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A Multidimensional Scaling Framework for Mobile
Location Using Time-of-Arrival Measurements
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Abstract—Localization of mobile phones is now a very popular
research topic. In this paper, a simple algorithm is devised for mo-
bile location estimation using time-of-arrival measurements of the
signal from the mobile station received at three or more base sta-
tions, via modifying the classical multidimensional scaling tech-
nique, which has been developed for analyzing data obtained from
physical, biological, and behavioral science. The bias and variance
of the proposed algorithm are also derived. Computer simulations
are included to corroborate the theoretical development and to
contrast the estimator performance with several conventional ap-
proaches as well as the Cramér–Rao lower bound.

Index Terms—Mobile terminal, multidimensional scaling, posi-
tioning algorithm, time-of-arrival.

I. INTRODUCTION

THE problem of locating a mobile station (MS) has been
receiving considerable interest, especially after the Federal

Communications Commission (FCC) in the United States has
adopted rules to improve the Emergency 911 (E-911) services
by mandating the accuracy of locating a E-911 caller to be within
a specified range, even for a wireless phone user [1]. Apart from
E-911, mobile location services have triggered a large number of
innovative applications [2]–[6]. For example, mobile position
information is useful in monitoring the mentally impaired
(e.g., elderly with Alzheimers disease), young children, and
parolees. Moreover, logistics and bus companies can utilize this
technology for fleet management to increase their efficiency.
Other applications include location billing, interactive map
consultation, and location-dependent advertising.

Globalpositioningsystem(GPS)canbeusedtoprovidemobile
location. However, installing an additional GPS receiver to the
MS will increase the power consumption and computational
complexity, which ultimately impact the talk and standby time,
size, weight, as well as cost of the MS [7]. Alternatively, the
base stations (BSs) in the existing wireless network can be
utilized to intercept the MS signal for position estimation. As
a result, it is expected that mobile location using the BSs,
instead of a GPS, is preferable and more cost-effective for
the consumer.
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Common location approaches [2], [6] using the BSs are
based on time-of-arrival (TOA), received signal strength (RSS),
time-difference-of-arrival (TDOA), and/or angle-of-arrival
(AOA) measurements determined from the MS signal received
at the BSs. In this paper, we focus on two-dimensional mobile
positioning given the TOA information. In the TOA method,
the one-way propagation time of the signal traveling between
the MS and each of the BSs is measured, which means that
precisely synchronized clocks for the MS and all BSs are
required, although such synchronization will not be needed if
the round-trip time or two-way TOA is measured [2]. (Notice
that for TDOA-based location systems, only synchronicity of
the BSs is necessary because they use differences in TOAs
rather than absolute time measurements as TOA-based location
systems do.) Each TOA measurement then provides a circle
centered at the BS on which the MS must lie. With three or more
BSs, the measurements are converted into a set of circular equa-
tions, from which the MS position can be determined with the
knowledge of the BS geometry. It should be pointed out that in
practical situations, multipath propagation and nonline-of-sight
(NLOS) propagation are two major sources of error, which can
introduce large biases in the TOA measurements and result in
unreliable MS position estimation. In fact, mitigation of the
impairments due to multipath and/or NLOS is another key
research topic in wireless location and recent works [8]–[12]
in this area have reported some promising results. As a result,
we reasonably assume that the multipath and NLOS errors in
the TOA measurements have been successfully mitigated. It is
worthy to note that accurate position estimation performance
can be attained for location systems employing ultra-wideband
signals [13], even when the multipath and NLOS errors are
neglected.

There are basically two approaches for mobile positioning
using TOA measurements. The first approach involves solving
the nonlinear equations relating these measurements iteratively
and commonly used techniques include linearization via Taylor-
series expansion [14], [15], steepest descent method [16], and
Newton-type iteration [17]. Although this approach can attain
optimum estimation performance, it is computationally inten-
sive and sufficiently precise initial estimates are required to ob-
tain the global solution. On the other hand, the second approach,
which allows real-time realization as well as ensures global con-
vergence, reorganizes the nonlinear equations into a set of linear
equations by introducing an extra variable that is a function of
the source position. The linear equations can then be solved
straightforwardly by using least squares (LS) as in the spherical
interpolation (SI) technique [18], [19] for TDOA-based location
systems, and the corresponding estimator is referred to as the
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least squares calibration (LSC) method [20] or by eliminating
the common variable via subtraction of each equation from all
others, which is referred to as the linear least squares (LLS) es-
timator [21]. We can also exploit the relation between the extra
variable and MS position by using the two-step weighted least
squares (WLS) through simple modification to [22], which is
originated in location with TDOA measurements, or by em-
ploying the technique of Lagrange multipliers, which is referred
to as the quadratic least squares (QLS) estimator [21]. Inspired
by Birchfield’s work [23] of utilizing classical multidimensional
scaling (MDS) in microphone array calibration, in this paper, we
derive a classical MDS approach for MS positioning using TOA
measurements, which also provides a fast and globally conver-
gence solution. Another similar and recent work on applying
classical MDS for localization can be found in [24], where mul-
tiple nodes in a sensor network are needed to locate but only
a few anchor nodes with known positions are available. Notice
that there are many branches in MDS, and the location methods
suggested in [16] and [17] in fact belong to the branch of the
metric LS MDS [25].

Basically, MDS [25]–[27] is a field of study concerned with
the search for a low-dimensional space in which points in the
space represent the objects such that the distances, or dissimi-
larities, between the points in the space match. MDS has been a
common technique for analyzing experimental data in physical,
biological, and behavioral science. Classical MDS is a subset of
MDS where the dissimilarities are Euclidean distances, which
can be used to determine the relative coordinates of points given
only their pairwise distances. By the same principle, it is ex-
pected that the MS location can be determined if the distances
among the MS and BSs are provided. Our major contributions
in this paper include i) development of an accurate and compu-
tationally attractive algorithm for mobile location via modifying
the classical MDS technique (The idea is novel in the sense that
the classical MDS is utilized although the computationally de-
manding metric LS MDS has been suggested in the literature
[16], [17].); ii) investigation of the estimator relationship with
the LSC, LLS, two-step WLS, and QLS location algorithms
via consideration of the classical MDS method as an LS cost
function minimization problem; iii) derivation of the bias and
variance for the proposed algorithm, although most MDS ana-
lyzes do not include standard errors on parameter estimates [27].
Moreover, the derived bias and variance formulae can be used
to produce the performance of the LSC, LLS, two-step WLS,
and QLS estimators.

The rest of this paper is organized as follows. In Section II,
we first present the model for the TOA measurements. Classical
MDS is introduced via the development of an infeasible posi-
tioning algorithm. By modifying the classical technique, a prac-
tical mobile location algorithm is then derived. In Section III,
prior to studying the bias and variance of the proposed method,
a variance analysis formula for general optimization problems is
developed. The relationships between the modified MDS, LSC,
LLS, two-step WLS, and QLS methods are also examined. Sim-
ulation results are included in Section IV to evaluate the location
estimator performance by comparison with the LLS, two-step
WLS, and QLS estimators and to verify our theoretical findings.
Finally, conclusions are drawn in Section V.

II. TOA MEASUREMENT MODEL AND POSITIONING

ALGORITHM DEVELOPMENT

A. TOA Measurement Model

Let be the MS position to be determined and
the known coordinates of the th BS be ,

, where denotes the transpose operation, and
is the total number of receiving BSs. The distance between the

th BS and th BS, which is denoted by , is given by

(1)

Similarly, the distance between the MS and the th BS is defined
as

(2)

Since TOA is the one-way propagation time taken for the signal
to travel from the MS to a BS, we have the following relation-
ship:

(3)

where denotes the noise-free TOA at the th BS, and is
the speed of light. The range measurement based on , in the
presence of measurement errors denoted by , is modeled as

(4)
where is the range error in . In order to facilitate the devel-
opment and analysis of the proposed algorithm, it is assumed in
our study that have zero means, although it is a simplifi-
cation in real situations owing to multipath and NLOS propaga-
tion.

B. Positioning Algorithm via Direct Use of MDS

Classical MDS was first introduced in the discipline of psy-
chology [28], [29], and its basic idea is to assume that the dis-
similarities between objects are distances and then find coor-
dinates that explain them. In particular, classical MDS can be
used to solve the mathematical problem as follows: Given noisy
distances between a set of points in a Euclidean space, estimate
the coordinates of those points. In the following, we will de-
velop a TOA-based positioning algorithm via direct application
of the basic MDS algorithm [25]. Although the solution is not
feasible, we can briefly see the know-how of MDS.

When employing MDS, it is assumed that the centroid of all
the coordinates is at the origin, that is, , which
means that a simple translation is required after the coordinates
are recovered from the distance measurements. Given the dis-
tances among the MS and BSs, we first construct a matrix of
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squared distances, which are denoted by , as

...
...

...
. . .

...

(5)

where the distances between the BSs are free of errors, but those
involving the MS are noisy. Double centering is then applied to

to obtain a scalar product matrix, which is denoted by and
is of the form

(6)
where

is the centering matrix, with and denoting the
identity matrix and column vector

of all ones, respectively.
In the absence of distance errors such that ,

, it can be shown that

(7)

where is the matrix of coordinates with
dimension , or

(8)

which implies that the rank of is 2. Since is symmetric and
positive semi-definite, can be decomposed using eigenvalue
factorization as

(9)

where diag is the diagonal matrix of
eigenvalues of with , and

is an orthonormal matrix whose columns are
the corresponding eigenvectors. Since rank , we have

, and as a result, can also be
represented as

(10)

where diag , , and is an arbitrary
orthogonal matrix. From (7) and (10), we get the so-called prin-
ciple axes solution:

(11)

where diag .
In the practical situations of nonzero range errors, will not

be of rank 2 but has full rank. Nevertheless, (11) still yields

an optimal estimate of in the LS sense because it has been
proved [30] that the classical scaling solution is essentially

(12)

where is a matrix of variables, is the corresponding coor-
dinate matrix estimate, and represents the Frobenius norm.
Obviously, the principle axes solution only estimates the coor-
dinates of up to an arbitrary rotation, and the requisite trans-
formation matrix is given by [23]

(13)

The MS position estimate up to a translation is then

(14)

where corresponds to the first row of . Finally, performing
proper translation based on the centroid assumption yields the
estimate of .

However, from the above development of direct use of clas-
sical MDS for mobile positioning, we see that the basic algo-
rithm is neither feasible nor reliable for the following reasons.

R1) The rotation matrix of (13) that requires , which is
to be determined, is not known a priori.

R2) Even if an initial estimate of is available, the rota-
tion matrix of (13) is erroneous due to the noise in
as well as the MS position estimate. Note that although
only the first column and row of consist of measure-
ment errors, all the elements in will become noisy,
which can be observed from (6), and hence, all the el-
ements in consist of noise as well. Furthermore,
error is introduced in performing the translation in the
final step based on the estimate of . As a result, it is
not expected that the resultant MS position estimate is
reliable.

C. Proposed Positioning Algorithm via Modifying MDS

In this section, a modified MDS algorithm is proposed for mo-
bile positioning so that the problems in R1) and R2) are over-
come. The key idea is to change the centroid requirement by
excluding the unknown MS coordinates, that is,

. It is noteworthy that this centroid requirement is iden-
tical to the centroid centered reference system assumption used
in [21]. In so doing, the corresponding transformation matrix,
which is denoted by , will not involve , which implies the
feasibility of the algorithm. Moreover, the corresponding trans-
lation vector will be free of error. Our second improvement at-
tempts to remove the noise in by utilizing the known infor-
mation of the BS positions in order to give a perfect rotation
matrix, if possible.

Since the centroid of all the coordinates is not at the origin
now, the proposed algorithm has to be derived from the first
principle of classical MDS as follows. First of all, we express
(1) and (2) using vector notation:

(15)
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From (15), we have

(16)

Dividing both sides of (16) by and with the use of
gives

(17)

Interchanging the indexes of and in (17), we get another
equation

(18)

Summing up all equations of (18) and then dividing
the resultant equation by yields

(19)
Substituting (17)–(19) into (15), the term is expressed as

(20)

Notice that (20) differs from (8) because of different centroid
assumptions employed. From (8) and (20) and the known BS
positions, we are going to construct a modified scalar product
matrix denoted by , which agrees with the new centroid as-
sumption. First, we partition in (6) as

(21)

where is the first diagonal element of , is an
column vector, and is an matrix. Similarly, is
partitioned as

(22)

where , , and are to be determined. It is obvious that
the matrix can be evaluated as

(23)

where

which is free of measurement error. Using (20), the values of
, , and are computed as

(24)

(25)

and

(26)

By comparing (24)–(26) and the corresponding terms based on
(8), the relationships between and , as well as and ,
are found. As a result, is constructed as

(27)
With the use of , the MS position can be estimated in a manner
similar to the basic MDS algorithm. The procedure of our pro-
posed positioning algorithm via modifying the classical MDS
technique is presented as follows.

i) Compute and in (21) as well as in (23).
ii) Construct using (27).
iii) Decompose as , where diag

with
, and .

iv) Compute the principle axes solution as
, where , and diag

.
v) Partition as , where and

correspond to the rotated coordinates of the MS and



464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 2, FEBRUARY 2005

BSs, respectively. Following [23], the requisite rota-
tion matrix for is determined as

(28)

We expect that there is insignificant difference between
and the corresponding partitioned matrix deter-

mined from the truncated eigedecomposition in (10)
because consists of no errors; hence, the noise in
the resultant rotated matrix of based on the prin-
ciple axes solution will become negligible. As a result,
the rotation matrix of (28) will be very accurate.

vi) Find the estimated MS position up to a translation
using , as in (14).

vii) Perform proper translation using the known BS coor-
dinates to get the MS position estimate.

We see that the proposed algorithm allows real-time compu-
tation and requires no initial estimate of the MS position for
global convergence. It is also simple to implement and can be
easily extended to three-dimensional mobile positioning.

III. PERFORMANCE ANALYSIS

In this section, the bias and variance of the MS position esti-
mate in the proposed MDS algorithm will be studied. The basic
idea is to consider that the algorithm is essentially solving a cost
function minimization problem as in (12). We first develop a
variance expression for general minimization or maximization
problems where a parameter vector is to be estimated. Under
sufficiently small range error conditions, it is proved that the
MDS algorithm is unbiased, and the variance formula is then
applied to produce its theoretical estimation performance. Fi-
nally, using the interpretation of cost function minimization, the
relationships of the MDS method with the LSC, LLS, QLS, and
two-step WLS estimators will be examined.

A. Variance Expression for General Optimization Problems

Let be a real cost function which is a continuous function
of a number of variables, or a column variable vector, say, .
In a typical optimization process, we need to find an estimate of
the parameter vector denoted by , which corresponds to
the global minimum or maximum of . This implies that

(29)

where denotes a column vector of zero elements with length
equals to that of . When is located at a reasonable prox-
imity of the ideal solution of , using Taylor’s series to expand

around up to the first-order terms, we have

(30)

Note that is called the Hessian matrix of
, which is a symmetric matrix, that is,

.

Assuming that the second derivatives inside the Hessian ma-
trix of are smooth enough around , then (30) can be approx-
imated as

(31)

Taking the transpose on both sides of (31) gives

(32)

Multiplying (31) by (32) and then taking the expected value
yields

(33)

When the estimate of is unbiased, that is, ,
represents the covariance matrix of

, and we denote it by . By rearranging (33), is com-
puted as

(34)

The variances of are then given by the diagonal elements of
. It is expected that (34) can predict the parameter estima-

tion performance of minimizing or maximizing the cost func-
tion for sufficiently small noise conditions, according to our
assumptions in the variance expression development.

B. Bias and Variance for Proposed Algorithm

Based on (12), the cost function to be minimized in the pro-
posed method is

tr
(35)

where tr denotes the trace operator. Since is unique up to a
rotation, we can restrict it in the form of
so that are the only variables. Now, we are going
to represent (35) as a function of .

First, it is noticed that is equal to except for the el-
ements in the first column and row. This means that when com-
puting the error matrix , only the errors in ,

, and are required. Let the squared distance error for
the th BS be

(36)
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From (24), the error in is observed as

(37)

Similarly, from (25) and (26), the errors in and are

(38)

and

(39)

Using (37)–(39), the error matrix is then expressed as

(40)

where

...
...

. . .
...

and

...
...

. . .
...

Hence, we have

(41)

Since

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(42)

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(43)

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(44)

and

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(45)

where represents the elements of no significance, substituting
(42)–(45) into (41) and then taking its trace gives

tr

(46)

It is interesting to note that the first term of (46) consists of the
sum of square errors, whereas the second term contributes to
the cross-products of the errors, which means that is a gener-
alized LS cost function. In order to utilize (34) to evaluate the
theoretical performance of the proposed algorithm, has to be
expressed in matrix-vector form as follows. Expressing the ele-
ments of (36) in a vector, we have

(47)

where

...
...
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and

...

Using (47), (46) is represented as

(48)

where

which is a weighted LS cost function with weighting matrix .
By using (31), we have proved in Appendix A that unbiased

MS position estimation is attained via minimizing (48) for suf-
ficiently small range errors. The required derivatives of for
variance analysis are computed as (see Appendix B)

(49)

where represents the covariance matrix of the vector
of range errors at the BSs, which are denoted by ,
and is the Schur or element-by-element product, with

and , whose
elements are given by (4), and

(50)
Finally, substituting (49) and (50) into (34) gives the covariance
matrix for the proposed method. The variances of and

are then obtained from the diagonal elements of .
Finally, the relationships between the MDS, LSC, two-step

WLS, LLS, and QLS estimators, which give globally conver-
gence solutions, will be illustrated as follows. If we substitute

with and consider as an extra variable in (48),
the resultant cost function corresponds to the LSC estimator,
whose solution can be obtained easily via standard LS tech-
nique, although the known relation between the extra variable
and is not utilized. When is substituted with the op-
timum weighting matrix [22], (48) represents the cost function
of the two-step WLS method, assuming that the relation be-
tween the extra variable and can be explicitly exploited in
the second step of the algorithm. Replacing with and
removing all terms with in (48), the resultant cost func-
tion corresponds to the LLS method, and interestingly, it can be
shown that the LSC and LLS estimators are equivalent. More-
over, the cost function for the QLS method is given by (48) with
the substitution of only. It is noteworthy that since
the LSC, two-step WLS, LLS, and QLS estimators can be inter-
preted using (48), we are able to use the derived bias and vari-
ance formulae to produce their performance as well.

Fig. 1. Mean square position errors for three-BS geometry without NLOS
errors at [x ; y ] = [1000;2000]m.

IV. NUMERICAL EXAMPLES

This section contains MATLAB simulation results to cor-
roborate the theoretical development and to evaluate the
performance of the proposed TOA-based location algorithm
by comparing with the LLS, QLS [21], and two-step WLS
algorithms, where the latter is easily adapted from [22], where
TDOA-based location is addressed. The LSC method [20] was
not included since it is equivalent to the LLS estimator. Notice
that the two-step WLS algorithm expects to outperform the
LSC/LLS method because [22] has been shown to be superior
to the SI approach [18], [19]. The range errors were
zero-mean white Gaussian processes with identical variances.
All results were averages of 1000 independent runs.

Fig. 1 plots the mean square position errors (MSPEs) of
the modified MDS, LLS, QLS, and two-step WLS methods
versus range error variance. The theoretical performance of the
proposed method and the corresponding Cramér–Rao lower
bound (CRLB) [31] (See Appendix C) were also included.
The MSPE was defined as . We
considered a three-BS geometry with coordinates [0,0]m,

m and [0,6000]m, while the MS position was
fixed at m, and notice that the centroid
requirement was fulfilled by simple translation in the coordinate
system. It can be seen that the proposed algorithm performed
similarly with the two-step WLS, QLS, and LLS methods,
which gave large estimation errors or threshold effects [31] at
90, 70, and 80 dBm , respectively, which indicated that the
MDS method was more robust than the other algorithms as
it had a larger operation range. One possible reason for the
robustness of the proposed estimator is that nonzero-mean
disturbances in of (15) are allowed in the classical MDS
formulation, whereas the remaining methods assume zero-mean

in (36), which is invalid for sufficiently large range errors,
in applying linearization to (4) in their algorithm development
[20]–[22]. It is noteworthy that the mobile location estimation
problem is nonlinear, and hence, all positioning algorithms,
including the MDS method, will suffer from the threshold phe-
nomenon or known as occurrence of outliers, for sufficiently
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Fig. 2. Mean relative position errors for three-BS geometry without NLOS
errors at [x ; y ] = [1000;2000]m.

large noise conditions. Moreover, there was good agreement
between the measured MSPE and theoretical variance of the
proposed algorithm, where both were close to the CRLB.
Notice that the MSPEs of the QLS estimator with range errors
greater than 60 dBm were too large to be included in Fig. 1.
The corresponding mean relative position errors (MRPEs) of
the investigated methods, which was a measure of bias and
were defined as ,
are shown in Fig. 2. It is observed that the algorithms had
comparable MRPEs for sufficiently small range errors, and this
implied that they had similar empirical biases that were close
to zero for such conditions. For larger noise environment, the
proposed algorithm obviously had similar measured MRPEs
with those of the two-step WLS and LLS techniques. The QLS
algorithm had MRPE values over , which indicated that its
position estimates were very far from the true position, and this
observation also conformed to Fig. 1. Furthermore, the number
of floating-point operations (FLOPS) in computing a position
estimate using the MDS, LLS, QLS, and two-step WLS algo-
rithms were 1530, 109, 2869, and 1200, respectively, which
implied that the computational complexity of the proposed
algorithm was moderate.

Fig. 3 plots the MSPEs of all the algorithms when the MS
position was randomly chosen in an area bounded by [0, 0],

, , and [0, 6000] m for each
trial. We used the three-BS geometry as in the previous test,
which implied that approximately half of the MS positions
would be inside the region bounded by the BSs, and the re-
maining would be outside this region. As a result, the estimation
performance of the methods was basically different at each
trial because it is well known [15] that the positioning accuracy
varies with the relative MS and BS geometry. Nevertheless, we
observe similar findings, as in Fig. 1; in particular, the modified
MDS method was robust for larger range errors.

Fig. 4 shows the MSPEs of the algorithms versus number
of BSs when the range error variance was kept at 40 dBm
with . The minimum BS number
was 3, the corresponding geometry was identical to the pre-
vious test, and the BSs with coordinates ,

Fig. 3. Mean square position errors for 3-BS geometry with random MS
positions.

Fig. 4. Mean square position errors versus number of BSs under 40 dBm
measurement errors at [x ; y ] = [1000;2000]m.

, , and m
were then added successively. Notice that variations in the
BS number also produces changes in the BS geometry, and
subsequently, the positioning accuracy varies as well [15]. In
the figure, it is seen that the estimation accuracy of all methods
generally increased with the number of BSs. The proposed
algorithm performed similarly with the LLS and QLS methods
but was inferior to the two-step WLS estimator, which met the
CRLB, by around 1 dBm . The optimality of the two-step WLS
method is due to the use of the optimum weighting matrix in
(48), whereas the remaining algorithms do not. Furthermore,
the agreement between the measured MSPEs and derived
performance of the MDS estimator was again illustrated.

The first test was repeated for positive-mean TOA errors to
simulate the effect of NLOS propagation, and the range mea-
surements were now modeled as [32]

where was the maximum allowable error introduced by
NLOS, and and were independent uni-
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formly distributed random numbers ranged from 0 to 1. In this
experiment, was set to be 500 m, and the results are shown in
Figs. 5 and 6. Again, it can be seen that the proposed algorithm
performed similarly with other algorithms but was more robust
at larger range error conditions. Note that the zero-mean dis-
turbances dominated the NLOS error, whose maximum
value was 500 m, when the range error variance was greater
than 50 dBm , and thus, the NLOS effect was negligible for
larger .

V. CONCLUSIONS AND FUTURE WORKS

An accurate and computationally simple mobile positioning
algorithm using time-of-arrival measurements has been pro-
posed. The algorithm development is based on modifying
the classical multidimensional scaling (MDS) technique. A
variance analysis formula for general optimization problems is
developed to produce the theoretical performance of the modi-
fied MDS method, which is verified via computer simulations
for sufficiently small error conditions.

The proposed method can be employed for positioning sys-
tems using received signal strength measurements, which is a
straightforward extension. Future works also include investiga-
tion of estimation performance improvement for the classical
MDS algorithm, if possible, via utilizing a proper weighting
function in (35). In addition, we will explore the possibility of
utilizing MDS in time-difference-of-arrival based location as
well as other signal processing applications.

APPENDIX A

Taking the expected value on both sides of (31) and rear-
ranging the resultant equation yields an expression for the bias
of the estimated MS position:

(A.1)

Differentiating (48) with respect to , we get

(A.2)
Assuming that the disturbance due to the TOA measurements is
sufficiently small such that can be ignored, the derivative
of evaluated at the true source position becomes

(A.3)

We take the expected value on both sides of (A.3) and then apply
the fact that to obtain

(A.4)

Substituting (A.4) into (A.1) implies

(A.5)

which illustrates the unbiasedness of the proposed algorithm
when the first matrix in (A.1) is nonsingular.

APPENDIX B

Multiplying (A.3) by its transpose yields

(A.6)

By taking the expected value of (A.6), (49) is obtained.
Differentiating (A.2) with respect to , the first variable in
, and with the use of product rule, we get

(A.7)

Ignoring the terms of again, the value of (A.7) computed
at is

(A.8)

Taking the expected value on both sides of (A.8) and applying
gives

(A.9)
Similarly, repeating the derivations in (A.7)–(A.9) for the
second variable , we obtain

(A.10)
Since

(A.11)

substituting (A.9) and (A.10) into (A.11) yields (50).

APPENDIX C

The CRLB gives a lower bound on variance attainable by
any unbiased estimators. To determine the CRLB for mobile
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location, we first define , and its expected
value is easily shown to be

...
(A.12)

According to [31], when the TOA measurement errors are
Gaussian distributed, the Fisher information matrix for the MS
location is given by

(A.13)
where the th elements of and are computed
as

and

The CRLBs for and are given by the first and second
diagonal elements of , respectively.
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