Elementary duality and local duality for modules

Henning Krause

Given a ring Λ (associative with identity) we denote by $Mod(\Lambda)$ the category of (right) Λ modules and by $mod(\Lambda)$ the full subcategory of all finitely presented Λ -modules. Our aim in this note is to point out a relation between elementary duality for modules as introduced by Herzog [6] and a classical construction in module theory. We call an indecomposable pureinjective A-module *simply reflexive* provided that there exists a map $X \to Y$ in mod(A) such that the cokernel of the induced map $Hom(Y, M) \to Hom(X, M)$ is simple when it is regarded in the natural way as an $\text{End}_{\Lambda}(M)$ --module. Given such a module M it has been shown in [8] that there exists, up to isomorphism, a unique indecomposable pure-injective Λ^{op} -module DM such that any map φ in mod(Λ) induces an epimorphism Hom $_{\Lambda}(\varphi, M)$ if and only if it induces a monomorphism $\varphi \otimes_\Lambda D M$. Moreover, $D M$ is again simply reflexive and satisfies $DDM = M$. Note that M is simply reflexive if and only if it is reflexive in the sense of Herzog [6] and that DM coincides with the dual of M in the sense of Herzog [6]. In this note we shall prove the following result.

Theorem Let M be an indecomposable pure injective Λ -module and suppose that M is simply repressive suppose also that the is a contractions also that I is an injective cogenerator per Mod(Γ). Then DM is isomorphic to a direct summand of the Λ^{op} -module $\text{Hom}_{\Gamma}(M, I)$.

Remark (1) The proof of the theorem shows how to construct DM .

(2) For examples of simply reflexive modules we refer to [6]. For instance, any Σ -pureinjective module is simply reflexive.

(3) Let $\Gamma = \text{End}_{\Lambda}(M)^{*r}$ and regard M in the natural way as a 1-module. Taking a minimal injective cogenerator I the Λ^{op} -module $\text{Hom}_{\Gamma}(M, I)$ might be called the local dual of M. It is well-known that $\text{Hom}_{\Gamma}(M, I)$ is indecomposable if M is finitely presented. If M is of finite length as a Γ -module, then it has been shown by Crawley-Boevey [3] that $\operatorname{Hom}_{\Gamma}(M, I)$ is a coproduct of copies of DM.

(4) Recall from [8] that the *endocategory* \mathcal{E}_M of M is the smallest abelian subcategory of $\mathop{\rm Mod}\nolimits$ (End $_\Lambda$ (M)^{-F}) containing M and all the endomorphisms of M induced by multiplication with an element from Λ . The modules M, DM and Hom $_{\Gamma}(M, I)$ are related by a duality between \mathcal{E}_M and \mathcal{E}_{DM} and an equivalence between \mathcal{E}_{DM} and $\mathcal{E}_{Hom_{\Gamma}(M,I)}$.

To give a proof of the theorem we need to recall some background material. Let \mathcal{C}_{Λ} = $\max(\Lambda^{*r})^{*r}$. We denote by $\mathrm{Mod}(\mathcal{C}_\Lambda)$ the category of all additive functors $(\mathcal{C}_\Lambda)^{*r} \to \mathrm{Ab}$ into the category of abelian groups and by $mod(\mathcal{C}_{\Lambda})$ the full subcategory of all finitely presented functors which is abelian. The fully faithful functor

$$
Mod(\Lambda) \to Mod(\mathcal{C}_{\Lambda}), \quad M \mapsto M \otimes_{\Lambda} -
$$

will play an important role in our considerations. An exact sequence $0 \to L \to M \to N \to 0$ in $Mod(\Lambda)$ is said to be *pure-exact* if its image

$$
0\longrightarrow L\otimes_{\Lambda}-\longrightarrow M\otimes_{\Lambda}-\longrightarrow M\otimes_{\Lambda}-\longrightarrow 0
$$

 α inder this functor is ender and M ϵ mod(in) is pure-injective if m \odot M \cdots m α . Given a module M we denote by $S = S_M$ the kernel of the functor

$$
\operatorname{mod}(\mathcal{C}_{\Lambda}) \to \operatorname{Mod}(\Gamma), \quad X \mapsto \operatorname{Hom}(X, M \otimes_{\Lambda} -)
$$

where $\Gamma = \text{End}_{\Lambda}(M)^{\text{op}}$ is identified with $\text{End}(M \otimes_{\Lambda} -)^{\text{op}}$. Furthermore, denote by \sim the full state function \sim subcategory of Mod(C₎ which consists of all direct limits $\frac{1}{\sqrt{2}}$, which $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

Recall that a full subcategory T of any module category $Mod(C)$ is *localizing* if it is closed under subobjects, quotients, extensions and coproducts. For any localizing subcategory $\mathcal T$ one can form the *quotient category* $\text{Mod}(\mathcal{C})/\mathcal{T}$ which is abelian, has injective envelopes and admits an exact quotient functor q: $\text{Mod}(\mathcal{C}) \to \text{Mod}(\mathcal{C})/T$ with $\text{Ker}(q) = T$ [4].

Lemma 1 The subcategory ^S is localizing. The quotient functor q: Mod(C) ! Mod(C)= sends any injective object ^N satisfying Hom(S; N) = 0 to an injective object and ^q induces an isomorphism Hom(XI) \cdots Hom(q(X)) η (x)) for every X \subset mod(C₎.

Proof : The rst statement is proved in [7]. The properties of ^q are well-known facts which may be found in [4].

Lemma 2 Let $\varphi \colon A \to Y$ be a map in mod (A) and let $U = \text{Ker}(\varphi \otimes_A -)$ in Mod (C_A) . Then $Hom(U, M \otimes_{\Lambda} -) \cong Coker(Hom_{\Lambda}(\varphi, M))$ for any $M \in Mod(\Lambda)$.

Proof : The exact sequence 0 ! ^U ! ^X ! ^Y induces an exact sequence

$$
\operatorname{Hom}(Y\otimes_{\Lambda}-,M\otimes_{\Lambda}-)\to\operatorname{Hom}(X\otimes_{\Lambda}-,M\otimes_{\Lambda}-)\to\operatorname{Hom}(U,M\otimes_{\Lambda}-)\to 0.
$$

Lemma 3 Let M be indecomposable pure-injective and suppose that the cokernel of $Hom(\varphi, M)$ is a simple $\text{End}_{\Lambda}(M)$ of -module for some φ in $\text{mod}(\Lambda)$. Then the quotient functor $q\colon \text{Mod}(\mathcal{C}_{\Lambda})\to 0$ Mod(C)= \mathcal{S}_M sends $U = \text{Ker}(\varphi \otimes_{\Lambda} -)$ to a simple object and $M \otimes_{\Lambda} -$ to an injective envelope of q(U).

Proof: The object $q(U)$ is simple precisely if for any exact sequence $0 \to U \to U \to U^- \to 0$ either υ $\ \in$ \mathcal{S}_M or $U'' \in \mathcal{S}_M$. Writing $U' = \varinjlim U_i$ as a direct limit of all its finitely generated submodules we obtain induced sequences $0 \to U_i \to U \to U/U_i \to 0$ in mod (\mathcal{C}_Λ) since $mod(C_A)$ is abelian. Now, for any i either $U_i \in S_M$ or $U/U_i \in S_M$ since there is an induced exact sequence

$$
0 \to \operatorname{Hom}(U/U_i,M\otimes_{\Lambda}-) \to \operatorname{Hom}(U,M\otimes_{\Lambda}-) \to \operatorname{Hom}(U_i,M\otimes_{\Lambda}-) \to 0
$$

of End $_\Lambda$ (M) $^\circ$ -modules and Hom(U, M $\otimes_\Lambda-) \cong \mathrm{Coker}(\mathrm{Hom}_\Lambda(\varphi, M))$ is simple by assumption and Lemma 2. If $U/U_i \in \mathcal{S}_M$ for some i, then $U'' \in \mathcal{S}_M$ since U'' is a quotient of U/U_i . Otherwise all $U_i \in \mathcal{O}_M$ and therefore $U_0 \in$ SM. Thus q(U) is simple. Using again Lemma 2 there is a non-zero morphism \circ . The \cup_{Λ} and this taken to a non-zero more more parameter q(U) ! q(M) by Lemma 1. Thus q(M) is an injective envelope of q(U) since q(M) is independent in the composite in

Lemma 4 If M is a Λ - Γ -bimodule and $I \in Mod(\Gamma)$ is injective, then $Hom_{\Gamma}(M, I)$ is a pure $line \, \Lambda^{r}$ -module.

Proof : See [1, I, Proposition 10.1].

Recall from [8] that a pair of modules $M \in Mod(\Lambda)$ and $N \in Mod(\Lambda^{\text{op}})$ is *purely opposed* provided that any map φ in mod(A) induces an epi Hom $_\Lambda(\varphi,M)$ iff it induces a mono $\varphi\otimes_\Lambda N\,,$ equivalently if any map ψ in mod($\Lambda^{\rm op}$) induces an epi $\text{Hom}_{\Lambda^{\rm op}}(\psi, N)$ iff it induces a mono γ on \mathbf{w} .

Lemma 5 If M is a Λ - Γ -bimodule and $I \in Mod(\Gamma)$ is an injective cogenerator, then M and $\text{Hom}_{\Gamma}(M, I)$ are purely opposed.

Proof : If ^I is any injective -module, then there is a well-known isomorphism

$$
X\otimes_{\Lambda}{\rm Hom}_{\Gamma}(M,I)\longrightarrow {\rm Hom}_{\Gamma}({\rm Hom}_{\Lambda}(X,M),I)
$$

for all $X \in \text{mod}(\Lambda)$ which is functorial in X [2, VI, Proposition 5.2]. Taking a map φ in mod(A) it follows that $\varphi\otimes_\Lambda{\rm Hom}_\Gamma(M,I)$ is a mono iff ${\rm Hom}(\varphi,M)$ is an epi provided that I cogenerates $Mod(\Gamma)$. Thus M and $Hom_{\Gamma}(M, I)$ are purely opposed.

Recall from [8] that a pair of Λ -modules M and N is *purely equivalent* provided that $S_M = S_N$, equivalently if any map φ in mod(Λ) induces an epi $\text{Hom}_{\Lambda}(\varphi, M)$ iff it induces an epi $\text{Hom}_{\Lambda}(\varphi, N)$.

Lemma 6 Let M and N be a pair of purely equivalent pure-injective Λ -modules. If M is indecomposable and simply re
exive, then ^M is isomorphic to ^a direct summand of N.

Proof : We use again the quotient functor q: Mod(C) ! Mod(C)= \sim \mathcal{M} . By and an anomaly constant and and an Lemma 1 the ob jects q(M) and q(N) are both injective and there are non-zero morphisms $\gamma \setminus \gamma$, and γ and γ is a simple obtained obtaine definition in Lemma 3. It follows that there exists a split mono q(M \rightarrow) \rightarrow \rightarrow \rightarrow \rightarrow) which is the image of a split monomer of \cup \setminus to a direct summand of N.

Proof of the theorem: Let ^M be simply re
exive and suppose that ^M is a --bimodule. Also let I be an injective cogenerator for ${\rm Mod}(\Gamma)$. The module DM is purely opposed to M and therefore purely equivalent to $\text{Hom}_{\Gamma}(M, I)$ by Lemma 5. It follows from Lemma 6 that DM is isomorphic to a direct summand of $\text{Hom}_{\Gamma}(M, I)$. Thus the proof is complete.

Our argument in the preceding proof shows how to construct DM for any simply reflexive A-module M. One uses the well-known duality $d:mod(\mathcal{C}_{\Lambda}) \to mod(\mathcal{C}_{\Lambda^{\mathcal{O}P}})$ [5]. Let $U =$ $\text{Ker}(\varphi\otimes_{\Lambda}-)\in \text{mod}(C_{\Lambda})$ be as in Lemma 3 and put $T=a(\mathcal{S}_M)$. Adapting the argument of Hemma 3 one shows that the quotient functor $q\cdot n\cdot \alpha$ (C $p\cdot r$) \cdots mod(Cop)= $p\cdot r$ \mathcal{I} sends defined by \mathcal{I} to a simple object. Then one assessme section functor strip and $\alpha_{\text{A},\text{r}}$ \mathcal{I} $\mathcal{I}(\mathcal{I})$ $\mathcal{I}(\mathcal{I})$ $\mathcal{I}(\mathcal{I})$ to \min an indecomposable pure-injective A \cdot -module iv such that $\min(1$, iv $\otimes_{\Lambda^{op}} -) = 0$ and q (i) q) is an injective envelope of q (w(U)). It is not hard to check that M and N purely opposed. Finally, the uniqueness of N follows from the fact that an injective envelope of $q(d(U))$ is unique up to isomorphism. Thus $DM = N$.

References

- [1] M. Auslander, Functors and morphisms determined by ob jects, in: Representation theory of algebras. Proc. conf. Philadelphia 1976, ed. R. Gordon, (Dekker, New York 1978), 1 - 244.
- [2] H. Cartan and S. Eilenberg, Homological Algebra, (Princeton University Press, Princeton 1956).
- [3] W. CRAWLEY-BOEVEY, Modules of finite endolength over their endomorphism ring, in: Representations of algebras and related topics, eds. S. Brenner and H. Tachikawa, London Math. Soc. Lec. Note Series 168 (1992) 127-184.
- [4] P. GABRIEL, Des catégories abéliennes, Bull. Soc. math. France, 90 (1962), 323–448.
- [5] L. Gruson, Simple coherent functors, in: Representations of algebras, Springer Lec. Notes 488 (1975) 156-159.
- [6] I. HERZOG, Elementary duality for modules, Trans. Am. Math. Soc. 340 (1993) 37-69.
- [7] H. Krause, The spectrum of a locally coherent category, preprint.
- [8] H. Krause, The endocategory of a module, preprint.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, 33501 BIELEFELD, GERMANY $E-mail$ $address:$ henning@mathematik.uni-bielefeld.de