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proofs of arbitrarily large length n, so that any Frege proof of the same conclusion requireslength at least 2n� . On the other hand, no super-linear lower bounds on Frege proof lengthshave yet been established for any tautology. See [11,12,25] for background material on Fregeand extended Frege proof systems.Although the authors tend to support these conjectures on the separation of Frege andextended Frege systems, the purpose of this paper is to cast doubt on these conjectures bypointing out that there are hardly any good examples to support them. This is in markedcontrast to the situation for analogous open questions in computational complexity such as\P =?NP " and \NC=?P ". For these open questions, there are a large number of candidateswhich are conjectured to separate the two classes. In particular, there are a large number ofcombinatorial problems that are known to be NP -complete (or P -complete) and thereforeare not in P (or not in NC , respectively) if P 6= NP (or NC 6= P , respectively). In fact,the widely accepted conjecture that NC , P and NP are distinct is largely based upon theexistence and apparent intractability of these combinatorial problems.Consider also the problem of separating constant-depth Frege proofs from Frege proofs.In this situation, there are several natural combinatorial principles, including the pigeonholeprinciple and various matching principles, which are known to have polynomial size Fregeproofs and yet require exponential-size constant-depth Frege proofs [4,1,22,17].It is thus desirable to seek natural, combinatorial problems that are candidates forseparating Frege and extended Frege proof systems. By this we mean tautologies basedon combinatorial principles which are known to have polynomial-size extended Frege proofs,and for which the shortest known Frege proofs are exponential (or at least superpolynomial)in length. In addition, we wish the tautologies to be \natural"; of course, the naturalness ofa family of tautologies is a matter of personal opinion, but at the very least it should meanthat they are uniform in some strong sense, such as being polynomial time recognizable, or,even better, the family of tautologies should consist of the propositional translations of anarithmetic formula with existential, universal and/or counting (bounded) quanti�ers.In order to give a superpolynomial separation of Frege and extended Frege proofs, it is ofcourse necessary to give superpolynomial lower bounds for Frege proofs. Already, the problemof �nding natural, combinatorial principles which require superpolynomial-size Frege proofsseems di�cult. It is well-known that there are tautologies that require superpolynomial Frege(and extended Frege) proofs, unless NP = coNP [11]. However, the set of all tautologiesdoes not yield a natural, combinatorial family of candidates for superpolynomial Frege proofs;because it is neither combinatorial nor believed to be a polynomial time recognizable set.There is a well-known analogy between the question of separating Frege and extendedFrege systems and the question of separating NC1 from P . Namely, the lines in apolynomial-size Frege proof consist of polynomial-size propositional formulas and it isknown that polynomial-size formulas can express precisely properties in (nonuniform)NC1 [24,3,7,6]. Likewise, because of the ability to use abbreviations for long formulas,the lines in a polynomial-size extended Frege proof are essentially polynomial-size circuitsand thus can express properties that are in nonuniform P [18]. Thus, one can intuitively viewpolynomial-size Frege proofs as proofs which polynomially many steps which can reason with2



NC1 properties; whereas polynomial-size extended Frege proofs are proofs with polynomiallymany steps which can reason with properties in nonuniform P . Of course this analogybetween Frege and extended Frege systems and NC1 and P does not entail any actualimplication, that is to say it is possible that Frege and extended Frege are polynomiallyequivalent and NC1 and P are unequal (or vice-versa). Nonetheless, one might be able touse this analogy to search for combinatorial principles which can be conjectured to separateFrege and extended Frege systems; namely, by considering combinatorial principles whoseproofs depend on properties that are P -complete.We consider in this paper various candidates for separating Frege and extend Frege anddiscuss their relative merits and disadvantages. In section 2, we consider tautologies based onconsistency statements. In section 3.1, we discuss a number of combinatorial properties whoseproofs are based on linear algebra: since matrix inversion and determinant computation arenot known to be in NC1 , these are thus candidates for a superpolynomial separation ofFrege and extended Frege systems. However, since matrix inverses and determinates arein NC2 , these candidates are conjectured to have quasipolynomial-size Frege proofs, where`quasipolynomial' means 2(logn)O(1) . Note that quasipolynomial-sizes are both subexponentialand superpolynomial. In section 3.2, we introduce Frankl's theorem; this is the only examplewe have of combinatorial tautologies which are known to have polynomial-size extendedFrege proofs and for which we have no reason to suspect that they have subexponential-sizeFrege proofs. In section 3.3, some tautologies based on a formalization of the \P vs. NP"problem are discussed. In section 4, we approach the problem in a di�erent direction, bygiving polynomial-size Frege proofs for some combinatorial tautologies, thereby showing theyare not good examples for separating Frege and extended Frege systems. In section 4.1, wegive a polynomial-size Frege proofs for Bondy's principle. Bondy's principle was originallysuggested to us by Kraj���cek as a candidate for an exponential separation between Frege andextended Frege systems; however, we give a new proof of Bondy's theoremwhich, unlike priorproofs, translates into polynomial-size Frege proofs. In section 4.2, we further discuss Frankl'stheorem, which is a generalization of Bondy's theorem. Although we have been unable to �ndpolynomial-size Frege proofs of Frankl's theorem, we are able to give polynomial-size Fregeproofs of a version of the Kruskal-Katona theorem which is used in the usual proof of Frankl'stheorem.2 Hard examplesbased onConsistencyGiven any reasonable propositional proof system, S , one can write down a tautology,ConS(n), which expresses the partial consistency of S ; namely, this tautology expressesthe fact that there are no proofs of length at most n in S of a contradiction. In order tocode a partial consistency statement as a tautology, a proof of length n is encoded as a stringof binary digits of length O(n); the tautology contains propositional variables representingthe bits in the encoded string and can express the property that the bits do not encode acorrect S -proof ending with a contradiction. For `reasonable' propositional proof systems S ,the partial consistency tautologies can be formulated to have length polynomially bounded3



by n. (We have not de�ned `reasonable' precisely here, but, among other things, it meansthat the system S should be consistent and should be able to simulate a Frege system,and that the valid axioms and inference rules of S should be NC1 -recognizable.) Partialconsistency tautologies of this type were �rst described by Cook [10] in the setting of extendedFrege provability and later by one the authors [5] in the setting of Frege provability. Moreimportantly, Cook established that if S is any schematic propositional proof system such thatthere are polynomial-size extended Frege proofs of ConS(n), then extended Frege systemscan polynomially simulate S . Later, one of the authors extended this theorem to apply toFrege systems as well, by establishing that the existence of polynomial-size Frege proofs ofConS(n) implies that a Frege system can polynomially simulate S . These theorems establishthe important fact that for su�ciently powerful proof systems such as Frege systems, thereare complete tautologies (see also [16]). In particular, we have that the family of tautologiesConeF (n) are complete tautologies for Frege systems with respect to extended Frege systems:Theorem 1 [5] There are polynomial-size Frege proofs of the tautologies ConeF (n) if andonly if Frege systems can polynomially simulate extended Frege systems.Cook showed that the statements ConeF (n) have polynomial-size extended Frege proofs,thus Theorem 1 implies that the partial consistency statements ConeF (n) separate Fregeand extended Frege systems, unless the systems are actually equivalent. In fact, it is clearthat, up to polynomial factors, these tautologies provide the best separation of Frege andextended Frege systems that is possible. However, we do not view these tautologies asproviding evidence for a superpolynomial separation of Frege and extended Frege systems.Instead, we are seeking more natural, combinatorial principles which are hard for Fregesystems but not extended Frege systems. Of course, it is possible to take any coNP -completecombinatorial property and encode a tautology as an instance of that combinatorial property;for instance, one can encode a tautology as a graph which is not 3-colorable, then reexpressthe non-3-colorability of this graph as a tautology. But, this is not what we consider a naturalcombinatorial problem.3 HardCombinatorialCandidates3.1 Examplesbased on Linear ProgrammingThere are several combinatorial theorems which are simple to state, but all known proofs relyon the powerful tools of linear algebra. These theorems are prime candidates for tautologiesthat should require superpolynomial-size Frege proofs. Many examples from this section canbe found in the excellent monograph by Babai and Frankl [2].3.1.1 The Odd-town TheoremThe Odd-town Theorem is perhaps the original example of the power of linear algebra incombinatorics: 4



Theorem 2 Suppose a town has n citizens and that there is a set of clubs, each consisting ofcitizens, such that each club has an odd number of members and such that each pair of clubshave an even number of members in common. Then there are no more than n clubs.To express this theorem propositionally for a particular n, we use underlying variablesvji , i � n + 1, j � n, where the n-bit vector vi is intended to describe the ith club. Thepropositional formula OTn states that either some vector contains an even number of 1's,or there are two vectors with an odd number of 1's in common. (This formula requiresnonconstant depth to express, but the size is still polynomial in n.)The simplest proof of this theorem uses linear algebra. Assume there are m clubs,C1; . . . ; Cm . We represent the m clubs by an n by m incidence matrix, M , where the ithrow vector, vi , is the incidence vector for club Ci . The inner product modulo 2 of vi and vj ,hvi; vji, is equal to 1 if size of the intersection of Ci and Cj is odd, and is equal to 0 otherwise.According to the Odd-town rules, hvi; vji is odd whenever i = j , and hvi; vji is even wheneveri 6= j . We claim that the vectors v1; . . . ; vm must therefore be linearly independent. If not,there exist numbers �i such that �1v1 + �2v2 + � � � + �mvm = 0 with some �k 6= 0. Takingthe inner product of both sides of the equation with vk , it follows that �k = 0, which is acontradiction. Since the vi 's are linearly independent, m is at most n.The key point of the above proof is that it relies on linear algebra, and despite considerablee�ort, there are no known simpler proofs that circumvent the use of linear algebra. In orderto carry out the above proof propositionally, one would need to prove the fact that if m > n,m vectors cannot be linearly independent. In the most straightforward approach, thiswould involve giving polynomial-size formulas de�ning the values �i in terms of entries ofthe incidence vectors. Furthermore, the smallest known formulas de�ning these values arequasipolynomial-size, i.e., 2(logn)O(1) size, since operations such as �nding determinants andmatrix inverses are in NC , but are not known to be in NC1 . Thus, our conjecture is thatthe Odd-town Theorem tautologies have quasipolynomial size Frege proofs. This is only aconjecture, since we have not veri�ed that Frege proofs can formalize properties about theNC -computable functions of linear algebra.On the other hand, there are polynomial-size extended Frege proofs of the propositionaltautologies expressing the Odd-town Theorem. This is because an extended Frege system caneasily simulate Gaussian elimination on a matrix, and thereby can prove that m > n vectorsmust be linearly dependent.The Odd-town Theorem thus serves as a good combinatorial candidate for quasipolyno-mially separating Frege and extended Frege systems. There has reportedly been a great dealof e�ort made to �nd proofs that do not depend on linear algebra; and this provides at leastsome evidence that the shortest Frege proofs of the Odd-town Theorem tautologies requirequasipolynomial size.In sections 3.1.2-3.1.4, we give a number of combinatorial principles that have proofs basedon linear algebra. Like the Odd-town Theorem, the tautologies based on this combinatorialprinciples all have polynomial-size extended Frege proofs and we conjecture that they havequasipolynomial-size Frege proofs. 5



3.1.2 The Graham-Pollak TheoremThis candidate was suggested to us by Mauricio Karchmer.Theorem 3 [15] The number of edge disjoint, complete bipartite graphs needed to edge coverKn (the complete graph on n vertices) is at least n� 1.To express this theorem propositionally, we introduce 2n(n � 2) propositional variables,Aij; Bij , i � n, j � n � 2, where for each j � n � 2, the pair of vectors Aj and Bj describethe jth bipartite graph. (The edge (k1; k2) is present in the jth bipartite graph if and only ifAk1j ^Bk2j or Ak2j ^Bk1j .) The Graham-Pollak tautology for a �xed n, GPn , states (informally)that either: (1) one of the pairs Aj; Bj does not describe a proper bipartite graph; or (2)there exists i; j � n � 2; i 6= j and an edge e such that e is present both in (Ai; Bi) and in(Aj; Bj); or (3) there exists an edge e that is not present in any (Ai; Bi), i � n � 2. It canbe veri�ed that this tautology has size O(n4).The known proof of the Graham-Pollak theorem, presented below, does not seem to beformalizable with polynomial-size Frege proofs.Proof Associate with each vertex i of Kn a variable xi . Assume (Ai; Bi) i = 1; ::; r are thebipartite graphs partitioning Kn and r � n � 2. Then we have(Xi xi)2 = (Xi x2i ) + 2(Xi<j xixj); (1)= (Xi x2i ) + 2[X̀(Xi2A` xi)(Xj2B` xj)]: (2)Now consider the following system of r+1 linear equations: (1) Pi xi = 0 and (2)-(r+1)Pi2A` xi = 0 for ` = 1; ::; r , r � n � 2. The number of underlying variables is n, and thenumber of equations is r+1 which is less than n. Therefore, there exists a nontrivial solution.But this cannot be since the left hand side of (2) is zero, and the second term of the righthand side of (2) is zero, but a nontrivial solution would imply that the remaining term, Pi x2iis not equal to zero. 23.1.3 The Fisher InequalityTheorem 4 (Fischer Inequality) Let F1; . . . ; Fm be a system of distinct, nonempty subsetsof f1; ::; ng such that for all Fi; Fj , jFi \ Fjj = k , for some �xed k . Then m � n.Proof Associate a vector vi with each Fi , where vi is the incidence vector of Fi . Lethvi; vji denote the inner product of vi and vj . The inner product will equal the size ofFi \ Fj . Therefore when i 6= j , hvi; vji = k , and when i = j , then hvi; vii equals the sizeof Fi . Without loss of generality, we can assume that jFij > k > 0, for all i, and thereforehvi; vii = k + 
i , where 
i > 0. 6



Claim: The vectors v1; ::; vm are linearly independent.Proof of claim: Assume for sake of contradiction that the claim does not hold. ThenPi �ivi = 0, where not all �i 's are zero. But then we have Pnk=1h�kvk; vji = 0. This can bewritten as �k + �j
j = 0, where � = Pi �i . Now if � is zero, then �j = 0 for all j , whichcontradicts our assumption. Therefore, � 6= 0; but since k; 
i > 0, we have that each �j isnon-zero and has sign opposite the sign of � . This is impossible since � = Pi �i .It follows from the above claim that m � n. 23.1.4 Ray-Chaudhuri{Wilson theoremThe following theorem is a generalization of the Fischer Inequality. Let [n] denote f1; . . . ; ng.Let F be a set of subsets of [n], and let L � [n], jLj = s. F is L-intersecting if for allF1 6= F2 , jF1 \ F2j 2 L. For example, in the previous Fischer theorem, L = fkg.Theorem 5 (Nonuniform Ray-Chaudhuri{Wilson) For any L � Z , jLj = s, if F isL-intersecting, then jF j � Psi=0 �ni�.We say that F is k -uniform provided every member of F has cardinality k . In this case,we get a better upper bound on the size of F :Theorem 6 (Uniform Ray-Chaudhuri{Wilson) Let L be a set of integers, jLj = s, andF be an L-intersecting k -uniform family. Then jF j � �ns�.The following theorem is a modular form of the Ray-Chaudhuri{Wilson theorem.Theorem 7 (Modular Ray-Chaudhuri{Wilson) Let p be a prime number andL � f0; . . . ; p � 1g have cardinality s � p � 1. Let 0 � k < p be an integer, k 62 L.Let F be a family of subsets of n elements, n � s + k , such that for all i, jFij � k mod p,and for all i 6= j , (jFi \ Fjj mod p) 2 L. Then jF j � �ns�.Note that the Odd-town Theorem is a special case of the above theorem where p = 2,k = 0 and L = f1g. Our �nal potential hard tautology based on linear algebra proofs is ageneralization of the Odd-town Theorem. This example was suggested to us by L. Babai.Theorem 8 (Skew Odd-town Theorem) Suppose there are m red clubs R1; . . . ; Rm , andm blue clubs, B1; . . . ; Bm in a town of n citizens. Assume that these clubs satisfy: (a) jRi\Bijis odd for every i; (b) jRi \ Bjj is even for 1 � i < j � m. Then m � n.7



3.1.5 When can linear algebra be avoided?While all known proofs of the above theorems rely on linear algebra at some point, it appearsto be a di�cult problem to determine when a theorem inherently requires the use of linearalgebra. In fact, it may be that all of the above examples actually have short, directproofs. The following theorem, known as the Friendship Theorem, is another example of acombinatorial principle whose standard proof relies on linear algebra. In fact, the authorsoriginally believed that this was another potential hard example.Theorem 9 [13] In a party of n people, suppose that every pair of people has exactly onefriend in common. Then there is a person at the party who is friends with everyone.For a �xed n, we encode the Friendship Theorem using n(n� 1) propositional variables,Fij , 1 � i < j � n, where Fij indicates whether or not persons i and j are friends. Thepropositional Friendship Theorem, Friendn , states that either there exists two people withzero or more than 1 friend in common, or there exists a person who is friends with everyone.The original proof of this theorem is due to Erd}os, R�enyi and S�os [13] . This proof reliesheavily on linear algebra and is not known to be formalizable with polynomial-size Fregeproofs. For some years, no completely elementary proof was known, despite considerablee�ort. But in 1972, such a proof was found by Longyear and Parsons [19]. This proof buildsupon an earlier paper of Herbert Wilf [26] where it is shown that the the negation of theFriendship Theorem implies that the group of friends forms a �nite projective geometry.Then using elementary properties of �nite projective geometry, the Friendship Theorem canbe reduced to the special case where every person has the same number of friends. This caseis simpler, and in [19], it is shown using elementary reasoning that if every person has thesame number of friends, then the conditions of the Friendship Theorem fail to hold. Becausethis proof only uses direct reasoning, and a counting argument, it can be formalized withpolynomial-size Frege proofs.3.2 Frankl's TheoremAnother potential hard example is the propositional version of Frankl's theorem [14] statednext.Theorem 10 Let t be a positive integer and let m � n (2t�1)t . Then for any m� n matrix ofdistinct rows of 0's and 1's, there is a column such that, if this column is deleted, the resultingm� (n� 1) matrix will contain at most 2t�1 � 1 pairs of equal rows.The tautologies based on Frankl's theorem do have polynomial-size extended Frege proofs;however, it is an open question whether they have polynomial or quasipolynomial-size Fregeproofs. The only proof of Frankl's Theorem that we know of is due to Frankl [14], and abrief outline of his proof can be given as follows. De�ne a 0=1 matrix to be hereditary if allits rows are distinct and changing any 1 entry to a 0 causes two rows to become identical.8



Frankl �rst argues that it su�ces to prove Theorem 10 for hereditary matrices by provingthat any matrix violating the theorem can be transformed into a hereditary matrix violatingthe theorem (this is Theorem 1 of [14]). He then gives a proof of the theorem for hereditarymatrices, based a corollary to the Kruskal-Katona theorem and on a counting argument.We have examined Frankl's proof carefully, and have been able to show that thepropositional tautologies based on the corollary to the Kruskal-Katona theorem do havepolynomial-size Frege proofs (we present this in detail in section 4.2 below), and the countingargument likewise has a polynomial-size Frege proofs. Thus there are polynomial-size Fregeproofs of Theorem 10 under the extra assumption that the matrix is hereditary. However, thereduction to hereditary matrices is readily seen to be formalizable in extended Frege proofs,but we see no way in which a Frege proof can formalize this reduction (Theorem 1 of [14])with subexponential-size proofs. The di�cult aspect of the reduction to hereditary matricesis that it involves a sequential process of changing 1's to 0's in a column-by-column fashion,repeated until the matrix is hereditary. The sequential nature of this reduction makes it easyto express with polynomial-size extended Frege proofs, but not with small Frege proofs.There are two special cases of Frankl's theorem worth mentioning. The �rst is when t = 1and m � n; this case is Bondy's theorem and is shown in section 4.1 to have polynomial-sizeFrege proofs. The second is when t = 2 and m � 3n=2: we have not been able to �ndsubexponential size Frege proofs even for this case.3.3 Formalizing circuit lower boundsOur last example comes from tautologies which formalize circuit lower bounds. It has recentlybeen observed by several people [23,9,21] that all explicit circuit lower bounds seem to requireproof strength that is strictly greater than the circuit family under consideration. Loosely,it can be shown that known lower bounds for a particular circuit class C require reasoningabout formulas with complexity greater than C . These observations lead one to ask whetherthe family of tautologies expressing P 6= NC1 require superpolynomial-size Frege proofs, andsimilarly, whether the tautologies expressing P 6= NP require superpolynomial-size extendedFrege proofs. In this section, we address this possibility.The �rst issue is how to express circuit lower bounds such as P 6= NP , propositionally.The following approach was suggested by Steve Cook. NP has polynomial circuit size if andonly if there is a function fSAT computable with polynomial-size circuits such that given anysatis�able formula F (we can assume that F is in 3CNF ), fSAT (F ) is a truth assignmentwhich satis�es F .To code the above statement, we will code 3SAT on n variables using O(n3) propositionalvariables, each variable corresponding to the presence or absence of a particular 3-clause inthe formula. We will code a size O(m) circuit, m = nc , (c > 3), with propositional variablespij , i � 2 logm, j � m, where variables p0j ; . . . ; p2 logmj describe the j th gate of the circuit.We can then express \fSAT does not have polynomial-size circuits" as follows: For all x,jxj = n, for all C , jCj � nc , there exists a pair (F; T ) such that: (a) F codes a 3CNFformula with n variables, (b) T is a satisfying assignment to F , and (c) The circuit coded9



by C on input F does not output a satisfying truth assignment (i.e., C does not computefSAT (F ).)In order to translate this statement into a propositional statement, we need to replacethe existentially quanti�ed variable (the pair (F; T )) by the disjunction of all possible valuesfor (F; T ). In other words, the tautology expressing \fSAT does not have polynomial-sizecircuits" has underlying variables pij , 0 � i � 2 logm, j � m, and the formula states thatif the 0ij 's code a proper circuit, C , then there exists a formula coded by f1; . . . ; fn0 , withsatisfying truth assignment x1; . . . ; xn , such that when we evaluate C on f1; . . . ; fn0 , it doesnot output a satisfying truth assignment. Because the total number of 3CNF formulas onn variables is roughly 2n3 , this takes about 2O(n3) symbols; thus the entire tautology isexpressible in 2O(n3) symbols. Let us call the above family of tautologies NOTPOLYn , wheren is the number of underlying variables.The obvious way to prove this tautology is to go through all possible circuits of size m, andfor each of them, check all possible 3CNF formulas on n variables, and exhaustively checkthat for each one, the circuit errs on some input. But this proof requires 2m symbols, whichis superpolynomial in the input length (O(2n3 ), for m > n3 . Recently, Razborov and Rudichproved that under certain cryptographic assumptions, a class of proofs of NOTPOLYnrequire superpolynomial-size extended Frege proofs. Proofs in this class are de�ned to beproofs satisfying certain natural properties, and hence are called \natural proofs". But itis still open whether \unnatural proofs" also require superpolynomial-size extended Fregeproofs.In a similar manner, we can generate the tautology which expresses \P does not havepolynomial-size formulas", and this family of tautologies is a potential hard candidate forFrege systems.4 ShortFregeproofs forsomeCombinatorialPrinciplesIn this section, we give new polynomial-size Frege proofs for two families of tautologies forwhich the previously known proofs were exponential-size. The �rst family of tautologies arebased on Bondy's theorem, and the second family on a variant of the Kruskal-Katona theoremwhich is used in the proof of Frankl's theorem.4.1 Bondy's Theoremand the Pigeonhole PrincipleBondy's theorem was suggested by Kraj���cek as a possible candidate for a combinatorialtautology with polynomial-size extended Frege proofs but with no Frege proofs. However,we give below a new, elementary proof of Bondy's theorem, which can be translated into thesetting of propositional logic. This shows that the tautologies expressing Bondy's theoremactually do have polynomial-size Frege proofs. In fact, our proof shows an even stronger result;namely, that there are constant-depth polynomial size proofs of the Bondy theoremtautologiesin a Frege proof system augmentedwith additional axioms expressing the pigeonhole principle.10



Since the pigeonhole principle has polynomial-size Frege proofs [4], this implies that theBondy's theorem tautologies have polynomial-size proofs.�Bondy's theorem states that, in any n � n matrix containing n pairwise distinct rows,there exists a column such that, if the column is deleted, the resulting (n� 1)�n matrix stillhas n pairwise distinct rows. Without loss of generality, we shall formulate Bondy's theoremfor 0-1 matrices only (our arguments easily adapt to the general case, anyway). The versionof the pigeonhole principle that we use states that, for a > 0, there is no one-to-one mappingfrom [a] to [a� 1], where [a] denotes the set f1; 2; 3; . . . ; ag.De�nition The propositional pigeonhole principle is stated with propositional variables pi;jwhich are intended to denote the property of pigeon i being mapped to hole j . Thepropositional pigeonhole principle is the family of tautologies of the form n+1̂i=1 n_k=1 pi;k!! 0@ n_i=1 n+1_j=i+1 n_k=1(pi;k ^ pj;k)1Awhich state that there is no one-to-one mapping from [n+ 1] to [n].The tautologies expressing Bondy's theorem have propositional variables pi;j which havevalue True or False depending on whether a 1 or a 0 is in the (i; j) entry of the n� n matrix.These tautologies are:0@n�1̂i=1 n̂j=i+1 n_k=1:(pi;k $ pj;k)1A! 0BB@ n_k0=1 n�1̂i=1 n̂j=i+1 _1�k�nk 6=k0 :(pi;k $ pj;k)1CCAWe let PHP denote all substitution instances of the propositional pigeonhole principletautologies; that is to say, PHP contains every formula obtained from a pigeonhole tautologywith the variables pi;j uniformly replaced by arbitrary formulas Ai;j . Similarly BONDYdenotes all substitution instances of the propositional tautologies expressing Bondy's theorem.F + PHP and F + BONDY denote the propositional proof systems obtained by adding allPHP-formulas, or all BONDY-formulas, respectively, as additional axioms to the Fregesystem F .Theorem 11 The tautologies (with variables pi;j ) expressing Bondy's theorem have constant-depth, polynomial-size proofs in F + PHP. Conversely, the pigeonhole tautologies (withvariables pi;j ) have constant-depth, polynomial-size proofs in F + BONDY.Recall from [8] that the depth of a propositional formula is de�ned by counting thealternations of AND's and OR's in the formula (assuming that ! has been expressed interms of OR and NOT and that negations are pushed down to the leaves of the formula). Afamily of proofs is said to be constant-depth if there is a constant bounding the depths of�We have been informed that that T. Arai has independently obtained the results of Theorems 11 and 12.11



all formulas appearing in the proofs. There is a well-known construction of Paris-Wilkie [20,Theorem 26] which translates proofs in bounded arithmetic into constant-depth Frege proofs;so instead of proving Theorem 11 directly, we shall state and prove the corresponding (andstronger) theorem for bounded arithmetic.We now consider the equivalence betweenBondy's principle and the pigeonhole principle inthe setting of provability in I�0 . Recall that I�0 is a �rst-order theory of bounded arithmeticwith language containing the non-logical symbols 0; S;+; �;�, which is axiomatized with a�nite set of bounded formulas de�ning the non-logical symbols, plus induction for all boundedformulas. To formulate Bondy's theorem in I�0 , we suppose that there is an a� amatrix Mwith entries given by a binary relation g(x; y). The relation g(i; j) is intended to be true i�the (i; j) entry in M is 1. Bondy's principle for g is thus the following formula Bondy(g):(8x < a)(8y < a)(x 6= y! (9z < a)(:(g(x; z)$ g(y; z))))!(9z0 < a)(8x < a)(8y < a)(x 6= y! (9z < a)(z 6= z0 ^ :(g(x; z)$ g(y; z)))):The pigeonhole principle is stated for a unary function h by the following formula PHP(h):(8x < a)(h(x) < a� 1) ! (9x < a)(9y < a)(h(x) = h(y) ^ x 6= y):De�nition The �rst-order theory I�0 +�0-Bondy is de�ned to be the theory I�0 plusBondy(g) for every �0 -formula g . The �rst-order theory I�0 +�0-PHP is de�ned to bethe theory I�0 plus PHP(h) for every �0 -de�ned function h.Theorem 12 The theories I�0 +�0-Bondy and I�0 +�0-PHP are equivalent.Proof We �rst show the easier direction that the �0 pigeonhole principle is provable inI�0 +�0-Bondy (this was �rst noted by Kraj���cek). Suppose that h is a function with graphde�ned by a �0 -formula which maps [a] one-to-one into [a� 1]. De�ne an a� a matrix Aby letting its (i; j)-entry equal 1 if and only if h(j + 1) = i+ 1. (Note that we are indexingthe columns and rows of A starting with zero, so 0 � i < a and 0 � j < a.) Then A violatesBondy's principle. Thus we have shown that if the pigeonhole principle fails, then Bondy'stheorem fails. This argument is clearly formalizable in I�0 , and thus I�0 +�0-Bondyproves PHP (f).We now prove the harder direction that the Bondy principle Bondy(g), for g a �0 -predicate, is provable in I�0 +�0-PHP . For 0 � x; z < a, we have g(x; z) is true i� the(x; z) entry of the matrix is equal to 1 (now numbering rows and columns of the matrixstarting from zero). We think of each row as a string of 0's and 1's, which read fromleft-to-right, is the binary representation of a non-negative integer. We write x � y to denotethe condition that the number coded by row x is less than the number coded by row y ; orformally, x � y abbreviates the �0 -formula(9z < a)[g(y; z) ^ :g(x; z) ^ (8z0 < z)(g(x; z0)$ g(y; z0))]:12



We write x 4 y as an abbreviation forx � y _ (8z < a)(g(x; z)$ g(y; z)):The intuitive idea of our proof of Bondy's theorem is that if the n rows of the matrixare sorted according to �, and if, for each row except the �rst, we choose the �rst columnwhere that row di�ers from the immediately preceding row, then those n� 1 columns su�ceto distinguish all n rows. We show next that this intuitive proof can be carried out inI�0 +�0-PHP ; for this, we must avoid sorting the rows, but can still talk about theimmediately �-preceding row.Lemma 13 Let P (x) be a �0 -property, possibly with additional free variables. Then I�0can prove(a) (9x < a)P (x)! (9x < a)(P (x) ^ (8y < a)(P (y)! x 4 y), and(b) (9x < a)P (x)! (9x < a)(P (x) ^ (8y < a)(P (y)! y 4 x).Of course this lemma says that I�0 can prove the maximization/minimization properties of�0 -predicates w.r.t. the 4 ordering of the rows.Proof of Lemma 13. To prove part (a), let M(a) denote the formula to be proved.Clearly M(a) is a �0 -formula, and it is easy to see that I�0 can prove M(1) and(8u)(M(u)!M(u+ 1)). Thus, by induction, I�0 can prove M(a). Part (b) is provedsimilarly. 2To prove Theorem 12, we shall argue informally in I�0 +�0-PHP , assuming that thehypothesis of Bondy(g) holds:(8x < a)(8y < a)(x 6= y ! (9z < a)(:(g(x; z)$ g(y; z)))):First, using Lemma 13(a), there must be a row x0 so that (8x < a)(x0 4 x). UsingLemma 13(b), we see that for all rows x 6= x0 , there is a unique row y so that y � xand so that there is no row y0 such that y � y0 � x. We de�ne Pred(x) to be equal to this y .If we further de�ne Pred(x0) = x0 , then Pred(x) is a total, �0 -de�ned function.Let x 6= x0 ; clearly there exists at least one column z such that:(g(x; z)$ g(Pred(x); z)):We de�ne Col(x) to be equal to the least such column z . We let Col(x0) be unde�ned. Wewrite z 2 Col as an abbreviation for the �0 -formula(9x < a)(x 6= x0 ^ z = Col(x)):13



Claim: There is a z0 < a so that z0 =2 Col .Proof of claim: Suppose that the claim fails. Then a total function h(z) can be �0 -de�nedby letting h(z) equal the least x < a such that z = Col(x). But then h is a one-to-onemap from f0; 1; . . . ; a� 1g into f0; 1; . . . ; a� 1g n fx0g, which is easily seen to contradict the�0-PHP .We are now ready to prove the conclusion of Bondy(g). Let z0 be the column fromthe claim. Let x; y be two rows with y � x. We must show that there is a column zsuch that z 6= z0 and such that :(g(x; z) $ g(y; z)). Let z be the least value such that:(g(x; z) $ g(y; z)): we must show z 6= z0 . By Lemma 13(a), there is 4-minimum x0 < asuch that (8u � z)(g(x0; u)$ g(x; u))holds, since x itself satis�es this condition. Note that y � x0 . In particular,y 4 Pred(x0) � x0 4 x:Since (8u < z)(g(y; u)$ g(x; u)), we have also(8u < z)(g(Pred(x0); u)$ g(x0; u):Thus, from the de�nition of x0 , we have g(x0; u) and :g(Pred(x0); u); which implies thatz = Col(x0), so z 2 Col and z 6= z0 . 2Theorem 11 follows from Theorem 12 by the general Paris-Wilkie method of translatingproofs in bounded arithmetic into polynomial-size, constant-depth Frege proofs. Theessential idea of this translation in that universal and existential bounded quanti�ers becomeconjunctions and disjunctions, respectively, and that a use of induction becomes a series ofuses of modus ponens. In this way, our proof of Theorem 12 can be translated into a directproof of Theorem 11.4.2 Kruskal-Katona TheoremIn this section, we give polynomial-size Frege proofs of the corollary to the Kruskal-KatonaTheorem that is used in the proof of Frankl's Theorem. We begin by stating the fullKraskal-Katona theorem, and state the corollary as Theorem 15.De�nition The antilexicographic ordering of subsets of [n] is given byA � B , A � B or (A + B and maxfi : i 2 A nBg < maxfi : i 2 B nAg)Thus, for instance, f2; 3; 4g � f1; 2; 5g.De�nitionWe can represent a set fS1; . . . ; Smg of subsets of [n] by an m�n matrix faijgijof 0's and 1's by letting aij = 1 if j 2 Si and aij = 0 if j 62 Si . This matrix is calledincidence matrix of fS1; . . . ; Smg. A row representing a subset is called the incidence vectorof the subset. 14



For the rest of this section matrices will have rows ordered from top to bottom inantilexicographical order, but will have columns in reverse order from right to left startingwith column one. So, column one is the rightmost one and column n the leftmost one. Withthe columns of the incidence matrix ordered in this way, each incidence vector can be viewedas the binary representation of an integer, and the antilexicographic ordering correspondsto the usual ordering on the integers. For instance, the subset f1; 2; 5g of f1; 2; 3; 4; 5g isidenti�ed with the number with binary representation (10011)2 , which is 19 in base 10. Also,f2; 3; 4g would be the integer with binary representation (01110)2 , which is 14 in base 10.Thus, f2; 3; 4g � f1; 2; 5g holds since the former is less than the latter.In this way a set of m subsets of [n] can be represented as the set of integers fb1; . . . ; bmg,where bi is the number with binary representation equal to the i-th row of the incidencematrix.Notation The size of a row (incidence vector) is the number of 1's in the row. For an integercorresponding to such a row, we let the size of an integer be the number of ones in its binaryrepresentation. We write jfb1; . . . ; bmgj�k to denote the number of bi 's of size � k .De�nition A family of sets X is called hereditary if, whenever S is in X , then all subsetsof S are also in X . A matrix is hereditary if it is the incidence matrix of a hereditary set.Theorem 14 (Kruskal-Katona) Let 0 < ` < k . Let A be a collection of k sets of size m.Let B denote the �rst k sets of size m in the antilexicographic ordering. Then, the number ofsets of size ` which are subsets of members of A is at least as large as the number of sets ofsize ` which are subsets of members of B .An important point is that the Kruskal-Katona theorem stated in the above form cannotbe formalized with short propositional formulas; since there may be exponentially many setsof size ` which are subsets of members of A and B . However, the following corollary ofthe Kruskal-Katona theorem can be expressed with polynomial-size propositional formulas.Moreover, we will present a new proof of this second theorem and argue that our proof canbe formalized by a uniform polynomial-size Frege proof.Theorem 15 Let 0 � k � n. Let X be a hereditary set of cardinality m. ThenjXj�k � jf0; . . . ;m� 1gj�kWe will �rst explain how to express Theorem 15 propositionally as a family of tautologiesKKnm . Let X be a family of subsets of [n]. We encode X with the underlying variables pij ,i � m and j � n, where pij has the value True or False depending on whether a 1 or a 0 is inthe (i; j) entry of the incidence matrix of X . The propositional formula, KKnm , states thateither the set of subsets (described by the pij 's) are not hereditary, or two subsets are thesame, or for all k � n, jXj�k � jf0; . . . ;m � 1gj�k . We can express the fact that the pij 'srepresent a hereditary family by the following formula:^1�i�m ^1�j�n(pij ! _1�`�m6̀=i (:p`j ^ ^1�k�nk 6=j p`k $ pik))15



The quantities jXj�k , and jf0; . . . ;m � 1gj�k can be expressed by small propositionalformulas, using counting formulas (see [4]). Thus, the tautologies KKnm is expressibleby polynomial-size formulas.We next give a new, elementary proof of Theorem 15 based on the next two lemmas.Lemma 16 For all i; j and k ,jf0; . . . ; i� 1gj�k � jfj; . . . ; j + i� 1gj�kProof by induction on i. The base case i = 1 is obvious. Suppose now that the lemmaholds for all integers < i. To show the lemma for i, we have two cases depending on whetherthe sets of sequences f0; . . . ; i� 1g and fj; . . . ; j + i� 1g intersect or not.Case 1: j < i. It clearly su�ces to discard the intersection of f0; . . . ; i � 1g andfj; . . . ; j + i� 1g and show thatjf0; . . . ; j � 1gj�k � jfi; . . . ; i+ j � 1gj�kBut this is immediate by the induction hypothesis since j < i.Case 2: j � i. Choose k so that 2k < i � 2k+1 . The incidence matrix f0; . . . ; i� 1g has0's in columns k + 2 through n, and in column k + 1 it has 2k 0's and i � 2k 1's. Choose` � k so that 2` � j < 2`+1 . Case 2 divides into two cases depending on whether i+ j � 2`+1or i+ j > 2`+1 .Case 2.1: i+ j � 2`+1 . So the sequences fj; . . . ; j + i� 1g have 1's in column `+ 1, and0's in columns ` + 2 through n: n `+1 k+1 10 0� � � 0 0 0� � � 0 0 0� � � 0... ... ... ... ...0� � � 0 0 0� � � 0 0 1� � � 12k 0� � � 0 0 0� � � 0 1 0� � � 0... ... ... ... ...i� 1 0� � � 0 0 0� � � 0 1... ... ... ... ...j 0� � � 0 1... ... ... ... ...j + i� 1 0� � � 0 1Applying the induction hypothesis to the �rst 2k members of f0; . . . ; i � 1g and offj; . . . ; j + i� 1g yieldsjf0; . . . ; 2k � 1gj�k � jfj; . . . ; 2k + j � 1gj�k (3)16



Also, we apply the induction hypothesis to the last i� 2k members of f0; . . . ; i� 1g ignoringthe k + 1 column of 1's, and to the last i � 2k members of fj; . . . ; j + i � 1g ignoring the` + 1 column of 1's using k � 1 in place of k . This yieldsjf0; . . . ; i� 2k � 1gj�k�1 � jf(j + 2k)� 2`; . . . ; (j + 2k)� 2` + (i� 2k)� 1gj�k�1Hence, jf2k; . . . ; i� 1gj�k � jf2k + j; . . . ; i+ j � 1gj�kwhich together with (3) implies this case of the lemma.Case 2.2: i+j > 2`+1 . Let j2 = i+j�2`+1 and j1 = j�j2 . Thus, the last j2 members infj; . . . ; j + i� 1g contain 1's in column `+ 2. and the �rst j1 members have 0's in columns` + 2 through n and 1's in column `+ 1. Note j2; j1 > 1.n `+2 `+1 k+1 10 0� � � 0 0 0 0� � � 0 0 0� � � 0... ... ... ... ... ...0� � � 0 0 0 0� � � 0 0 1� � � 12k 0� � � 0 0 0 0� � � 0 1 0� � � 0... ... ... ... ... ...i� 1 0� � � 0 0 0 0� � � 0 1... ... ... ... ... ...j 0� � � 0 0 1... ... ... ... ... ...j + j1 � 1 0� � � 0 0 1 1� � � 1 1 1� � � 12`+1 0� � � 0 1 0 0� � � 0 0 0� � � 0... ... ... ... ... ...j + i� 1 0� � � 0 1We consider separately the two cases 2k � j1 and 2k < j1 .If 2k � j1 , by the induction hypothesis with i = 2k ,jf0; . . . ; 2k � 1gj�k � jfj; . . . ; 2k + j � 1gj�kWe also apply the induction hypothesis to the last i� 2k members of f0; . . . ; i� 1g ignoringthe 1's in column k + 1 and to the last i� 2k members of fj; . . . ; j + i� 1g ignoring the 1'sin column `+ 2, using k � 1 in place of k . We obtain,jf0; . . . ; i� 2k � 1gj�k�1 � jf(j + 2k)� 2`+1; . . . ; (j + 2k)� 2`+1 + (i� 2k)� 1gj�k�1Hence, jf2k; . . . ; i� 1gj�k � jf2k + j; . . . ; i+ j � 1gj�kThe case 2k < j1 proceeds similarly. Note that if 2k < j1 then j2 < 2k . First we comparethe �rst 2k members of f0; . . . ; i�1g with the last 2k of fj; . . . ; j+ i�1g. Then we comparethe last i� 2k members of f0; . . . ; i� 1g with the �rst i� 2k of fj; . . . ; j + i� 1g. 217



Lemma 17 For all i; j; k; t where i � 2k and 1 � j � i,jf2k; . . . ; 2k + j � 1gj�t � jfi; . . . ; i+ j � 1gj�tProof By induction on j . The base case for j = 1 is obvious. Suppose that the lemma holdsfor numbers < j . Without loss of generality, i+ j < 2k . The induction case has two cases.Case 1: i = 2` + s and i+ j � 2`+1 for some ` < k and 2` > s � 0. This means that themembers of fi; . . . ; i+ j � 1g have 1's in column `+ 1 and 0's in columns `+ 2 through n,and the members of f2k; . . . ; 2k + j � 1g have 1's in column k + 1 and 0's in columns k + 2through n. Also the members of f2k; . . . ; 2k + j � 1g have 0's in columns ` + 1 through k ,since j � 2` . Now we apply Lemma 16 with t � 1 to both sets of sequences reduced tocolumns 1 through ` and the lemma follows.Case 2: i = 2` + s and i+ j > 2`+1 for 0 � s < 2` and ` < k � 1. Let j1 = 2`+1 � i andj2 = j� j1 . Thus, j1 is the number of members of fi; . . . ; i+ j � 1g with 1's in column `+1and 0's in columns ` + 2 through n, and j2 is the number of members of fi; . . . ; i+ j � 1gwith 1's in column ` + 2 and 0's in the columns ` + 3 through n. The argument splits intotwo cases depending on whether any of the members of f2k; . . . ; 2k + j � 1g have 1's in the` + 1 column, i.e., whether j � 2` or j > 2` .Case 2.1: j � 2` . In this case there are no 1's in the `+1 column of f2k; . . . ; 2k + j � 1g.n k+1 `+2 `+1 1... ... ... ... ... ...i 0� � � 0 0 0� � � 0 0 1... ... ... ... ... ...i+ j1 � 1 0� � � 0 0 0� � � 0 0 1 1� � � 10� � � 0 0 0� � � 0 1 0 0� � � 0... ... ... ... ... ...i+ j � 1 0� � � 0 0 0� � � 0 1 0... ... ... ... ... ...2k 0� � � 0 1 0� � � 0 0 0 0� � � 0... ... ... ... ... ...2k + j � 1 0� � � 0 1 0� � � 0 0 0Consider the last j2 members of fi; . . . ; i + j � 1g and the �rst j2 members off2k; . . . ; 2k + j � 1g. By the induction hypothesisjf2k; . . . ; 2k + j2 � 1gj�t � jfi+ j1; . . . ; i+ j � 1gj�tRecall that the columns from `+1 to k in f2k; . . . ; 2k+j�1g contain only 0's. Now considerthe �rst j1 members of fi; . . . ; i+ j � 1g and the last j1 in f2k; . . . ; 2k + j � 1g. Transformthese, by discarding the columns ` + 1 to n and in the rest of the columns interchanging all0's and 1's. The incidence vector i+ j1 � 1 becomes 0 � � � 0 and i+ j1 � 2 becomes 0 � � � 01,18



etc. After this transformation, by Lemma 16, the �rst j1 members of fi; . . . ; i+ j � 1g havefewer members with � t � 1 0's than the last j1 members of f2k; . . . ; 2k + j � 1g. Whenwe undo the transformation, by reversing the interchange of 0's and 1's, the desired resultfollows.Case 2.2: j > 2` . Choose s0 so that j = 2` + s0 , i = 2` + s and s0 � s.n k+1 `+2 `+1 1... ... ... ... ... ...i 0� � � 0 0 0� � � 0 0 1... ... ... ... ... ...i+ j1 � 1 0� � � 0 0 0� � � 0 0 1 1� � � 10� � � 0 0 0� � � 0 1 0 0� � � 0... ... ... ... ... ...i+ j � 1 0� � � 0 0 0� � � 0 1 0... ... ... ... ... ...2k 0� � � 0 1 0� � � 0 0 0 0� � � 0... ... ... ... ... ...2k + 2` � 1 0� � � 0 1 0� � � 0 0 0 1� � � 10� � � 0 1 0� � � 0 0 1 0� � � 0... ... ... ... ... ...2k + j � 1 0� � � 0 1 0� � � 0 0 1The argument splits into two subcases depending on whether s0 � j1 .First suppose s0 � j1 . Consider the last s0 members of f2k; . . . ; 2k + j � 1g and the �rsts0 of fi; . . . ; i+ j � 1g . Ignore column k + 1 of 1's of f2k; . . . ; 2k + j � 1g and column `+ 1of 1's in the �rst s0 members of fi; . . . ; i+ j � 1g, and apply the induction hypothesis to thesets fi� 2`; . . . ; i� 2` + s0 � 1g and f2`; . . . ; 2` + s0 � 1gwith t � 1. To apply the induction hypothesis, we need s0 � i � 2` � 2` , which is easilyveri�ed.Finally we compare the last 2` members of fi; . . . ; i+ j � 1g and the �rst 2` members off2k; . . . ; 2k + j � 1g. In this case, by the induction hypothesis,jf2k; . . . ; 2k + 2` � 1gj�t � jfi+ s0; . . . ; i+ s0 + 2` � 1gj�tHere 2` � i+ s0 � i+ j1 = 2`+1 � 2k .Now suppose that s0 > j1 .Then s0 � j2 , since otherwise 2s0 > j1 + j2 = j = 2` + s0 ,contradicting s0 < 2` . The argument is almost the same as when s0 � j1 . Take the last s0members of f2k; . . . ; 2k + j � 1g and of fi; . . . ; i + j � 1g and ignore the k + 1 column of1's in f2k; . . . ; 2k + j � 1g and the ` + 2 column of 1's in fi; . . . ; i + j � 1g and apply theinduction hypothesis to the setsf2`; . . . ; 2` + s0 � 1g and fi� 2`; . . . ; i� 2` + s0 � 1g19



with t� 1. To apply the induction hypothesis, we need s0 � i+ 2` � 2`+1 � 2` ; which holdssince i+ 2` � 2`+1 = i� 2` = s � s0 .Finally we compare the �rst 2` members of f2k; . . . ; 2k+ j� 1g with the �rst 2` membersof fi; . . . ; i+ j � 1g. In this case by the induction hypothesis we getjf2k; . . . ; 2k + 2` � 1gj�t � jfi; . . . ; i+ 2` � 1gj�t 2Now we are ready to complete the proof of Theorem 15.Proof of Theorem 15. By induction on the size of X . If jXj = 1 it is obvious. Suppose thatthe theorem holds for jXj < m. Let ` 2 [n] be maximum so that ` is in some set in X . LetX1 be the subset of X containing those sets of X that do not contain `, and let X2 be theset X n X1 . Let m1 and m2 be the cardinalities of X1 and X2 , respectively. Since X ishereditary, m2 � m1 � 2`�1 . De�ne X�2 be the set fS n f`g : S 2 X2g : Note that X�2 mustbe hereditary. By two applications of the induction hypothesis,jX1j�k � jf0; . . . ;m1 � 1gj�kand jX�2 j�k�1 � jf0; . . . ;m2 � 1gj�k�1:Now, jXj�k = jX1j�k + jX�2 j�k�1� jf0; . . . ;m1 � 1gj�k + jf0; . . . ;m2 � 1gj�k�1� jf0; . . . ;m1 � 1gj�k + jf2`�1; . . . ; 2`�1 +m2 � 1gj�k� jf0; . . . ;m1 � 1gj�k + jfm1; . . . ;m1 +m2 � 1gj�k= jf0; . . . ;m� 1gj�kThe third inequality follows from Lemma 17. 2We claim that the above proof can be formalized by polynomial-size Frege proofs. Theeasiest way to see this is to �rst notice that Lemma 17 is expressible by polynomial-sizepropositional formulas, and the proof of Theorem 15 from Lemma 17 is also easily formalizedby polynomial-size Frege proofs. To see that Lemma 17 has a short Frege proof, we point outthat since the lemma is true (by the proof provided), the simplest Frege proof is obtained byexhaustively checking that the formula holds for all possible values of i, j , k and t. Checkingthat the lemma holds for a particular value of i; j; k; t is polynomial time Frege provable, andthere are less than (n+m)4 possible values of i; j; k; t. Thus, this \brute-force" proof is easilyformalizable by a polynomial-size Frege system. With more work, it can be shown that ourentire proof of Theorem 15 is actually formalizable by polynomial-size Frege proofs, and thusthere exist uniform polynomial-size Frege proofs of KKnm .5 ConclusionAs we have seen above, there is a dearth of good examples of tautologies that provideconvincing evidence of an exponential separation of Frege and extended Frege proof systems.20



In fact, the only good combinatorial candidates we have found are based on Frankl's theorem(even the t = 2 case). However, in the past a similar state of a�airs has held for the pigeonholeprinciple and for Bondy's theorem and, subsequently, polynomial-size Frege proofs for thesehave been found. This, it is not unlikely that further progress will �nd polynomial-size Fregeproofs of the tautologies based on Frankl's theorem.We also have a large number of examples of combinatorial principles, most notably,the Odd-town Theorem and the Graham-Pollak Theorem, which have fairly simple linearalgebra proofs. These have polynomial-size extended Frege proofs and we conjecture thatthey have quasipolynomial-size Frege proofs. However, combinatorialists have reportedly putsigni�cant e�ort into searching for proofs that are not based on linear algebra, so it mayrequire a signi�cant breakthrough to �nd polynomial-size Frege proofs of these principles.In the course of preparing this paper, we considered several other examples based onexpander graphs and on matching algorithms; however, none of these ultimately yieldedexamples which could be conjectured to provide an exponential separation of Frege andextended Frege proof systems.6 AcknowledgementsWe would like to thank the numerous people who have provided stimulating suggestionsand input to this line of investigation. In particular, we would like to thank the followingpeople: L�aszl�o Babai, V. Chv�atal, Stephen Cook, Mauricio Karchmer, Jan Kraj���cek, RussellImpagliazzo, Steven Rudich, Michael Sipser, and Herbert Wilf.References[1] M. Ajtai,The complexity of the pigeonhole principle, in Proceedings of the 29-th AnnualIEEE Symposium on Foundations of Computer Science, 1988, pp. 346{355.[2] L. Babai and P. Frankl, Linear algebra methods in combinatorics. Preliminaryversion of book, 1988.[3] S. R. Buss, The Boolean formula value problem is in ALOGTIME, in Proceedings ofthe 19-th Annual ACM Symposium on Theory of Computing, May 1987, pp. 123{131.[4] , Polynomial size proofs of the propositional pigeonhole principle, Journal of SymbolicLogic, 52 (1987), pp. 916{927.[5] , Propositional consistency proofs, Annals of Pure and Applied Logic, 52 (1991),pp. 3{29.[6] , Algorithms for Boolean formula evaluation and for tree contraction, in Arithmetic,Proof Theory and Computational Complexity, P. Clote and J. Kraj���cek, eds., OxfordUniversity Press, 1993, pp. 96{115. 21
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