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Abstract: Embryonics’ proposal is to construct arrays of processing elements with
self-diagnosis and self-reconfiguration abilities able to tolerate the presence of
failing cells in the same fashion as natural cellular systems do. Self-healing
mechanisms found in nature and the implicit redundancy of cellular architectures
constitute the foundations of embryonic systems’ fault tolerance properties. It will
be shown in this paper how by incorporating the biological concepts of
chromosome and gene, the complexity of the MUXTREE embryonic architecture
can be simplified, in comparison with the previous version. It is argued that by
assuming a broader meaning for the concept of evolution it possible to classify
embryonic arrays and other adaptable systems as evolvable.

1   Introduction

When a system (natural or man-made) reaches a certain level of complexity, it becomes
very difficult to grasp all of its underlying dynamics, and therefore, it becomes less
controllable and less reliable [1]. However, the needs of the modern individual are
fulfilled using extremely complex systems. What would our society be without
computers, satellites, medicines, mega-software and free market? Complex systems are
the foundation of our life-style but they have become very difficult to design. Therefore,
it is necessary to look for new methodologies and strategies to deal with complex
systems. One approach is the refinement of traditional design techniques, but the
techniques themselves are becoming too complex to be considered error-free. Evidently,
we have to look somewhere else for the answers [2].

Nature offers to us some remarkable examples of how to deal with complexity and its
associated unreliability. For example, the human body is one of the most complex
systems ever known. Local failures are common, but the overall function of our organism
is highly reliable because of the self-diagnosis and self-healing mechanisms that work
ceaselessly throughout our bodies. These mechanisms are the result of millions of years
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of our gene’s evolution. Evolving instead of designing seems to be an attractive
alternative when dealing with complexity [3].

During the past few years the work done on evolvable systems has generated some
remarkable results [4,5]. Genetic algorithms, neural networks, artificial brains, genetic
engineering and evolvable hardware are just a few examples of this novel approach.
What is in evolution that is so attractive for hundreds of engineers and scientists? The
answer can be found in the characteristics that evolved systems possess, for example,
adaptation, auto-regulation and learning.

Embryonics is the design of novel reconfigurable hardware inspired by mechanisms
found in nature. We show in this paper how Embryonics can be used to incorporate fault
tolerance characteristics, e.g. automatic diagnosis and reconfiguration, into processor
arrays by using self-healing like mechanisms.

The paper is organised as follows. Section 2 offers a brief survey on the subjects of
evolution and evolvable systems. The Phylogeny-Ontogeny-Epigenesis (POE) model is
introduced as a way of classifying evolvable systems. In section 3 a short introduction to
processor arrays and their associated fault tolerance techniques is given. The main
characteristics of the Embryonics project are explained in section 4. In section 5 a
particular embryonic architecture called MUXTREE is analysed and possible
improvements are proposed. An example of how to implement a circuit using embryonic
arrays is given in section 6. Conclusion are given in section 7.

2   Evolution and Evolvable Systems

To try to find a universal definition for evolution seems to be a fruitless search. The
Oxford Dictionary of Current English defines evolution as “origination of species by
development from earlier forms; gradual development of phenomenon, organism, etc.”
[6]. The first definition restricts evolution to natural (or artificial) selection; the second,
uses the term as a synonym for development. Evolution, in a broad sense, is much more
than that.

Anyone working on the field could give a personal definition for evolution. The term
has different meanings for biologists, engineers, geneticists, software developers and
priests. When a term is so difficult (or easy) to define, one way of explaining it is
describing the properties of the objects possessing such attribute. Although it is not
possible to achieve a general agreement on the definition of evolution, it is clear that
evolvable systems are: adaptive, fault-tolerant, dynamic, complex in structure and
behaviour, dependant on initial conditions (chaotic), capable of learning and made out of
interacting simpler units. The list is not exhaustive but, incomplete as it is, it manifests a
feature characteristic of evolution and evolvable systems: Change.

We perceive evolution as the continuous change of state in adaptive complex systems.
Planetary systems, species and Economics although different in essence, all share the
common attribute of perpetual change. Evolution is a sensory experience. It is us who, in
an attempt to understand and predict the behaviour of such phenomena, try to find some
coherent transition from one state to the next one. Change is the only objective attribute
of dynamic complex systems, the rest is subjective interpretation.
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It is possible now to state that evolution, in a broader sense, is the spontaneous and
purposeful change of state in a dynamic complex system as a response to changes in the
environment. Purpose is the subjective quality that we, as observers of the system,
attribute to evolvable systems.

2.1   The POE model

Sánchez et al. [7], proposed the Phylogeny-Ontogeny-Epigenesis model (POE model) as
a framework to represent the three levels of organisation that can be distinguished in
living beings.

Phylogeny embraces the evolution of species when genes are passed from one
generation to the next. This is the kind of evolution usually associated with natural
selection, where infrequent errors occurring during the copy of genes (mutations)
originate new traits on the species. This traits, in some cases, allow the species to better
adapt themselves to changes in the environment. Phylogeny presents evolution as species
adaptation.

Ontogeny refers to the evolution (development, change of state) of multicellular
organisms during their embryonic phase. When reproduction takes place, the new
individuals are formed out of a single cell (the fertilised egg). During the following
weeks after conception, the mother cell and all its offsprings copy themselves
continuously following the “instructions” stored in their DNA (the genome). During this
reproductive process cells differentiate to shape the different tissues, organs and limbs
that characterise a complete healthy individual of a particular species. Ontogeny is
evolution as embryonic development.

Epigenesis is the evolution of individuals’ ability to respond to changes in the
environment through learning. After birth every individual must adapt to the environment
(society, geography, historical context) on which he/she has to live. To achieve
adaptation every individual is born with a set of systems defined by the genome (nervous
system, immune system and endocrine system), which suffer modifications when
interacting with the outside world. Hence, epigenesis is evolution as learning. The POE
model can be represented as three orthogonal axis, as shown in figure 1.

Phylogeny
(Species evolution)

Ontogeny
(Embryonic development)Epigenesis

(Learning)

Fig. 1 The POE model for evolvable systems



Published in Proceedings of ICES98, Lausanne, Switzerland, September, 1998
Lecture Notes in Computer Science 1478, Springer-Verlag, 1998, pp.206-217

Human-made evolvable systems can be classified using the POE model. The work on
genetic algorithms and evolvable hardware can be placed on the phylogeny axis.
Research on artificial intelligence and learning systems can be situated in the epigenesis
axis. Works on self-reproducing cellular automata such as the Embryonics project would
find a place in the ontogeny axis.

3   Processor Arrays

Processor arrays are a paradigm of computer architecture where multiple identical
processing elements (cells) are interconnected in a regular pattern so that the processing
power of the whole system (ideally) grows linearly with the number of processors.
Communications are strictly local, i.e. each processor only communicates with its nearest
neighbours. Examples of this kind of systems are:

Cellular Automata (CA).- In CAs the state of a cell is defined by the state of its
nearest neighbours. There is a finite (usually small) number of possible states for a cell.
The transition from one state to the next at discrete time steps in all the cells is what
determines the array’s behaviour and applications. CAs have been used for studying self-
reproduction [8], and modelling of dynamic complex systems [9,10].

Systolic Arrays.- In systolic arrays the processing elements are designed to match a
particular algorithm. Systolic means that synchronous pipelined computations take place
along all dimensions of the array and result in very high computational throughput. The
main applications for such computing machines are found in the fields of signal and
image processing, pattern recognition, matrix arithmetic and graph algorithms [11].

Wavefront Arrays.- Wavefront arrays combine the systolic pipelining principle with
the dataflow computing concept. They are data-driven and do not use a global clock,
therefore, the requirement for correct timing in the systolic array is replaced by a
requirement for correct sequencing in the wavefront array [12]. The applications of this
architecture are practically the same as for systolic arrays.

Parallel structures, like those mentioned above, are good candidates for being
implemented in silicon because of their regularity and relative simplicity in the
processing unit. In recent years the idea of parallel computers on a chip has become
feasible thanks to the advances in VLSI and WSI technologies. Nevertheless, production
yields of VLSI circuits is far from being optimum; therefore, reconfiguration techniques
have been explored for the past few years in order to provide VLSI processor arrays with
fault tolerance.

3.1  Fault Tolerance Techniques in Processor Arrays

All fault tolerance techniques for hardware systems rely on the use of spare components
to substitute failing elements. In the past, the cost associated with this redundancy has
prevented the widespread use of fault-tolerant hardware. However, in the case of VLSI
processor arrays, redundancy comes for free because not all available cells in the array
are used on every application.
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Fault tolerance in processor arrays implies the mapping of a logical array into a
physical non-faulty array, i.e. every logical cell must have a correspondent physical cell
[13]. When faults arise, a mechanism must be provided for reconfiguring the physical
array such that the logical array can still be represented by the remaining non-faulty cells.
All reconfiguring mechanisms are based on one of two types of redundancy: Time
redundancy or hardware redundancy [14].

In time redundancy the tasks performed by faulty cells are distributed among its
neighbours. In this scheme the application must allow a degradation in performance.
When reconfiguration occurs, processors dedicate some time performing its own tasks
and some performing faulty cells functions. Interconnection is a key issue. Besides, the
algorithm being executed must be flexible enough so as to allow a simple and flexible
division of tasks.

In hardware redundancy physical spare cells and links are used to replace the faulty
ones. Therefore, reconfiguring algorithms must optimise the use of spares. In the ideal
case a processor array with N spares must be able to tolerate N faulty cells; but, in
practice, limitations on the interconnection capabilities of each cell prevents this goal
from being achieved.

Most of hardware redundancy reconfiguration techniques rely on complex algorithms
to re-assign physical resources to the elements of the logical array. In most cases these
algorithms are executed by a central processor which also performs diagnosis functions
and co-ordinates the reconfiguration of the physical array [15]. This approach has
demonstrated to be effective, but its centralised nature makes it prone to collapse if the
processor in charge of the fault tolerance functions fails.
An alternative approach is to distribute the diagnosis and reconfiguration mechanisms
among all the cells in the array. In this way no central agent is necessary and the time
response of the system improves. This mechanism resembles that found in natural
cellular systems.

4   Embryology + Electronics = Embryonics

Embryonics was firstly proposed by Mange and Marchal [16,17] as a new family of field
programmable gate arrays (FPGAs) inspired by the mechanism sustaining the
development of multicellular organisms in nature.

4.1   The Central Dogma

The DNA is a ribbon of 2 billion characters which encode the ensemble of the genetic
inheritance of the individual and, at the same time, the instructions for the construction
and the operation of the complete organism. In this sense DNA can be both information
and physical medium.

In any living being, every one of its constituent cells performs the same basic
operation regardless of the particular function it is involved with, i.e. each cell interprets
the DNA strand allocated in its nucleus to produce the proteins needed for the survival of



Published in Proceedings of ICES98, Lausanne, Switzerland, September, 1998
Lecture Notes in Computer Science 1478, Springer-Verlag, 1998, pp.206-217

the organism. Proteins are particular sequences of amino acids; such sequences are stored
in the DNA as successions of nucleotide triplets (codons).

 Protein synthesis imply two mechanisms: transcription and translation of the DNA.
During transcription, the sequence stored in the DNA is copied by the enzyme RNA
polymerase into messenger RNA (mRNA). During translation, mRNA is bond to
ribosomes inside the cell where transfer RNA (tRNA) carrying amino acids are attached
to the mRNA. The ribosome catalyses the bond between amino acids to build a molecule
of the corresponding protein. When a cell reproduces, the offspring get a copy of its
mother’s DNA so that the complete process can be ceaselessly repeated. The flow of
information from DNA to protein and from DNA of the parent to DNA of the offspring is
known as the central dogma [18].

Although the DNA is identical in all the cells, only part of the strand is interpreted.
Which part or parts of the DNA are interpreted will depend on the physical location of
the cell with respect to its neighbours [19,20]. Figure 2 represents the way DNA’s
information is organised. Arrows indicate the direction in which complexity increases,
e.g. a set of nucleotides forms a codon, etc.

D N A
(G e n o m e )C h r o m o so m eG e n e sC o d o n sN u c le o tid e s

Fig. 2  Structure of DNA

The aim of Embryonics is to transport these basic structure to the 2-dimensional world
of cellular arrays using specifically designed FPGAs as building blocks. An equivalent
representation of the architecture of field-programmable processor arrays is shown in
figure 3.

F lip -flo p ,
c ap ac ito r s , e tc .

F ie ld s  in
r e g iste r s

C o n fig .
R e g iste r s

C o lu m n s in
th e  ar r ay

G e n o m e
M e m o r y

Fig. 3  Structure of a field-programmable processor array

4.2   Embryonics Architecture

Similarly to natural cellular systems, every one of the embryonic array’s cells
performs the same basic operation independently of the particular logic function it is
involved with, i.e. each cell interprets one of the configuration registers allocated in its
memory to perform the logic operations needed for the correct implementation of the
system’s specification. Which configuration register is selected will depend on the co-
ordinates of the cell determined by those of its neighbours. Embryonic cellular arrays
share the following properties with their biological counterparts [21]: Multicellular
organisation (the logic blocks of an FPGA), cellular differentiation (every cell has a
unique set of co-ordinates) and cellular division (every cell is configured by only one
configuration register). Figure 4 shows the architecture of a generic embryonic system.
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The address generator assigns to each cell an individual set of co-ordinates, which
depend exclusively on the co-ordinates of the nearest  south and west neighbours. The
logic block is controlled by a configuration register which is selected by the
corresponding co-ordinates. When a fault is self-detected by a cell, it becomes
transparent for the calculation of  co-ordinates allowing another cell to take its co-
ordinates and therefore its function. Digital data are transmitted from one cell to its
neighbours through a North-East-West-South (NEWS) connection. The I/O router block
allows the spread of information over all the array. This block is controlled by one
section of the corresponding configuration register.

The architecture shown in figure 4 presents the following advantages:
•  It is highly regular, which simplifies its implementation on silicon.
•  The actual function of the logic block is independent from the function of the

remaining blocks. This modularity can be exploited to produce a family of
embryonic FPGAs, each member offering either a particular logic function, e.g. a
binary selection function [21] or a microprogrammed architecture [22].

•  Provided the architecture of the logic block is kept simple, it would be possible to
implement built-in self test (BIST) logic to provide self-diagnosis without
excessively incrementing the silicon area [21,23].

5   The MUXTREE Revisited

5.1   General Architecture

MUXTREE designates a particular implementation of embryonic FPGA where the
processing element of the basic cell (logic block in figure 4), is a selector or multiplexer
[21,24]. Multiplexers have the particular characteristic of being able to implement any
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Fig. 4  Basic Components of an Embryonic System
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node from an ordered binary decision diagram (OBDD), which in turn can represent any
combinatorial or sequential logic function [25,26]. Therefore, the resulting architecture is
ideal to be implemented as an FPGA. Nevertheless, the MUXTREE architecture, as
shown in figure 4, has the following drawbacks:

•  Each cell must be able to store the configuration registers of all the cells in the
array. For example, in a 32x32 array, each cell must have 1,024 configuration
registers, from which only one will be used. This level of redundancy prevents a
practical and reliable implementation of the system.

•  Depending on the reconfiguration technique chosen (row elimination, column
elimination, neighbour substitution, etc.), only one of the co-ordinates is re-
calculated when a fail is detected, therefore, it is possible to simplify the address
generator block (see Fig. 6).

To overcome the first problem we propose a new architecture for the memory
subsystem inspired by the concept of chromosome. The DNA strand is not a single
double helix as the general concept might suggest, but it is divided into a number of sub-
units called chromosomes.

In the same way, the genome or configuration program for an embryonic FPGA can be
divided into smaller parts in order to concentrate the information closer to where it will
be needed. For example, if the reconfiguration strategy followed is row replacement, then
it would be convenient to divide the genome by columns because a failing cell can only
be replaced by another on the same column. Figure 5 shows an example of the memory
subsystem simplified by the chromosome analogy. Numbers in bold are the co-ordinates
selecting the configuration register on each cell.

This chromosome approach reduces the number of configuration registers per cell to

the number needed in the original design divided by the number of columns. In the case
of square arrays every cell contains only the square root of the number of registers
needed in the original design, which represents substantial savings on silicon area.

 Another characteristic of the previous version of the MUXTREE is that when a cell is
self-detected faulty, it needed to broadcast a non-OK signal to all the cells in the same
row and column so that they can recalculate their new co-ordinates and  consequently,
select a new configuration register. But close inspection of figure 5 reveals that when
reconfiguration takes place the column co-ordinate remains constant.  Therefore, it is
possible to simplify the reconfiguration mechanism by calculating row co-ordinates only

0,2

0,1

0,0

1,2

1,1

1,0

2,2

2,1

2,0

0,2
0,1
0,0

1,2
1,1
1,0

2,2
2,1
2,0

0,2
0,1
0,0

1,2
1,1
1,0

2,2
2,1
2,0

0,2
0,1
0,0

1,2
1,1
1,0

2,2
2,1
2,0

Fig. 5  Genome memory and its distribution in an embryonic array
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and propagating non-OK signals exclusively to neighbours in the same row. Figure 6
illustrates these mechanisms.
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Fig. 6  Embryonic array
a) Co-ordinates calculation   b) Fault detection   c) Reconfiguration mechanism

One advantage of the proposed scheme is that it becomes possible to re-load
independent chromosomes (configuration registers of a particular column), without
affecting the others. This characteristic could be used to evolve embryonic arrays using
genetic algorithms. The chromosomes in a genome would be the population exposed to
crossover and mutation. Routing of circuits could be achieved following this approach.

5.2   Synthesis Method

The design cycle for implementing a system based on embryonic arrays is as follows:

1.  Express the function to be implemented as a set of Boolean equations.
2.  Obtain the OBDD for each one of the equations.
3.  Replace each node of the OBDDs with a 2-1 multiplexer, using the node’s

variable as selection input and the outputs of the node as inputs to the multiplexer.
4.  Map the network of multiplexers into an array of embryonic cells, assigning one

multiplexer to each cell. This has been experienced to be the most difficult step due
to the finite connectivity of the cells.

5.  Obtain a configuration register for each cell in the array. The set of all
configuration registers conforms the genome of the application.

After power-up all the cells in the array calculate their co-ordinates. At the same time
external circuitry downloads the genome into the array column by column. The memory
block was designed in such a way that chromosomes are downloaded to all the cells in
the corresponding column at the same time, making this process faster.



Published in Proceedings of ICES98, Lausanne, Switzerland, September, 1998
Lecture Notes in Computer Science 1478, Springer-Verlag, 1998, pp.206-217

6   Example

To illustrate embryonic arrays’ properties the design of a programmable frequency
divider is presented next. Figure 7 shows the circuit’s block diagram. It is composed by a
3-bit selector which latches either the division factor n, or the next state of a 3-bit down-
counter, according to the output of a zero detector. In this way, a 1-cycle wide pulse will
be generated every n cycles of F. The output of the circuit is taken from the output of the
zero detector. It will be high during one cycle of F when the down-counter reaches the
000 state.

Figure 8 shows the hardware implementation of the circuit shown in figure 7. Every
multiplexer corresponds to a node in the corresponding OBDD. A,B,C are the outputs of
the 3-bit down counter, C being the most significant bit. Multiplexers 1, 2 and 3
implement the selector block. These multiplexers update their outputs on the rising edge
of F. DS2, DS1 and DS0 are used to set the value of n.

Figure 9 shows how the circuits in figure 8 were mapped into an embryonic array. The
numbers on each cell correspond with the numbers assigned to the multiplexers. Cells
labelled S are spare cells, two rows for this example. Cells labelled R are routing cells.
Routing cells are needed because every cell has direct connections only with its cardinal
neighbours.
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Fig. 7  Programmable frequency divider

1
S
0

1
S
0

1
S
0

1
S
0

1
S
0

1
S
0

1
S
0

1
S
0

DS2
Z

C+

DS1
Z

B+

DS0
Z

A+

C

B

A

1
B
A

0
B

A+

1
S
0

0
A
1

A+

1
S
0

A
B

A+
B+

1
S
0

C C+

0

1

0

0

Z1

2

3

4

5

6

7

8

11

10

9

F

F

F

Fig. 8 Hardware implementation of circuit in figure 7.



Published in Proceedings of ICES98, Lausanne, Switzerland, September, 1998
Lecture Notes in Computer Science 1478, Springer-Verlag, 1998, pp.206-217

Figure 10 shows the simulation results obtained for the frequency divider. Labels
correspond with those of figure 8. OK4 and OK8 simulate fails in cells 4 and 8
respectively. Notice that when OK signals go to logic 0, there is a small time interval on
which the output of the circuit remains constant, just before returning to normal
behaviour. This is due to the reconfiguration process being carried out.

7   Conclusions

Evolution is perceived by the change of state in a dynamic complex system. In this
broader sense, we can apply the attribute “evolvable” to numerous man-made systems
whose configuration or response is influenced by the environment. In this way genetic
algorithms, neural networks, artificial intelligence projects and Embryonics can all be
classified as evolvable systems.

Embryonic arrays have demonstrated to be an attractive alternative for the design of
biologically-inspired field programmable processor arrays with fault tolerance properties.
We still are in the early stages of the Embryonics project, but the results obtained so far
are encouraging to keep investigating on the application of biological concepts to the
design of fault-tolerant engineering systems.

S S S S

S S S S

R 10 R 1

9 11 6 R

7 5 4 R

8 3 2 R

S S S S

R 10 R 1

9 11 6 R

7 5 4 R

8 3 2 R

R 10 R 1

9 11 6 R

7 5 4 R

8 3 2 R

a) b) c)
DS0    DS1    DS2 DS0    DS1    DS2 DS0    DS1    DS2

F F F

Z ZZ Z Z Z Z Z

Fig. 9  Frequency divider implemented in embryonic array.
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