Elementary duality and local duality for modules

HENNING KRAUSE

Given a ring A (associative with identity) we denote by Mod(A) the category of (right) A-
modules and by mod(A) the full subcategory of all finitely presented A-modules. OQur aim in
this note is to point out a relation between elementary duality for modules as introduced by
Herzog [6] and a classical construction in module theory. We call an indecomposable pure-
injective A-module simply reflexzive provided that there exists a map X — Y in mod(A)
such that the cokernel of the induced map Hom(Y, M) — Hom(X, M) is simple when it is
regarded in the natural way as an End, (M )°P-module. Given such a module M it has been
shown in [8] that there exists, up to isomorphism, a unique indecomposable pure-injective
A°P-module DM such that any map ¢ in mod(A) induces an epimorphism Homy (¢, M) if
and only if it induces a monomorphism ¢ @, DM. Moreover, DM 1is again simply reflexive
and satisfies DDM = M. Note that M is simply reflexive if and only if it is reflexive in the
sense of Herzog [6] and that DM coincides with the dual of M in the sense of Herzog [6]. In

this note we shall prove the following result.

Theorem Let M be an indecomposable pure injective A-module and suppose that M is simply
reflexive. Suppose also that M is a A-I'-bimodule and that I is an injective cogenerator for

Mod(I'). Then DM is isomorphic to a direct summand of the A°®-module Homp (M, I).

Remark (1) The proof of the theorem shows how to construct DM.

(2) For examples of simply reflexive modules we refer to [6]. For instance, any ¥-pure-
injective module is simply reflexive.

(3) Let ' = Enda(M)°" and regard M in the natural way as a [module. Taking a
minimal injective cogenerator I the A°-module Homp(M, I') might be called the local dual
of M. It is well-known that Homp(M, I) is indecomposable if M is finitely presented. If
M is of finite length as a I-module, then it has been shown by Crawley-Boevey [3] that
Homyp (M, I) is a coproduct of copies of DM.

(4) Recall from [8] that the endocategory Ep of M is the smallest abelian subcategory of
Mod(Enda(M)°P) containing M and all the endomorphisms of M induced by multiplication
with an element from A. The modules M, DM and Homp (M, I) are related by a duality

between &y and Eppr and an equivalence between Epar and Exomp(a1,1)-
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To give a proof of the theorem we need to recall some background material. Let Cy =
mod(A°P)°P. We denote by Mod(Cy) the category of all additive functors (Cy)°® — Ab into
the category of abelian groups and by mod(Cy) the full subcategory of all finitely presented
functors which is abelian. The fully faithful functor

Mod(A) — Mod(Cy), M — M @, —

will play an important role in our considerations. An exact sequence 0 - L. — M — N — 0

in Mod(A) is said to be pure-exact if its image
0 —LOr——MQy—— My ——0

under this functor is exact and M € Mod(A) is pure-injective if M @, — is injective. Given
a module M we denote by § = Sy the kernel of the functor

mod(Cy) — Mod(I'), X +— Hom(X, M @, —)

where I' = End (M)P is identified with End(M @, —)°P. Furthermore, denote by S the full

subcategory of Mod(Cy) which consists of all direct limits lim X; with X; € S for all 1.
Recall that a full subcategory 7 of any module category Mod(C) is localizing if it is closed

under subobjects, quotients, extensions and coproducts. For any localizing subcategory 7

one can form the quotient category Mod(C)/7T which is abelian, has injective envelopes and

admits an exact quotient functor ¢: Mod(C) — Mod(C)/T with Ker(q) =7 [4].

Lemma 1 The subcategory § is localizing. The quotient functor ¢: Mod(Cy) — Mod(CA)/§
sends any injective object N satisfying Hom(S, N) = 0 to an injective object and q induces
an isomorphism Hom(X, N) — Hom(q(X), ¢(N)) for every X € Mod(Cy).

Proof: The first statement is proved in [7]. The properties of ¢ are well-known facts which
may be found in [4].

Lemma 2 Let p: X — Y be a map in mod(A) and let U = Ker(¢ @5 —) in Mod(Cyp). Then
Hom(U, M @, —) = Coker(Homy (¢, M)) for any M € Mod(A).

Proof: The exact sequence 0 — U — X ®; — — Y ®, — induces an exact sequence
Hom(Y @5 —, M @p —) — Hom(X @ —, M @4 —) — Hom(U, M @4, —) — 0.
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Lemma3 Let M be indecomposable pure-injective and suppose that the cokernel of Hom(p, M)
is a simple Endy (M )°P-module for some ¢ in mod(A). Then the quotient functor g: Mod(Cy) —

Mod(CA)/S_]\} sends U = Ker(p®a —) to a simple object and M @5 — to an injective envelope
of q(U).

Proof: The object ¢(U) is simple precisely if for any exact sequence 0 — U’ — U — U"” — 0
either U’ € S_]\} or U" € 8_1\)4. Writing U" = lim U; as a direct limit of all its finitely generated
submodules we obtain induced sequences 0 — U; — U — U/U; — 0 in mod(Cy) since
mod(Cy) is abelian. Now, for any i either U; € Sy or U/U; € Sy since there is an induced

exact sequence
0 — Hom(U/U;, M @5 —) — Hom(U, M @5 —) — Hom(U;, M @5 —) — 0

of End (M )°P-modules and Hom(U, M @4 —) = Coker(Homa (y, M)) is simple by assumption
and Lemma 2. If U/U; € Sy for some i, then U" € S} since U" is a quotient of U/U;.
Otherwise all U; € Sy and therefore U’ € 8_1\)4. Thus ¢(U) is simple. Using again Lemma 2
there is a non-zero morphism U — M ®, — and this is taken to a non-zero morphism
q(U) — ¢(M @5 —) by Lemma 1. Thus ¢(M @, —) is an injective envelope of ¢(U) since

g(M @, —) is indecomposable injective.

Lemma4 If M is a A-I'-bimodule and I € Mod(I') is injective, then Homp(M, I) is a pure

injective A°P-module.
Proof: See [1, 1, Proposition 10.1].

Recall from [8] that a pair of modules M € Mod(A) and N € Mod(A°P) is purely opposed
provided that any map ¢ in mod(A) induces an epi Homy (¢, M) iff it induces a mono @, N,
equivalently if any map ¢ in mod(A°P) induces an epi Homyop (¢0, N) iff it induces a mono

¢®Aop M

Lemma 5 [f M is a A-I'-bimodule and I € Mod(I') is an injective cogenerator, then M and

Homp (M, I) are purely opposed.
Proof: If I is any injective [-module, then there is a well-known isomorphism
X @x Homp(M, I') — Homp(Homy (X, M), I)
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for all X € mod(A) which is functorial in X [2, VI, Proposition 5.2]. Taking a map ¢ in
mod(A) it follows that ¢ @y Homp(M, I') is a mono iff Hom(p, M) is an epi provided that [

cogenerates Mod(I'). Thus M and Homp(M, I) are purely opposed.

Recall from [8] that a pair of A-modules M and N is purely equivalent provided that
Sy = Sn, equivalently if any map ¢ in mod(A) induces an epi Homy (¢, M) iff it induces an
epi Homy (¢, N).

Lemma 6 Let M and N be a pair of purely equivalent pure-injective A-modules. If M is

indecomposable and simply reflexive, then M is isomorphic to a direct summand of N.

Proof: We use again the quotient functor ¢: Mod(Cy) — MOd(CA)/SZm By assumption and
Lemma 1 the objects ¢(M @5 —) and ¢(N @ —) are both injective and there are non-zero
morphisms ¢(U) — ¢(M ®@a —) and ¢(U) — ¢g(N ®@a —) where ¢(U) is a simple object as
defined in Lemma 3. It follows that there exists a split mono ¢(M @5 —) — g(N @a —)
which is the image of a split mono M @y — — N @, — by Lemma 1. Thus M is isomorphic

to a direct summand of N.

Proof of the theorem: Let M be simply reflexive and suppose that M is a A-I-bimodule.
Also let I be an injective cogenerator for Mod(I'). The module DM is purely opposed to M
and therefore purely equivalent to Homp(M, I') by Lemma 5. It follows from Lemma 6 that
DM is isomorphic to a direct summand of Homp (M, I). Thus the proof is complete.

Our argument in the preceding proof shows how to construct DM for any simply reflexive
A-module M. One uses the well-known duality d:mod(Cx) — mod(Cper) [5]. Let U =
Ker(¢ @a —) € mod(Cy) be as in Lemma 3 and put 7 = d(Sy). Adapting the argument
of Lemma 3 one shows that the quotient functor ¢: Mod(Cper ) — MOd(CAOp)/I]_: sends d(U)
to a simple object. Now one uses the section functor S:MOd(CAop)/']_: — Mod(Cpep ) to
find an indecomposable pure-injective A°®-module N such that Hom(7, N @per —) = 0 and
(N @pop —) is an injective envelope of ¢(d(U)). It is not hard to check that M and N are
purely opposed. Finally, the uniqueness of NV follows from the fact that an injective envelope

of ¢(d(U)) is unique up to isomorphism. Thus DM = N.
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