Elementary duality and local duality for modules

HENNING KRAUSE

Given a ring Λ (associative with identity) we denote by Mod(Λ) the category of (right) Λ modules and by mod(Λ) the full subcategory of all finitely presented Λ -modules. Our aim in this note is to point out a relation between elementary duality for modules as introduced by Herzog [6] and a classical construction in module theory. We call an indecomposable pureinjective Λ -module simply reflexive provided that there exists a map $X \to Y$ in mod(Λ) such that the cokernel of the induced map Hom(Y, M) \to Hom(X, M) is simple when it is regarded in the natural way as an End_{Λ}(M)^{op}-module. Given such a module M it has been shown in [8] that there exists, up to isomorphism, a unique indecomposable pure-injective Λ^{op} -module DM such that any map φ in mod(Λ) induces an epimorphism Hom_{Λ}(φ, M) if and only if it induces a monomorphism $\varphi \otimes_{\Lambda} DM$. Moreover, DM is again simply reflexive and satisfies DDM = M. Note that M is simply reflexive if and only if it is reflexive in the sense of Herzog [6] and that DM coincides with the dual of M in the sense of Herzog [6]. In this note we shall prove the following result.

Theorem Let M be an indecomposable pure injective Λ -module and suppose that M is simply reflexive. Suppose also that M is a Λ - Γ -bimodule and that I is an injective cogenerator for $Mod(\Gamma)$. Then DM is isomorphic to a direct summand of the Λ^{op} -module $Hom_{\Gamma}(M, I)$.

Remark (1) The proof of the theorem shows how to construct DM.

(2) For examples of simply reflexive modules we refer to [6]. For instance, any Σ -pureinjective module is simply reflexive.

(3) Let $\Gamma = \operatorname{End}_{\Lambda}(M)^{\operatorname{op}}$ and regard M in the natural way as a Γ -module. Taking a minimal injective cogenerator I the $\Lambda^{\operatorname{op}}$ -module $\operatorname{Hom}_{\Gamma}(M, I)$ might be called the *local dual* of M. It is well-known that $\operatorname{Hom}_{\Gamma}(M, I)$ is indecomposable if M is finitely presented. If M is of finite length as a Γ -module, then it has been shown by Crawley-Boevey [3] that $\operatorname{Hom}_{\Gamma}(M, I)$ is a coproduct of copies of DM.

(4) Recall from [8] that the endocategory \mathcal{E}_M of M is the smallest abelian subcategory of $Mod(End_{\Lambda}(M)^{op})$ containing M and all the endomorphisms of M induced by multiplication with an element from Λ . The modules M, DM and $Hom_{\Gamma}(M, I)$ are related by a duality between \mathcal{E}_M and \mathcal{E}_{DM} and an equivalence between \mathcal{E}_{DM} and $\mathcal{E}_{Hom_{\Gamma}(M,I)}$.

To give a proof of the theorem we need to recall some background material. Let $C_{\Lambda} = \text{mod}(\Lambda^{\text{op}})^{\text{op}}$. We denote by $\text{Mod}(\mathcal{C}_{\Lambda})$ the category of all additive functors $(\mathcal{C}_{\Lambda})^{\text{op}} \to \text{Ab}$ into the category of abelian groups and by $\text{mod}(\mathcal{C}_{\Lambda})$ the full subcategory of all finitely presented functors which is abelian. The fully faithful functor

$$\operatorname{Mod}(\Lambda) \to \operatorname{Mod}(\mathcal{C}_{\Lambda}), \quad M \mapsto M \otimes_{\Lambda} -$$

will play an important role in our considerations. An exact sequence $0 \to L \to M \to N \to 0$ in Mod(Λ) is said to be *pure-exact* if its image

$$0 \longrightarrow L \otimes_{\Lambda} - \longrightarrow M \otimes_{\Lambda} - \longrightarrow M \otimes_{\Lambda} - \longrightarrow 0$$

under this functor is exact and $M \in Mod(\Lambda)$ is *pure-injective* if $M \otimes_{\Lambda} -$ is injective. Given a module M we denote by $S = S_M$ the kernel of the functor

$$\operatorname{mod}(\mathcal{C}_{\Lambda}) \to \operatorname{Mod}(\Gamma), \quad X \mapsto \operatorname{Hom}(X, M \otimes_{\Lambda} -)$$

where $\Gamma = \operatorname{End}_{\Lambda}(M)^{\operatorname{op}}$ is identified with $\operatorname{End}(M \otimes_{\Lambda} -)^{\operatorname{op}}$. Furthermore, denote by $\vec{\mathcal{S}}$ the full subcategory of $\operatorname{Mod}(\mathcal{C}_{\Lambda})$ which consists of all direct limits $\underline{\lim} X_i$ with $X_i \in \mathcal{S}$ for all i.

Recall that a full subcategory \mathcal{T} of any module category $\operatorname{Mod}(\mathcal{C})$ is *localizing* if it is closed under subobjects, quotients, extensions and coproducts. For any localizing subcategory \mathcal{T} one can form the *quotient category* $\operatorname{Mod}(\mathcal{C})/\mathcal{T}$ which is abelian, has injective envelopes and admits an exact *quotient functor* $q: \operatorname{Mod}(\mathcal{C}) \to \operatorname{Mod}(\mathcal{C})/\mathcal{T}$ with $\operatorname{Ker}(q) = \mathcal{T}$ [4].

Lemma 1 The subcategory \vec{S} is localizing. The quotient functor $q: \operatorname{Mod}(\mathcal{C}_{\Lambda}) \to \operatorname{Mod}(\mathcal{C}_{\Lambda})/\vec{S}$ sends any injective object N satisfying $\operatorname{Hom}(\mathcal{S}, N) = 0$ to an injective object and q induces an isomorphism $\operatorname{Hom}(X, N) \to \operatorname{Hom}(q(X), q(N))$ for every $X \in \operatorname{Mod}(\mathcal{C}_{\Lambda})$.

Proof: The first statement is proved in [7]. The properties of q are well-known facts which may be found in [4].

Lemma 2 Let $\varphi: X \to Y$ be a map in $\operatorname{mod}(\Lambda)$ and let $U = \operatorname{Ker}(\varphi \otimes_{\Lambda} -)$ in $\operatorname{Mod}(\mathcal{C}_{\Lambda})$. Then $\operatorname{Hom}(U, M \otimes_{\Lambda} -) \cong \operatorname{Coker}(\operatorname{Hom}_{\Lambda}(\varphi, M))$ for any $M \in \operatorname{Mod}(\Lambda)$.

Proof: The exact sequence $0 \to U \to X \otimes_{\Lambda} - \to Y \otimes_{\Lambda} -$ induces an exact sequence

$$\operatorname{Hom}(Y \otimes_{\Lambda} -, M \otimes_{\Lambda} -) \to \operatorname{Hom}(X \otimes_{\Lambda} -, M \otimes_{\Lambda} -) \to \operatorname{Hom}(U, M \otimes_{\Lambda} -) \to 0.$$

Lemma 3 Let M be indecomposable pure-injective and suppose that the cokernel of $\operatorname{Hom}(\varphi, M)$ is a simple $\operatorname{End}_{\Lambda}(M)^{\operatorname{op}}$ -module for some φ in $\operatorname{mod}(\Lambda)$. Then the quotient functor $q: \operatorname{Mod}(\mathcal{C}_{\Lambda}) \to \operatorname{Mod}(\mathcal{C}_{\Lambda})/\overrightarrow{\mathcal{S}_{M}}$ sends $U = \operatorname{Ker}(\varphi \otimes_{\Lambda} -)$ to a simple object and $M \otimes_{\Lambda} -$ to an injective envelope of q(U).

Proof: The object q(U) is simple precisely if for any exact sequence $0 \to U' \to U \to U'' \to 0$ either $U' \in \vec{\mathcal{S}_M}$ or $U'' \in \vec{\mathcal{S}_M}$. Writing $U' = \varinjlim U_i$ as a direct limit of all its finitely generated submodules we obtain induced sequences $0 \to U_i \to U \to U/U_i \to 0$ in $\operatorname{mod}(\mathcal{C}_\Lambda)$ since $\operatorname{mod}(\mathcal{C}_\Lambda)$ is abelian. Now, for any *i* either $U_i \in \mathcal{S}_M$ or $U/U_i \in \mathcal{S}_M$ since there is an induced exact sequence

$$0 \to \operatorname{Hom}(U/U_i, M \otimes_{\Lambda} -) \to \operatorname{Hom}(U, M \otimes_{\Lambda} -) \to \operatorname{Hom}(U_i, M \otimes_{\Lambda} -) \to 0$$

of $\operatorname{End}_{\Lambda}(M)^{\operatorname{op}}$ -modules and $\operatorname{Hom}(U, M \otimes_{\Lambda} -) \cong \operatorname{Coker}(\operatorname{Hom}_{\Lambda}(\varphi, M))$ is simple by assumption and Lemma 2. If $U/U_i \in \mathcal{S}_M$ for some *i*, then $U'' \in \overrightarrow{\mathcal{S}}_M$ since U'' is a quotient of U/U_i . Otherwise all $U_i \in \mathcal{S}_M$ and therefore $U' \in \overrightarrow{\mathcal{S}}_M$. Thus q(U) is simple. Using again Lemma 2 there is a non-zero morphism $U \to M \otimes_{\Lambda} -$ and this is taken to a non-zero morphism $q(U) \to q(M \otimes_{\Lambda} -)$ by Lemma 1. Thus $q(M \otimes_{\Lambda} -)$ is an injective envelope of q(U) since $q(M \otimes_{\Lambda} -)$ is indecomposable injective.

Lemma 4 If M is a Λ - Γ -bimodule and $I \in Mod(\Gamma)$ is injective, then $Hom_{\Gamma}(M, I)$ is a pure injective Λ^{op} -module.

Proof: See [1, I, Proposition 10.1].

Recall from [8] that a pair of modules $M \in Mod(\Lambda)$ and $N \in Mod(\Lambda^{op})$ is purely opposed provided that any map φ in $mod(\Lambda)$ induces an epi $Hom_{\Lambda}(\varphi, M)$ iff it induces a mono $\varphi \otimes_{\Lambda} N$, equivalently if any map ψ in $mod(\Lambda^{op})$ induces an epi $Hom_{\Lambda^{op}}(\psi, N)$ iff it induces a mono $\psi \otimes_{\Lambda^{op}} M$.

Lemma 5 If M is a Λ - Γ -bimodule and $I \in Mod(\Gamma)$ is an injective cogenerator, then M and $Hom_{\Gamma}(M, I)$ are purely opposed.

Proof: If I is any injective Γ -module, then there is a well-known isomorphism

$$X \otimes_{\Lambda} \operatorname{Hom}_{\Gamma}(M, I) \longrightarrow \operatorname{Hom}_{\Gamma}(\operatorname{Hom}_{\Lambda}(X, M), I)$$

for all $X \in \text{mod}(\Lambda)$ which is functorial in X [2, VI, Proposition 5.2]. Taking a map φ in $\text{mod}(\Lambda)$ it follows that $\varphi \otimes_{\Lambda} \text{Hom}_{\Gamma}(M, I)$ is a mono iff $\text{Hom}(\varphi, M)$ is an epi provided that I cogenerates $\text{Mod}(\Gamma)$. Thus M and $\text{Hom}_{\Gamma}(M, I)$ are purely opposed.

Recall from [8] that a pair of Λ -modules M and N is *purely equivalent* provided that $S_M = S_N$, equivalently if any map φ in mod (Λ) induces an epi Hom $_{\Lambda}(\varphi, M)$ iff it induces an epi Hom $_{\Lambda}(\varphi, N)$.

Lemma 6 Let M and N be a pair of purely equivalent pure-injective Λ -modules. If M is indecomposable and simply reflexive, then M is isomorphic to a direct summand of N.

Proof: We use again the quotient functor $q: \operatorname{Mod}(\mathcal{C}_{\Lambda}) \to \operatorname{Mod}(\mathcal{C}_{\Lambda})/\vec{\mathcal{S}_M}$. By assumption and Lemma 1 the objects $q(M \otimes_{\Lambda} -)$ and $q(N \otimes_{\Lambda} -)$ are both injective and there are non-zero morphisms $q(U) \to q(M \otimes_{\Lambda} -)$ and $q(U) \to q(N \otimes_{\Lambda} -)$ where q(U) is a simple object as defined in Lemma 3. It follows that there exists a split mono $q(M \otimes_{\Lambda} -) \to q(N \otimes_{\Lambda} -)$ which is the image of a split mono $M \otimes_{\Lambda} - \to N \otimes_{\Lambda} -$ by Lemma 1. Thus M is isomorphic to a direct summand of N.

Proof of the theorem: Let M be simply reflexive and suppose that M is a Λ - Γ -bimodule. Also let I be an injective cogenerator for $Mod(\Gamma)$. The module DM is purely opposed to Mand therefore purely equivalent to $Hom_{\Gamma}(M, I)$ by Lemma 5. It follows from Lemma 6 that DM is isomorphic to a direct summand of $Hom_{\Gamma}(M, I)$. Thus the proof is complete.

Our argument in the preceding proof shows how to construct DM for any simply reflexive Λ -module M. One uses the well-known duality $d: \operatorname{mod}(\mathcal{C}_{\Lambda}) \to \operatorname{mod}(\mathcal{C}_{\Lambda^{\operatorname{op}}})$ [5]. Let $U = \operatorname{Ker}(\varphi \otimes_{\Lambda} -) \in \operatorname{mod}(\mathcal{C}_{\Lambda})$ be as in Lemma 3 and put $\mathcal{T} = d(\mathcal{S}_M)$. Adapting the argument of Lemma 3 one shows that the quotient functor $q: \operatorname{Mod}(\mathcal{C}_{\Lambda^{\operatorname{op}}}) \to \operatorname{Mod}(\mathcal{C}_{\Lambda^{\operatorname{op}}})/\vec{\mathcal{T}}$ sends d(U) to a simple object. Now one uses the section functor $s: \operatorname{Mod}(\mathcal{C}_{\Lambda^{\operatorname{op}}})/\vec{\mathcal{T}} \to \operatorname{Mod}(\mathcal{C}_{\Lambda^{\operatorname{op}}})$ to find an indecomposable pure-injective $\Lambda^{\operatorname{op}}$ -module N such that $\operatorname{Hom}(\mathcal{T}, N \otimes_{\Lambda^{\operatorname{op}}} -) = 0$ and $q(N \otimes_{\Lambda^{\operatorname{op}}} -)$ is an injective envelope of q(d(U)). It is not hard to check that M and N are purely opposed. Finally, the uniqueness of N follows from the fact that an injective envelope of q(d(U)) is unique up to isomorphism. Thus DM = N.

References

- [1] M. AUSLANDER, Functors and morphisms determined by objects, in: Representation theory of algebras. Proc. conf. Philadelphia 1976, ed. R. Gordon, (Dekker, New York 1978), 1 244.
- [2] H. CARTAN AND S. EILENBERG, Homological Algebra, (Princeton University Press, Princeton 1956).
- [3] W. CRAWLEY-BOEVEY, Modules of finite endolength over their endomorphism ring, in: Representations of algebras and related topics, eds. S. Brenner and H. Tachikawa, London Math. Soc. Lec. Note Series 168 (1992) 127-184.
- [4] P. GABRIEL, Des catégories abéliennes, Bull. Soc. math. France, 90 (1962), 323-448.
- [5] L. GRUSON, Simple coherent functors, in: Representations of algebras, Springer Lec. Notes 488 (1975) 156-159.
- [6] I. HERZOG, Elementary duality for modules, Trans. Am. Math. Soc. 340 (1993) 37-69.
- [7] H. KRAUSE, The spectrum of a locally coherent category, preprint.
- [8] H. KRAUSE, The endocategory of a module, preprint.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, 33501 BIELEFELD, GERMANY *E-mail address*: henning@mathematik.uni-bielefeld.de