy efficiency research and operations. 
Finally, we introduce solutions that incorporate 
interaction across multiple layers of the network stack 
and different aspects of the communications cycle. This 
paradigm ties together energy efficient strategies from 
different layers.  

The remainder of this paper is organized as follows: 
Section II highlights current energy usage and costs 
associated with telecommunications and places these 
statistics into perspective by comparing to other aspects 
of our daily life. Section III reviews and discusses 
existing metrics for power and energy efficiency and 
identifies requirements for telecommunications specific 
metrics. Section IV presents advancements in energy 
efficiency in communications at specific levels within the 
communications stack and lifecycle. Section V discusses 
solutions that are not burdened by the status quo of 
existing separation among layers. Finally, the paper is 
summarized in Section VI.  

II. THE NEED FOR GREEN COMMUNICATIONS 

Information and communications technology usage has 
grown at a staggering rate worldwide with an estimated 6 
billion subscriptions in 2010 [7]. Every year, 120,000 
new BS’s are deployed serving 400 million new mobile 
subscribers around the world [8]. Fig. 2 illustrates the 
growth pattern for mobile cellular subscriptions between 
2000 and 2010 [7]. The developing regions are 
increasingly turning to wireless as a leap frog technology 
bypassing fixed infrastructure and the mobile 
subscription increases for a factor of ten. From 2000 till 
2010, the mobile subscription in developed regions 
increases by about 200%, whereas that in developing 
regions increases by about 1300%. Statistics also show 
that in 2000 about 40% of all mobile subscriptions were 
attributed to the developing world and in 2009 this 
percentage grew to about 70% [9]. 

 
Figure 2.  Mobile Cellular Subscriptions [7]. 

Mobile communications growth in developing 
countries may have a more alarming effect on carbon 
usage and energy costs due to the use of inefficient 
energy sources. Remote sites prevalent in developing 
regions often rely on inefficient diesel generators for 
power, expanding communication’s carbon footprint at an 
even higher rate. A low power urban cell site requires 
3kW of power (70-80kWh of energy for a 24-hour 
operation) and generates an estimated 11 tons of carbon 
dioxide [10]. Many rural base stations utilize significantly 
more power due to the larger coverage area required from 
each site. 

At the same time, rising fuel costs are stifling service 
providers with energy expenditures accounting for as 
much as half of a mobile operator’s operating expenses 
[4, 5]. With the strong business need to meet the rising 
costs, reduction of CO2 emission is becoming a dream 
for operators. Operators, such as Vodafone, have set 
goals to reduce their carbon footprint only to realize that 
their energy consumption has risen up by 23% [1]. In 
addition, the growing interest of telecom regulatory 
bodies on environmental and energy sustainability issues 
is yet another driving force for the green communication 
movement [11]. Table I compiled from [1], places the 
energy usage of cellular systems within the context of 
carbon footprint. 

TABLE I.  ENERGY USE OF TELECOMMUNICATIONS IN CONTEXT 

Market 
No. of 
Cell 
Sites 

Energy 
Cost 
(/MWh) 

Annual 
Operating 
Cost (M) 

Carbon Footprint 
(annual CO2 
Emission) 

USA 50,000 $ 54 $ 150  1.8 million tons 

Europe 25,000 $ 114 $ 100-130  
0.58 million tons 
~121,000 midsize 
cars 

 

III. DEFINING GREEN COMMUNICATIONS 

Significant variance exists in the definition of Green 
Communications in the telecommunications community 
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and it is most often a marketing term. Carbon footprint is 
often considered a metric of ‘greenness’, however 
telecommunications’ effect on CO2 emissions is 
currently under 1%. Perhaps reducing energy cost rather 
than CO2 maybe a more applicable metric for wireless 
communications. 

We define Green Communications as striving to 
reduce energy costs while still maintaining Quality of 
Service (QoS) in terms of coverage needs, capacity and 
user needs. When comparing system designs and 
improvements in energy efficient components the 
reduction of green house gases alone is not adequate. The 
QoS must be considered in tandem with energy 
efficiency. A difficult yet maybe the most important task 
related to green communications is quantifying the 
efficiency of the alternative approaches. How can the 
improvements of such a broad effort be interpreted in a 
way that accurately reflects the savings achieved? The 
popular metrics covered shortly primarily focus on 
measuring power consumption of the system. While 
power consumption is certainly a major factor in reducing 
the carbon footprint of system operations, we also suggest 
metrics that take into account energy consumption. In 
many cases, the terms power and energy are incorrectly 
used interchangeably. 

The information technology (IT) industry has taken a 
leadership role in improving energy efficiency in the 
information communications technology (ICT) 
ecosystem. The Green Grid association of IT 
professionals has published efficiency metrics for data 
centers [12] and solicited proposals for enhanced metrics 
[13]. The initial report proposed the metric Power Usage 
Efficiency (PUE) and its reciprocal, Datacenter 
Efficiency (DCE) to enable operators to quickly assess 
energy efficiency of power hungry data centers. The PUE 
represents a data center’s total power consumption 
divided by the power used only by the servers, storage 
systems and network equipment, as: 

 
nt PowerIT Equipme

lity PowerTotal Faci
PUE = . (1) 

A PUE rating of 1 means that all of the power for the 
data center is being used for the computational 
infrastructure and no power is being used on the non-
computational infrastructure such as the air-conditioning 
systems. While this metric is a popular starting point, the 
focus is narrow and only reveals a small portion of the 
whole picture. The primary disadvantage is that it does 
not represent the efficiency of the computational 
equipment. Specifically for communications systems, the 
efficiency of the computational equipment plays a large 
role in energy consumption of the system. 

An alternate method, perhaps more appropriate for 
telecommunications, strives to quantify the computational 
energy efficiency of a system. In this method, the ratio of 
energy consumption of the communications system 
relative to the performance of the computational system 
is calculated. 

This may sound like an intuitive solution; however, 
quantifying the performance of communication is much 
more difficult than quantifying the performance of 
hardware. Typically in server farms or data centers, the 
performance of the hardware is measured by observing 
the processor utilization. For example, a typical server 
will consume between 60% and 70% of its total power 
when running at low levels of processor utilization. 
Increasing the processor utilization has a minimal impact 
on the power consumption; however, it affects the ratio of 
energy consumption to processor utilization significantly, 
thus increasing computational energy efficiency. The 
challenge, when applying this metric to communication 
systems, is how to properly quantify the performance.  

In communication systems, performance comes in 
many different flavors. At the lowest level, the Bit Error 
Rate (BER) is a frequently used quantitative measure of 
the link. The good-put or application-level throughput 
measures the amount of usable bits that are received by 
the application. As a more strictly wireless level metric, 
the spectral efficiency refers to the information rate that 
can be transmitted over a given bandwidth, and is 
typically expressed as bits per second per hertz. These 
physical layer metrics provide an extremely low-level and 
detailed view of the performance of a communications 
system. 

From a more practical and commercial focused view, 
an interesting metric for the cellular industry is the power 
utilization with respect to the number of calls or users 
during a specific block of time. 

 ( )
ser of UserTotal Numb

lity PowerTotal Faci
PUE tt =

2,1
. (2) 

This metric provides insight for carrier to evaluate 
overall economic tradeoffs in cost, coverage and cellular 
site planning and management. 

The telecommunications industry is addressing metrics 
and standards related to energy efficiency specifically for 
cellular hardware components [14]. For example, 
Verizon’s Networks and Building Systems (NEBS) 
compliance requirements are driving the development of 
new metrics for evaluating energy efficiency in 
telecommunications systems. Their updated technical 
purchasing requirements define the minimum energy 
efficiency requirements for the purchase of new 
telecommunications equipments [15]. The 
Telecommunications Equipment Energy Efficiency 
Rating (TEEER) has been used by Verizon to quantify 
the energy efficiency of products [16]. The TEEER is 
defined for different types of equipments. Some sample 
definitions are shown in Table II, where the total power 
consumption TotalP  is modeled as a weighted sum of 
power consumption of the equipment at different modes 
(full rate, maxP , half rate 50P  and sleep/idle mode sleepP ). 
The weights are presumably determined statistically.  

 sleepTotal P.+P.+P.=P 25040350 50max . (3) 

342 JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 4, JULY 2011

© 2011 ACADEMY PUBLISHER



TABLE II.  VERIZON TEEER FORMULAS [16] 

Equipment 
Type TEEER Formula 

Transport / 
Gateway ⎟

⎠
⎞

⎜
⎝
⎛

−
Throughput

PTotallog  (4) 

 

Switch / 
Router ⎟

⎠
⎞

⎜
⎝
⎛

−
 CapacityFarwarding

PTotallog  (5) 

 

Media 
Gateway ⎟

⎠
⎞

⎜
⎝
⎛

−
Throughput

PTotallog  (6) 

 

Access 1+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

TotalP

esAccess Lin
 (7) 

 

Power 10
  

  
×⎟
⎠
⎞

⎜
⎝
⎛

powerinputTotal

poweroutputTotal
 (8) 

 

Power 
Amplifier 
(Wireless) 

10×⎟
⎠
⎞

⎜
⎝
⎛

t PowerTotal Inpu

rutput PoweTotal RF O
 (9) 

 
 
From the above TEEER definition, we can see that the 

larger the TEEER is, the more power efficient the 
equipment is. The calculation of TEEER is 
straightforward. For example, for a router with the 
following specs GbpscapacityForwarding 160= , 

WP 4320max = , WP 300050 = , and WPsleep 1500= , its 
total power consumption can be calculated using (3) as 

WPTotal 3087= . Then, the TEEER can be calculated 
using (5) as 71.7=TEEER .  

While Verizon’s TEEER metric focuses on the 
company specific purchasing decisions, the Alliance for 
Telecommunications Industry Solutions (ATIS) has 
published industry wide standards on general 
requirements [17], transport equipment [18], and server 
equipment [19] and is developing standards for routers, 
power rectifiers, and wireless access equipment. The 
Telecommunications Energy Efficiency Ratio (TEER) for 
network-element efficiency is introduced in the standards. 
Similar to the TEEER definitions, the standards are 
specific to equipment type, network location, and 
classification. Table III summarizes some performance 
metrics used in the standards. 

 
 
 
 
 
 
 

TABLE III.  SUMMARY OF ATIS ENERGY PERFORMANCE 
METRICS 

Metric Focus Description 

Power Usage 
Effectiveness 
(PUE) 

Computational 
infrastructure power 
efficiency 

Total facility power 
consumption per total 
equipment power 
consumption 

Datacenter 
Efficiency (DCE) 

Computational 
infrastructure power 
efficiency 

Reciprocal of PUE 

Bit 
Communications 
Energy Efficiency 
(BCEE) 

Overall 
communications 
throughput energy 
efficiency 

 

Energy Spectral 
Efficiency (ESE) 

Information capacity 
efficiency in the 
frequency domain 

 

Base Station User 
Energy Efficiency 

Efficiency for overall 
hardware and 
communications 
systems 

 

Telecommunicatio
ns Equipment 
Energy Efficiency 
Rating (TEEER) 

Networks and 
Building Systems 
Compliance 
Purchasing 
Requirements 

Minimum energy 
efficiency 
specifications for 
components for 
meeting purchasing 
requirements 

Telecommunicatio
ns Energy 
Efficiency Ratio 
(TEER) 

Quantifies Network-
element Efficiency 

Specific to 
equipment type, 
network location and 
classification 

 

IV. ADVANCES AT SPECIFIC POINTS IN THE 
COMMUNICATIONS LIFECYCLE 

Researchers are addressing the need for improving 
energy efficiency at individual levels within the protocol 
stack as well as through system architecture, operational 
management and physical elements. This section reviews 
some advancements roughly defined within an elemental 
area of the communications cycle (shown in Fig. 3) such 
as the radio component, the network operation and 
topology, and the integration of renewable energy 
sources. 

 
Figure 3.  Communications Life Cycle. 
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A. Radio Component – Power Amplifier 
A BS usually consists of three major components: the 

baseband unit, the radio and the feeder network. Among 
these elements, the radio accounts for around 80% of a 
BS’ energy needs, 50% of which is consumed by the 
power amplifier (PA) [20-21]. Similarly, in a handheld 
mobile station (MS), the wireless modem consumes most 
of the power. The PA in the modem dominates even for 
computing intensive applications, such as, video 
conference [23]. 

For this reason, much emphasis has been focused on 
increasing PA efficiency while maintaining linearity and 
broadening the operating bandwidth. The PA enhances 
the input signal to a required output power level by 
converting DC power to RF AC power. However, this 
conversion is lossy. The characteristics of the input signal 
(e.g., modulation scheme) affect the PA efficiency. Non-
constant magnitude modulation schemes with better 
spectrum efficiency have a strict linearity requirement, 
which usually requires a large back-off from the PA’s 
saturation point. For example, OFDM has been exploited 
in many emerging wireless standards, such as, WiFi, 
WiMAX, and LTE, to achieve higher data rate. Its high 
peak to average power ratio (PAPR) is a big challenge in 
the PA design since large back-off is required to maintain 
linearity. This leads to low efficiency as the PA 
efficiency is maximal at its peak envelope power (PEP) 
and drops as its output power decreases. The 
improvement in PA efficiency has been achieved through 
new PA architecture, material, and digital signal 
processing algorithms. 

The use of high efficiency nonlinear switch-mode PA 
in different PA structures, such as the Doherty [24] and 
the out-phasing [25, 26] structures, improves its 
efficiency, and its linearity. For example, a multi-stage 
Doherty PA has shown a theoretical efficiency of 70% for 
Rayleigh distributed envelope signals [27]. More 
recently, a high power (190W PEP), 32% efficient 
LDMOS (lateral double-diffused metal-oxide 
semiconductors) Doherty PA with a more compact load 
network than that of a conventional Doherty PA was 
designed for base stations [28]. Dynamic voltage scaling 
and envelope tracking are two additional techniques to 
increase RF PA efficiency [37]. 

The high frequencies in wireless systems and switch-
mode architectures are pushing research in the material 
science of transistor technology. Currently, the LMDOS 
technology dominates the market. However, high electron 
mobility transistors (HEMT’s) utilizing Aluminum 
Gallium Nitride (AlGaN) show potential in providing 
higher output power as it is able to work under higher 
temperature and higher voltage [29-31].  

Moreover, digital signal processing techniques are 
exploited to reduce the nonlinear effects caused by 
efficiency enhancement techniques [32-35]. PAPR 
reduction techniques, such as, clipping, windowing, 
interleaving, elective mapping, and polar transmission, 
help increase the PA efficiency for OFDM signals [36].  

There are other efficiency enhancement techniques. 
Multi-carrier base station technology, such as GSM 

Quadruple Transceiver Technology using 6 carriers, can 
reduce maximum consumption of the PA by up to 30% 
[21]. 

B. Network Operation and Topology 
Since the BS is the main power consuming component 

in a cellular network, a lot of efforts have been devoted to 
develop green BS. For example, Huawei’s green GSM 
Base Transceiver Station (BTS) efforts address energy 
efficiency at several layers [38]. At the PA level, the 
Doherty-based technology is used to improve PA 
efficiency from 33% to 45%. Operation software with 
TRX shutdown technologies reduced static power 
consumption by 60%. Multi-density radio transceivers 
enabled a single module to support up to six carrier 
frequencies. This led to smaller and lighter base stations 
that require less cooling and auxiliary equipment.  

The relative location between an antenna and radio has 
significant impact on energy efficiency. Traditionally, all 
radio equipment has been located in an enclosure at the 
ground level with connection to antennas through feeder 
cables, which could produce over 50% of loss into the 
system [6, 21]. Modular BS designs that locate RF 
transmitter closer to the antenna reduce the cable loss and 
maintain the same QoS at lower transmit power [39]. 

Topology specific design perspectives and improved 
planning methodologies improve power efficiency by 
reducing the number of sites. The smaller and more agile 
BS’s dovetail to a distributed BS architecture, which can 
replace larger and more power-hungry macro BS’s. 
Actual deployments of these more agile base stations 
have achieved more than a 40% power savings without 
affecting overall output signal power [38]. Other 
techniques such as transmit diversity and higher receive 
sensitivities can also yield power savings [21]. In 
addition, game theoretic principles have been used for 
analyzing the energy efficiency in CDMA networks [40]. 

Femtocell and picocell technologies have potential to 
reduce overall power usage while still optimizing 
capacity and service. A fundamental pathway to 
improving cellular capacity is to reduce the distance 
between an MS and a BS. Femtocells connect 
miniaturized, lower power BS’s to wired backhauls such 
as home digital subscriber lines (DSL) or cable modems 
and radiate very low power compared to a full size BS. 
At the meantime, they can achieve improved capacity in 
large scale deployment [41]. Simulations have shown that 
joint deployment of macro BS’s with publicly accessible 
residential picocells can reduce energy consumption up to 
60% [42]. Initial research has predicted 102 million users 
worldwide using more than 32 million femtocells by 
2011. However, early mass deployment has been delayed 
at least a year due to the current economic crisis [43]. 
While femtocells create a pathway to high capacity under 
low power usage, many research issues arise with regards 
to distributed frequency management [44, 45], 
Femtocell/macrocell interference [46], handover, self 
optimizing networks [47], security, and backhaul data 
load balancing.  

Fluctuations in cellular usage are often spatially and 
temporally correlated. For example, during evening rush 
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hour usage is high and decreases later in the night while 
also decreasing geographically around business districts 
in the evenings and weekends. BTS equipment can learn 
from these patterns and turn off or decrease the number 
of transmitting antennas and hence, reduce power 
consumption [39]. In addition, due to the diversity at 
different users, spectrum can be dynamically allocated to 
different users so that the overall power budget is 
minimized. To explore the channel fluctuation, it requires 
coordinated management of BS’s to maintain desired 
capacity and customer QoS.  

The green initiative also impacts the standardization 
process. For example, in the recently 3GPP LTE-
Advanced standard release, a study item on potential 
solutions to energy saving has been proposed [48]. This 
study item includes the following use cases: intra-eNB 
energy saving, inter-eNB energy saving, and inter-RAT 
energy saving. Both user accessibility and backward 
compatibility are required in the evaluation of solutions. 
In addition, it is required that the solutions should not 
impact the Uu physical layer and increase the user 
equipment (UE) power consumption.  

C. Incorporation of Alternative Energy 
Several cellular operators are experimenting with the 

use of alternative energy sources such as fuel cells, wind, 
and solar for BS operation. These alternative energy 
sources can provide an energy efficient alternative to 
‘dirtier’ and more expensive fuel sources such as diesel 
and strive towards energy independence. In addition to 
the cost of the fuel itself, energy can be saved from 
minimizing the transportation and storage of the fuel, 
especially for remote sites. Similarly, energy harvesting 
techniques such as solar, thermal, optical and kinetic 
energy (vibration and biochemical) [49] can replace or 
complement batteries in mobile handsets. 

While traditional radio design is based on consistently 
available power supply, green radios are expected to 
maintain the same QoS even when the power supply 
stochastically varies in space and time, thereby 
experiencing outages not only in the channel but also in 
the system itself. The design objectives also differ from 
extending the system lifetime to maximizing the system 
availability. Additionally, the overall network design 
should include redundant energy sources and neighboring 
BS’s should be able to compensate for BS’s that go down 
due to insufficient power.  

In Namibia, the Mobile Telecommunications Limited 
(MTC) of Namibia, the GSMA Development Fund, and 
Motorola initiated a 90 day trial in 2007 to evaluate the 
use of solar and wind as a feasible cost-effective energy 
source for a cellular base station [50]. This trial utilized a 
6kW wind turbine and 28kW solar panels combined with 
battery capable of supporting 60 hours of operation. The 
system provided an average of 198kW of power per week 
which was 10kWh more than necessary for regular 
operations. MTC calculated a return on investment of 3 
years and reduction of approximately 4,850kg of CO2 
annually compared to a typical electrical grid installation. 
Additional reduction of 649.25kg CO2 annually could be 
achieved by eliminating the diesel generators. 

A startup company, on the request of Ericsson, has 
developed a BS that runs on wind and solar power [51]. 
Currently, over 40,000 BS’s operate in Africa with most 
running on diesel power consuming almost 20,000 liters 
of diesel per year per BS. According to the manufacturer, 
Flexenclosure, the cost of running a diesel base station 
exceeds $30,000 per year. Potentially, $120,000 to 
$150,000 in operation cost can be saved over a five-year 
period using the alternative energy. 

In addition to the above areas where power efficiency 
improvement can lead to great overall power reduction, 
power efficiency improvement of any other individual 
element in the wireless network will also lead to power 
reduction. Nowadays, many of the research results have 
seen their adoption in actual product design. And the 
benefit achieved using the new technologies stimulates 
and accelerates further research on improving power 
efficiency of elements in the network.  

V. HOLISTIC SOLUTIONS 

Simply combining the power efficiency improvement 
technologies developed for single element might not lead 
to optimal power reduction. Instead, a holistic strategy 
that explores the synergy between various technologies 
may optimize overall power performance. This section 
presents a couple of approaches under this strategy, 
including cross-layer design method, cognitive approach, 
and radio coordination approach. 

A. Cross Layer Design for Power Efficiencies 
Communication networks have traditionally followed a 

layered architecture where specific functional are 
completely separate. This modular architecture simplifies 
overall design and development. On the other hand, a 
cross-layer design method can obtain performance gains 
by designing protocols with interaction between different 
layers [52]. Energy efficiency and security are examples 
of aspects that could benefit from a cross-layer design 
strategy that ties the PHY layer to the MAC layer or other 
networking functions.  

Cross-layer design for resource allocation has been 
applied to 3G networks for optimizing radio resource 
allocation with a BER constraint [53]. The information 
exchange across protocol layers shows better 
performance especially with heterogeneous data and 
video services. QoS and capacity are evaluated outside 
the protocol stack, while energy efficiency is measured 
within the PHY layer. Various QoS constraints are 
studied with the goal of minimizing energy consumption 
[54]. 

QoS metrics such as average conditional expectation of 
delay is typically correlated with channel gain. If delay is 
constrained to a fixed level across all channel gains then 
average power can be minimized subject to a specific 
delay constraint. By imposing this tighter delay 
constraint, power savings can be achieved through cross-
layer design and source-channel coding as opposed to the 
typical power control methodology [55]. 
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B. Cognitive Radio for Power Optimizaiton 
Cognitive Radio (CR) is a relatively new research area 

in communications that incorporates environment 
observation, decision making and learning, and radio 
reconfiguration to improve the performance of 
communication systems [56, 57]. CR springboards off of 
the successful adoption of software radio platforms and 
has shown promise in military [58] and public safety [59] 
domains. The concept of cognitive systems has great 
promise towards Green Communications. Leveraging the 
advancements in the capability of environment 
observation, realizable learning and decision making 
algorithms can be applied in a cellular network. 
Environment observation includes traditional RF metrics 
such as signal to noise ratio (SNR), channel occupancy as 
well as application QoS requirement. Additionally, 
observing the power usage of base stations and 
manipulating interaction with the underlying electrical 
system has significant potential to contributing towards a 
smart grid capable of more balanced energy delivery. 

Leveraging advances in emerging CR technologies, we 
have proposed a power optimization framework using 
CR, as shown in Fig. 4, to dynamically implement 
favorable trade-offs in radio parameters to minimize 
power consumption for the required QoS for a particular 
application and radio environment [60]. In this 
framework, the solid lines with arrows and the blocks in 
solid boundaries are existing components in conventional 
wireless communication devices. The dashed lines with 
arrows and the cognitive engine (CE) block are new 
components enabling CR capability in conventional 
systems. The bidirectional dashed lines between the CE 
and various building blocks enable the CE to learn the 
characteristics and the capabilities of the building blocks 
and control/configure the blocks based on its decision for 
different application and environment.  

 
Figure 4.  Cognitive Radio Framework for Power 

Optimization [60]. 

A general active process starts with CE receiving a 
service request along with the QoS requirement, it then 
queries the radio platform for platform capabilities and 
characteristics and environment information. The CE uses 
the obtain information to determine a favorable radio 
configuration that satisfies the application QoS and 
optimizes some radio performance metrics. For green 

communications purpose, these performance metrics can 
include power consumption. 

This framework can be applied to radio systems with 
different technologies. For example, for a conventional 
single input single output system, two levels of operation, 
adaptive transmission with component knowledge and 
adaptive transmission with component adaptation, have 
shown significant energy savings (up to 75%) compared 
to conventional adaptive transmission [60, 61]. This work 
has been extended to multiple input multiple output 
(MIMO) systems [62]. Conventionally, various power 
and bit allocation schemes were proposed to tradeoff total 
radiated power and capacity. Leveraging the knowledge 
on the platform (component) characteristics learned by 
the CR, system power consumption, instead of radiated 
power, can be minimized for given target rate. Simulation 
results show up to 75% of power savings for a 4 by 4 
MIMO system using Class A PA’s. 

In addition to hardware power consumption, resource 
consumption of digital signal processing can also play a 
significant role in system power consumption. [63] 
investigates the use of real-time resource monitoring to 
reduce the computational complexity of the baseband 
processor. Specifically [63] demonstrates by minimally 
scarifying physical layer system performance, 
computational complexity can be significantly reduced 
without compromising the QoS of the application. 
Supervised intelligent heuristic-based learning algorithms 
are used to achieve this resource management. These 
learning algorithms optimize energy and processing 
efficiencies in dynamic spectrum environments using 
software-level feedback of the radio's active resource 
consumption. 

C. Coordinated Approach to Improving Efficiency 
In a wireless network, while each node might have a 

selfish goal of improving performance in capacity, QoS 
or power, the needs of the overall system must be 
balanced with the goals of each node. In addition, each 
node is also a power hungry citizen of the overall power 
grid network. Coordinated management and load 
balancing among nodes underneath an overall smart grid 
has positive impact on energy consumption without 
adversely affecting QoS and capacity. Recent 
developments in wired distributed computing theory [64, 
65] provide initial models for its application to wireless 
networks and the interaction between different nodes and 
between the entire telecommunication network and the 
electrical grid network. 

It is challenging to apply similar concepts in a wireless 
environment due to disruptive characteristics of the 
wireless channels, such as varying channel conditions, a 
shared medium, and drastically different power-costs of 
communication. The Wireless Distributed Computing 
(WDC) system design tradeoffs involve cross-system 
interaction between the computation subsystem (or 
application layer where the computing process is 
executed) and the communication subsystem (or 
underlying networking, radio access and physical layers). 
Consequently, new methodologies have been proposed to 
as performance in terms of range, power efficiency and 

346 JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 4, JULY 2011

© 2011 ACADEMY PUBLISHER



scalability is greatly influenced by the underlying radio 
environment [66]. The new methodologies try to develop 
protocols, service architecture, resource allocation and 
computational load balancing, and power consumption 
minimization algorithms. 

A group of collaborating radios offers several benefits 
over a lone radio, such as: (1) enabling lower power 
consumption per node and, under certain conditions, 
lower power consumption for the whole network; (2) 
allowing matching between power demand and supply; 
(3) meeting high computing and latency requirements by 
leveraging the computing resources in the network; and 
(4) simplifying small form factor node designs with lower 
computing and power resources per node.  

Minimizing energy consumption in WDC networks 
through optimal computational workload allocation has 
been discussed in [67]. In a WSC network the 
communication subsystems connect the computation 
subsystems on various nodes through wireless links, 
disseminate the computational workload, pass inter-
process messages, and collect processing results. For 
example, in a broadcast network, a master node 
distributes its computational load among several slave 
nodes. The slave nodes process their share of the 
workload and return the results to the master node. The 
master node then fuses the results from participating 
slave nodes. 

In WDC, the savings in computational power 
consumption are partially negated by the overhead of 
communication power consumption. In addition, the 
improvement in the computational power savings with an 
increase in the number of collaborating nodes is 
countered by an increase in the overhead of power 
consumption for communication between the nodes. 
Thus, as shown in Fig. 5 [66], a breaking point may exist, 
beyond which WDC is not power efficient as compared 
to on-board processing.  

2 2.5 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

Number of nodes Nnodes

N
et

w
or

k 
po

w
er

 s
av

in
g 

(%
)

D = 50 m
D = 500 m

 
Figure 5.  Network power savings achieved by distributed 

computing for various network sizes and network ranges [66]. 

A similar idea, called Coordinated Multipoint 
Transmission (CoMP), has been recently proposed in the 
3GPP LTE-Advance standardization process [68]. This 
technology coordinates transmission among multiple cells 

and reduces the interference from other cells thus reduces 
the power required to maintain certain QoS. 

VI. CONCLUSIONS 

There is no doubt that the explosive growth in voice 
and data usage and the rising energy costs are leading to 
significant impact in the carbon emission and the 
operation expense. In this paper, we present some initial 
efforts in Green Communications to compensate these 
effects. A few efficiency definitions that can be used to 
evaluate different approaches are discussed first. We then 
review the existing developments within singular aspect 
of the communication life cycle, including network 
components, network operation and topology, and 
integration of alternative energy in the network. Finally, 
we present several holistic approaches that incorporate 
multiple aspects in the communication life cycle. These 
approaches include cross-layer design, cognitive radio 
approach, and wireless distributed computing solution. 

As we can see from the existing work, researchers are 
creating novel solutions to the energy problem faced by 
the wireless industry by employing and combining 
existing technologies developed for related issues in 
wireless domain as well as in other domains. As the 
advancements in designing power efficient network 
components, a framework, which is aware of the 
capabilities and characteristics of each component, can 
further optimize the network operation for various goals 
given the application QoS requirement and operation 
environment. For this scenario we think a cognitive radio 
based framework can be of great help. This is reflected in 
the development of emerging wireless standards. For 
example, the new universal mobile telecommunications 
system (UMTS) proposals advocate self-configuring and 
self-organizing wireless networks [69]. The self-
organizing networks can automatically optimize wireless 
network operation, e.g., potentially reducing power 
consumption given QoS requirements and channel 
conditions. A cognitive radio based solution is favorable 
through online learning and monitoring of network 
operation, integration of learned knowledge about 
network operation in network optimization, and dynamic 
reconfiguration of network to improve network 
efficiency.  

As we move down the path to greener 
communications, we will identify new useful 
technologies developed in related areas. The capability of 
integrating new technologies into an existing system 
becomes crucial in developing a future-proof green 
communication solution. The success of this green 
endeavor defends on the synergy gained from the 
cooperation of researchers from many disciplines, some 
of which may seem to be quite remote from today’s 
review point.  
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