ODAR: On-Demand Anonymous Routing
in Ad Hoc Networks

Denh Sy, Rex Chen and Lichun Bao
Bren School of Information and Computer Sciences and Calit2
University of California, Irvine, CA 92697
Emails: {dsy, rex, and lbao}@ics.uci.edu

Abstract— Routing in wireless ad hoc networks are
vulnerable to traffic analysis, spoofing and denial of service
attacks due to open wireless medium communications.
Anonymity mechanisms in ad hoc networks are critical
security measures used to mitigate these problems by
concealing identification information, such as those of
nodes, links, traffic flows, paths and network topology
information from harmful attackers. We propose ODAR,
an On-Demand Anonymous Routing protocol for wireless
ad hoc networks to enable complete anonymity of nodes,
links and source-routing paths/trees using Bloom filters.
We simulate ODAR using J-Sim, and compare its perfor-
mance with AODV in certain ad hoc network scenarios.

I. INTRODUCTION

Privacy concerns are increasing in the Internet and
wireless networks due to the mounting intrusions and
attacks. Anonymity that hides the identities of various
components or parts of a network communication is one
of the countermeasures. Strong anonymity in network
communication prevents address spoofing, route forgery,
and certain denial of service (DoS) attacks by concealing
the true identity of the traffic.

In the Internet, several network-based anonymity ap-
proaches provide anonymous communication between
end-nodes, including DC-nets [8], Crowds [21], MIX
networks [7], and Onion Routing [13]. Crowds network
is a randomized packet forwarding network that obscures
the packet senders by randomly throwing each packet
between Crowd network nodes for a variable number
of times before delivering to the final destination. How-
ever, Crowds provides no recipient anonymity, and no
anonymity against a global attacker or a local eaves-
dropper [21].

MIX networks and Onion Routing use cryptographic
algorithms to establish anonymous paths as well as en-
crypting the data packets. In Onion routing, to construct
an anonymous path, a packet origin must store and

maintain information about the topology of the Onion
router network, out of which a number of Onion routers
are selected by the packet origin to construct the path.
In addition, each node on the path is supplied with
a symmetric key for encrypting and decrypting data
packets, and getting instructions for the next hop router
in the path. When a data packet is ready to send, the
source recursively encrypts the packet and the next hop
information with the symmetric keys along the path. This
creates a layered structure, in which it is necessary to
decrypt all outer layers of the onion in order to retrieve
an inner layer.

In ad hoc networks, efficient anonymity is still an
elusive topic. Similar approaches to Onion routing have
been used. However, keeping up-to-date information
about the topology of the network is complex in the
presence of dynamic ad hoc topologies. Therefore, a
trapdoor mechanism is used to collect the source route
between communicating pairs. A trapdoor is a common
concept in cryptographic functions that defines a one-
way function between two sets [24]. A global trapdoor
is an information collection mechanism in which inter-
mediate nodes may add information elements, such as
node IDs, into the trapdoor. Only certain nodes, such
as the source and destination nodes can unlock and
retrieve the elements using pre-established secret keys.
The design of a global trapdoor requires end-to-end key
agreement between the source and destination nodes.
AnonDSR provides a security parameter establishment
(SPE) component to manage shared secrets between end-
systems [23].

Global trapdoors are used in several proposals, such
as SDAR (Secure Distributed Anonymous Routing) [3],
AnonDSR (Anonymous DSR) [23] and SDDR (Secure
Dynamic Distributed Routing) [12]. Both SDAR and
AnonDSR implement onion routing scheme by collect-
ing the symmetric keys created by intermediate nodes
using a global trapdoor managed by the source and

destination nodes, thus providing both route anonymity
and end-to-end data privacy. However, the identities of
intermediate nodes on the source route are still visible
to the source and destination nodes in such schemes.

ANODR [15] used onion routing, but is different from
above approaches in that each forwarding node adds an
encrypted layer to the route request message like an
onion. The source and destination nodes do not necessary
know the forwarding node IDs. The destination node ID
in the route request is encrypted in a trapdoor that only
the destination can decrypt. Kong et al. further proved
that ASR [27] is a variant of ANODR [16].

Because the global trapdoor depends on public key
encryption, AnonDSR and SDAR are better for high-end
nodes that can run public key cryptography efficiently,
while ANODR and ASR are more suitable for low-end
nodes and medium mobility [18].

ASRP (Anonymous Secure Routing Protocol) pro-
vides authenticated anonymous on-demand routing by
setting up virtual circuits between neighbors in ad hoc
networks [9]. The virtual circuit IDs and data packets are
encrypted with shared secrets between neighbors. MASK
is another anonymous routing protocol that establishes
virtual circuits between source and destination, and uses
pseudo-link IDs for path presentations [26].

Unfortunately, concealing the node, link or path iden-
tities in data packets may not be sufficient for traffic
anonymity due to timing analysis [20]. A technique
called mixing can thwart this attack, such as sending
reordered messages, inserting dummy messages, or in-
troducing random delays [7].

We propose ODAR, an On-Demand Anonymous
Routing protocol, which provides node, link and path
anonymities in ad hoc networks based on Bloom filters.
The use of Bloom filters additionally gives ODAR the
storage-, processing- and communication-efficiencies,
making it suitable in the ad hoc network environments.
Castelluccia et al. were the first to use Bloom filters to
compress source route information after the source route
is discovered using DSR [6], [14]. However, no research
was found so far that uses Bloom filters for anonymous
source routing purposes.

The rest of the paper is organized as follows. Section II
describes the essential idea of anonymous routing using
Bloom filters. Section III presents the anonymity mecha-
nisms to various types of nodes on the source route, and
a key distribution mechanism for secret establishment
in ad hoc networks. Section IV specifies ODAR route
maintenance mechanism. Section V evaluates ODAR
using simulations. Section VI concludes the paper.

II. ODAR DATA FORWARDING
A. Network Assumptions

We assume that a wireless ad hoc network consists
of energy-, storage-, processing- and communication-
constrained nodes that are deployed over a wide range
of areas. The resources available at each node in the ad
hoc network could be heterogeneous in that they pos-
sess different memory-, processing- and communication-
capabilities, and take different roles to maintain the
network communication functionalities. Wireless neigh-
bors can communicate with one another via the wireless
channel with high probability of success. The network
topology is relatively static for the duration of manage-
able communication sessions.

Many information can work as the identification
sources, such as IP, URI, URL or MAC addresses
or special attributes provided during the ad hoc net-
work deployment. For communication initialization and
anonymity purposes, we assume that only the source
node knows the identity of its intended destination
when it wants to establish the connection. The source
does not have to know the whole network topology for
communication purposes, and no node has to obtain the
global view of the network.

B. Anonymity Goals

We intend to provide the following anonymities in
ODAR:

e Identity anonymity: A node receiving or sending
data packets cannot be identified by its neighbors. It
is computationally difficult for adversaries to search
and determine the node’s true identity.

e Route/path anonymity: A node forwarding packets
must not be able to infer the identities of other nodes
that also participate in the data forwarding.

e Topology/location anonymity: Routing information
maintenance does not reveal the distance, neighbor
link information of a node, nor the true routing path
or tree information. Neither can they be deduced
from routing information in the packets.

These goals are very different from other related
security problems in routing such as resistance to route
disruption or ‘“denial-of-service” attacks. In fact, the
attackers may avoid such aggressive schemes, in an
attempt to be as “invisible” as possible, until it traces,
locates and/or physically destroys the assets.

C. Bloom Filter

A Bloom filter is a space-efficient probabilistic bit-
vector data structure for storing the elements of a set, and

testing whether or not any given element is a member
of the set [1]. A Bloom filter is defined by /N — the size
or the number of bits in the filter N, k — the number of
hash functions, and n — the highest number of elements
n that it can hold under a false positive threshold P.
Traditional hash table is a special case of Bloom filter
where k£ = 1. Usually, elements are only added to the
set in Bloom filters, but not removed.

There is a well-known result about the relations be-
tween these parameters, as shown in Eq. (1) [1].

n = —N/In P, where k =~ —log, P. (1)

Bose et al. provides a slightly more accurate analysis of
the relationship between N, n, k and P [2].

Bloom filters are widely used in resource routing in
peer-to-peer networks, packet tracing, packet counting,
and packet forwarding problems [4].

For clarity in the following discussions, Bloom filter
elements are often represented by their identifiers di-
rectly in figure illustrations, instead of being transformed
into the k bits derived from the hash functions.

D. Source Routing Using Bloom Filters

For the anonymous routing purpose, we use source
routing for packet forwarding, wherein the packet is
attached with the path information.

8 8 0-128 0-4096
’ mType| bSize| bDestV %
Header Payload

Fig. 1. Packet Header Format and Payload for Source Routing.

Fig. 1 illustrates the packet header format in ODAR.
The message type mType indicates the types of message
contained in the Payload field. The destination bDest
is a Bloom filter that contains the node IDs on the
source route from the packet origin to the destination,
and its size is specified by field bSize. For clarity in
our presentations, nodes are denoted in their plaintext
forms in the source route. In Section III, we describe
how source, destination and intermediate forwarding
nodes are securely anonymized. Although variable in
applications, the exemplary field sizes in the ODAR
packet header are denoted atop each field.

Fig. 2 illustrates how a packet is forwarded in the
ad hoc network. When a packet is sent out to reach
its destinations or predefined intermediate nodes, the
complete path information is encoded in the bDest
address field of the packet using Bloom filters. When an

mType bSize bDest Payload
\DATA \ 64 \{A,D,E,G} V /ﬁ

/®\

(&

Fig. 2. Source Routing Process in ODAR.

intermediate node receives the packet, the node inspects
the Bloom filter bDest to see if its ID is in the Bloom
filter. If true, the node simply rebroadcasts the packet.

In order to avoid routing loops, each node maintains
a history of forwarded packets using Bloom filters by
extracting and hashing the packet identification infor-
mation, such as the header fields and portions of the
payload. If a packet has been sent before, a node simply
discards the packet.

The application of Bloom filters in the bDest field of
data packets provides one of the anonymities in ODAR
that conceals the network topology and path information,
as well as the origin and destination information.

TABLE 1
NOTATION

A, B etc. Node identifiers.
Ya The long-term public key of node A.
Ya The session public key of node A.
Xa The long-term private key of node A.
Xa The session private key of node A.
K. The shared secret between the source A and des-
tination B.
sh(z)r Secure hash function on input bit-string = with key
k, such as SHA-1 [11] or HMAC [17].
KSProp Message to propagate key server path.
KREQ Message to request the public key of a node.
KREP Message for key server to send a public key to a
RREQ nMOgses.age to search for a source route.
RREP Message to answer a source route query.
DATA Data packet.

For clarity, Table I provides the symbol notation
and the corresponding meanings for key establishment,
anonymity and path maintenance in ODAR. Especially,
six types of ODAR packets are indicated in Table I, and
will be used when we describe anonymous data forward-
ing, key establishment and path finding operations in the
rest of the paper.

ITI. ANONYMITY

We differentiate two types of identification for anony-
mous routing — the end-host names, and the forward-
ing node names. In anonymous routing, the forwarding
nodes’ identities are known only by the nodes them-
selves, and no pseudonyms are necessary. However, the
destination’s identity has to be known beforehand for the
source to search the corresponding path. Therefore, the
destination ID requires pseudonym generation methods.
We provide anonymity mechanisms for the intermediate
forwarding nodes and the end-hosts, respectively.

A. Intermediate Node Anonymity

As shown in the source routing process in Fig. 2,
the IDs of the forwarding nodes are hashed into the
bDest Bloom filter. Data packets are routed correctly
as long as the forwarding nodes can find out that they
are members of the bDest Bloom filter. Therefore, a
simple anonymous mechanism can be used, where a node
generates a secret random number for itself, and uses it
as a key in secure hash functions to derive the index keys
of the Bloom filter.

In addition, several private random keys can be it-
erated in the secure hash functions so that index key
generations are further obfuscated in the bDest Bloom
filter at a specific intermediate node. This way, attackers
cannot recognize the nodes that are actively forwarding
traffic. However, the node needs to carry out several
rounds of secure hash operations when looking up the
bDest Bloom filter in packet forwarding.

B. End-Host Anonymities

In network communication, names are involved at
different layers of the networking stack, and reflects
information such as topological or geographic locations,
application-specific semantics, or data-object attributes.
For anonymity purposes, these identities are replaced
with pseudonyms. Interpretation of pseudonyms can only
be done by nodes with knowledge of the true names,
such as the node itself or the source nodes that have
knowledge of the names. In addition, pseudonyms allow
nodes to use longer and more complicated addressing
architecture in ad hoc networks, such as 128-bit IPv6 or
URL addresses.

Diffie-Hellman algorithm has been widely used in key
distribution and management protocols for establishing
a shared secret over an unprotected communications
channel [10], [19]. In Diffie-Hellman algorithm, a prime
number ¢ and its primitive root g is chosen and published
in the network. When two nodes A and B need to share

a key, node A generates a private random value X4 < ¢,
and computes a public value according to Eq. (2).

Y4 = ¢ mod gq. (2)

Similarly, node B generates a private value Xp < ¢
and a public value Y3 = ¢*2 mod ¢. Each side
keeps the private random numbers secret, and makes the
public Y values available to the other side. Then the
shared symmetric key is derived at both nodes A and B
according to Eq. (3).

Kap =Y, " =Y*=¢"*** modq. (3

We refer to the public and private values as keys in this
paper. In ODAR, each node possess two types of private
keys. The first type is used to generate a long-term public
value Y for accepting new incoming connections, and the
other is session-based to create short-term public keys for
connecting with destination nodes. We differentiate the
long- and short-term keys with upper and lower cases,
respectively. That is, we denote the long-term public key
of a node A by Yy, and the short-term session key by
Y,. Similarly, the long- and short-term private keys are
denoted by X 4 and X, respectively, as shown in Table I.

1) Key Server: In ad hoc networks, it is necessary
to implement a public key distribution mechanism for
session-key generations. A comprehensive survey on key
distribution mechanisms can be found in [5].

For simplicity, we assume that the ad hoc network
has only one key server to hold the public keys of all
other nodes for key storage and distribution purposes.
The space requirement on the key server is linear with
regard to the number of nodes in the network.

Because ad hoc network topology changes frequently,
and new nodes may join and leave the network fre-
quently, the key server needs to maintain its presence by
periodically propagating its public key with a key server
message KSProp to all interested nodes. Additionally,
the KSProp message also carries the traversed source
route from the key server so as to establish the route
from the key server to every other node in the network,
thus providing the path for a node to request the public
keys of other nodes later.

64 8 0-128
V iy 4 Yks | bSize| bRoute‘
Header Payload

Fig. 3. Key Server Propagation Packet Format.

The KSProp message is placed in the payload of an
ODAR packet, and its format is illustrated in Fig. 3,

in which Ygg is the public key of the key server,
bRoute is the source route, and bSize is the bit-size
of bRoute.

2) Key Distribution: A shared secret between the
source and destination node is necessary to hide the
source and destination identities during the source route
request and response phases. The shared key derivation
is achieved through the Diffie-Hellman algorithm after
retrieving the long-term public key of the destination
through the key server.

(3) RREQ(Y a, sh(B+1) Kzg)
(A) 1B
(4) RREP(Y a, sh(B+2) k ;)

(1) KREQ(B)

(2) KREP(B, YB)

Fig. 4. Key Distribution during Source Route Construction.

The key distribution mechanism for anonymous end-
to-end communication is illustrated by four steps (1)-(4)
in Fig. 4 using four types of messages. Fig. 4 illustrates
that the source node A retrieves the public key Y3 of the
destination node B from the key server Gz, and finds the
route to node B anonymously. We explain the meanings
of the messages as follows.

64 64
o ~ bst | vos|

Payload
Public Key Request and Reply Packet Format.

Header
Fig. 5.

Fig. 5 shows the format of both KREQ and KREP
messages. Dst is the publicly known pseudonym of the
destination, and Ypgt is the field for placing the public
key of the destination.

64 64 8 0-128
RREQ V A Ys | Dst| bSize| bRoute‘

RREP [/] vs | Dst|

Header

Payload

Fig. 6. Source Route Request and Reply Packet Format.

Fig. 6 presents the route request and reply message
formats, respectively. Field Y5 contains the session key
of a source node S. Dst is the securely hashed destina-
tion pseudonym, which equals to sh(B + 1)k, in step
(3) of Fig. 4, or sh(B + 2)k,, in step (4) of Fig. 4.
Fields bRoute and bSize define the Bloom filter for
storing the source route. In step (4) route reply phase,
the source route is provided in the ODAR header field.
B+1 and B+2 are for authentication purposes.

3) Anonymity in the Route Discovery: The anony-
mous key distribution and mutually authenticated source
route discovery are described as follows:

Step (1): Node A sends out a key request message
KREQ to the key server GG for the public key of node B.
The key request message does not reveal the identity of
node A except for indicating that some node wants to
contact node B of the network.

Step (2): Upon receiving the key request message,
key server G looks through its public key table and finds
the public key Yp associated with identifier B, then
responds with a key reply message KREP to node A
using the same source route contained in the key request
message.

Step (3): Once node A gets the public key of node
B, it generates a session key Y, based on a private key
X, according to Eq. (2), and computes a session secret
K,p using Yp, X, according to Eq. 3. Afterward, node
A uses key K,p to securely hash B + 1 by secure hash
function sh(B + 1)k, ,, the result of which is used to
identify the destination. Then, node A sends the route
request message RREQ to find the source route to node
B with two pieces of information — session key Y,
as node A’s pseudonym, and destination sh(B + 1)k, ,
as node B’s pseudonym. These pseudonyms are only
recognizable by node A and node B, respectively.

Step (4): When the source route request message
RREQ arrives at node B, node B is able to use its long-
term private key X p, generated initially, and the session
key Y, to derive the shared secret K,p, and recompute
sh(B + 1)k, , to see if it is the intended destination of
the message. Since this is true, node B generates the
route reply message RREP along with the session key
Y, and another secure pseudonym sh(B + 2)g, . using
key K,p. Pseudonym sh(B + 2)g,, authenticates node
B to node A so that node A can assert session key Y,
maps to the true source route to node B in the reply
message.

Steps (3) and (4) do not reveal any source and destina-
tion information with the key acquisition process. There-
fore, the end-host anonymity is guaranteed. Furthermore,
node B does not know who it is communicating with.
Stronger Mutual authentication of nodes A and B can
be added to the existing mechanism, but is outside the
scope of this paper on anonymity.

In step (3), because session key Y, can change per
destination, the traffic characteristics per node are con-
cealed as well.

/* Routing Protocol Initialization */
Init (1)

if (I = KEY_SERVER) {
new pktKeyServer (KSProp, Yr);
pktKeyServer.bRoute += sh(l + 1)x,;
Broadcast (pktKeyServer);

}

NN R W N
—~

}
Fig. 7. ODAR Specification: Initialization.

/* Send a packet to destination D with session key Y; */
SendPkt (I, Y;, D, pkt)

1 g
2 if (Y; € mySessionInfo and
mySessionInfolY;].bDest#0) {
// Route to D exists.
3 pkt.bDest = mySessionInfo[Y;].bDest;
4 Broadcast (pkt);
5
6 else { // Find the route to node D.
7 mySessionInfo += (Y;, D);
8 if (mySessionInfolY;].Yp #0) {
// If have the public key of D, then send RREQ.
9 K;p = Diffie-Hellman(Y;, Yp);
10 new pktPath (RREQ, Y;, sh(D + 1)k, ,);
11 pktPath.bRoute += sh(l + 1)k, ; /* Secure hash */
12 Broadcast (pktPath);
13 mySessionInfolY;].Queue += pkt;
14

15 else if (myKeyKS#0) {
// If have no key of D, then request it from key server

16 new pktKey (KREQ, myKeyKS, D);
17 pktKey.bDest = myPathkKs;
18 Broadcast (pktKey);
19 mySessionInfolY;].Queue += pkt;
20
21 else { // No key server, no communication.
22 Drop (pkt);
23
24
25}
Fig. 8. ODAR Specification: Outgoing Packet Transmission.

IV. ODAR ROUTING CONTROL

Routing control protocols are generally categorized
into two types — proactive and reactive. ODAR is
a reactive on-demand routing control algorithm, and
follows the usual route request and reply mechanism as
used by other similar protocols, such as DSR [14] and
AODV [22]. The packet formats used by route request
and reply mechanisms are defined in Fig. 6 when we
describe the anonymity of ODAR.

The path discovery process is activated when an out-

going packet coming from the application layer cannot
find a route to the destination, and starts by the node
sending out a RREQ message to the network. If the
destination receives the RREQ message, it responds with
a route reply message RREP to return the complete
source route to the source.

Fig. 7-9 specify ODAR related functions, such
as ODAR initialization Init(), packet transmission
SendPkt() and packet processing Process(), respectively,
using C-style pseudo-codes. The notation scheme is that
data structure names and their members are written in
true-type font, function names and reserved words
are in bold-face font, and comments are in ifalic font.
The local node’s ID is represented by symbol I.

The variable and function names are mostly self-
explanatory. Specifically, local data structures of node
T include:

e mySessionInfo is an array of all end-to-end

session information, such as the session identifier
Y;, destination ID, anonymous source route bDest,
and the packet queue manager Queue of the ses-
sion.

« Bloom filter myPktSent records the packets that
node I has sent out. The packet identification in-
formation include ODAR packet header plus fields
Ys and Dst of the payload field if the message is
route request RREQ.

s myKeyKS and myPathKS store the public key and
path to the key server.

o« The key server node also maintains a key list
PublicKeyList, storing all node IDs and their
public keys in the network.

In function Init() of Fig. 7, the node checks whether
it is the key server KEY_SERVER. If so, it sends out
the KSProp message to initialize the key distribution
infrastructure (Init lines 2-6).

In SendPkt() of Fig. 8, the node checks whether it
has the source route to the destination. If yes, the packet
is directly sent out (SendPkt lines 2-5). Otherwise, the
packet is for a new session, and the node looks up the
session information list to find the public key of the
destination. If the node has contacted the destination
before, it has the public key, and a new route request is
sent to the network(SendPkt lines 8-14). Otherwise, the
public key of the destination has to be requested from the
key server first(SendPkt lines 15-20). If the key server is
unknown so far, the packet has to be dropped (SendPkt
lines 21-24).

In Process() of Fig. 9, the node asserts that it has
not sent the packet before (Process lines 3-5). Then,

/* Process packet pkt received from network interface. */
Process (I, pkt)

1 q
2 bool forward = false;
3 if (pkt€ myPktSent) { / Loop prevention.
4 return;
5}
6 switch (pkt.mType) {
7 case KSProp:
8 if (myPathks = 0) {
// Save key server’s public key and path.
9 myKeyKS = pkt.Yxs;
10 myPathKS = pkt.bRoute;
11 myPathKS += sh(l + 2)x,; #/ Remember the path.
12 pkt.bRoute += sh(I)x,; / Keep growing the path.
13 forward = true;
14 }
15 case KREQ or KREP:
16 if (pkt.mType = KREQ and | = KEY_SERVER) {
17 pkt.mType = KREP; / Retrieve the key.
18 pkt.Ypst = PublicKeyList (pkt.Dst);
19 forward = true;
20
21 else if (pkt.mType = KREP and
sh(I + 2)x; € pkt.bDest) {
22 mySessionInfo.Process (pkt.Dst, pkt.Ypst);
23
24 else if (sh()x, € pkt.bDest) {
25 forward = true;
26 }
27 case RREQ:
28 K,r = Diffie-Hellman(pkt.Ys, Yr);
29 if (sh({ + 1)k., = pkt.PayloadDst) {
30 pkt.mType = RREP;
31 pkt.bSize = pkt.Payload.bSize;
32 pkt.bDest = pkt.Payload.bRoute + sh(I + 2)k;,;
Fig. 9.

the packet is processed according to its type. If the
packet is key server propagation message KSProp, the
node records the source route (Process lines 10-11), and
keeps propagating the packet (Process lines 12-13). If
the packet is key request KREQ, and the node is the key
server, a key reply is sent back (Process lines 16-20).
Otherwise, if the packet is key reply KREP, the node
checks if it is the destination of this packet, and processes
the key information if so (Process lines 21-23). The node
may also forward the packet if it is on the source route
(Process lines 24-26).

In case the packet is routing control message for route
request RREQ, the node first checks if it is the destina-
tion. If so, a route reply message RREP is composed and
sent (Process lines 28-35). Otherwise, the node keeps
propagating it (Process lines 36-39). In case the packet
is a route reply message RREP, the node first checks
if it is the origin of the source route in the packet. If

33 pkt.Payload.Dst = sh(I +2)k,,;
34 forward = true;

35 } // Reached destination, send RREP.

36 else {

37 pkt.bRoute += sh(l)x,;

38 forward = true;

39 } // Keep searching for destination.

40 case RREP:

41 if (sh({ + 1)z, € pkt.bDest and

pkt.Payload.Ys € mySessionInfo) {
// Arrived at source of the RREQ.

42 mySessionInfo += (Ys, pkt.bDest);
43 mySessionInfo[Ys].Queue.Process ();
44
45 else if (sh(I)x, € pkt.bDest) {
46 forward = true;
47 }
48 case DATA:
49 if (sh(l)x, € pkt.bDest) {
50 forward = true;
51
52 else if (sh(/ + 1)x, € pkt.bDest) {
// Process payload at source.
53 ProcSource (pkt.Payload);
54
55 else if (sh(I + 2)x, € pkt.bDest) {
// Process payload at destination.
56 ProcDest (pkt.Payload);
57 }
58 }

59 if (forward = true) {

60 Broadcast (pkt);

61 myPktSent += pkt; / Hash into Bloom filter.
62

63}

ODAR Specification: Packet Processing.

so, the node records it, and processes queued messages
accordingly (Process lines 41-44). Otherwise, the node
forwards the packet if it is on the source route (Process
lines 45-47).

In case the packet is a data packet DATA, the node
either forwards it (Process lines 49-51), or processes it
(Process lines 52-57).

Note that in source route, the source and destination
nodes stores themselves differently. The source I always
identify itself with ID I+1, while the destination with
I+2. This is for the direction of the data flow, which
effects how the application layer processes the packet.

Several functions are not specified further in Fig. 7-
9, such as APIs provided either by the lower layer (e.g.
Broadcast which sends a packet through the wireless
medium), or by the upper layer (e.g. ProcSource and
ProcDest which process the packet payload information
at the source and destination nodes, respectively). Diffie-

Hellman is the shared secret computation function ac-
cording to the public and private keys using Eq. (3).

V. EVALUATIONS
A. Security Analysis

ODAR provides a novel use of Bloom filters for
efficient and anonymous routing in ad hoc networks. The
bDest field in data packets contains the whole source
route information in a single Bloom filter.

ODAR can provide different levels of anonymity as
implemented in Section III. First, the true node identities
are hidden by using pseudonyms. Secondly, forwarding
node identities are hidden by securely hashing the node
identity into Bloom filters of the source routes. Third,
the source route is completely hidden due to the node
ID encryption and Bloom filter storage (Section II-D).

The “man-in-the-middle” attack commonly known to
the Diffie-Hellman method poses limited threat to the
source route anonymity because the public key of the
key server can be easily certified and distributed be-
forehand for authentication. ODAR inherently thwarts
address spoofing attacks because the source route are
anonymous and network topology information is hidden
from the perspective of any node. Therefore, the success
rate of a spoofed packet getting through the network is
exponentially reduced.

Nonetheless, ODAR does present some shortcomings.
The routing information aggregation process, high satu-
ration ratio of the source route Bloom filter can all raise
the false positive rates in the source routes, thus causing
unnecessary packet forwarding.

Furthermore, ODAR cannot prevent nodes on the
source path from injecting invalid packets and staging
denial of service attacks in ad hoc networks, which
consume the energy of the network nodes.

Due to space limitations, we have not discussed the
scalability problem in ODAR, which can be solved by
three approaches: increasing the size of the bDest
Bloom filter, providing multiple bDest fields, or ap-
plying hierarchical routing architecture.

B. Simulations

ODAR was simulated using J-Sim [25], a component
based network simulator written in Java. In the simula-
tions, a hundred homogeneous nodes are arranged such
that nodes are approximately 80 meters (m) apart from
each other in a 400 x 1600m? rectangular area. The
Free Space propagation model was used with channel
bandwidth 2 Mbps. A CBR traffic flow is created in
each simulation between two nodes that are two, four,

and eight hops aways in three scenarios, respectively.
The rate of the CBR traffic is 10 packets/second, and
each packet size is 512 bytes. The simulations ran for
100 seconds.

For comparison purposes, AODV routing algorithm
was also simulated in the same environments as ODAR,
therefore a total of six different test scenarios are gen-
erated, three for each of ODAR and AODV. AODV
uses IEEE 802.11 DCF using DATA/ACK procedure
with no RTS/CTS, while ODAR uses IEEE 802.11 DCF
broadcast mechanism without ACK.

In the simulations, the numbers of control and data
packets in the whole network are collected as well as
the numbers of data packets injected and received at the
source and destination nodes, which are used to compute
the delivery ratios.

] Control W Data
250000
]
,, 200000 -
5]
x
S 150000 -
a
©
'8 100000 A
£
z
50000 -
0+ L " T T T
2 hop 4 hop 8 hop 2 hop 4 hop 8 hop
ODAR AODV

Fig. 10. Total Number of Packets Generated.

Fig. 10 presents the number of control and data
packets for ODAR and AODYV, respectively. In AODYV,
control packets consist of neighbor HELLO packets,
route request, route reply, and route errors. Control
packets in ODAR are attributed to packets for initial
flooding of key server path and route discovery packets
in the routing control algorithm. In all scenarios, the
number of packets in ODAR was about 4,000, while
that of AODV was much higher at 230,000 packets
due to continuous HELLO packets. This is more clearly
illustrated in the following Fig. 11.

Fig. 11 presents a comparison on the number of con-
trol packets in ODAR and AODV. For ODAR, initially
there are large number of packets, which represents
flooding of the key server propagation followed by the
routing control algorithm. For AODYV, the initial spike
is a result of route request and route reply. Thereafter,
the number of control packets are HELLO messages

-/~ ODAR {1+ AODV

Number of Control Packets

0 5 10 15 20
Time (second)

Fig. 11. The Numbers of Control Packets in ODAR and AODV.

for neighborhood maintenance, and remains relatively
constant over the time interval in AODV. In contrast,
no more control packets are sent after the path finding
algorithm is completed at about three seconds into the
simulation in ODAR.

-/~ ODAR -5 AODV

Number of Control Packets

Time (second)

Fig. 12. Control Packets in ODAR and AODV in Similar Settings.

For a fair comparison, we virtually turned off the
neighborhood maintenance messaging by setting the
HELLO message intervals at 30 seconds in AODV.
Fig. 12 compares the number of control packets in
ODAR and the modified AODYV, in which a spike appears
at approximately 30 second. As we can see that ODAR
performs close to AODV in terms of control overhead
under similar settings.

Fig. 13 illustrates the delivery ratios of ODAR and
AODV, respectively. AODV achieves higher delivery
ratios than ODAR when the number of hops to traverse
increases. The reason lies not in the routing protocol
but in the MAC layer acknowledgments and the backoff
mechanisms. AODV benefits from MAC layer acknowl-

-/~ ODAR = AODV
100% 79 \g\ %
90% — |
80%
o 70%
3 60% A
2 50%
[
2 40%
[
0 30%
20%
10%
0% T T T T T
2 3 4 5 6 7 8
Number of Hops

Fig. 13. Delivery Ratios for AODV and ODAR.

edgments with retransmission, while ODAR does not. In
ODAR, reliability based on retransmissions needs to be
handled by the higher level protocols.

VI. CONCLUSION

We have presented ODAR, a novel On-Demand
Anonymous Routing protocol in ad hoc networks using
Bloom filters. We have described the mechanisms to effi-
ciently store source routes anonymously, and to forward
data packets anonymously. A key management mech-
anism is described in order provide strong anonymity
for end-to-end communications. Performance compari-
son between ODAR and AODV indicates ODAR has
comparable control overhead to AODV.

ACKNOWLEDGMENT

We would like to thank the California Institute
for Telecommunications and Information Technology
(Calit2) at the Irvine division for providing the authors
of this paper with spaces and equipments. We sincerely
acknowledge and thank Prof. Michael Goodrich and
Prof. Gene Tsudik for their insightful suggestions and
discussions on various security issues of ODAR during
the process of designing the protocol.

REFERENCES

[1] B.H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Communications of ACM, 13(7):422-426, Jul.
1970.

[2] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin,
J. Morrison, M. Smid, and Y. Tang. On the False-Positive Rate
of Bloom Filters. Submitted Under Review, 2004.

[3] A. Boukerche, K. El-Khatib, L. Xu, and L. Korba. A novel
solution for achieving anonymity in wireless ad hoc networks.
In Proc. of the 1st ACM PE-WASUN, 2004.

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

(12]

[13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

A. Broder and M. Mitzenmacher. Network applications of
Bloom filters: a survey. In Proc. of the 40th Annual Allerton
Conference on Communication, Control, and Computing, 2002.
S.A. Camtepe and B. Yener. Key Distribution Mechanisms for
Wireless Sensor Networks: a Survey. Technical report, Depart-
ment of Computer Science, Rensselaer Polytechnic Institute,
Troy, NY, Mar. 23 2005. TR-05-07.

C. Castelluccia and P. Mutaf. Hash-Based Dynamic Source
Routing. In IFIP Networking, LNCS 3042, pages 1012-23,
2004.

D. Chaum. Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms. Communications of the ACM, 4(2), Feb.
1982.

D. Chaum. The Dining Cryptographers Problem: Unconditional
Sender and Recipient Untraceability. Journal of Cryptography,
1(1):65-75, 1988.

Yi Cheng and Dharma P. Agrawal. Distributed Anonymous
Secure Routing Protocol in Wireless Mobile Ad Hoc Networks.
In OPNETWORK 2005, Aug. 2005.

W. Diffie and M. Hellman. New Directions in Cryptography.
IEEE Transaction on Information Theory, 22:644-654, Nov.
1976.

E. Eastlake and P. Jones. RFC 3174 - US Secure Hash
Algorithm 1 (SHA1). Technical report, IETF, Sep. 2001.

K. El-Khatib, L. Korba, R. Song, and G. Yee. Secure dynamic
distributed routing algorithm for ad hoc wireless networks.
In International Conference on Parallel Processing Workshops
(ICPPW), 2003.

D. Goldschlag, M. Reed, and P. Syverson. Onion Routing for
anonymous and private internet connections. Communications
of the ACM, 42(2):39C4, 1999.

D.B. Johnson and D.A. Maltz. Mobile Computing, chapter
Dynamic Source Routing in Ad Hoc Wireless Networks, pages
153-181. Kluwer Academic Publishers, 1996.

J. Kong and X. Hong. ANODR: ANonymous On Demand
Routing with Untraceable Routes for Mobile Ad-hoc Networks.
In MOBIHOC, 2003.

Jiejun Kong, Xiaoyan Hong, Mario Gerla, and M.Y. Sanadidi.
Comparison: ASR is a Variant of ANODR. Technical report,
UCLA, 2005.

H. Krawczyk, M. Bellare, and R. Canetti. RFC 2104 - HMAC:
Keyed-Hashing for Message Authentication. Technical report,
Network Working Group, 1997.

Jun Liu, Jiejun Kong, Xiaoyan Hong, and Mario Gerla. Perfor-
mance Evaluation of Anonymous Routing Protocols in Mobile
Ad-hoc Networks. In IEEE Wireless Communications and
Networking Conference (WCNC), Las Vegas, Nevada, USA,
Apr. 3-6 2006.

R. C. Merkle. Secure Communication over an Insecure Channel.
Communication of ACM, 21:294C99, Apr. 1978.

J.-F. Raymond. Traffic Analysis: Protocols, Attacks, Design
Issues, and Open Problems. DIAU Lecture Notes in Computer
Science, page 10C29, 2000.

M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web
Transactions. ACM Transactions on Information and System
Security, 1(1):66-92, Nov. 1998.

E. M. Royer and C. E. Perkins. Multicast Operation of the Ad
hoc On-Demand Distance Vector Routing Protocol. In Proc. of
MOBICOM, pages 207-218, Seattle, WA, Aug. 1999.

R. Song, L. Korba, and G. Yee. AnonDSR: Efficient Anony-
mous Dynamic Source Routing for Mobile Ad-Hoc Networks.
In ACM Workshop on Security of Ad Hoc and Sensor Networks
(SASN), 2005.

[24]

(25]
[26]

(27]

W. Stallings. Cryptography and Network Security: Principles
and Practice. Prentice Hall, Upper Saddle River, NJ, Jul. 15
1998.

H. Tyan. J-Sim. http://www.j-sim.org/.

Y. Zhang, W. Liu, and W. Lou. Anonymous communications
in mobile ad hoc networks. In Proc. of the 24th International
Conference of the IEEE Communications Society (INFOCOM),
2005.

B. Zhu, Z. Wan, M. Kankanhalli, F. Bao, and R. Deng.
Anonymous secure routing in mobile ad-hoc networks. In Proc.
of the 29th Annual IEEE International Conference on Local
Computer Networks (LCN), pages 102-8, 2004.

